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ABSTRACT

Study of nonhomogene0U8, anistropic dacite and granite at the 
Nevada Test Site showed that local geology was the major factor in 
changing their physical properties and stability. Fractures, weather
ing and hydrothermal alteration were the geologic agents contributing 
most tô  the changes. Least-squares regression analyses established 
significant interrelations among physical properties, stability and 
local geology.
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INTRODUCTION

Purpose and scope of the investigation
Rockj in general, is not a homogeneous, isotropic, perfectly elastic 

medium. Minerals, rock fragments, matrix material, and thé cement which 
constitute a rock each has varying properties making the whole nonhomoge- 
neous. Density differences "between grain-to-cement or crystal-to-matrix 
interfaces, preferred orientation of minerals, bedding, and microscopic 
cracks in crystals and grains make the rock anisotropic and nonelastic.
A large rock mass, in addition, has joints, faults, shears, weathered and 
alteration zones which further detract from its being homogeneous and 
isotropic.

The location, design, ahd construction of foundations, dams, tunnels . 
or any other engineering structure that is dependent upon rock require an 
understanding of hpw the rock will behave under stresses. The nonhomoge- 
neous and anisotropic nature of rock, however, makes any predictions of 
rock behavior extremely difficult.

One approach to the problem of rock behavior is to study intact rock 
samples in the laboratory to determine their lithologie, chemical and phys
ical characteristics, and then attempt to relate these characteristics to 
the physical properties of the rock sample. Some physical properties o f , 
rock in current use can be described by means of elastic properties, ulti
mate strength, density, and porosity. Basic definitions of elastic proper
ties, in terms of mathematical equations relating selected measurable 
physical properties, have been developed for homogeneous and isotropic 
materials. Rocks found in nature rarely meet these ideal conditions, 
therefore, the assumption that equations of mechanical theory can be 
applied to rocks requires experimental justification (J. M. ide, 1936).
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A method for relating the physical properties of nonhomogeneous, 
anisotropic rhyodacite core samples, henceforth called dacite,.to its 
lithologie, weathering, and alteration characteristics will be discussed. 
Interrelations of porosity, density, unconfined compressive strength and 
elasticity of the dacite will be presented in mathematical and graphically • 
form. From these interrelations in dacite core samples it will be shown 
that reasonable predications of elastic and unconfined strength values 
can be made from easily obtained porosity measurements.

A second approach to understanding the behavior of rock under stressed 
conditions is to relate the effect local geology has on the stability and 
physical properties of a rock mass. Examination of four 65O foot NX cores 
taken from inclined holes drilled in quartz monzonite, henceforth referred 
to as granite, permitted detailed logging of lithology, faults, joints, and 
the relative degree of weathering and hardness of the granite. A 70-foot 
hemispherical chamber, entry shafty and communication drifts constructed 
in the granite allowed detailed geologic mapping of the in-place rock and 
recording of construction and stability conditions. The drill holes pene
trated the underground complex, making it possible to relate underground 
conditions to the detailed core logs. It will be shown by means of mathe
matical equations, graphs and a Rock Quality Table that physical properties 
and construction and stability conditions in granite are directly related 
to joint and fault intensity and to the degree of weathering and hardness 
of the rock. The effects of local geology as seen in cores can, therefore, 
be used to make reasonable predictions of the physical properties and 
construction conditions of granitic rock.

I

3
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Fundamental principles of rock mechanics 
Mechanics is defined as "the science that deals with the action of 

forces on bodies and with motion, comprised of kinetics, statics and 
kinematics" (Random House Dictionary, I966). Rock mechanics is, there- 
fore, the study of forces acting on rock. In order to establish a back
ground for discussion of rock physical properties in relation to the 
geologic history of a region, a brief review of some fundamental princi
ples of mechanics follows.

Elasticity is that property of a substance which allows the substance 
to resist deformation when subjected to the action of an external force 
(L. L. Nettleton, 19^0, p. 231-244). The elastic properties of a substance 
can be measured in terms of stress and strain. Stress is defined as the 
ratio of the internal force (P), which is brought into play irtien a substance 
is distorted in any way, to the area (A) over which this force acts. Thus

Stress “ (1)

Strain is defined as the ratio of change in size or shape of a body to 
original size or shape, and has no dimensional units.

The relationship between stress and strain is expressed by Hooke’s 
law which states that, for an elastic body the ratio of the stress to the 
strain produced is a constant, or

Stress
Strain k (2)

The modulus of elasticity is called k.
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Young's modulus (E) is a measure of the stress-strain ratio of a 
substance t; at is under simple tension or compression. It defines the 
strain in terms of the change in length of a body from its original length 
when a simple tensional or compressional stress is applied^ or

strain = M  (3)original length L

Thus from Hooke's law (equation 2) Young's modulus (E) can be defined as

® “ - # r  <“)

Shear modulus (^) is a measure of the stress-strain ratio for simple
shear. It can be described as a measure of resistance to change of shape

*
without change of volume; a pile of cards might be sheared by sliding each 
one successively a slight distance over the next. The shearing strain is 
expressed as the ratio of lateral displacement (AL) of a body between two 
points lying in parallel planes in the line of force, to the vertical . 
distance (L) between the planes perpendicular to the line of force.

/  (5)

Poisson's ratio (cr') is a measure of a geometric change of stress- . 
strain relation and, therefore, has no units. In the case of a cylindri
cal body under compression, the original length (L) is compressed elasti
cally to a length L - A  L. Its original diameter (d ) then increases to 
D + A  D. If the cylinder is under tension the changes are of the same 
magnitude but opposite in sign. This change of shape is expressed as the 
ratio of the fractional change in diameter (A D/D) to the fractional 
change in length (AL/L), or

4
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Theoretically Poisson's ratio cannot have a value greater than 1/2.
Bulk modulus is a measure of the stress-strain ratio under simple 

hydrostatic pressure and represents a volumetric change. It can be expressed 
as

à v v

where AV/V is the change in volume per unit volume.
A linear, homogeneous, isotropic, and elastic medium can transmit two 

types of waves which have different speeds of propagation, depending on 
the elastic constants. The two types of waves are defined as compressional 
(longitudinal, P) waves, and shear (transverse, S) waves. The compressional 
waves are the motions of particles in the medium parallel to the direction 
of propagation. The shear waves are the motions of particles in the medium 
perpendicular to the direction of propagation (L. L. Wettleton, 1$40).
The relation between the waves and the four elastic constants (J. M. Ide, 
1936) are:

\/z _ E l-cr _ M  4-9^ 3 3*E/9 
‘ V  Ci-o-Xi-Zc) ' J O  3 - ^  -J0J3 9+ ^

s p  2(1 ' JO JO 9-Ey6

8
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The elastic constants can also be related to each other by the following 
equations:

E ^ =  3 (1 -2  <r) (10)

E/u= 2 ( l+ c r )  (11)

EyS + S E ^  = 9  (12)

>rtiere E is Young's modulus 
^  is bulk modulus 
y/ is shear modulus 
cr is Poisson's ratio 
p  is the density of the medium 
Vc is the compressional velocity in the medium 
Vs is the shear velocity in the medium.
Strength is the limiting stress that a solid can withstand without 

failing by rupture or continuous plastic flow. Rupture strength or 
breaking strength refers to the stress at the time of rupture (Billings, 
195^» p. 17)* Ultimate strength is the greatest stress that a substance 
can stand under normal short-time experiments; that is, the highest point 
on a stress-strain diagram (Billings, 19$4, p. l6). Compressive strength 
is the load per unit area under which a block fails by shear or splitting 
(Terzaghi, 1950). Fundamental strength is the maximum stress that a sub
stance can withstand, regardless of time, under given physical conditions 
without rupturing or plastically deforming continuously (Billings, 195^» 

p. 2k).
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INTERRELATION OF DACITE PHYSICAL PROPERTIES 
TO LOCAL GEOLOGY

Introduction
One phase of the Department of Defense nuclear ram jet project, code 

named Pluto, called for an experimental high pressure underground air 
storage chamber. Basically the plan required a pilot chamber to be con
structed in rock that would provide support for a thin steel liner that 
would hold the pressurized air. The concept can be compared to an inflated 
automobile innertube encased and supported by an outer tire. The chamber 
design demanded that the rock be able to restrain pressures up to 3,000 psi.

The site chosen by the Department of Defense, based mainly on logis
tical support requirements, is in Wahmonie Flat located on the Nevada Test 
Site (fig. l). The Nevada Test Site lies in southeastern Nye County 
approximately 70 miles northwest of Las Vegas, Nevada.

Geology of Wahmonie Flat
Extrusive rocks. The extrusive rocks in the area make up part of the 

Wahmonie Formation of late Miocene and early Pliocene(?) age (Poole and 
others, 19^5)• The Wahmonie Formation at the construction site consists 
of dacitic lava flows and their associated breccias (fig. 2). The flows 
in general are composed of stony interiors enveloped by porphyritic glass 
zones, which in turn are enclosed by rinds of black or gray glass. The 
associated breccias are made up of fragments of lava enclosed in a fine 
matrix of cinders, rock fragments, and glass. The breccias are more 
susceptible to weathering than are the more dense flow rocks.

The jrocks of Wahmonie Flat are chemically, similar, although the oldest 
flows are slightly more silicic than the youngest. Phenocrysts of plagio- 
clase, biotite, hornblende, hypersthene, quartz, and finely disseminated

10
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Figure 2.— Geologic wap of Wahwonie Flat, Rye Codwty^ 
Nevada, showing Pluto shaft and drill hole.
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I

n^gnetite embedded in a glassy or stony groundraass, give the rock a porphy
ritic texture. Thp Pluto underground chamber is constructed in one of the 
dacite flows.

In places the lavas have been altered by hydrothermal solutions and 
have been impregnated with cryptocrystalline quartz. Hydrothermal alter
ation is extensive along shear zones. Extensive weathering of the rock 
has occurred near the surface and along joint planes in both the altered 
and unaltered rocks. The groundmass has been especially affected by the 
weathering process, causing increased porosity and generally weakening of 
the rock.

Structure. Structural features include normal faults, shear zones, 
and joints. Tectonic activity, occurring during late Tertiary times 
throughout Nevada and most of southwestern United States, resulted in 
regional uplift and major block faulting. Much of the structure is related 
to these great earth movements. The high-angle normal faults in the area 
generally strike either northeast or northwest. Vertical displacement 
along the faults in the area does not exceed 100 feet, although there is 
evidence of considerable lateral displacement. The faulted blocks are 
tilted to the east. North- and northeast-trending shear zones, dipping 
from about 4$ degrees to vertical, occur in both the altered and unaltered 
rocks. The greatest amount of hydrothermal alteration has taken place 

along these zones.
Ground water. Garber and Thordarson (I962, p. l) state that the piezo

metric surface of the regional water- table in Yucca Flat which is located 
about 5 miles east of Wahmonie Flat, is approximately 2,400 feet above sea 
level. Soundings taken in six drill holes at the Pluto site (fig. 2), 
however, indicated that an extensive perched body of water exists in the

13
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area. The average elevation of the perched zone was 3,935 feet above sea 
level which is some .1,500 feet above the regional water table. The perched 
water body, encountered during shafting, occurred at a depth of I58 feet 
below ground surface or at an elevation of 3,933 feet. Color changes in 
the drill cores and the presence of iron-oxide coatings along joint planes . 
suggest the perched zone may extend to 3OO feet below ground surface or to 
about 3,790 feet in elevation.

Dacite physical properties and local geology
Examination of cores frbm three exploratory borings at the Pluto 

chamber site showed that the dacite, down to a depth of 1,000 feet from 
ground surface, could be divided into one unaltered sub zone designated 
as Zone la and four distinctive weathered and alteration zones referred 
to as Zones I, II, III and IV (fig. 3)» These zones provided an excellent 
opportunity to study the effects that the geologic history of the region 
had on the dacite. Detailed surface and underground mapping, core logging 
(Table 1), chemical and x-ray analyses (Tables 2 and 3), physical properties 
tests (Table 4) and pétrographie examination (Table 5) provided the perti
nent information for the effècts studies. Each zone will be discussed 
under topical headings of the rock’s physical and chemical characteristics. 
Testing of samples for physical properties follows American Society for 
Testing Materials standards (AS3M, 1952).

Hand specimens. The core from Zone I (Table 1 and fig. 3) is very 
light gray to light bluish gray, severely to moderately weathered, porous 
and generally weak. The severely weathered core, bleached to a very light
gray and white, slacks readily in water. Within Zone I, generally below

/

100 feet in depth, occasional lenses or blocks of unaltered and unweathered

14
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Table 2.— Chemical analyses o£ dacite core samples from WahmonieFlat. Nye County. Nevada

/Analysts: P. L. D. Elmore, I. J. Barlow, S. D. Botts, and G. W. Chloe.
Location of drill holes by Nevada State (central) coordinates: 
D.H.-l, N. 754,788, E. 662,481; D.H.-2, N. 755̂ ,967, E. 664,321; 

D.H.-3, N. 754,808, E. 662,507./ COCO

Sample 
number— - D.H.-lA D.H.-IB D.H.-ID D.H.-IF D.H.-IK D.H.-IS D.H.-IU D.H.-IX D.H.-2D D.H.-2F D.H.-3H

Depth
in feet— 65.5 83.3 109.8 130.0 217.5 400.0 450.0 550.0 83.5 108.0 221.0

SiOg 64.0 64.9 64.5 62.6 63.5 63.4 64.4 63.8 61.7 61.4 62.6
AI2O3 15.9 . 13.8 16.2 16.2 16.6 15.4 15.7 16.2 16.7 17.2 15.7
^*2®3 2.4 3.0 2.4 3.1 3.3 3.8 4.1 4.3 5.2 5.3 4.7
FeO 1.1 .16 1.1 .27 .30 .11 .06 .18 .09 .13 .10
MgO 1.8 1.9 1.4 1.8 1.2 1.6 1.3 1.2 1.6 1.4 1.4
CaO 3.8 4.7 3.7 4.4 4.2 3.9 3.2 3.0 4.1 4.6 3.8
NagO 2.3 1.6 2.6 2.2 2.7 2.6 2.6 2.6 2.8 3.0 2.3
KjO 3.1 1.1 3.7 1.2 3.4 3.6 3.6 3.6 2.8 2.6 3.8
H2O 4.8 6.9 3.6 6.7 3.1 3.3 3.5 3.8 3.7 3.2 4.0
Ti02 .50 .47 .48 .50 .52 .54 .57 .58 .68 .70 .52
P2O5 .28 .20 .24 .27 .26 .23 .24 .24 .30 .32 .24
MnO .09 .05 .08 .02 .05 .09 .05 .03 .05 .05 .08
CO2 <.05 1.2 <.05 .15 .62 1.6 .51 .10 <.05 <.05 .88

Sum---"»
(percent)

100 100 100 99 100 100 ido 100 100 100 100

CD
Q.

"O
CD

2
Q.
Cg"G3"O2
Q.2
.C■c

8

O
cg
COCO

CD
Q.

"O
83"O2
Q.
CDq:



Table 1.— X-ray analyses of core samples from drill holes D.H.-l. D.H.-2.
D.H.-3. P.M.-4. and D.H.-5. Wahmonie Flat, Nye County^ Nevada

^Analyst: Theodore Botinelljr/

Sample
No.

Depth
(feet)

Cristobalite
y

Clay Mica Feldspar Dolomite Calcite

D.H.-IB 83.3 4 3 4 4 - -
D.H.-IF 130.0 4 3 4 2-3 - -
D.H.-IU 450.0 2-3 3 5 4 - -
D.H.-IX 550.0 2-3 3 - 3 - -
D.H.-2D 83.5 3 3 - 2-3 - -
D.H.-2F 108.0 3 3 - 3 - -
D.H.-3H 221.0 3 4 5 4 - -
D.H.-4F 99.0 3 4 - 3 - -
D.H.-4T 252.5 3 4 - 2-3 - -
D.H.-5A 13.0 3 4 - 4 - -
D.H.-5B 35.5 3 3 - 4 - 5
D.H.-5D 75.5 2-3 4 - 4 - -
D.H.-5L 224.5 5 4 5 3 5 5
D.H.-5R 311.0 3 3 - 4 -

y  Code
1 = >75 percent
2 ■ 50-75 percent
3 = 25-50 percent
4 = 10-25 percent
5 = <10 percent

Location of drill holes by Nevada State (central) coordinates
D.H.-l H. 754,788, E. 662,481
D.H.-2 N. 755,967, E. 664.321
D.H.-3 N. 754,808, E. 662,507

1

D.H.-4 N. 756,262, E. 661,491 
D.H.-5 N. 753*602, E. 662,558

17
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(DT3O
Q.

samples calculated for alteration gone# 
I. la. II. Ill and- IV. Wahmonrie Flat. Mya County. Nevada -

Alter
ation
Zona

Description 
of Zone

Approx.
depth

(fitt)

Average
porosity
(percent)

Grain
density
(g/cc)

Dry bulk 
density 
(g/cc)

Saturated
bulk
density
(g/cc)

Dynamic Static Magnetic
suscepti-
bility
(lO'̂ cgs)

Young's
Modulus
(106pai)

Poisson'a 
ratio

Shear
Modulus
(lÔ pai)

Longitudinal
velocity
(fpi)

Transverse
velocity
(fp«)

Young's
Modulus
(loSai)

Poisson'a 
ratio

Unconfined
compresslva
strength
(lÔ sl)

I Light gray, aware: 
to awderataly 
weatherad.

y
160

»
2.52
(30)

2.02
(35)

2.27
(7)

2.36
(6)

0.16
(8)

0.94
(8)

8,929
(8)

5,693
(8)

1.74
(3)

0.22
(2)

9,200
(3)

1,325
(22)

la Lenaea and blocka 
contained within 
zone I, freah to 
slightly weathered,

S '
2.51
(6)

2.36
(6)

2.41
(3)

6.71
(4)

0.23
(4)

2.74
(4)

15,109
(3)

8,563
(3)

1,768
(5)

II Light reddiah-browi 
moderately weathers 
oxidized iron 
minera la.

I.

475

10.8,,
(83)"'

2.54
(83)

2.27
(82)

2.36
(11)

4.03
(32)

0.15
(32)

1.75
(32)

11,742
(32)

6,595
(32)

3.44
(16)

.16
(15)

14,731
(16)

256
(47)

m Transitional betMt 
zone II and IT, 
interbanded light 
reddish-brown aW 
bluish-gray.

n

640

(17)-'
2.55
(17)

2.30
(17)

4.37
(2)

0,18
(2)

1.86
(2)

12,189
(2)

7,635
(2)

2.11
(5)

0.15
(2)

13,833
(3)

476
(13)

IV Bluish-gray, 
unweathered, hydro* 
thermally altered 
by silica bearing 
solutions. +1,000

2.56
(16)

2.35
(16)

4.78
(2)

0.10
(2)

2.16
(2)

11,505
(2)

8,133
(2)

4.82
(4)

0.28
(2)

15,533
(3)

1,508
(6)

y  Number In perentheila la number of aaoplca teated.

1#



Table 5.--Pétrographie modal analyses of 10 dacite porphyry core 
thin sections from D. H. 1 between depths 65-550 feet.

VAnalyses are given in percentage of total volume of rock^7

Mineral Percent
1

Quartz trace
Glass matrix 72.0
Plagioclase 19.5
Biotite 3.7
Hornblende 0.4
Hypersthene 0.1

Iron Oxides 1.9
Calcite 1.9
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rock occur that are suggestive of fresh "blocks of rock found below the 
saprolite zone in a soil profile. The core from this rock, designated as 
Zone la, is representative of the unweathered and unaltered dacite. Zone 
la core is light gray, hard, slightly weathered to unweathered, and has a 
partly devitrified glassy groundmass. Jointing is more pronounced in 
Zone la than in the severely weathered rock of Zone I due to its preser
vation in the more brittle rock. The core from Zone II is light reddish 
brown, oxidized, moderately to slightly weathered, unaltered to slightly

I
hydrothermally altered, slightly porous, and of intermediate hardness to 
hard. The competency of the core improves below 370 feet in depth, as 
reflected by its generally harder and less porous character. Joints in 
the core are mostly open and coated with iron-stained clay and calcite 
above the 220-foot depth, but become tighter downward to about the 300- 
foot depth. Below 300 feet the joints are mostly sealed with iron-stained 
clay and calcite. The joint spacing above 370 feet averages 8 inches, and 
below 370 feet averages 2 feet. A detailed joint study of D.H. 6 core 
indicated, however, that the joint spacing gradually increased below the 
285-foot depth, whereas the improved character of the core did not occur 
until 370 feet. A transitional zone, designated as Zone III, lies between 
500 and 650 feet in depth. Alternating reddish brown and bluish gray sec
tions of core, which are characteristic of both the overlying and underly
ing zones, mark a gradual change in the weathering and alteration of the 
rock. Zone IV, lying below 65O feet in depth, is bluish gray, hydrother
mally altered, unweathered to slightly weathered along joint planes, non
oxidized, and hard. Joint spacing averages 2 feet. The majority of joints 
are sealed with unstained calcite, and the core occurs in long unbroken 
lengths. Locally, hydrothermal solutions have deposited opal and gypsum.
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Thin sections. Pétrographie examination of thin sections samples from 
each zone are summarized in Table 5* In Zone I weathering is seen to have 
attacked the perlitic groundmass, changing portions of it to clay minerals 
and obliterating the structure. Weathering has increased the porosity; 
connected and unconnected pore spaces filled with clay minerals are very 
common. Interpretation of x-ray patterns identified the dominant clay 
mineral as montmorillonite (Table 3)• Thin sections from Zone la show that 
perlite is the major constituent, averaging J2 percent by volume of the rock 
(Table 5)« The groundmass is slightly devitrified and contains abundant 
microlites, locally oriented subparallel to each other creating a slightly 
trachytic texture. There are occasional unconnected vesicules, most likely 
gas cavities. In Zone IX the groundmass has been oxidized to a light red
dish brown and changed, in part, to a mixture of clay minerals. The pheno- 
crysts remain relatively unaffected, except that the edges of most of the 
magnetite grains are oxidized. Connected and unconnected pore spaces are 
partly or entirely filled with clay minerals, calcite, and iron oxides. 
Perlitic cracks in the groundmass are generally not discernible. There is 
evidence of hydrothermal alteration in some zones: opal, dolomite, and
chlorite occur sporadically.

In Zone IV there is moderate to slight hydrothermal alteration of the 
groundmass to clay minerals, and alteration of plagioclase, blotite, horn
blende, and hypersthene minerals to dolomite, calcite, epidote and chlorite. 
Voids in the rock are mostly filled with calcite.

Physical properties. Weathering, oxidation, and hydrothermal alter
ation have changed the physical properties of the dacite. The degree of 
change caused by these geologic agents in order of increasing effectiveness 
is 1) hydrothermal alteration with no associated weathering, 2) hydrothermal
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alteration with associated oxidation and moderate weathering, and 3) severe 
weathering. Table 4 lists the physical properties of core samples taken 
fi*om each of the zones shown in figure 3.

The average porosity of Zone I is 18.6 percent, indicating almost 1/5 
of the rock consists of some kind of void space. The compressional and 
shear velocities and elastic constants are low compared to fresh dacite 
and fall in the range characteristic of many bedded tuffs in southern 
Nevada. The average static Young's modulus value is 620,000 psi lower 
than the dynamic value, and probably reflects the closing of voids under 
initial loading during static testing. The unconfined compressive strength 
is almost half the strength of fresh dacite.

Intone la the average porosity of the fresh dacite is 6.2 percent and 
probably represents the voids created by gas cavities and perlitic cracks 
that are observed in thin sections. The compressional and shear velocities 
in Zone la are 60 percent higher and the dynamic elastic constants are 1/3 
higher than those of the severely to moderately weathered rock of Zone I.

The physical properties of the core from Zone II show improved values 
over those of the more weathered core from Zone I. The average compres
sional velocity of core from Zone II is 25 percent higher than that of core 
from Zone I. Total average porosity of the Zone II core has decreased 40 
percent, Pereas average dynamic Young's modulus and compressive strength 
have increased hO percent. A much greater increase occurs between static 
Young's modulus from the two zones: Zone II averaging 2/3 higher than

Zone I.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



In Zone III there is a slight decrease in average porosity and an 
increase in average dynamic elastic constants compared to Zone II, but the 
average static values of Young's modulus and con^ressive strength are lower. 
The layered oxidized-hydrothermally altered (light reddish brown and bluish 
gray) character of the rock may create an anisotropic condition that imparts 
a slightly lower strength and elasticity to the cores under static loading.

In Zone IV hydrothermal alteration has increased the average porosity 
and lowered the average dynamic Young's modulus of the original rock by Uo 
percent. The average compressional velocity of cores from Zone IV is 25 
percent less than the fresh dacite from Zone la. Although no static tests 
were made on the fresh, unaltered dacite, it is safe to assume that alter
ation has also decreased the compressive strength and static Young's modulus. 
VQien compared to properties of the slightly to moderately weathered rock of 
Zone H, the nonweathered hydrothermally altered rock of Zone IV has higher 
average compressive strength and elastic values and lower average porosities. 
There is evidence that Zone II may have been subjected to some hydrothermal 
alteration, but the added effects of oxidation in the perched water zone, 
higher joint intensity, and weathering have reduced the competency of the 
rock in this zone.

Magnetic properties. Magnetic susceptibility is the ratio of inten
sity of rock magnetization to the magnetizing (earth's) field defined with 
respect to unit volume ( Chapman and Bartels, 1961 ). In rock, magnetite is 
the major constituent having magnetic properties, therefore, magnetic sus
ceptibility reflects mostly the volume of magnetite in rock. Magnetite 
phenocrysts in the dacite average 1.9 percent by volume, in addition, 
cryptocrystalline magnetite also occurs in the glass matrix (Table 5) •
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Referring to Table h, the magnetic susceptibility values of the dacite 
show interesting variations from zone to zone. Zone I and Zone la have 
high magnetic susceptibility values averaging 1,325 and 1,768 x 10 “ ̂  cgs 
units respectively. The light gray color and core descriptions (Table l) 
do not indicate any great amount of oxidization in this section. The 
regional arid climate of the desert apparently has not favored oxidation of 
the magnetite crystals or cryptocrystalline magnetite in the matrix above 
the water table. However, on the other hand, it has not retarded chemical 
weathering of the glassy matrix and feldspar crystals into clay minerals. 
Zone II and Zone III have low magnetic susceptibility values averaging 256 

and 4 7 6  X  1 0 " ^  cgs units respectively. The light reddish brown color of 
the rock, core description and thin section examination indicate that much 
of the magnetite has been oxidized into nonmagnetitic hematite in these 
zones, especially throughout nhmber II. This oxidized section lies in the 
perched ■vra.ter zone where intermittent wetting and drying of the rock due 
to fluctuating water levels has created an oxidizing environment. Zone 17 
is hydrothermally altered but generally unweathered-. Color, core descrip
tion and thin section study show that the magnetite is still relatively 
fresh. The h i ^  magnetic susceptibility reading, averaging 1,508 x 10 
cgs units, attests to the nonoxidized condition of the rock.

The magnetic properties of the dacite suggest that low magnetic suscep
tibility values reflect oxidation of magnetite in the rock, caused, in this 
case, by a local perched water zone. On the contrary, desert weathering of 
the dacite above the perched water and hydrothermal alteration of the rock 
have not appreciably decreased the magnetite content as shown by the high 

magnetic susceptibility values.
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Underp;round in-place rock conditions. Mapping of the Pluto entry 
shaft sunk through Zone I confirmed that the rock was unstable. Overbreak 
during mining operations was common. The rock was punky and generally 
incompetent, requiring extensive support by steel sets and timbering. 
Exposure to the dry desert air caused shrinkage of the clay minerals in 
the rock, resulting in much sloughing of the wall rock. The high joint 
intensity of the dacite augmented the already weakened condition of the 
rock, encouraging slabs and blocks to break out along the joint planes.
The fresh dacite blocks of Zone la were conspicuous in the shaft, usually 
standing out as ledges with considerable undercaving of the surrounding 
weathered rock. Examination of the pilot chamber, constructed in the ' 
upper part of Zone II, showed that the rock stood up well. Three joint 
sets mapped in the chamber have high angle northeast and northwest, and 
low angle north-south orientations. The intersection of the high angle 
and low angle joint sets, however, form discrete blocks, ranging from 1 
to 3 feet on a side, that disrupt the continuity of the rock mass. A 
seismic survey conducted in the chamber showed that in-place dynamic 
Young's modulus values averaged 2.85 x 10^ psi (R. A. Black and D.R. 
Cunningham, USGS, oral commun., 1963). The Young's modulus of 12 core 
samples taken from the chamber zone, however, averaged 4.11 x 10^ psi.
The 30 percent reduction of in-place d^mamic Young's modulus values can, 
therefore, be directly attributed to the effect of jointing in the rock.
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Interrelation of physical properties
Table 4 shows that the elastic constants and unconfined compressive 

strength values of dacite increase with corresponding decrease of porosity 
in the rock. Likewise both the strength and elasticity of.the dacite 
increase with corresponding increasing dry bulk densities. The observa
tions suggest that the density and amount of pore space in the dacite 
affect other rock properties. Further examination of Table U seems to 
indicate that a general direct relation also exists between velocities, 
elastic moduli and unconfined compressive strengths. The analytical data 
warrant statistical treatment to calculate the degree of interdependence 
among the rock properties and to see if an easily determined property, ' 
such as porosity or density, correlates well with the more complex Young's 
modulus and unconfined compressive strength.

A least-squares regression program, designed for the Burroughs 5500 
computer, ran all possible combinations of the physical property tests 
made on the dacite cores. The computer calculated both linear and log- 
linear relations and designated the curves of best fit. Figures 4 through 
20 present the results.

The following conclusions from the least-squares regression study are 
considered by the author to be significant;

1. Porosity has a greater influence than density on the velocities, 
elastic moduli and uncompressive strength of the dacite. The porosities 
range between 5.2 and 19.2 percent. Whether porosities below 5-2 percent 
continue to have more influence than density on rock properties is unknown.

2. The best statistical fit between porosity and elastic moduli, 
velocities, and strength is log-linear in the range of properties tested, 
where porosity is linear and the other rock properties are iQgarithraic.
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3* Porosity tears an inverse relation to velocities, elastic con
stants, and strength, that is, the greater the porosity, the lower the 
other property values. Porosity is detrimental to the competency of the 
dacite.

4. Density is directly related to velocities, elastic moduli and 
compressive strength, that is, the more competent dacite samples have 
higher densities.

5. Porosity values can be used to make reasonable and rapid predic
tions of dacite physical properties.

6. Significant correlations exist between static and dynamic elastic 
moduli, that is, static Young's modulus correlates with dynamic Young'S
modulus.

7. Static elastic moduli values are generally lower than dynamic 
elastic moduli values.

8. Static values have more scatter than dynamic values. This can be 
attributed to the static loading test method that is strongly influenced 
by anisotropic conditions in rock samples.

9- The directional orientation of linear features in test samples
I

affects the physical property results. Table 6 shows that orienting the 
flow-banding perpendicular to the pulse direction in dynamic testing gives 
the lowest elastic constants.

10. Unconfined compressive strength and elastic moduli are directly 
related, that is, higher strength samples have correspondingly higher 

elastic moduli.
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flow banding 
to pulse

Compressional
velocity
(ft/sec)

Shear
velocity
(ft/sec)

Poisson's 
ratio

Young's
modulus

Shear
modulus

Bulk
modulua

parallel 13,800 8,600 0.18 5.5 2.3 2.9

perpendicular 13,000 8,000 0.19 4.8 2.0 2.6

45" 13,900 8,700 0.19 5.6 2.4 3.0
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USTERREIATION OF GRANITE IN-PLACE ROCK STABILITY 
TO LOCAL GEOLOGY

Introduction
A unique structure constructed 300 feet below ground surface in a 

granitic rock required an extensive geologic program that followed the 
project from the drawing board to the completion of mining operations.
A 380-foot entry shaft, 50O feet of communication drifts and a 70-foot 
diameter hemisphere with a near vertical flat face had to be excavated 
in a strongly jointed medium that was cut by faults, shears and altered 
zones. The critical factors in the hemisphere's design was the arch in 
the crown that was mathematically calculated to give maximum strength to 
the structure, and a flat face that would have a neat surface not varying 
more than 1 foot in overbreak. From the start the geologic approach was 
to 1) determine the dominant joint orientations and then locate a single 
joint plane along "vdiich to mine the hemisphere face; the intent being to 
minimize overbreak, 2) calculate joint and fault orientation and inten
sity and to locate the site in the least fractured, weathered and altered 
rock at the planned depth, and 3) avoid ground water.

The project area, situated in the Climax stock at the Nevada Test 
Site (fig. 1), was mapped for geology at the surface and cored by four 
650-foot drill holes before selecting the final location. Examination 
of the cores provided underground conditions which were translated into 
engineering and construction predictions. Detailed subsurface mapping 
was kept current with mining operations and the orientation of the joint 
plane to be used as the surface for the hemispherical face was chosen 
from the structure maps. A small exploratory drift at the elevation of 
the proposed face oenter was driven until it crossed a suitable joint
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plane. Analysis of joints from oriented cores and surface maps indicated 
a favorable potential joint orientation having a strike of and a
dip of 70°SE. The joint selected had a strike of and a dip of 74°8E.
The hemisphere was located in competent rock and was successfully excavated, 
meeting all design criteria.

Geology of the Climax stock
Intrusive rocks. The Climax stock is a granitic intrusive, roughly 

elliptical in shape (Houser and Poole, i960). Its surface exposure is 
about 1 1 /2  square miles in area. The igneous rocks of the stock are an 
older porphyritic fine- to medium-grained quartz monzonite, and a younger 
equigranular granodiorite (fig. 2l). The hemisphere is in the quartz 
monzonite phase.

Structure. The rock of the stock is jointed, faulted, and sheared.
The joints and faults generally strike northeast or northwest and have two 
distinct angles of dip. One joint and fault set dips steeply and strikes 
northeast and northwest; the other joint and fault set dips at a low angle 
and strikes northwest.

Ground water. Walker (I962) states that ground water is thought to 
exist in the stock only locally where the rock is most fractured. The 
water supply is replenished from precipitation in the immediate area.
There is apparently no extensive zone of saturation. Where ground water 
is present it is limited in quantity.

Description of the porphyritic quartz monzonite. The quartz monzonite 
("granite") which encloses the hemisphere is very light gray to bluish 
white (Table 7). The essential mineral constituents of the rock are quartz, 

feldspar, biotite and hornblende. Feldspar phenocrysts, as much as 2 
inches in length, occur throughout most of the rock. The rock is jointed
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and weathering has occurred along the joints to depths of 300 feet below 

the surface. The zone of pervasive weathering, however, reaches a maximum 
of 150 feet below the surface mainly along shear zones. Hydrothermal solu
tions have introduced secondary quartz, feldspar and pyrite along joint
planes.

&
Rock stability and local geology 

A successful engineering geology study related in-place rock stability 
to local geology of the Climax stock. The program, combining a special 
core logging technique, statistical analysis of the core data, and under
ground mapping, correlated core conditions with in situ conditions.

About 2,600 feet of core were taken from four inclined drill holes in 
the Climax stock as part of the site selection for the underground hemi
sphere. Previous surface mapping of fractures in the stock determined the 
orientation of the drill holes so they would intersect the maximum number 
of joints and faults. The rigid requirements for competent rock needed 
for the hemisphere demanded accurate predictions of underground conditions 
from the retrieved core. Since the hemisphere would be built in a single 
rock type, the major local geologic features that would affect the stabil
ity of the granite were weathering, alteration, joints and faults.

Core logging. The most important information needed from the cores 
was fracture, weathering and alteration data. To get this information, 
the core from each boring was initially laid out in continuous sequence 
according to depth, that is, from ground surface to the bottom of the hole. 
The cores were then divided into "logging units" that segregated more 
competent zones from less competent zones based on the gross appearance 
of joint intensity, weathering and faults in the core. The minimum length 
of a logging unit was set at 10 feet. In addition to recording standard
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lithologie descriptions of these segregated zones (Table 7), the cores 
were logged in detail for joint frequency (joints per foot of core), degree 
of weathering, relative hardness of the rock, percent of core loss, and per
cent of broken core. Broken core is defined as core that is fragmented by 
high joint intensity and faults into pieces less than 3 inches in size.

In order to permit later computer analyses of all the geologic factors 
recorded in the core, the weathering and hardness descriptions were quan
tified by assigning numerical values of "1" for very hard and unweathered, 
"2” for hard and slightly weathered, "3" for intermediate hardness and 
moderately weathered and for incompetent and severely weathered rock. 
Comparison of core samples to an unweathered, very hard, unfractured sample 
of core determined the value of hardness and weathering to be given to each 
logging unit. Only those joints which were open or those that were sealed 
by a soft material such as clay, limonite, or calcite were recorded.

Interpretation of core data♦ A least-squares regression, programmed 
for a Burroughs $$00 computer, analyzed the logged-core data, and estab
lished that there is a good relation among joint frequency, weathering, 
hardness, core loss, and broken core. Joint frequency was chosen as the 
independent variable and the other parameters as the dependent variables 
in the regression equations. Selection of joint frequency as the indepen
dent variable was based on the following considerations; (l) joint fre
quency is a quantity that can be measured repeatedly by any number of 
persons, (2) joints are a major factor in contributing to core loss and 
broken core, (3) joints introduce discontinuities into a rock mass thereby 
decreasing its competency, and (k) joints provide passageways for water 
and solutions that can cause weathering and alteration.
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Figure 22 presents the results of the least-squares regression analyses 
of the core data. Significant correlations exist between all variables 
within the following limits: (l) vÆien the joint frequency ranges between
0 and 8 joints per foot, (2) when the mean value of core loss range between 
0 and 25 percent, and (3) %dien the mean value of broken core ranges between , 
0 and 3^ percent. Outside these limits there is, however, no significant 
interrelation among the parameters. The values at which correlations no 
longer exist between joint frequency and the other parameters, therefore, 
effectively define the conditions under which the core becomes totally 
incompetent.

The statistical information shown on figure 22 suggests that the core 
can be divided into various levels of Competency depending on the inter
relation of joint frequency and the four other easily determined logging 
parameters. A device to show these parameter correlations can be made by 
establishing a frame of reference in the form of a table that arbitrarily 
divides rock into eleven "grades" and assigns grade 1 ("poor rock") through 
grade 10 ("good rock") and grade 0 (faults) to the eleven divisions. The 
independent variable of joint frequency can be assigned to grades 1 through 
10, by dividing the frequencies within the range of significance (O to 8 
joints per foot) into 10 nearly equal units and placing them alongside the 
rock grades; 8 joints per foot being assigned to grade 1. The other para
meters of hardness, weathering, core loss and broken core can be assigned 
to their respective grades by referring to the joint frequency units and 
determining the corresponding value of the dependent parameter from the 

graphs shown on figure 22. <
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Table 8 shows the interrelation of geologic parameters for an ideal
ized average core taken from granitic rock. Because the coefficients of 
correlation between the parameters are excellent, that is all are greater 
than 0.70, it is reasonable to assume that this table represents a close 
approximation of conditions for any granitic core. Consequently an index 
number has been calculated for each grade. The index number is the sum 
of the numerical values of joint frequency, hardness, weathering, 0.1 of 
the percent core loss, and 0.1 of the percent broken core assigned to the 
grade. One tenth of core loss and broken core values are used to keep all 
figures in the range 0 to 10; joint frequency rarely exceeds 10 joints per 
foot.

The core index number is used to assign an "idealized" grade to each 
logging unit of a core by adding together the raw core data in the manner 
just described. That the index number will be truly representative of a 
core interval, thereby, allowing assignment of a representative grade to 
the core is justified by the following; l) Five parameters, having high 
degrees of intercorrelation, are all used to describe the core. Extreme 
values of any one parameter a w ^  from the mean will tend to be averaged 
out by the other parameters when all values are summed to obtain the index 
number, 2) The high coefficients of correlation indicate that deviation 
of parameter values from the mean will not be very significant, that is, 
the core condition will not vary significantly within the limits of one 
standard error of estimate. One standard error of estimate is shown for 
the graphs on figure 22 by dashed lines. 3) The core index permits a 
standard method for calculating the grade of rock. Table 9 shows the 
interrelation of core parameters for one of the exploratory cores taken 

from the Climax stock.
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Table 8.--Grade of rock table for rranite-

Rock
grade

Joint
frequency Relative Degree of

Average percent
In place condition (joints per rock 

foot of hardness 
core)

weathering of 
alteration Core

loss
Broken
core

Index number 1

Very competent 10 1.0 Very hard (l) Unweathered (l) 4 0 *43.4
rock, requires 9 1.0 - 1.7 Very hard (l) Unweathered (l) 6 0 ^ 4.3
no support 8 1.7 - 2.5 Hard (2) Slight (2) 8 5 ^ 7.8

Competent rock, 7 2.5 - 3.3 Hard (2) Slight (2) 10 9 ^  9.2
however re 6 3.3 - *+.1 Hard (2) Slight (2) 13 13 « 10.7
quires occa 5 4.1 - 4.8 Hard (2) Slight (2) 15 16 ^3-1.9
sional support;
some overbreck

Generally poor 4.8 - 5*8 Intermediate (3) Moderate (3) 17 20 - 15.3
rock, requires 3 5.6 - 6.3 Intermediate (3) Moderate (3) 20 24 ^ 16.7
support, much
overbreak

Incompetent 2 6.3 - 7.1 Intermediate (3) Moderate (3) 22 28 ^ 18.1
rock 1 7.1 - 8.0 Incompetent (4) Severe (4) 24 33 > 18.1

0 FAULT

jy Joint frequency + weathering + hardness +0.1 core loss +0.1 broken core.

48



Table 9.Interrelation of joint frequency, core Loss, broken core
weathering^and hardness of a 650»foot granitic core.

core Interval 
(feet)

j^lnt frequency 
(joints per foot)

core loss 
(percent)

broken core 
(percent)

weathering 
J/and 2/

hardness
J/and^/

grade

34 - 68 3.7 8 5 mod Int 5

68 - 88 5.7 10 4 mod Int 4

88 - 96 4.3 10 10 mod hard 6

96 - 104 3.0 0 0 sll hard 8

104 - 114 3.4 12 0 mod hard 6

114 - 132 FAULT- - - 0

132 - 141 4.7 12 3 mod Int 4

141 - 152 FAULT- - - 0

152 - 171 6.7 12 33 sev Inc 2

171 - 192 3.6 10 6 all hard 7

192 - 197 ' 7.1 0 29 mod Inc 2

197 - 210 4.1 10 0 sll very hard 7

210 - 218 7.8 16 35 mod Inc 1

218 - 230 2.9 10 0 sll very hard 8

230 - 236 4.3 20 9 mod hard 5

236 - 245 1.6 6 ' q I un very hard 9

245 - 250 7.2 13 31 mod inc 1

250 - 280 2.3 9 0 sll very hard 8

280 • 301 3.0 16 0 sll hard 7

301 - 309 1.4 0 0 un very hard 10.
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Table 9.Interrelation of joint frequency, core Loss. broken core weathering.and
hardness of a 650-foot granitic core.— continued

core interval 
(feet)

Joint frequency 
(Joints per foot)

core loss 
(percent)

broken core 
(percent)

weathering
u

hardness
U

grade

309 - 415 5.6 19 29 mod Int 3

415 - 436 <.......... ■ - FAULT- - 0

436 - 442 7.1 33 62 mod Int 1

442 - 447 4.4 13 7 sll hard 6

447 - 496 0.9 3 1 un very hard 10

496 - 532 2.1 13 3 un hard 8

532 - 598 1.1 4 2 un very hard 9

598 - 605 • - FAULT- - 0

605 - 615 7.6 10 19 sll Int 5

615 - 653 1.6 6 1 un very hard 9

y  Code: un, unweathered; sll, slight; mod, moderate; sev, severe;
int. Intermediate; Inc, Incompetent.

2/ Numerical assignment: Unweathered and very hard— 1; slightly weathered
and hard— 2; moderately weathered and intermediate hardness— 3; severely 
weathered and incompetent— A.
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Physical properties. Samples selected from core zones having assigned 
rock grades were gathered from all four granite cores and sent to the labo
ratory for both static and dynamic physical property tests. Static and 
dynamic deteimiinations were made on the same specimens; however, premature 
failure during loading of seven incompetent samples, having grades 0 to 3 
invalidated these static tests.

The physical property values were programmed into a least-squares 
regression analysis to see what effect fractures and weathering had on 
physical properties. This was done by comparing the rock properties with 
their respective rock grade.

Figures 23 through 31 present the results of the computer analyses.
The graphs support the following conclusions:

1) Significant correlations exist between physical properties of 
granite and rock grade, and therefore, between fractures and weathering.
The one exception is static bulk modulus which has an apparent low coeffi
cient of correlation.

2) The dynamic physical.properties have higher degrees of correlation 

than static physical properties.
3) Reasonable and immediate estimates of physical properties can be 

made from data obtained from core logs and rock grade.
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Underground in-place rock conditions

The exploratory drill holes penetrated the hemisphere and adjacent 
communication drifts. The borings were subsequently located during under
ground geologic mapping. Finding the drill holes was fortuitous in that 
it permitted detailed examination or rock conditions in the surrounding 
area of the holes. Careful observation denoted the stability and compe
tency of the rock, the need for support, the amount of timbering and steel- 
set spacing in unstable zones, water seepage, overbreak, major joints, 
faults and shear zones, and degree of weathering, alteration and hardness 
of the granite.

The underground rock conditions around the drill holes were carefully 
related to their respective core logs and rock grades. The comparison of 
underground and core conditions can be summarized by the following:

1) Rock penetrated by borings having assigned grades of 8 through 
10 presented no construction or stability problems; the rock needed no 
support, and had a minimum of overbreak.

2) Rock of grades 5 through 7 needed occasional steel sets for 
support, was slightly to moderately blocky and tended to overbreak, 
especially in areas classified as grade 5*

3) Rock of grades 3 and 4 was generally poor, required support, was 
blocky and had a great deal of overbreak, often there were minor faults, 

water seeps, and zones of high joint intensity.
h) Rock of grades 0 through 2 was incompetent, needed support and 

generally required closely spaced sets. The rock was usually in a fault 
or a very strongly jointed or sheared zone, and was often associated with 
water seeps. The rock tended to be soft or strongly fragmented and usually 

could be easily removed from the wall by a geologic pick.
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CONCLUSIONS

Rock is nonhomogeneous, anisotropic and imperfectly elastic. Minerals, 
matrix, lineations, bedding,'j and fractures all contribute to a non-ideal 
state of rock.

Study of a dapite from the Nevada Test Site showed that weathering, 
hydrothermal alteration, and fractures in the rock contributed to changes 
in its physical properties. These geologic agents reduced the unconfined 
compressive strength and elasticity of the dacite, and increased the 
porosity of the rock. Weathering changed the properties of the dacite 
more than hydrothermal alteration.

Computer analyses established a significant interrelation among the 
physical properties of dacite. Porosity is inversely related to all 
physical properties tested, and can be used to make reasonable predic
tions of rock property values.

Detailed examination of about 2,600 feet of granite core taken from 
borings at the Nevada Test Site showed that fractures and weathering were 
major factors in reducing the competency of the rock. Least-squares 
regression equations established significant correlations between core 
condition and physical properties of the granite. A Grade of Rock Table 
based on the interrelation of joint frequency, core loss, broken core, 
degree of weathering and relative hardness in the core provides a numerical 
means of classifying the rock into levels of competency. Comparison of in- 
place rock stability with core taken from the rock established a relation 
between core condition and in-place conditions.
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Table 1.— Abrid&ed lithologie log of D«H. 1, D.H. 3, and D,H. 6« dacite 
f porphyry, Wahmonie Fiat, Nye County, Nevada

See figure 2 for drill hole locations.

Description Interval
(Color descriptions follow Munsell system) (feet)

Dacite porphyry, light gray (H-7) to white (N-9), occa
sionally medium light gray (N-6) and light bluish gray 
(5B 7/1) ; very severely to moderately weathered, ranges 
from soft plastic clay-like material to rock of inter
mediate hardness, vuggy, porous; severely weathered along 
joint planes, joint spacing 4-6 inches, joints dip 30°- 
40°, and 60®-90°; flow-banding at 15° from horizontal; 
slickensides in interval between 35 and 50 feet; core 

^ tends to slack in water; phenocrysts of feldspar, biotite,
accessory magnetite and sparse quartz constitute 25-35 
percent of rock, matrix is predominantly devitrified 

glass altering to clay-—  ------------------    ^5
Dacite porphyry, light gray (K-7)> occasionally light 
bluish-gray; moderately to severely weathered; inter
mediate hardness where not severely weathered; slightly 
vuggy and porous; joint spacing averages 6 inches, some 
joints coated with iron- and manganese-stained clay, and 

sparse calcite; joints dip 30°-4o° and 60 -90 ; flow- 
banding at 15° from horizontal, zones of unweathered, 

hard rock between 110 and I30 feet— — ^3®
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Table 1.--Abridged lithologie log of D.H. 1, D.H. 3, and D.H. 6, dacite
 ̂ porphyry, Wahmonie Flat, Mye County, Nevada— Continued

I
Description ’ 'Interval

(Color descriptions follow Munsell system) ■ (feet)

Dacite porphyry, light gray; iron stained; moderately to 
severely weathered; vuggy; strongly jointed with inter
vals of broken core; joint fillings of iron-stained clay 
and calcite; lost circulation at intervals below l40
feet----— ---— — — --—  -------  — ------  —  -----— —  i6o

Dacite porphyry, pale red (lOR 6/2), pale red color due 
to oxidation of iron minerals in matrix; moderately to 
slightly weathered; intermediate hardness to hard; 
slightly vuggy and porous; joints dip 30°-4o° and 60°- 

^ 90^, joint spacing averages 8 inches, joints coated with
iron-stained clay and calcite; flow-banding at 15^-25®

from horizontal---------     370
Dacite porphyry, pale red, slightly to moderately weathered; 
hard to intermediate hardness; joints dip 30®-^0®, 60°-90°, 
joint spacing averages 2 feet, joints coated with iron- 
stained calcite and clay; flow-banding at 25 from hori

zontal; evidence of some hydrothermal alteration and 

faulting below ̂ 75 feet-—   ----------------
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Table 1.— Abridged litholopjic log of D.H. 1, D.H. 3, and D.H. 6, dacite
porphyry, Wahmonie Flat, Nye County, Nevada— Continued

Description ' Interval
(Color descriptions follow Munsell system) ' (feet)

Dacite porphyry, alternating pale red and medium bluish- 
gray (5B 5/1), pale red dominant at top of interval 
grading into inch alternating color bands, medium 
bluish-gray dominant near base; rock oxidized only 
where color is pale red; hard; slightly weathered along 
joint planes; slight hydrothermal alteration in medium 
bluish-gray rock increasing below 550 feet; joints dip 
60°-90'̂, joint spacing ranges between 8-12 inches; 
shear zone between 570 and 6OO feet, flow-banding at

) 25°-U5® from horizontal-— — -— —  --- -— 650

Dacite porphyry, medium bluish-gray (5B 5/l) î unweathered 
to slightly weathered along joints; hard; nonoxidized; 
rock has been subjected to silica-bearing hydrothermal 
solutions, which locally have deposited opal and formed 
reaction products of calcite, chlorite and epidote; 
groundmass is grayish-blue-green (5BG 5/2) where 
(jiiloritized; core is solid and comes from core barrel 
in long unbroken lengths; joints dip 60 -90 > spacing 
averages 2 feet, joints are tight and sealed with 
calcite; shear zone between ?60 and 790 feet; flow-

banding at 25°-b5° from horizontal— ............    920

Dacite porphyry, same as above, shear and fault zone—  ̂ 1,000
»
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Table ?•— Lithologie log of granite exploratory core. Climax stock, Nye County,
Nevada

Nevada State (central) coordinates: N. $01;010.22; E. 677»685.28
Ground elevation: feet above sea level

, Interval Recovery
Description (f«t) (percent)

No core— — — — — — — — — — — --------- 0-59*5
Quartz monzonite porphyry; light gray and 
heavily iron stained; fine grained; contains 
quartz, feldspar, and biotite (3-5 percent) 
crystals, and feldspar phenocrysts as much as 
1 inch in length; severely weathered; heavy 
kaolinization of feldspars, small broken 
pieces of rock are turning to clay; incompe
tent; strongly jointed and broken; joints are 
mostly open; joint fillings are iron oxide,
clay and calcite— — — — — — — — — ——  59*5"7^*5 93*3

Shear and Fault Zone. Quartz monzonite por
phyry; very severely weathered; completely 
incompetent; entire interval is broken into 
pebble-sized fragments; very heavy kaolini- 
zation of feldspars; the rock in this inter
val is breaking down into clay; slickensides 
are on joint and fracture surfaces throughout 

the interval; drill hole was caving in this 

area— — — — — — —  — — — — 7%.5-95.0 58.5
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Table 7-— Litholop;ic lop; of p;ranite exploratory core. Climax stock, Hye County,
K eva da— Continued

Interval Recovery
Description (feet) (percent)

Shear Zone. Quartz monzonite porphyry; light 
gray and bleached; coarse grained; contains 
quartz, feldspar, and biotite (3-5 percent) 
crystals, and feldspar phenocrysts as much 
as 1 inch in length; severely ^feathered; 
heavy kaolinization of feldspars; incompetent; 
strongly jointed and broken; joints are mostly 
open; joint fillings are clay, calcite, and
iron oxide--— 9$.0-107.0 91.7

 ̂ Shear and Fault Zone. Quartz monzonite por
phyry; light gray and iron stained; very 
severely weathered; completely incompetent; 
very strongly jointed and broken into pebble
sized fragments throughout most the interval; 
heavy kaolinization of feldspars; most rock
fragments are breaking down into clay— — —  107-0-120.2 ^5.^

Shear Zone. Quartz monzonite porphyry; light 
gray; medium grained; contains quartz, feld
spar, and biotite (3-5 percent) crystals, and 
feldspar phenocrysts as much as i inch in 
length; severely weathered; heavy kaoliniza
tion of feldspars; rock fragments are breaking

I
down into clay; incompetent; strongly jointed
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Table 7.--lithologie lOR of granite exploratory core. Climax stock, Kye County,
Neva da--Continued

Interval Recovery 
Description (percent)

and "broken joints are mostly open; joint 
fillings are thick clay, calcite, iron oxide, 
and manganese; a few slickensides occur on
joint surfaces----------------------------- —  120.2-lUl.0 70.7

Shear and Fault Zone. Quartz monzonite por
phyry; very severely weathered; completely 
incompetent; entire interval is broken into 
pebble-sized fragments; there is clay, cal
cite, and iron oxide on rock fragments and 
joint surfaces; heavy kaolinization of feld
spars; rock fragments are breaking down into
clay; slickensides occur on joint surfaces  1UI.O-I56.3 ^2.5

Shear Zone. Quartz monzonite porphyry; light 
gray; mostly severely weathered; moderately 
weathered in short intervals; generally 
incompetent; short intervals of moderately 
firm rock between 157 and I60 ft. and I68 
to 169 ft.; joints are mostly open; joint 
fillings are clay, iron oxide, and cal
cite.......................................... 156.3-175.0 70.6
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Table 7«— Litholo.n;ic lop; of p;ranite explorât or?/- core, Climax stock, Kye County,
N eva da — Continued

Interval Recovery 
Description (feet) (percent)

Quartz monzonite porphyry; light bluish-gray; 
contains quartz, feldspar, and biotite (3-5 
percent) crystals; slightly to moderately 
weathered; moderate kaolinization of feld
spar especially along joint surfaces; this 
interval seems to be less intensely weath
ered; moderately firm and competent; rock 
tends to break into pieces between 2 and 12 
inches in length; strongly jointed, joints 
are mostly open, joint fillings are clay, 
calcite, and iron oxide, some joints are
sealed with pyrite  175.0-201.0 55*8

Quartz monzonite porphyry; bluish gray; fine 
textured; contains quartz, feldspar, and 
biotite crystals, and feldspar phenocrysts 
as much as 1 inch in length; unweathered to 
slightly weathered; slight kaolinization of 
feldspars along joint surfaces; rock seems 
to be out of weathered zone; firm and compe
tent; slightly jointed, joints are mostly 
open, joint fillings are calcite and some
fresh pyrite...... -........................  201.0-220.0 99.5
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Table 7»"-Lithologie lop; of granite exploratory core, Climax stock, Hye County,
Nevada— Continued

Interval Recovery
Description (foot) (percent)

Same as above, except moderately weathered;
moderately jointed—  --------------------------  220.0-229.0 75.6

Shear and Fault Zone. Quartz monzonite por
phyry; very severely weathered; completely 
incompetent; interval is broken into pebble- 
to sand-sized fragments; this interval con
tains rayIonite and clay; slickensides occur
on fragments surfaces— -------   —  229.0-235*^ 70.3

Quartz monzonite porphyry; bluish gray; medium 
grained; contains quartz, feldspar and biotite 
(3-5 percent) crystals, and feldspar pheno
crysts as much as 1 inch in length; unweathered 
to slightly weathered; very firm; slightly 
jointed; joints are mostly open; joint fillings 
are calcite and some fresh pyrite; some joints 
are sealed with pyrite; core is broken in the 
interval from 256.5 to 257.0 ft. into pebble-
Sized fragments.......... -.................  9^.0

Shear Zone. Quartz monzonite porphyry; light 
bluish gray; fine grained; contains quartz, 
feldspar, and biotite (3-5 percent) crystals; 
slightly weathered in solid core to severely
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Table 7•— Lithologie lop; of granite exploratory/- core. Climax stock, Kyg County,
Uevada-~Continued

Interval Recovery
Description (feet) (percent)

veathered in broken intervals; heavy kaolini
zation of feldspars in broken zone; there is 
a short section of clay and myIonite as much 
as 6 inches in length; generally incompetent; 
strongly jointed; two-thirds of the interval 
is broken into pieces 3 inches and less in 
length; joints are mostly open; joint fillings 
are clay, calcite, and iron oxide; this inter
val seems to be a shear zone in good competent

« rock.......................-............ 260.5-279.4 71.4
Quartz monzonite porphyry; light bluish-gray; 

fine grained; contains quartz, feldspar, and 
biotite (3 percent) crystals, and sparse 
feldspar phenocrysts as much as ^ inch in 
length; slightly weathered in solid rock to 
severely weathered in broken rock; moderately 
firm; stongly jointed; about 25 percent of 
this interval is broken into pieces 3 inches 
and less in length; joints are mostly open; 
joint fillings are clay, calcite, iron oxide, 
and sparse fresh pyrite; this interval seems 
to be a shear zone in good competent rock,

 ̂ although less intensely sheared than above— —  279*4-327.0 73*5
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Table 7.— lithologie loR of Rranite exploratory core. Climax stock, Nye County,
Weva da— Cont i nued

Interval Recovery 
Description (feet) (percent)

Fault. Quartz monzonite porphyry; light bluish- 
gray; very severely veathered; completely 
incompetent; interval is composed of clay,
my Ionite and broken core-   —  327»0-331«0 87.5

Quartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar, 
and biotite (3 percent) crystals, and feld
spar phenocrysts as much as 2 inches in 
length; slightly veathered in solid core; 
moderately weathered in broken rock; feld
spars are kaolinized in broken rock; firm 
in solid core; incompetent in broken rock; 
slightly jointed; 10 percent of this inter
val is broken into pebble-sized fragments; 
joints are both open and sealed; joint 
fillings are calcite, some clay, fresh 
pyrite, and sparse iron oxide. Core is 
broken in the intervals from 3^7.0 to 350.0; 
and 3I5.5 and 355.0 ft. There is myIonite 
and clay in the interval from 3^7 to 350 ft.
indicating a possible small shear--------- —  33I.O-369.6 9^-0
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Table 7-— lithologie lo^ of granite exploratory core, Climax stock, 'Mye County
Nevada— Continued

Interval Recovery
Description (feet) (percent)

Quartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar, 
and biotite (3 percent) crystals, and feld
spar phenocrysts as much as 1 inch in length; 
slightly weathered in solid core; moderately 
weathered in broken rock; feldspars are kao
linized in broken rock; firm in solid core; 
iracompetent in broken rock; moderately jointed; 
joints are mostly open; joint fillings are 
mostly calcite; core is broken into pieces 2 
inches or less in length in the interval from
kkQ.6 to ^53.3 ft.-......................... U35.3->+5^.3 80.0

Quartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar and 
biotite (3 percent) crystals, and sparse feld
spar phenocrysts as much as 1 inch in length; 
unweathered to slightly weathered; very firm; 
slightly jointed; jointing tends to increase 
belovr 4?0 ft. unbroken core as much as U.5 ft. 
in length; joints are both open and tight; 
joint fillings are calcite and pyrite; tight
joints are sealed with pyrite---------------  454.3-484.4 90*^

j

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 7*— lithologie loR of granite exploratory core, Climax stock, Tlye County
Kevada— Continued

Interval Recovery 
Description (feet) (percent)

Quartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar, and 
biotite (3 percent) crystals, and feldspar 
phenocrysts as much as 2 inches in length; 
slightly weathered; firm; moderately jointed; 
joints are mostly open; joint fillings are
calcite and sparse pyrite----------- 484.4-^99.k 92*0

Shear Zone. Quartz monzonite porphyry; light 
bluish-gray ; medium grained; contains quartz, 
feldspar, and biotite (3 percent) crystals, 
and sparse feldspar phenocrysts as much as 2
inches in length; moderately weathered in '
solid core; and strongly weathered in broken
rock; weathering or alteration of core gives
rock a coarse texture; strongly jointed; 25
percent of this interval is crushed rock,
mylonite and clay; joints are open, joint
fillings are mostly calcite and iron oxide;
the crushed rock is heavily iron stained;
this interval seems to have been sheared
with some movement  --- ----- ----- — —  499•^"507*0
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Table 7♦— Lithologie log; of granite exploratory core, Climax stock, Bye County
Nevada— Continued

Interval Recovery
Description (feet) (percent)

%uartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar, 
and biotite (3 percent) crystals, and sparse 
feldspar phenocrysts as much as 1 inch in 
length; slightly weathered; very firm; slightly 
jointed; joints are mostly sealed; joint 
fillings in sealed joints are pyrite and in
open joints are calcite— —  -------------— - 507.0-513»! 98*^

Quartz monzonite porphyry; light bluish-gray; 
medium grained; contains quartz, feldspar, 
and biotite (3 percent) crystals, and sparse 
feldspar phenocrysts as much as 2 inches in ^
length; generally moderately weathered; 
severely weathered in broken rock; moderately 
weathered; severely weathered in broken rock; 
moderately firm; moderately jointed, 10 per
cent of this interval is broken; joints are 
mostly open; joint fillings are mostly cal
cite, iron oxide, and sparse clay. This
interval has undergone some shearing--------  513-1-552.9
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Table ?.— lithologie lop; of granite exploratory core, Climax stock, ?]ye County
Nevada— Continued

Interval Recovery 
Description (feet) (percent)

Quartz monzonite porphyry; light bluish-gray; 
medium to fine grained; contains quartz, feld
spar, and biotite (3 percent) crystals, and 
sparse feldspar phenocrysts as much as 1 inch 
in length; unveathered; very firm; slightly 
jointed, joints are mostly sealed; joint 
fillings are mostly silica, feldspar, and 
pyrite in sealed joints and calcite in open 
joints; unbroken core are as much as 5 feet
in length....................................  552.9-585.9 85.7

Fault. Quartz monzonite porphyry; light-bluish 
gray; this interval is composed of broken 
rock, mylonite, and clay; completely incompe
tent; there is calcite, iron oxide, and clay
on fragment surfaces  ------ ----- -— " 585*9“59^-l 85*3

Quartz monzonite porphyry; light bluish-gray; 
medium to fine grained; contains quartz, feld

spar, and biotite (3 percent) crystals, and 
sparse feldspar as much as 1 inch in length; 
unweathered to slightly weathered; very firm 

in solid core; slightly jointed; joints are 

both open and sealed vri.th quartz, feldspar, 
and pyrite; this interval has been effected
by some slight shearing------------------------- 59U.I-656.9 81.2
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Table 7-— Lithologie lo" of granite exploratory core. Climax stock, Kye County,
Nevada— Continued

Joint Intensity Code

Descriptive terms

Few joints- - - - - - - - - - - - - - - - -

Slightly jointed- - - - - —  —  —  - - - 
Moderately jointed- - - - - - - - - - - - -
Strongly jointed- --  - - - - - -  —  - —

Very strongly jointed - —  —  - - —  -

Approximate 
numerical value 
(joints/foot)
Less than 1
1 to 2,9
3 to 4.9
5 to 6.9
More than 7
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