Concerning Borel sets and analytic sets

Sheldon T. Rio
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Rio, Sheldon T., "Concerning Borel sets and analytic sets" (1954). Graduate Student Theses, Dissertations, \& Professional Papers. 8037.
https://scholarworks.umt.edu/etd/8037

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

CONCRRMING BOREL SETS AND ABALYTIC SETS by
 SHELDON THEODORE RIO

 B. A.: Weatmar College, 1950

 B. A.: Weatmar College, 1950
 Presented in partial fulfillment of the requirements for the degree of Master of Arts

MONTAMA STATE UHIVERSITY

1954

Approved by:

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI
 Dissertation Publizhing

UMI EP38838

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

ACKMOWLEDGMENTS

It was Dr. Willian Myers who taught me to appreciate and to pursue the study of mathematics. It would indeed be an understatement to say that without his help this work could not have been completed. Not only am I indebted to Dr. Myers for his guidance throughout the writing of thia paper, but also for his untiring efforts in helping me with my basic mathematical preparation.

S.T.E.

TABLE OF CONTENTS

Chapter Page
I. INTRODUCTION 1
II. HAUSDORFF SETS P AND Q^{α} ©
Sots 08 asd $F \sigma$ 8
Sets P^{α} and Q^{α} : 9Borel Sets, 15
III. BGREL SETS Fa AND Ga 19
Properties of Sets Fox and $0_{\alpha} 19$Relationships of Sets Fa and $G a$to the Set: p^{α} and $Q^{a}, 24$
A Sot Fo which is not Set Gs, 29
IV. SETS UNIVERSAL TO SFTS Ga 30
Borol Sets Relative to thesiz Containing Space, 30Construction of Seta Daiverisal toLingar sets Gas 32Sots $\mathrm{Fa}_{\alpha}\left(a_{\alpha}\right)$ Hot Sets $\mathrm{F}_{\rho}\left(G_{\rho}\right)$for $p<\alpha, 41$
V. ARALTIIC SHES 43
Froperties of Analytic Sets, 44
Regular Defining System, 49
Sete Excluaive E, 61
VI. A UNIVERSAL ANALTTIC SETT 65
Projections, 65 Aa Analytic Set \boldsymbol{H}, Universal to the Linear Analytic Sets, 67
CITED REFERENCES 71

CHAPTER I

INTRODUCTIOA

In this paper we shall discuss the general properties of the Borel seta and the analytic sets. and shall show several important relationships between these two classes of sets.

The family of Borel sets is defined to be the collection of all the Hausdorff sets P^{α} and Q^{α}, where α is an ordinal number of the first or second class. The sets p^{α} and Q^{α} are defined by transfinite induction, and are discussed in general in Chapter II. The sets Fa and Gape then defined in a manner very aimilar to the Hausdorff sets, and the relationships between the sets of these two farilies are shown. It is shown also that an equivalent definition of the Borel sets is that they are the smallest family of sets which contain the closed sets, and are closed under countable sums and intersoctions.

Through the development of the Borel sets in this manner, many properties of the classes of sets P^{α} and Q^{α} and of sets $F \alpha$ and Go are discussed. The principal problem solved concerning these classes of sets is that of showing in one-dimension Euclidean space that there exists, for each ordinal number α of the first and second
classes, eqts F_{α} and sets G_{α} which are not sets $F \beta$ or Gfor each ordinal number β leas than a. In Chapter IV, this is established with the aid of sets G_{α} of the plane which are universal to the linear sets G_{a}, for each ordinal number a. The proof is completed by applying the "diagonal line" theorem of Sierpinski.

The analytie sets are defined and discussed in general in Chapter V. The principal theorem concerning these sets is that of howing that an analytic operation carried out on a class of analytic sets yields a set of the original class. This leads to the proof that the analytic sets relative to the class of closed sets contains the family of Borel sets.

In the final chapter, it is shown that in onedimension Euclidean space the family of Linear Borel sets is contained properly in the family of ilnear analytic sets. To show this, set a_{s} of three-dimension Euclidean space universal to all plane sets 0_{δ} is projected onto the plane, the resulting plane aet being an analytic set universal to all linear analytic sete. The "diagonal inne" theorem of Sierpinski is again employed to complete the proof.

It is assumed that the reader is familiar with the basic topological concepts and with the fundamental properties of continued fractions, cardinal numbers, and ordinal numbers. To avoid ambiguities in the use of terms,
we shall define those terms which are used frequentiy in the text.

A set is any collection of objects which we shall call elements. If x is an element of the set E, then we write $x \in E$. If A is a set auch that $x \in A$ implies that $x \in E$, then A is said to be a subset of E, writion $A C E$. The gun of two sets A and B is a set, $A+B$, such that $x \in A+B$ if and only if $x \in A$ or $x \in B$ or both. Given a sequence of sets $E_{1}, E_{2}, B_{3}, \ldots$, written $\left\{Z_{n}\right\}$, we say that the sum of this sequence of aets is a set $E E_{1}+\mathrm{E}_{2}+\mathrm{E}_{3}+\ldots$ or $\sum_{n=1}^{\infty} E_{n}$, such that $x \in \sum_{n=1}^{\infty} E_{n ;}$ if and only if $x \in E_{i}$ for at least one integer i. In a like manner, we may define the sum of a non-countable collection of sets.

The product (intersection) of two sets A and B is a set, $A \cdot B$, wheh that $x \in A-B$ if and only if $x \in A$ and $x \in \mathrm{~B}$. Given a sequence of sets, $\left\{\mathrm{E}_{\mathrm{m}}\right\}$, we say that the product of this sequence of sets is a set $\mathbb{E}_{1} \cdot \mathbf{E}_{2} \cdot E_{3} \cdots$ or $\prod_{n=1}^{O} \mathrm{E}_{n}$, such that $x \in \prod_{n=1} \mathrm{E}_{n}$, if and only if $x \in \mathrm{E}_{2}$ for every integer $1=1,2,3, \ldots$. In a like manner, we may define the product of a non-countable collection of sets.

A set of elements S is said to be metric apace $1 f$ there is associated with each pair of elements and b of S non-negative real number, called the distance betwe un these elements and denoted by $\rho(a, b)$, such that the three following axioms are satisfied.
-40

$$
\begin{aligned}
& \text { 1) } \rho(a, b)=\rho(b, a) \text {. } \\
& \text { 2) } \rho(a, b)=0, \text { and only if a }=b \text {. } \\
& \text { 3) } \rho(a, b) \leqslant \rho(a, b)+\rho(b, c) \text {. }
\end{aligned}
$$

If E is a subset of a metric space 3 , then E will also be a metric space with proper metrisation.

In a motric space S, the complement of a set ECS 1s the set of all elements contained in s but not contained In 却. If E and F are two aubsets of the epace S, then the complement of E relative to Firitten as F. RE or F-I. is the met of all elemente of \bar{F} which are not elements of A .

The least upper bound of the distances between all pairs of clements and bof set f is called the diameter of E, and 1 s denoted by $\delta(t)$.

If $x \in S$, and if $\in 1$ an arbitrery positive real number, then an Eneighborhood of the clement x is the ath of 211 elements y of s such that $\rho(x, y)<\in$ and this neighborhood shall be donoted by $M\left(x_{,} \in\right)$. A set E will be called an open get if for every element x of E there exist: for some $\in>0$. depending on x, an $\in-n e i g h b o r h o o d$ of x contained entirely in i . A set F will be called a closed set if and only if it is the complement of an open set.

An oloment x is called a cluster point of a set E if for every $\in>0, N(x, \in)$ contains at least one point of F different from x. It can be shown that a set E is
closed if and only if it contains all of its cluster points. [6, p. 33] If a set E is such that every element of E is a cluster point, then E is said to be denge-initself. The closure of a set E, denoted by E, is the set of all elements x such that for every $\in>0, N(x, e)$ contains at least one element of E.

An element which is such that every neighborhood of it contains a non-countable number of elements of a set E is said to be an element of condensation ois.

If $x \in E$, and if $\mathrm{GCR}(x, \epsilon)$ for some resi number $\epsilon>0$, then E is said to be a bounded set.

An infinite sequence of elements, $a_{1}, a_{2}, a_{3}, \ldots$, denoted by $\left\{a_{n}\right\}$, is said to converge to a limit b if for every positive real number \in there sxists an integer \mathbb{N} such that if $n>i$, , then $\rho\left(a_{m}, b\right)<\epsilon$. An infinite sequence of elements $\left\{a_{n}\right\}$ is said to be a Cauchr seguence if for every $\epsilon>0$ there exists an integer N auch that if $n>N$ and $m>N$, then $\rho\left(a_{m} a_{m}\right)<\epsilon$. Metric spaces in which Cauchy sequences are alwajs convergent sequences are called complete spaces.

A set $\mathbb{S C S}$ is said to be dense on S if $E=3$. If a apace S has a countable dease subset, then S is said to be a separable seace.

A space S is said to have a countable open basis 1: there exists a countable sequence of open sets, $\left\{U_{n}\right\}$, such that any open set of S can be writion as a sum of sets
belonging to $\left\{U_{n}\right\}$. If S is a metric space, then the conditions of separablity and of having a countable open basis are equivalent. [7, p. 216]

An open covering of E is any aggregate of open sets whose sum contains E. A set E is said to be compact If from every open covering of \bar{z} a finite subcovering can be selected. A set E is compact if and only if every infinite subset of E has a cluster point in E. In any metric space, a compact set ia bounded and closed, and in any n-dimension Euclidean space, bounded and closed set is compact and vica versa. [5, pp. 41f.]

If E and T are two sets of metric space S, and if for each element x of E , there corresponds an element $f(x)$ of x, then we say that f is mapping of E into T . If every element of T is the 1 inage of at least one element of E by the mapping f, then f is said to be a mapping of E onto T. A mapping f of E into T is said to be continuoue at x_{0} of E if for every positive real number \in, there exists a positive real number δ such that if $\rho\left(x_{,} x_{0}\right)<\delta$, $x \in E$, then $\rho\left(f(x), r\left(x_{0}\right)\right)<\in$. If f is continuous at every point of E, then we say that f is a continuous mapping on E. If f is a mapping of E into I, and if $y \in T$, then $f^{-1}(y)$, (f-inverse of y), is the set of all points $x \in E$ such that $f(x)=y$. If f is a continuous mapping of E into T, and if f^{-1} is continuous mapping of T into E, then f is said to be a topological or homeomorphic mapping.
-7-
A property of a set I is asid to be topologically invariant property if it is a property possessed by overy set which is a homeomorphic image of E. A family of sets F 1: topologically invariant if every homeomorphic image of a set of the family F also belongs to F.

CHAPTER II

$$
\text { HAUSDORFF SETS } p^{\alpha} \text { AND } Q^{a}
$$

In this chapter we shall define the Hausdorff sets P^{α} and Q^{α} and ahall prove several important properties of these sets. Throughout our discussion we shall sasum that w are working within a complete metrie space M. Definition: A set E is a set FG if $\mathrm{F}=\sum_{m=1}^{\infty} \mathrm{Em}$ where for each $n_{i} \mathrm{E}_{\boldsymbol{n}}$ is closed set.
Definition: A set E is set $G_{\delta} i f E=\prod_{n=1}^{7 E_{n}}$ where for each $n_{g} E_{H}$ is an open set.

Since $6\left(\sum_{n=1}^{\infty} s_{n}\right)=\prod_{n=1}^{0}\left(6 E_{n}\right)$, set will be a set Foif and only if 1ts complement 18 a set G_{8}.

Theoren 2:1 Erery closed set is set Gs.
Proof: Suppose that F is a closed set. Let
 for if $x \in P$, then for each $n, x \in F_{i t}$ and hence $x \in \operatorname{TH}_{i=1} F_{n}$. On
 for each n there existo $q_{n} \in F$ such that $\rho\left(x_{1}, q_{n}\right)<1 / m$. Therefore $x \in \bar{F}$, which means that $x \in F$ since F is closed.

Since the complenent of a closed set is an open set, and the complement of a set G_{6} is a set F_{σ} we have the following theorem:

Theorem 2:2 Every open sot 1s a set Fe.

It can be shown that the homeomorphic lmage of a set G_{δ} is again a sot 0_{δ}. This is not necessarily true of a set Fo however. If we assume a stronger condition on our metric apace M, mamely that "every closed, bounded set is compact", then a continuous inage of a set \boldsymbol{P}_{σ} will be a set F_{σ}. [8, PP. 121-127]

Hausdorif sets P^{α} and Q^{α} are defined in this
manner. A set E is a set P^{\prime} if and only if it is an open set, and is set Q^{\prime} if and only if it is a closed set. For any ordinal number $\alpha, ~ l<\alpha<\Omega$, where Ω is the first ordinal of the third class, we define sets F^{α} and Q^{α} by transfinite induction as follows

Sets $\mathrm{p}^{\boldsymbol{a}} \mathrm{E}$ is a set P^{α} if $\mathrm{E}=\sum_{n=1}^{\infty} \mathrm{E}_{\mathrm{rf}}$, where for each $n_{\text {, }}$ the set E_{n} is set $Q^{a_{n}}$, where $a_{n}<\alpha_{\text {. }}$ Sets Q^{α} i is a set Q^{α} if $E=\prod_{n=1} E_{n}$, where for each n, the set E_{n} is a set $p^{\alpha_{n}}$, where $a_{n}<\alpha_{\text {. }}$

A set P^{2}, being a countable sum of sets Q^{\prime} (closed sets), is merely a set F_{0}, and a set Q^{2}, being a countable product of sets $P^{\prime}\left(\right.$ open sets), is a set G_{δ}. Theorem 2:3: Erery set p^{α} is also set P^{p} for $\alpha<\beta<\Omega$, and every set Q^{a} is also set q^{ρ} for $\alpha<\beta<\Omega$. Proof: For $a=1$, we have noted that each set P^{\prime} is a set $P^{2}\left(P_{\sigma}\right)$ by theorem 2:2, and that each set Q^{\prime} is a set $Q^{2}\left(G_{\delta}\right)$ by theorem 2:1. If E is a set $p a, 1<\alpha<\Omega$, then $\mathrm{E}=\sum_{n=1}^{\infty} \mathrm{E}_{n}$ where for each $\mathrm{n}_{\mathrm{n}}, \mathrm{E}_{n}$ is a set $\mathrm{q}^{a_{n}}, a_{n}<a_{n}$,
hence $\alpha_{n}<\alpha<\beta$. Thus the definition of a set P^{p} is satisfied. Likewise if E is a set $\mathrm{Q}^{a}, 1<a<\Omega$, then $E=\prod_{n=1} \mathrm{E}_{n}$, where for each $n_{g} E_{n}$ is a set $p^{a_{n}}, \alpha_{n}<\alpha$, hence $\alpha_{n}<\beta$. The set E is therefore a set $Q^{\beta}, a<\beta<\Omega$.

Thoorem 2:4: The sun of a finite or countable collection of sets P^{α} is a set P^{α}, and the product of a finite or countable collection of sets Q^{α} is a set Q^{α}.
Proof: If $a=1$, the theorem is satisfied by elementary properties of open and closed sets. Suppose $\alpha>1$, and $E=\sum_{k=1}^{\infty} E_{k}$, where for each k, E_{k} is a set P^{a}. Then $E_{k}=\sum_{n=1}^{\infty} F_{k, n}$, where $F_{k, n}$ is a set $Q^{a_{k, n}}, \alpha_{k, n}<a$. Therefore $E=\sum_{k=1}^{\infty} E_{k}=\sum_{k=1}^{\infty} \sum_{n=1}^{\infty} F_{k, n}$, and hence is a set P^{a}.

If $E=\prod_{k=1}^{\infty} \mathrm{E}_{\kappa}$, where for each $\mathrm{k}, \mathrm{E}_{\kappa}$ is a set Q^{a}, then $E_{\kappa}=\prod_{\eta=1}^{\infty} \mathrm{E}_{\kappa, n}$, where $\mathrm{E}_{\kappa, n}$ is a set $\mathrm{p}^{\alpha_{\alpha, \eta}}, \alpha_{\alpha, n}<\alpha$. Thus

Theoren 2:5: The complement of a set $P^{\alpha}\left(Q^{\alpha}\right)$ is a set $Q^{\alpha}\left(P^{\alpha}\right)$.
Proof: The theorem is true for $\alpha=1$ by the properties of open and closed sets. Proceding by transfinite induction, suppose that α is an ordinal number such that $1<\alpha<\Omega$, and suppose that the theorem is true for all ordinal numbers $\beta<\alpha$. If E is a set p^{α}, then $E=\sum_{n=1}^{\infty} E_{n}$, where for each n, E_{n} is a set $Q^{a_{n}}, a_{n}<a_{\text {. Thus the set }}$ CBn is a set $p^{a_{n}}$ for each n by our induction assumption, and since $6 \mathrm{E}=6 \sum_{n=1}^{\infty} \mathrm{E}_{n}=\prod_{n=1}^{\infty} \mathrm{C} \mathrm{E}_{n}$. 6 E will be a set q^{α}. If E is a set Q^{α}, then $E=\prod_{n=1}^{O} \mathrm{E}_{\boldsymbol{\prime}}$, where for each $\mathrm{n}_{\text {, }}$

is a set $Q^{\alpha_{n}}$ for each n, and hence $C E$ is a set P^{α}. Theorem 216: The sum of a finite number of sets q^{a} is a set Q^{α}, and the product of a finite number of sets p^{α} is a set p^{α}.
Proof: For $a=1$ the theoren follows from the properties of open and closed sets. Suppose that a is any ordinal number such that $1<\alpha<Q$. If F and I are both sets P^{α}, then $E=\sum_{n=1}^{\infty} E_{n}$, and $T=\sum_{k=1}^{\infty} T_{k}$, where for each n_{n} E is a set $Q^{\alpha_{n}}, \alpha_{n}<\alpha_{0}$, and where for each k, T_{k} is a set $Q^{\beta_{k}}, \beta_{k}<\alpha$. Then $E \cdot T=\sum_{n=1}^{\infty} E_{m} \cdot \sum_{k=1}^{\infty} T_{\kappa}=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} E_{n} \cdot T_{k}$. Denote by $\mathcal{F}_{n, k}$ the largest of the two ordinals α_{h} and β_{k} (or their comon value if they are equal) for each pair of sets E_{n} and T_{k}. By theorem 2:3, both E_{n} and T_{k} are sets $Q^{F_{n, k}}$, and by theorem $2: 4$, the set $E_{n} \cdot T_{k}$ is a set $Q^{E_{n, k}}, E_{n, \kappa}<a$. Thus E.T is a set P^{α}.

If F and S are sets Q^{α}, then the set $P+S$ can be written as $6(F+s)=6(6 F \cdot G s)$. But the sets $G r$ and Cs are sets P^{\circledR}, and so their product is a set P^{a} from the above proof. The set $F+3$ is therefore the complement of a set P^{α}, which is a set Q^{α} by theorem 2:5.

Having proved the theorem in the case of two sets, the proof may be extended to the case of any finite number of sets by ordinary induction methode.
Theoren 2:7: Every sot $P^{a}\left(Q^{\alpha}\right)$ is a sot $Q^{a+1}\left(P^{a+1}\right)$.
Proof: If E is a set P^{α}, then we may write $E=E \cdot E \cdot E \cdot \cdots$, thus satisfying the definition of a set $Q^{\alpha+1}$.
 therefore aset $p^{\alpha+1}$
Theorem $2: 8$ the gum of a countable collection of gets pa
1s a set Q^{a+1}. The product of a countable
collection of sets Q^{α} is a set $p^{\alpha+1}$.
Proof: Suppose that $E=\sum_{n=1}^{\infty} \mathrm{S}_{\mathrm{n}}$, where for each n_{y}, En is a set pa. By theoren 2:4 the set 5 is a set p^{a} and is therefore set $Q^{\alpha+1}$ by theoren 2:7.
 set Q^{α}. By theorem $2: 4$ the set I is act Q° and is therefore a set $P^{\alpha+1}$ by theoren $2: 7$.

Theorem 2:9 The difference of two sets pe or of two sets

Proof: Let $\mathrm{X}=\mathrm{E}_{1}-\mathrm{E}_{2}$, where E_{1} and E_{2} are sete P^{*}.
 theorem 2:3 and theorem 2:7 respectively. In aike manner, E_{p} ia aset $\mathrm{p}^{\alpha+1}$ and a set $\mathrm{q}^{\alpha+1}$, and so Em ia also. By theoren 2;6 and theoren 2:4, I is a set $\mathrm{p}^{\alpha+1}$ and a set $Q^{\alpha+1}$. By taking complements, the second part of the theorem follows directiy.
Theoren $2: 10$ For $3 \leq \alpha<\Omega$, very sat P^{α} Is the sunt
of a countable collection of disioint sets
E_{6} En. E_{3}, \cdots, where for each no En is a set $\underline{Q}^{\varepsilon_{n}} \cdot e_{n}<\alpha$.
Proot: Suppose E is a set pa where $3 \leq \alpha<\Omega$.

Then $E=\sum_{n=1}^{\infty} T_{n}$ where for each $n_{0} T_{n}$ is set $Q^{\beta n}, 2 \leqslant \beta_{n}<a_{0}$. (For if Tr were set Q^{\prime}, then it would also be ate a^{2} by theoren 2:3)

Let $S_{k}=\sum_{n=1}^{K} \mathrm{~T}_{n}$, and Let ε_{K} be the maximum of the ordinals $\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{k}$, Thus $2 \leq \varepsilon_{k}<a$ for eachk. S_{k} 1s a set $Q^{2 k}$ for each k by theorem 2:3 and theoren 2:6. We note $S_{1} \subset S_{2} \subset S_{3} \subset \cdots$.

Let $\mathbf{H}_{1}=\mathbf{S}_{1}$ and $\mathbf{E}_{k+1}=\mathbf{S}_{k+1} \cdot \mathbf{E} \mathbf{S}_{k}$ for each \mathbf{k}. But $6 s_{k}$ is a set $p^{E_{k}}$ by theorem 2:5, so that $6 S_{k}=I_{k, 1}+T_{k, 2}+$
 $E_{k, 2}<E_{k,}$ Iet $\delta_{k, l}$ be the maximum of the ordinals $E_{k, 1}, E_{k, 2}$, $E_{x, 3:} \ldots, E_{k, \ell}$ for each ℓ. Thus $\delta_{k, \ell}<E_{x}$ for each ℓ.

Let $S_{k, l}=T_{x, 1}+T_{k, 2}+\cdots+\mathbf{T}_{\kappa, 2}$ for each ℓ. B_{y} theoren $2: 6, S_{k, R}$ is a get $q^{\sigma_{k, ~}}$ for each P, and we note $s_{k, 1} \subset s_{\alpha_{1,2}} \subset s_{\alpha_{k, 3}} \subset \cdots$.
 Since $\delta_{x, \rho-1} \leqslant \delta_{K, R}$ for $l \geqslant 2$, by theorem 2t9, $R_{k, R}$ 1s aet $Q^{\delta_{x, R}+1}$ for each $\rho ;$ and since $\delta_{k, R}<E_{K}$ for ach $\ell, \delta_{N, R}+1 \leq \xi_{K}$. $\boldsymbol{R}_{k, R}$ is a set $Q^{E_{k}}$. But $\varepsilon_{k} \leqslant \mathcal{E}_{k+1}$: so $S_{k+1} \cdot \mathcal{R}_{k, 2}$ is a set $a^{E_{x+1}}$ for each f by theorem $2: 3$ and theoren 2:4.

Let $F=S_{1}+\sum_{k=1}^{\infty} \sum_{j=1}^{\infty} S_{K+1} \cdot \mathbf{h}_{k R}$. The seti is the sun of a countable eollection of sets $a^{E_{x+1}}$ for Ew+1 $<a$. The set F is alse the sum of a countable collection of disjoint sets. for we note that $\mathbf{R}_{i} \cdot \mathbf{R}_{k}=0$ if ifk since $\mathbf{R}_{k}=S_{k} \cdot 6 \mathbf{S}_{k-1}$ and the sets \mathbf{S}_{k} form an increasing sequence
of sets. Following the same line of reasoning, we note that the sets $R_{k, \ell}$ are disjoint for a fixed k and where $f=1,2,3, \ldots \ldots$.

Thus for a fixed k, we have the sets $R_{1}+\sum_{\ell=1}^{\infty} S_{\kappa+1} \cdot R_{k, l}$ where the sets $S_{k+1} \cdot A_{k R}$ are disjoint since sets $\mathbb{R}_{k, \ell}$ are disjoint for fixed k and $f=1,2,3, \ldots$. Since for any fixed $k, \sum_{R=1}^{\infty} R_{k, \ell}=\sum_{R=1}^{\infty} S_{k, \ell}=\mathbf{C} S_{k} \subset R_{k+1}, R_{1}$ is disjoint from the other sets.

For a fixed number l, we have the sets
 sets are disjoint.

It remains to be shown that $\mathrm{I}=\mathrm{F}$. Since it is evident that $\sum_{k=1}^{\infty} R_{\alpha, R}=\sum_{R=1}^{\infty} s_{\alpha_{1, R}}=E S_{k}, F=R_{1}+\sum_{k=1}^{\infty} s_{k+1} \cdot E s_{K}$. But $S_{K+1} \cdot E S_{k}=R_{N+1}$, so $T=\sum_{k=1}^{\infty} R_{k}=\sum_{k=1}^{\infty} S_{k}=\sum_{n=1}^{\infty} T_{n}=E_{0} \quad$ The proof is complete.
Theorem 2:11: For $3 \leqslant \alpha<\Omega$, sets pare topologically
invariant, and for $2 \leqslant \alpha<\Omega$, sets g are
topologically invariant.
Proof: Sets $Q^{2}\left(a_{6}\right)$ are topologically invariant. (See Chapter I, page 7) Preceding by transfinite induction, suppose that the theorem is true for every ordinal β where $2 \leqslant \rho<\alpha$, and let E be a set p^{α}. Then $E=\sum_{n=1}^{\infty} E_{n}$, where for each $n_{n} I_{n}$ is aet $q^{a_{n}}, \alpha_{n}<\alpha$. By theorem 2:3, we may assume that $\alpha_{n} \geqslant 2$ for each n.

Let I be a set which is homeomorphic to E by a
mapping 1 . Let $T_{n}=f\left(X_{n}\right)$ for each integer $n_{\text {. Then the }}$. Tet $T=\sum_{n=1}^{\infty} T_{n}$, where for each n_{y}. I_{n} is a set $Q^{\alpha_{n}}$ by our induction assumption. I is therefore a set $\mathrm{p}^{\boldsymbol{\alpha}}$.

Suppose that H is a set Q^{α}, where $\alpha \geqslant 3$, and let CH=5. Suppose that I is the homeomorphic image of H by a function f . There exiats by Lavrentieff's theorem eets M and M, each a set $G_{S}\left(Q^{2}\right)$, such that $H \subset M, T \subset M$, and M is homeomorphie to I by function auch that $\rho(p)=f(p)$ if $P \in H$. [8, $P \cdot 126]$ Since $H \subset M$ and $H=C E, H=M \cdot E X=M-E$
 The net M is a set $G_{\delta}\left(Q^{2}\right)$, and E is set $P^{\alpha}, a \geqslant 3 ;$ so M•R 1s a set $P^{\alpha}, \alpha \geqslant 3$, and $\gamma(M \cdot F)=S$ 1s a set P^{α}. But this
 and $6 S$ is a set Q^{α}, I is a set Q^{α}. The proof is complete. Definition: A set E is said to be a Borel set if for some ordinal α, where $1 \leqslant \alpha<\Omega, E$ is a set P^{α} or a set Q^{α}. Thus the family of Borel sete (B) is merely the collection of all sets P^{α} and Q^{α} for all ordinals α of the first or second classes. The Borel sets satiafy the following conditionsz

1) Évery closed set belongs to B.
2) The sum of a countable aggregate of sets belonging to B belongs to B.
3) The product of countable aggregate of sets belonging to B belongs to B.

Condition 1) follows directiy from the definition of sets Q^{\prime}. Suppose that $E=\sum_{n=1}^{\infty} E_{n}$, where for each $A_{\text {, }} E_{n}$ is a set belouging to B. By theorem 2:7, we may assume that each set E is a set $Q^{E_{n}}, E_{n}<\Omega$. For this infinite sequence of ordinals $\left\{E_{n}\right\}$, there exista an ordinal β such that $\varepsilon_{n}<\beta<\Omega$ for each n. [3, p. 91] Thus E is a set p^{β}, and so it belongs to B. Condition 2) is therefore satisfied. In a very similar manner, it may be shown that condition 3) 1s satisfied.

Having shown that the family of Borel sets satisfies conditions 1), 2), and 3), it will now be shown that the fanily of Borel sets is the smallest family of sets which does satisfy these conditions. With this fact proved, we will have established an equivalent definition for the family of Borel sets.

Suppose that W is any family of seta atisfying conditions 1), 2), and 3). Sete Q^{\prime} belong to W by their definition. Sets $F_{\sigma}\left(P^{2}\right)$ then belong to W as a countable sum of sets Q^{\prime}. Since sets P^{\prime} are sets P^{2}, they also belong to W .

Proceding by transfinite induction, suppose that α is any ordinal such that $2<a<\Omega$, and assume that all sets P^{β} and Q^{β} belong to W for $\beta<\alpha$. If E is a set p^{α}. then $E=\sum_{n=1}^{\infty} E_{n}$, where for each $A_{2} E_{n}$ is a zet $Q^{\alpha_{n}}, \alpha_{n}<\alpha_{0}$. Thus E_{n} belongs to W for each n, and by condition 2), E
belongs to W.
Similarily, if is a set g_{a}, then $\mathrm{E}=\prod_{\pi=1}^{\infty} \mathrm{E}_{\mathrm{n}}$, where for each $n_{0} E_{n}$ is a set $P^{\alpha_{n}}, a_{n}<\alpha$. Thus E_{n} belongs to w for each n, and by condition 3), E belongs to W. The family of Borel sets is therefore included in the family $\begin{aligned} & \text { (}\end{aligned}$ Othor properties of the family of Borel seta which follow from the theorems already establishod are as followsz 4) The complement of a set boloaging to 8 belonge to $B_{\text {. }}$
5) The difference of two sets belonging to 8 belongs to B .
6) A set which is homeomorphic to a set belonging to B belongs to B.
The family of Borel sets is also the smallest family which satisfies conditions 7), 8), and 9) as follows:
7) Every open set belongs to B.
8) The sum of a countable collection of disjoint sets belonging to B belongs to B.
9) The product of a countable collection of sets belonging to B belongs to B .
Suppose that is any Iamily of sets satisfying conditions 7), (t), and 9). By condition 7), sets f' belong to W, and so sets Q^{2} belong to W by condition 9). Since sets Q^{\prime} are sets Q^{2}, sets Q^{\prime} belong to W. Each set P^{3} is a countable sum of disjoint sets Q^{\prime} and Q^{2} by theorem 2:10,
and so they belong to W by condition 8). Sets P^{2}, being sets P^{3}. also belong to W. Now let α be an ordinal such that $3 \leqslant \alpha<\Omega$, and suppose that all sets P^{β} and Q^{β} belong to W for $\beta<\alpha$. If E is a set $p{ }^{\alpha}$, then by theorem 2:10 the set E may be expressed as the sum of a countable collection of disjoint sets $Q^{\alpha_{n}}, \alpha_{n}<\alpha_{\text {. }}$ Thus E is a set belonging to by condition 8). If F is a set Q^{6}, then it belongs to W by condition 9).

BOREL SETS \boldsymbol{F}_{α} AND $\boldsymbol{O}_{\boldsymbol{a}}$

In this chapter wo shall express the Borel sets in yet a different manner, namely in terms of sets F_{a} and G_{a}. We shall also establish several important properties of these sots F_{α} and G_{α}.

In the definition of these sets F_{α} and $G_{\alpha,}$ it will be necessary to consider any ordinal $\alpha<\Omega$ as being even or odd. If α is a finite ordinal, then \propto will be considered even or odd in the usual manner. If α is a limit ordinal, that is, a transfinite ordinal with no immediate predecessor, then a is considered to be oven. Other ordinals will be defined to be even or odd by tranginite induction as follows. Suppose that a is a given transfinite ordinal with an imediate predecessor; and suppose that we have determined each ordinal β to be oven or odd if $\beta<\alpha$. Then If the immediate predecessor of a is even, a will be odd; if the immediate predecessor of α is odd, α will be even.

A set E is a set F_{o} if and only if it is a closed set. For any ordinal $\alpha>0$, α odd, E is a set F_{α} if and only if $E=\sum_{n=1}^{\infty} E_{n}$, where for each $n_{n} E_{n}$ is a set $F \alpha_{n}, a_{n}<a_{0}$ If $a>0, \alpha$ eren, E is a set F_{o} if and only if $E=\prod_{n=1}^{0} E_{n}$, where for each $n_{s} E_{n}$ is a aet $a_{n}, a_{n}<a_{0}$.
-19-

In a corresponding manner, let F be a set G_{0} if and only if it is an open set. For an ordinal $a>0$, a odd, E is a set G_{a} if and only if $\mathrm{E}=\boldsymbol{T H}_{\boldsymbol{n}=1} \mathrm{E}_{n}$, where for each $\mathrm{n}_{\text {。 }}$ E_{n} is a set $\alpha_{\alpha_{n}}, a_{n}<\alpha_{\text {. }}$. For $\alpha>0$, α oven, E is a set \boldsymbol{a}_{α} if and oniy if $E=\sum_{n=1} E_{n}$, where for each $n_{1} E_{n}$ is a set $G_{\alpha_{n}}$, $\alpha_{n}<\alpha_{0}$ 。

Theorom 3:1: The complement of a set Fan is a set Ge and the complement of a set G_{n} is a set Fn. for $\alpha<\Omega$. Proof: The theorem is true for sets Go(open) and sets Fofelosed) by the properties of open and closed sets, and is true also for sets $G_{1}\left(G_{g}\right)$ and sets $F_{1}\left(F_{\sigma}\right)$ as shown in Chapter II. Proceding by transfinite induction, suppose that α is an ordinal such that $2<\alpha<\Omega$, and assume that the theorem is true for all sets G_{β} and F_{f}, where $\beta<\alpha$. If \propto is even, and if E is a set F_{a}, then $\mathrm{E}=\mathrm{fl}_{\boldsymbol{n}=1}^{0} \mathrm{E}_{\mathrm{n}}$, where for each n_{n}, E_{n} is a set $E_{\alpha_{n}}, \alpha_{n}\left\langle\alpha\right.$. For each $n_{\text {, }}$ © E_{n} is a set $a_{a_{n}}, \alpha_{n}<\alpha_{\text {, }}$ by our induction assumption. The set GE is then a set a_{α} since $6 E=6 \prod_{n=1}^{\infty} E_{n}=\sum_{n=1}^{\infty} 6 \mathrm{E}_{n}$. The proofs for the other possible cases are very similar. Theorem $3: 2:$ If $\alpha<\Omega$ is odd, the sum of a countable collection of sats Par in a set Pa, and the product of a countable collection of sets G_{g} is a set Gg. If $\alpha<\Omega$ is even, the product of a countable collection of sets Pa is a set Fa, and the sum of a countable collection of sets G_{s} is a set A .

Proof: Suppose $\alpha<\Omega, a$ is odd, and $E=\sum_{n=1}^{\infty} E_{n}$, where for ach n, E_{n} is a set F_{α}. Then for each $n_{\text {, }}$ $\mathrm{E}_{n}=\sum_{k=1}^{\infty} H_{n, \kappa}$ where for each $k, H_{n, \kappa}$ is a set $F_{\alpha_{n, \kappa}}, \alpha_{n, k}<\alpha$. Thus $E=\sum_{n=1}^{\infty} \sum_{k=1}^{\infty} H_{n, \kappa}$, and is by definition a set F_{α}. If $\alpha<\Omega, \alpha$ odd, and $E=\prod_{n=1}^{\infty} E_{n}$, where for each n, E_{n} is set a_{α}, then $E=\boldsymbol{C}\left(6 \prod_{n=1}^{\infty} \mathrm{E}_{n}\right)=\boldsymbol{C}\left(\sum_{n=1}^{\infty} \boldsymbol{C} \mathrm{E}_{n}\right)$. Since $\boldsymbol{C E}_{n}$ is a set F_{α} for each $\mathrm{n}_{\mathrm{y}} \alpha$ is odd, $\sum_{n=1}^{\infty} C \mathrm{E}_{n}$ is a set F_{α}. Then E is a set G_{α} as the complement of a set F_{α} by the previous theorem. The proofs for the other possible cases are very sinilar.

Proof: Suppose E is a set $F_{\alpha}, \alpha<\beta$. If θ is even, then since $E=E \cdot E \cdot E \cdot$. E is a set F. If p is odd, then since $\mathbf{E}=\boldsymbol{E}+\mathbf{E}+\mathbf{E}+\cdots$, E is a set F_{p}.

Let E be a set $G_{a,} \alpha<\beta$. If β is even, E is a set G_{p} since $E=E+E+E+\cdots$, and if p is odd, E is a set G_{p} since $\mathrm{E}=\mathrm{E} \cdot \mathrm{E} \cdot \mathrm{E} \cdot \cdots$.

Theorem 3:4 For every ordinal $\alpha<\Omega$, the aum and product of any finite number of sots Fa($\left.G_{\alpha}\right)$ is a set pe(G_{m}

Proof: It is noted that in several cases, this theorem is established by theoren 3:2.

Suppose $\alpha<\Omega, \propto$ odd. Let E and H be sete F_{α}, and let $S=E \cdot H$. $E=\sum_{m=1}^{\infty} E_{m,}$ where for each $m_{p} E_{m}$ is a set F_{m}, $a_{m}<a_{0}$ and $H=\sum_{n=1}^{\infty} H_{n}$, where for each $A_{0} H_{n}$ is a set $F_{P_{n}}$,
$\beta_{n}<a_{\text {. }}$ Then $s=E \cdot E=\sum_{m=1}^{\infty} E_{m} \cdot \sum_{n=1}^{\infty} H_{n}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} s_{m} \cdot A_{n}$. Let $\lambda_{m, n}$ be an even ordinal such that $\alpha_{m} \leqslant \lambda_{m, n}, \beta_{n} \leqslant \lambda_{m, n}$ and $\lambda_{m, n}<\alpha$ for each pair of indices mand n. Then each set $\mathbf{E}_{m} \cdot \mathrm{H}_{\mathrm{n}}$ is a set $F_{\lambda_{m, n}}, \lambda_{m, n}\left\langle\alpha\right.$. S is therefore a set F_{α}. Suppose $\alpha<\Omega$, ax odd. Let E and H be sets $G_{\alpha,}$ and let $s=\mathrm{E}+\mathrm{H}$. Then $\mathrm{s}=\boldsymbol{\mathrm { C }}(\mathrm{G}(\mathrm{E}+\mathrm{H}))=\boldsymbol{C}(\mathrm{GE} \cdot \boldsymbol{G} \mathrm{H})$. But CI and EH are sets F_{a}, hence their product is a set F_{α} by the above proof. The complement of their product, the set S, is then a set Q_{x}. The proofs for other cases are similar to the above. Having proved the theorem in the case of two sets, the proof way be extended to any finite number of sets by ordinary induction.

Theorem 3:5: For every ordinal $a<\Omega$, every set Fa is also
 Proof: By theorem $2: 1$ and theorem $2: 2$ it is known that a set $G_{o}(o p e n)$ is a set $F_{1}\left(F_{\sigma}\right)$, and that a set F_{0} (closed) is a set $G,\left(a_{g}\right)$. Given an ordinal $\alpha, 1 \leqslant \alpha<\Omega$, essume that for every ordinal $\beta<\alpha$, set G_{ρ} is a set Fe+i, and a set P_{p} is a set $G_{\beta+1}$. Let E be set $G_{\alpha y}$ and auppose that a is odd. Then $E=\prod_{n=1}^{\infty} E_{n}$, where for each $n_{,} E_{n}$ is a set $a_{\alpha_{n}}, \alpha_{n}<\alpha_{0}$. Therefore each set E_{n} is a set $F_{\alpha_{n}+1}$, where $\alpha_{n}+1<\alpha+1$. Since $\alpha+1$ is oven, E is a set $F_{\alpha+1}$. If we suppose that α is even, the proof is very similar.
 set $\mathrm{F}_{\alpha+1}$ from the above proof. Thus $\mathrm{E}=\mathrm{C}(\mathrm{CE})$ is the
complement of a set $F_{\alpha+1}$, and hence is a set $G_{\alpha+1}$
It will now be shown that if f is the family of all sets F_{α} and $G_{\alpha}, 0 \leqslant a<\Omega$, then the family R is identical to the family B, the Borel seta. We have noted that the family B is the smallest family of sets to satisfy the following conditions.

1) Every closed set belongs to B.
2) The aum of a countable aggregate of sets belonging to B belongs to B .
3) The product of a countable aggregate of sets belonging to B belongs to B. Directly from the definitions of the sets of the family R, it can be concluded that the family R satisfies conditions 2), 2), and 3). If we can show that the family R is included in the family B, then the family R must be identical to the family B.

Sets Fo(closed) belong to the family B. Proceding by transfinite induction, suppose that a is an ordinal such that $\alpha<\Omega$, and assume that sets F_{p} belong to the family B if $\beta<\alpha$. If α is even, let E be a set F_{α}. Then $\mathrm{E}=\prod_{n=1}^{\infty} \mathrm{S}_{n}$. where for each n, E_{n} is aet $F_{a_{n}}, a_{n}<\alpha$. Thus for each $n_{\text {, }}$ E_{n} is a set of the family B_{s} and by condition 3), E is a set of the fanily B. If a is odd, then $E=\sum_{n=1}^{\infty} E_{n}$, where for each $n_{n} E_{n}$ is a set $F_{\alpha_{n}}{ }^{*} \alpha_{n}<\alpha_{0}$. Thus for each $n_{*} E_{n}$ is a set of the family B, and by condition 2), E is a set of the
fanily B.
Since sets G_{α} are sets $F_{\alpha+1}$, sets G_{α} are included in the family of sets B. The family R is therefore included in and identical to the family B.

Having established that the two families of sets R and B are identical, we shall now show the relationships between the sets P_{a}, O_{a} and the sets $\mathbb{P}^{*}, \mathbb{Q}^{\alpha}$ of these two families. If ω ie the least limit ordinal, we have: Theorem 3:6 : For $\alpha<\omega$, if α is even, sets Fo are identical
to the sets $Q^{\alpha+1}$, and seta Ges are $_{\text {adentical to the }}$

1dentical to the sets p^{a+1}, and sets Gare
identical to the gets Q^{a+1}.
Proof: The sets Fo are identical to the aets Q^{\prime} by their definitions. Giren an ordinal $\alpha, 0<\alpha<\omega$, assume that the theorem is true for all ordinals β if $\beta<\alpha_{\text {. }}$ Suppose that α 1s even, and let E be set Fa. Then $E=\prod_{n=1}^{\infty} \mathrm{E}_{n}$, where for cach $\mathrm{n}_{\mathrm{i}} \mathrm{E}_{n}$ is a set $\mathrm{F}_{\alpha_{n}}, \alpha_{n}<\alpha_{0}$. If α_{n} is oven, E_{n} ie a set $F_{\alpha_{n}+1}$, and hence a set $p^{a_{n}+2}$, where $\alpha_{n}+2 \leqslant \alpha<\alpha+1$. If α_{n} is oda, E_{n}, as a set $F_{\alpha_{n}}$, is a set $p^{a_{n}+1}, a_{n}+1 \leqslant \alpha<\alpha+1$. F is therefore aet $Q^{\alpha+1}$.

If α is oven, and if H is aet $Q^{\alpha+1}$, then $H=\prod_{n=1}^{\infty} H_{n}$, where for each $n_{1} H_{n}$ is a set $p^{\alpha_{n}}, a_{n}<\alpha+1$. If α_{n} 1s odd, $p^{\alpha_{n}}$, as a set $p^{\alpha_{n}+1}$, is set $F_{\alpha_{n}}, \alpha_{n}<a_{\text {. }}$ If α_{n} 1s even, $p^{a_{n}}$ is a set $F_{a_{n-1}}, \alpha_{n}-1<\alpha$. H is therefore a set

Fa, and thus the sota F_{α} are identical to the sets $Q^{\alpha+1}$. By taking complements, sets G_{a} may be shown to be Identical to the sets $\mathrm{P}^{\alpha+1}$. In the case where a is odd, the proof is siailar to the above.

Theorem 317 : If $\alpha \geqslant w, ~ a 1$ even, then sotis fa are Identical to the sets θ^{∞}, and seta Gex are $^{\text {an }}$ 1dentical to the seta P^{∞}. If $\alpha>\omega$, $\underline{\text { is odd. }}$ then sets Fa are identical to the sota P^{a} and seta G_{0} are identical to the sets Q^{a}.

Proof: If $\alpha=\omega$, and E is a set F_{a}, then $\mathbf{E}=\prod_{n=1}^{\infty} \mathbf{E}_{n}$, where for each n_{1}, E_{n} is a set $F_{a_{n}}, a_{n}<\omega$. E ia therefore a set $Q^{\alpha_{n}+1}$ for α_{n} even, and hence set $p^{\alpha_{n}+2}$, where $\alpha_{n}+2<\alpha$. If α_{n} is odd, then E_{n} is a set $P^{\alpha_{n}+1}$. $\alpha_{n}+1<\alpha$. E is then a set Q^{α}.

If H is a set q^{α}, then $\mathrm{H}=\prod_{n=1}^{\infty} H_{n}$, whera for each n, H_{n} 1s a set $p^{\alpha_{n}}, \alpha_{n}<\omega$. If α_{n} is odd, then H_{n} is a set $\sigma_{a_{n-1}}$, and hence a set $F_{a_{n}}: \alpha_{n}<\omega$. If a_{n} is even, then H_{n} is set $F_{a_{n}-1}, \alpha_{n-1}<a$. H is then a set F_{α}. By taking complements, it follows that sets G_{α} are identical to the eets p^{α} for $\alpha=\omega$.

How suppose that $\alpha>\omega$, and assume that the theoren is true for all ordinals β where $\omega \leqslant \beta<\alpha$. There are three possible cases to consider. The first is where a is a limit ordinal, the second is where a is even and not a linit ordinal, and the third is where a is odd.

First, suppose that α 1s a limit ordinal, and lot E be a set F. Then $E=\prod_{n=1}^{\infty} E_{n}$, where for each $n_{z} E_{n}$ is a set $F_{\alpha_{n}}, \omega \leq \alpha_{n}<\alpha_{0}$. Then F_{n} will be a set $Q^{\alpha_{n}}$ if α_{n} is oren, and thus at $p^{\alpha_{n}+1}, \alpha_{n}+1<\alpha_{\text {. }}$. If α_{n} is odd, ε_{n} will be act $P^{\alpha_{n}}, \alpha_{n}<\alpha_{\text {. }} E$ is then a set $Q^{\alpha_{0}}$.

If is a set $Q^{a}, H=\prod_{n=1}^{T} H_{n}$, whore for each $n_{i} H_{n}$ 1s a set $P^{\alpha_{n}}, \alpha_{n}<\alpha$. If α_{n} 1s even, then H_{n} is a set $a_{\alpha_{n}}$, and thus a set $F_{\alpha_{n}+1}, \alpha_{n}+1<a_{0}$. If a_{n} is odd, then H_{n} is a set $F a_{n}, \alpha_{n}<a_{0}$. His then a set Fa.

Suppose that α is an even ordinal, and is not a 1imit ordinal. Let E be aet F_{a}. Then $\mathrm{E}=\prod_{n=1}^{\infty} \mathrm{E}_{\mathrm{n}}$, where for each $\mathrm{n}_{\mathrm{y}} \mathrm{E}_{n}$ is a set $\boldsymbol{R}_{\alpha_{n}}, \alpha_{n}<\alpha_{\text {. . If }} \alpha_{n}$ is even, E_{n} is a set $Q^{\alpha_{n}}$, and hence aet $p^{\alpha_{n+1}}, \alpha_{n}+1<\alpha_{\text {. . If } \alpha_{n} \text { is odd, }}$. E_{n} is a set $p^{\alpha_{n}}, \alpha_{n}<\alpha_{0} \quad E$ is then a set Q^{α}.

If μ is a set Q^{α}, then $H=\prod_{n=1}^{\infty} H_{n}$, where for each $n_{\text {, }}$ H_{n} is a set $p^{a_{n}}, \alpha_{n}<\alpha_{0}$. If α_{n} is even, H_{n} is a set $\alpha_{\alpha_{n}}$ and hence a at $F \alpha_{n+1}, \alpha_{n}+1<\alpha_{1}$. If α_{n} is odd, H_{n} is a set $F_{\alpha_{n}}, \alpha_{n}<\alpha_{4}$ I is then aset \boldsymbol{F}_{α}.

If α is an odd ordinal, then the proof is very similar to the case where a is an oven ordinal, and is not a limit ordinal. By taking complements, the remaining parts of the theorem can be shown.

We have shown that for any ordinal $\alpha, 0<\alpha<\Omega$, sets F ${ }_{\alpha}$ include all sets $\beta, \beta<\alpha$, and all sets $G_{\beta}, \beta<\alpha$. Likewise seta G_{α} include all sets $G_{\beta} \beta<\alpha$, and all sets F_{β},
$\beta<\alpha$. The question might arise as to whether there exists for each ordinal $\alpha, 0<\alpha<\Omega$, sets F_{α} which are not sets Fe, for each ordinal $\beta<\alpha$, or sets $G \alpha$ which are not sets G_{β} for each ordinal $\beta<\alpha$. This would follow if it can be shown that there exist sets F_{α} which are not sets Q_{α} for each ordinal $\alpha, 0 \leqslant \alpha<\Omega$.

In the case where $a=0$, there exist sets which are sets $F_{0}(c l o s e d)$, but are not sets Go(open) by the properties of open and closed sets, and by taking complements it follows that there exist sets Q_{0} which are not sets F_{0}. We shall show next that in R_{1}, one-dimension Euclidean space, there exist sets $F_{1}\left(F_{\sigma}\right)$ which are not sets $G_{1}\left(G_{\delta}\right)$, and vice versa. Several preliminary theorems will now be established.

Dofinition: A set E is nowhere dense in R_{1}, the set of all real numbers, if for every open interval (a, b) there is an open interval (c, d) such that $(c, d) \subset(a, b)$, and $(c, d) \cdot E=0$.

It can be shown that aet E is nowhere dense if and only if $E(R)$ is dense. [6, p. 35$]$

Definition: A set E is a set of the first category if and only if $\mathrm{E}=\sum_{n=1}^{\infty} \mathrm{E}_{\mathrm{n}}$, where for each $\mathrm{A}, \mathrm{E}_{\mathrm{n}}$ is nowhere dense. A set E is a set of the second eategory if it is not of the first category. A set E is a reaidual set if it is of the second category, and CE is of the first category.

The first category shall be denoted as category I_{9}
and the second eategory as category II.
Theorem 3:8 If a set S is a complete motric space, then
S is of category II.
Proof: Suppose that set S is a complete metric space, and suppose that S is of category I. Then $S=\sum_{n=1}^{\infty} E_{n}$. where for each n, E_{n} is nowhere sense set. There exists an $x_{1} \in\left(E \bar{E}_{1}\right)$ and an $\epsilon_{1}>C$ such that $\left\{\left(x_{1} ; 2 \epsilon_{1}\right) \cdot B_{1}=0\right.$. Thus $\overline{M\left(x_{1}, \epsilon_{1}\right)} \cdot \mathrm{E}_{1}=0$. Likewise for each integer $\mathrm{n}_{\text {, }}$ there exists an $x_{n} \in \mathbb{M}\left(x_{n-1}, \in_{n-1}\right) \cdot E\left(E_{n}\right)$ such that for some $\epsilon_{n}>0$, $\epsilon_{n}<\frac{\epsilon_{n-1}}{2}, \overline{\left(x_{n}, \epsilon_{n}\right)} \cdot g_{n}=0$, and such that $\overline{M\left(x_{n,} \epsilon_{n}\right)} \subset N\left(x_{n-1} \epsilon_{n-1}\right)$. We obtain a sequence of points x_{n} corresponding to a decreasing sequence of closed sets whose diameters approach zero. Since S is a complete space, there exists an element x_{0} common to all the intervals, by Cantor's theorem.
 leads to a contradiction. Thus the theorem is established. Theorem 3:9: If a set 3 is a complete metric space, and
if B is a set G_{6} which is dense in S , then H is a residual set, that is, H is a set of category II and CR is a sat of category I.

Proof: Suppose that H is a set O_{δ} which is dense in S, a complete metric space. The set 6 in is a set Po, thus 6 H $=\sum_{n=1}^{\infty} H_{n}$, where for each $n_{i} H_{n}$ is a closed set. Sinee $H_{n} C G, G H_{n} D H_{\text {, }}$ and H belag dense $\ln S$ implies that CHn is dense in s for each $n_{n} H_{n}=\boldsymbol{C}\left(C H_{n}\right)$ is therefore
nowhere dense in s for each n. The set $E \boldsymbol{H}$ is then of category I, and $E H+H=3$, where S is of category II by theorem 3:8. Thus His of category II, for if H were of category $I_{\text {, }}$ then $A=\sum_{m=1}^{\infty} X_{m}$, wher for each m, X_{m} is a set nowhere dense. Then $S=6 H+H=\sum_{n=1}^{\infty} H_{n}+\sum_{m=1}^{\infty} K_{m s}$ and would be of category I, but this is a contradiction.
Theorem 3:10: The set of all retional numbers, I, is a set
Er, but is not a set ar.
Proof: The aet N , all rationel numbers, ia a set Fo since $N=\sum_{n=1}^{\infty} X_{k}$. where for each k, H_{k} is a rational number. Suppose that II is also aet G_{δ}. Since \mathbb{R}_{1}, the set of all real numbers, is a complete metric space, and since N is dease on A_{1}, A will be a residual set by theorom 3:9. That means that M is aet of category $I I_{\text {, }}$ and CHis a set of category I. But $N=\sum_{k=1}^{\infty} X_{k}$, where for each k, H_{k} is rational number which is a nowhere dense set on R_{1}. Thus i is a set of category $I_{\text {, which leads to }}$ a contradiction.

From this theorem, we may further conclude that the set of all irrational numbers is a aet G_{s}, but is not a set F_{f}. In Chapter IV, we shall show further that there exists for each ordinal $\alpha, 0<\alpha<\Omega$, sets F_{α} which are not sets a_{∞}, and vice versa.

CHAPTER TV

SETS UNIVERSAL TO SETS Co

1) Borel Seta Relative to their Containing Space.
 From the construction of the Borel sets, it is

 apparent that if t is a Borel set, say an Fa, in a pace A, it is not necessarily ast foin a different apace B. For example, an open interval is a eto in apace consisting of itself only, but is not a tet 0 oin the plane.Suppose thet we have given metric apace M, and suppose that F is subset of H_{s} and is a metric space 1tself. Then for any ordinal $\alpha, 0 \leqslant \alpha<\Omega$, set Fu(Ga) relative to the metrio space F is denoted an $\left.\left(F_{\alpha}\right)_{E}\left(\hat{O}_{\omega}\right)_{E}\right)$. Theorem $4: 1$ Given mantic space M, and ECM. then
get HCE is a set fol (GA) relative to E if and only 14 it is the Interection of E and get. Pr(Ga) Felative to the epace H.

Proof: From the properties of open and closed sets, 1t is known that a set is an Fo(closed) in E if and oniy if it is the interection of E and a at Fo in M and that a tet is a Gopen) in I if and only if it is the intersection of E and a sot Goin M. [6. F. 501

Proceding by transfinite induction, suppose that $\alpha \geqslant 1$ is given ordinal, and assune that the theorem is $-30=$
true for all ordinals $\beta, \beta<\alpha$, Let H be aet ($\left.\boldsymbol{F}_{\alpha}\right)_{E, H C E}$, and suppose that α is even. Then $K=\prod_{n=1}^{\infty} H_{n}$, where for each a. H_{n} is a set $\left(F \alpha_{n}\right)_{E}, \alpha_{n}<\alpha$. By our induction asaumption, H_{n} is the intersection of E and a set X_{n}, where K_{n} is a set $F_{\alpha_{n}}, \alpha_{n}<\alpha$. Thus $H=\prod_{n=1}^{\infty}\left(E \cdot X_{n}\right)=E \cdot \prod_{n=1}^{\infty} X_{n}$, and hence is the intersection of E and a set F. If a is odd, and H is a set $\left(P_{o}\right)_{E}$, then $Z=\sum_{n=1}^{\infty} H_{n}$, where for each $n_{0} H_{n}$ is a set $\left(F_{\alpha_{n}}\right)_{E}$. Then H_{n} is the intersection of E and a set X_{n}, where X_{n} is a set $F_{\alpha_{n}}, \alpha_{n}<\alpha_{0}$ Thus $H=\sum_{n=1}^{\infty}\left(E-\mathbb{K}_{n}\right)=E \cdot \sum_{n=1}^{\infty} \mathbf{K}_{n}$, and is therefore the intersection of E and a set F_{α}.

How suppose that $H=K \cdot E$, where K is a set F_{α}, $0<\alpha<\Omega$, and suppose that α is oven. Then $H=K-E=\mathbb{E} \cdot \prod_{n=1}^{\infty} \mathbf{x}_{\mathrm{n}}$, where for each $n_{n} X_{n}$ is a set $\mathcal{F a}_{n}, a_{n}\left\langle\alpha\right.$. Thus $K=\prod_{n=1}^{\infty} E \cdot X_{n}$. where each set E• X_{n} is a set ($\left.F_{a_{n}}\right)_{E}$ by our induction assumption. I is then a set ($\mathrm{Pa}_{\mathrm{E}} \mathrm{E}_{\mathrm{E}}$. If α is odd, then $H=K \cdot E=E \cdot \sum_{n=1}^{\infty} K_{n}=\sum_{n=1}^{\infty} E \cdot I_{n}$, where for each $n_{y} X_{n}$ is a set. $F_{\alpha_{n}}, \alpha_{n}<\alpha_{0} E \cdot I_{n}$ is therefore a set $\left(F_{\alpha_{n}}\right)_{E}$ for oach n_{0} and H is a set $\left(F_{\alpha}\right)_{E}$. Proof for the sets G_{α} is very similar. Theorem 4:2 Given a metric space M, and ECM, then a set

HCE is a Borel set relative to E if and only if it is the intersection of E and A Borel set relative to the space M.
The proof of this theorem follows from theorem $4: 1$. Since the intersection of two sets Fo(Go) is again a set $F_{\alpha}\left(G_{\alpha}\right)$, we have the following theorems which follow
airectly from the above.
Theorem $4: 3$ given a metric goace M and HCBCM, if His
 melative to E.

 only it it is 会 set Ea(Ge) relative to K.
Theorem 4 ; Given A Hetric snace M, and HCBCM, if His a Boral set reletive to M thon $\overline{\text { E }}$ is g Borel set relative to E.

If HCRCM, 是d F is Borel sot relative to M, then H is a Borel set relative to E if and only if it is a Borel set relative to N.
2) Construction of Sets Universal to Linear Sets ga. Definition: set U of the plane is said to be a set nuiversal to all innear sets of family R if the intersection of U and any vertical line gives a linear set of
 interection of 0 and some vertical lise.

He shall now construct plane sets 0 which are universal to all ilrear sets $G_{o m}$ These sets U will be derined in a spece s, where S is a subset of the plane which consists of ali verticsi innes $x=r$, where $0<r<1$,
 set F_{σ} being the sum of a countable collection of closed
sets, it is seen that S is a set G_{8}, and thus a set a_{α} for $\alpha \geqslant 1$ relative to the plane.

Let Ho be the set of all irrational numbers such that if $x \in \mathbb{N}_{0}$, then $0<x<1$. If $x \in \mathbb{N}_{0}$, then x can be written uniquely as continued fraction as

$$
x=\frac{1}{\alpha^{1}}+\frac{1}{\alpha^{2}}+\frac{1}{\alpha^{3}}+\cdots+\frac{1}{\alpha^{n}}+\cdots
$$

where for each $n_{p} \alpha^{n}$ is positive integer. Thus we may associste with each number $x \in H_{0}$ unique infinite sequence of positive integers, $\alpha^{1}, \alpha^{2}, \alpha^{3}, \cdots$, which we shall denote by $x=\left\{\alpha^{n}\right\}$. [2, pp. 273-281]

In turn, each number x gives rise to a countable sequence of irrational numbers $x_{1}, x_{2}, x_{3}, \cdots$, obtained as follows by continued fractions.

$$
\begin{aligned}
& x_{1}=\alpha^{1}, \alpha^{3}, \alpha^{5}, \alpha^{7}, \ldots \\
& x_{2}=\alpha^{2}, \alpha^{6}, \alpha^{10}, \alpha^{14}, \ldots \\
& x_{3}=\alpha^{4}, \alpha^{12}, \alpha^{20}, \alpha^{28}, \ldots
\end{aligned}
$$

and in general.

$$
x_{n}=a^{2^{n-1}(2 \cdot 1-1)}, \alpha^{2^{n-1}(2 \cdot 2-1)}, \ldots, \alpha^{a^{n-1}(2 \cdot m-1)}, \ldots
$$

By the properties of continued fractions, $0<x_{n}<1$, hence $x_{n} \in \mathbb{X}_{0}$ for ench $\mathrm{n}_{\text {. Also, }}$ if x and y are two numbers such that $x \in M_{0}, J \in H_{0} ; X=\left\{a^{n}\right\}, y=\left\{\beta^{n}\right\}$, then given any $\in>0$, and given a fixed integer k, there exists an integer L such that if $\alpha^{n}=\beta^{n}$ for $n \leqslant L, \rho\left(x_{k}, y_{k}\right)<\epsilon$. This gives rise to a $\delta>0$ such that if $\rho(x, z)<\delta$, and $z=\left\{r^{n}\right\}$, then $a^{n}=r^{n}$ for $n \leqslant L_{\text {. }}$ Hence we have shown that for any fixed integer k,
x_{K} a continuous function of $x_{\text {. }}$
Let $R_{1}, R_{2}, R_{3}, \cdots$ be a countable open base of the real number line P^{\prime}. Then if $x_{0} \in$ Tho $^{\prime}$ and $x_{0}=\left\{a^{n}\right\}$, let $H_{0}\left(x_{0}\right)=\sum_{n=1}^{\infty} R_{a^{n}}$. Thus Hol $\left.x_{0}\right)$ will be an open Linear sot. Then Let $H_{0}\left(x_{0}\right)=E_{p}\left[p=\left(x_{0} ; y\right), y \in H_{0}\left(x_{0}\right)\right]$, and

$$
M_{0}=\sum_{x \in N_{0}} M_{0}(x)=x_{0}[p=(x, y), y \in H o(x)]
$$

for $x \in \mathbb{H}_{0}$.
No 18 an open set in $g_{\text {g }}$ for if $p \in \mathcal{M}_{0,}$ then there exista an x_{0} such that $p \in M_{0}\left(x_{0}\right)$, and $p=\left(x_{0}, Y_{0}\right)$, where $\mathcal{J o}_{0} \in \mathrm{H}_{\mathrm{o}}\left(\mathrm{x}_{0}\right)$. Thus. for gome $a^{k}, J_{0} \in \mathrm{R}_{a^{k}}$. There exigts a nelghborhood of Jo such that if 9 is a point in this neighborhood intergected with the apace S, then $q=\left(x_{1}, y_{i}\right)$. where if $x_{1}=\left\{\beta^{n}\right\}, x_{0}=\left\{\alpha^{n}\right\}$ by continued fractions, then
 set $\mathrm{M}_{\mathbf{o}}$ 。

Mo is asot universal to all open linear sete; that is, we can obtain any open linear set, and only such a set, by intereceting Mo with a vertical Ine $L(x), x \in \mathbb{A}$ o. For if Q is given 1 inear set, then $Q=\sum_{\pi=1}^{\infty} n_{n_{k}}$ where $R_{n_{k}}$ is a set of the countable open base of F^{\prime} previously selected. Let $x=\alpha^{\prime} a^{2} \alpha^{3} \ldots$, where $a^{k}=n_{\infty}$ for ench k_{s} and $x 1 s$ defined by continued fractions. Then $H_{0}(x)=$
 and $M_{0}(x)$ 1s identieal to $H_{o}(x)$ exeept for position. Thus we may obtain any given open IInear met by intersecting Mo
with some vertical line of S. On the other hand, the intersection of M_{0} and any line $L(x), x \in \mathbb{N}_{0}$, gives a set Mof x) which is by definition the sum of a countable collection of open linear sets, and is therefore an open Iinear set itself.

If $x_{0}{ }^{\circ} H_{0}$, then we have hown that x_{0} determines a sequence $\left\{x_{n}\right\}$ of numbers such that $x_{n} \in$ Mo for fach $n_{\text {. }}$ For this given x_{0}, let $H_{1}\left(x_{0}\right)=\prod_{n=1}^{0} H_{o}\left(x_{n}\right)$, let

$$
\begin{aligned}
& M_{1}\left(x_{0}\right)=E_{-}\left[p=\left(x_{0}, y\right), y \in H_{1}\left(x_{0}\right)\right], \text { and } \\
& M_{1}=\sum_{x \in N_{0}} M_{1}(x)=E_{0}\left[p=(x, y), y \in H_{1}(x)\right], x \in M_{0} .
\end{aligned}
$$

The set M_{1} as defined above is a set universal to all linear sets $G_{1}\left(G_{\delta}\right)$; for let Q be any linear a_{δ}, then $Q=\prod_{n=1}^{\infty} Q_{n}$, where for each $n_{,} Q_{n}$ is on open linear set. For each n, there exists an X_{n} auch that $Q_{n}=H_{0}\left(x_{n}\right)$, where $x_{n}=\alpha_{n}^{n}, \alpha_{n}^{2}, \ldots, \alpha_{n}^{k}, \ldots$ by continued fractions. Define x as follows: $x=\alpha_{1}^{1}, \alpha_{2}^{1}, \alpha_{1}^{2}, \alpha_{3}^{1}, \ldots, \alpha_{n}^{m}, \ldots$ $=a^{1} \cdot \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots, \alpha^{k}, \ldots$
where in general, $\alpha^{\kappa}=\alpha_{n}^{m}$ where $k=2^{n-1}(2 m-1)$. We then have $H_{1}(x)=\prod_{n=1}^{\infty} H_{0}\left(x_{n}\right)=\prod_{n=1}^{0} Q_{n}=Q_{\text {. }}$

It can be shown directly that the intersection of $M_{\text {, }}$ and a line $L(x), x \in M_{0}$ is a linear set O_{1}; however it would be sufficient to show that H, is a set $G_{1}\left(G_{5}\right)$ itself since the line $L(x)$, being a closed set, is a set $G_{1}\left(G_{\delta}\right)$. The fact that the set M_{1} is a set O_{1} will be shown later. In general, we shall define by transfinite

Induction the sets $H_{o}(x)=\sum_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}\right)$ for $\alpha<\Omega, \alpha$ is even and not a limit ordinal. If $\alpha<\Omega, \alpha$ is odd, $H_{\alpha}(x)=$ $\prod_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}\right)$, and if $\alpha<\Omega, \alpha$ is a limit ordinal, then $H_{\alpha}(x)=\sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}\right)$, where $\left\{\lambda_{n}\right\}$ is a sequence of ordinale such that $\lambda_{n}<\alpha$ for each n, and $\alpha=\lim _{n \rightarrow \infty} \lambda_{n}$. In each ease,

$$
\begin{aligned}
& M_{\alpha}\left(x_{0}\right)=E_{p}\left[p=\left(x_{0}, y\right), y \in H_{\alpha}\left(x_{0}\right)\right], \\
& M_{\alpha}=E_{p}\left[p=(x, y), y \in H_{\alpha}(x)\right],
\end{aligned}
$$

where $x_{0} \in H_{0}, x \in H_{0}$
Set: Mo are unirersal to the Innear sets $G_{a p}$ $0<\alpha<\Omega$, for if Q is any inear $a_{\text {a }}$ then Q will be shown to be the intersection of a rertical ine $L(x), x \in H_{0}$, with H_{x}, that 1s, Q will be a set $H_{o}(x)$. For suppose that α is even and not a limit ordinal, and assume that the set Mo is universal to all Iinear sets $G_{\beta} \beta<\alpha_{0}$, then $Q=\sum_{n=1}^{\infty} Q_{n}$. where for each $n_{,} Q_{n}$ is aet $Q_{\beta_{n}} \beta_{n}\left\langle\alpha_{\text {. Each set }} Q_{n}\right.$ is then aet $a_{\alpha-1}$, and $Q_{n}=K_{\alpha-1} \cdot L\left(x_{n}\right)=H_{\alpha-1}\left(x_{n}\right)$ for each $n_{\text {. }}$ Low define x as follows:

$$
\begin{aligned}
x & =\alpha_{1}^{1}, \alpha_{2}^{1}, \alpha_{1}^{2}, \alpha_{3}^{1}, \cdots, \alpha_{n}^{m}, \ldots \\
& =\alpha_{1}^{1}, \alpha^{2}, \alpha^{3}, \alpha^{4}, \ldots, \alpha^{n}, \ldots
\end{aligned}
$$

where for each $n_{1} x_{n}=\alpha_{n}^{1}, \alpha_{n}^{2}, \alpha_{n}^{3}, \ldots, \alpha_{n}^{j}, \ldots$, and in general, $\alpha^{n}=\alpha_{n}^{m}$ where $k=2^{n-1}(2-m-1)$. We then have

$$
H_{\alpha}(x)=\sum_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}\right)=\sum_{n=1}^{\infty} Q_{n}=Q_{0}
$$

Suppose that a is even, $\alpha<\Omega$, and a is a limit ordinal. Let Q be aet G_{α}. Then $Q=\sum_{n=1}^{\infty} Q_{n}$, where for each $n_{1} Q_{n}$ 1s aset $\mathcal{C}_{\rho_{n}}, P_{n}<\alpha$. There exists a sequence $\left\{\lambda_{n}\right\}$.
$\lambda_{n}<\alpha$ for each n, such that $\lim _{n \rightarrow \infty} \lambda_{n}=\alpha$. For each set Q_{n}, which is a set $a_{p_{n}}$ there exists a $\lambda_{r_{n}}$ such that $\lambda_{k_{n}} \geqslant \beta_{n}$. and $\lambda_{\kappa_{n}}>\lambda_{\kappa_{n-1}}$. Thus Q_{n} is a set $G_{\lambda_{\kappa_{n}}}$. By our induction assumption, there exists a number $x_{k_{n}}, x_{\kappa_{n}} \in \mathbb{N}_{0}$ such that $H_{\lambda_{\kappa_{n}}}\left(x_{\kappa_{n}}\right)=Q_{n}$ for each $n_{\text {. }}$. Where $\lambda_{i} \neq \lambda_{\kappa_{n}}$ for any n_{i} let $H_{\lambda_{i}}\left(x_{i}\right)=0$, the empty aet. Thus we have the following: $H_{\alpha}(x)=\sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}\right)=\sum_{n=1}^{\infty} H_{\lambda_{\alpha_{n}}}\left(x_{\kappa_{n}}\right)=\sum_{n=1}^{\infty} Q_{n}=Q_{\text {. }}$ If α is ode, $\alpha<\Omega$, the proof follows in a manner similar to the case where α is even and not a limit ordinal. Since ane $L(x), x \in M_{0}$, is aet $G_{\infty} \alpha \geqslant 1$, the intersection of this line and aet M_{α} will be a linear get G_{α} if M is itself a set G_{c}. That each set M_{α} is a aet a_{o} relative to s will be shown next.

It has been shown that M_{0} is a set G_{0} (open) relative to $S_{\text {, }}$ and that for each $x \in H_{0}$, and for each fixed n, x_{n} is a continuous function of x.

We shall define F_{n} to be mapping of S such that $F_{n}(p)=F_{n}(x, y)=\left(x_{n}, y\right)$, and therefore F_{n} is a continuous mapping of vertical lines into vertical lines. The mapping will be an onto mapping, for if $q=(x, y)$, where a is an element of K_{0}, then $\mathrm{z}=\alpha_{1}^{\prime}, \alpha^{2}, \ldots, \alpha^{\alpha}, \ldots$ by continued fractions. Let $x=\alpha_{i}^{i}, \alpha_{2}^{\prime}, \alpha_{1}^{2}, \ldots, \alpha_{n}^{m}, \ldots$ where for some fixed $k, \alpha_{k}^{m}=\alpha_{0}^{m}$. Thus $x \in M_{0}$, and $x_{k}=\alpha_{k}^{\prime}, \alpha_{k}^{2}, \cdots, \alpha_{k}^{m}, \cdots$, that is. $x_{k}=x$. Hence $F_{n}(x, y)=\left(x_{n}, y\right)=(x, y)$.

Given an ordinal $\alpha<\Omega$, suppose that if $\beta<\alpha$, then

Mo is a set Ge in 3. Suppose that α is odd. Then we have the following identities:

$$
\begin{aligned}
\mathbf{M}_{\infty} & =E_{p}\left[p=(x, y), y \in H_{a}(x)\right] \\
& =E_{p}\left[p=(x, y), y \in \prod_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}\right)\right] \\
& =\prod_{n=1}^{\infty} E_{p}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}\right)\right] .
\end{aligned}
$$

To establish the last identity, suppose that $p_{0} \in E_{p}\left[p=\left(x_{1} y\right), y \in \prod_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}\right)\right]$. and $p_{0}=\left(x_{0}, Y_{0}\right)$. Then, where x_{0} gives rise to the sequence $\left\{x_{n}^{0}\right\}, y_{0} \in \prod_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}^{0}\right)$: thus $J_{0} \in B_{\alpha-1}\left(x_{n}^{0}\right)$ for each n. Thus

$$
p_{0} \in E_{p}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}^{0}\right)\right]
$$

for each n, which means

$$
P_{0} \in \prod_{n=1}^{\infty} E_{r}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}^{0}\right)\right]
$$

On the other hand, suppose that

$$
P_{0} \in \prod_{n=1}^{\infty} E_{p}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}\right)\right],
$$

which means that, for each n,

$$
P_{0} \in \mathbb{E}_{p}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}\right)\right] .
$$

so $J \in H_{\alpha-1}\left(x_{n}^{0}\right)$ for each $n_{\text {. Therefore }}$

$$
P_{0} \in E_{p}\left[p=(x, y), y \in \prod_{n=1}^{\infty} H_{\alpha-1}\left(x_{n}^{0}\right)\right],
$$

and the Identity is established.
But we then have $\mathbb{E}_{p}\left[p=(x, y), y \in H_{\alpha-1}\left(x_{n}\right)\right]=$ $F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right]\right)$. for if

$$
p_{0} \in E_{\rho}\left[p=(x, y), y \in H_{a-1}\left(x_{n}\right)\right] .
$$

where $p_{0}=\left(x_{0}, y_{0}\right), y_{0} \in H_{\alpha-1}\left(x_{n}^{0}\right)$, If $q_{0}=\left(x_{n}^{0}, y_{0}\right)$, then

$$
q_{0} \in E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right] \text {. }
$$

and $F_{n}\left(p_{0}\right)=F_{n}\left(x_{0}, Y_{0}\right)=\left(x_{n}^{0}, y_{0}\right)=q$. Thus $p_{0}=F_{n}^{-1}\left(q_{0}\right)$, so

$$
P_{0} \in F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right]\right)
$$

On the other hand, let

$$
P_{0} \in F_{n}^{-1}\left(E_{p}\left[P=(x, y), y \in H_{a-1}(x)\right]\right) \text {. }
$$

Then $\left(x_{n}^{0}, y_{0}\right)=F_{n}\left(p_{0}\right)=E_{p}[p=(x, y), y \in H \alpha-1(x)]$; thus $y_{0} \in H_{\alpha-1}\left(x_{n}^{0}\right)$, and $p_{0} \in \mathbb{E}_{p}\left[p=\left(x_{1} y\right), y \in H_{\alpha-1}\left(x_{n}\right)\right]$. The identity is established. Thus

$$
M_{\alpha}=\prod_{n=1}^{\infty} F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right]\right),
$$

where $\alpha<\Omega$, orodd.
If α is even, not a limit ordinal, then it can be showa in a similar manner that

$$
M_{\alpha}=\sum_{n=1}^{\infty} F_{n}^{-1}\left(E_{p}[p=(x, y), y \in H \alpha-1(x)]\right.
$$

If \propto is even, and α is a limit ordinal, then

$$
\begin{aligned}
u_{\alpha} & =E_{p}\left[p=(x, y), y \in H_{\alpha}(x)\right] \\
& =E_{p}\left[p=(x, y), y \in \sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}\right)\right] \\
& =\sum_{n=1}^{\infty} E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}\left(x_{n}\right)\right] .
\end{aligned}
$$

where $\left\{\lambda_{n}\right\}$ is a eequence of ordinale such that $\lim _{n \rightarrow \infty} \lambda_{n}=\alpha$. For suppose $p_{0} \in E_{p}\left[p=(x, y), y \in \sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}\right)\right], p_{0}=\left(x_{0}, y_{0}\right)$, and x_{0} gives rise to the sequence $\left\{x_{n}^{\circ}\right\}$. Then

$$
P_{0} \in E_{p}\left[p=(x, y), y \in \sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}^{0}\right)\right] .
$$

Thus for some $n, y \in H_{\lambda_{n}}\left(x_{n}^{0}\right)$, and so

$$
P_{0} \in \sum_{n=1}^{\infty} E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}\left(x_{n}\right)\right]
$$

If $p_{0} \in \sum_{n=1}^{\infty} E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}\left(x_{n}\right)\right]$, then for sone index $n, p_{0} \in E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}\left(x_{n}\right)\right]$. Hence

$$
p_{0} \in E_{p}\left[P=(x, y), y \in \sum_{n=1}^{\infty} H_{\lambda_{n}}\left(x_{n}\right)\right] .
$$

But $E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}\left(x_{n}\right)\right]=F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}(x)\right]\right.$,
-40-
for each $n_{\text {, as show previously. Thus }}$

$$
M_{\alpha}=\sum_{n=1}^{\infty} F_{n}\left(E_{p}\left[p=(x, y), Y \in H_{\lambda_{n}}(x)\right],\right.
$$

where α is a limit ordinal.
Thus we have shown that for each n, the function F_{n} mape the space S continuousiy onto S. Relative to the space $S, F_{n}^{-1}(Q)$, where Q is a set $G_{0}(o p e n)$, is a set G_{0}. [E, p. 27] Proceding by transfinite induction, suppose that $\alpha<\Omega$, and assume that $F_{n}^{\prime}(Q)$, where Q is a set G_{0}, $p<\alpha$, is a set G_{8} relative to the mpace S. Let T be a set G_{α} and suppose that α is odd. Then $T=\prod_{m=1}^{\infty} I_{m}$, where for each $m_{1} I_{m}$ is a set $G_{\rho_{m}} \mathcal{F}_{m}<\alpha$. Thus $F_{n}^{-1}(T)=F_{n}^{\prime}\left(\prod_{m=1}^{\infty} T_{m}\right)=$ $\prod_{m=1}^{\infty} P_{n}^{-1}\left(T_{m}\right)$, where each set $F_{n}^{-1}\left(T_{m}\right)$ is a set $G_{\beta_{m}}$ in S. Hence $F_{n}^{-1}(T)$ ia a set Q_{α} in S. If α is evan, then $T=\sum_{n=1}^{\infty} T_{m}$, where for each m, T_{m} is a set $G_{\rho_{m}} \beta_{m}<\alpha_{0}$. Then $F_{n}^{-1}(T)=F_{n}^{-1}\left(\sum_{m=1}^{\infty} T_{m}\right)=$ $\sum_{m=1}^{\infty} F_{n}^{-1}\left(T_{m}\right)$, where each set $F_{n}^{-1}\left(T_{m}\right)$ is a set $\sigma_{\rho_{m}}$ in S, $\theta_{m}<\alpha_{\text {. }}$ Hence $F_{n}^{-1}(T)$ is a set O_{α} in S.

By the identities that we have established, namely

$$
M_{\alpha}=\prod_{n=1}^{\infty} r_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right]\right)=\prod_{n=1}^{\infty} P_{n}^{-1}\left(M_{\alpha-1}\right) .
$$

where a is odd,

$$
\left.M_{\alpha}=\sum_{n=1}^{\infty} F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\alpha-1}(x)\right]\right)=\sum_{n=1}^{\infty}{F_{n}^{-1}}^{-1} M_{\alpha-1}\right) .
$$

where α is even, not a limit ordinal, and

$$
M_{\alpha}=\sum_{n=1}^{\infty} F_{n}^{-1}\left(E_{p}\left[p=(x, y), y \in H_{\lambda_{n}}(x)\right]\right)=\sum_{n=1}^{\infty} V_{n}^{-1}\left(M_{\lambda_{n}}\right)
$$

where \propto is a limit ordinal, we may conclude that each set M_{α} is a set C_{α} relative to the space S. Since the space S is a set Q_{1} in the plane, and hence atet $a_{\alpha} \alpha \geqslant 1$, each aet M_{α}

1s a set 0_{α} in the plane for $\alpha \geqslant 1$, by theorem 4:3. As has been proviously stated, any line $L(x)$, $x \in R_{0}$, is a set $G_{\alpha,} \alpha \geqslant 1$. Thus the intersection of such a Iine and a set $M_{o r}$ is ast G_{α}. The sets universal to all inear sets $G_{\infty}, 0 \leqslant \alpha<\Omega$, are defined.
3) Sets $E_{0}\left(G_{0}\right)$ Not Sets $P_{p}\left(G_{p}\right)$ for p<as. Theorem 4:5: If R is any family of all linear and plane sets possessing the following properties, (A) the intersection of a plane set of ㄹ with a ilne is a set of B , and (B) any linear set of R projected onto the y-axis is get of g , then if D is the set of all points on a line $Y=x$, and U is a set of R in the plane universal to all linear sots of B which are subsets of the y-axis. then D. U \in R, and ($D-U) \in R$.

Proof: 1) D.UER from our hypothesis.
2) Deny our conclusion supposing that (D-U) \in R. The projection K of $D-\mathbb{O}$ on the y-axis is a set of A by property (B) of the hypothesis. Since D is a set universal to all innear sets of R, there exists a real number a such that the intersection of $x=\alpha$ and U gives a set E whose projection on the y-axis is H. Let Q be the projection of D.U on the y-axis. Thus H is the complement of θ relative to the y-axis. Suppose that $p=(\alpha, \alpha)$. Either $p \in(D \cdot U)$, or $p \in(D-U)$. If $p \in D \cdot U$, then $\alpha \in Q, \alpha \notin H$.
-42-

Hence $p \not \subset E$. But E contains all points in which $x=a$ meets the set U, hence $p \notin U$, which gives a contradiction. On the other hand, if we suppose that $p \in(D-U)$, then $\alpha \in H$, so $(\alpha, \alpha) \in E$. But $E \subset U$, hence $p \in U$, which is again a contrediction. The theorem is established.

The class of plane aets $G_{\alpha,}, \alpha \geqslant 1$, satisfies the conditions for the family A of the above theorem. The intersection of a set G_{α} and a line (a set G_{1}) is again a set $G_{\alpha}, \propto \geqslant 1$, thus atiafying condition (A). As for condition (B), that the projection of a linear G_{α} onto the y-axis is a set $G_{\alpha,}$ two cases are to be considered. If the linear set G_{α} is perpendicular to the y-axis, then its projection is merely a point. But point, as a closed set, is a set G_{1}, and hence a set $G_{\alpha}, \alpha \geqslant 1$. If the inear set G_{α} is not perpendicular to the j-axis, then its projection is merely a homeomorphic image, and thua is a set $G_{\alpha}, \alpha \geqslant 1$.

Since sets universal to all linear sets a $0 \leqslant \infty<\Omega$, have been defined, and since the class of plane sets G_{α} satisfies the conditions for the family R, it can be concluded that there exists sets G_{α} which are not sets Fof for each $\alpha \geqslant 1$. This in turn implies that there exists sets F_{α} which are not sets $F_{\rho}, \beta<\alpha$, and sets G_{α} which are not sets $a_{\beta,} \beta<\alpha$, for each ordinal $\alpha, 0<\alpha<\Omega$.

CHAPTER V

ANALYTIC SETS

Suppose that we have a given space M, and a Pamily of sets F contained in this space. For every finite sequence of positive integers $n_{1}, n_{2}, n_{3}, \cdots, n_{K}$ suppose that we have a set of the family assigned, and denote
 system of sets which we shall designate by $\left[E_{n_{1}}, n_{2}, \ldots, n_{k}\right]$.

If aet $E=\sum_{\left\{n_{k}\right\}} E_{n_{1}} \cdot E_{n_{1}, n_{2}} E_{n_{1}, n_{2}, n_{3}} \cdots$. where the sumation exteads over all possible infinite sequences of positive integers $\left\{\mathrm{n}_{\mathrm{k}}\right\}_{\text {, }}$ then we say that E is the nucleus of the defining system $\left[E_{n_{1}}, n_{2}, \ldots, n_{k}\right]$ of sets of the family F. Also we say that E is the result of operation A on the given family of sets F. or that E is analytic relative to the family F , The class of sets analytic relative to a family of sets F will be designated as $A(P)$.

For economy of notation, a finite sequence of integers $n_{1}, n_{a,} \ldots, n_{k}$ will be designated as $n_{(k)}$ The nucleus E of a defining system $\left[\mathrm{F}_{n(k)}\right]$ will then be designated as $E=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{0} E_{n_{(k)}}$, where the summation extends over all possible infinite sequences $\left\{n_{k}\right\}$. Any set E of the family of sets F is included in -43-
the family of seta $A(F)$, for if the set E itself is assigned to each finite sequence of positive integers $n_{(k)}$, that is, $E_{n(x)}=E$, then the condition is satiafied. Several of the fundamental the orems concerning analytic sets will now be shown.

Theorem 5:1 : The sum of a countable number of sets of the fanily of sets F is analytic relative to the family I. (3(F)CA(F))
Proor: Suppose $H=\sum_{n=1}^{\infty} H_{n}$, where for each $n_{i} H_{n} \in F$. For each finite sequence of indices $n_{(k)}$, let $H_{n_{1}}=E_{n_{(0)}}$, for $k=1,2,3, \cdots$. Thus $H_{n}=\prod_{k=1}^{\infty} E_{n(k)}$ for all possible sequences of integers $\left\{n_{k}\right\}$ where $n_{1}=m_{\text {. }}$ The set A is then analytic since $H=\sum_{n=1}^{\infty} H_{n}=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{\infty}}$.
Thoorem 5:2 : The intersection of a countable number of
sets of the family of sets F is analutic relative to the family $E \quad(P(F) \subset A(F))$
Proof: Suppose $H=\prod_{k=1}^{P} H_{k}$, where for each $k, H_{k} \in F$. Let $H_{k}=E_{n(k)}$ for $k=1,2,3, \ldots$, and for every infinite sequence of positive integers $\left\{n_{k}\right\}$. $K=\prod_{k=1}^{\infty} H_{k}=\prod_{k=1}^{e} E_{n_{(k)}}$ for
 Theorem 5:3: If each set $\mathrm{g}^{\text {r }(s)}$ is analrtic relative to the family of sets F, then the nucleus of the defining gysten $\left[\mathrm{E}^{r}(\mathrm{~s})\right]$ is also analytic relative to the fanily of sets F . $[A(A(P)) \subset A(F)]$
Proof: A (1,1) correspondence may be established
between the sequence of all positive integers $\{x\}$ and a sequence of all pairs of positive integers $\left\{p_{k}, q_{k}\right\}$ by letting k correspond to the pair of integera (p_{k}, q_{k}), where the equation $k=2^{P_{k}-1}\left(2 q_{k}-1\right)$ is satisfied. Now let $p_{K}=\phi(k)$ and $q_{k}=\psi(k)$, and for every pair of integers (p, q), let $V(p, q)=2^{p-1}(2 q-1)$. Then the following relationships are valid:

$$
\begin{aligned}
& v(\phi(k), \psi(k))=k, \text { for each } k, \\
& \psi(k) \leqslant k, \text { for each } k, \\
& \gamma(n, \psi(k)) \leq k, \text { for each } k, n=1,2, \cdots, \varphi(k), \\
& \phi(r(p, q))=p, \varphi(r(p, q))=q, \text { for each } p, \text { and }
\end{aligned}
$$

for each 9 .
Each set $E^{r}(s)$ is analytic relative to the family of sets F, so for each combination of positive integers r, $\mathrm{E}^{r(s)}=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} \mathrm{E}_{n_{(k)}}^{r(s)}$, where $\left[E_{n_{(k)}}^{r(s)}\right]$ is a defining system of sets of the family of sets F, and where the summation is extended over ell infinite sequences of positive integers $\left\{n_{k}\right\}$. Define $E_{n_{(k)}}$ to be aet of the family F such that

$$
\begin{aligned}
E_{n_{(k)}}=E \phi\left(n_{1}\right), \phi\left(n_{2}\right), \cdots, \phi\left(n_{\psi(k)}\right) \\
\psi\left(n_{v}(1, \psi(k))\right), \psi\left(n_{v}(a, \psi(k))\right), \ldots, \psi\left(\eta_{(\phi(n), \psi(k)))}\right)
\end{aligned}
$$

It must be shown that $\sum_{\{r s\}} \prod_{s=1}^{\infty} \mathrm{E}^{r(s)}=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{0} \mathbf{E}_{n_{(}(k)}$. Let $x \in \sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} \mathrm{E}_{n_{(K)}}$. There exists an infinite sequence $\left\{n_{K}\right\}$ such that $x \in \prod_{k=1}^{\infty} \mathrm{E}_{\mathrm{n}(k)}$. Let $\mathrm{r}_{s}=\boldsymbol{\mu}\left(n_{s}\right)$ for $=1,2,3, \cdots$ for a fixed integer s. let $j_{h}=\boldsymbol{\psi}\left(n_{r}(h, s)\right.$ for each h. Then we
 $x \in \prod_{n=1}^{\infty} \mathbf{E}_{j_{(h)}}^{r(s)} \subset \sum_{\left\{\left\{_{n}\right\}\right.} \prod_{h=1}^{\infty} \mathbf{z}_{j(h)}^{r(s)}$, for each fixed s, which means that

$$
-46
$$

$x \in \mathbb{E}^{r}(s)$ for each . Therefore $x \in \sum_{\{; s\}} \prod_{s=1} E^{r}(s)$. On the other hand, suppose that $x \in \sum_{[\{s]} \prod_{s=1} g^{r_{(s)}}$. Then there exists an infinite sequence of positive integere [$\left.r_{s}\right\}$. auch that $x \in \prod_{s=1}^{\infty} \Sigma^{r}(s)$. By the charactor of the sots E(s), there exists an infinite sequence of indices $\left\{\mathrm{m}_{\mathrm{K}}\right\}$ for each such that $x \in \mathbb{F}_{m_{\text {ps }}^{s}}^{r(s)}$ for $=1,2,3, \cdots$, and each $k=1,2,3, \ldots$, where each set $E_{m_{(N)}^{\prime}}^{r}(s)$ is of the family of sets. F .
 This means $\phi\left(n_{h}\right)=x_{h}$, and $\psi\left(n_{h}\right)=(\psi(h))$ for each integer $h_{\text {. }}$ Alse $h=V(i, \Psi(k))$ impliee $\Psi\left(n_{V(i, \psi(k))}\right)=i_{i}^{(\psi(k))}$ for $1=2,2,3, \cdots, k=2,2,3, \ldots$.

Since we have

$$
\mathbf{E}_{n_{(k)}}=E_{\phi\left(n_{1}\right) ; \phi\left(n_{2}\right), \ldots, \phi\left(n_{\psi(k)}\right)}^{\psi\left(n_{r}(1, \psi(\kappa)), \psi\left(n_{r}(a, \psi(k))\right), \ldots, \psi\left(n_{r}(\phi(k), \psi(k))\right)\right.}
$$

we get $E_{n_{(N)}}=E r_{1}, r_{2}, \ldots, r_{\Psi(k)}$

$$
m_{1}^{\psi(k)}, m_{2}^{\psi_{2}(k)}, \ldots, m_{\phi(k)}^{\psi(N)}
$$

by substitution. Thus $x \in \prod_{k=1}^{\infty} \mathbf{E}_{n_{(k)}} \subset \sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{(k)}}$. Hence the systems $\left[E_{n_{(k)}}\right]$ and $\left[E^{r}(s)\right]$ have the same nucleus. Since each set $E_{m_{(k)}}$ is a aet of the ramily of sets F, the nucleus of the aystem $\left[F^{r}(s)\right]$ is analytic relative to the family F. This theorem may be expressed as $A(A(F)) \subset A(F)$. Since the inclusion in the other way ie apparent, we can conclude that $A(A(F))=A(F)$. With this fact, and with the aid of theorem $5: 1$ and theorem 5:2, we conclude that the sum of a counteble collection of sets analytic relative to a

$$
-47-
$$

family of sets P is analytic relative to the family of sets F since $s(A(F)) \subset A(A(F)) \subset A(F)$. Since $P(A(F)) \subset A(A(F)) \subset$ $A(F)$. the intersection of countable collection of sets analytic relative to a family of sets i is analytic to the family of sets F.

Theoren 5: : The family of sets A(F) is topologicaliy
invariant if the family of sots f is itself
topologically invariant, and if the intersection
of a set of the family F with a set Gs is a get of the family E.
Proof: Let $H=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{0} E_{n_{(\alpha)}}$, where each set $E_{n_{(\infty}}$ is of the family F. Let T be the homeomorphic inage of H by a function f. By Lavrentieff's theorem, [8, p. 126], there exists sets M and m such that $H C M, T C M, M$ and M are sets G_{δ} and M Is homeomorphic to $\mathrm{M} \cdot$ by a function ϕ_{0}, where $p(p)=f(p)$ if $p \in H$.

Let $I_{n_{(K)}}=\mathrm{N}-\mathrm{I}_{n_{(M)}}$, which by our hypothesis is a set of the family of seta F. Thus $H=M \cdot \sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{k S}}=\sum_{\left[n_{k}\right\}} \prod_{k=1}^{\infty} M \cdot \mathbb{E}_{n_{00}}$ Hence $H=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} \mathbf{I}_{\mathrm{ncos}}$. Then

$$
x=\phi(\xi)=\phi\left(\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} x_{n_{(k)}}\right)=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} \phi\left(I_{n_{\infty}}\right) .
$$

But each eet $f\left(\mathbf{I}_{n_{(k)}}\right)$ belongs to the family of sets F, so T is a met of the farily $A(F)$, and the proof is complete.

In the discussion of analytic sets thus far, the sets of the family F have not been specifically defined. Throughout the remainder of thie discussion, however, the
fanily of sets F will be considered to be the class of all closed sets (C). The general resulte already established will be true for the class of analytie sets relative to the class of closed sets, and in particular theorem 5:4 will be valid.

It can be concluded that every Borel set is an analytic set since the class of sets $A(C)$ satisfy the following conditions:

1) Eivery closed set is a set $A(C)$
2) $s(A(c)) \subset A(c)$
3) $P(A(C)) \subset A(c)$

It is evident from the definition of the analytic sets that the property of being an analytic set will be dependent on the space in which the set is contained. Relative to this fact, we have the following theorems: Theorem 5:5. If S is a subset of a given space x, then a set E is an analutic set in the space S if and only if I is the intersection of S and an analytic set of the space M.
Proof: Suppose that $E=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{(k)}}$ where for each integer $k, E_{n_{(0)}}$ is a closed set in S. Then $E_{n_{0}}=H_{n_{0,}} S_{\text {, }}$ where for each $k, H_{n_{(k)}}$ is closed in M. [6, p. 50] Thus
 $\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{1} H_{n_{(K)}}$ is on analytic get in $M_{\text {. }}$ On the other hand, if E is an analytic set in M,
then $E=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{0} E_{n(k)}$, where for each $k, E_{n(k)}$ is closed in M. The set $S \cdot g=S \cdot \sum_{\left\{n_{k}\right\}} \prod_{k=1} I_{n_{(k)}}=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{?} S \cdot E_{n_{(k)}}$, where for each k, S.E $n_{(k)}$ is closed in S. S-E is therefore analytic in S. From this theoren we conclude the following:
Theorem 5:6: If S is a subset of a given space M, and if S is an analytic set in the space M, then a set ECS in an analytic sot in S if and only if it in an analytic set in the space M.
Definition: A defining system $\left[E_{n_{(k)}}\right]$ is regular if the closed sot: $\mathrm{E}_{\mathrm{m}(\mathrm{n}}$ satisfy the following conditions for $k=1,2,3, \ldots$

$$
\begin{aligned}
& \delta\left(E_{n(k)}\right)<\frac{1}{k} \\
& \mathbf{E}_{n_{(K+1)}} \subset E_{n_{(K)}} \\
& \mathbf{E}_{n_{(K)}} \neq 0
\end{aligned}
$$

Theorem 5:7: If I is 量 non-empty analytic get in complete separable space M, then $\mathbb{E}=\sum_{\sum_{n+3}} \prod_{k=1}^{\infty} \mathbf{Z}_{\text {nocin }}$ where [Inow] is a regniar defining syatem.
Proof: Given that F is an analytic set in the space M, then $E=\sum_{\left\{\eta_{k j}\right\}} \prod_{k=1}^{T} F_{n(x)}$, where each set $F_{n(k)}$ is a closed set in the space M. Since M is a separable space, (see introduction), and K is a metric space, M possesses the Lindelof property. Thus $M=\sum \sum_{n}^{(k)} k=1,2,3, \ldots$, where for each $n, N_{n}^{(K)}$ is an open set such that $\delta\left(N_{n}^{(k)}\right)<\frac{1}{k}$. [7, p. 126] Let $M_{n}^{(K)}=\overline{M_{n}^{(N)}}$, then $X \subset \sum_{n=1}^{\infty} M_{n}^{(\alpha)}, k=1,2,3, \cdots$. where for each $n, M_{n}^{(\kappa)}$ is closed, and $\delta\left(M_{n}^{(\kappa)}\right)<\frac{1}{K}$, [6, p. 27]

Let $\mathrm{E}_{n_{1}}=M_{n_{1}}^{(2)}$ for $n_{1}=2,2,3, \ldots$, and let $E_{n_{1}, n_{2}}=E_{n_{1}}$ for all n_{1} and n_{2}. Thus $E_{n_{1}}$ and $E_{n_{1}, n_{2}}$ are closed, and $\delta\left(E_{n_{1}}\right)=\delta\left(E_{n_{1}, n_{2}}\right)<\frac{1}{2}$. For $k>l_{\text {, }}$ let $\mathbf{g}_{n_{1}, n_{2}}, \ldots, n_{2 k-1}=E_{n_{1}, n_{2}}, \ldots, n_{2 k}=F_{n_{2}, n_{1}, \ldots, n_{2 k-2}} M_{n_{2 k-1}}^{(\partial k)}$, for each finite sequence of $2 k$ positive integers, denoted as $n_{1}, n_{2}, n_{3}, \ldots, n_{2 k}$. The sets $E_{n_{(x)}}$ are closed, and $\delta\left(E_{n_{1}, n_{2}}, \ldots, n_{2 k-1}\right)=\delta\left(E_{n_{1}, n_{2}}, \ldots, n_{2 k}\right) \leqslant \delta\left(n_{n_{2 k-1}}^{(2 k)}\right)<\frac{1}{2 k}$, for each k. It will now be shown that $E=\sum_{\left.n_{k}\right\}} \prod_{k=1}^{o} E_{n(k)}$. If $x \in \mathbb{H}=\sum_{\left\{n_{k}\right\}} \prod_{n=1}^{\infty} F_{n_{0}}$, there exists an infinite sequence of indices $\left\{m_{k}\right\}$ such that $x \in \prod_{k=1}^{0} T_{m_{(N)}}$. Since $x \in M_{n} x \in \sum_{n=1}^{\infty} M_{n}^{(N)}$, for $k=1,2,3, \cdots$ There exists an integer i_{k} such that $x \in \prod_{k=1}^{f} M_{i_{k}}^{(0, N}$. Let $n_{1}, n_{2}, n_{3}, \cdots$ be the torms of the sequence $1_{1}, m_{1}, 1_{2}, m_{2}, \cdots$. Then for each integer k, $x \in Y_{m_{1}, m_{2}, \ldots, m_{k-1}}, k>1_{\text {, so }} x \in F_{n_{2}, n_{4}, \ldots, n_{2 k-2}}$ Also $x \in M_{i_{k-1}}^{(2 k)}$, so $x \in M_{n=1}^{(2 k)}$. Therefore, for each integer k, $x \in E_{n_{1}, n_{2}, \ldots, m_{2 \kappa-1}}=E_{n_{1}, n_{2}, \ldots, n_{2 k}}$ and $x \in \sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{(k)}}$. On the other hand, if $x \in \sum_{\left\{n_{k j}\right\}} \prod_{k=1}^{0} E_{n_{(k)}}$, then there exists an infinite sequence of indices $\left\{n_{\mu}\right\}$ auch that $x \in \prod_{k=1}^{\prod_{k}} \mathrm{E}_{n_{k}}$. Thus $x \in F_{n_{2}, n_{42}} \cdots, n_{2 k-2}$, so $x \in F_{m_{1}, m_{22}} \ldots, m_{k-1}$, for $\mathrm{k}>1$. Thua $x \in \prod_{k=1} F_{m_{N}} \subset E$, and the identity is established.

Let $\mathrm{I}_{r_{(x)}}=\prod_{i=1}^{-\quad} \mathrm{E}_{n_{(i)}}$. Each set $\mathrm{X}_{n(k)}$ will be closed, and $\delta\left(X_{n_{m-}}\right) \leqslant \delta\left(E_{m_{\rho 0}}\right)<\frac{1}{k}$. Also $X_{n_{(k+1)}} \subset X_{n_{(k)}}$ by the propertiea of intersections of sets. The identity $E=\sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} X_{n_{(N)}}$ will now be eatablished.

If $x \in \sum_{[n \in\}} \prod_{k=1}^{0} X_{n(x)}$, then since $X_{n_{(0)}} \subset E_{n_{(k)}}$ for each integer $k_{\text {, }}$ and for each infinite sequence of indices $\left\{n_{k}\right\}$, $x \in \sum_{\left\{n_{k j}\right\}} \prod_{k=1} E_{n_{(N)}}=B_{\text {. }}$ If $x \in E$, then there existg an infinite sequence of indices $\left\{n_{k}\right\}$ such that $x \in \prod_{k=1} \mathrm{E}_{n_{(k)}}$ * Thus $x \in \prod_{k=1}^{\infty} \prod_{i=1}^{k} z_{\left.n_{(}\right)}$, hence $x \in \prod_{k=1}^{\infty} X_{n_{(k)}} \subset \sum_{\left\{n_{k j}\right.} \prod_{k=1}^{\infty} X_{n_{(k)}}$.

The set E is the nucleus of the dafining systen [$X_{n_{(x)}}$] which has all of the properties of a regular system except the assurance that each set is non-empty. Let $I^{r_{(s)}}=\sum X_{r_{(s)}, n_{1}} \cdot I_{r_{(s)}, n_{1}, n_{2}} \cdot I_{r_{(s)}, n_{1}, n_{2}, n_{3}} \cdot \cdots$ for each infinite sequence of indices $\left\{n_{k}\right\}$. If the set $X^{\gamma}(s)$ is not empty, let $\left\{x_{r_{(s)}}\right\}$ be one of its elements. since $X_{n_{(k+1)}} \subset X_{n_{(\alpha)}}$, $x^{r(s)} \subset \sum_{\{s\}} \prod_{s=1}^{0} x_{r_{(s)}} s \in x_{r_{(s)}} \in$ F. There will be at least one element $\left\{x_{0}\right\}$ of E since E is not empty. The sets $X_{Y(s)}$ are defined as follows:

$$
\begin{aligned}
& x_{r_{(s)}}=x_{r_{(s)}} \text { if } x^{r(s)} \neq 0, \\
& \bar{x}_{r_{(s)}}=\left\{x_{0}\right\} \text { if } x^{r(s)}=0, x^{r(u)}=0, \\
& x_{r(s)}=\left\{x_{r_{(s)}}\right\} \text { if } x^{r(s)}=0, x^{r(0)} \neq 0, \text { and where }
\end{aligned}
$$

$q+1$ is the smallest index such that $x^{r(q+1)}=0$, and where $\left\{x_{r_{(q)}}\right\} \in I^{r}(q)$.

The defining system $\left[Y_{n_{(k)}}\right]$ is regular. That the sets $I_{n(x)}$ are each closed follows from the fact that $I_{n(K)}=I_{n(K)}$ or else $Y_{n(K)}$ is a single point. Tha condition conceraing the diameters of the sets is satisfied since $\delta\left(I_{n_{(K)}}\right)=\delta\left(X_{\left.n_{k}\right)}\right)<\frac{1}{K}, ~ 411$ aets $I_{n_{N}}$ are non-eapty since by their definition they contain at least one point.

It remains to be shown that $I_{n_{(k+1)}} \subset I_{n_{(k)}}$ for each integer k. If $I^{n_{(k)}}$ and $X^{n_{(k+1}}$ are not empty, $I_{n_{(k+1)}} \subset I_{n_{(x)}}$ since $X_{n(x+1)} \subset X_{n(x)}$. If $X^{n(0)}=0$, then $X^{n(x)}=0$, and $X^{n(x+1)}=0$. Then $I_{n_{(\alpha+1)}}=\left\{x_{0}\right\}=I_{n(k)}$. If $X^{n_{u 1}} \neq 0$, and $X^{n(k)}=0$, then $\mathbf{x}^{n(\alpha+1)}=0$. Then $Y_{n_{(k+1)}}=Y_{n_{(k)}}=\left\{x_{n_{(\alpha)}}\right\}$. If $I^{n(\kappa)} \neq 0, X^{n(\kappa+1)}=0$, then $I_{n_{(\alpha+1)}}=\left\{x_{n_{(\alpha)}}\right\} \in X_{n_{(k)}}=Y_{n_{(k)}}$. Thua in all cases。 $X_{n_{(k+1)}} \subset X_{n_{(x)}}$, for each k.

Te complete the theorem, it must be established that $E=\sum_{\left\{n_{k j}\right\}} \prod_{k=1}^{0} I_{n(k)}$. If $p \in E$, then $p \in \sum_{\{=1 \times\}} \prod_{k=1}^{\infty} X_{n(k)}$. There exists an infinite sequence of indices $\left\{n_{k}\right\}$ such that $p \in \prod_{k=1}^{o} X_{n_{(\alpha)}}$. For $=1,2,3, \cdots$, and $j=1,2,3, \cdots$, let $m_{j}=n_{s+j}$. Let $r_{i}=n_{i}$ for $1 \leqslant s$. Then $p \in X^{r}(1) \cdot \mathbf{I}^{r}(2) \ldots$ for the given sequence, hence $p \in \sum_{\{5\}} \prod_{s=0}^{\infty} \sum^{\Gamma}(s)$. This means that $I_{n(k)}=I_{n(\alpha)}$ for each k, and $p \in \sum_{\left\{n_{k j}\right.} \prod_{k=1}^{\infty} I_{n_{(k)}}$ 。 If $p \in \sum_{\left[m_{k j}\right.} \prod_{k=1}^{\infty} I_{n_{(k)}}$, then there exists an infinite sequence of indices $\left\{n_{k}\right\}$ such that $p \in \prod_{n=1}^{0} Z_{n(x)}$. Several cases may arise. If $X^{n(x)} \neq 0$ for each k, then $p \in E$ directly. If $x^{n(x)}=0$ for each k, then $p=\left\{x_{0}\right\} \in E$. If $X^{n(x)}=0$ for all integers $k>q, I^{n(k)} \neq 0$ for $k \leq q$, then $x^{n(x)}=\left\{x_{n(q)}\right\}$ for $k>q$. Thus $p=\left\{x_{n_{(g)}}\right\}$. But $\left\{x_{n_{(2)}}\right\} \in X^{n}(\mathcal{)}$ which means that there exists an infinite sequence of indices $\left\{\mathrm{m}_{k}\right\}$ auch that $p \in X_{n_{(\gamma)}} \cdot X_{n_{(q)}, m_{1}} \cdot X_{n(q)}, m_{(z)}^{* *}$. Since $X_{n_{(x)}}$ is descending sequence of sets,

$$
p \in X_{n_{(1)}} \cdot X_{n_{(2)}}-I_{\left.n_{(3)}\right)} \cdots X_{n_{(q)}} \cdot I_{n_{(q)}, r_{(1)}} \cdots
$$

and so $p \in E$. The theorem is established.

An important application of theoram 5:7 is ita use in establishing condition for a set to be analytic, as is done in the following theorom.

Theoren 5:t : A necessary and sufficient condition for
a non-empty set E contained in a complete
separable spaco 4 to be analytic is that it be the continuous image of the set II of all Irrational numbers.

Proof: If E is a non-empty analytie set in a complete separable space $M_{\text {, }}$ then $E=\sum_{\left\{\eta_{k}\right\}} \prod_{k=1}^{\infty} E_{n_{(x)}}$, where [$E_{n(x)}$] is a regular defining system of closed sets. If $x \in H_{1}$, then $x=[x]+\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}+\cdots$, where $[x]$ is the largest positive integer leas than x_{y} and $n_{1}, n_{2}, n_{3}, \cdots$ is the infinite soquence of positive integers obtained from the continued fraction development of x. (See Chapter IV) Let $F(x)=\prod_{k=1}^{0!} E_{n(x)} \cdot F(x)$ will be a single point since the sets $\mathrm{E}_{\mathrm{n}(\mathrm{K})}$ form a descending sequence of non-empty closed sets whose diameters tend towards sero, and since the apace Mis complete. [7, p. 189] Let this point be called $f(x)$. Thus for each $x \in M, f(x)$ is aefined. Also, f is a mapping from onto H, for suppose that $q \in \mathbb{R}$, then there exists a sequence of indices $\left\{n_{k}\right\}$ such that $q \in \prod_{k=1}^{\infty} E_{n_{(K)}}$. Thus $q=\boldsymbol{f}(x)$ where $x=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}+\cdots$, that 1s, $x=\left\{n_{k}\right\}$ by continued fractions.

The function $f(x)$ is a continuous mapping of N
onte E. To show this, suppose that $x_{0}=\left\{n_{i}^{0}\right\}$ by continued fractions, and suppose a number $\epsilon>0$ is given. Then there exists a number $\delta>0$, and an integer k such that $\frac{1}{k}<\boldsymbol{E}$. and $\rho\left(x, x_{0}\right)<\delta$ impliea $n_{i}=n_{i}^{\circ}$ for $1 \leqslant k$, where $x=\left\{n_{k}\right\}$. Thus $f\left(x_{o}\right) \in E_{n_{(x)}}^{0}=E_{n_{(0)}}$, and $f(x)$ is contained in $E_{n_{(m)}}$ for this given integer k. Hence $\rho\left(f(x), f\left(x_{0}\right)\right) \leqslant \delta\left(E_{n_{(\infty)}}\right)<\frac{1}{k}<\epsilon$. The continuity of the function, as well as the necessary condition of the theorem, is established.

To show that the condition of the theorem is sufficient, let $f(x)$ be function defined and continuous on Which assumes values in a complete separable space M. Since the sum of a countable collection of analytic sets is again an analytic set, it will be sufficient to consider the function $f(x)$ oniy on the set H_{0}, the set of all irfational numbers $x, 0<x<1$. Let $f\left(\mathrm{M}_{0}\right)=\mathrm{E}$.

For each finite sequence of positive integers, $n_{1}, n_{2}, n_{3}, \ldots, n_{k}$, let $X_{n_{(x)}}$ be a set such that $x \in X_{n_{\infty}}$ If $x \in H_{0}$, and if $x=\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}+\ldots+\frac{1}{n_{k}}+\cdots$ by continued fractions. Let $E_{n_{(0)}}=\overline{f\left(X_{\left.n_{(K)}\right)}\right)}$. Thus $E_{n_{(K)}}$ will be a closed set. We shall now show that $E=\sum_{\left\{k_{k j}\right.} \prod_{x=1}^{0} E_{n_{(x)}}$.

Suppose qGE. There exists an $x \in N_{0}$ such that
$f(x)=$ q. But $x=\left\{n_{n}\right\}$ by continued fractions, hence $x \in X_{m_{(K)}}$
 $f(x) \in f\left(\prod_{k=1}^{\infty}\left(X_{n_{(k)}}\right)\right) \subset \prod_{k=1}^{\infty} f^{\infty}\left(X_{n_{(k)}}\right)=\prod_{k=1}^{\infty} \mathrm{E}_{n_{(k)}} \subset \sum_{\left\{n_{k}\right\}} \prod_{k=1}^{\infty} \mathrm{E}_{n_{(k)}}$.

Suppose $q \in \sum_{\left\{n_{k\}}\right.} \prod_{k=1}^{\infty} E_{n_{(k)}}$. Then there exists an
infinite sequence of indices $\left\{n_{k}^{0}\right\}$ such that $q \in \prod_{k=1}^{0} \mathrm{E}_{n_{00}}$. Let $x_{0}=\left\{n_{k}\right\}$ by continued fractions. Then $x_{0} \in M_{0}$. It will now be shown that $f\left(x_{0}\right)=q$ by showing that they are arbitrarily close to each other. Given any number $\epsilon>0$, there exists number $\delta>0$ such that $\rho\left(x_{0} x_{0}\right)<\delta$ implies that $\rho\left(f(x), f\left(x_{0}\right)\right)<\epsilon$ for $x \in H_{0}$, by the definition of continuity. By the properties of continued fractions, there exists an integer L such that if $n_{i}=m_{i}$ for $i \leqslant L$, and $x=\left\{n_{k}\right\}$ by continued fractions, then $\rho\left(x_{j} x_{0}\right)<\delta$, and thus $\rho\left(f(x), f\left(x_{0}\right)\right)<\frac{\epsilon}{2}$. It followa that $\delta\left(f\left(x_{n_{u}}^{\circ}\right)\right) \leqslant E_{2}$, bence $\delta\left(E_{n_{(L)}}^{\circ}\right)<\epsilon$. The point $q \in E_{n_{(\alpha)}}^{\circ}$, and $\boldsymbol{f}\left(x_{0}\right) \in E_{n_{(L)}}^{\circ}$, thus $p\left(q, f\left(x_{0}\right)\right)<\in$.

The identity $\mathrm{E}=\sum_{\left\{n_{k}\right\}} \prod_{k=1} \mathrm{E}_{\boldsymbol{n}_{(0)}}$, where each set $\mathrm{E}_{\boldsymbol{n}_{(x)}}$ is closed, is eatablished, and therefore E is an analytic aet. Theorem 5:9: The continuous image of an analytie set in a complete separable space is an analytic set.
Proof: Let E be an analytic set in a complete separable sace M. Let I be a continuoua function on E, and let $f(B)=T$. Then there exists a function Ψ on H, the set of all irrational numbers, auch that $\psi\left(\begin{array}{l}\text { in }\end{array}\right)=\mathrm{F}$. Let $\phi(x)=f(\psi(x))$. Then $\varphi(X)=T$. Thus I is the continuous image of E , and is an analytic set.

Since a Borel set is also an analytic set, its continuous image in a complete separable space is an analytic set. Also it follows from the last theorem that
in complete separable spaces analytic sets are topologically invariant. It can be shown that both the analytic sets and the complements of analytic sets are topologically invariant in any complete space, not necessarily separable. [7. p. 220]

We shall now show that the power (cardinal number) of non-countable analytie set contaized in a separable metric space is equal to C, the power of the continuum. First we shall prove this preliminary theorem.

Theorm 5:10 If ㅌ is 是 set contained in a separable space,
and if S is a neishborhood auch that E.S is non-countable, then thore exists nelghborhoods S_{0} and S_{1} whose diameters are an small as we choose, and such that $\bar{S}_{0} \cdot \bar{S}_{1}=0, S_{0} \subset S, S_{1} \subset$ s, and the sets $\mathrm{E} \cdot \mathrm{S}_{e}$ and $\mathrm{E}-\mathrm{Sh}_{\mathrm{f}}$ are gon-countable.

Proof: Suppose that E is a at in separable metrie space, and that S ia neighborhood auch that E-S is non-countable. Then there exista non-countable sot E,CE-S Euch that $x \in E_{1}$ if and only if x is an element of condensation of $\mathrm{E} \cdot \mathrm{S}$. [E, p .43$]$ Let p and q be two points of F_{j}. Since S is an open set, there exists numbers r_{0} and r_{1} eufficientiy mall so that $N\left(p_{i} r_{0}\right)$ and $M\left(q_{0} r_{1}\right)$ each are contained in 3 , and such that $\left.\overline{\left(p, r_{0}\right.}\right) \cdot \overline{M\left(q, r_{1}\right)}=0 .[6, p, 21]$ Let $S_{0}=M\left(p_{0} x_{0}\right)$, and $S_{1}=M\left(q_{,} x_{1}\right)$. By the definition of an - lement of condensation, E.S. and $E \cdot S_{1}$ are both non-count-
able sets.
Theoren 5:11 : Every non-countable analytic set which is contained in a complete separable space contains a subset which is non-empty and perfect. Proof: Suppose that is is non-countable and is contained in a complete separable space M. By theorem 5:7, $s=\sum_{\left\{n_{k j}\right.} \prod_{k=1}^{0} E_{r_{(K)}}$, where the defining system [$\left.E_{n_{(K)}}\right]$ is regular. For each finite combination of positive integers $r_{1}, r_{2}, r_{3}, \ldots, r_{s}$, let

$$
E^{r_{(s)}}=\sum_{\left\{n_{k\}}\right.} E_{r_{(1)}} \cdot E_{r_{(\alpha)}} \cdots E_{r_{(s)}} \cdot E_{r_{(s),} n_{1}} \cdot E_{r_{(s)}, n_{(\alpha)}} \cdot \cdots
$$ where the summation extends over all possible sequences of integers $\left\{n_{k}\right\}$. It follows that $E=E^{\prime}+E^{2}+E^{3}+\cdots$, and that $E^{r}(s)=E^{r}\left(s, 1+E^{r}(s) i^{2}+E^{r}(s)\right)^{3}+\ldots$ for every finite combination of indices $x_{(s)}$.

Let p be an element of condensation of E, and let $S=H(p, 1)$. $E S$ is non-countable by the definition of an element of condenaation, thus we can apply theorez 5:10 directly. Thare exist two neighborhoods S_{0} and S_{1} which are contained in S such that $\bar{S}_{0} \cdot \bar{S}_{1}=0, E \cdot S_{0}$ and $E \cdot S_{1}$ are non-countable, and $\delta\left(S_{0}\right)<1, \delta\left(S_{1}\right)<1$. from above we have $E \cdot S_{\rho}=E^{\prime} \cdot S_{0}+E^{2} \cdot S_{\rho}+E^{3} \cdot S_{\rho}+\cdots$. Since $E \cdot S_{0}$ is non-countable, there exista at least one index mo such that $\mathrm{E}^{m o} \mathbf{S}_{0}$ is non-countable. In a like manner, there exists an index m, such that $\mathrm{E}^{m \cdot} \cdot \mathrm{~S}$, is non-countable.

Proceding by induction, uppose that we have
defined for a given integer k the neighborhoods Sa(k) and the integers $\mathrm{ma}_{\mathrm{a}(\mathrm{K})}$, where $\mathrm{a}_{(\kappa)}$ is a finite sequence of numbers which are either 0 or 1 , such that

$$
\begin{aligned}
& \delta\left(3 a_{(\kappa)}\right)<\frac{1}{k} . \\
& S_{a_{(x)}} \subset S_{a_{(x-1)}} \text {, if } k>1_{1} \\
& \bar{S}_{a_{(k-1) ; 0}} \cdot \overline{\mathbf{S}}_{\mathbf{a}_{(k-1), 1}}=0 \text {, and }
\end{aligned}
$$

From theorem 5:10, there exiet neighborhoods
$S_{a_{(x)}, 0}$ and $S_{a_{(k), 1}}$ contained in $S_{a_{(k)}}$ wach that

$$
\begin{aligned}
& \bar{S}_{a_{(k)>0}} \bar{s}_{a_{(10,1}}=0 \\
& \delta\left(S_{a_{\infty}}, 0\right)<\frac{1}{x+1}, \delta\left(S_{a_{(0,1}, 1}\right)<\frac{1}{x+1} \text {, and seta } \\
& S_{a_{(k)}, 0} \cdot E^{m_{a_{u 1}}}, m_{a_{(a)}}, \cdots, m_{a_{(x)}} \text { and } \\
& \left.S_{a_{(0)}} \cdot 1 \cdot E^{m a_{(1)}}\right)^{m a_{(2)}}, \cdots m_{a(n)} \text { are non-countable. }
\end{aligned}
$$

Then since
there exists an integer $\mathrm{m}_{a_{4 \times 1,}}$ such that the set

$$
S_{a_{(k), 0}} \cdot \mathbf{E}^{\left(m_{a_{0}}\right)}, m_{\left.a_{(0)}\right)}, \cdots, m_{a_{(x)}}, m_{a_{(k)}, 0}
$$

is non-countable. Likewise there exists an integer $\boldsymbol{m a}_{a_{(k), 1}}$ such that the set $S_{a_{(x), 1}} \cdot E^{m_{a_{(1)}}, m_{a_{(a)}}, \cdots, m_{a_{(x)}}, m_{a_{(x), 1}}}$ is nonmeountable. Thus by induction the neighborhoode $\mathbf{S a}_{\text {a }}$ and the indices mak, have been defined for every finite combination of numbers $a_{(k)}$ which are either 0 or 1 , and these neighborhoods $\mathrm{Sa}_{(N)}$ and indices mans are meh that the preceding conditions are satisfied.

Let $\#_{k}=\sum_{(\alpha)} \bar{B}^{m a_{a}}, m_{(a)}, \cdots, m^{m} a_{(\alpha)} \cdot \bar{S}_{a_{(k)}}$, where the
sumation extends over all possible sequences of k numbers which are either 0 or 1 . Since the sumation is of a finite number of closed and bounded setss each set H_{K} will be closed and bounded. It follows that $H_{k+1} \subset \mathbf{H}_{\mathbf{k}}$ for each $\mathbf{k}_{\text {, }}$ and that H_{k} is not empty.

Let $K=\prod_{x=1}^{\infty} u_{k}$. Since H is the intersection of a descending sequence of closed sets in a complete space, H 1s non-empty. [6, p. 52] To show that H is perfect, that is, H is closed and densemin-itself, we must show that $p \in H$ if and only if it is a cluster point of H.

Suppose that $p \in H_{\text {. }}$ Then $p \in H_{1}=\bar{E}^{m_{0}} \cdot \bar{S}_{0}+\bar{E}^{m_{0}} \cdot \bar{S}_{1}$. The element p belongs either to $\overline{⿷ 匚}^{m o} \cdot \bar{S}_{0}$ or to $\bar{E}^{m_{1}} \cdot \bar{S}_{1}$. (It cannot belong to both since they are disjoint) Let $\alpha_{1}=0$ or $\alpha_{1}=1$ so that $p \in \bar{E}^{m_{\alpha_{1}}} \cdot \bar{S}_{\alpha_{1}}$. In a like manner, $p \in \mathbf{H}_{a}=\overline{\mathbf{E}}^{m_{0}, m_{0,0}} \cdot \overline{\mathbf{S}}_{0,0}+\overline{\mathbf{E}}^{m_{0,2} m_{0,1}} \cdot \overline{\mathbf{S}}_{0,1}+\overline{\mathbf{E}}^{m_{1,1} m_{1,0}} \cdot \overline{\mathbf{S}}_{1,0}+\overline{\mathbf{E}}^{m_{0,0} m_{0,1}} \overline{\mathbf{S}}_{1,1}$. But from the construction of these sets. p can belong only to the set $\bar{E}^{m_{\alpha_{1}}}, r r m_{\alpha_{1}}, 0 \cdot \bar{s}_{\alpha_{1}, 0}$ or to $\overline{\mathbf{E}}^{m_{\alpha_{1}}}, m_{\alpha_{12}} \cdot \overline{\bar{s}}_{\alpha_{1}, 1}$. Let $\alpha_{2}=0$ or $\alpha_{2}=1$ accordingly such that $p \in \bar{E}^{m_{\alpha_{1}}, m_{\alpha_{1}}, \alpha_{2}} \overline{\bar{S}}_{\alpha_{1}, \alpha_{2}}$. Since for each $k_{0} p \in A_{k}$, we continue to obtain the clements of the infinite sequence $\left\{\alpha_{n}\right\}$ in a like manner, where each term of the sequence is either 0 or 1 , and such that
 Given a number $\epsilon>0$, let be an integer such that $\frac{1}{s}<\epsilon$. Let $\left\{\sum_{n}\right\}$ be an infinite sequence of numbers elther 0 or 1 as follows. If $k \leqslant s_{\text {, }}$ Iet $\beta_{k}=\alpha_{k}$. If $k=a+1$,

Let $\beta_{k}=1-\alpha_{k}$. If $k>0+1$, let $\beta_{k}=0$. Consider the set $Q=\prod_{k=1}^{\infty} \bar{B}^{m_{\beta_{0}}, m^{m}(2), \cdots, m \beta_{(k)}} \cdot \bar{S}_{\left.P_{k}\right)}$ defined by the sequence $\left\{\beta_{n}\right\}$. Since Q is the intersection of descending sequence of closed sets whose diameters tend towards zero; and since these sets are in a complete space, Q will be a single element which will be denoted by q. [6, p. 52] The element q will be an element of each set $H_{k}, k=1,2,3, \cdots$, by the
 and $p \in \bar{S}_{\alpha_{(s)},} q \in \bar{S}_{p(s)}, q$ is an element of the set $\bar{S}_{\alpha_{(s)}}$. But $\delta\left(\bar{S}_{\alpha_{(s)}}\right)<\frac{1}{s}<\epsilon$ thus $\rho(p, q)<\in$.

The element p is different from q since $p \in \bar{S}_{\left(\alpha_{(s+1)}\right)}$, $q \in \overline{\mathbf{S}}_{\mathrm{e}(s+1)}$ whore these two sets are disjoint since $\beta_{s+1}=$ $1-\alpha_{s+1}$. Therefore p is a cluster point of H. On the other hand, if p is cluster point of H, then $p \in H$ aince H, as the intersection of a countable collection of closed sets, is closed. H is therefore perfect.

It remaina to be shown that HCE. Suppose that $p \in H$. Aa previously defined, there exists a specific sequence $\left\{\alpha_{n}\right\}$ of numbers either 0 or 1 auch that the element
 From the construction of the sets $E^{r}(s)$. it is noted that for each finite combination of indices $r_{(s)}, E^{r_{(s)}} \subset \mathbf{L}_{r_{(s)}}$. Since $E_{r(s)}$ is closed, $\bar{E}^{r(s)} \subset \bar{E}_{r_{(S)}} \subset E_{r(s)}$. Therefore the element $P \in \prod_{k=1}^{\infty} \sum_{m_{\alpha_{0}},}, m_{\alpha_{(a)}}, \ldots, m_{a_{(k)}} \subset S_{\text {, }}$ and the theorem is complete.

Moting that for each infinite sequence $\left\{\alpha_{n}\right\}$ of numbers 0 or 1 there is a distinct point of the set $\overline{\text { I }}$
 be ald that the cardinal of F is greater then or equal to C, the cardinal of the continuwn. [7, p. 263] since E is contained in a separable metric space, and therefore has countable basis, the cardinal of E is leas than or equal to C. Hence the cardinal of is C. From this we may conclude that the cardinal of a non-countable Borel set contalned in a separable complete space is C.

Definition: Two sota P and Q are said to be exclusive B if there exists two disjoint Borel eets M and M such that PCM, QCH.
Theorea 5il2 if $P=\sum_{j=1}^{\infty} P_{i}$, and $Q=\sum_{k=1}^{\infty} Q_{k}$ and if R and Q are not exclusive B, then for some indices i and上 the sats P_{j} and Q_{k} are not exclusive $\mathrm{B}_{\text {. }}$
Proof: Suppose that $P=\sum_{j=1}^{\infty} P_{j}$, and $Q=\sum_{k=1}^{\infty} Q_{k}$, and that P and Q are not exclusive B. Then suppose that for every pair of indicea J and k_{g} sets P_{j} and Q_{K} are exclusive B. Ehen there would exist disjoint Borel sets $X_{j, k}$ and $\mathbf{M}_{\mathrm{j}, \mathrm{K}}$ for every pair of indices g and k auch that $\mathrm{P}_{\mathrm{j}} \subset \mathrm{M}_{\mathrm{j}, \mathrm{K}}$ and $Q_{K} \subset H_{j, K}$. Let $M=\sum_{j=1}^{\infty} \prod_{k=1}^{P} H_{j, K}$ and $M=\sum_{k=1}^{\infty} \prod_{j=1}^{\infty} H_{j, K}$. The
 For each j, $p_{j} \subset \prod_{k=1}^{\infty} n_{j, k}$, so $\sum_{j=1}^{\infty} p_{j} \subset \sum_{j=1}^{\infty} \prod_{n=1}^{\infty} M_{j, k}$, that is, PCK. For each $k, Q_{k} \subset \prod_{j=1}^{\infty} H_{j, k}$ so $\sum_{k=1}^{\infty} Q_{k} \subset \sum_{k=1}^{\infty} \prod_{j=1}^{\infty} w_{j, k}$, that

1s, QCH. Sets M and h are disjoint, for if $x \in M$, there existe an index 1 euch that $x \in \prod_{k=1}^{0} M_{j, K}$. Since $M_{j, \kappa} \cdot H_{j, k}=0$ for $j=1,2,3, \cdots, k=1,2,3, \cdots, x \notin H_{j, k}$ for the given index j_{2} and for all indices k. Thus $x \notin \sum_{k=1}^{\infty} \prod_{j=1}^{\infty} m_{1, k}$. Thus the sets P and Q are exclusive B which contradiets the hypothesis of the theoren.
Theorem 5:13 If E and I are two analytic sets contained
in a complete separable space, and if $E \cdot T=0$, then
㸘 and I are excluaive .
Proof: The seta E and T may each be written as the nucleus of a regular defining system by theorem 5:7. Thus $E=\sum_{\{=k\}} \prod_{k=1}^{\infty} E_{n_{(k)}}$, and $T=\sum_{\left\{n_{k j}\right.} \prod_{k=1}^{\infty} T_{n_{(k)}}$ where $\left[E_{n_{(k)}}\right]$ and $\left[{ }^{n}(k)\right]$ are regular defining systoms.

For erery finite combination of positive integers
 where the sumation extends over all infinite sequences of positive integers $\left\{n_{k}\right\}$. Likewise, for every finite combination of indices $r_{(s)}$, Iet

From theoren 5:11, we note that

$$
\begin{aligned}
& \mathbf{p}^{r(s)}=\mathbf{E}^{r(s) 21}+\mathbf{E}^{r(s))^{2}}+\cdots \cdot \\
& T^{r}(s)=T^{r}(s)=1+T^{r}(s) r_{+}+\cdots \text {. } \\
& B=E^{1}+E^{2}+E^{3}+\cdots \text {. } \\
& T=T^{\prime}+T^{2}+T^{3}+\cdots .
\end{aligned}
$$

Now let ns auppose that E and I are not exclusive B.

By theorem 5:12, there exist indices p_{1} and q_{1} such that the sets $F^{P_{1}}$ and T^{81} are not exclusive B. But since

$$
\begin{aligned}
& \mathbf{E}^{p_{1}}=E^{p_{1}, 1}+E^{p_{1}, 2}+E^{p_{1}, 3^{2}}+\cdots \\
& \mathbf{T}^{81}=\mathbf{T}^{8_{1}, 1}+\mathbf{T}^{81,2}+\mathbf{I}^{8_{1}, 3^{3}}+\cdots
\end{aligned}
$$

there exist indices p_{2} and q_{2} such that $E^{P_{1}, P_{2}}$ and $p_{1} g_{1} 8_{2}$ are not exclusive B. Continuing in a sinilar manner, we can obtain two infinite sequences of integers $\left\{p_{n}\right\}$ and $\left\{q_{n}\right\}$ such that $\mathrm{F}^{\mathrm{P}(\mathrm{K})}$ and $\mathrm{T}^{8(0)}$ are not exclusive B for each k.

From theorem 5:11 it is noted that the sets
 set $E_{P_{c o}}$ and $T_{q_{(x)}}$ is a set of a regular defining system, it is closed and therefore a Borel set. Thus if $\mathrm{E}_{\mathrm{p}(\mathrm{co}} \cdot \mathrm{T}_{\mathrm{g}(\mathrm{k})}=0$ for any integer k, the sets $E^{P(k)}$ and $\boldsymbol{T}^{8 c N}$ would be excluaive B. Therefore $\mathrm{E}_{\mathrm{P}_{(0}} \mathrm{T}_{\mathrm{g}(\mathrm{k})} \neq 0$ for $k=1,2,3, \cdots$ Let
 of noz-empty closed sets aince $\delta\left(R_{k}\right) \leqslant \delta\left(E_{P_{(K)}}\right)<\frac{1}{k}$,
 and $\mathbf{T}_{\text {g(k) }}$ are closed for each k_{*} Let $R=\prod_{k=1}^{f} R_{K}$. The set R will be non-empty aince the containing space is complete. Suppose that y is an elemert of R. Then

$$
\begin{aligned}
& y \in \prod_{k=1}^{\infty} E P_{(x)} \subset \sum_{\{n k\}} \prod_{k=1}^{\infty} E P_{(x)}=E \text {, and } \\
& y \in \prod_{k=1}^{\infty} T_{g(k)} \subset \sum_{\{n k\}} \prod_{k=1}^{\infty} T_{g(k)}=\mathbf{T} \text {. }
\end{aligned}
$$

Hence $\mathbf{I}-\mathrm{T} \neq 0$ which contradicts the hypothesis. Therefore the theorem is established.

With the ald of theorem 5:13, a criterion for an
analytic set to be a Borel set can be established. Theorem 5:14: An analytic set E contained in a complete soparable space is a Borel set if and only if its complement is an analytic aet.

Proof: Suppese that E is a Borel set. Then its complement is also a Borel set and therefore an analytic set.

On the other hand, auppose that E is an analytic set in a complete separable space, and suppose that CE 1s an analytic set. Then since $\mathrm{E} \cdot \mathrm{CR}=0$, there exist two Borel sets M and M such that ECM, CECM, and M-M=0. (Theorem 5:13) since $6 \pm \subset N, G(E(E)) \supset G H$, that $1 s$, MCG日CE. Hence $E=M$ thus \mathbf{I} is a Borel set.

In a similar manner, the following theorem could be established.

Theorem 5:15: A set E in a complete soparable space S is a Borol set if and only if E and P IS are analytic sets.

CHAPTER VI

A UNIVERSAR ANALYTIC SET

In the concluding chapter, we shall ahow that there exist sets which are nct analytic sets relative to their containing apace, and that there exist sets which are analytic seta but not Borel sets. In showing this, we shall discuss projection and projective sets, and shall establish a plane analytic set Which is universal to all linear analytic sets.

Derinition: The projection of point $x=\left(x_{1}, x_{2}, \cdots, x_{m+1}\right)$ of the space $\boldsymbol{R}_{n+1}(\mathbf{m}+1-\mathrm{dimension}$ Euclidean apace) is the point $y=\left(x_{10} x_{2}, \cdots, x_{m}\right)$ of the space \mathbb{R}_{m}, and we write $P(x)=y$. The projection of a set $E \subset A_{m+1}$ is the set $P(E) \subset A_{m}$ which consiats of the projections of all of the elemente of E.

Since the distance between two elements of a set E In H_{m+1} is greater than or equal to the distance between the images of these two points in $P(E)$ in $R_{\text {ow }}$ projection is a continuous mapping of E onte $\mathrm{P}(\mathrm{E})$. Therefore the projection of a sum of sets is equal to the sum of the projections, $P\left(\sum_{E \in B} E\right)=\sum_{E \in G}(P(E))$; and the projection of a product of sets is included in the product of the projections, $P\left(\prod_{E \in G}\right) \subset \prod_{E \in G}(P(E))$.
-65-

is the proisetion of g set E which is a closed set in Rm+1.
Proof: We shall prove the theorem in the case where $m=2$ which is analogous to the proof for any dimension m.

Suppose that I is a closed set in R_{3}, threedimension Euclidean space. For each positive integer k,
 E_{k} is closed and bounded, and is therefore compact. Then $I=P(E)=P\left(\sum_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} P\left(E_{K}\right)$, where each aet $P\left(K_{K}\right)$ is a compact and closed set. The set I is then an Y_{σ}. $[6$, P. 68$]$

How suppose that I is a set Fo in the plane. Then $t=\sum_{k=1}^{N} I_{n}$, where for each k, T_{k} is a closed set. For each poaitive integer k, let $\mathbf{E}_{k}=E_{(x, y, z)}\left[(x, y) \in T_{k}, \quad=k\right]$. For integers $1 \neq j$, the aets E_{i} and E_{j} will be disjoint, having their neareat points a distance of at least 1 from each other. Since E_{K} is congruent geometrically to T_{K}, $k=1,2,3, \cdots$, each set \bar{E}_{k} will be closed plane set. Let $\mathrm{B}=\sum_{k=1}^{\infty} \mathrm{E}_{\mathrm{k}}$. If $p=(x, y, s)$ is a cluster point of E , then there exists an infinite sequence $\left\{p_{n}\right\}=\left\{\left(x_{n}, y_{n}, z_{n}\right)\right\}$ such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}, x_{n}\right)=\left(x, y_{i} s\right)=p$. Thus $\lim _{n \rightarrow \infty} z_{n}=m$. Oiven a number $\epsilon=\frac{1}{2}$, there exists an integer x auch that if $n>I_{1} \rho\left(x_{n}, z\right)<\frac{1}{2}$. Since the sets E_{i} and $E_{j}, i \neq j$, are a
distance apart of at least 1 , there exists an integer k such that $P_{n} \in \mathbf{E}_{K,} n>X_{1}$, The subsequence P_{K+1}, P_{K+2}, \cdots is contilned in g_{k} and will converge to p. The element p is therefore oluster point of E_{K} Since E_{K} is closed, $p \in E_{k} \subset E$. Thus E is closed. It then follows that

$$
P(E)=P\left(\sum_{k=1}^{\infty} E_{k}\right)=\sum_{k=1}^{\infty} P\left(E_{k}\right)=\sum_{k=1}^{\infty} T_{k}=x_{k}
$$

and the theoren is established.
Theorem 6:2 : A set E is an analytic get in Rm_{m} if snd only
1f it is the projection of a sot H which is a set

Proof: Suppose that H is a set σ_{δ} in B_{m+1}. Since a projection is a continuous mapping, $P(H)=T$, as the image of a Borel set, is an analytic set in l_{m} by theorem 5i9.

Wo shall show that if E is an analytic set in Ra_{a} then it is the projection of a set H which is a set \mathcal{C}_{8} in \mathbf{R}_{3}. The proof for the more general case is very aimilar. Suppose that E is an analytic set in R_{a}. By theorem 5:8, E is the continuous image of H , the set of all irrational numbers, by a mapping f.

Let $H=\mathrm{E}_{(x, y, z)}[z \in H,(x, y)=f(x)]$. Then
$P(H)=H_{(x, y)}[s \in M,(x, y)=f(s)]=I(M)=E$.
It remains to be shown that A is a set G_{δ}. Let T be the set of all planes in I_{3} with rational s-coordinates. Thus I is a set If as the sum of countable collection of elosed sets. We shall now establish the identity. $H=\bar{H}-T$.

 there exiats an infinite sequence $\left\{\left(x_{n}, F_{n}, x_{n}\right)\right\}$ of the set H such that $\lim _{n \rightarrow \infty}\left(x_{n}, y_{n}, z_{n}\right)=\left(x_{0}, y_{0}, x_{0}\right)$. In turn

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} x_{n}=x_{0} \\
& \lim _{n \rightarrow \infty} y_{n}=y_{0} \\
& \operatorname{lif}_{n}=y_{n}=y_{0}
\end{aligned}
$$

 $\left(x_{n}, Y_{n}\right)=f\left(s_{n}\right), \lim _{n \rightarrow \infty}\left(x_{n}, Y_{n}\right)=1 i m f\left(x_{n}\right)=\left(x_{0}, Y_{0}\right)$. Also, since 1 is continuous, $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(\lim _{n \rightarrow \infty} z_{n}\right)=f\left(x_{0}\right)=\left(x_{0}, y_{0}\right)$. Therefore $\left(x_{0}, Y_{0}, z_{0}\right) \in H$, and $H=\bar{H}-$ T. $_{\text {. }}$.

Since the closed set \bar{H} is a set $G_{\delta \text {, }}$ and $\boldsymbol{C T}$ as the complement of a set F_{σ} is a set $G_{\delta,}$ their intersection, $\bar{H} \cdot C T=H$ is also a set a_{δ}. The proof ia therefore established.

Following the method used in Chapter IV, we shall construct a set M_{1} in R_{3} which is a set $G_{8,}$ and which is universal to all plane sets O $_{\delta}$. Then we shall show that the projection of this set M_{1} is an analytic set in H_{2} which is universal to all linear analytie sets.

Let 8 be a subset of R_{3} consisting of all planes $S_{x_{0}}$, where $p \in S_{x_{0}}$ if and only if $p=\left(x_{0}, y, s\right), x_{0} \in N_{0}$, and Y, ${ }^{\circ}$ have any real values. (The set No is the set of all irrational numbers $x_{,} 0<x<1$) Thas the planes $s_{x_{0}}$ will be perpendicular to the x-axis. Let $\left\{X_{n}\right\}$ be a sequence of
open plane sets which form a countable open basis for the (y, z) plane.

If $x_{0} \in M_{0}$, and if $x_{0}=\left\{\alpha^{n}\right\}$ by continued fractions, then let $H_{0}\left(x_{0}\right)=\sum_{n=1}^{\infty} z_{a^{n}}$, and let
$M_{0}\left(x_{0}\right)=E_{(x, y, z)}\left[x=x_{0},(y, s) \in H_{0}\left(x_{0}\right)\right]$.
Then let $M=\sum_{x \in N_{0}} M_{0}(x)$
Following the method described in Chapter IV, let each number $x_{0} x_{0} \in H_{0}$, determine an infinite sequence of numbers $\left\{x_{n}^{0}\right\}$, where for each $n_{,} x_{n}^{0} \in M_{0}$. Let

$$
\begin{aligned}
& H_{1}\left(x_{0}\right)=\prod_{n=1}^{0} R_{0}\left(x_{n}^{0}\right) \\
& M_{1}\left(x_{0}\right)=E_{(x, y, z)}\left[x=x_{0},(y, z) \in H_{1}\left(x_{0}\right)\right], \\
& M_{1}=\sum_{x \in N_{0}} M_{1}(x) .
\end{aligned}
$$

In a manner entirely analogous to that used in Chapter $\overline{I V}$, it can be shown that the set M_{1} is a set G_{g} in R_{3} which 1s universal to all plane sets G_{8}. These plane sets G_{f} are obtained by intersecting H_{1} with planes S_{x}, $x \in H_{0}$, and S_{x} perpendicular to the x-axis.

Consider the projection of $M_{1,} P\left(M_{1}\right)=W$. The set W is an analytic set in R_{o} (the (x, y) plane) by theorer 6:2. Hext we shall show that W is universal to all linear analytic sets by means of intersections with lines $L(x)$, $\mathbf{x} \in \boldsymbol{f}_{\text {。 }}$

If E is a ilnear analytic set, then there exists a set H of the plane which is a set G_{5} such that $P(H)=E$. Since M, is universal to all plane sets G_{δ}, H is the
intersection of a plane $S_{x_{0}}$: $X_{0} \in H_{0}$, and the set H_{1}. Then E is the Intersection of the line $L(x)$ with W, where W is the projection of M.

On the other hand, if W is intersected with a ine $L(x)$, then the intersection is a Inear analytic set gince the set is itself an analytic set, and the line, as a Borel set, is an analytic set.

The elass of all sets which are analytic sets relative to the plane satisfy the hypothesis of theorem $4: 5$. First, the intersection of ilne (Borel set) and an analytic set is an analytic set. Second, if I is an analytic set on a line x, then $f(B)$ is an analytic set on the y-axis where f is horizontal projection. If the line x is not perpendicular to the y-axis, this will be true aince i is a topological mapping. If the line x is perpendicular to the y-axis, then $f(E)$ will be a single point, and hence an analytic set.

Thus, by applying theorem $4: 5$ directiy, the set D.W is show to be an analytic set, and the set D. CW is not an analytic set. By theorem 5:14 (since the line D is a complete separable apace) we can conclude that the set D.W 1s not a Borel set; for if it were, then its complement, D.EW, woula be an analytic set.

CITED REFERENCES

1. Coff man ${ }_{2953}$. Casper. Real Functions. New York: Rinehart,
2. Hall $\begin{gathered}\text { H. S., and Knight, S. R. Higher Algebra. } \\ \text { London Macmillan and Coo, Limited, } 1936 \text {. }\end{gathered}$
3. Lame, E. Theory of Set is. New York: Dover Publications. Inc. 1950.
4. Kuratowaki, Casinir. Topologie I. Warsmawa: Lwow, 1933.
5. Monroe: M. E. Introduction to Measure and Integration. Cambridge: Addison-Wesley Publishing Company, Incs, 1953.
6. Merman, M. H. A. Elements of the Topology of Plane Sets of Point Cambridge Cambridge University Press, 1951.
7. Sierpinski, Waclaw. General Topology. Translated by C. Cecilia Krieger. Mhrathematical Expositions; No. 7"; Toronto: University of Toronto Press, 1952.
8. Sierpinski. Waclaw. Introduction to General Topology. Translated by C. Cecilia Krieger. Toronto: University of Toronto Press, 1934.
