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CHAPTER I

INTRODüCTIOir

la thia p&par we shall discuss the general 
properties of the Bor el sets and the analytic setSy 
and shall show several important relationships between 
these two classes of sets.

The family of Borel seta is defined to be the 
collection of all the Hausdorff sets P** and where ^ 
is an ordinal number of the first or second class. The 
sets P^ and ire defined by transfinlte induction, and 
are discussed in general in Chapter XX, The sets and 
G are then defined in a manner very similar to the 
Hausdorff sets, and the relationships between the sets of 
these two families are shown. It Is shown also that an 
equivalent definition of the Borel sets is that they are 
the smallest family of sets which contain the closed sets, 
and are closed under countable suns and intersoétions.

Through the development of the Borel sets in this 
manner, many properties of the classes of sets P"̂  and Q** 
and of sets P« and Get. are discussed. The principal 
problem solved concerning these classes of sets is that 
of showing in one«*dimension Euclidean space that there 
exists, for each ordinal number « of the first and second

^1-
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.2.
claaa##, sata F«c and aet* which arc not sets or 
6^ for each ordinal number (? less than m# In Chapter IV, 
this is established with the aid of sets Q« of the plane 
which are universal to the linear sets Q#, for each ordinal 
number « • The proof is completed by applying the **diagonal 
line** theorem of Sierpinski*

The analytic sets are defined and discussed in 
general in Chapter V# The principal theorem concerning 
these sets is that of showing that an analytic operation 
carried out on a class of analytic sets yields a set of 
the original class* This leads to the proof that the 
analytic sets relative to the class of closed sets contains 
the family of Borel sets.

In the final chapter, it is shown that in one- 
dlmension Euclidean space the family of linear Borel sets 
is contained properly in the family of linear analytic 
sets* To show this, a set 0$ of three*dimension Euclidean 
space universal to all plane sets 0$ is projected onto the 
plane, the resulting plane set being an analytic set 
universal to all linear analytic sets* The ««diagonal line«* 
theorem of Sierpinski is again employed to complete the 
proof*

It is assumed that the reader is familiar with 
the basic topological concepts and with the fundamental 
properties of continued fractions, cardinal numbers, and 
ordinal numbers. To avoid ambiguities in the use of terms.
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w# shall défias those terms v^ieh are used frequently la 
the text*

k sat is any eolleetloa of objects which we shall 
call elements* If x is an element of the set S» then we 
write X e S* If A is a set such that x e A implies that 
X 6 S, then A is said to be a subset of B, written A c E*

The sum of two sets A and B is a set* Af*3* such 
that xeA'fB if and only if xaA or xeB or both* Given 
a sequence of sets £,* Sj***«* written we say
that the sum of this sequence of sets is a set B, ̂  Ŝ -f-Sj+«* • 
or 51 B„* such that x« %  Bn* if and only if xe Ej for at#fs| *•**
least one integer i* In a like manner* we may define the 
sum of a non«»eountable collection of sets*

The product (Intersection) of two sets A and B 
is a set* A'B* such that xeA<B if and only if x 6 A and 
xeB* Given a sequence of sets* £Bh}* we say that the 
product of this sequence of sets is a set B^*B^'B,*••* or 
TT 2##* such that x€ ff^n» if and only if x € St for every 
integer 1» 1*2*3**•* * In a like manner* we may define the 
product of a non«>countable collection of sets*

A set of elements 3 is said to be a metric space 
if there is associated with each pair of elements a and b 
of S a non-negative real number* called the distance 
betwenn these elements and denoted by ^(a*b)* such that 
the three following axioms are satisfied*
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-4“
1) p(a»b) =p(b»a}«
2) (*&,%»):== 0, If aad only If a=b*
3) yO(a,e)^yO(*,b)+^(b,e).

If £ Is a subsst of a siabrie space 8» thea £ 
will also be a metric space with proper metrimation*

In a metric space 8# the complement of a set SCS 
is the set of all elements contained in S but not contained 
in £, If £ and F are two subsets of the space S» then 
the complement of E relative to F# written as F*^£ or 
F— E» is the set of all elements of F which are not 
elements of E.

The least upper bound of the distances between 
all pairs of elements a and b of a set E is called the 
diameter of E, and is denoted by S’ (£)«

If xeS, and if e is an arbitrary positive real 
number 9 then «u» €-neighborhood of the element x is the 
set of all elements y of 3 such that ^(x^y) < e , and this 
nei^borhood shall be denoted by h(x,e), A set E will 
be called an open set if for every element x of S there 
exists for some € > 0« depending on x, an e-neighborhood 
of X contained entirely in E. A set F will be called a 
closed set if and only if it is the complement of an open 
set.

An element x is called a cluster point of a set 
£ if for every e > 0, N(x»c) contains at least one point 
of £ different from x. It can be shown that a set E is
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closed if and only If it contains all of its cluster 
points* C6, p* 333 If a set E is such that every element 
of B is a cluster point* then S is said to be dense-^n* 
itself* The closure of a set S* denoted by £* is the set 
of all elements x such that for every e > 0* h(x*e) 
contains at least one element of £*

An element v*ich is such that every neighborhood 
of it contains a non-countable number of elements of a set 
K is said to be an element of condensation of B*

If xeE* and if BCB(x^e) for some real number 
a >0* then E is said to be a bounded set*

An infinite sequence of elements* a, , ai;i* ai,, # * * *
denoted by fa*,}* is said to converge to a limit b if for 
every positive real number 6 there exists an integer H such 
that if a>iS[* thon ̂ (a*,*b) < 6 * An infinite sequence of 
elements fa„j is said to be a Cauchy sequence if for every 
a >0 there exists an integer N such that if n>N and 
then yO(a*,*a*„) < 6* Metric spaces in which Cauchy sequences 
are always convergent sequences are called complete spaces*

A set SC3 is said to be den^e on 3 if 3* If
a apace 3 has a countable dense subset* then S is said to
be a separable space*

A space 3 is said to have a countable open basis 
if there exists a countable sequence of open seta* £̂ nj* 
such that any open set of 3 can be written as a sum of sets
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belonging to {tin}* IT S 1» a motrlo epaoe, thorn tho 
eondltions of soparabllty and of havlng a eouatabXo open 
baala aro oquiTaXont« [7# p* 116]

Aa opon qovorlaa of E la any aggrogato of open 
sota whoso 81»  eoatalna E. A aot £ la said to bo q<»paot 
If fyoa ovary opon eovoriag of £ a finite aubeovoriag can 
bo soloetod. A aot £ la eompaot If and only If ovary 
Infialto aubsot of E haa a cluster point la E. la any motrie 
space» a compact aot la bounded and closed» and la any 
n̂ diraonslon Euclidean space» a bounded and closed sot la 
compact and vlca versa# C5» PP* 41f,]

If £ and T aro two seta of a metric apace S» and 
If for each element x of S» there corresponds an element 
f(x) of t, then we say that f la a mapping of £ Into T. If 
every element of T la the Image of at least one element of 
S by the mapping f » then f la said to be a mapping of £ 
onto t* A Slapping f of B Into T la said to be contlnueua 
at Xo of £ If for every positive real number e » there 
exists a positive real number S such that If p(x»x»}< S » 
xc£» then yo(f (x) »f (x*)) < €• If f Is continuous at every 
point of E» then we say that f la a continuous mapping on £• 

If f is a mapping of £ Into T» and If yeT» then 
f(y)f (f*"Inverse of y)» la the set of all points xeB such 
that f (x) =: y# If f Is a continuous mapping of £ Into T» 
and If f l a  a continuous mapping of T Into £» then f la 
said to be a topological or homeomorphic mapping.
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A property of a set & is said to be a topologically 

inyariaat property if it is a property possessed by every 
set which is a homeomorphic image of E* A family of set# F 
is topologically invariant if every homeomorphic image of 
a set of the family F also belongs to F«
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CHAPTEK II

HAOSDORFF SETS AND Q***

In this chapter we shall define the Hausdorff sets 
and and shall prove several Important properties of 

these sets# Throughout our discussion we shall assume that 
we are working within a complete metric space M#
Definition! A set S is m set F(t> If SEn$ where for
each n, E„ la a closed set#
Definition: A set S Is a set If where for
each n, E„ Is an open set#

Since G( ̂  Bw) = a set will be a set
Fg. If and only If Its complement Is a set Gg#
Theorem 2:1 t Bverv closed set Is a set G&.

Proof: Suppose that F Is a closed set. Let
F„ * Thus each set Fn Is open, and F=
for If xcF| then for each n, xcFi, and hence xe ̂ Fn* On 
the other hand if x e j^Fw, then for each n, xcFri# Thus 
for each n there exists a (i,, such that yC) ( )  < %*# 
Therefore xsT» which means that x eP since F Is closed# 

Since the complement of a closed set Is an open 
set, and the complement of a set Qg Is a set Fg-, we have 
the following theorem:

< IS£!Z open =«& 1» 5. s£k £c>
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It eau b« shown that the homeoiBorphie image of a 
set 0̂  Is again a set Gg. This is not necessarily true of 
a set F<r however# If we assume a stronger condition on our 
metric space M, namely that "every closed* hounded set is 
compact"* then a continuous image of a set F<r will be a 
set F<r* M* PP# 121-1273

Hausdorff sets P** and are defined in this 
manner* A set £ is a set P* if and only if it is an open 
set* and is a set Q* if and only if it is a closed set.
For any ordinal number «* K « < A #  where H  i» the first 
ordinal of the third class* we define sets F** and Q'" by 
transfinite induction as follows!

Sets P̂ t £ is a set P®' if B = ^  where for' »s#
each n* the set £„ is a set * where < at,»

Sets Q**» S is a set Q"*' if £ - ̂  En* Wiere for
each n* the set S» is a set P*̂** * where a** <

A set P̂ * being a countable sum of sets closed
sets) * is merely a set F<̂* and a set Q̂ * being a countable
product of sets P'(open sets)* is a set Gg.
Th*or»a 2:3 I Ettt H  «lao S. SSi. E2 £S£ d<P<n.

aaâ az la. j&ss & SSî. SÎ £S£ * <e < fiL.
Proof: For a» 1* we have noted that each set P*

is a set P̂ (Fo>) by theorem 2:2* and that each set Q * is a
set Q*(Gç) by theorem 2:1. If £ is a set P*** 1 < *
then E = ^Eff* where for each n* S„ is a set Q̂ "* <** < *
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hence Thua the definition of a set la satis
fied# likewise If B is a set Q", ]. < <cx <: (][ , then B= TT E„n 
where for eaeh n, S„ la a set , <%,, < <% , hence otn < ̂  •

The set B la therefore a set Q*, «t < .
Theorea 2:1 t The ana of ̂  finite or countable collection

of sets jP* ̂  a set P*. and the product of a finite 
or countable collection of seta Q**̂ is a set Q^# 
Prooft If dc s 1  ̂the theorem is satisfied by 

elementary properties of open and closed seta# Suppose 
dc>l̂  and B= ̂  Bks where for eaeh k, B* is a set P̂ « Then 

where P*̂,„ is a set ", <;(*,,,«<ft. Therefore 
E = S  Z  Z  PLw m and hence is a set P*̂.«el *f*l "'I  ̂ '

If 7TZh§ where for each k, E* is a set Q p 
then E^= 7TS*i«, irtiere Ê ,̂  ia a set P*''"', Thua
E= fr TTE*;*, and hence is a set Q**#
Theorea 2i5 i The compleaent of a set ( i s  a set Q*(P*1 

Proofi The theorea is true for « = 1 by the 
properties of open and closed sets* Froeeding by trans- 
finite induction, suppose that <x is an ordinal number such 
that 1 < <*' < n, and suppose that the theorem la true for all 
ordinal numbers p<̂ oc* If E is a set P% then E = Z  E*,
where for each a, E„ is a set , <»,, < . Thus the set
C»Bn is a set P^ for each n by our induction assumption,
and since ÇE = <p !EE„=77 GE#, E will be a set Q%MSI HX»

If S is a set Q“, then E« 7TE«, where for each n,
E„ is a set P̂ ", at, < ar. E„, where" * It*» MSI
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is a sat Q"*” for aaeh n, and henca C £ is a sat P̂ *
Thaoraa 2*6 t Yha sum of a flnlta nmnbar of sats Q** is a 

sat Q̂ . and tha product of a finite number of 
sats P® is a sat P̂ #
Proof: For Q  = 1 tha theorem follows from tha

properties of open and closed sats* Suppose that is 
any ordinal number such that 1< P  • If E and T are
both sats P"g than £ ~ and 7 - S  T.r» where for each n,
£ is a sat a , ( , and where for each k, is a sat
Q̂ **» (3k< ocm Than K*T* S  £«• ’5.7̂ =* ̂  2^ £r*'7K* Denote' * «»• H*l Mr# *##
by ̂rt.K tha largest of tha two ordinals ̂  and pn (or their 
common value if they are equal) for eaeh pair of sets £w 
and 7k « By theorem 2:3, both E„ and 7k are sets and
by theorem 2:4» the set Bn* 7k is a sat Thus
£•7 is a sat P%

If P and 3 are sats Q", than the sat F+ S can be 
written as ^ (e(F^3)« €(CF*IoS)« But the sets Çf and 
C 3 are sets P**» and so their product is a sat P* from 
the above proof# Tha sat F + 3 is therefore tha complement
of a sat P*"» which is a sat by theorem 2:5*

Having proved tha theorem in the case of two sets, 
tha proof may be extended to the ease of any finite number 
of sets by ordinary induction methods#
Theor—  2t7 t Every eg& M  » SS& Q"*' (F**').

Proof I If £ is a sat P**, then we may write 
£*£•£•£•••, thus satisfying the definition of a set Q*'̂ *#
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Llkewl##* If S is a set then S = S + £ -i-E-f > • • ̂ end is 
therefore a set I»*" * *„
Theorem 2:8 t The sum of a countable collection of sets 

1» a set aill* Th9 prodnet gf & countable 
colleetioa of sets ^  a set jPÜÎ*
Proof» Suppose that B- >»here for each a,

Bm is a set PT. By theorem 2:4 the set B is a set P"*, and
is therefore a set Q**' by theorem 2:7#

Suppose that %#here for each n, B», is a
set Q^# By theorem 2»4 the set B is a set Q**, and is
therefore a set P̂ *' by theorem 2:7#
Theorem 2:9 » The difference two jsets Jg%# or two sets

9Z lE both & set Q”*** and a set P **'.
Proof: Let IP =? where 2, and are sets P*#

Thus IP =: 2, ' jB:;# But £| is a set and a set by
theorea 2:3 and theorem 2:7 respectively* In a like 
aianner. Mg is a set and a set # and so tSMg is
also# By theorem 2:6 and theorem 2:4, T is a set and
a set . By taking complements, the second part of the 
theorem follows directly#
Theorem 2:10 s For 3 ̂  < Q . every set P*" is the sum

of A countable collection of disjoint sets 
Ei.t £&§ Si# » where for each a# la JLE E
SÎL, Cn<«.
Proof: Suppose E is a set F“, where 3 ̂  w < A  *
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<•3.3"“
Then E =  XTn§ %*#r# for each n, T„ la a set , 2
(For if T„ were a set Q*, then it would also be a set by
theorem 2i3)

Let 8*» ̂  7nt and let G* be the maximum of the 
ordinals , px • ps t • •• » p«r * Thus 2 ̂  Ck<m for each k.
3^ is a set for each k by theorem 2i3 and theorem 2:6. 
We note S.CS^CSjC .

Let S, = 3, and = 8*+, - G 8  ̂for each k. But 
GSLf is a set by theorem 2:5, so that C 8  ̂= 7̂,, + Tk,»"*" 
7̂ ,̂̂ ' ' where for each JP , 7*,# is a set

Let $h,9 be the maximum of the ordinals Ê î Etçsp 
5r,îf- for each jp . Thus 6 *̂ < for each J? .

Let 8̂ g = 7,c,i 7k,c for each^ . By
theorem 2:6, is a set for each ̂ , and we note

Let Rir,i = 3k,, and = 3^, * 6 for f = 2,3,4, # .
Since ^ for f ÿ 2, by theorem 2:9# B*,# is a set

for each f ; and since 6*,# < for each jg ,
Ek,« is a set • But @o 8^4̂,* 2*,̂  ̂is a set
Q̂ K4>i each Jt by theorem 2:3 and theorem 2:4#

Let F = S,+ %  ZZ 3k.i *Bk4« Tbe set F is the
I f e i  j # r i  ^  ^

sum of a countable collection of sets Q **** for £k4i < o( «
The set F is also the sum of a countable collection of 
disjoint sets, for we note that B,i'R̂ = 0 if i?^k since 
Bir~ 3* ' G 8 -̂, and the sets 3^ form an increasing sequence
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ef Beta. Following th« @am# line of reasoning, we note 
that the sets are disjoint for a fixed k and where 
JP“ lf2,3i *** *

Thus for a fixed k, we have the sets R, 
where the sets 3̂ *, * R,^ are disjoint sines sets U,e,ji are 
disjoint for a fixed k and f ̂ 1,2,3» # Since for any
fixed k, ^  ^  8^j, - G  3 » < , Ei Is disjoint from
the other sets*

For a fixed number i , we have the sets 
R, + %  3̂ ,̂ ' » For each k, , and hence the
seta are disjoint*

It remains to he shown that S = F« Since it is 
evident that F— R # + S|ir«-i*tv3fr*JIrt Ma.* "**
Rnt S|f̂| * 6 3#c~ Rir*'i # so F — 2— Rk ” 2TS* *■ ̂  — B* The**'** K** rt»t
proof is complete*
Theorem 2» 11 i £g£ » eete P" are topologically

invariant, and for * sets are
topologically Invariant.
Proof; Sets Q^(Qg) are topologically invariant. 

(See Chapter I, page 7) Preceding by transfinite induction, 
suppose that the theorem is true for every ordinal p whereOho2 ̂ 0<or, and let B be a set P^* Then B - SI £*,» where for'  m*#

each n, S„ is a set ^  . By theorem 2;3, we may
assume that On^2 for each a.

Let T be a set which is homeomorphic to S by a
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sapping f. Let (B*,) for aaoh integer n. Then the set
T =" ZTm# where for eaeh n, Tn i# a aet Q"" by onr induction 
aaeumptien# T is therefore a set

Suppose that R is a set where ot^3, and let 
GR= %# Suppose that T is the homeomorphic image of R by 
a funetion f. There exists by larrentieff*s theorem sets 
If and R, eaeh a set such that BcM, TCR, and M is
homeomorphic to R by a funetion such that ̂ (p) =f(p) if 
pcH« R, p. 1261 Since RCM and B- R=M':GR = M-R 
M- M E. t « f(H)^(H) * #(M-M'E)- R(M)- d(M-S) = N - 0(M*B) • 
The set M is a set and £ is a set ^ 3{ so M E
is a set P% ot^3ÿ and ĵ (M E)=: S is a set ?*• But this 
gives T-R — |I(M«E) * »— 3 s=H • loS. Since R is a set Ô CQ^)» 
and €8 is a set T is a set The proof is complete*
Definition: A set S is said to be a Borel set if for some
ordinal or, where 14 E is a set or a set Q^*

Thus the family of Borel sets (B) is merely the 
eollection of all sets P^ and for all ordinals o( of the 
first or second classes* The Borel sets satisfy the follow
ing conditions:

1} Every closed set belongs to B*
Z) The sum of a countable aggregate of 

sets belonging to B belongs to B*
3) The product of a countable aggregate 

of sets belonging to B belongs to B.
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Condition 1) follows directly from the definition 

of sets Q « Suppose that B - where for each n̂  is
a set helongiag to B# By theorem 2:7, we may assume that 
each set E is a set , €« < O  • For this infinite 
sequence of ordinals (Em) , there exists an ordinal ̂  such 
that E„< ̂  <P for eaeh a. T3» P« 911 Thus E is a set 
and so it belongs to B. Condition 2) is therefore satis« 
fied« In a very similar manner, it may be shown that 
condition 3) is satisfied.

Having shown that the family of Borel sets 
satisfies conditions 1), 2), and 3)# it will now be shown 
that the family of Borel sets is the smallest family of 
sets which does satisfy these conditions* With this fact 
proved, we will have established an equivalent definition 
for the family of Borel sets*

Suppose that W is any family of sets satisfying 
conditions 1), 2), and 3)* Sets Q' belong to W by their 
definition. Sets Fo*(P̂ } then belong to W as a countable 
sum of sets Q'• Since sets P' are sets P*, they also 
belong to V*

Proceding by transfinite induction, suppose that 
oi is any ordinal such that 1< ̂  < Q  , and assume that all 
sets P^ and belong to W for . If E is a set P%

A . ^then E = jC Bn# where for each n. En is a set Q ", cx»,<o(. 
Thus Sn belongs to W for each n, and by condition 2), E
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b«loags %o Vm

aimilarily, if % la a a#t Q̂ , thea S- TTEm, wiiaro 
for each a, £n is a aet P̂ **, <er# Thus £» beloaga to W 
for eaeh a, aad by eoaditioa 3)# ^ beloaga to V« The 
family of Borel aeta la therefore included la the family W* 

Other properties of the family of Borel seta 
which follow from the theorems already establlshod are 
as followsI 4) The oomplemmat of a set belonging 

to B belongs to B.
5) The différence of two sets belonging 

to B belongs to B*
$) Â set which is homeomorphic to a set 

belonging to B belongs to B.
% e  family of Borel sets is also the smallest 

family which satisfies conditions 71* B), and 9) as follows:
7) Bvery open set belongs to B«
B) The sum of a countable collection of 

disjoint sets belonging to B belongs to B,
9) The product of a countable collection 

of sets belonging to B belongs to B.
Suppose that W Is any family of sets satisfying 

conditions 7)* A)* and 9)# By condition 7), sets P* belong 
to W, and so sets belong to ¥ by condition 9)* Since 
sets are sets sets Q' belong to ¥. Each set P̂  is 
a countable sum of disjoint sets and by theorem 2:10»
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and so thoy boloag to W by ooadition d)« Sets being
sets else belong to W. Now let o be an ordinal such 
that 3 and suppose that all sets F^ and belong
to V for ̂ <<r* If B Is a set P̂ , then by theorem 2:10 
the set S may be expressed as the sum of a countable 
collection of disjoint sets thus E Is a set
belonging to W by condition #), If B Is a set then
It belongs to W by condition 9)#
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CHAPTER III

BOREL SETS AHB Cot

la this chapter we shall expreea the Borel sets la 
yet a different aanaer, namely In terms of aete and C#. 
Ve shall also establish several Important properties of 
these sets Fo and Q*#

In the definition of these sets F# and It will
be neeeasary to consider any ordinal or < Q  as being even or
odd. If Of Is a finite ordinal, then or will be considered 
even or odd In the usual manner. If o* is a limit ordinal, 
that Is, a transfinite ordinal with no Immediate prede«> 
cesser, then a is considered to be even. Other ordinals 
will be defined to be even or odd by transfinite Induction 
as follows* Suppose that A Is a given transfinite ordinal 
with an Immediate predecessor, and suppose that we have 
determined each ordinal ̂  to be even or odd if or, Then 
If the Immediate predecessor of o Is even, ol will be odd;
If the Immediate predecessor of ec Is odd, a will be even,

A set E Is a set Fo IF and only If It Is a closed
set. For any ordinal m>0, ̂  odd, S Is a set %  If and

ooonly If E = ZJ Ew, idiere for each n, 1» a set Tern , erm< ot, **** _

If ot> 0, or even, E Is a set If and only If E = Em, 
where for each n, E„ is a set Foî , < a •

"»19"
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In a corresponding manner, let S be a set G* 

and only if it is an open set. For an ordinal a  >0, a  odd, 
S is a set if and only if S» ffSi,, where for each n.
En is a set 0»,, ̂ ••<er. For«> 0, <x even, E is a set Q» If 
and only if B = P  idiere for each n, Em is a set 0#̂ # 
« * « < « .

Theorem 3tl i The complement jgf a set üi l£ A set 5:»» snd 
the complement of a set Om £ set for o»<Q • 
Proof8 The theorem is true for sets Go(open) and 

sets Fo(closed) by the properties of open and closed sets, 
and is true also for sets G,(Og) and sets F, (F,.) as shown 
in Chapter XI. Proceding by transfinite induction, suppose 
that ot is an ordinal such that l<oc<p^ and assume that 
the theorem is true for all sets 0  ̂and F^, where oc •

If ot is even, and if E is a set then E = 
tdiere for eaeh n, E„ la a set %m * ^ # For each n, ^E»
is a set O.r«,,̂ m<or, by our induction assumption. The set 

is then a set 0*. since (^E =  GTrEm = ̂  (eSn* Thenst
proofs for the other possible eases are very similar. 
Theorem 3f2 i ok< O  is odd, the sum of a countable

collection of sets Jfe. ̂  ̂  set R.. and the product 
of a countable collection of sets 5ft 15. & set Q«. 
1C l5 even, the product of ̂  countable
collection o^ set# Ik l5 5 nej> |k# th^ of 
tL countable collection of sets Qat is set Gat.
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Proofi Suppose oc<P.g oi le odd, and £ - &  8^* 

where for eaoh a, le a eet F^« Then for each n,oo£„= where for each k, H„,k le a aet ^  •
Thus E = S  » and le by definition a set F<x*

If oi< P  f odd, and E =  TTÊ ,, where for each a.
Sh le a set Qy, then E- <S{Q TT EmM G  En)# Since^̂9 nsrt
G  En le a set ÏÏ» for each a, ei la odd, le a set %  #
Then E la a set Q«r as the complement of a set by the 
previous theorem. The proofs for the other possible eases 
are very similar.
Iàserem..iu * .6 ZS, a&É a se^ ̂

ja set Qjjt for e > g r .
Proof! Suppose E is a set F^ Ç • If ^ is

even, then since Ss-B'E*E*** , E is a set F̂ . If ^ is odd,
then since E «E +E +E+ , E is a set F̂ *

Let E be a set G«t, of<^ • If ̂  is even, £ is a set 
Gp since E = E + E +£+ "» , and if p is odd, E is a set Gp 
since £«£•£*£*•**.
Theorem 3:4 i fgr every ordinal »<(!. ^  fug gnd product

o£ any finite number g£ aete r»(Oe) £ aet F«(CUll
Proof: It is noted that in several eases, this

theorem is established by theorem 3:2.
Suppose oi<p , oc odd. Let E and H be sets and

oolet 8 = E E. E= Z  E»a, idiere for each m, Ê , is a set Wcn»»9 
«„<<«, and H= , %^ere for each n, Hn is a set Fp„ ,
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The» S=*-H= = X  X  B„ H„. U t  A^„ b*“"•—I *fsf A# —# #%*f

•n «Ten ordinal such that « A-.,. < A-.„. “»<i A„^< «
for oaeh pair of indlcas m and a. Than each sat B„ is 
a eat ^Xmn^ ® l8 tharafora a sat F«.*

Supposa OK < P  ÿ cac add* Lat E and H ba eats Q»* 
and lat 8 = E4-B* Than 8= G(G(E4"H))— (2(<gE"6K). But 
€E and <SR ara aata %,* hanea thalr product is a sat by 
tha abova proof* Tha complamant of thalr product« tha sat S, 
is than a sat 0̂ * Tha proofs for othar casas ara similar 
to tha abova# Having proved tha thaoram in tha ease of two 
sate, tha proof may ba axtandad to any finite number of 
sets by ordinary induction.
Theorem 3:5 : tss. ordinal « < n .  ererr nlao

a  «Ê& Sm u  , S E s x  ask a» is. alas & as& £*±i*
Prooft By theorem 2tl and theorem 2s2 it is known 

that a set Qo(open) is a sat F, (F^), and that a sat F^ 
(closed) is a set SiiG^)# Given an ordinal «  ̂l^cx< P, 
assume that for every ordinal ̂ <or^ a set G^ is a set 
and a set Ff Is a sat Gp#.,* Let E ba a sat G*,» and suppose 
that A is odd* Than E =  iTSn# where for each n, E^ is a- f
sat Ocd̂ , «».<«** Tharafora each set is a sat F̂ .̂j , 
where * Since a 4-1 is even, £ is a set F«,+,* If
wa suppose that « is even, the proof is very similar*

Lat £ be a sat F«,* Than €s, as a set Ĝ * is a 
sat F«c4.| from the abova proof* Thus £=€(€£) is tha
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complement of a sot fcî i § and hones is a set
It will now be shown that if H is the family of 

all sets Fa and Q«, 0 ^ot<P, then the family R is identi
cal to the family B, the Borel seta# We have noted that 
the family B is the smallest family of sets to satisfy the 
following conditions#

1} Every closed set belongs to B#
2) The sum of a countable aggregate of 

sets belonging to B belongs to B#
3) The product of a countable aggregate 

of sets belonging to B belongs to B#
Directly from the definitions of the sets of the 

family R, it can be concluded that the family E satisfies 
conditions 1), 2)* and 3)* If we can show that the family 
R is included in the family B, then the family E must be 
identical to the family B#

Sets FoColosed) belong to the family B# Proceding 
by transflnite induction, suppose that oc is an ordinal such 
that <* < /I , and assume that sets belong to the family B 
if If oc la even; let S be a set Then — TT£„;
where for each n, S„ Is a set F#*w # «ak* < # Thus for each n, 
Em is a set of the family B, and by condition 3), E is a 
set of the family B, If tx is odd, then E = "ZEn# where for' n«t '
each n, is a set Fc*„ , Thus for each a, E„ is a
set of the family B, end by condition 2), B Is a set of the
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family B«
Sinea eats Q* ara aats P»+, , aata Oec ara ineludad 

in tha family of aata B* Tha family R ia tharafora 
ineludad in and identical to tha family B.

Raring aatahliahad that the two families of aata 
R and B ara identical* wa shall now show tha relationships 
between the aata F«* 0# and the aata of these two
familiea. If ia tha least limit ordinal, wa hare;
Theorem 3tj5> I For ^f a  1& SISB» ara idantieal

to the aata « and seta jg» are identical to tha 
aata F"*\ For â£ a lâ 5âl» adta. && are
identical ̂  the seta jtüül» and aata 0@ are
tdwitie»! Sa. &bË ssia. Q**'«
ProofI The aata Fq ara identical to the seta Q* 

by their definitions. Given an ordinal <%, 0<ot<u>, assume 
that the theorem is true for all ordinals ^ if 
Suppose that oi is even, and lat B ba a sat F^. Then

OOB = 7TBn, where for each a, E„ la a sat ocn<«* If
cXfi ia even, ia a sat , and hence a sat where
otn* 2<oe<oc<i-l« If 0in is odd, E„, as a sat I» a sat
P̂ '*’*, Ck#, 4» ]l ( <* <C<% 13L* B ia therefore a set

If <x is even, and if H is a sat thanOO .H = TTH„, where for each n, ia a set P ", «« <cx+l* IfO n $

«H is odd, P®***, as a set P®'"̂ *, ia a set F«a„, If orn
is even, P ^  is a sat , <=*„--1 ( ot. H is therefore a set
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Fot» and thus th# aeta F«c are Identical to the seta

By taking complements, sets G# may bo shown to be 
Identical to the seta * In the ease where «% is odd*
the proof is similar to the above#
Theorem 3*7 $ If ot g Jg even, then sets Fa are 

Identical to the sets Q**. and sets G« are 
identical to the seta P**# If « > w . « Ĵa odd,
then seta gg are identical to the seta P% an<̂
S2S& J&a 12 lilB 22M
Proof: If « = and B is a set F«* then
where for each n, B„ is a set B

ia therefore a set gT̂ ** for even* and hence a set P®̂ '*’**
where ou+a<«* If «n is odd* then E„ la a set P * *
ce„4-îct * B is then a set Q®*.

OOIf B ia a set Q * then H = TTH„* where for each n*
ns I .

Hr, is a set P̂ " * at* «c (UL#. If or», is odd* then H», ia a set 
* and hence a set If ov, is even* then

la a set F«̂ ., * <%,-f < a « H is then a set By taking
complements* it follows that sets 0# ere identical to the 
seta P®' for «rs=ui.

How suppose that ot >uj* and assume that the 
theorem ia true for all ordinals ̂  idiere ql • There
are three possible cases to consider# The first is where 
« is a limit ordinal* the second ia where «. is even and not 
a limit ordinal* and the third ia where m is odd#
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Plrmt, suppose that oc Is a limit ordinal, and letOQ£ be a set Fer* Then B-TTE», where for eaoh n, Sn is a 
set Fc„, u» ̂  oc„<of, Then K„ will be a set if cx„ is 
even, and thus a set , «n-^-Ka. If «r„ is odd, £„
will be a set F^", <oi. £ is then a set Q**,

If S is a set Q**, H = where for each n,
is a set F̂ **, <w«, <oc « If o(rt is even, then fin is a set 
and thus a set , ot^^Ka» If orn is odd, then fin is a
set Fee,,, oTn<a« fi is then a set Fer»

Suppose that ot is an even ordinal, and is not a
oOlimit ordinal. Let B be a set Then B~TTS„, where

for each a, B„ is a set Fnm » orn<or. If oe„ is even. Bn Is 
a set Q**'*, and hence a set F®*"'*’* , of«*l<ot. If o(n is odd.
Bn is a set F^ , oiv,<cr. B is then a set Q*.

If II is a set Q% then fi = Wfin# where for each n,
fin is a set F"”**, <x„<ar̂  If <%n is even, fi„ is a set decnt
and hence a set Fo,̂ *,, Ofn ̂ ]L » If ot„ is odd, fin is a set
Fn. , a»<or» fi is then a set %*»

If oc is an odd ordinal, then the proof is very 
similar to the case where oc is an even ordinal, and is not 
a limit ordinal. By taking complements, the remaining 
parts of the theorem can be shown.

We have shown that for any ordinal or, 0<^ < A, 
sets F(n include all sets F^, ̂ <oc, and all sets ^<a. 
Likewise sets Qcr include all sets G ,̂ ̂ <cr, and all sets F^,
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Th# question might arise as to whether there exists 
for each ordinal 0 <^ < H , sets F« which are not sets

for each ordinal or sets Got which are not sets
Ĝ * for each ordinal ̂ <«t* This would follow if it can be 
sho%m that there exist sets F« which are not sets G« for 
each ordinal cf#

In the case where 0# there exist sets which are 
sets Fo(closed), but are not sets G open) by the proper* 
ties of open and closed sets, and by taking complements it
follows that there exist sets G « which are not sets Fo • We
shall show next that in ft|, one-dimension Euclidean space, 
there exist sets F, (F,.) which are not sets G, ( Gg ), and 
vice versa* Several preliminary theorems will now be 
established.
Definition: A set E is nowhere dense in E|, the set of all
real numbers, if for every open interval (a,b) there Is an
open interval Ce,d) such that <c*d)c(a,b), and Cc,d)'E = 0« 

It can be shown that a set E is nondiere dense if
and only if €(e) is dense. [6, p. 351
Definition; A set £ ia a set of the first category if and 
only if X ^ X l n »  where for each a, £„ is nowhere dense. AXus I

set £ is a set of the second category if it is not of the
first category. A set S is a residual set if It is of the 
second category, and €E is of the first category.

The first category shall be denoted as category I,
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and the second category as category II*
Theorem 3%$ % If ̂  set ^ jls jĝ complete metric space, then 

â 1& of category
Proofi Suppose that a set 3 Is a complete metric 

space^ and suppose that 3 Is of category I* Then S = 
tdiere for each n, is a noisfhere sense set* There exists 
an X, e (CS|} and an 6|>C such that N(X| ,2e,)*B|= 0* Thus 
h{*»,S|)‘g, =  o* Likewise for each integer n, there exists 
an Xf, ea(x^_, f ̂ n-i )* G(Em) such that for some «^>0^
€«<'̂ 5=*» K(x„*e„)'S„«0, and such that »(x„, e„)CH(x^„e„.,)* 
We obtain a sequence of points x^ corresponding to a 
decreasing sequence of closed sets idiose diameters approach 
sero* Since S is a complete space, there exists an element 
Xo common to all the intervals, by Cantoris theorem*
[3, p, 30] But x«€^Sn for each n, hence x*^3, which 
leads to a contradiction. Thus the theorem is established* 
Theorem 3:9 s jk set £ 1^ Jh complete metric space, and

M  £ i£ 2 £S& ̂  Is flSBsa, Is £• SSss £ Is
a residual set, that is. g In a set of category II
ASi JS£ £> A AA& fi£ £•
Prooft Suppose that H is a set Gg which is dense

in 3, a complete metric space* The set is a set
thus <Ê»IB == jZ:; BL,, where for each n, is a closed set.
Since and H being dense in 3 Implies that

is dense in 3 for each n* 6 (CBn) is therefore
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nowhere dense In 3 for eeeh n. The set 6 h is then of 
category I, and 6H4-Bs3, where 3 la of category II by 
theorem 3:3, Thus H is of category II, for If H were of 
category I, then Rs^XHit ^ere for each m, Is a set 
nowhere dense# Then 3«(!?H4 4- and would
be of category I, but this is a contradiction *
Theorem 3:10 t The set of all rational numbers. |[, j| set

ZsTi but ja ĵ ot j| set Oi*
Prooft The set If, all rational numbers, is a set 

1̂  since N = 3  , where for each k, is a rational
number. Suppose that H la also a set Gg, Since B|, the 
set of all real numbers, is a complete metric space, and 
since N is dense on Rf, If will be a residual set by 
theorem 3%9# That means that H is a set of category IX, 
and GB is a set of category I. But where for
each k, is a rational number which is a nowhere dense 
set on B|« Thus II la a set of category I, which leads to 
a contradiction.

Prom this theorem, we may further conclude that 
the set of all irrational numbers is a set Gg, but is not 
a set f̂ m In Chapter XST, we shall show further that there 
exists for each ordinal a, ()<of < jT), sets Pc» which are not 
sets G„, and rice versa.
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CHAPTSa I?

SETS ÜRIVSR3AI. TO SETS 0^

1) Ber^l Seta Ralativa to their Containing Space*
From the construction of the Borel sets. It la 

apparent that if E la a Borel set, say an F«, In a apace A, 
It la not neeeaaarlly a set F« In a different space B« For 
example, an open InterraX ia a set O9 In a space consisting 
of Itself only, but Is not a set 60 In the plane*

Suppose that we have a given metric space M, and 
suppose that E Is a subset of K, and la a metric space 
itself* Then for any o r d i n a l a  set F*(G*) 
relative to the metric space E la denoted as (F«]̂  (̂ (Op.)̂ }* 
Tbeorwa Atl 1 Given a metric space and ECM* then j| 

set HCB la ̂  set relative M  1 M  *nd
ssài M  1& s t l à ^ & s s k

gftjggL ESÀSMlB M  l&S S£&SSl
Proof; From the properties of open and closed

sets, it is known that a set la an Fo(closed) in E if and
only if It la the intersection of £ and a set Fo in M, and
that a set is a Go(open) in E if and only if it Is the
Intersection of £ and a set Go in M* C6, p. $0]

Proceding by transflnite induction, suppose that
cr̂ l is a given ordinal, and assume that the theorem ia

«•30-
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true for all ordln&la ̂  ̂ let H be a set (]P<* ĵr, HCB,
and suppose that « is even. Then H» |X^»t inhere for each 
a, H„ Is a set ecn<^• By our iaduetlon assmnptloa,
Hn the Intersection of B and a set K„, where K„ Is a set 
Fot„, <**!<«. Thus H« JTiB*Kn) — B ' and hence is the
intersection of £ and a set F • If cc is odd, and H is ago
set (F«c)̂ » then where for each m, is a set
(Fa^)g* Then is the intersection of £ and a set X̂ , 
where X„ is a set F<* , Thus !Z(B-Kn> » B • XX«»nr I n=i
and is therefore the intersection of £ and a set Fœ»

Mow suppose that H = X'£, where X is a set 
0<®t<0, and suppose that oc is even, then H = X*B=B •TJX„, 
where for each n, X^ is a set Fo.„, <*,%<<%, Thus 
where each set £ K„ is a set (F̂ )̂̂  by our induction
assumption. B is then a set (Fe»]̂ . If «c is odd, then
H=sX*B = B • *2IX„ = ^ £  X̂ , where for each n, X. is a set
Bdnt B*X„ is therefore a set );= sash n,
and S ia a set (F«t)^. Proof for the sets Q« is very similar. 
Theorem 4t2 s  Given a metric soaee M. and BC M. then a set 

HC£ is a Borel set relative to B if and onlv if^pe. oomoppwœœop. '̂ wowmpoooo#MPMM%0#p##oee ^mm#æ *em* o#emmp ecmeps

Ü  Is. bhe intersection of ̂  and & Borel set 
relative to the snace ».
The proof of this theorem follows from theorem 4:1* 
Since the intersection of two sets G*) is again 

a set Fck(Gck), we have the following theorems which follow
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directly from the above#
Theorem t Given & ne trie ecaee g, ££â HCEC-M. i£ 1

A asi SadSaà. 3TSafl.tt.Ta ta H» j&fla a Is A sat JU^SoÛL 
relative ̂  g.

1Î. &SJ6SM* SE& 1 is A sat £*£5«1 relative Sa
Mt B is A sat fk(W, rsWiTS ta £ i£ soi
^iz it it is A sat SaCSsâ. relative Sa £• 

JbsgggiJIuît * Bissa a  aatria sssss Bt sai BCBÇB, it B ia 
A Basai sat isisUw ta B, Jiisc B is s Basal sat 
ztiatiza te£«

it H P£c.M$ £ is A Basal sat mlmtlTs ta
B, tBsa B is A Basal sat jalAtiya ta £ it a M
S£ilz it it is A Baal sat ssWixs, ta B«

2) Conetrnetl^ at Sets Pnlvereal Sa MSSflS BStS 
Definition# A set D of the plane Is said to be a set 
tmlversal to all linear sets of a family R if the inter* 
section of D and any vertical line gives a linear set of 
Bg SIMÎ If any linear set of R can be obtained by the 
intersection of V end some vertical line#

We shall nov conetmct plane sets D ̂ Ich are 
universal to all linear sets G<%* These sets D will be 
defined in a space B, where S Is a subset of the plane 
which consists of all vertical lines x=:r, where 0<r<lf 
and r Is irrational# By observing that the set ês is a 
set being the sum of a countable collection of closed
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It la seen that S Is a set Qÿ, and thus a set Qoc^or 

«t̂ X relative to the plane.
let Ho be the set of all irrational numbers such 

that If X € Ho# then 0 < x < 1. If x e Ho# then x can be 
written uniquely as a continued fraction as

X 35 —L— -i— -i. ■ ĴL.Ol* +" +" «* +••••♦• oW * * »
where for each n, oi" Is a positive Integer. Thus we may 
associate with each number xel^ a unique Infinite sequence 
of positive Integers, ê , #, which we shall denote
by X s C2, pp. 273»2dl1

In turn, each number x gives rise to a countable 
sequence of Irrational numbers x, , x,, x^,** •, obtained 
as follows by continued fractions.

X ,  s a  « '  J e # * ,  *  •  •

X, 3S «a , , or*®, oc'**, . • .
« a

and In general.
r • •Xr»= or , (%

By the properties of continued fractions, 0< x^ < 1, hence 
Xn e No for each n. Also, If x and y are two numbers such 
that xe Ho, ye No, x = fa**}, y « , then given any € >0,
and given a fixed Integer k, there exists an Integer L such 
that if for n4L, p(x^,y^)< 6 . This gives rise to
a S>0 such that If p(x,s}<$, and then at" = ir"
for n^L. Hence we have shown that for any fixed Integer k,
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la a continuous function of x*
Lat R| « Ra, R3, * *>* ba a countabla opan basa of 

tha real number line F*« Than If Xo«8o» and Xo=*î«"3f letOO
R*(%o)= Thus HoC^o) will ba an opan linear sat*
Then let Mo(xo)=B^[p * (Xoif)# f€Ho(xoQ, and

Mo=^2^o(ac) — (x,y), y€Ho(x)]p
for X a Ho*

Mo Is an open set In 3, for If pa Mot then there 
exists an x* such that p €Mo(Xo)# and p = (xo,y») # where 

Ho(%e)* Thus for some Thera exists a
neighborhood of such that If q is a point in this 
neighborhood intersected with the space than qa*(%, 
idiera If x,-£ç"J , x*a by continued fractions * then 
^  3 ot" for a < k* Thus y, € R^k» and q is contained in the 
set Mo*

Mo is a set universal to all open linear setSt 
that Is, we can obtain any opan linear sat, and only such 
a set, by Intersecting No with a vertical line L(x), x a Ho#

asfor If Q is a given linear set, then Q = %  , Wiere
is a set of the countable open base of F* previously 
selected* Let x — et', * , where n^ for each k,
and X is defined by continued fractions, Then He(x) =

R«k - jXRn, =  Q* But Mj(x>~Mo*L{x), for x defined above, 
and Ko(x) is identical to Ho(a) except for position* Thus 
we may obtain any given open linear set by intersecting M#
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with eom# vertical line of 8# On the other hand, the 
Intereeetion of Mo end any line L(%) # zehot gives a set 
Me(x) which Is hy definition the snm of a countable 
collection of open linear sets^ and Is therefore an open 
linear set itself*

If Zo * Mot then we have shown that Xo determines 
a sequence £ẑ j of numbers such that Zm @ M« for each n*
For this given z*# let M, (z*) =  f? Mo(xn)# letnst

M|Czo)*®rD> = (Zo,yJt y«H,(xoOt and
M, = Z!M,(z J= So[P = Cz,y)t yeM,{xfl * zeMo*irfrMo ^

The set M| as defined above is a set universal to 
all linear sets Q|(G^)| for let Q he any linear %  * then 
Q= TT̂ Qwt idiere for each n, Qn Is an open linear set* For 
each n# there exists an x„ such that Qn==Ho(Zn)» where 
Zo> eint t ' H > * ** hy continued fractions* Define x 
as follows} X = « 11 0*21 # « 7 1

— ec't at̂  $ Of**t»**»or’̂f • • •
idiere in général, %*here k * 2"'Wam “ i) * We then have
H, (x) = W  H.(x„) =  Q,= <J.

It can be shotm directly that the intersection of 
Ml and a line L(x), xe No, is a linear set Qj } however It
would be sufficient to show that M# is a set G# ( Og ) itself
since the line Kx), being a closed set, is a set G, (Gg) f 
The fact that the set_$<* is a set O, will be shown later*

In general, we shall define by transflnite
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and not a limit ordinal. If ot<n» ̂  is odd* H«K(z) =
induction the sets HojCx)a= 2  for <%< (1 * m. is even

#OO
TTHof-iWn) * sni if *̂ < n  » Ol is a limit ordinal* then

where fXn} is a sequence of ordinalsn=i "
such that 1m<« for each n* and limlm . In each ease.

*J* o)=̂ *pCp = (*o»y)t yeH*(xo)]*
*«=Sp[p-Cx»y)t yeH«<x>]* 

where Xe ̂ Ho § x^ Ho#
Sets Mo. are universal to the linear sets 

0< «^A* for if Q is any linear then Q will be shown 
to be the intersection of a vertical line I»Cx)* xe H#* with 
1 *̂ that is* Q will be a set )Wx). For suppose that is
even and not a limit ordinal* and assume that the set Ms
is universal to all linear sets Gp* then Q» ̂  Q»*
where for each a* Qn is a set OSnf ^n<ot. Each set Q̂  is 
then a set G«.f * and Qn = M«-, 'L(x̂ ) = H._, (x̂ ) for each n. 
How define x as follows;

X =  c'j «i, « %  » • * •
— Of'* O»*-, Ot**Of **"*Ot'*** •

where for each n* x„= «g^oi^*,..*#^*.. . , and in
general* «ÎT where k = 2""'(3’m-l}. We then have

H«(x) a 2  H*f_, (x„) «  ̂  Q„ = Q.
Suppose that o, is even* ot< p, * and ci is a limit 

ordinal, let Q be a set G#, Then Q = %  Qn# where for each 
n* Qw is a set Ĝ *̂ of . There exists a sequence »
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Xn<or for each a, such that Xln^Xn^oc* For each set Q̂ # 
which is a set there exists a such that »
and A  Km ̂  Thus Q, is a set
induction assuaptioB, there exists a number No»
such that N Ak„̂ *ko) — for each n« Where A( ̂  for 
any n» let N^.(x^)x:0, the empty set# Thus we have the 
following* Not(x) = Z  (Xo)= Ç  Xq„=^Q#

«*1 ' •  r i = |  " H  ”  **= I

If OC is odd» o/< O  » the proof follows in a manner 
similar to the case where a is even and not a limit ordinal* 
Since a line l(x)» xe No» is a set G«̂  ̂ >1» the inter*» 
section of this line and a set will be a linear set G*, 
if M is itself a set G«r* That each set M*, is a set Gq» 
relative to 8 will be shown next.

It has been shown that M* is a set Go(open) 
relative to 3» and that for each x€No» and for each fixed 
n» x„ is a continuous function of x.

We shall define F„ to be a mapping of S such that 
F„(p) = p„(x»y)=s(x„»yJ» and therefore F*, is a continuous 
mapping of vertical lines into vertical lines. The mapping 
will be an onto mapping» for if q = (s»y)» where # is an 
element of No» then a = »*»»»%-.-»«**»••• by continued 
fractions. Let x=  «i » «»i»«î #•• • t «7* ' ^ere for some 
fixed k» = «c"l Thus xe N*» and «i» «5»* ••»««»•*’»
that is» x^=s. Hence F„ (x»y)^ tXo»y) =  C*»y) •

Given an ordinal o*< 0  » suppose that if ̂ <0( » then
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is a sat in 3» Supposa that «t ia odd» Then w@ have 
the following identities;

= Bp(jP = {x»y), y« ̂  fi»<-.|(x«0
" %TEp[p = (%*y)* y€H«-,(x„f).

To establish the last identity, suppose that 
p^€ Bp[p = (x,y), y e TTH«-i(x„>3 > and p. =  (xo»yo)# Then, 
vaiere x© «ives rise to the sequence j# y© a ft (x̂ ) ; 
thus y© € H^_,{xJ) for each n» Thus

Po€Kp[p«(x,y), yeH«.,(x;i] 
for each n, which means

PoG TTs^[p = (%#y), yeH^-iCxSO*
On the other hand, suppose that

Po€ ̂  |p = (x,y), yeH«-,(x„Of 
which means that, for each n,

P©€ Ep[p=(x,y), ye Cx„)] , 
so ye a©,., (xn) for each n# Therefore

Po ̂  Bp[p=(x*y)» ]TH©f_,(x;)],
and the identity is established»

But we then have Bp[p-(x,y}, ye R«_, {x„0“ 
y^(Bprp=(x,y), yeH.^.,<x)] )# Tor If

Po€Bf[p = (x,y), y e ^ „  <x„Ot
where p©=(x©,y©), yo€H«-,(x®)» If q©= (x:,y©), then

Ep[p=(x,y), yea.., (xQ , 
eod P©<Po)=Fr.(*ofyo)=^*S»yo) = q # thus p©-F”*{qo), SO
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Po«ïv.'CBrCp
On the other hand» let

Then (xM,yo) = Fw(p*)= &p[p = (%#?) # ye» <%_,(xn ; thus 
y^€B«., Cx*), and p«e S^fP * (*>y> • y€H*-,(x„)3, The 
identity la eatabXished* Thus

where ot< n , ̂ odd*
If Of ia even, not a limit ordinal, then it can 

be ahown in a similar manner that
=  Z A ' ( E p [ p  = r (x ,y ) , y e H ^ - , ( x ) ] *

If oe is even, and oe is a limit ordinal, then
M#="Bp[p=(x,y), y€Hp,(x)3

- « p [ p * ( x , y ) ,  y e  2  H;^(x„)3  

= ËEp[p = (x,y), y€HxJx„)J,
«diere {A»} ia a sequence of ordinals such that 1^A«^ at , 
For suppose Po « Epfp ~ (x,y), ys ̂ »x„Cx«Ot P.= (x.,y#), 
and Xo gives rise to the sequence (x̂ j. Then

Po^ &p[p=(^#y)» ya T  
Thus for some a, yeHx.„(x^), and so

Po€ ̂  E p[>= ( x , y ) ,  yG «;% ^(xJ]#
QOIf Po« Z  Ep[p = (x,y), yeH;^^(x„)J, then for some 

index n, p* € Bpfp =- (x,y), ysBj^Jxn)] * Hence
O O

p. eg,Q, = (%,%), ye ^  «*,(%«)].
Bat S , f p = ( x , y ) ,  y e ( i c „ ) ]  =  P„’ (S p [p = * ( * ,y ) ,  y6H;^^(x)3 ,
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for each n# as shown previously* ThuscO

K.=^fn(Kp[p=(',y), y e “A„t*0.
%*are at Is a limit ordinal*

Thus we have shown that for each n* the funetion 
Fn maps the space 3 continuously onto S* Relative to the 
space 8, Fn'<Q), where Q is a set Go (open}» is a set G»* 

p. 27] Proceding by transflnite Induction# suppose 
that Of < n  # and assume that ^ere Q Is a set Ĝ #
F<uc# is a set Qq relative to the space 3* Let T be a 
set and suppose that oc is odd. Then T »  Wt^» idiere 
for each m, T„ is a set Thus fj T„)=
TTPm(Tm) * Where each set ,ïÇ,(T̂ ) Is a set Gp„ in S. Renee 
?r(T) ia a set G«, ia 3* If A is even# then T = S  %». where#T|S|

I  mmà 0 0for each m# T„ is a set 0̂ #̂ Then F0(T) =F„( 2  T^)=
^F^*(T^)# where each set FT,'(Tm) ia a set in S# ̂ ^<«* 
Hence F^(T) is a set Go, in S«

By the identities that we have established# namely 
Mot —  TTfn (Bpfp— (x#y) # y € Ho(-| (3̂ 0 FniĤ ., ) #

n~t n*I
where o& is odd#

O O

[p “ # X € {x)3 ) ” (̂ or̂ i ) #
where oc is even# not a limit ordinal# and

Mot ~ ̂  CP — (̂ *F) * y G Hŷ  (x)3 ) — ?  F„ #n*i  ̂ F#— I
where oc is a limit ordinal# we may conclude that each set Me 
is a set Go, relative to the space 3* Since the space S is 
a set G| in the plane# and hence a set Ĝ # «^1# each set M*
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is a set Got in the plane for of^l* hy theorem 4s3«
As has been previously stated, any line L(x}, 

xeKo, is a set ^>1* Thus the Intersection of such 
a line and a set Kor is a set The sets universal to aU
linear sets are defined.

3) Sets Rk(Q«) Not Sets F^(Cy) for
Theorem 4tS t Jf R ̂  any family of all linear and plane

sets possessing the following properties. (A) the 
intersection of a plane set of R with a line is a 
set of R, and (B) any linear set of R projected 
onto the y-axis is a set of R, then if B is the 
set of all points on a line y=x. and Q is a set 
of R in the plane universal to all linear sets 
of R which are subsets of the y-axls. then 
D'UeR. and (D-U)l^R.
Proof* 1) D'B6 R from our hypothesis.

2} Deny our conclusion supposing that 
(D— U)€R. The projection H of D — D on the y-axls is a set 
of R by property (6) of the hypothesis. Since D is a set
universal to all linear sets of R, there exists a real 
number or such that the intersection of x-« and U gives a 
set S whose projection on the y-axls is H. Let Q be the 
projection of D-U on the y-axis. Thus H is the complement 
of Q relative to the y-axis. Suppose that p*»(«»,«).
Either pe(D*tl), or p6 (D— D). If pe DU, then « « Q, H.
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H«aee But* B contains all points ia which x = o* meats
the set Vf hence p$fU, %Aich gives a contradiction*

On the other hand, if we suppose that p e (D — U) ; 
then Of € B, so (oĉ oi>eB« But ECO, hence pe U, which is 
again a contradiction* The theorem is established*

The class of plane sets 1, satisfies the
conditions for the family & of the above theorem* The 
intersection of a set and a line ( a set G, ) is again 
a set C^t<a*>lf thus satisfying condition (A>* As for 
condition (B), that the projection of a linear onto 
the y-axis is a set QL, two cases are to be considered*
If the linear set Ĝ , is perpendicular to the y*̂ a%is, then 
its projection is merely a point* But a point, as a closed 
set, is a set G|, and hence a set G«f, or^i« If the linear
set Gg, is not perpendicular to the y-axis, then its
projection is merely a homeomorphic image, and thus is a
set Gey, 1*

Since sets universal to all linear sets CL%, 
0^O(<n, have been defined, and since the class of plane 
sets Oof satisfies the conditions for the family R, it can 
be concluded that there exists sets Gee vhich are not sets 
Foe For each cx^l* This in turn implies that there exists 
sets fof which are not sets F̂ , p<A, and sets QL which are 
not sets Gp, , for each ordinal ot, 0<ot<A«
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CHAPTBE V

ANALYTIC SET3

Suppose that we have a given apaee M, and a family 
of seta r contained In this space. For every finite 
sequence of positive integers n,, n̂ , U),# , n̂ » suppose
that we have a set of the family P assigned, and denote 
this set by ..jrin» Thus we have a given defining
system of sets which we shall designate by LBn,)ni,«-->nK3*

If a set B riji «a • * * » *disre the
summation extends over all possible infinite sequences of 
positive integers {n^y, then we say that S is the nucleus 
of the defining system [&n, ̂ n̂ ,. jof sets of the family 
P. Also we say that S is the result of operation A on 
the given family of sets P* or that £ is analytic relative 
to the family P, The class of sets analytic relative to 
a family of sets P will be designated as A(P).

For economy of notation, a finite sequence of 
Integers n*, n@, , n,̂ , trill be designated as n̂ )̂* ^he
nucleus £ of a defining system [£#(̂ 3] will then be 
designated as S 1f £_. ., where the summation extends

("x} i(=r
over all possible infinite sequences {0 }̂ •

Any set £ of the family of sets P is included in

«>43**
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th« family of aata A(P), for if the set B itself Is assigned 
to each finite sequence of positive integers n̂ ,̂ that is, 
E„^^=sE, then the condition is satisfied. Several of the 
fundamental theorems concerning analytic sets will now be 
shown.
Theorem 581 i The sum ££ « countable number of sets of the 

fmmilv of set It £ analytic relative to the
fssiiz f
Prooft Supposa H = XH„, «diero for each n, H„CF. 

For each finite sequence of indices let
for k=l, 2, 3, . thus Hr,=TTB„^j for all possible
sequences of integers «diere n, = n. The set B is then
aualytle .luce H- f
Theorem 5:2 : The intersection of jS countable number of

s£. A&S £u01x s£ ££U £ Is. ohalTtle relatlro 
l2SÈs£aaUzZ« Ü m s M f i )
Froof8 Suppose B =  TTH* , where for each k, F.

Let for k%=l, 2, 3,  ̂and for every infinite
sequence of positive integers (n^ . B =  
all possible sequences Jn̂ } , hence B = ^  B
Theorem St 3 t I£ each set is analytic relative to the

family of sets £, then the nucleus of the defining 
system F Is also analytic relative ̂  the 
faallr of oot» T. TUAm)cklT)l 
Proof8 A (1,1) correspondence may be established
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between the eequenee of all positive Integers Ikl and a 
sequence of all pairs of positive integers by
letting k correspond to the pair of Integers (p^mq^)# where 
the equation k= (2q^- 1) Is satisfied* How let 
p^s0(k) and q^= V'(k), and for every pair of integers 
(p,q)# let = (2q-l). Then the following
relationships are valids

y(0(k), v^Ck))= k, for each k,
V (k)^ k, for each k#

y  (k))5 k, for each k, n»!, 2, * ,
Ĵ (̂ (p»<l)) =f P> (Wp#q)) =  q# for each p, and

for each q.
Each set is analytic relative to the family

of sets F, so for each combination of positive integers r , 
I T # udiere 5.S a defining system of sets

of the fsadly of sets F« and where the summation is 
extended over all Infinite sequences of positive integers 
n̂̂ J. Define to be a set of the family F such that

g _ g /(h.), • • • » V(K>)
*’00 v(VO,v'<»d))# *f (̂ (0(ki,woo))

It must be shown that ^
xe 21 # There exists an infinite sequence such
that X e Let = ̂ (n^) for s = l# 2# 3# $ for
a fixed integer s, let h. Then we
obtain Zn„na,n,i. Thorefor.
x e T Î B r W c  Z2 f r , for oach fixed e, which means that

"" >'<M w  •'(hr
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tor «aeh a. Tharafora %e %  If .

I s2 s= I
On tha other hand, supposa that %e Z  9f Bisi #fsj S'*

Than thara axlsts an Inflnlta saquanca of positiva intagara 
Ir̂ l aueh that xa ̂  • By tha charaetor of tha aata
B*̂ > , thara axiata an Infinlta saquanca of Indices for
each a such that for a = l# 2, 3# , and each
k=l, 2, 3* , whara each aat Is of tha family of
aata F*

Put n̂ =tv(r̂ ,g for each h=l# 2, 3, #
This means 0(n^)= r^, and 'I'{»h) = * { JJJJjj) for each Integer h* 
Also h»y(l, V(k)) Impllaa i for
1=1, 2, 3, » k = l, 2, 3# .

Since wa have
g  1 1 ® Î 0(”VCK>)

^  W I , vcio)) » ^  •• • • * ^  (”^(dfK>,y/(M)))
wa gat E^ = E n % - 1

, m 3 ̂  0<IO
by substitution. Thus x€ if E_ CT ̂  m E„^ . Henea tha*=i "(K) K=i ”00
systans and have tha same nucleus. Since
each aat Ê ^̂  la a aat of tha family of aats F, the nucleus 
of the ayatam [Ê (s*] ia analytic relative to the family F.

This theorem may ba expressed as a (a(P)) CA(F).
Since the inclusion in tha othar way ia apparent, wa can 
conclude that l(A(F))%A(F). With this fact, and with tha 
aid of theorem 5tl and theorem 3:2, wa conclude that tha 
sun of a countable collection of sets analytic relative to a
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family of #eta F la analytic relative to the family of seta 
F sine* s(a{F))c a (A(F))c *{F). Sincè p(a(F)) C a(a{F))c  
A(F)* the Intersection of a countable collection of sets 
analytic relative to a family of seta F la analytic to the 
family of sets F#
Theorem 5»A i isiâàX S£ SSiS. A(F) iji topoleglcaUy 

invariant If the family of seta F Itself 
topologically invariant& and if the Intersection
2£  â  5SS 2£  ^  £ a s y z  Z îd â à  5  2S& Sa M  â  ss$. 
sf famlli F.
Proef* Let «Aere eacb aet la

of the family F. Let T be the homeomorphlc Image of B by 
a function f. By Lavrentleff*a theorem, [d, p. 126], there 
exists seta M and 8 such that HCM, TC8, % and 8 are seta 
Gg, and If la homeomorphlo to M by a function 0, td&ere 
0(p)sf(p) If peM.

Let by our hypothesis la a aet
of the family of seta F* thus H = M TT8^^= ̂
Heaee Them ^

T= *(H) = I t X O  =  ti •
But each aet belongs to the family of sets F, so
T la a aet of the family 1(F), and the proof la complete.

In the discussion of analytic seta thus far, the 
seta of the family F have not been specifically defined* 
Throughout the remainder of this discussion, however, the
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faoily of sets F will be conaldered to be the class of ell 
closed sets (G). The general results already established 
will be true for the class of analytic seta relatire to the 
class of closed sets, and la particular theorem will be 
valid*

It can be concluded that every Borel set Is an
analytic set since the class of sets A(C> satisfy the
follô wing conditions *

1) Every closed set Is a set A(C)
2) S(A(C))CA(C]
3) p(a(c))c *(c)

It Is evident from the definition of the analytic 
sets that the property of being an analytic set will be 
dependent on the space In which the set Is contained* 
Relative to this fact, we have the following theorems i 
Theorem St 5 $ â âSl â subset of ̂  given space H, then j| 

Wt B i» an analytic aet In th# opaee 5 It anA 
only ^ JLâ the Intersection pf g and an analytic
set of the space M#
Proof8 Suppose that B =: 21 T T E w h e r e  for each 

Integer k, Is a closed set In S* Then
where for each k, is closed In M* [6, p# 50I Thus

IT the
21 Tt H„ is an analytic set In K*l"iri WC| "

On the other hand, if B is an analytic set in M,
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then Wmere for each k, la eloaad la M*
Th* ••« S-*=S-^rjWK„^=^^ff S-S„^, tAer* for oach k, 

la eXosed In S. 3*5 la therefore anaXytle In 3.
Prom thia theorem we conclude the followings
Thoore» 5:6 I 2£ â i& £ SiSgsl S£ & SLsm SSSSt B» SSâ S£ â

Im m  £s£ M  2c&s issss £• thon & sa& S£â
j j t  £a  âSSlZÈiS SSS M  â  â£ S iâ  sb2jc M  iÈ  â l
■nalTttc £s£ M  !&£ »»*«»* M«

Definition# A defining ayatem la regular If the
eloaed a eta l&n̂  aetlafy the following condltiona for 
k= 1* 2, 3* " • • •

s(:",K,Xt
'"CO

Thooroa 5i7 : if 2 i £ £  non-oaptr onolvtle £@1 ja £
eoaploto Boparablo opaeo M, thou S-^^'TTIneuu» 
ÎÈSE1 [lana] l£ £ rotoilor doflnlng OTOtoa.
Proof# Given that JS la an analytic aet In the 

apace K, then B 7Î Pn(K> • d̂iere each aet ®
eloaed aet In the apace M. Since It la a aeparahle apace, 
(aee introduction), and It la a metric apace, M posaeaaea 
the Llndelof property* Thua M = 2 Ib^\ k=fl, 2, 3,* 
where for each n, la an open aet such that tI* *
D, p. 116] Lot *T= thon MCXllir’. k = l, 2, 3, ,
whoro for omeh a, la elosod, and S(lt';f} < ̂ .  [6, p. 27]
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Let tor 11,^ 1, 2# 3, » end let

all a* and n,* Thus and En»,«a are 
eloaed; and S ( B „ ,  ) =  S ( E „ , ^ „ ^ > < - L  . For k>l» let

(9M)
»*»*«»> • •• > n ”•*» * * *>'̂aK-3L**®"aK-i

for each finite sequence of 2k positive Integers; denoted 
as n, ; n,; :& ;, . # n̂ ĵ # The sets Sn̂ ,̂ are closed; and
^̂ ®n|,naî* '
each k. It will now be shown that E«^2I TT £«.„,• Ifl«KÎ *»=• ***
X e S =r ZT TT t there exists an inf Inite sequenee of{"kJ ÔO .

indices [mj such that Since *€H; xe£ll^*'\
for k^l; 2; 3; * ** • There exists an integer such that
x e  * Let n, ; n^; a*, - - • be the toms of theH~l ^ *
sequence ij ; ■,; 1,.; * . Then for each Integer k;
X £ ̂rn^i fWa* • • *1 I 9 k ̂  1; SO X G  ̂M*# j • • • > AlSO
x o M}̂ *̂  ; SO * Therefore» for each integer k»

in»>« • • »”aK— 1 and
On the other hand» If xcJI ?T then there(♦VÎ K» I

exists an Infinite sequence of indices [n*] such that
Thus X £ #*o anEr *%*,, *

for k> 1. Thus xe Tf Fm,^c:g; and the identity isW
established.

Let Xr̂ j =1^ E„j,, « Each set X„ĵ , will be closed» 
and TT * Also X^^^ by the
properties of intersections of sets. The identity 
B ̂  Srffx. _ will now be established.JOnJ #C=| I'M
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“  »i««e for e«eh

Integer k, end for each Infinite sequence of Indices 
% e %  ff R# If X€B, then there exists an Infinite^  K=* w
sequence of indices n̂̂ ] such that xe ̂  Thus

The set S is the nucleus of the defining system 
D^ool ^ich has all of the properties of a regular system 
except the assurance that each set is non-empty, let
X’o»=s XXru,,n,**r6,,n.,na-Xrs,,n.,na>»»"’ •***> InfialtO
sequence of indices n̂̂ } * If the set is not empty,
let he one of its elements. Since
I ^ C  21 tr Xr^ f so S. There will be at least one

^7i s « i  * * '
element {x»! of E since B is not wapty. The sets Tŷ  ̂ are 
defined as follows*

if X’̂ OV O,
Trtt̂  =  r*.J if X*'«>-0, X^«>=0,

=  £xy.̂  ̂ if =  and where
q +̂ 1 is the smallest index such that X * ^ =  0, and where

% e  defining system pnool is regular. That the 
sets 1̂ 00 are each closed follows from the fact that 
T»H^=X^j^, or else is a single point. The condition
concerning the diameters of the sets is satisfied since

S(X„j^î < 1̂ . All sets Tfi^are non-empty since by 
their definition they contain at least one point.
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It remalm# to be shown that C  for each
Integer k. If l"“« end X"«»« are not empty, Xo,K„)CIn^ 
sinee «  X"“ =0, then X"®“=0, and X'’"'«»= 0.
then In«„> =  i*oJ =T"oo . If I""' ̂  0, and X"<« = 0 , then 
X"“*«=0. Then T„„,„„ = r„,K,=̂ £*„,,i. If X"«‘jdO, x""*«’=0, 
then t X«„,,= Tn(^. Thua in all easea,

C  t for each k«
Te complete the theorem. It muat be eatabliahed 

that X =  ZTT%Bm,,« If pax, then p« Z T l  Xbu<,< ThereïTtZî ltd vV  ̂ ftîr» K-l 'ltd v v  - * K-l
exists an infinite sequence of indices [n̂ J such that
peTTXrittg* For s=l, 2, 3# » and j = l, 2, 3, , letK«l

Let r(= Ac for 16 #. Then p € X ^ ^ * ' • • -
for the given sequence, hence pej^ #T X This meansUVÏ
that Xoûc>=̂ f̂too for each k, and peJSITTX«(Ki*

If pE5 ” ttTngKt i then there exists an Infinite 
sequence of Indices n̂̂ j such that P^TT Tn<K)« Several 
cases may arise* If x"^^5̂ 0 for each k, then pe£ directly. 
If X"»^=0 for each k, then p«[x*( e S. If x " *^ = 0  for all 
integers k > q ,  X*^*i^O for k ^  q, then for k> q.
Thus p = {x,^] * But £xnĵ } a tdiicb means that there
exists an infinite sequence of indices ̂ m* j such that 
P6 X„ĵ *Xn<,,,m,*Xrtjvjj,m(;̂ ,**. Since Xm̂ g) is a descending 
sequence of sets,

P^ X«m • Xfiuy* Xri|jjj* • • Xpif̂ *̂* X yiri(|| *
and so p€S* The theorem is established*
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All Important application of theorem 5*7 la Ita 

use la establishing a condition for a set to be analytic* 
as Is done in the following theorem.
Theorem 5*6 t A necessary and sufficient condition for

a non-empty set B contained In a complete
separable space H M  analytic Is that It be

»
the continuous image ̂  the aet ̂  of all
Irrational numbers.
Proof: If B Is a non-empty analytic set In a

complete separable space M, them E — ^  % T w h e r e  
[Bnoĉ l Is a regular defining system of closed sets. If 
x€B, then %= [%3+ ♦’ ‘ * § where CxJ is the
largest positive integer less than x, and n,» n,* n ,̂ *
is the infinite sequence of positive integers obtained from 
the continued fraction development of z. (See Chapter XT)

Let F{*)— ®«CKi* 7*Cz) will be a single point 
since the sets form a descending sequence of non-empty
closed sets whose diameters tend towards sero, and since 
the space M is complete. [7# p. 169] Let this point be 
called f(z). Thus for each z€ B, f(x) Is defined. Also, 
f is a mapping from B onto B» for suppose that q€ B, then 
there exists a sequence of indices [Ok] such that

4 = + ---• that
is, x= by continued fractions.

The function f (x) is a continuous mapping of N
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onto 5* To show this, suppose that by continued
freetlons, and suppose a number € > 0  is given. Then there 
exists a number &>0, and an integer k such that ̂  #
and p(x,Xe)< S implies n;= n% for 16 k, whwe x* {uk} «
Thua f(xj 6 #nd f(x) is contained in for
this given integer k. Hence p(f(x), f(x#))^ SiKr«oo}<4ê<^* 
The continuity of the function, as well as the necessary 
condition of the theorem, is established.

To show that the condition of the theorem is 
sufficient, let f(x) be a function defined and continuous 
on I i&ich assumes values in a complete separable space M. 
Since the sum of a countable collection of analytic sets 
is again an analytic set, it wiH be sufficient to consider 
the function f(x) only on the set Ho* the set of all 
irrational numbers x, 0<x<X. let f(H*)=H.

For each finite sequence of positive integers,
X|* Xa* Xj,*--, n̂ , let be a set such that x e X n ^
if xeHo, and if x = iJr + Tfe-i-'Hi''»'**continued 
fractions, let S„^ = f . Thus will be a closed
set. We shall now show that B

Suppose qe B. There exists an xe No such that 
f(x)= q. But x=ttt»«5 by continued fractions, hence xe%M^^ 
U r  Mch k. Thus x« j? But = ao

Suppose qe ̂  Then there exists an{"KÎ • w*'
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Imflnlt# sequenee of Indices (ng^ such that qe ̂
Let Xo^ !a|J{ by continued fractions. Then x^e Ŵ . It will 
now be shown that f(%o) = q by showing that they are 
arbitrarily close to each other* Given any number e >0, 
there exists a number 6 ? 0 such that p(x»x«}< 8 Implies 
that p(f(x}» f(Xo))< 6 # for xe by the definition of 
continuity* By the properties of continued fractions, 
there exists an Integer L such that If n, = a% for L, 
and x= Isk] by continued fractions, then p(x,x«)< $ , and 
thus |o(f(x), f(x*,)^<f * It follows that %,
hence )< € . The point and f(x*)e
thus p(q, f(Xo))< 6 •

The Identity ##t
closed, is established, and therefore B is am analytic set* 
Tb«or—  5x9 t Th« eontlnwm» l*»g« of an malytlc «et In a 

eomplet# »«par»bl« jÜL gg amilytle »«t.
Proof: Let B be an analytic set in a complete

separable space M* Let f be a continuous function on B, 
and let f(B) = T* Then there exists a function q/ on M, 
the set of all irrational numbers, such that y (*)= B* Let 
p(x) = f(q/ (x))* Then #(B)= T. Thus T is the continuous 
image of B, and Is an analytic set.

Since a Borel set is also an analytic set, its 
continuous image in a complete separable space is an 
analytic set* Also it follows from the last theorem that
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In complete separable spaces analytic sets are topologically 
Invariant. It can be shown that both the analytic sets and 
the complements of analytic sets are topologically 
invariant in any complete space, not necessarily separable. 
[7* p. 220]

We shall now show that the power (cardinal number) 
of a non#countable analytic set contained in a separable 
metric space is equal to C, the power of the continuum.
First we shall prove this preliadnary theorem.
Theorem 5:10 * JK S IS. â- contained in ̂  separable space. 

SSi, M  â it . nglriiborbood >nch that M  
mon»countable. then there exists neighborhoods 
So and Si lAose diameters are as small as we
%hoo«4, Sbss. âaÇÆ , âuSJ.. JSSâ.
the sets 8*S« and K-Si. are non-countable.
Proof! Suppose that B Is a set in a separable

metric space, and that S is a neighborhood such that £*S
is non-countable. Then there exists a non*countable set
E,c S*S such that xe B, if and only if % is an element of
condensation of B*3. [#, p* 433 let p and q be two points
of B|. Since S is an open set, there exists numbers To and
Tj sufficiently small so that N(p,ro) end ll(q,r, ) each are
contained la S, and such that B(p,%^) W(q,r,l=0. Cj6, p* 21]
Let S. = B(p,r*), and 3,- N(q,r, )• By the definition of an
element of condensation, and B*S, are both non*count*
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able Beta»
Theorem St 11 t Every non*countable analytic set which la 

contained In a complete aeparable apace contains 
JH subset which Is non*»e«pty and perfect.
Prooft Suppose that B Is non*eountable and Is 

contained In a complete separable space M. By theorem 5:7, 
B adhere the defining system CBn ,̂3 Is regular.

For each finite combination of positive Integers 
r, , fa# r, # # **5»

where the summation extends over all possible sequences of 
integers [n^]. It follows that B = K * B ^ + , and
that B*’«»* + ... for every finite
combination of indices r̂  ̂•

Let p be an element of condensation of E$ and let 
& = M(p,l). S 3 Is noa<»countable by the definition of an 
element of condensation^ thus we can apply theorem 5:10 
directly. There exist two neighborhoods So and 3, idilch 
are contained In S such that So'S, — 0, B*So and B*S| are 
non*countable, and $(3*)< 1, S(S|)<1. From above we have 
B*So - K*“ So B** So + B**So^ • • •• Since 1*So Is non*count*
able, there exists at least one Index m« such that S#
is non#.countable. In a like manner, there exists an Index 
m, such that £****• Sf Is aon-countable.

Preceding by induction, suppose that we have
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deflmed tor m give# Integer k the neighborhoods and
the integers where Is a finite sequence of
numbers which are either 0 or 1, such that

S(3»„,X-ie,
k>lf

and
g**̂ o» * "'•cm » " Is non-countable.

From theorwa $$10# there exist neighborhoods 
3%o»o aad Sa^,, contained in tueh that

So.#çj>o , I — 0
5 N+l * S<3o.ĵ .i )<:TFM , and sets

‘  *  '”’*<»«»and
S<Xjn,» I * * *'’”“*̂ *are non-countable,

Then since
• • • » "«hk, _ g  ”

n*i
there exists an integer that the set

is non-eountable. Likewise there exists an integer 
such that the set Sa^),, • * * *»
is non-countable # Thus fay induction the neighborhoods Sâ , 
and the indices m*,̂  ̂have been defined for every finite 
combination of numbers â ,̂ which are either 0 or 1# and 
these nel^borhoods Sâ  ̂ and Indices m»^ are such that the 
preceding conditions are satisfied#

Let •••'"**•*»-'S-# %d$ere the
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Bummation extend# over ell possible sequences of k numbers 
idileb are either 0 or 1. Since the summation is of a finite 
number of closed and bounded sets, each set H* will be 
closed and bounded* It follows that Rk*iCR,( for each k, 
and that Rk is not empty#

let H = TT Hn « Since H is the intersection of aKw|

descending sequence of closed sets in a complete space,
H is non-empty* [6, p* 5^1 To show that H is perfect, 
that is, R is closed and dense-in-itself, we must show that 
p€ R if and only if it is a cluster point of H*

Suppose that pe R. Then pe H,= *
The element p belongs either to or to B"" * (It
cannot belong to both since they are disjoint) let = 0 
or 1 so that p e S'”*** • S«<, • In a like manner, 
p e R a = f f " ^ S o . ,  + S,.ô B"'**'”’'‘S,,,,
But from the construction of these sets, p can belong only 
to the set ,o or to *S“«.,,* let
Wa*0 or 1 accordingly such that •
Since for each k, pe R̂ # we continue to obtain the elements 
of the infinite sequence in a like manner, where each 
term of the sequence is either 0 or 1, and such that 
pel*"-* *"«»»•' for k=l, 2, 3, .

Given a number €>0, let s be an integer such 
that j <€• let tfn| be an infinite sequence of numbers 
either 0 or 1 as follows* If k^s, let # If k » s » 1,
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let # If k > e 4-1, let (?#y« 0. Consider the set
Q - TT by the sequenee (jp»,]*
Since Q is the intersection of a descending sequence of 
closed sets tdiose diameters tend towards zero» and since 
these sets are in a complete space» Q will be a single 
element which will be denoted by q. [6, p# $2] The element 
q will be an element of each set Ĥ » k= 1» 2» 3»* * *» by the 
definition of those sets» so q€ H« Since ( 3 * ^ for k^s 
and p€3@f̂ g)» q€3f(,j» q is an element of the set # But
$(sc»̂jj )̂  "S” ̂  ̂  » thus ^  (p»q)^ ̂  •

The element p is different from q since p a 8 »
where these two sets are disjoint since (̂ s*i ~ 

l-«5».i • therefore p is a cluster point of H* On the other
hand» if p is a cluster point of H» then pcH since H, as
the intersection of a countable collection of closed sets» 
is closed* H is therefore perfect.

It resmins to be shown that H C S. Suppose that 
pah. As previously defined» there exists a specific 
sequence fwn| of numbers either 0 or 1 such that the element 
p « '"■“<».> • ' • ' . Thus ps
From the construction of the sets » it is noted that 
for each finite combination of Indices » £^' C Er(») • 
Since is c l o s e d , c ¥ r t «  c B r̂ >* Therefore the
element p 6 Tt Bm^ . ,__   C  B» and the theorem is
cosq>lete.
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Noting that for each Inflnito sequonca of 
nnmhor# 0 or 1 there le a dlstlnet point of the eet S 
idiieh la defined by ^  » lb earn
be aald that the eardlnaX of S la greater than or equal 
to 0, the oardinaX of the oontlnunm# [7» p# 263] Since 
B la contained In a aeparable metric apace, and therefore 
haa a eonntable baala, the cardinal of B la leaa than or
eqnal to C* Banco the cardinal of B la C* From thla we
may condnde that the cardinal of a non-coontable Borel aet 
contained In a aeparable complete apace la G#
PefInitient Two aeta F and Q are aald to be exelusire B If 
there exlata two die joint Borel aeta If and H each that PCM, 
QCB.

0 0  o o _

Th«*r#m SilZ i 12 f = Z  &L, £&& &= Z  2Sâ 2£ £ S 
are not exclnalve B, then for acme Indicia and 
t thb, pdM &L iU Bgd sob exclnslTO §•
Prooft Suppoae that P= ̂  Pj , and Q® 2  Q k *  and

that P and Q are not exclnalve B# Then auppoae that for
every pair of Indlcea j and k, aeta Pj and are exclusive
B* Then there would exist disjoint Borel aeta Kĵ k and 
Bj,̂  for every pair of Indices j and k auch that Pj C Mj 
•n« «KCIIj.K. Uti M = g f f  Mj.k and * = ̂ » •  
sets M and B are Borel aeta by theorem 2:4 and theorem 2;6«
For onch j, PjC #  Mj . , so S  Fj C  S  that 1»,

J—|. J = l .

Few. For oaeh k, Q . c T T * .  ao Z Q . C  %Tr", thatj=l '** ital K=l j = |
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1#, QCN. S«ts If mad H arm dlajmlnt, for If xe M» therm 
existe ma iadmx j mamh that xe ftM. _. Slnem ^ k —  0 
for j = l, 2, 3* * • * # k = l, 2, 3# # %0*j,K for the given
index j* mad for mil iadleem k. Thnm %< ̂  fî * Thas

K—I J‘='|
the sets F mad Q mre exeXuaive B wbioh eontradiets the 
hypothmmie of the theorem.
Theorem 5:13 t 2£ £ «Qd £ &22 «n«ly*le »ete eontalned

la a eoMplete seoarmbXe spacee. and If E'T=0. then
£  «ai X 2£S. £•
Proof* The sets B and T may each be written as

the anciens of a regnlar defining syst«m by theorem 5*7*

Bfn(K>3 ore regular defining systems.
For every finite combination of positive integers

f|̂1 f let B — ’ ®*"iar * * ®^i> * * •
Where the summation extends over all Infinite sequences of 
positive integers • Likewise, for every finite combi* 
nation of indices r̂ ĝ , let

f ̂  ~ f *1#* “ f *"<*>>*̂u>* *
From theorem 5*11# we note that

g*ts» =rg*«>»* • • •,
ŷ tsi 4 . y ^
B = I' -----------,

T=T' + T^+T^+ .
Bow let us suppose that B and T are not exclusive B.
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By theorem 5$ 12, thare exist Indleas p, aad q, such that 
the sets s'** and are not exclusive B. But since

B*** ~ B ' + B *** *̂  + B*** * *♦ • • ^

^«1 SI >* +

there exist indices p̂  and q^ such that Ê ** and 
are not exclusive B# Continuing in a similar manner, we 
can obtain two infinite sequences of integers {p̂ | and {q,,J 
such that and are not exclusive B for each k#

From theorem 5*11 It Is noted that the sets 
, and for k«l, 2, 3, * Since ea^

set Epoc and feo(} Is a set of a regular defining system, it 
is closed and therefore a Borel set. Thus if Bp^* =0 
for any Integer k, the sets and would be exclu**
sive B, Therefore Sp^-Tq^^,#*) for k=^l, 2, 3, - * - * Let 
RifSBp^'Tg^, The sets &î  form a descending sequence 
of non«*empty closed sets since S(Ep(*))< ̂  ,

^ ^  » and the sets Bp((̂
and Tg(̂ , are closed for each k. Let R= tTfiK* The set R 
will be non-empty since the containing space Is complete. 
Suppose that y is an element of R* Then

ye Bp,K>C^TrBp«.= B. and

Hence E TVO which contradicts the hypothesis. Therefore 
the theorem is established.

With the aid of theorem 5:13# s criterion for an
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analytle «et to bo a Borol set tan be established.
Theorem Si 14 t An analytic! set j| contained In a complete

MsparablA space is g Borel set M  and only Its 
complement Is an analytic set.
Proof* Suppose that B Is a Borel set. Then its 

complement is also a Borel set and therefore an analytic 
set.

On the other hand# suppose that B is an analytic 
set la a complete separable space# and suppose that (oB 
is an analytic set. Then since B *63=0# there exist two 
Borel sets N and H such that BOM# @BCB# and M-N = 0. 
(ThcorMi Sil3> Sina. excH, @  (e(E))3ëg, that la, 
MCGBCB* Benoe B-M| thus X Is a Borel set#

In a similar manner# the following theorem could be 
established.
Thtor—  5:15 t A  ££& & S& i corolet» 8»par«bl« ss&S& â  a  

Bor#l ».t If and only £  and .68 ara analytic 
aat»«
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CHAPTEa VI

A UNIVERSAL AMALITIC SST

la the concluding chapter, we shall show that 
there exiat aeta which are not analytic sets relative to 
their containing space, and that there exist sets which 
are analytic aeta but not Borel seta. In showing thla, we 
shall dlaeuaa projection and projective aeta, and shall 
establish a plane analytic aet V which la universal to all 
linear analytic aeta.
Definition: The projection of a point x = (x,, x̂ ,̂ ,
of the apace B̂ ,.| (a ̂ l-dlmenalon Euclidean space) la the 
point y - (x,, , Xm,) of the apace K^, and we write
P(x) = y. The projection of a set la the set
P(S)CBrr« which consists of the projections of all of the 
elements of S.

Since the distance between two elements of a aet B 
In &m4.i la greater than or equal to the distance between 
the Images of these two points In P(B) In Rm# a projection 
Is a continuous mapping of S onto P(B). therefore the 
projection of a sum of sets Is equal to the sum of the 
projections, P( %%) =  %  and the projection of a

F t & EcCt
product of sets is Included In the product of the projec-
tioB», pjTT*)c TT(p{k)).

F€fi fee '  '
—65—
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Theorem 6*1 t A ASA 1 lA A ASA Isc. M  im i£ ABÂ ffî X A£ iA 
lA AAS PToJeetlon s£ £ ASA £ AA & oloeed
s»t la Rm*L.
Proof: We ehalX prove the theorem la the ease

where *= 2 wbieh le eaalogoue to the proof for any dlmea- 
elon m.

Suppose that S le a eloaed eet la three- 
dlmeaeloa Suelldeaa epaee# For each positive Integer k, 
let £K-B*lf(0»k)« Them £= ZEw* where for each k, the eetK» I

Sk is closed and bounded, and Is therefore eompaet. Then 
T =:F(E) = F( %  E x ) %  FCBk), where each eet P(Bk) Is aWc I H»I '

compact and eloeed eet* The eet T Is then an Ftp *
[6* p* 6d]

Few suppose that T le a eet F<r In the plane*
Then T =  ^  Tn» «Acre for each k, Tk 1# a closed set* For
each positive Integer k« let £«= B|x,y.x)Dn,y) e Tk# a— k*l* 
For Integers 1# the sets S| and Bj will be disjoint^ 
having their nearest points a distance of at least 1 from 
each other* Since E^ Is congruent geometrically to Tk» 
k= 1, 2, 3»* * *» each set Ek will be a closed plane set*

o oLet E=^2I ^  p = (%,y,s) Is a cluster pointt *-•
of S» then there exists an Infinite sequence (pj={(kn»ym » 
such that l^(kK»yn»ari) ~ (£»r»«) - F* Thus 11m Sn-s*
Given a number e * à* there exists an Integer K such that If 
n >E, yO(m^,s)<i* Since the sets B,- and Bj » IF j» are a
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dlstanea apart of at least 1, there exists an Integer k 
saeh that pn^ &*<# »>*• The subsequenee , PK+a»* ' * 
is contained in St̂ i and will converge to p. The element p 
is therefore a cluster point of Ek* Since £,c la closed, 
p 6£„C£* Thus S is closed* It then follows that

«*) = p( p(Ek) = S  Tk^ x,
and the theorem is established*
Th«ora* 6:2 t A & is. ̂  «nalytlo i& Sa it mi only 

â£ is. is. &hS EESlooMoa St £ SSS 1 «Aleh Is £ sst 
âs i£ lam.*
Proof: Suppose that H is a set @s in Rm*i* Since

a projection is a continuous mapping, P(B)=T, as the image 
of a Borel set, is an analytic set in by theorem 5t9*

We shall show that if B is an analytic set in R̂ , 
then it is the projection of a set H which is a set in R̂ , 
The proof for the more general case is very similar*
Suppose that S is an analytic set in Rj|* By theorem 5:6, B 
is the continuous image of B, the set of all irrational 
numbers, by a mapping f #

let (%,y)=f(*)]. Then
P(«) = Eix,viD>€ », (x,y) = f(*)l = fl«)=B.

It remains to be shown that H is a set Qg* let T be the 
set of all planes in R3 with rational s^coordinates* Thus 
T is a set Pq- as the sum of a countable collection of 
closed sets* We shall now establish the identity, H = R — T*
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Sine* R*T=0> SC^T* Then HC Ç T - H T. If 
(Xo,ya,*o)e H-T, then lo^T, ««e H* Since (atb.y«»»o)el, 
there exiets an infinite sequence of the set H
such that li* <Zn»yn»s»)= (Xo«70»so)» In turn

*n ̂  %o,
iia 7» = 7aé 

•" —
Sinee <%m#y^,en) ̂  R for each n» Sr«elf for each n, and 
(Zm#ym)=f(*m)» lim (Xn̂ yn) =  litt f(stt) — (Xo«yo)* Also, 
since f is continuous, f(sn) = f(l^ Sn)=f(so)=(%o,7o)« 
Therefore (%«,,y«,,«© M  H, and H = % — T,

Since the closed set ¥ is a set G&, and <oT as the 
complement of a set F<p is a set Gg, their intersection, 
¥*6T=H, is also a set Gç« The proof is therefore 
established*

Following the method used in Chapter IT, we shall 
construct a set M, in &3 udiieh is a set Qg, and which is 
universal to all plane sets Og* Then we shall show that 
the projection of this set M, is an analytic set in which 
is universal to all linear analytic sets.

let 3 be a subset of &3 consisting of all planes 
3%̂ , where pe 3%  ̂if and only if p = (Xo,y,%), x<»e No» end 
y,s have any real values. (The set No le the set of all 
irrational numbers x, 0<x<l) Thus the planes 3%̂  will be 
perpendicular to the x-axis* Let be a sequence of
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open plane sets which form a countable open basis for the 
(y#e) plane*

If Xo® Ko, and If Xo-{f*"3by continued fractions, 
then let He<Xo)= ̂  K_,m, end let

Ko(Xo) —' ®cx,y,2jCx*Xo, (y#e)G HotXe)̂  •
Then let M= %  Mo(x)

XeNa

Following the method described in Chapter IF, let 
each number Xo, Xe®Ke, determine an Infinite sequence of 
numbers , where for each n, xS ® Ko* let

H,{Xo)=ff Mo(x ;î),
=  X4x,v,2)C«-*o# Cy.»ÎGH|(xoî],

In a manner entirely analogous to that used in 
Chapter IF, it can be shown that the set M, is a set Gg in 
R3 which is universal to all plane sets Og* These plane 
sets Gg are obtained by intersecting M, with planes S%, 
xsRq, and 3x perpendicular to the x-axls*

Consider the projection of K|, P(M| )= W* the set 
V is an analytic set in R@ (the (x,y) plane) by theorem 6:2. 
Hext we shall show that W is universal to all linear 
analytic sets by means of intersections with lines L(x),
X€ Ko*

If E is a linear analytic set, then there exists a 
set K of the plane which la a set Gg such that P(H)= E* 
Since M, is universal to all plane sets G g , His the
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Intersection of a plane 8%̂ , K*, and the eet Hi* then
E la the Intersection of the line L(x } with where W 
is the projection of

On the other hand, if W is intersected with & line 
l{x), then the intersection is a linear analytic set since 
the set V is itself an analytic set, and the line, as a 
Borel set, la an analytic set.

The class of all sets which are analytic seta 
relative to the plane satisfy the hypothesis of theorem 4s 5. 
First, the Intersection of a line (Borel set) and an 
analytic set is an analytic set. Second, if E is an 
analytic set on a line %, then f(B) is an analytic set 
on the y<*axis where f Is a horisontal projection. If 
the line % la not perpendicular to the y»axls, this will 
be true since f is a topological mapping. If the line x 
is perpendicular to the y axis, then f(S) will be a single 
point, and hence an analytic set.

Thus, by applying theorem 4t5 directly, the set 
B«V is shown to be an analytic set, and the set 0*6 W is 
not an analytic set. By theorem 5tl4 (since the line D is 
a complete separable space) we can conclude that the set 
B-W is not a Borel set; for if it were, then its complement, 

would be an analytic set.
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