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The Nature of Change in Western Montana’s Bunchgrass Communities

Director: Dr. Paul B. Alaback Q%

Grasslands are particularly sensitive to environmental change, including fluctuations in
climate, grazing intensity, and invasive species. Understanding how individual
grasslands respond to each of these external factors across a broad environmental
gradient is essential to developing realistic successional models and appropriate
management and conservation strategies.

This study examined compositional changes in western Montana’s Pseudoroegneria and
Festuca bunchgrass communities at several spatial and temporal scales. General trends
in community composition were first compared between two points in time and at three
spatial scales, including the western Montana landscape, four regional areas, and eleven
locally paired plots. I found that spatial scale affected perceptions of change afier 30
years and that the change patterns at each spatial scale correlated with different
environmental and disturbance factors. Changes in community composition were also
examined at permanent monitoring plots that were re-sampled at more frequent intervals.
Species fluctuations during 20-50 years at these sites were explored using facies diagrams
and indirect ordinations. Like the two-points-in-time perspective, compositional change
at the monitoring sites was examined at several spatial scales. At individual sites, the
bunchgrass communities were extremely dynamic and compositional history was unique.
Within each ecoregion, long-term trends differed for each area. Community change
corrclated most significantly with climatic variables, particularly fall and winter
precipitation and winter and spring mean temperatures. The stability and change patterns
exhibited by these communities over multiple decades was most similar to patterns
predicted by current non-equilibrium successional models, especially state-and-transition
and persistent non-equilibrium. ‘

The value of using indicator species and habitat-typing to classify these communities
was tested using several methods. Indicator species fluctuated so significantly at many
locations that classifications changed in as little as five years. Classification systems and
successional models based on assumptions about community stability and equilibrium
were not supported by these long-term data. Classification and management of
grasslands must consider their dynamic nature and the unique combinations of change
drivers at each spatial scale.

This study shows the importance of long-term data sets and an historical perspective to -
community studies. Both provide unique insights for clarifying ecological theory and
proposing more realistic tools for management.

ii
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Preface

“To look backward for a while is to refresh the eye, to restore it,
and to render it more fit for its prime function of looking forward.”

- Margaret Fairless Barber (1869-1901) in Andrews et al.(1996) -

Although some people do not like to dwell on the past, historical studies play a very
important role in ecology. My interest in the historical perspective, and particularly the
process of change, stems from working as a research geologist. Geologists have a keen
awareness of the transient nature of ecosystems. No community remains the same for
long; no landform is permanent. The evidence is in the rocks. In ecology, the evidence
for change resides in historical records. Collecting such evidence requires the dedication
of some person(s) to conduct long-term monitoring and an obsession to save.

The process of piecing together many decades of disjointed time passages
(technically called monitoring records) for this study alternated between tedious,
challenging, exhilarating, and extremely rewarding. Forgotten files and dusty attics were
scoured to find passages that were complete enough to reconstruct the successional
history of these northern grasslands. Resampling so many important sites in one field
season to update the old records was also an adventure. Taken tbgether, héwever, the old
and new records have produced a unique story that hints at how these grasslands have
been affected by environmental stresses and will, I hope, guide the process of “looking
forward.”

Very little is known about how these northern Rocky Mountain grasslands will

change in response to predicted climate warming, further invasion by non-native species,
iv
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and changes in disturbance regimes. By examining what has affected these bunchgrass
communities in the past, we can better predict how changes in these environmental
conditions will affect them in the future. Reconstructing the historical trends is also
important because Montana rangeland management policies need to reflect the natural
change patterns and successional trends that are peculiar to these cool-season bunchgrass
communities - not be guided by grassland policies developed in other areas of the United
States.

This work is composed of three chapters that investigate change in Montana’s
grasslands from many different perspectives. From short- to long- time scales and small-
to large- spatial areas, this look backward puts change in limited context and hints at what

may be in store for these communities in the future.

Description of Chapter 1

This chapter analyzes change from a very common perspective: the difference
between two points in time. In the early 1970, plant communities on the western
Montana landscape were sampled in detail to create a classification system for the
grasslands. As with much historical data, the study cannot be replicated. Sites were not
permanently marked to remeasure. The historical data are extremely valuable, however,
because they give a detailed picture of plant community membership in the 1970s to
compare with data from bunchgrass communities that were sampled in 2002. Used
together, the data address the central question of whether typical 2002 communities differ
in significant ways from typical bunchgrass communities that existed 30 years ago. If so,

at what scale do differences become apparent?
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Description of Chapter 2

The search for community change in the bunchgrass communities is ultimately a
search for context - an analysis of the larger forces that produced the community that we
see on the landscape before us today (Potyondi 1995). The search in the western
Montana grasslands brings us to such questions as the following: “How have these
communities responded to changes in their environment? Do the bunchgrass
communities exhibit long-term trends that we can coﬁsider ‘successidn’? At what time or
spatial scales is change apparent? Do the change patterns within these communities
really fit currently accepted successional models?”

Chapter 2 examines bunchgrass community dynamics using detailed time-series
data from over 50 permanent plots, which have been sampled repeatedly over 20-50
years. The multiple sampling intervals provide insight on species’ turnover, community
trends and community stability on a time scale that is difficult to investigate first-hand.
Change patterns are explored for 1) the bunchgrass community and 2) lifeforms within
the community at the site and ecoregion scales. The amount and direction of community
change between samplings are quantified using vectors in species space. Community
change is examined within the context of fluctuating temperature and precipitation,
increasing proportions of non-native species, and varying populations of livestock and
wildlife. The nature of change in the bunchgrass communities is also compared to the
pathways, change drivers, and directionality of equilibrium and non-equilibrium
successional models to assess how appropriately these models depict decadal change in

the western Montana grasslands. Fitting the models to this long-term data, not vice versa,

vi
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is especially important to developing realistic and appropriate management goals for

these grasslands.

Description of Chapter 3

As humans, we have a need to classify items so we can organize efficiently,
communicate easily and manage like items similarly. Throughout the United States,
classification systems have been created during the past 30 years for grassland
communities using the habitat-type system. In Europe, grasslands have been classified
using similar philosophies based on indicator species. Management of grasslands has
relied on assumptions of stability afxd potential vegetation inherent within these
classification systems. One of the problems with these classification systems, however, is
that they are usually static, i.e. made at one point in time. Rarely do we revisit the
classifications after several decades to determine whether the assumptions used to create
them were correct or whether the classification worked as it was intended in its
ecosystem.

The third chapter revisits Mueggler and Stewart’s (1980) habitat-type
classification, which was developed specifically for western Montana, and looks in-depth
at how decades of species fluctuations in these ecosystems affect traditional
classifications. It examines the stability of indicator species within the bunchgrass
communities and assesses their reliability as predictors of future community change. The
implications for management are clear — if the indicator species do not truly represent
community stability or potential vegetation in these grasslands, then management policies

based on these classifications are flawed.
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CHAPTER1

The changing face of mountain grasslands: 30 years of succession in

western Montana’s bunchgrass communities

Abstract:
Pseudoroegneria spicata and Festuca spp. bunchgrass communities in western Montana
have changed both compositionally and structurally in the past 30 years. I used similarity
analysis, two-sample non-parametric tests, and non-metric multidimensional scaling
(NMS) to compare the composition of typical bunchgrass communities sampled in the
1970s with typical bunchgrass communities sampled from the same regions between
1999 and 2002. Comparisons were made at several spatial scales, including the western
Montana landscape, four ecoregions, and paired plots within the landscape. At most
scales, current compositions differed significantly from historic composition. At the
broadest landscape scale, the distribution of plots in ordination space correlated most
closely with topographic variables. Differences between historic and current conditions
were masked by strong latitudal and elevational differences that affected microclimate
across the large geographic region. At the ecofegion scale, however, differences between
historic and current compdSitions were apparent on at least one dimension of ordination
space. At the paired-plot scale, plots gained and lost many different species over time,
but 19 to 55% of the original species still persisted in the communities after 30 years.
Throughout the West, introduced species, grazing and other disturbance factors
are known to cause compositional changé in plant communities. This 'study showed that,
even within much smaller spatial areas, each of these factors varied in relative importance

to affect perceptions of why these communities might have changed over time. Unique
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combinations of disturbance and environmental factors correlated with the compositional
changes within each region. In the south, xeric species and shrubs increased in
dominance and the changes correlated with general climate warming. In the southwest,
changes in diversity measures correlated with increases in bare soil, introduced species,
and annual species over time (Z= 3.49-6.62, p<0.001). In the north and northwest, both
introduced species and grazing affected diversﬁy and vegetation change patterns.

The two-points-in-time perspective over ecoregion scales showed general trends
in compositional change that gave the impression that these bunchgrass communities
changed significantly in 30 years. In contrast, comparisons of closely-spaced paired plots
showed persistent, core groups of species after thirty years that gave the impression of

more constancy and interrelatedness in the community.

Keywords: Festuca idahoensis, historical data, non-metric multidimensional scaling,

grassland communities, Pseudoroegneria spicata, similarity analysis, temporal
change

Introduction

Even after a century of ecological research, we still have little consensus on how
temperate grasslands change or what mechanisms are most important to the process
(Briske et al. 2003). | At one éxtreme, Clements (1916) proposed that species follow a
predictable, linear pathway of change. Each species is part of a highly integrated, tight-
knit, and interrelated biological group with such strong biological interactions that what
affects one member affects the functioning and identity of the entire group to some

degree. At the other extreme, Gleason (1917) proposed the individualistic model of
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community change in which ihdividuals come and go in random fashion and have
minimal effects on community functions or the fate of other individuals. In between
these two endpoints, lie more current theories that suggest that the existence of plant
species within the communities is not random, but that each species has a tolerance
threshold for certain environmental conditions and/or disturbance regimes (Friedel 1991,
May 1977, Westoby 1989). Succession is driven by whether an individual’s tolerance for
changing environmental conditions is exceeded and whether the environmental
alterations affect the dominance or persistence of enough species to change pla\nt
relationships, such as competition or facilitation, within the community. Developing
realistic models for community change requires historical evidence that does not exist for
many communities. Even data from two points in time, however, can suggest general
directions of change and provide indications of how fast change can occur in specific
plant communities.

The mechanisms that ultimately drive temperate grassland communities to change
composition are just as controversial as successional models. Climatic fluctuations have
been shown to particularly affect individual species in grassland communities.
Fluctuations in temperature and seasonal precipitation affect competition, biomass
production and plant survival (Alward et al. 1999, Briggs & Knapp 1995, Coffin &
Lauenroth 1996, De Valpine & Harte 2001, Herben ez al. 1995, Knapp & Smith 2001,
Lauenroth & Sala 1992). Grassland ecosystems have been shown to be so sensitive to
variation in precipitation and temperature that Kaiser (2001) dubbed them “carly warning
systems for climatic change.” Other factors that drive change in plant communities over

multiple decades include substrate conditions, invasive species, and grazing. Changes in
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substrate conditions drive compositional change through chemical or faunal variations
(Callaway et al. 2003, Horn & Redente 1998, Jackson er al. 1998, Shaw et al. 2002,
Tilman & Wedin 1991, Wilsey et al. 1997). Invasive species affect plant interactions,
water availability, soil chemistry and faunal assemblages, and growing space (Bais et al.
2003, Burke 1996, Mack 1989, Mack & Lonsdale 2001, Marler ef al. 1999, Ridenour &
Callaway 2001, Schenk ef al. 1999, Zabinski et al. 2002). Grazing affects community
composition in either negative or positive ways depending on how grasslands are
managed. Animal species, grazing intensity and duration, and seasonality of use all
affect how individual plant species survive within a community (Fleischner 1994).
Grazing is considered detrimental to grassland communities when palatable species are
preferentially removed, ecosystem structure is altered, or species diversity is lowered
over time (Fleischner 1994, Singer et al. 1998, Willms & Quinton 1995). Ecological
functions in some native grassland, however, benefit from grazing when it works to
control shrub cover (Anderson & Holte 1981, Floyd et al. 2003, Van Auken 2000),
maintain biological diversity (Collins et al. 1998, Hayes & Holl 2003, Stohlgren et al.
1999), and stimulate production and quality of individual grass species (Frank &
McNaughton 1993, Merrill ef al, 1994, Savory 1988, Wallace & Macko 1993).
Historical data contain species-specific responses to grazing intensity, invasion of the
community, and variations in environmental conditions within these temperate
grasslands.

The Pseudoroegneria spicata (Pursh) A. Love, Festuca idahoensis Elmer, and F.
altaica Trin. communities of western Montana (hereafter referred to as bunchgrass

communities) provide a unique perspective on how temperate grasslands change over

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



time. They exist within relatively natural settings that have not been highly fragmented
by increases in human population during the past 30 years, and they have been affected to
varying degrees by all of the mechanisms known to affect grassland change - including
climatic fluctuations, grazing and invasive species. Because these communities exist
within such a large landscape area, they are also well suited for examining how spatial
scale affects perceptions of overall change and how environmental and disturbance
factors correlate with change over a variety of spatial scales. Three studies have
previously focused on how bunchgrass communities change in the northern Rockies over
two decades (Anderson & Holte 1981, Mueggler 1992, Schirokauer 1996). All were
limited to local sites. The successional changes found in these studies ranged from shrub
invasion after release from grazing to compositional change that was attributed to
weather ‘peculiarities’ in the prior year.

This study focuses on how the characteristics of the western Montana
bunchgrasses, as a general class, have changed over time. It explores compositional data
from these communities, which were taken at two points in time and from the same
general spatial areas, to determine if (1) significant changes have occurred in the
composition of Western Montana grasslands during the past 30 years; (2) spatial scale
affects impressions of change; and (3) disturbance or environmental factors correspond

with vegetation change in these northern ecosystems over time.
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Methods

Study area

Western Montana bunchgrass communities are located between 44.5° and 49.9° N latitude
énd 108.4° and 114.8° W longitude (Fig. 1-1). They generally occupy valley bottoms and
foothills at elevations of 750 to 2800 meters and occur across a full spectrum of aspects.
They exist in areas that have a unique geologic history, physiography, climate, soil
characteristics, and grazing history compared to other grasslmd ecosystems.
Geologically, the vegetation began as a combination of tropical-coastal and northern-
temperate flora during the Tertiary Period (Daubenmire 1970, 1975). Today, the
grasslands are located adjacent to three distinct ecosystems - the Palouse prairie, mixed-
grass prairie, and forest epotones — so they consist of combinations of species not found
together elsewhere (Koterba & Habeck 1971, Morris & Brunner 1971, Stringer 1973).
The climate of western Montana is semi-arid and cooler than most other western U.S.
grasslands (Sims ez al. 1978). The soils are varied throughout the region but most have
minimal water-holding capacity during drought because of their coarse, skeletal texture
(USDA Natural Resources Conservation Service National Soil Survey Center 2004).
Most are derived from the PreCambrian Belt Series, the Boulder Batholith, and Tertiary
volcanic rocks (Veseth & Montagne 1980). Bare ground (or spring ephemeral habitat,
including cryptograms) is significant within the bunchgrass communities so that the soils
are particularly susceptible to erosion when disturbed (Kaiser 1961). The bunchgrasses
are also especially sensitive to depletion and/or reduced vigor from livestock grazing
(Bedunah 1992). Intense grazing reduces their forage production and reproduction

instead of triggering increased production (Mack & Thompson 1982). Unlike grasses of
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the Great Plains, the grasses in the northern Rocky Mountains did not historically develop
under heavy grazing pressure from bison (Bison bison) or other ungulates, which may

explain their current sensitivity (Bamforth 1987).

Data sources
The data sets used to compare the compositional characteristics of historic bunchgrass
communities with current communities came from three sources. The historical data
were from a regional study that created a classification for these grassiands in the early
1970s (Fig.1). The current data came from a study in Glacier National Park (GNP) and a
second study that sampled select locations across western Montana. . All three studies
yielded detailed field data that quantified the canopy coverage of each plant species
within microplots (0.1 m*microplot); estimated the coverage of bare soil, rock, moss and
lichen by microplot; and described any disturbances observed during sampling within
auxiliary field notes. At each location, a specific number of microplots were aligned
along a line transect at predetermined intervals. The collection of microplots forms the
site description. Plot and site are used interchangeably in this paper to designate a
location with a collection of microplots.

The data for the historical perspective were collected between 1971 and 1973.
The three-year regional project described the state of grassland vegetation in western
Montana in the early 1970s and provided detailed compositional data to develop a
grassland habitat-type classification (Mueggler & Stewart 1980). During the duration of
the study, four field crews collected canopy-coverage data from over 350 locations

throughout western Montana (Fig. 1-1). Each site consisted of 40 microplots and was
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Figure 1-1: Location of Glacier National Park 1999-2001 study plots (triangle), Sikkink
2002 plots (circle), and Mueggler and Stewart 1971-1973 historic plots (+).
. Regional divisions based mainly on Level 3 Ecoregions of Woods et al. (1999).

sampled only once. None of the historical sites were marked with permanent stakes or
global positioning records so they could be relocated decades after the completion of the
original study. In 2000, W.F. Mueggler sent his original data forms to the University of
Montana to be entered into a modern database. The retyped database, which contains all
raw microplot data, original location data, and original field notes on animal use and
grazing history, composes the historical perspective in this paper.

The Glacier National Park data set consisted of samples from the east-side
grasslands of the park. Fourteen microplots were sampled at each of 155 permanently
marked sites that span the entire length of GNP’s eastern boundary (Fig. 1-1). Each site

was sampled only once during the duration of the study, which lasted from 1999 to 2001.
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Canopy coverage was estimated in the field using standardized cue-cards that contained
visual depictions representing various cover percentages. The cards increased
consistency of visual estimates as research personnel changed during the three-year
study.

The western Montana data set was collected in the summer of 2002 to investigate
regional differences in the current composition and plant diversity of the intermountain
grasslands in western Montana. Thirty microplots were sampled along a 33.3 m transect
at most of the 50 permanently marked grassland monitoring sites. The sites extended
from the National Bison Range (NBR) in the north to Yellowstone National Park (YNP)
in the south (Fig. 1-1). All sites had good historical descriptions at several intervals
during the past 30 years. Each was revisited once in 2002 to describe the current
diversity of vascular plants and to quantify species coverage. Percent canopy cover of all
species and several abiotic and non-vascular plant variables were visually estimated to six
categories in each microplot (1=<1%, 2=1-5%, 3=6-25%, 4=26-50%, 5=51-75%; 6=76-
100%) and recorded as field observations. Site disturbance was qualitatively described
and soil samples from the upper root zone were collected at each location.

Only historic and recent plots that were dominated by Festuca idahoensis,
Festuca scabrella, or Pseudoroegneria spicata bunchgrasé were included in this study.
Other potential vegetation types existed within the regions, but their composition differed
significantly from these target bunchgrass communities and would have confounded the
analyses. To equalize comparisons with the historic plots, no current sites were included

in any statistical analysis if they showed obvious recent treatment for brush removal,
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ecotonal change (e.g., tree/grass interface), or were located across fence-lines with

obvious grazing differences.

Nomenclature
Change in nomenclature is an ongoing and often controversial process. For this project,
nomenclature was standardized to the currently accepted genus and species listed on the
Biology of North America Program web site (Kartesz 1998). Because this site is
regularly updated and also lists all old nomenclature equivalents for each species,
obsolete names were easily located and their currently-accepted modern equivalent
determined. Appendix A lists the species cited in this paper, the current names as defined
by the web site, and the historic equivalents.

In all analyses, origin designations for introduced species in Montana follow Rice
(2004). Life form and life history designations follow Hitchcock and Cronquist (1973).
Response to grazing by species is designated according to the American Society of Range

Management (Willard 2003a) and Wroe et al. (2000).

Spatial perspectives
All three daté sets were analyzed together for the landscape perspective in ﬂ‘llS
paper. The data sets were subdivided into five ecoregions, however, to determine if the
changes in community composition were isolated to certain parts of the state or if the
_ processes driving change differed across the study area (Fig. 1-1). The divisions are
based on the Level 3 ecoregions boundaries of Woods et al. (1999) with one exception.

Technically, the Yellowstone National Park (YNP) area is within the same Level 3

10
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ecoregion as the southwest part of Montana (i.e. ecoregion 17 — Middle Rockies).
However, it was separated within this study to facilitate comparison with similar
vegetation-change studies that were conducted in YNP over a decade ago (Coughenour et
al. 1991).

Ecoregions were used because they have similar geology, soils, topography,
vegetation, macroclimate, and land use (Woods er al. 1999). By subdividing the
landscape into ecoregions, the variation among in these factors was minimized within
each ecoregiqn and the variation in community composition due to time was accentuated.

Because it could be argued that plots located in close spatial proximity may be
much more similar to each other in the bunchgrass habitats than plots compared at
regional scales, the data sets were also sub-divided into paired plots for a local
perspective on how communities changed. Seventeen péirs of current plots were
matched with the nearest historical plot on the landscape. Compositional changes were
compared between the historic site (40 microplots/site) and current site (14 in GNP or 30
in southwest Montana). The paired-plots were a maximum of five kilometers from each
other, were located within the same general topographic settings (i.e. similar elevation,

aspect, and slope), and were almost equally distributed among the four ecoregions.

Statistical analysis

Three types of analyses were used to test whether historic and current compositions in
these communities differed significantly after 30 years of exposure to grazing, invasive
species, and climatic change. Each analysis measured different aspects of the multi-

decade changes. Percentage similarity simply tested whether historic and current sites
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differed in composition. Wilcoxon rank sum tests tested for differences among
individual components of the sites, such as diversity indices and life forms. Non-metric
multidimensional scaling tested the differences between historic and current communities
and how they aligned along interpreted environmental and disturbance gradients.

Analysis of all data used mean percent frequency of occurrence as the dependent
variable to investigate compositional trends. Percent frequency was calculated for each
species and each abiotic variable based on the numbér of microplots at each site. Percent
frequency, rather than percent canopy cover, was used for a number of reasons. First, all
three vegetation studies used in this analysis had a different number of microplots, so
percent frequency standardized the data into proportions that are comparable between
sites with different sample sizes. Second, the frequency that certain species occurred in
each area was more objective and more readily comparable than the original percent-
cover values because the exact site locations from the 1970s couldn’t be relocated. Third,
several studies have shown that percent frequency is a more reliable indicator of
compositional change than cover for long-term studies (Elzinga et al. 1998, Greig-Smith
1983, Lesica & Hanna 2002, Smith ef al. 1986).

To determine if historic and current plots were significantly different, the
compositions of each historic and current plot within an ecoregion were compared using
percentage similarity. The .percentage similarity (Sorensen 1948) was calculated as Dy, =
100 - 200 * (sum min (Y ,Yy))/ (sum Yj + sum Yy ), as described in McCune (2002).
Distance relationships between the samples obtained from the similarity analyses were

subjected to multidimensional scaling (MDS) to diagram how similar they were. All
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similarity and distances relationships were calculated within the Brodgar statistical
package (Zuur 2000).

Wilcoxon rank sum tests (van der Waerden 1969), which are equivalent to Mann-
Whitney non-parametric tests, were used to test whether the plots from the current and
historic sample sets could have come from the same sample distribution at the landscape
or ecoregion scales. Differences in life-form dominance, life history, species origin,
family proportions, abiotic (bare soil, rock) coverage, and moss and lichen coverage were
tesfed between the two time periods. Topographic characteristics were also tested to
determine if historic and current plots fell wnhm the same general variations in
physiography within each ecoregion. The Wilcoxon tests were run within S-Plus
statistical software (Insightful Corporation 2001) and differences between the historic and
current sample sets were considered significant if p<0.05. Most comparisons, however,
had much higher significance values than this minimum (i.e. p<0.01). VTAB Ecosystem
Reporter (Emanuel 1999) was used to summarize total coverage for each of the plant-
related variables by plot. Non-standardized, calculated mean frequencies from the raw
data were input into VTAB to compute these totals. The tallies of total plant coverage in
a plot for each characteristic were then converted to proportion of total plot coverage,
which was then used in the Wilcoxon comparisons. (Note: VTAB’s original plant look-
up file and parameter file for categorizing plant characteristics has been extensively
modified and expanded to fit the output needs of this particular study.)

Differences in total diversity between the 1970s and current communities were
also tested for each ecoregion. Ricl;ness comprised one variable. Shannon diversity, a

common index that measures both richness and evenness, was computed within VTAB as
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H’= (N log N — sum (n log n))/N, where n is % mean frequency for each species in a
sample multiplied by 10 and N is total % mean frequency for all species multiplied by 10.
Simpson’s dominance was calculatéd because it emphasizes evenness and is relatively
stable with sample size. It is calculated as I=(sum (n*(n-1)))/N*(N-1)). Mean values for
the three diversity measures were compared between the historic and current plots using
S-Plus Wilcoxon tests as described above.

While Wilcoxon tests were used to determine if the set of historic plots differed
significantly from the set of current plots in general terms, non-metric multi-dimensional
scaling (NMS) compared the plots as individual entities with their own characteristic
compositions, structures, and distributions along disturbance and environmental
gradients. As with similarit-y analysis, the effect of time was minimized within NMS.
The analyses focused solely on the relative similarities of each site’s composition, no
matter when it was measured, compared to all other sites within the ecoregion. NMS was
calculated within PCOrd V4.27 (McCune & Mefford 1999) using a Bray-Curtis distance
measure and the autopilot function (step-down dimensionality starting in 6-D space,
stability criterion=0.005, random number start). Each NMS analysis was run several
times with random start numbers to ensure the best configuration was achieved (i.e.
solution with least stress). The calculated stress value for each ordination represents how
well the sequence of ordination distances fit the sequence of original distances in the
actual compositional data in each data set. The better the fit, the lower the stress values
were. Prior to data transformation, the main matrix for NMS consisted only of percent
frequency values for vascular plant species. No species was omitted from the ordination

if it occurred in the original microplot data. A separate, secondary matrix consisted only
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of frequency values for abiotic and non-vaséular variables, including bare soil, rock,
lichens, moss, and litter.

Raw data were transformed in PCOrd with a Beal’s smoothing algorithm prior to
running NMS analyses only. Beal’s smoothing was used in this study, rather than data
standardizations or relativization, to address three main problems with the data sets.
First, it smoothed out differences due to varying sampling intensity or sampling quality
(McCune 1994). In long-term studies, uneven sampling quality is common because
investigators with different abilities and priorities ch:—inge over the lifetime of the project.
Sample intensity also varies considerably with study objectives and project scale. In this
study, both problems affected the raw data. Several different crews collected the historic
data. The historic crews are different from the crews collecting more recent data. Data
were collected for a different purpose in each study, even though all three data sets used
the same general collection techniques (i.e. Daubenmire microplots). Second, Beals
smoothing removed the excessive number of zeros in the vegetation matrix caused by a
small number of species in each sample compared to the large number of species in the
overall study. The grassland plots typically consisted of fewer than 40 species, but over
400 species occurred across the landscape and within the 30-year time. Finally, the Beals
smoothing function addressed the classic “zero-truncation” problem common to all plant
community data. The “zero-truncation” problem refers to the zero values in the
vegetation data that reveal nothing about how unfavorable a particular site is for a
particular species (i.c. whether a plant can not grow in a community or whether it just is
not found at a particular sampled location). Although the Beals transformation

eliminated some quantitative variability from the original grassland matrix, smoothing
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was only a problem with the NMS for the north region. In the north, so much variability
was lost smoothing that the NMS was 1-dimensional (i.e. ranked data in a single line).
Therefore, the ordination for the north region presented in this paper was created using
raw frequency data values in the vegetation matrix instead of transformed values.

For a complete discussion of the mathematical procedures used by NMS and the
advantages and disadvantages of using this technique see McCune (2002), Kruskal and
Wish (1978), Young (1987) and Clarke (1993). See McCune (1994, p.83) for a
description of Beal’s smoothing and its advantages when analyzing long-term data.

Statistical procedures for analyzing compositional change among the paired-plots
included tallying the number and types of species lost or gained between the historic and
current samples, analyzing the functional groups that were lost or retained over time, and

comparing compositional similarities among the pairs using NMS as described above.

Relating environmental and indicator variables to NMS plot distribution

Climate summaries from 38 climate stations distributed across western Montana were
used to correlate variations in temperature and seasonal precipitation between 1971 and
2002 with compositional change in the bunchgrass communities (Western Regional
Climatic Center 2002). For each climate station, monthly mean temperatures were
averaged by season and monthly precipitation values were totaled by season. The
seasonal categories included: fall prior to sampling (September-October), winter
(November — March), spring (April-May) and summer (June-August). The stations
were divided into categories based on ecoregion and elevation within the ecoregion to

make the climate data more applicable to the range of elevations covered by Montana’s
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grassland sites. High elevation stations were above 1800 m; low elevation stations were
below 1800 m.

For each ecoregion and elevation range, the individual seasonal values from each
climate station were, in turn, averaged to obtain a mean temperature and mean
precipitation total by season for each.of three time periods. The time periods included:
(1) the sample years of the historical study; (2) the sample years of current studies; and
(3) a 30-year mean. The means for the sample years were calculated in two ways- as a
seasonal for the three years prior to each sampling year and as a straight éverage by
season for the year of sampling. The three-year seasonal averages are presented in this
paper, but there was virtually no difference to trend interpretations if the prior-year
seasonal values would have been used. Thirty-year means were computed for each
climate station using mean annual values from 1971 to 2002 and then stations were
aggregated by region and elevation to create a single number representing the thirty-year
mean for high and/or low elevations within each ecoregion.

To examine how individual variables, such as coverage of annual species or
diversity indices, correlated with plot distribution in each NMS, the dependent variables
were tested against each NMS axis score using linear regression within S-Plus statistical
software. In statistical terms, each variable is regressed over the coordinates of the
conﬁéuration (Kruskal & Wish 1978). Results of linear regression on NMS axis scores
were considered significant if p<=0.05. The substrate index variables included the
frequency of bare soil, rock, litter and other (animal droppings). The non-vascular plant
variables included mosses and/or lichens. Other variables represent totals of certain types

of species assigned to certain plant categories in VTAB. The “introduced species”
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variable was a total of all introduced species by plot converted to a proportion of the total
plot vegetation. Plot totals were then averaged by ecoregion. Grazing effects were
quantified using tallies of indicator plants. Ideally, the direct effects of grazing would be
quantified and correlated with results using specific information on stocking rates,
grazing rotational method and the type of animal eating from each plot location in each
sample year. However, this information was not available for the historic and current
plots used in this study for a variety of reasons. Comﬁounding the iséue, wildlife grazing
was more common in some areas than livestock grazing and forage preferences differed
between wildlife and livestock. Estimating when, where and how much elk, bison,
bighorn sheep and deer ate and how herds congregated in a certain area to forage was
difficult and highly speculative at best. To counteract these problems, I used indicator
plants that are accepted by range managers as a measure of how certain plants are known
to respond to cattle grazing (Willard 2003a, Wroe et al. 2000). Individual species were
classified according to their response to foraging, then summed and converted to a
proportion of plot coverage. These values formed the increaser, decreaser, and invader
variables (Dyksterhuis 1949). Increasers are plants that are known to increase cover with
grazing. Decreasers decrease in cover with graziﬁg. Invaders increase in communities
and replace other community members over time. The effects due to wildlife grazing
were captured only if a plant responds in the same way to both foragers.

Interpreting how and why plots were distributed along each NMS axis and
labeling the most important factors driving the distribution were done using several lines
of evidence including;: (a) the physiologic requirements of key species in plots along the

axes; (b) the differences in substate, non-vascular, or composite variables in plots at axis
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extremes; (c) high significance values for correlation of a variable with NMS axes scores;
and (d) the importance of topographic variables to each analysis. Many of the axes had
more than one distinct gradient along their length. Other axes, however, had gradients
that represented a combination of many individual factors, which couldn’t be
distinguished as individually controlling distribution. For example, plots along some
axes showed strong correlations with elevation, aspect, surface litter, shrub overstory, and
plant growth requirements when regressed on the NMS axis scores, but no one factor was
more significant than any others. These axes were best represented by combining the
factors under a single label (e.g., “evapo-transpiration™). Similarly, “surface soil temp”
was assigned to plots that had only factors insulating the soil surface and no evidence of

shading from overstory shrubs or trees.

Results

Montana regional patterns

The western Montana region is a composite of so many different ecoregions within such
a large geographic area that distinguishing compositional differences between historic
and current plots within the landscape was confounded by differences in topography and
latitude. Virtually every variable compared for differences between historic and current
community structure with Wilcoxon tests was highly significant and, therefore, changes
between the two time periods appeared quite dramatic (Table 1-1). Dominance shifts in
38 families over time alsc contributed to the appearance of significant compositional
change (Fig. 1-2). At this scale of analysis, the dominance shifts over the past three
decades appeared quite significant, especially in decreases in the Poaceae and

Polemoniaceae and increases in Rosaceae, and Rubiaceae (Fig. 1-2). However, these
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Figure 1-2: Mean frequencies of species by plot, summarized by family, for western
Montana landscape. Only top 18 families with frequency greater than 1% are
shown. 38 total families have statistically significant changes between the
two sampling periods (*=differences significant at p<0.01).
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trends were not ubiquitous across the landscape. If members of Poaceae, for example,
are tallied by region, they actually increased slightly in frequency (<5%) in all regions
except the north. In the north, Poaceae decreased by 12%, which dominates the western
Montana analysis. The only species that varied uniformly across all regions were
members of the Cyperaceae (decreased), and Sellaginellaceae (increased).

A distinctly different perspective of compositional change over the entire region
was given by the NMS where both historic and current plots were well distributed in
ordination space and neither sample set was distinctly separated from the other based on
composition (Fig. 1-3). Plots were arranged mainly by latitude and moisture gradients
that range from moist conditions in the north to extremely dry conditions in the south and
southwest. At the extreme negative end of axis 1 in Fig. 1-3, plots averaged over 40
species per plot, were coincident with moist conditions, and were located at the highest
latitudes in Glacier National Park. They included communities containing Calamagrostis
canadensis (Michx.) Beauv., Juncus balticus Willd., and Equisetum arvense L. On the
positive end of the axis, plots averaged fewer than 10 species, were well-drained and dry,
and were mostly from southwestern Montana. Compositions contained
Krascheninnikovia lanata (Pursh) ADJ Meeﬁse & Smit, Bouteloua gracilis (Willd. ex
Kunth) Lag. ex Griffiths, and Opuntia polyacantha Haw. Introduced species, in
general, correlated significantly only with axis 1 (R*=0.03, p<0.01). Because of the low
orthogonality of the graph, which indicates high correlation among the axes, plots from
disturbed communities with an abundant cover of introduced species created a scattered
distribution on diagonals out from the main axis of the western Montana plots (see

vectors in Fig. 1-3).
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Figure 1-3: Non-metric multidimensional scaling of species frequency matrix for
western Montana grasslands (S=south region; SW=southwest region;
NW=northwest region; N=north region). n=460. # species=622. Axis 1
R=0.82; axis 2 R*=0.16. Orthogonality=48.5%. Stress=7.491.
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Ecoregion patterns
Differences in composition among typical historic bunchgrass communities and

typical contemporary bunchgrass communities were best distinguished at the ecoregion
scale. In general, the ecoregion divisions made climatic, geologic, and topographic
conditions much less dominant than at the larger western Montana scale so differences in
vegetation pattern over time were more prominent. Historic and current plots separated

V quite distinctly in most ecoregions using percentage similarity (Fig. 1.-4). As in the
western Montana landscape, however, the strongest influences on the distribution of most
historic and current plots in the NMS for most of the ecoregions were combinations of
environmental and topographic factors that control moisture and temperature. Climatic
variations between ecoregions and the mean differences in precipitation and temperature
for the growing season over time are shown in Fig. 1-5. In all ecoregions except the
northwest, the climatic influences - whether they were ultimately driven by differences in
elevation, latitude, slope and aspect, or climate warming - controlled plot distributions

along the NMS axes that explained the most variability (i.e. had the highest R?).
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ecoregion as measured by percentage similarity in composition.
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South ecoregion change patterns

The NMS graph for the south region has three distinct clusters, or group spaces, along its
dominant axis, which consist of communities that increase in moisture requirements
along the length of the axis (Fig. 1-6). Group space one was comprised of plots
dominated by Pseudoroegneria spicata, Opuntia polyacantha, and Gutierrezia sarothrae
(Pursh) Britt. & Rusby that thrive in hot, dry environments. Group three consisted of
historic plots with combinations of species that grow in moist or very wet environments,
including Deschampsia caespitosa (L.) Beauv., Juncus balticus, and Galium boreale L.
Group two consisted of plots with F. idahoensis and P. spicata as co-dominants

combined with several shrub and succulent species. Although the historic sampling

South Region
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Figure 1-6: Non-metric multidimensional scaling of species frequency matrix for south
region. n=41. #species=205. Axis 1: R2=0.62; Axis 2: R2=0.14; Axis 3:
R“=0.10. Orthogonality: NMS axis 1 vs. 2=89.2; 1 vs. 3=91.2; 2 vs. 3=88.5.
Stress=13.085. Numbers refer to group-space descriptions in text.
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spanned a wider range of moisture regimes than contemporary sampling to contribute to
differences along NMS axis 1, the differences in composition due mainly to time were
most apparent along NMS axis 3 (Fig. 1-6). Historic plots at the low end of axis 3
showed little evidence of disturbance factors; recent plots at the high end had more

- invader forbs and shrubs (Appendix B).

In 2002, the south ecoregion was warmer and drier than either the 1970 sampling
seasons or the 30-year mean conditions (Fig. 1-5). The Gardiner climate station near
Yellowstone National Park (south, low elevation) had the most warming over the 30
years of any location. It experienced increases of 0.5 to 2.5° C for each season.

Several compositional trends in the community data suggest that the plant
cormmmities may have experienced enough warming and drying during the past 30 years
to cause significant change over the three decades. The dominant trends in the south
include:

1. Bare soil and exposed rock increased three-fold from 6% to 19% and 11% to

27%, respectively (Table 1-1).

2. Surface litter decreased from 51% to 12% between sample periods.

3. Diversity indices remained stable, although the mean number of species per
plot actually declined (Table 1-1). Diversity is strongly correlated with the
moisture gradient along NMS axis 1 (Shannon index R*=0.50 and Simpson’s
index R? =0.46), but it is also correlated with the difference between historic
and current plots on NMS axis 3 (R%=0.16 and R* =0.11). Some diversity loss
was attributed to a significant reduction in the frequency of non-native species

(Table 1-1), which also correlates with plot distribution along axis 3
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(R*=0.237) in the NMS. The south region is the only region in this study
where non-native species declined during the 30 years, although introduced
species were not a significant problem in the region during either time period.

4. Species with drought-resistant physiology, like cacti and sedum, mofe than
doubled in frequency.

5. Species with deeper root systems (i.e. several species of shrubs) increased
significantly during the drought conditioné. In general cofnparisons, all
invader, decreaser, and increaser shrubs more than doubled in the past 30
years, although most of the increases were not significant within the limits of
this study (Table 1-1). Within ordination space, shrub increases and/or
invasion were second only to differences in the abiotic variables and
introduced species as important factors for separating historic and
contemporary plots along NMS axis 3 (R2=0.19).

6. All non-shrub grazing indicators showed only minimal differences with past

conditions.
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Southwest ecoregion change patterns

Like the landscape-scale analysis (Fig. 1-3), the ordination for the southwest region
showed strong moisture and topographic gradients along its dominant axis (Fig. 1-7).
The southwest had so many more historic plots in proportion to contemporary plots and
they existed in such a varied topography, that all correlations of these plots with latitude,

slope and elevation were highly significant (p<0.001). As a result of this topographic
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Figure 1-7: Non-metric multidimensional scaling of species fre%uency matrix for
southwest region. n=222. # species=440. Axis 1: R*=0.85; Axis 2: R*=0.10.
Orthogonality=63.8%. Stress=10.716.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



bias, composition changes associated with moisture variables may be slightly skewed in
the southwest NMS.

Like the south region, this region was drier than normal for most of the current
sampling year. However, it did receive almost normal precipitation in the summer of
2002 at low elevations. Mean temperatures were comparable to the historic sampling
period and the 30-year mean for all seasons except the fall.

Of all the ecoregion analyses, the southwest region had the least separation
between historic and current plots in both the similarity analysis and in the NMS.
Covariance among the axes of the NMS was also highest among the ecoregions
(orthogonality=64%). The high degree of covariance and the low explanatory power of
axis 2 (R?=0.10) made it difﬁcult to determine why current plots were distributed on the
fringes of the main historical distributions in Fig. 1-7. No specific mechanism for‘ the
separation was apparent from linear regression, but both current and historic plots located
out from each side of the main diagonal axis of historic plots seemed to have
proportionally higher combinations of introduced and annual species that were
characteristic of disturbance, including Centaurea biebersteinii DC (C. maculosa),
Bromus tectorum L., Cirsium undulatum (Nutt.) Spreng., Polygonum douglasii Greene
and Melilotus officinalis (L.) Lam.

The compositional trends for this region include:

1. A significant increase in introduced species from 3% to 9% in 30 years
(Table 1-1).
2. A significant increase in annual species at the expense of perennials (from

2% to 11%).
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3. Anincrease in moss and lichen coverage from 0% to 10%. (note: this may
be an artifact of increased awareness on the importance of cryptogamic
crusts in these communities now so they were measured separately during
recent sampling).

4. An increase in bare soil and decrease in litter (Table 1-1), but no
significant changes in cacti or other succulents.

5. Anincrease in most grazing indicators (Table 1-1). Few of the increases
are significant within the limits of this study, however. Decreasers, which
should decline under grazing, have also increased in frequency.

6. Members of Poaceae, in general, increased 5% over time.

7. Overall richness and diversity indices have remained the same over the 30

years.

The most important change factors in this region appear to be the dry conditions,
the compounding effects of five years of drought, and the increases in introduced species.
At this spatial scale, neither Wilcoxon comparisons nor correlations with NMS axes
suggest that grazing has had detrimental effects on bunchgrass communities since 1971;
but it is unclear how much the grazing effects are masked by the dominant climatic and

soil factors along axis 1 like they were in the western Montana NMS.
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Northwest ecoregion change patterns

Although many of the historic plots in the northwest region were located in relatively
close spatial proximity to the current plots that were sampled in the National Bison
Range, current and historic plots were completely separated in ordination space along
both axes (Fig. 1-8). The climatic differences between the two time periods were also
distinctly different. During 2002 sampling, the region was warmer and drier than historic
conditions for all seasons. Temperatures were also higher than historic sampling and

normal means during the growing season (Fig. 1-5).
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Figdre 1-8: Non-metric multidimensional scaling of species frequency matrix for
northwest region. n=34. # species=151. Axis 1: R>=0.63; Axis 2: R>=0.29.
Orthogonality=69.3%. Stress=10.376.
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The trends within these communities over the past 30 years include:

1. An overall increase in bare ground from 2% to 19% correlated with a
decrease in vegetation cover and litter production (Table 1-1). These
surface characteristics were highly correlated with differences along
NMS axes 1 (bare ground R2=.32 on NMS axis 1) and NMS axis 2 (bare
ground R2=0.35 and litter R2=0.68).

2. An increase in the frequency of annuals to comprise up to one-third of
plot species. Linear regression showed that annual species correlated
significantly with plot distribution along both NMS axis 1 (R?= 0.23) and
NMS axis 2 (R?= 0.50).

3. A significant decline in perennial species, especially bunchgrasses, from
80% to 60% (Table 1-1).

4. An increase in non-native species from 11% to 19%. This region has
higher proportions of introduced species than any other ecoregion in
western Montana.

5. A decrease in grazing indicators with time, but most of the declines were
not significant within the criteria of this study. Annual invader grasses
inéreased the most, including Bromus tectorum, Aristida purpurea Nutt.,
Apera interrupta L., and Poa compressa L..

6. Overall, the members of Poaceae increased significantly over time
because of invader grasses; but the increase has been at the expense of

more palatable native perennial grasses and perennial forbs in the
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Asteraceae and Brassicaceae families, which have each declined about
5%.

7. Diversity measures were unchanged. The mean number of species per
plot is essentially the same after 30 years even with the increase in non-

native species.

The differences in plot distributions in this ecoregion correlated almost
exclusively with disturbance factors, not with climatic variation. Individually, many of
the trends listed above would be consistent with climate warming, prolonged drought, or
grazing. However, the correlations with grazing variables, the decline in perennial
bunchgrasses, and the dramatic increase in introduced species suggested that disturbance
or grazing may have been the most important driver of change in this ecoregion

(Appendix B).

North ecoregion change patterns

Interpretations of change patterns for the northern ecoregion were complicated by a shift
in the dominant NMS axis to axis 3 instead of axis 1 (Fig. 1-9), latitudinal effects
(R?=0.26, p<0.001) that could mask some changes due to time, and a disproportionate
number of current plots compared to historic plots that could bias the Wilcoxon tests.
Current plots covered the full extent of the eastern portion of the park, but the majority of
historic plots were concentrated in the southern portion (Fig. 1-1). Several of the historic
plots at the extreme upper range of NMS axis three were actually sampled just outside the
park boundary in 1970, which probably have skewed the composition comparisons

slightly toward more disturbed conditions than would have been present in Glacier
36
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National Park alone; but field notes for the plots did not highlight any unusual
disturbance patterns that were not also present in other sample locations within the park.
Climatically, the area experienced less precipitation and higher temperatures than normal

for the growing season, but conditions were comparable to those in the 1970s (Fig. 1-5).
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Figure 1-9: Non-metric multidimensional scaling of s 2pecles frequency matrix for north
region. n=163. # species=364. Axis 1: R*=0.19; Axis 2: R>=0.16; Axis 3:
R"=0.47. Orthogonality: NMS axis 1 vs. 2=99.8%; 1 vs. 3=94.4%; 2 vs.
3=99.9%. Stress=16.94.

The dominant trends for the species-rich north include:
1. A decrease in exposed rock and an increase in surface litter over time

(Table 1-1).
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2. Anincrease in diversity. Of the three diversity measures tested, those
sensitive to richness increased significantly over time and those sensitive
to evenness decreased (Table 1-1).

3. An increase in non-native species over thirty years. Correlations with
introduced species were highly significant along NMS axis one
(R?=0.50) and axis three (R*=0.31). Invader grasses were also highly
correlated on the same axis (R*=0.39 and 0.29, respectively).

4. An increase in shrubs and forbs, including significant increases in
Rosaceae (+5%) and Asteraceae (+3.8%). Shrubs that are grazing
indicators have not changed significantly, but general shrub frequency
has increase;i in the area (Table 1-1).

5. A decrease in species of Poaceae of 12%.

6. A reduction in decreaser grasses that correlated with plot distribution
along NMS axis 3 (R?=0.19), suggesﬁng that grazing has had an effect

on bunchgrass communities in Glacier National Park over 30 years.

The éhange patterns and their correlations with plot distributions in ordination
space suggest that an influx of non-native species and the effects of grazing were the two
dominant factors driving community change in this region (Fig. 1-9, Appendix B). In
contrast to the south, the north region shows little evidence of composition change due to
climate fluctuation. Although total precipitation declined for all seasons since 1970, the
historic plots were actually distributed in the NMS counter to the locations where they

would be expected if climate alone were controlling their distribution. Historic plots are
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located at the driest end of the moisture gradient instead of in a wetter portion (Fig. 1-9).
They do, however, fall at the cooler end of the temperature gradient on NMS axis 2
where they would be expected if warming alone were determining their position. If
climate warming is affecting western Montana vegetation, it is not affecting all regions to

the same degree and the effects of climate change in the north lag behind other regions.

Paired - plot change patterns

For sites that were located within five kilometers of each other and analyzed as paired
plots, the comparisons show many of the same compositional trends that were present
within the individual ecoregions. Introduced species and shrubs (if present) generally
increased in frequency with time. Depending on where the paired-plots were located,
some species of grasses decreased or disappeared while others (mainly invader grasses)
increased considerably in frequency. Of the many species investigated in this study,
there was no one species that did not move in or out of a community in at least one of the
regions, including P. spicata or the fescues that were the study’s focus. At each of the
.paired-plot sites, the gains and losses of different species over time were numerous, but
each location also had a core group of grass and forb species that persisted even after 30

years. These persistent species differed at each location, and not all were native species.
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Discussion

Change is inevitable in any planf community. Both Clements (1916) and Gleason
(Gleason 1926) recognized the inevitability of change even if they could not agree on its
form or direction. Over the past century, scientists have come to realize that many
factors contribute to plant-community change, and that these factors may be unique to a
particular region or even a particular ecosystem (Bartlein et al. 1997, Weltzin et al.
2003). Deciphering change patterns and the factors driving change in the bunchgrass
communities also depends on spatial perspective.

When communities are examined at the western Montana scale, they project
‘contrasting perspectives of change — from dramatic to undistinguishable. Significant
changes in family dominance on the landscape scale has changed not only composition,
but structure within these communities (Fig. 1-2). The changes are not uniform across
the entire landscape, however, and impressions of trends in family dominance can be
misleading if they are not examined at smaller spatial scales, such as the trends in
Poaceae in this study. Alternately, differences in the community composition that can be
attributed specifically to time are virtually masked in both the Wilcoxon tests (Table 1-1)
and the NMS (Fig. 1-3) by topographic and climatic differences over the large geographic
area.

At the ecoregion scale, the effects of topography and cliinatic variations are
mitigated and changes due to time are more pronounced. Each region shows unique
change patterns and varying deg;'ees of change in the proportions of lifeforms, plant
origin, dominant life cycles and trends in diversity after 30 years (Table 1-1). From the

ecosystem perspective, communities have not changed in a clear, singular trend across
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the state. The éouth has patterns showing decreased diversity, but increased frequencies
of xeric species and shrubs. The southwest has significant increases in annual and non-
native species but little change in overall diversity measures. The northwest has
experienced an influx of annual, non-native species and a decrease in desirable species
for grazers. The north has gained non-native species, decreased desirable grazing
indicators, increased shrub cover, and increased in diversity over time. These changes all
suggest that bunchgrass communities are very dynamic ecosystems that have been
affected by several different change processes during three decades.

At the smallest spatial scale examined in this study (i.e. paired-plots), the
bunchgrasses communities appear even more dynamic than at the ecoregion scale. Each
community has a small stable core group of species that persist after three decades, but up
to 55% of its members have moved in or out of the community at some time during the
interval. Fuhlendorf and Smeins (1996) found similar trends toward increased variation
and decreased stability at the local scale in the semi-arid grasslands of Texas.

Inferring process from pattern in ecological communities has sparked debate since
successional theories were first proposed. Clements (1916) and Gleason (1926) each
explained the patterns they observed differently; and both based their explanations on
natural biotic and abiotic processes (Cale 1989). During the past 30 years, a variety of
natural processes have affected these bunchgrass communities and each one’s importance
to compositional change has varied across the landscape. As suggested by Knapp (2001),
these grasslands are sensitive to climatic change - and climate warming appears to
directly correlate with change in the south region. Not only has the temperature

increased and precipitation declined, but the shrub invasion in this region can also be tied
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to climate warming (Van Auken 2000). Compositional patterns may reflect the influence
of climate because moisture and temperature factors control distribution of plots along
the dominant axis (Figs. 5, 6, and 8). Only in the northwest, where the effects of grazing
and introduced species dominate change, is the NMS not obviously controlled by climate
(Fig. 1-8). The importance of non-native species to driving vegetation change is also
well known (LeJeune & Seastedt 2001, Mack 1989, Stohlgren et al. 2003); and
introduced species are very important to explaining thé change pattefns in the Montana
bunchgrass communities. All regions have a disturbance gradient in NMS that reflects
increases in the proportion of introduced species, or a combination of grazing and
introduced species effects (Figs. 5-8). Introduction of non-native species does seem to be
consistent with the diversity of each community. The species-rich north has had a
significant increase in non-native species over time while introduced species are not as
significant to change patterns in the comparatively species-poor south, which supports
work by Lonsdale (1999) and Stohlgren (2003).

Grazing has had mixed effects on the ecoregions even though overall grazing
pressure has increased in most areas of Montana during the past 30 years. In the south,
which includes Yellowstone National Park, bison herds in the park have increased from
713 in 1971 to 3,899 in 2002 (Wallen 2004) and actual observed elk in the northern
winter range have increased from 8,215 in 1971-72 to 11,969 in 2001-02 (White 2004);
but grazing indicators show minimal differences from past conditions (Table 1-1).
Trends are the same for the southwest region, which has‘ had three- and four-fold
increases in ungulate populations over the same time interval (Montana Department of

Fish Wildlife and Parks 2003) without much effect on grazing indicators. However, in
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the northwest region, which includes the National Bison Range, grazing indicators
suggest bison and ungulate populations have preferentially changed community
composition aﬁd diversity. Changes in management of the bison herd to a less frequent
herd rotation (Willard 2003b), along with increases in herd size, are probably responsible
for the diversity changes and for the striking differences between historic and current
plots shown in Fig. 1-8. The north region has the widest array of significant grazing
indicators found in any of the ecoregions (Table 1-1, Appendix B). Although Glacier
National Park currently does not allow domestic grazing, the park has a long history of

- domestic livestock use on its east-side grasslands both before and after the park was
created (Shea et al. 2003). Today, the park sustains deer, elk, and bighorn sheep
populations; but livestock trespass over park boundaries into the park is still a serious
problem (Shea et al. 2003). These factors all contribute to the highly significant
differences in grazing indicators over time (Table 1-1 and Appendix B) and the strong
disturbance gradient along NMS axis 3 in Fig. 1-9. Harding (1998) and Leach & Givnish
(1996) proposed that, in some ecosystems, historic land-use practices may be better
predictors of current biodiversity and ecosystem dynamics than current management
practices. In the north region, the residual effects of historic grazing are still evident on
the landscape and may partially explain why historic plots are not as separated from
current plots in the NMS as they are in the other regions.

While the comparisons between the historic and current plots do indicate general

trends in species abundance over the past 30 years, the two-points-in-time approach has
several limitations. The species changes between the 1970s and 2002 are relative

changes; not absolute trends. Some species obviously increase overall more than others
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but each may differ in their change rates; thus, making absolute increases appear as
decreases in the analyses. This limitation can be overcome with more analyses on the
absolute changes in species and families at the different spatial scales. The comparison
of the historic class of bunchgrasses with the current class of bunchgrasses also suffers
from the inability to go back to exact sites to measure change (this approach will be
covered in chapter 2). There are differences on the landscape in community composition
that can not be overcome by limiting analyses to ecoregions with similar climate,
vegetation, and land-use history. The class comparisons in this study, however, indicate
several types of changes that have occurred within the same general areas in the past 30

- years. More detailed analyses at the local scales are needed to determine how well the
two-points-in-time approacﬁ assesses the long-term trends.

Clearly, the sensitivity of certain ecosystems, like grasslands, to climatic variation
and the substantial effects of increased non-native species and grazing demands on plant
communities over the past century could not have been envisioned in the early 1900s
when succession theory was born. Ecologists also could not have predicted the impact of
human activity on climate when they were developing models of succession that required
stable climates for simplicity. With only two points in time, it is impossible to determine
if some species have reached levels of environmental or biotic stress that make their
trends irreversible (thresholds), if some communities react in different ways to the same
external stimuli in the different regions (multiple pathways), or if the communities have
existed in several different stable stétes during the 30 years (state and transition). The
perspectives examined in this study do show, however, how important spatial scale is to

interpreting change patterns. The patterns may vary with area, but the bunchgrass
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communities of western Montana show how important contemporary processes like
invasion and climate fluctuations are to compositional trends and how rapidly community

change has occurred in this northern ecosystem.
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Appendix A: Nomenclature information for species cited

Code Current Name ' ~ Synonyms

Apelnt Apera interrupta (L.) Beauv. Agrostis interrupta |..
AraTha Arabidopsis thaliana (L.) Heynh.

AriPur Aristida purpurea Nutt. A. longiseta Steud
BouGra  Bouteloua gracilis (Willd. ex Kunth) Lag. ex Griffiths

BroTec Bromus tectorum L.

CalCan Calamagrostis canadensis (Michx.) Beauv.

CenBie Centaurea biebersteinii DC. C. maculosa auct.non Lam

CirUnd Cirsium undulatum (Nutt.) Spreng.

DesCae Deschampsia caespitosa (L.) Beauv.

EquArv Equisetum arvense L.

FesAlt Festuca altaica Trin. F. scabrella Torr.ex Hook.
Feslda Festuca idahoensis Elmer

GalBor Galium boreale L.

GutSar Gutierrezia sarothrae (Pursh) Britt. & Rusby

JunBal Juncus balticus Willd.
Kralan Krascheninnikovia lanata (Pursh) A.D.J Meeuse & Smit  Ceratoides lanata
KraLan Krascheninnikovia lanata (Pursh) A.D.J Meeuse & Smit  Eurofia lanata Pursh Mog.

MelOff Melilotus officinalis (L.) Lam.
OpuPol Opuntia polyacantha Haw.
PoaCom Poa compressa L.

PolDou Polygonum douglasii Greene

PseSpi Pseudoroegneria spicata {(Pursh) A. Love Agropyron spicatum Pursh

4 Current nomenclature standard'qzed to Kartesz 1998.
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CHAPTER 2

Communities in motion: The nature of change within intermountain

bunchgrass communities at site and regional scales

Abstraét:

For over two decades, Pseudoroegneria and Festuca bunchgrass communities across
western Montana have been part of a natural experiment that has quietly recorded their
responses to disturbance and fluctuating climate. In this study, I focus on how these
communities have changed during the past 20 to 50 years under these non-experimental
conditions. Iuse time-series data from historical monitoring records to examine species
stability within them and how their change patterns correlate with fire, grazing, non-
native species, and climatic fluctuation. Patterns are examined at the site and ecoregion
spatial scales.

At the site scale, each community had a unique compositional history. Forb and
grass species moved into and out of the communiﬁes often. Even the frequency of focal
grasses varied significantly between sample periods. The transient nature of the species
at this scale gave the impression that the communities were in a constant state of flux. At
the ecoregion scale, each area had different long-term trends in diversity and lifeform
proportions. Richness decreased in most ecoregions since the 1970s. Grass coverage
decreased since 1958 in the south ecoregion, but shrub and forb coverage increased.
Alternately, the northwest area increased grass coverage significantly, but forb frequency
decreased. The southwest decreased in forbs and shrubs, but trends in grass frequency

were mixed.
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I tested all measured disturbance and environmental variables concurrently aﬂd
found that climatic variables correlated most significantly with community change at all
spatial scales. The relative importance of temperature and precipitation, however,
differed among ecoregions. Fall and winter precipitation and winter and spring mean
temperatures correlated best with community change. Non-native species correlated
significantly only in the southwest ecoregion (FQ.O to 3.3).

The effects of grazing on community change were assessed in a case study area
with big-game exclosures. No lifeforms trends were attributed strictly to grazing. The
trends inside and outside the exclosures were in the same directions and differed only in
relative amounts.

The stability and chz;nge patterns in these communities were consistent with
successional models based on non-equilibrium, but near-linear patterns did exist. The
most common change patterns fit those expected in the state-and-transition and persistent

non-equilibrium models.

Keywords: community dynamics, difference matrix, Festuca spp., facies diagram, historic
vegetation, path analysis, plant functional type (PFT), Pseudoroegneria, successional
models, temporal change, time series

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Introduction
“What endures on the grassland is motion. In the long view, in the short
view, on micro and macro site, the grassland is a place of
motion.”

-Richard Manning (1995:47)

The ebb and flow of plant species on the landscape creates many unique communities in
space and time. Each of these communities experiences its own history, which is shaped
by the interrelationships of species within it and by the effects of environmental stresses
upon it. Modeling how these communities respond to internal and external stresses over
time has been the topic for passionate debates and on-going arguments about the nature
of plant community change for almost a century. At the heart of the problem is the lack
of sufficient long-term historic data to define and compare actual change patterns from
these communities with the change patterns predicted by theoretical succession models.
Successional models built upon grassland research have been particularly
controversial. i*"rom his work in Great Plains grasslands, Clements (1916) first proposed
that plant communities changed in predictable, linear directions because the species that
comprised them were so highly integrated, tight-knit, and interrelated that they acted
together through time as one biological unit. At the other extreme, communities were
envisioned as totally random occurrences of species that change in unpredictable ways
solely in response to environmental stresses (Gleason 1926). Today, the search for the
nature of change in different types of plant communities is even more relevant because

western ecosystems are experiencing unprecedented environmental stress and changes in
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competitive interactions that affect both community membership and function. Exotic
species invasions, global climate change, fragmentation of the landscape, and rapid
increases in human population are affecting the physical environment and the biotic
relationships among native grassland species at unprecedented rates. Grassland
communities react to each of these pressures in different degrees depending on their
history, diversity, and spatial location.

Worldwide, the drivers for grassland change are quite diverse because these
ecosystems are sensitive to the interactions of so many environmental and biological
factors (Copeland 1992, Heady & Child 1994). Species compositions of grasslands are
now known to vary with both the timing and amount of precipitation and temperature
(Alward et al. 1999, Coffin & Lauenroth 1996, Fay et al. 2002, Kaiser 2001). Temperate
grasslands are also sensitive to the timing and intensity of grazing (Collins et al. 1998,
Fuhlendorf ez al. 2001, Heady & Child 1994). The ultimate effects of grazing in each
community depend as much on the evolutionary history of each community (i.e. whether
they developed under conditions of heavy herbivory) as it does on the fluctuations within
current grazing regimes (Mack & Thompson 1982). The timing and intensity of burning
also dramatically affect grassland composition and species’ dominance. Like grazing, the
response of grassland to burning is dependent on its historical fire regime and the timing
of the disturbance (Bailey & Anderson 1978, Jacobs & Schloeder 2002, Redmann et al.
1993). Because the relative effects of each of these environmental factors differs by
community, determining whether any grassland is undergoing directional change or

responding to short-term fluctuations in environmental factor(s) requires long-term
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monitoring records that put the short-term variations due to all these sensitivities into
wider temporal perspectives.

In this paper, I examine the nature of change in dynamic temperate grasslands in
the northern Rocky Mountains, USA. These grasslands are unique because they exist in
cool, semi-arid northern latitudes within relatively natural settings that have not been
highly fragmented by increases in human population nor manipulated in experimental
studies. I used long-term monitoring records to examine the patterns of species dynamics
over multiple decades within the Pseudoroegneria spicata (Pursh) A. Lové, Festuca
idahoensis Elmer, and Festuca altaica Trin bunchgrass communities of the intermountain
regions of western Montana. Several governmental agencies have monitored these
grasslands on permanent study plots for at least two decades. Originally, the data were
collected to monitor the trends in vascular and non-vascular plant species in habitats used
by wildlife or domestic livestock. The historic data sets now present a detailed picture of
the temporal change that has occurred in the grassland communities of this northern
ecosystem over several decades in the absence of experimental manipulation. They
record changes within communities that have been affected to varying degrees by all of
the mechanisms known to affect grassland change, including climatic fluctuations,
grazing, burning, and invasive species, so the relationship of these factors to change in
this specific community can be correlated. The Montana data sets also span an area large
enough to examine the trends in community composition across environmental gradients
at a variety of spatial scales over time.

Within this analysis, I address the following questions: What is the general form

-

of change within the bunchgrass communities? Is there directionality to the fluctuations
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in community composition of the western Montana grasslands in response to
environmental change? Do lifeforms within the community have distinctive responses to
environmental change? If so, do the fluctuations fit any change patterns that would be
predicted by current successional models? Does the pattern of change differ between the
plot and regional scales? What are the principle drivers of compositional change in

western Montana’s bunchgrass communities?

Methods
Study area
The study area is located in the northern Rocky Mountains between 44.8° and 47.4°N
latitude and 110.2° and 114.2° W longitude. The grasslands occupy valley bottoms and
foothills at elevations of 825 to 2250 meters and occur across a full spectrum of aspects.
The study area receives an average of 550 mm precipitation annually. West of the
continental divide, the climate is a modified north Pacific coastal type; east of the divide,
the climatic characteristics are continental (Western Regional Climatic Center 2002).
The study sites are located in relatively intact landscapes that have not been
highly fragmented by urban expansion. The sites have never been cultivated like prairies
in other parts of the United States, but they have been quite heavily grazed during certain
periods of Montana history. They are not subjected to extensive fertilization or other
chemicals, except for minor weed control. Most are now located within protected areas

or are parts of grazing allotments that are strictly regulated by federal agencies.
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Data sets

The data sets consist of monitoring data from four different agencies that manage
Montana’s grasslands. During the past 50 years, the four agencies have monitored their
acreage using several different sampling protocols. In Yellowstone National Park and on
the U.S. Fish and Wildlife Service’s National Bison Range, sites have been monitored
since the late 1950s and 1960s using 30 m (100 ft) permanent line-intercept transects.
Every species or abiotic variable (e.g. soil, rock, litter, etc.) encountered along the line at
0.33 m (1 ft) intervals was tallied to obtain a data set with 100 elements. The Bureau of
Land Management (BLM) and the Montana Department of Fish, Wildlife and Parks
(FWP), however, monitored their plots using methods developed by Daubenmire (1959).
For each species or abiotic variable within a 20 x 50 cm microplot, the percent coverage
was visually estimated. Multiple microplots were arranged along a permanently marked
30 m (100 ft) or 66 m (200 ft) transect. The arrangement of the microplots along each
transect varied by agency. The total number of microplots also varied from 20 to 30,
depending on the agency.

All repeat Sampling for each site followed the same sampling protocol for the
entire monitoring period, which was specified in each agency’s files. Sample timing was
matched as closely as possible to the previous sampling, although many sites varied
within two weeks on either side of a mean sampling time. The number of repeat samples
at each site varies with location. Many of the sites were measured by the same person
several years in a row. Although every attempt was made to duplicate sampling protocol
and accurately capture all species at each site, changes in sampling personnel over the

years could have affected impressions of change. Experience in forb and grass
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idéntiﬁcation varied among personnel, as well as over the course of a career. Even with
each end of a transect marked by stakes, slight variations in the position of the tape
between the markers or in the positions of the microplots along the line could also affect
impressions of change, especially random change patterns among sample periods.

Only 50 sites were selected to test for compositional change (Fig. 2-1). First
priority in site selection was given to sites that had the most repeat sampling over time.
Minimum sampling was three times in 30 years. The data sets had to include detailed
information on grass, forb, and shrub species and cover; and estimates of substrates (i.e.
rock, bare soil, moss, lichen) for all sample periods. Site selection was further refined to
ensure that the sites were well-spaced on the landscape and covered as much of the study
area as possible. Sites with é.ny irregularities in the sampling data, such as discrepancies
between sampling directions on site maps and transect descriptions, were discarded.
Sites that had fluctuations in sample timing of more than a month were also eliminated.
Sites at two areas required choosing which transect according to random selections. At
the National Bison Range, three to five line-intercepts were clustered at each location and
all were potentially available to use in this study. A randomly selected transect number
was used to select the representative transect for each location. In Yellowstone National
Park, one transect was randomly chosen to represeﬂt communities inside big-game
exclosures for a total of six replicates. One transect was chosen to represent the
communities outside of each enclosure for a total of four replicates. Together the paired
transects were used to test the effects of grazing on community change over time.

To evaluate the effect of scale on impressions of change, the data sets were

separated into four geographic regions (Fig. 2-1). The regions were based on the
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ecoregion designations of Woods et al. (1999). Each ecoregion has similar climatic,
geologic and soil conditions, so variations due to these factors are minimized within the
subdivisions, making temporal changes more evident in each region (see chapter 1).
Ecoregion subdivisions also kept all data collected within the respective region under the
same sampling protocol. For the south and northwest regions, the data were collected

along line intercepts; in the west and southwest, communities were described from

microplots.

TRANSECT NAMES
1 Gardiner Exclosure A-22 18BDRYCR6 35 SP1
2 Gardiner Exclosure B-22 19 DRYCR3 36 SL1
3 Gardiner C-21 20 BIGPIP9 37 WR1
4 Blacktail Exclosure D-12 21 BIGPIP7 38 BR1

5 Blacktail Exclosure E-22 22 WHTB34 39 BR2

6 Blacktail F-11 23LBLDR 40TM1
7 Lamar Exclosure G-11 24 SUGAR 41 TM2

8 Lamar-12 25 AMAZON 42 BAl
9 Junction Butte Excl. K-11 26 FITZCR 43 COS-T3
lbjunction Butte L-11 ~ 27TGl  ~ 44CO6-T3
1 11 MATBRN2 28TG2 45CO13-T3
N 28 B30 ¢ 12 MATBRN3 291C1 46 CO15-T3
a1 ®7 %5t 13GARCRK1 30 CG1 47C017-T3
20 .47  Southwest 14BANN1 31WC3  48CO21-T3
39 0983 425 15 MAIDRK 32 WFl 49 CO22-T3
TN i 2 16 GNEIT 33BPR 50 CO23-T3
f~y 1 ) g2 17 ALDER 345Gl
[ I 20

15

0 30 60 120 Miles
Y ellowstone [N N W T O WO T |

National
Park

Figure 2-1: Location of sites used in site-level analyses and their ecoregions (based on

Woods et al. 1999) within the landscape. Dashed line is continental

divide.

Nomenclature

During the 30 years covered by this study, nomenclature changed dramatically. All

nomenclature was standardized to the currently accepted genus and species listed on the
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Biology of North America Program web site (Kartesz 1998). Origin designations for
introduced species in Montana followed Rice (2004). Lifeform and life history

designations followed Hitchcock and Cronquist (1973).

Data analysis

All species and substrate variables were standardized to percent frequency of occurrence
to make them comparable between the different sampling protocols in each ecoregion.
For line transects, the tallies of species and substrate variables were already in frequency
percent format from the collection method. For the microplot data, frequency percent
was calculated by counting the number of times a species occurred within the microplots
and dividing by the total number of microplots used at the site. The southwest region
was the only area where two agencies used different numbers of microplots to sample
their management areas. Because sample size may affect data analysis in these types of
plots (Krebs 1999), a separate analysis was conducted with a test group of sites to
determine if frequency percentages differed significantly when 30-microplot data was
converted to 20-microplot data. In the 30-microplot data, the last 10 microplots were
eliminated for calculations. Eliminating these 10 microplots insured that the entire line
was represented in frequency calculations as per the 20-microplot samples. The test
group showed the same ebb and flow change patterns as in the 30-microplot data. Some
species increased frequency, some decreased, and some remained unchanged. The
relative change between years, however, did not change significantly. Minor species loss
occurred in some years, including focal grass species. The total cumulative frequency of

species within each lifeform changed very little. Because the change-over-time
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comparisons in this study focus on the site, which were sampled with the same protocols
each year, the only analyses where the differences in microplot totals along the transect

may affect results are in the full ordinations of the southwest region.

Species fluctuations at site and ecoregion scales

Variations in community composition over time were explored both diagrammatically
and statistically. At the site scale, the frequency of each species was diagrammed to scale
using facies diagrams like those used in geologic studies. Facies diagrams' visually show
the actual observed changes in the proportions grass, forb, and shrub species at each site
during each sample period, the constancy of individual species, and relative speed of -
species turnover w1thm these communities. Within each diagram, a single species was
considered a facie.. The community was considered composed of all of the species
(facies) observed during a sampling.

Statistical changes in diversity, species dominance, and turnover percentages were
calculated from queries of the raw data within Access (Microsoft Corporation 2001).
Richness was tallied by site and year. Although richness varies with sample area, no
rarefaction adjustments were made to the data, because all sites within an ecoregion were
sampled by the same method. However, comparisons of richness values between
ecoregions should be used with caution because the sampling techniques are so different.
Turnover was calculated using richness values between two periods of sampling and by
tabulating how often specific species occurred in the historic record. Common species

were ranked by (1) the number of times they were present during the sample history and
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(2) the total of all frequency percentages of each species. A rank of “1” was given to the

most common species by each measure.

Lifeform fluctuations at site and ecoregion scales

The species from the south ecoregion were used in a case study to test whether change
patterns that were characteristic of the whole community differed from the change
patterns of separate lifeform groups. Each species wé.s classified into the following
lifeform types using VITAB Ecosystem Reporter (Emanuel 1999): (a) annual/biennial
forbs, (b) perennial forbs, (c) perennial shrubs and sub-shrubs and d) perennial
graminoids. The species from the total community and the species of each lifeform
group were imported separately into PCOrd (McCune & Mefford 1999) and analyzed for
changes through time using non-metric multidimensional scaling (NMS). Raw data
frequencies for each species were relativized on row (stand) totals before running NMS.
NMS was run using Sorensen’s (Bray-Curtis) distance. The ordinations started at six
dimensions and iteratively stepped down one dimension per cycle with a step length of
0.20. NMS used 40 runs on raw data for the analyses and 50 runs on randomized data for
Monte Carlo significance tests. Multiple tests were run on each ecoregion to assure that a
local minimum did not bias the resuits. In the NMS, no species, whether it was
considered rare or common, was eliminated from any analysis based on a set minimum
percent coverage as is common practice in many vegetation studies (Rodriguez et al.
2003). This ensured that all members of the lifeform “community” were represented
through time, no matter how much they varied in frequency, and that the comparisons

between the same sites were valid for all intervals. NMS integrated all of the species into
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a “community” value, which was depicted by a point in the species space of the
ordination. The percéption of change between any two points in time in the NMS
depends on the size and direction of the vectors between each of the plot locations. The
connection of consecutive samples with directional vectors indicates how these plots
change compositionally during their sampling history compared to others in their
ecoregion. In the south ecoregion, lifeform groups from both grazed and ungrazed sites
had to be analyzed together to get a meaningful NMS, but the groups were graphed
separately to highlight any pattern differences due to grazing. The data structure of the
annual/ biennial grouping was too weak to create a meaningful NMS so its NMS is not

included in this paper.

Correlation of community change with climate and disturbance factors

Four difference matrices were created for each ecoregion to test whether
fluctuations in composition correlated with environmental variables over time. These
included a species, climatic, substrate, and origin difference matrix. The species
difference matrix focused only on the species that changed at each site between
sampling periods. A first-difference matrix was created by subtracting the frequency of
each species in the initial sampling period t from its frequency in sampling period t+1.
Original (non-transformed) sample data were used in the difference calculations. A
second-difference matrix was calculated as the differences in each species between t+1
and t+2. Subsequent difference matrices between sample periods were constructed in a
similar manner. If a species did not change between time periods, its value in the species

difference matrix was zero. The time series within this study were well-suited to using
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difference matrices instead of other time-series techniques, such as minimum/maximum
autocorrelation factor analysis (Solow 1994), because there were (a) few sampling units
compared to other time-series studies (mean for all regions was less than five sampling
units within the 30-50 year time frame); (b) highly irregular sampling intervals between
sites; and (c) some species that varied collinearly over time.

Because the focus of this study was not on how individual species correlated with
climate or disturbance factors but on how the community as a whole was affected by
them, NMS was used to integrate all species changes from the difference matrix into a
single value that represented a “community” during each sample year. The single value
was a point in dimensional space depicted by the NMS axis scores, which identify each
community’s unique positio.n dimensional space for each sample period. NMS was run
within PCOrd using a non-relativized difference matrix analyzed with Sorensen’s'
distance measures starting with six dimensions and stepped down at each cycle as
described above. In each NMS diagram, communities with similar changes in frequency
and direction of species loss or gain plotted close to each other in ordination space. Only
the difference matrix from the northwest ecoregion failed to provide a useful NMS to
represent community change. Even though outliers were removed from the difference
matrix and the stability criterion for convergence was lowered, the northwest data did not
have enough difference in structure to give a meaningful NMS result that could be used
to test correlations with either substrate or climatic variables.

One of the challenges of long-term studies is assigning reasonably accurate
temperafure and precipitation values to monitoring sites that have never had climate

monitoring equipment nearby. In this study, I began by collecting historic data from 35
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climate stations across western Montana. Maximum (Tmax) and minimum (Tmin)
monthly temperatures were aggregated into seasons then averaged to obtain a mean
seasonal value for each year from 1958 to 2002. Mean monthly precipitation values were
totaled by season for the same years. The seasonal divisions included fall (September -
October prior to sampling year), winter (November - March), spring (April - May), and
summer (June - August). The resulting climate variables included FallTmin (fall mean
minimum temperature), WinTmin, SprTmin, SumTmin, FallTmax (fall mean maximum
temperature), WinTmax, SprTmax, SumTmax, FallPrec (fall total precipitation),
WinPrec, SprPrec, and SumPrec.

When each year’s seasonal climate values were assigned to the 35 climate
stations, the values were interpolated to the monitoring plot locations using a ne§v
technique developed by Jolly et al. (2004) known as the surface observation gridding
system (SOGS). In the SOGS process, each of the monitoring sites received interpolated
seasonal climate values that were adjusted for each site’s unique elevation, slope, aspect
and location on the landscape. The resuiting SOGS climate values were stored in a
database by site and year; which in turn was related to the database storing each site’s
compositional and substrate data. For a complete description of the SOGS process, its
error matrix, and its output format see Jolly ez al. (2004).

The environmental differences between monitoring samples were summarized
within three matrices that were constructed as described above for the species matrix. A
climatic difference matrix was constructed from the SOGS values by calculating the
absolute differences in each temperature and precipitation variable between monitoring

periods. - After the difference matrix was created, however, Tmax and Tmin were further

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



averaged to create Tave and reduce the number of independent variables for regression
analysis. A substrate difference matrix focused on the differences in frequency of bare
soil, rock, and litter coverage between samplings at each site. An origin difference
matrix focused on the differences between the total frequencies of non-native species.
For each sample year, frequencies of non-native species were totaled within VTAB
Ecosystem Reporter (Emanuel 1999).

Path analysis was used to test the strength of correlations between the changes in
community composition and the environmental variables. The advantage of using path
analysis to test the causal relationships among this specific set of traits as a unit, rather
than using multiple regression to test single traits in separate analyses, has been well
documented (Li 1975, McCune & Grace 2002, Scheiner ef al. 2000). In the path models
constructed for this study, the changes in community composition were represented by
changes in the NMS axes (designated y-variables). The covariance of each y-variable
was tested against the absolute changes in bare soil, rock, litter, FallTave, WinTave,
SprTave, SumTave, FallPrec, WinPrec, SprPrec, SumPrec, and origin (x variables).
Tests were run within LISREL 8.54 (Jéreskog & Sérbom 2003) using maximum
likelihood estimations, 250 iterations, and a 0.000001 convergence criterion. Some paths
in each model were eliminated if their deletion did not affect the overall R? values on
each axis but did reduce the degrees of freedom tested within the model. In path analysis,
the R? value represents the fit of the model as a whole, not the fit of each separate factor
to the changes in positions the NMS axes. Path models with good fits to the
measurement (raw) data from each ecoregion should have the following characteristics:

(a) non-significant chi-square values (i.e. high p values); (b) ratios of chi-square values to
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degrees of freedom of less than 2.0; and (c) root mean square error of approximation
(RMSEA) values of <0.09 (Grace 2003). A non-significant Chi-square value indicates
that expected covariance matrix from the hypothesized model does not differ
significantly from the covariance matrix created using the actual measured variables.
The covariance of grazing and fire with community change was not quantifiable
like the climate and origin variables. For most sites, actual data on grazing regimes and
intensity either did not exist or they were extremely difficult to extract from historic
records for the time periods required. Qualitative comparisons between gfazed and
ungrazed sites in the south ecoregion, and burned and unburned sites in the southwest
region, were made using the facies diagrams, tabular summaries, and NMS results for

lifeform trends.

Comparison of change patterns with current successional models

Many conceptual diagrams exist to describe successional models for plant communities
(Ellis & Swift 1988, Laycock 1991, Westoby 1989). However, the way vegetation
change manifests itself in n-dimensional ordination space under each model type is not
well documented so conceptual diagrams for equilibrium and non-equilibrium models
were developed for how each might behave in ordination space (Fig. 2-2a and 2b). The
change pathways from the Montana bunchgrass communities were categorized by
comparing their pathways to the conceptualized pathways of the models using the
following criteria. For linear models, trends had to follow nearly straight lines (Fig. 2-2a);
no reverse directions were permitted. For persistent non-equilibrium models (Fig.2-

2b:3), the vectors had to cross each other at many different angles, or they had to trend
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off a previously regular pattern at obtuse angles sometime during the time series. If
vectors oscillated around a point in (or area of) species space, the patterns were
considered to fall into the state-and-transition pattern or the threshold pattern. For the
threshold model (Fig. 2-2b:1), no reversals in direction were allowed after the vectors
veered off the oscillation area. Zig-zag patterns could represent either (a) the state-and-
transition model (Fig. 2-2b:3) if they oscillated around an area of species space or (b) the
deterministic chaos model (Fig. 2-2b:4) if additional infonnation showed that key species
reached density limits. Zig-zag vectors, by deﬁnitiqn, reversed directions but they had to
remain linear and not cross over previous vectors or oscillate around any point. Patterns
that did not fit any of these criteria were classified as “other.” The “other” classification
included patterns that either had too few samples to establish a pattern within the sample
history or the patterns were combinations of the above types so they were difficult to

classify.
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Results

Historical context for change patterns

During the temporal span of this study, western Montana has undergone significant
changes in population and land use, invasion of exotic species, and climatic fluctuation.
Population has increased since 1950 in all ecoregions from a low of 0.8 person per km?
(2.0 per mi®) in the northwest ecoregion to 3.5 persons pér km? (9.0 per mi®) in the west
(Fig. 2-3a) (U.S. Bureau of the Census 2000). The same linear increase is apparent in
exotic species with 75 to 170 new exotic species documented in the same time period
(Fig. 2-3b) (Rice 2004). Total livestock inventory has declined significantly since 1950
(Fig. 2-3c) (U.S. Dept. of Agriculture 2002, U.S. Dept. of Commerce 1952). Sheep
inventories have declined tﬁe most dramatically from 455,000 animals in 1950 to under
50,000 in 2002. Cattle inventories increased until 1982 then declined to numbers equal to
or just slightly greater than the 1950 levels by 2002. Horse inventories declined until
1969, stabilized through the 1990s, but increased significantly in all ecoregions in 2002,
Where agencies have tracked wildlife population growth (in Yellowstone National Park
and the major game management areas), elk and bison have increased three- to four- fold
since 1970 (Montana Department of Fish Wildlife and Parks 2003, Wallen 2004, White
2004). Land committed to farms has remained essentially the same in all ecoregions
except for a slight decline in pastureland and woodland in the southwest since 1992 (Fig.
2-3d). Temperature and precipitation have fluctuated considerably since 1950, but mean
temperatures appear to have risen slightly since 1980 (Figs. 2.4 and 2.5) (Western
Regional Climatic Center 2002). In spite of all of these changes, however, the

monitoring sites in this study exist in relatively natural settings compared
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to other grassland systems. Their locations in protected and regulated areas have
insulated most of them from agricultural (crop) effects and widespread fragmentation.
However, the entire area was subjected to heavy grazing during the late-1800s to early
1900s when Montana’s cattle inventories were particularly high and its rangeland limited
(Potyondi 1995). Some of the sampled areas are still under light to moderate grazing

today as part of BLM grazing leases.

Form of change at site and ecoregion scales

The most striking feature of change at the site scale was the dynamic nature of all species
in the community, whether they were focal species, less important forbs, common, rare,
or non-natives. Many species came and went from the sites during the past 50 years.
Over 270 species were members of the bunchgrass communities at some time during the
study. Over 70% occurred less than ten times in the monitoring history (Table 2-1).
Approximately 30% of species occurred only once.

Determining whether common or rare species affected perceptions of change the
most depended on spatial scale and whether frequency or dominance was used to classify
it (Table 2-2). By far, the majority of the plant species in these communities was
considered rare because they occurred so infrequently over the time period. However,
rare species were so numerous, and varied so much in frequency during their relatively
short tenures on the landscape, that they had significant effects on multivariate analyses
and perceptions of the amount of compositional change over time. For example, between

1981 and 1989, several forb species were added to the Lamar I-12 community (Fig. 2-6)
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Figure 2-6: Representative facies diagram from grazed area of south ecoregion (Lamar I-
12) showing increase in shrub cover, change in graminoid diversity, and
variation in both the rare and common species over 50 years. All species
frequencies are plotted to scale. Superscripts: *=non-native species;
A=annual; B=biennial.

Graminoids: CAR — Carex spp.; PseSpi - Pseudoroegneria spicata; Feslda - Festuca
idahoensis; KoeMac -Koeleria macrantha; PasSmi - Pascopyrum smithii; POA - Poa spp.;
AchNel - Achnatherum nelsonii; Forbs: AstMis - Astragalus miser; AntMic - Antennaria
microphylla; AST - Aster spp.; ALL — Allium spp.; OxylLam - Oxytropis lambertii; TarOff -
Taraxacum officinale; LupSer - Lupinus sericeus; ComUmb - Comandra umbellata, ERI —
Erigeron spp.; PhiMul - Phlox multiflora; DraNem - Draba nemorosa; LinSep - Linanthus
septentrionalis; PhiHoo - Phlox hoodii; ChaDou - Chaenactis douglasii; Shrubs: ArtTri -

Artemisia tridentata; AttFri - Artemisia frigida; Cha'Vis - Chrysothamnus viscidiflorus. See

Appendix B for more information on individual species.
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in minor amounts (<5% frequency each). Artemisia tridentata increased at the location
from less than 1% to almost 10%, and some grasses were reduced by 5% or less. These
seemingly small changes contributed to impressions of significant change, however,
because Lamar [-12 mqved the most in species ordination space during this interval.

Another striking result from the facies diagrams was how quickly the proportions
of common species (if measured at >10%) changed to rare or vice versa (see Feslda in
Fig. 2-6). Although some studies eliminate species that do not show constancy in the
short term, the deletion of any species, simply because it fell below an arbitrary minimum
in the sample year, was difficult to justify because of their quick reversals in dominance
through time. Normally common species fell below arbitrary minimums of 5 or 10% to
be considered “rare” in one year, and “rare” species reached frequencies of 10 or 20% to
be considered important members of the community in good-growth years. This study
exemplifies this phenomenon. Even the focal grasses, including Pseudoroegneria
spicata, fluctuated widely. Annual and biennial species appeared very common in the
community if sampling was done in years that were favorable for their growth (see
OrtTen in Appendix A: Fig.1), although shrub species and non-natives were just as
vulnerable to changes in dominance as the shorter-lived species were. Total frequency
within lifeform groups (grass, forbs, and shrubs) followed the same fluctuation patterns
through time (Fig. 2-6; see also Appendix A).

At the local scale, each site had a completely different compositional history and
different patterns of short-term change (Fig. 2-6; see al‘so Appendix A). Even sites that
were located adjacent to each other on the ground (e.g. Matbrn2 and Matbrn3) had

different species at the same points in time and different variations in those species over
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time, which F. W. Preston (Preston 1948) dubbed a characteristic of landscape richness
over 50 years ago. The continual variations in species dominance and rapid turnover in
species membership at each site gave the impression that change occurred as a continuum
- not discrete stages that each bunchgrass community passed through.

At the ecoregion scale, the transient nature of species was also apparent. In all
ecérégiqns, richne;ss varied significantly depending on sample year (Fig. 2-6; Appendix
A). Thé total number of species found in each plot in all the monitoring years was double
or triple the mean richness at any single point in time (Mean Cumulative Diversity, Table
2-3). The mean amount of species turnover from all ecoregions combined was 48% from
the time of the region’s first sampling to the sampling in 2002. The highest species
turnover was in the northwest ecoregion at the National Bison Range (59% between the
early 1970s and 2002). Higher elevations tended to have more species that carried over
into consecutive sampling periods than lower elevations did, although the proportions
were generally still quite low (<10%). In general, the carry-over species for all elevations

were deciduous shrubs.

Directionality at the site and ecoregion scales
Although the facies diagrams showed that individual sites experienced their own unique
history, ecoregion groupings of the sites showed distinct trends in both richness and
lifeform characteristics during the decades of monitoring.
= Inthe northwest, mean species richness decreased from the first
sampling of the sites in the 1970s (Table 2-3). Richness was highest

between the mid-1970s and early-1980s and, in several sites, peaked
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& again in the mid-1990s (e.g.‘ Appendix A: Fig.1). The increases in
richness were due mainly to annual species, although non-native species
also minimally contributed. At these intervals, spring temperatures and
precipitation were lower than the 30-year average; winter precipitation
was higher than average. Over the entire 25+ years of monitoring, forbs
decreased 20%. Total grass increased 20%. At half of the sites,
however, perennial grasses decreased without the accompanying
increase in annual grasses that occurred at other sites. Shrub presence
was intermittent over time but its total frequency remained unchanged
when only the first and last sample years were compared to each other.

® In the only site in the west, mean richness was highest in the mid-1970s
and 1980 (Appendix A: Fig.2) and declined significantly over the
sample period (Table 2-3). As with the northwest sites, the high
richness corresponded to lower spring temperatures but higher
precipitation than the 30-year mean; winter temperatures were highly
variable. Forbs decreased significantly in the late 1990s compared with
early records. Overall, forbs decreased 15% in 23 years; graminoids
increased 15%.

* Inthe southwest, the sampling intervals were not as consistent as in
other regions, and the sites were spread over a much greater spatial area.
As aresult, trends were more difficult to discern. Unlike the previous
ecoregions, richness increased between the first and last monitoring

years (Table 2-3). In the sites that had sampling records from the 1970s,
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species richness was higher than it was in the mid-1980s. The highest
diversity for the southwest sites in general, however, was between 1995
and 2002 (Appendix A: Fig. 3). Richness increased in 90% of the sites
during this period. Of these sites, over 60% also increased in the
proportion of non-native species. Between 1995 and 2002, spring
temperatures were generally lower than the 30-year mean; and spring
and winter precipitation were higher than normal. For the entire
moﬁitoring period, 50% of the sites increased in grass coverage.
Overall, graminoids increased an average of 4% in 24 years; forbs and
shrubs each decreased an average of 3%.

o Inthe Burned areas of the southwest, shrubs declined after the burn
year (approx. 25%). By three years after the burn, non-natiye
species increased and shrub frequency surpassed the burn year
frequencies (see MatBrn3 Appendix A: Fig. 6). Grasses increased
in frequency (40 to 75%) in the year after the burn and three years
later. Forb response to burning was mixed.

» Inthe south, vegetative cover increased from west to east (low to high
elevation) and the overall proportions of grass, forbs, and shrubs varied
considerably between the sites protected from grazing and those open to
grazing by large mammals. Mean richness increased in both grazed and
ungrazed areas, but the increases were not significant (Table 2-3). The

exclosures and grazed sites were all sampled within the same years, so
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trends reflect real responses to restricted grazing and other environment
stresses that are not affected by the boundary.
o Trends outside of exclosures

- Richness was highest at most sights between the mid-1970s and
early to late-1980s and again in 2002. Like the other ecoregions,
spring temperatures were lower than normal during these
intervals. Spring precipitation was considerably below average
but winter precipitation was above the 30-year average. The
low-elevation sites at Gardiner, Montana (see Fig. 2-1), had the
highest richness only in the mid-1960s, which was one, but not
the only, period of above-average precipitation in the 40 years of
monitoring.

- - Overall, graminoid frequency decreased 11% between the initial
sampling in 1958 or 1962 and 2002. However, in the mid-1970s
to early 1980s, and again in 2002, graminoids expanded in
dominance at most sites (Appendix A: Fig. 5). Diversity of grass
species remained similar in all sample intervals.

- Shrub frequency increased 8% in four decades. Shrub frequency
remained lowest at low elevations (most years <8% of
composition). At higher elevations (L-11 and I-12), shrub
coverage was low until 1995 t0-2002. Beginning in 1995, shrubs
increased rapidly to account for15 to 20% of the total végetation

(Fig. 2-6).
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- Forb frequency increased an average of 3% in the grazed areas.

- Mean differences in richness between the grazed and ungrazed
sites were not significantly different (9.7 and 9.8, respectively;
p>0.1).

- Non-native species were not a significant disturbance factor in

the historical records of either grazed or ungrazed sites.

o Trends inside exclosures:

- Total vegetative cover increased shortly after the exclosure was
erected.

- Richness was generally highest between the mid-1970s and mid-
1980s in most sites, but varied significantly at each location.

- In early sample years, diversity of grasses was high, but the
frequency of each was low. In later years, sites generally had
less diversity in the grass species, but the remaining grasses
occurred more frequently within the site.

- Over 44 years, graminoids decreased 28 % in the exclosures.
Total grass cover decreased at all locations except K-12 (see Fig.
2-1).

- Shortly after construction of the exclosure, shrub cover
expanded. In some plots, the increase in shrub frequency began
in the mid-1970s to mid-1980s. In others, Artemisia tridentata

increased exponentially around 1994 to exceed 20% of the plant
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cover (Appendix A: Fig.5). The increase in shrub dominance
was ’not always linear, however. Reversals in total cover
occurred and frequency declined to zero between some intervals
(K-11 in 1994, G-11 in 2002).

- Forbs expanded 8% in 44 years. Phlox expanded significantly in
many sites during the mid-1970s to early 1980s. It also

expanded in 2002 compared to the mid-1990s sampling.

The effect of an earlier start date for monitoring on the perception of trends was
compared for the south ecoregion (start year1958 or 1962) and for the northwest (start
year of late 1960s or early 1970s). The trends in shrubs, grass, and forbs in both
ecoregions were compared between the mid 1970s and 2002. The results show two
opposite trends from the entire record, namely grass declined between the mid-1970s and
2002 in the northwest and forbs decreased in the south. All other trends for the lifeform
groups remained the same between these twontervals.

As the descriptions in the preceding paragraphs show, lifeform groups seem to
show different trends in each ecoregion. Using the south (ungrazed) ecoregion as a case
study, the trends for grass, forbs, and shrubs were examined individually to define their
change patterns and to determine if one group affected perceptions of change within the
community more than any other group (Fig. 2-7). In the exclosures, where grazing was
eliminated as a factor affecting change patterns, NMS vector directions all fluctuated
widely in species space over time. All lifeforms showed significantly long vectors

between most, but not all, sample intervals, which indicates significant variation in
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proportions over time. The full community (Fig. 2-7a) showed trends in vector direction
toward more A. tridentata and F. idahoensis (lower left comer, Fig. 2-7a). Likewise, the
shrub NMS showed a general trend toward 4. tridentata over time. Of the three
lifeforms, the graminoid NMS was most similar to the full community in general
direction and magnitude of movement for each plot (Fig. 2-7b). The similarities are not
surprising‘ because grass has been the dominant lifeform in most plots for the longest
time. However, the shorter vectors and tighter patterﬁs of the commﬁnity analysis
compared to the graminoid analysis suggest that the variation in the grasses has been
damped by either shrub or forb variations in different directions (see D-12 and K-11 in
Figs. 4b-4d).

The change patterns represented by the NMS vectors in species space were quite
varied for each ecoregion (Table 2-4) so change in the bunchgrass communities could not
be depicted by one type of pattern. The most common vector trend was a non-
equilibrium pattern characterized by irregular directions, unequal magnitudes, and
reversals in direction at some point in the sample history (Table ‘2-4). This pattern was

| present in 30% of the lifeform change patterns at the 50 sites. Over 18% of the vector
patterns oscillated around a centralized area before or after a major change in
composition (Fig. 2-7b, K-11, A-22). A related zig-zag pattern was also common (15%).
Non-equilibrium patterns were not universal in the grasslands, however. Linear
pathways were found in approximately 7% of the cases. They occurred in all lifeforms,
and were especially common in ungrazed plots and plots with less than four resamples in

their history (Fig. 2-7d, A-22, AMAZN, and IC1).
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Figure 2-7: Plot movements in NMS ordination space for ungrazed plots of the south
ecoregion. (A) All species in community; (B) perennial grasses and sedges only;
(C) perennial forbs only; and (D) shrubs and sub-shrubs only. The vectors
connect consecutive sampling units and show directions (first and last arrows
only), magnitudes, and compositional trends at each site over the monitoring
period of each plot. (Note: Grazed and ungrazed plots are processed together in
NMS by lifeform but plotted in separate diagrams to highlight differences.)
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Figure 2-7 (continued): Plot movements in NMS ordination space for ungrazed plots of
the south ecoregion. (A) All species in community; (B) perennial grasses and
sedges only; (C) perennial forbs only; and (D) shrubs and sub-shrubs only. The
vectors connect consecutive sampling units and show directions (first and last
arrows only), magnitudes, and compositional trends at each site over the
monitoring period of each plot. (Note: Grazed and ungrazed plots are processed
together in NMS by lifeform but plotted in separate diagrams to highlight
differences.)
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Correlations of change patterns with environmental factors

Climatic and substrate factors correlated most with community change in the
western Montana bunchgrass communities. Variations in temperature and precipitation
determined what annuals sprouted in a given year, what forbs flourished to produce
seeds, which exotic species had the conditions needed to increase in communities, and
which grasses had high yields and produced seed to expand to new sites. For the case
study area (south ecoregion), the movement of each community in species space was
correlated most signiﬁcantly' with variations in the substrate variables and temperature
(Fig. 2-8). Richness was high in years with spring temperatures that were lower than the
30-year average and winter precipitation was higher than average. Correlations of
community change with mean spring and winter temperatures were significant along
NMS axes one (t=3.26 and 2.01) and three (t=-2.20, and 3.23, respectively). Spring
precipitation correlated significantly only along axis two (t=1.99).

Not all ecoregions yielded NMS values that could be tested with path analysis.
For the ecoregions that were tested, each had different combinations of substrate,
temperature, and precipitation factors that correlated most strongly with change (Table 2-
5). Surprisingly, non-native species were not a significant driver for change in any
ecoregion but the southwest (t=-3.43), at least over the time periods and regions that were
tested. In the west and northwest regions, the influence of non-native species may have
been more significant (see chapter 1 results), but a meaningful NMS was not produced
for these areas to test the correlations or non-native species in combination with climatic

fluctuations.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0. 479

R2=0.521

0. 808

R2=0.192

R2=0.429

Figure 2-8: Path coefficients for south ecoregion. Paths with significant t-values
are shown with bold lines. Chi-square=5.60, df=11, p value=0.89894, RMSEA=0.000,

n=63.
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The explanatory power of both the NMS results and the path models also varied
with spatial area. At the landscape scale, the NMS axes, which represent community
change over time, explained variation in the species difference-matrix data quite well (R
ranging from 0.13 to 0.48). The fit of the path model to the variations in NMS and
measurement data was also good (see chi-square and p-values in Table 2-5 footnotes);
but the path model explained very little of the variation within each y (i.e. NMS axis)
value (R?=0.07 to 0.13). In the south ecoregion, the explanatory power and fit of the
model were best. The NMS explained from 16 to 39% of the variation in the species
difference matrix and the path model explained from 19 to 52% of the variation in
measurement data (Table 2-5). Similar variation was explained in the NMS of the
southwest ecoregion, but the path model did not fit the data quite as well as in the south
(R*=0.23 10 0.30). The correlations within each of these path models should be used
with caution, however. All were created using fewer samples than the number of
parameters in the model, so the results should be considered tentative (Joreskog &

Sorbom 1996).
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Discussion

The nature of change in the bunchgrass communities of western Montana is recorded in
vegetation monitoring records that, when originally written, probably seemed less
significant to their authors than to those with historic perspective. Taken collectively,
however, these snapshots in time now provide unique insights into how Montana’s
bunchgrass communities have changed within the relatively natural settings of the
intermountain area during the past 20-50 years. That these grasslands have changed is
not surprising — change is inevitable in any community after long time periods. What
may be surprising, however, is the constant variation in composition within an ecosystem
that, in general, appears so stable over time at relatively small spatial scales.

Natural experiments; like this study, are not unaffected by disturbance or
environmental variation. Each of the sites has experienced, either directly or indirectly,
many changes over the past five decades, including changés in the abundance of both
domestic grazers and wildlife, introductions of non-native vegetation, and increases in
human population on the adjacent landscape (Fig. 2-3). They are also pressured by
climate variability (Fig. 2-4). All of these changes have undoubtedly affected each site,
although not under experimental conditions that are easy to manage and correlate.

The dynamic nature of the Montana bunchgrass communities in response to
disturbance and environmental factors is quite evident from this study, and the results
challenge traditional concepts of stability and equilibrium within grasslands. At the plot
scale, change is characterized by wide fluctuations in species frequency and community
membership. Neither the facies diagrams at any single location, nor the vector

movements of individual plots within the ordination species space, portray the same

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



change patterns through time at all locations. Little evidence exists at each plot for the
directionality that is characteristic of succession in the classical sense (Heady & Child
1994: Fig 10-1). The change patterns do not show any discrete stages or phases in either
the ordinations or facies diagrams to indicate that the species move through time as one
unit or follow a distinct development path. All species, whether they are categorized as
common, rare, non-native or indicators, vary in space and time. The transient nature of
the majority of species at the ecoregion scales results in very high turnover rates and
gives the impression that the communities are in a constant state of flux, which argues
against their past classifications as stable “climax” vegetation (Mueggler & Stewart
1980). The high turnover rates in these communities are comparable, however, to
turnover rates found in other grasslands where long-term perspectives are available (e.g.,
Ward and Jennings (1990)).

Grouping the plots together into ecoregions, however, does show obvious trends
in richness and lifeforms during the 20-50 years. The trends are not the same for each
ecoregion nor do they last for the entire data record, but each has directionality over
relatively long time frames. One of the most obvious trend patterns is an increase in
richness between the mid-1970s and mid-1980s in each ecoregion. Lifeform groups also
exhibit distinct trends over time.

Plant functional types (PTFs), or lifeforms, recently have become important
analysis units in other vegetation studies because each group plays a unique role in
community interactions, and each responds to external environmental factors in different
ways (Cousins & Lindborg 2004, Epstein et al. 2002, Rodriguez et al. 2003). Cousins

and Lindborg (2004) found that PFTs had no association with successional gradients in
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abandoned grasslands in Sweden, but other studies have found that PFTs were helpful in
generalizing change patterns within grasslands and assessing their correlations with
external factors (Epstein et al. 1997, Jobbagy & Sala 2000, Kahmen ez al. 2002). In this
study, I also found PFTs helpful in minimizing the significant variation in individual
species at each location so more general trends could be detected. The analyses
suggested that lifeform groups may be responding differently to environmental stresses in
the four ecoregions because they varied independently from each other in frequency and
composition over time (Fig. 2-6 and Appendix A). For example, the increase in shrubs
and decrease in grasses in the grazed and ungrazed plots of the south ecoregion
contrasted sharply with a significant increase in grass and no change in shrub cover in
grazed plots of the northwest. The trend toward increased grass frequency and decreased
forb frequency occurred in three of the four ecoregions (Appendix A). Knapp et al.
(2004) suggested that forbs increased under more mesic conditions, but forb frequency
was also affected by grazing to varying degrees (Stohlgren et al. 1999). Either climate
fluctuation or increased grazing pressure from increasing wildlife populations could
explain these trends in Montana. While some of the trend differences in each ecoregion
were likely due to differences in the start dates of the monitoring, the analysis of equal-
intervals (mid-1970s to 2002 in both) in two ecoregions with contrasting trends using the
full historic record also showed contrasting trends for the restricted interval. Therefore,
the trends appear consistent within a spatial area.

The ordination results reiterate that lifeforms may be responding in different
directions to stress. The full community ordination for the ungrazed area of the south

region (Fig. 2-7a) shows that change vectors trend in many directions over the 44 years,
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but the final vectors for 2002 all trend to communities with more A. tridentata, F.
idahoensis, and H. comata than the original sample descriptions. In the ordinations of
separate lifeform groups, the change vectors tell the same general story but some are
longer than those of the full community and some are shorter. In most cases, the patterns
depicting the full compliment of species are more conﬁrged in species space because the
effects of one lifeform (e.g., forbs) are dampened by offsetting patterns from another.
The directions and magnitudes of the vectors depicting community change in this

study vary considerably in species space and show that there are no set trajéctories for
change within an ecoregion. Some years the vectors are short and indicéte that a
community experienced very little change in either species or the relative dominance of
each species between sample periods. In many years, the vectors are long and indicate
significantly different combinations or proportions of species at a plot location. Short
intervals between sample periods also do not guarantee that the time-series samples will
plot close to each other in species space (e.g., there are long vectors between samples
taken in 1997 and 1998 at CO13 in the northwest ecoregion, but very short vectors
between the samples taken between 1994 and 1997). It is obvious from the ordination
diagrams that impressions of community trends would be very different if one happened
to sample between periods when (a) fluctuations were great; (b) fluctuations were very
small; or (c) the community was following a very long vector in the transition between
two different compositional states.

. For this study, the correlation of community change with change drivers focused
on four environmental stresses: fire, non-native species, grazing, and climatic

fluctuation. Burning was a factor at only two sites but its effects agreed with many other
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grassland fire studies (Antos et al. 1983, Redmann ef al. 1993). In the year directly
following the'burn, shrubs declined and grasses increased significantly but by three years
after the burn, shrubs, grass, and non-native species all exceeded pre-burn levels.
Burning effects on forbs were mixed.

Non-native species increased in all of the ecoregions in the past 30 years (Fig. 2-
35) but their statistical correlations with community change were significant only in the
southwest ecoregion. In the southwest, they affected bverall richness. values in over 60%
of the sites, especially between 1970 and 1980 when both richness and domestic livestock
numbers were higher. However, neither the graZed nor ungrazed areas of the south
ecoregion had significant correlations with increases in non-native species, at least at the
plot locations measured for this study. The northwest ecoregion needs more analysis
because the facies diagrams indicated that increases in non-natives were important during
some time frames, but sites that were included in the statistical analyses failed to produce
a meaningful NMS to correlate the outbreaks with.

Attributing grazing effects specifically to lifeform or community trends in the
case study area was not clear cut. Lifeforms followed the same trends in the exclosures
as in\the grazed areas (i.e. shrubs and forbs increased in both; grasses declined
significantly). The declines or increases for each lifeform type were just greater in
exclosures. The decline in grass frequency over the 45-year record did not correspond
with results from other grassland studies where grass coverage increased over time in
areas protected from grazing (Anderson & Holte 1981, Floyd et al. 2003). The greater
increases in shrub frequency inside the exclosures supported previous research that

showed shrub dominance increased significantly over time in semi-arid temperate
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grasslands when protected from grazing (Anderson & Holte 1981, Floyd et al. 2003, Van
Auken 2000). Recently, Rodriguez et al. (2003) used NMS to show that forbs and
graminoids from a temperate grassland, which was released from grazing nine years prior
to their study, had near-linear trends and a decreasing change rate over time (see
Rodriquez et al. 2003, Fig. 2-1a and 1b). Neither the grazed (Fig. 2-7a-d) nor ungrazed
plots in this study show linear trends. However, some of the pathways in the south
ecoregion would appear near-linear during portions of their sample history if their time
series were shorter (e.g., Fig. 2-7b K-11). The south ecoregion sites have been under the
same management regimes for the past 40 years but the lifeform components do not
exhibit a consistent decrease in change rate during that time (Figs. 4b-4d). Therefore, the
change patterns in this ungrazed grassland differ from those of Rodriquez et al. (2003).
Two to five decades of monitoring give a relatively restricted look at the disturbance
histories in each of these ecoregions. Whether the trends in each ecoregion represent (a)
the grasslands rebounding from disturbances that happened prior to 1950, such as the
cattle-boom era of the late 1800s; or (b) adjustments to a combination of changes in
agricultural land use and species invasions since 1950, or (c) other disturbance factors are
as yet unclear. Longer, more detailed records on grazing history than were used within
this study will be required to determine the specific importance of each alternative.

The fluctuation of community positions in NMS ordination space that represent
compositional change correlate most closely with fluctuations in substrate, temperature,
and precipitation (Table 2-5). The fluctuations in substrate variables are directly related
to fluctuations in biomass coverége of individual species durmg sampling — high species

cover translates to low proportions of bare soil and exposed rock. Table 2-5 reiterates
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that these correlations are significant at each spa;cial scale; but the substrate variation
really represents indirect effects of more basic causal mechanisms that control the
.quantity of plant growth in the community, such as climate conditions and/or grazing
intensity or duration. Ultimately, seasonal temperature and precipitation variables
correlate most significantly with community change.

The significance of each climate variable to community change varies with
ecoregion (Table 2-5). Temperature is not the most important causal mechanism for
change in all of the ecoregions, although it has been widely accepted that temperature is
the principle control on the distribution of C3 and C4 grasses in temperate grassland
ecosystems. Similarly, precipitation does not universally explain multi-decadal change in
these semi-arid communitieé, even though seasonal distribution of precipitation is
becoming more widely recognized as an important factor in the distribution and change
patterns in all types of grassland vegetation (Fay et al. 2003, Kaiser 2001, Knapp &
Smith 2001, Paruelo & Lauenroth 1996). In this study, precipitation variables are most
important in ecoregions that have the most variation in latitude and topography among
the plots (e.g. landscape and southwest ecoregion, Table 2-5). In these spatial areas,
change correlates most with fal/l and winter precipitation, probably because they
contribute significantly to deeper soil moisture (Schwinning ef al., Svejcar & Brown
1991). Each ecoregion experienced drought conditions (i.c. below mean total yearly
precipitation by area) during at least 20 of the years between 1958 and 2002, so soil
moisture would be critical to whether individual species thrive or struggle in the

community during each sample period
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In the south and southwest ecoregions, community change correlates with the
variations in spring and winter mean temperatures. The temperature correlations are
important on several dimensions (see Table 2-5, NMS1, NMS2 and NMS3) in each
ordination, which indicates that they are strongly affecting many different types of
species. However, the general lifeform categories can not be equally affected by
temperature in the two areas because the south and southwest have opposite trends in
lifeforms over time. The trends in shrub frequency in the south (+8% to +20%) contrast
with the southwest (-3%). The trends in grass frequency in the south (-11% to -28%)
differ from the southwest (4%). Paruelo and Lauenroth (1996) suggest that the
abundance of shrubs should be controlled more by winter precipitation than by
temperature, but this study shows that winter precipitation is not statistically significant
in the area where shrub increase is the greatest. The discrepancy may be explained by the
differences in spatial scale between the two study areas.

Although the path models suggest that climatic factors explain long-term change
in these ecoregions, the R* values for each NMS axis suggest that the models are still
missing some key elements to explain the amount of variation in the species matrices (see
Table 2-5, R? values of the y variables). At best, the variables tested within the path
models predict only 52% of the variation in community change (Table 2-5). The low
predictive ability of some of the path models may have two possible explanations. First,
the plot movement in species space had to be represented by three different axes values
instead of one comprehensive number, which dispersed variation. Second, an

- unmeasured change factor (such as grazing, disturbance history, soil moisture, or soil

nutrients) was fundamentally missing from the model. Further study will be required to
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determine if fit can be improved between the path model and the bunchgrass data with
more factors added. In addition, the results need to be tested on a data set that is
independent of the set that was used to create the path model to further verify these
relationships (Knapp ef al. 2004).

How well do these grassland communities fit the current theoretical models to
describe succession in plant communities? The strength of correlations in the path
models reiterates that external forces are important drivers of change in these grasslands,
which would generally blme them within the non-equilibrium class of successional
models (Briske ef al. 2003). The compositional changes in the historic data that are
portrayed by time-series vectors in NMS species space, however, suggest that the change
patterns — whether they are examined from the perspective of the entire community or
separate lifeforms within each community - cannot be pigeon-holed into a single
successional model. Theoretically, one hopes to find compositional changes in
bunchgrass communities that fit one successional model better than any of the others. In
reality, however, the data from these grasslands tell a much more complex story. Some
of the sites are excellent examples of the equilibrium model proposed by Clements-
(1916) with clear linear and unidirectional trends over time (Fig. 2-2). Many, but not all,
of these linear sites have a sparse sampling history or are from locations undergoing
progressive shrub invasion. The most common change pattern in the bunchgrass
communities is an irregular pattern consistent with the persistent non-equilibrium model
(Fig. 2-2; Table 2-4). The irregular directions and constantly changing magnitudes are
consistent with a model that is very sensitive to fluctuations in precipitation and/or

temperature (Knapp & Smith 2001). The significant correlations with climatic variation
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support a model driven by external influences (i.e. a non-equilibrium model). The
irregular patterns, along with the variations in species that are apparent from the facies
diagrams, would most closely fit Gleason’s (1926) individualistic concept of community
succession.

Several sites also exhibit change patterns consistent with patterns predicted by the
state-and-transition model. Oscillations of plots around a single point or area of species
space suggest relative stability during some intervals but sudden changes in vector
directions away from these oscillation points suggést the influence of external forces at
other intervals. These are the second most identified pattern in the ordination analyses
(Table 2-4).

Two theoretical succession models that have little support from the long-term data
are the threshold model (Friedel 1991) and the deterministic chaos model (Stone & Ezrati
1996). For the threshold model, there are no concentrations of oscillating patterns that
are strictly unidirectional in species space. All reverse their direction toward a previous
compositional state one or more times during their history. Even the shrub-invaded sites,
which would be expected to fit the threshold model best, had periods when shrub cover
decreased significantly and compositional trends reversed. Similarly, the analyses show
no clear evidence of dominance-driven cycles predicted by the deterministic chaos
model. Although both grass and shrub species appear to be more abundant at certain
times in the historic record, neither the facies diagrams nor the ordinations suggest that
they reaph some upper frequency limit that leads to a rapid decline in the population.

The nature of change in western Montana’s bunchgrass communities can only be

described as extremely dynamic at both the site and ecoregion scales. Recently, Kahmen
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and Poschlod (2004) suggested that the course of succession in grasslands may be unique
for each site and year. At the local scale, the Montana bunchgrass communities appear to
support such a view. They are truly communities in constant motion that have
experienced unique external forces at each spatial scale to shape their historic change
patterns. They have been affected to varying degrees by climatic fluctuations, grazing
intensity, and invasive species. These particular environmental stresses will increasingly

shape the change pathways of their future.
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Appendix A: Representative facies diagrams for ecoregions
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Fig.1: Facies diagram for CO23 in northwest ecoregion, National Bison Range,
Montana. Sample years are at vertical lines. Intervals between samples
conceptualized. Cumulative frequency percents are diagrammed to scale by
lifeform. * =non-native species; A= annual; B= biennial (Species abbreviations
listed in Appendix B). "
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CHAPTER 3

The dynamic nature of “climax” habitat and potential vegetation types:

30 years of grassland monitoring in Montana

Summary
1. Potential vegetation or habitat types are used extensively in many parts of the
U.S. to inventory and classify grasslands for resource management. This
classification assumes that plant community indicator species are faithful to
specific abiotic site conditions and persist unchanged on a landscape until the area
undergoes a climatic shift.
2. Itestkey assmnﬁtions of species-based classification methods - namely

" community equilibrium and indicator species stability - using monitoring data
from 35 grassland sites located across western Montana. Each site was
periodically resampled over 30 years.
3. 1 found little support in the historical data for grassland stability as predicted
by the habitat type concept. Using the habitat type key, 55% of the sites changed
their classification over 30 years. At several sites, changes occurred within 5-10
years. Similar patterns of change were detected in moist and dry sites.
4. Indicator species were actually found to be more dynamic over time than plant
communities in general, as indicated by Bray-Curtis ordination and similarity
indices. Changes in dominance of several indicator species correlated with
fluctuations in temperature and precipitation over 30 years, but the specific factors

vary by species.
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5. The dynamics of Montana’s bunchgrass communities over the past 30 years
are better supported by non-equilibrium, multiple-pathway models of succession
than linear, climatic-climax modéls on which some classification systems are -
based. Accurate assessment and monitoring of these grasslands require more
realistic models of plant communities that are developed from regular sampling

protocols spanning at least 15 years and that incorporate their dynamic nature.

Key-words: bunchgrass, habitat type, monitoring, multiple pathways, potential

vegetation, succession, vegetation dynamics.

Introduction

Classification of biotic communities is essential in ecology to organize information
efficiently, communicate community characteristics easily, and treat like groups
-similarly. In the classification process, names are assigned to a community based on a
classification key, the key indicates some expected potential for the community under
specific assumptions, and the community is managed according to guidelines designed to
meet those potentials. Once a classification name is assigned to a plant community, the
label usually has a profound effect on how each plant community is treated by managers
on a day-to-day basis and how its long-term fate is perceived. Management practices
usually consist of techniques or policies that have worked successfully for the particular
named community in the past. Recently, however, the debate over how to classify

ecosystems has resurfaced because some conservationists feel that species-based data is
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the best tool to portray changes in biodiversity over time while others argue that habitat
or spatial classifications based on changes in environmental characteristics capture trends
better (Pickup et al. 1998, Pressey 2004). The controversy over the merits of species-
based versus land type-based classifications to conservation indicates that ecologists and
managers alike are concerned with what a community is named because it affects
assessment, management and planning (Brooks ef al. 2004). What are the consequences,
however, when a community is assigned a label that does not accurately portray its true
character? A specific classification at a local site may often be questioned by managers.
Rarely, however, is the classification system itself examined for its appropriateness to the
community or for its underlying premises once it is in common use.

The dynamic nature of ecosystems and their abiotic controls are increasingly
well-recognized at both the community and ecosystem scales. Rapidly-changing
communities present several challenges to both ecologists and managers — challenges to
reevaluate old tools and concepts and challenges to develop new methods of assessing
plant communities that incorporate their dynamic qualities. Grassland communities are
particularly problematic because they have been shown to be very sensitive to
fluctuations in temperature and precipitation (Alward ef al. 1999, Brown et al. 2001,
Knapp & Smith 2001, Shaw ef al. 2002), to grazing intensity (Frank & McNaughton
1993, Mack & Thompson 1982, Schlesinger 1990), and to fire (Singer & Harter 1996).
Their functioning and processes are also affected by non-native species (Mack 1989).

In the past three decades, successional theory in plant communities has undergone
a shift from stable equilibrium models (Clements 1916, Tansley 1935) to non-equilibrium

models, including the state-and-transition model (Westoby 1989), threshold model
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(Friedel 1991, Laycock 1991, May 1977), multiple steady states and pathways model
(Blatt et al. 2001, Cattelino et al. 1979, McCune & Allen 1985, Tausch et al. 1993), and
chaos model (Stone & Ezrati 1996). The shifts reflect the challenge of reevaluating old
successional models in terms of increasing amounts of long-term data. During the same
time period, however, many tools that rangeland managers use to classify and monitor
grasslands and to assess range quality have remained unchanged. In the United States,
habitat-type classifications, range site, and range condition are all firmly rooted in
equilibrium and climax theory (Daubenmire 1942, Dyksterhuis 1949, Hall 1985,
Sampson 1919). In Europe and parts of North America, Braun-Blanquet classifications
are rooted in the stability of indicator species to particular site conditions.

This paper investigates the fallibility of classifying communities within a dynamic
landscape using a static classification system (i.e. one created at a specific point in time)
and what it means to managers who must plan appropriate land use practices and preserve
long-term biodiversity within them. The study focuses on western Montana grasslands as
a case study. The communities within these grasslands are classified according to the
habitat-type system. However, the results are equally applicable to any dynamic
environment that is classified using a species-based system. The classification of the
Montana bunchgrass communities as “habitat types” infers that they exist in stable
“climax” conditions and that they represent potential vegetation - if external disturbance
is minimized and there is no severe change in climate. For the Montana grasslands, I
utilize the original data that were used to create the grassland classification system in
Montana (Mueggler & Steyvart 1980). Ialso utilize monitoring data from several

different agencies, which span over 30 years. The data sets are used to: (1) test
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assumptions of stability in communities considered “climax™ or potential vegetation; (2)
characterize the patterns of change within the individual classifications; and (3)
determine what environmental factors correlate with classification changes that occur in

these grasslands.

Methods .
DATA SETS
Monitoring data from 35 sites managed by the Bureau of Land Management and
Montana Fish, Wildlife and Parks in southwestern Montana were obtained for this study
(Fig. 3-1). The sites were chosen to represent the range of microclimates, elevations, and
years of sampling record that exist within the study area. All sites were permanently
marked locations with at least 15 years of data records. Site selection was limited to
those that were: (a) sampled at least three times in their historic record; (b) sampled using
estimates of canopy cover within 2 x 5 dm microplots; and (c) last described between
1999 and 2002. Canopy cover measures were used because the habitat-type classification
was created using these methods (Daubenmire 1959). Cover classes were the same as
those used in the western Montana grassland classification study (Mueggler & Stewart
1980) and by Daubenmire (1959). The most recent sampling intervals were limited to
sites sampled after 1999 to minimize climatic variation. Between 1999 and 2002,
temperatures were comparable throughout southwestern Montana and the state was in
drought conditions (Western Regional Climatic Center 2002).

When the plots were last sampled, most were relatively undisturbed by grazing,

weed control, or other recent anthropogenic disturbances but they did contain introduced
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species. Sites were not eliminated from analysis if they contained non-native species
because non-natives were also part of the grassland community in the 1970s when the
habitat-type classification was created (Mueggler & Stewart 1980) and they have been
considered part of the community in many other habitat-type classifications (Hansen et

al. 1984, Hirsch 1985, Tisdale 1986).
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Figure 3-1: Location of permanently-marked monitoring sites. All sites are

between 45.1° and 46.9° N latitude and 110.8° and 114.0° W longitude.

Because none of the 35 monitoring sites were sampled in the 1970s for the
original habitat-type classification, it was necessary to recreate some of the habitat-type
classification process to test whether classifications that were made in 2002 might have

different outcomes if they had been done 30 years ago. Originally, the habitat-type
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classification for Montana grasslands was created by: a) collecting detailed coverage data
on the current vascular plant species, non-vascular lifeforms, and surface characteristics
between 1971-1973; b) classifying the current vegetation data into groups with similar
characteﬁstics using Sorenson’s similarity coefficient (Sorensen 1948), Bray-Curtis
ordination (Bray & Curtis 1957) and cluster analysis (Sneath & Sokal 1973); and c)
determining the soil characteristics and moisture regimes of each habitat type to
characterize the future yield potential. Using the results of similarity analyses and the
physiological requirements for the groups, a classification key to the different habitat
types was ultimately created for western Montana grasslands. For this investigation, I
obtained the original microplot data from all 365 plots that were used to create Mueggler
and Stewart’s (1980) classiﬁcation so I could recreate the similarity analysis and the
ordination. I also obtained a list of plot numbers that were originally assigned to each

habitat type in the 1970s and the habitat-type key for these grasslands.

NOMENCLATURE

During the 30 years covered by this study, nomenclature has changed dramatically. Over
40% of the indicator species used in the habitat-type key for western Montana grasslands
have been renamed. While name changes are an ongoing and often controversial process,
nomenclature in this study was standardized to the currently accepted genus and species
listed on the Biology of North America Program web site (Kartesz 1998). In all analyses,
origin designations for introduced species in Montana followed Rice (2004). Life form

and life history designations followed Hitchcock and Cronquist (1973). Response to
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grazing by species was designated according to the American Society of Range

Management (Willard 2003a) and Wroe et al. (2000).

DATA ANALYSIS

To test whether habitat-type classifications changed over time, data sets were analyzed in
three ways. First, the community data for each sampling period was habitat-typed using
the classification key — just as a manager would use the key to monitor the rangeland in
each sample year. Second, a Sorenson’s similarity coefficient was calculated between
each historic and each monitoring plot to determine which were most similar to each
other. Third, the position of current plots in relation to locations of similar habitat-types
in ordination space was tested using Bray-Curtis ordination.

To measure the stability of the classifications using the habitat type key, the
historic data were divided into three moisture categories and seven five-year sampling
intervals. The moisture categories assigned were based on the relative moisture needs of
individual species within each sample and on the distribution of sites within a non-metric
multidimensional scaling diagram that had a distinct moisture gradient along its dominant
axis (see chapter 1 results). Within each five-year interval, sites with sampling dates that
fell within the interval were classified to habitat type according to cover class data and
indicator species in the key developed by Mueggler and Stewart (1980). Past field
investigators had classified some of the sites to habitat type on their field forms during
sampling, which helped validate many decisions during the keying process. The field
classification was especially important at sites where the key required a decision as to

whether the landscape was considered shrub- or grass- dominated at the time of the
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sampling. The canopy coverage of key grasses and shrubs was graphed to show the
amount of variation in coverage of individual species during all the years of record and
the long-term trends in the species over time. Short-term (5-6 year) trends in key grass
species were analyzed by tallying the amount of change in canopy cover within only the
last sampling interval (1995 to 2002). The trends were compared with classification
changes to determine whether the changes in coverage of the key species were great
enough over the six years to ultimately affect classification.

Many of the test sites had data gaps at some point in their sampling history. The
effect of data gaps on change patterns was tested by grouping plots with similar sampling
histories and then comparing the percentage of plots that changed with the percentage of
plots that had different gap lengths in the data. The minimal sampling time for change
patterns to emerge was examined by grouping plots into five-year intervals and
computing a percentage of change for each interval.

To test whether the habitat-type classification for each monitoring plot would
have been different if the classifications had been done in the 1970s with the original data
set rather than 2002, the sites were compared using the same similarity indices that were
used in the original grassland work. Sorenson’s similarity index was calculated on entire
plot compositions between each monitoring plot and each original Mueggler and Stewart
(1980) sample plot. It was calculated within VT AB Ecosystem Reporter (Emanuel 1999)
as follows: SI= (2*sum(x or y, whichever is lower)/ (N1+N2)), where x and y are the
percent cover of each species in samples 1 and 2 multiplied by 1000; N1 and N2 are the
total percent cover for all species in samples 1 and 2 multiplied by 10 (Mueller-Dombois

& Ellenburg 1974). Calculations were made on raw percent canopy cover data from each
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plot (i.e. no data standardizations or transformations). No species were omitted from the
calculations if they occurred in the composition data. The compositions were based on
mean percent cover values for each plant species found in the microplots. From the
similarity analysis, the one Mueggler and Stewart (1980) plot with the highest similarity
to each monitoring plot was determined. The monitoring plots were then given the same
habitat-type classification as their most similar Mueggler and Stewart plot and examined
for changes in classification between the oldest and most recent time intervals.
Bray-Curtis ordination analysis was used to examine how the overall
compositions of monitoring plots related to the compositions of original habitat-type
samples in ordination space and to examine whether the composition of monitoring plots
changed in that ordination space over time. If compositions were stable over the
sampling intervals, the historic and current monitoring plots for the same locations were
expected to lay in close proximity to each other within the ordination diagram. The Bray-
Curtis analysis used the same data format as described above for the similarity analysis,
and the ordination was conducted within PCOrd (McCune & Mefford 1999). All historic
and monitoring data were analyzed together and both the historic and current sites were
well-integrated within the ordination space, indicating that the monitoring sites did not
have significantly different compositions than bunchgrass sites used to create the
grassland classification in the 1970s. Sorensen (Bray-Curtis) distances and variance-
regression endpoints were used for the ordination. Variance-regression endpoints were
used instead of the original Bray-Curtis endpoints because, according to McCune
(2002)), the variance-regression endpoints were in use in this ordination by 1973 — well

before ordination analysis on the western Montana grasslands would have been started.
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The influence of variations in non-native species and grazing on changes in
classification over the short-term was measured using Kruskal-Wallis non-parametric
tests. For each site that had data in both the 1995-1999 and 2000-2002 intervals, the total
percentage of species that were classified as non-native or as a grazing indicator (i.e.
increaser, decreaser, or invader) were tallied by plot and by time interval using VTAB
Ecosystem Reporter (Emanuel 1999). For each variable, the differences in cover between
the two intervals were computed and compared for sigrﬁﬁcant statistibal differences
between three site groups: (1) those that had completely changed classification; (2) those
that had changed only in phase; and (3) those that had not changed. Differences were
analyzed using Kruskal-Wallis rank sum tests for multiple comparisons within S-Plus
(Insightful Corporation 2901).

Correlations between variations in temperature and moisture, the percent cover of
select indicator species, and the changes in site classification were tested within S-Plus
using linear regression and Kruskal-Wallis tests. Precipitation and temperature data from
the nearest climate station to each site was obtained from the Western Regional Climatic
Center (2002). Nine climate stations were paired with the 35 sites. All climate data were
matched to site by the year sampling was done and were averaged into seasonal values
for each sami)le year. Seasons included fall (September - October), winter (November -
March), spring (April — May), and summer (June — August).

The effects of climate variables on actual canopy cover of individual grass species
were tested using linear regression in S-Plus. Total canopy cover of nine key indicator
grasses énd shrubs were correlated with mean precipitation and temperature by season.

The correlations ﬁsed all stations that contained the select indicator plant and all
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monitoring years in which it was present during sampling. Canopy cover was compared
with each of the eight seasonal climatic variables separately to determine whether
temperature or precipitation during certain seasons influenced canopy cover changes in
the select grasses over the 30 years. In addition, total canopy coverage was also related
to total yearly precipitation and average annual temperature on a site-by-site basis to
determine if less restricted climate measures would also show significant correlations.
To test whether seasonal climatic variations correlated with how much
classification changed at each site using the habitat-type key, data were divided into
short-term variations (i.e. differences in temperature and precipitation between the 1995-
1999 and 2000-2002 time intervals) and long-term variations (differences in temperature
and precipitation between the time the site was first sampled and the time it was last
sampled). Kruskal-Wallis rank sum tests were used to show whether one of three
classification groups (i.e. changed habitat type, phase change or no change) was
significantly different from the other two based on the influence of eight seasonal
temperature and precipitation variables. Differences between each of the eight climate
variables were tested for group effects separately. In the Kruskal-Wallis analyses, if all
of the sites that changed classification correlated with a general increase in spring
precipitation during the sample year, for example, then significant statistical differences

should be apparent among the three groups.

Results
Over the past 30 years, grasslands in western Montana have varied enough in both
composition and structure to significantly affect the way sites were classified through

time. In the three methods of analysis used to explore compositional changes,
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classifications have changed in 43-55% of the sites. The temporal scale of change

depended on the resolution of the sample data.

COMMUNITY CHANGES PORTRAYED BY USING CLASSIFICATION KEY

The habitat-type key developed by Mueggler and Stewart (1980) gave the highest
percentage of sites that changed classification (55%). Keying each sample interval
showed that sufficient changes in indicator species coverage could occur in as little as
five years to change classification and that a similar magnitude of change occurred in dry
to moist grassland environments (Table 3-1). Both shrub-dominated and grass-
dominated sites experienced change to varying degrees. Some sites completely changed
classification (GARCRK, BRI, FG1, and TG1). One shrub-dominated site (GARCRK)
exhibited a complete change in community structure due to shrub invasion. GARCRK
had a five-fold increase in woody shrubs on the site in the 23 years, resulting in
succession from a grass-dominated to shrub-dominated community that dramatically
changed its habitat-type classification over time. Similarly, the BIGPIP7 site showed
evidence of succession in that one type of shrub replaced another (Table 3-1). Purshia
tridentata was gradually eliminated from BIGPIP7 over 20 years, while desirable
bunchgrasses remained fairly stable and Artemisia tridentata doubled in canopy
coverage. Other grass- and shrub-dominated sites did not change their main type at all;
but they did change phase within the type quite frequently as minor species fluctuated in
dominance over time (ALDER, SL1). Some grass-dominated sites even showed

complete reversals in phase within five years (DRYCR3).
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Table 3-1: Plant association changes at select locations in southwestern Montana from

1970 to 2002 using grassland habitat-type (indicator species) key

Sampling Period

Site Code ' Yrs of Elevation 1970- 1976- 1981- 1985- 1990- 1995- 2000- Degree of

record (m) 1975 1980 1984 1989 1994 1999 2002 change
Dry sites
BIGPIP7 20 1748 -2 - K j - ] j h.t.
BIGPIP9 21 1667 - i i i - - j none
DRYCR3 22 1636 - d1 d d1 - d1 d1 phase
DRYCRé6 22 1667 - d d d1 - - d1 phase
GOLDRN 22 2182 - a - a a a a none
STOHOUA1 20 1736 - d - d - d - none
WHTB28 21 1519 - e h - h h h ht.
WHTB34 21 1515 - d1 h h1 d h1 h h.t.
Intermediate sites :
AMAZON 20 1833 - - a b b b b hit
BANN1 20 1824 - i - i - i - none
BR2 28 1542 d1 b - - - d d h.t.
BR3 28 1417 d d - - - d d none
CG1 21 1628 - - dl di d1 d1 d1 none
DC2 18 1436 - - i i - - i none
GARCRK1 23 2246 - a - - i i i h.t
MP1 15 1824 - - - b b b c h.t.
SL1 21 1828 - c2 - c2 ¢2 cf ¢l phase
TAYCRA1 20 1955 - i i - - i - none
T™M1 27 1302 o1 d1 - - - - d1 none
T™2 27 1314 d1 d - - - - dt phase
TM3 27 - 1517 a a - - a - a none
UKP 15 1947 - - - a a a a none
WC3 21 1620 - - dt d1 d1 d d phase
WF2 21 1824 - c - c c c c none
WF3 21 17711 - a - b b b b ht.
WF4 21 1848 - a c b b b a h.t.
WR1 20 1798 - - a a a a a none
Moist sites
ALDER 20 1848 - i1 i1 i i i1 - phase
BR1 28 1599 a a - - - a b h.t.
FG1 18 1850 - - el el f f ci ht.
IC1 15 1798 - - - c c c c none
NH1 15 1733 - - a a a a - none
spP2 13 1818 - - - f f c1 - h.t.
TG1 18 1738 - - d1 a a a a1l h.t
WF1 22 1776 - c - c c c c none

' Abbreviations for sites follow agency codes. See Figure 1 for location of sites.
2 _= gap in data over time interval
% Letter changes denote change in habitat type

Number changes denote change in phase within a particular habitat type
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Table 3-1 (continued): Plant association changes at select locations in southwestern

Montana from 1970 to 2002 using grassland habitat-type (indicator species) key

Key to abbreviations
Festuca idahoensis Series
a = Festuca idahoensis/Pseudoroegneria spicata
a1 = Festuca idahoensis/Pseudoroegneria spicata (Achnatherum occidentale phase)
f = Festuca idahoensis/Carex filifolia

Festuca altaica Series

b = Festuca altaica/Pseudoroegneria spicata

¢ = Festuca altaica/Festuca idahoensis .
¢1 = Festuca altaica/Festuca idahoensis (Achnatherum richardsonii phase)
¢2 = Festuca altaica/Festuca idahoensis (Geranium viscosissimum phase)

Pseudoroegneria spicata Series
d = Pseudoroegneria spicata/Poa secunda
d1 = Pseudoroegneria spicata/Poa secunda (Hesperostipa comata phase)
h = Pseudoroegneria spicata/Bouteloua gracilis '
h1 = Pseudoroegneria spicata/Bouteloua gracilis (Liatris punctata phase)

Hesperosiipa comata Series
e = Hesperostipa comata/Bouteloua gracilis
e1 = Hesperostipa comata/Bouteloua gracilis (Pascopyrum smithii phase)

Artemisia tridentata Series
i = Artemisia tridentata/Festuca idahoensis

i1 = Artemisia tridentata/Festuca idahoensis (Geranium viscosissimum phase)
i = Artemisia tridentata/Pseudoroegneria spicata

Purshia tridentata Series
k = Purshia tridentata/Pseudoroegneria spicata
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Both shrub and grass-dominated communities also had sites that appeared
relatively stable with time. For some (e.g. IC1, UKP), the data covered only 15 years,
which may have been too short to exhibit change at these particular sites. Although many
sites changed classification within five years in Table 3-1, most sites retained the new
classification for at least 10 years after the change occurred. Only the change from
grassland to shrubland (e.g. Feslda/PseSpi to ArtTri/PseSpi at GARCRK) could not be
shown to have occurred within five years because the site lacks 10 years of monitoring
data before the transformation occurred. Therefore, sites with short sampling records or
gaps of >15 years may appear stable in the sampling record. Species turnover averaged
about 15 years before there was enough difference in composition or dominance to alter
the assigned classification. WHTB34 was the only site that appeared to change more
often. Bouteloua gracilis and Poa secunda coverage in WHITB34 varied with time, and
the reSulting phase changes gave the appearance of change every five years (Table 3-1).
Many of the classification changes, except for shrub increases, were also shown to be
reversible within the same short time frames. Whether the communities changed to
shrubs because they reached some critical transition state (Westoby 1989), exceeded
some ecological buffer (Jeltsch er al. 2000), reached a new polyclimax (Ellenburg 1959,
Whittaker 1951), or experienced critical competitive interactions can not be determined
with this limited data set.

The influence of data gaps on perceptions of change is shown in Table 3-2. No
clear pattern was evident from the gap analysis. Similar percentages of plots changed
classification (43-57%) whether they had long periods of sampling records or whether

they had short or long gaps in those sampling records (Table 3-2). For example, plots
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with gaps ranging from 0 to10 years in 19 year records had similar percentages of
classification change (i.e. 43%) as those with 10-15 year gaps in 30 year records (i.e.
50%). Regular sampling is crucial, however, to decipher trends in individual species and
determine what causes the communities to change their composition at distinct points in
time.

Over both the long and short term, fluctuations in the coverage of individual
indicator species have significantly influenced the claésiﬁcation at current sites. In the
past 30 years, the trends in the coverage of individual indicator species have varied by
location, by year, across moisture gradients, and across a range of latitudes (Fig. 3-2). No
clear change pattern that spanned all elevations or all m;)isture levels could be determined
for any of the key specieg. Indicator species commonly increased quite significantly at
one site (e.g. P. spicata 1992 at TG1 in Fig. 3- 2) while decreasing in the same year at
another site (e.g. P. spicata 1992 at WHTB34). From 1995 to 2002 when wes;em
M(;ntana experienced severe drought conditions, major grass species that define these
bunchgrass communities decreased significantly at many locations (Table 3-3). Total
grass coverage declined in 70% of the plots and many important bunchgrass species
contributed to the total decline. Coverage of Pseudoroegneria spicata declined between
1995 and 2002 in almost 70% of the sites. Festuca idahoensis declined in 65% of them
(Table 3-3). Corresponding decreases in total forb coverage were found in 75% of the
sites. Ten plots had slight increases in moss and lichen coverage. Although some plots
increased in the same indicator species over the six years, the increases were relatively

small (most <10%) and they occurred only in a small number of plots (Table 3-3).
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Figure 3-2: Fluctuations in key species used in habitat typing on three representative sites. a)

Dry environment, lowest latitude, Pseudoroegneria spicata/Bouteloua gracilis h.t. in

2002; b) intermediate moisture, mid-latitude, Festuca altaica/Pseudoroegneria spicata

h.t. in 2002; c) moist environment, highest latitude, Festuca idahoensis/Pseudoroegneria

spicata Achnatherum occidentale phase in 2002.
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Because the habitat-type key is based on minimum quantities and/or presence/absence of
key indicator species, variations in these species — in both the long term and short term -
significantly affect how the communities are classified.

The variations in the canopy coverage of indicator species and the fluctuation of
supporting species within each community over time clearly suggest that these relatively
undisturbed grassland sites are not static or stable in composition. A summary of the
change pathways and how they affect classification of the Montana grasslands for the

past 30 years are summarized in Fig. 3-3.

COMMUNITY CHANGES PORTRAYED BY SIMILARITY INDICES

Using similarity analysis, 43% of the sites changed classification over time (Table 3-4).
However, over one third of the sites that changed were not in the same locations that
changed names using the keying process in the previous section. Sites that showed phase
changes using the key (BR2, DRYCR6, TM2, and WC3) converted fully to a different
classification using similarity analysis. Of the ten sites that changed classification in both
analyses, only two agreed in both analyses in 2002.

One of the major problems with comparing classifications using similarity
aﬁa.lyses was that the compositions of some of the plots did not contain key indicators
that were used in creation of the original classification groupings. Even though
compositions would be relatively similar between an historic and current plot, the species
that defined the actual classification was not present at the site or it was present in such
low percentages that it would not be considered an indicator species to name the type.

More often than not, the key indicators from the original compositions were missing from
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Figure 3-3: Observed change pathways in western Montana grassland classifications
from 1970-2002. All pathways can change classification in as little as five years

except a-j = 10 years. Classification codes are listed in Table 3-1.
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Table 3-4: Classification changes over time obtained by comparing total community

compositions of current sites with original Mueggler and Stewart (1980) grassland sample sites

using Sorensen's similarity index.

Site Code Elevation  Year Habitat Type Year Habitat Type Degree of Notes
{m) First Last Change
Dry Sites
BIGPIP7 1748 1982 AntTii/PseSpi ' 2002 ArtTrifPseSpi .
BIGPIPY 1667 1980  PseSpi/PasSmi-ElyLan 2001  PseSpi/PasSmi-ElyLan - NoPasSmi or ElyLan in 1980 or 2001
DRYCR3 1636 1980  PseSpi/BouGra 2002 PseSpi/BouGna .
DRYCRS * 1667 1980  PseSpi/PasSmi-ElyLan 2002 PseSpi/BouGra ht®  NoPesSmi, ElyLen or BouGm in either 1980 or 2002
GOLDRN 2182 1979 Feslda/PseSpi 2001  Festda/PseSpi . :
STOHOU1 1736 1979 Hescom/BouGra 1999  PseSpi/BouGm bt AchNel (ot Hesoom) in 1979 and 1999; no BouGra in 1979
WHTB28 1519 1981  PseSpi/BouGma 2002 PseSpi/BouGra -
WHTB34 1515 1981 PseSpi/BouGra 2002 PseSpi/BouGra -
Intermediate Sites
AMAZON 1833 1982 Feslda/PseSpi 2002  FesAluFeslda ht.
BANN]1 1824 1979 ArtTri/PseSpi 1999  ArtTrifPseSpi -
BR2 1542 1974 PseSpi/BouGm 2002 Feslda/PseSpi bt NoBouGminl974
BR3 1417 1974 PseSpi/PasSmi-Elylan 2002 PseSpi/PasSmi-Elylen - 'NoPasSmi or ElyLan in 1974 012002
CG1 1628 1981  PseSpi/BouGm 2002 PseSpi/BouGr - NoBouGrin 1981 or 2002
DC2 1436 1984 AnTvifFesida 2002 Feslda/PseSpi hi.
GARCRKI 2246 1979 Feslda/PseSpi 2002 AnTrifFesida hit.
MP1 1824 1986 FesAlt/PseSpi 2001  FesAlt/PseSpi - TFeslda dominates in both 1986 and 2001
: SL1 1828 1981  FesAlt/PseSpi 2002 FesAlt/PseSpi -
TAYCR1 1955 1979 AdTri/Feskia 1999 AnTri/FesAlt ht.  NoFesAltin 1979 or 1999
™I 1302 1975  PseSpi/PoaSec 2002  PurTri/Feslda bt NoFesida or PurTri in 1975 or 2002; PosSan 0.12 in 2002
™ 1314 1975 PeeSpi/PoaSec 2002 PseSpi/BouGra bt NoBouGm in 1975 or 2002
™ 1517 1975 Feslda/PseSpi 2002 Feslda/PseSpi -
UKP 1947 1986  Feslda/PseSpi 2001  Feslda/PseSpi -
wes 1620 1981  FesAly/PseSpi 2002 Feslda/PseSpi ht.
: WC4 1824 1980  FesAlt/PseSpi 2001  FesAlyPseSpi - No PseSpi in 1980 or 2001
WCS 1717 1980  FesAlt/PseSpi 2001  FesAlt/PseSpi -
WCs 1848 1980  FesldafPseSpi 2001 FesAlt/PseSpi bt
w7 1798 1981  Feside/PseSpi 2001  Feslda/PseSpi -
Moist Sites
ALDER 1848 1979 Feslds/PseSpi 1999 Feslda/PseSpi -
BRI 1599 1974 Feslda/PseSpi 2002 FesAltPseSpi ht
FG1 1850 1984  Feslda/BlyCan 2002 Feslda/AchRic ht  No ElyCanor Fesidain 1984; Hescom dominant in 1984
Ict 1798 1987  FesAlt/Feslda 2002 FesAlt/PseSpi ht  NoPseSpiin 1987 or 2002
NHI 1733 1984 Feslda/PseSpi 1999  Feslda/PseSpi -
sP2 1818 1986  Feskda/PseSpi 1999  Feslda/ElyCan ht  No PseSpi or ElyCan in 1986 or 1999
TGl 1738 1984 Feskia/PseSpi 2002 Feslda/PseSpi -
WFi 1776 1979 FesAlt/PseSpi 2001 FesAlt/PseSpi -
 Species Abbreviations:
AchNei= Achnpatherum nelsonii (Scribn.) Barkworth
AchRic = Achnath ichardsoni Link) Bert
ATri=  Artemisia tridentats Nutt.
BouGra= Boutelous gracilis (Willd. Ex Kunth) Lag. Ex Griffiths
ElyCan= Elymus caninus (L.)L.
Elylan= Elymus lanceolstne (Seribn. & J.g. Sm ) Gould
FesAli=  Festuca almica Trin.
Fesida= Festuca idahoensis Elmer
HesCom = Hesperostipa comata Trin. & Rapr.) Barkwork
PseSpi= Pseudoroegneria spicata (Pursh) A. Love
PasSmi= Pascopyrum smithii (Rydb.) A. Love
PurTri= Purshia tridentata (Pursh) DC.
* - =no change in habitat-type classification
* h.t. = change in habitat-type classification
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the current sites during sampling. In many cases, the species was never in the plot during
several decades of sampling history. For example, DRYCR6 was most similar to a
Pseudoroegneria spicata/Pascopyrum smithii — Elymus lanceolatus phase in 1980 and to
Pseudoroegneria spicata | Bouteloua gracilis in 2002. However, the site had neither
Pascopyrum smithii nor Elymus lanceolatus in its coverage data during 195;0 or 2002 and
never contained Bouteloua gracilis (Table 3-4). Even though habitat-type literature
warns users that key species may be missing from plots when they are sampled because
of chance, past history, or present competitive interactions (Barnes ef al. 1998), this
problem was encountered quite frequently using the similarity analysis. Users are left
wondering whether their classification truly represents the physiographic requirements,
potential vegetation, and potential yield of the proper grassland community even if they

compare their data with the original data used to make the classification key.

COMMUNITY CHANGES PORTRAYED BY ORDINATION ANALYSIS
Composition of our monitoring sites was not significantly different than sites that were
used to create the grassland classification in western Montana. Most monitoring sites
grouped well with the historic sites at the series level of the classification (i.e.
Pseudoroegneria spicata séries). However, grouping at the more specific habitat-type
level was not consistent, mostly because the original habitat types varied so much in
composition that they were quite spread out in three-dimensional ordination space.
Species dominating the ends of each axis were easy to distinguish using the composition
data. The movements of plots along the ordination axis corresponded to gains or losses

in these individual species over time. However, there was no correlation between the
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shifts in ordination space and whether a site changed in classification using the habitat-
type key or not (Fig. 3-4). For example, WHTB 28 lost Hesperostipa comata, but added
Bouteloua gracilis and Pseudoroegneria spicata over time. Its movement downward
along axis 3 reflected these changes and underwent a corresponding change in
classification using the habitat-type key (Fig. 3-4). GOLDRN, however, moved a similar
distance in the reverse direction along axis 3 because it lost coverage of Festuca
idahoensis and gained in Hesperostipa comata, but it did not change classification. Some
sites had only phase shifts that caused the site to move long distances in ordination space;
others experienced similar changes in phase but moved only short distances (SL1).
Contrary to notions of stability through time, however, all sites change positions in
dimensional space after 15-30 years (except CG1, Fig. 3-4). The directions and
magnitude of change varied for each site; and there was no evidence of “ddespread
change trends in any species that would move plots toward any particular region of the

graph because of climate changes.

CORRELATIONS OF COMMUNITY CHANGE WITH CONTROL FACTORS

No one factor stands out as clearly responsible for driving the classification
changes in this case study over the 30 years. Changes occurred at the full range of
elevations and latitudes using all methods of analysis. There was no clear pattern that dry
areas changed more frequently than moist areas (Fig. 3-2, Tables 3-1 and 3-4). In the
short term, the degree of change in classification did not correlate with an increase or
decrease in coverage of introduced species (p>0.35), annual species (p>0.18), or grazing

indicators (p>0.10) using Kruskal-Wallis tests.
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A Monitoring plots 1974-1987
o Monitoring plots 1999-2002
=3 Habitat-type change

——p Phase change

—m—mns  No classification change

Figure 3-4: Shifts in individual plot composition over time within ordination space
(Bray-Curtis ordination). Classification changes were determined using the
habitat-type key of Mueggler and Stewart (1980). Note: Ordination was run with
monitoring plots and historic Mueggler and Stewart plots together. The historic

plots have been removed from this diagram to more clearly show the movements

of only monitoring plots through time.
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Variations in climatic factors had no direct correlation with how a site was
classified in the past using the habitat-type key. When compared with variation in eight
climatic variables, no significant statistical differences were found between sites that had
changed classification in the past 30 years and sites that had either changed phase or
stayed within the same classification (¥ 2 0.43 to 4.3, df = 2, all p>0.11). Similarly,
changes in classification were not correlated with climatic variation during the last six
years.

Climatic variation had mixed effects on canopy cover of key indicator species.
Analyses using total yearly precipitation and mean annual temperatures on a site-by-site
basis had no significant correlations with changes in canopy cover of the indicators in
dry, intermediate, or moist sites (P>0.10). The overall decrease in total grass and forb
coverage and increase in bare ground in plots over the time period did correspond with a
general decrease in precipitation in southwestern Montana between 1981 and 2002 for
many of the sites (Western Regional Climatic Center 2002). The most important climatic
correlations were with individual indicator species. Over the three decades, the canopy
cover of individual indicator grasses correlated significantly with variations in
precipitation and temperature among seasons of each year and each indicator species
responded to a different set of factors. Pseudoroegneria spicata correlated significantly
with winter precipitation over the 30 years (R*=0.13, p<0.001). Carex filifolia correlated
with mean fall temperatures (R?=0.21, p<0.05). Although the correlations between the
remaining six indicator species that were tested in this study were not as strong as those
for Pseudoroegneria spicata or Carex filifolia (R*< 0.10), linear regression did show that

all correlated significantly with one to four climatic variables, but no two species had all
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of the same climatic correlations in common. Changes in the abundance of indicators
shown in Fig. 3-2 related to these seasonal variations in precipitation and temperature

over time.

Discussion
Only the perspective of time can clearly illuminate how susceptible plant communities
are to change or how rapidly change can occur. When one looks at a short time span,
most plant communities appear relatively stable and structural change may be
indistinguishable. When viewed in geologic terms, all plant communities are in a
constant state of flux and stability does not exist (Brubaker 1988, Johnson & Mayeux
1992, Tausch et al. 1995). In between these two extremes, however, lie time perspectives
critical to ecosystem classification, assessment, and management - multiple decades that
Magnuson (1990) calls the “invisible present”. Using 30 years of monitoring data from
the Montana bunchgrass communities, the previously “invisible present” clearly revéals
that these grasslands consist of very dynamic communities that have their own
managerial challenges for classifying types, assessing change, and modeling succession.
One major challenge facing managers is choosing a classification system that is
efficient, yet best captures trends in focal grass species and changes in biodiversity over
time. In the case study, the communities are classified with a species-based system
meant to portray stable climax and potential vegetation. If the communities are properly
classified and the classification is appropriate to the ecosystem, classifications should not
change during the monitoring period unless they experience catastrophic disturbance

events or a severe change in climate. The bunchgrass communities have experienced
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neither; but, as the analyses show, their classifications change often and some change
relatively rapidly. More importantly, the change patterns are also multidirectional - not
linear or unidirectional (Fig. 3-3). Reversals in classification occur as a matter of course.

Most sites changed classification because the dominance of one or more key
species varied during favorable climatic or grazing conditions. Physiographic conditions
did not spgciﬁcally relate to classification change. Classifications changes were not
limited to plots within a specific range of elevations, iatitudes, or moisture regimes.
Changes in classification occurred because individual indicator species varied in
dominance over time and because overall community structure changed.

Indicator species fluctuated enough to affect classifications in as little as five
years and some sites chapged classification several times over three decades (Fig. 3-3).
Some species were present in a plot during the entire time span but, during good years for
growth, reproduction, and competitive interactions, they increased in canopy coverage
relative to other community members to affect classification. The patterns of dominance
for grass and forb species did not indicate what specific interactions drove the changes in
vegetation or whether interactions were positive or negative toward other community
members (Callaway 1997), but dominance of all community members did vary in both
time and in space. From the time perspective, compositional stability was very short-
lived in these grassland communities.

Structurally, the communities also varied in time and space. Overall grass
coverage declined over the past 30 years. Forbs increased significantly and the
proportions of key grasses fluctuated enough to be considered phase changes within the

classification. Whether a remote-sensed, land-type classification system would have
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detected the decreases in total grass cover/ or these phase changes is debatable. A land-
type system would certainly have detected the significant increases in shrub cover at
several of the sites, but the changes in community composition associated with the
increase in shrub coverage would certainly have been missing if species-based data had
not been collected.

Many factors were examined to explain why classifications changed over 30

- years. The factors included variations in the coverage of several types of grazing
indicators, variations in the cover of non-native species, and the effect of seasonal
climatic variables. Differences in the coverage of grazing indicators and of non-native
species had no correlation with whether a site changed classification over time in either
the short-or long-term. The changes in grazing indicators and non-native species affected
overall composition of many plots and their positions in dimensional space in ordination
analysis, but the increase or decrease in coverage of these variables did not specifically
correlate with changes in classification names. Because the classification theoretically .
described stable climax communities with minimized external disturbances (Daubenmire
1952, Mueggler & Stewart 1980), the lack of correlation between classification changes
and external disturbances like grazing or introduced species was expected.

The sensitivity of these grasslands to climatic variability, however, was not
factored into this species-based system. Seasonal variation in temperature and
precipitation correlated significantly with the canopy coverage of several key indicator
species used in the habitat-type key. The importance of variations in temperature and
precipitation to individual indicator species on an annual basis is crucial to understanding

grassland change patterns and community dynamics. In this study, there is no
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synchronicity to either the magnitude or direction of change for all the sites in the
ordination analyses (Fig. 3-4). The effects of these climatic variables vary by species and
lend support to current research that shows these ecosystems are particularly sensitive to
short-term climatic variability (Alward et al. 1999, De Valpine & Harte 2001, Knapp &
Smith 2001, NSF 2002, Weltzin ef al. 2003).

The sensitivity of indicator species to climatic variables also suggests that
assignment of classification names may depend on when a site is sampled. The original
habitat-type or “potential vegetation” classification was created using vegetation on the
ground at one point in time. According to Brubaker (1988, p.1), when change is
considered in such dynamic systems, “it is probably unrealistic to think that future
vegetation changes can be p;'ecisely anticipated from observation of present vegetation.”
In the decades covered by this study alone, there is so much variation in both the |
frequency and canopy coverage of the dominant grasses and community compositions
over time that predicting future trends even 10 years ahead is uncertain (see Figs. 3-2 and
3-3). The classification would probably look quite different if it had been created in
1850, 1930, 1970, or 2000 because of the different climatic conditions in these years.
Since 1970, southwest Montana has undergone gradﬁal warming and drying (Sikkink &
Alaback, Western Regional Climatic Center 2002), but this study shows that
classification changes also occurred at monitoring sites in the 1970s when this trend
would not have been a factor.

These grasslands follow many different change pathways (Fig. 3-3). These
pathways are more similar to current non-equilibrium models than they are to linear,

unidirectional succession models. The inherent instability of indicator species with
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environmental variation and the multiple pathways of change patterns suggest that
alternative methods are needed to assess stability and succession within them. Current
non-equilibrium models, such as the multiple steady-state models (Cattelino et al. 1979,
Tausch et al. 1993, Westoby 1989) or the threshold models (Friedel 1991, Laycock 1991,
May 1977), appear to fit the changes exhibited by western Montana grasslands over the
past 30 years better than equilibrium models, which form the basis of the habitat type,
range type and range condition classifications. The data from this study neither supports
nor disputes older theories that promote multiple climax communities (i.e. a polyclimatic
climax) for a vegetation type instead of multiple pathways of non-equilibrium succession
(Meeker'& Merkel 1984). The differences between these theories will only be answered
through very long-term vegetation monitoring. However, at this point in time, evidence
supports current successional theories of multiple pathways because of the frequent
changes in species dominance and short time spans for change within many different
vegetation types. Currently, grassland research worldwide faces similar challenges in

- determining how stable grasslands are over time and what factors drive compositional
change within them (Brown et al. 2001, Hirst et al. 2003, Kahmen & Poschloda 2004,
Schutz ez al. 2000, Shaw et al. 2002).

The principles behind the habitat-type classification and, by extension, other
species-based systems that rely on “climax™, potential vegetation, or indicator species
clearly do not withstand scrutiny of the change patterns indicated by long-term data.
How then can such systems be made more appropriate for use in grasslands? Records
detailing plant changes and fluctuations within a particular area are usually not available

or taken into consideration during the process of creating a classification. Asaresult, a
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static classification provides a very narrow perception of community interactions,
climatic influences, and stability of a vegetation type in a particular area on the landscape
over time. If a classification system is to be used to assess change and track
compositional trends in communities, the system must consider the natural range of
variation inherent in the communities being classified and the drivers that control it.
Capturing the range of variability in each community requires frequent resampling at
each location so that the variations in important species can be identified before the
classification is constructed. It may also involve new methods of sampling individual
target species, including measuring fecundity and demographic structure (Buhler &
Schmid 2001, Oostermeijer & Van't Veer 1994). Ideally, monitoring should include
yearly samples for at least 15 years to cover an adequate range of temperature and
precipitation variations and cover the transitions between community types. With repeat
sampling over longer time frames, more robust statistical methods, such as time-series
techniques, can be applied to the data to determine if focal species are affected by
climatic fluctuation, grazing intensity, or introduced species within short time periods or
whether lag effects exist that must be considered when assessing community change.
Auxiliary data on grazing history and soil samples for each sample interval would enable
more robust statistical correlations to be conducted. New monitoring sites should be
selected away from ecotones or other locations that would inflate variation or affect
composition in the short-term. In the intermountain grasslands, this means sites should
be located away from forest edges and reflect a- variety of physiographic conditions. For
the temporal scales important to management, species-based classification systems

should be much more sensitive than remote-sensed systems at capturing compositional
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change due to grazing or introduced species especially if they are constructed correctly
from the start and use spatial scales appropriate to management. Creating a classification
system for these dynamic systems with highly detailed, or super-fine, categories,
however, seems doomed to failure.

Assessing change in any community requires that historical links remains intact.
Sampling procedures and techniques must remain the same at each permanently-marked
monitoring site through time or this link is broken. All records must also be saved, which
is sometimes a challenge after several decades. Incorporating new techniqﬁes to improve
community descriptions is often desirable, but requires trade-offs between maintaining
this historical link and allotting time for extra work. Above all, the historical links must -
be maintained. Sample frequency, however, may be increased without any loss of
historical integrity to adequately capture the nature of change in these communities and
new techniques can be added to the historical base.

When Mueggler and Stewart published their grassland classification for western
Montana in 1980, they predicted that it would certainly experience changes through the
years because they thought their examples of pristine “climax” communities were so
limited and they expected that new discoveries on how grassland communities responded
to grazing would significantly affect the original classification (Mueggler & Stewart
1980). Ultimately, the problems of habitat typing in grassland ecosystems were even
more fundamental than their lack of foresight about grazing effects or a scarcity of
sample sites; but, hopefully, their prediction for change will be fulfilled. The challenge
now is to develop assessment tools that more realistically reflect the dynamic nature of

these communities without breaking the ties that bind each one to the past.
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