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ABSTRACT

Newingham, Beth A. PhJD. May 2002. Division of Biological Sciences, OBE

Insect herbivory and defoliation on Centaurea species: the coles of neighbors, 

allelopathy, and arbuscular mycorrhizal fungi

Director: Dr. Ragan M. Callaway /ZKC

Herbivory is assumed to have negative effects on plants, but many species compensate 
for herbivory by accelerating growth and reproduction after damage. Little is known 
about how biotic interactions influence variation in plant responses to herbivory. The 
assumption that herbivory significantly reduces plant performance and competitive 
effects on native neighbors is central to biocontrol theory. In this context, numerous 
biocontrols have been introduced to control invasive plants, including Centaurea species. 
I examined how herbivory altered the interactions between Centaurea and Festuca 
species in three different systems. First, I investigated how Festuca species influenced 
the compensatory response o f Centaurea maculosa to herbivory and whether herbivory 
altered the allelopathic effects of C. maculosa on Festuca. Centaurea maculosa 
compensated for herbivory (up to 40% leaf damage) and Festuca neighbors did not 
increase the negative effects o f herbivory. Centaurea maculosa was allelopathic to F. 
idahoensis; however, herbivory on C. maculosa did not increase these allelopathic 
effects, hi a second study I determined whether a North American genotype (the 
tetraploid C. stoebe ssp. micranthos) differed ecologically from a western European 
genotype (the diploid C. stoebe ssp. stoebe). Both subspecies responded similarly to 
defoliation, the presence of F. ovina, and arbuscular mycorrhizal (AM) fungi.
Defoliation negatively affected C. stoebe, but F. ovina positively affected C. stoebe. AM 
fungi positively affected C. stoebe, but did not increase compensatory growth. In a third 
study I examined interactions between C. uniflora and F. paniculata in subalpine 
communities of the French Alps. Centaurea uniflora fully compensated for defoliation in 
the first year, but biomass was negatively affected after repeated defoliation for two 
growing seasons. Festuca paniculata neighbors had competitive effects on C. uniflora, 
but did not affect its compensatory response. My results suggest that herbivory has weak 
or no effect on Centaurea and competitors do not exacerbate the effects of herbivory. hi 
addition, herbivory on Centaurea does not decrease its competitive effects on neighbors 
nor does herbivory increase allelopathic effects. In this study, AM fongi did not enhance 
Centaurea compensatory growth. My results suggest that biocontrols may be less 
effective at reducing the competitive ability of Centaurea than previously thought.
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INTRODUCTION

Aboveground and belowground biotic interactions are important in structuring 

plant communities. Neighboring plants, herbivores and soil microorganisms can 

influence plant performance resulting in changes at the population, community and 

ecosystem level. None of these biotic factors act independently, nor even in simple pair­

wise interactions; therefore, to gain more realistic insight into direct and indirect biotic 

effects in plant communities, it is crucial to examine them in concert. In my research I 

have examined how herbivores, microbes, and the presence of specific neighbors modify 

plant competitive interactions. My ultimate goal is to understand how complex 

interactions influence plant communities.

Herbivory generally has negative effects on plants. However, plants often 

compensate for herbivory by increasing growth or reproduction. Plants can 

undercompensate (Harper 1977, Crawley 1983), equally compensate (Lee and Bazzaz 

1980, Fowler and Rausher 1985), or overcompensate (McNaughton 1986, Paige and 

Whitham 1987, Alward and Joem 1993) for herbivory. This spectrum of responses to 

herbivory may dramatically alter plant interactions within the community.

Herbivory and competition with neighboring plants occur simultaneously and 

competition can exacerbate the negative effects of herbivory (Archer and Detling 1984, 

Cottam et al. 1986, Reichman 1988). However, cases when herbivory and competition 

do not interact synergistically (Fowler and Rausher 1985, Parker and Salzman 1985, Rees 

and Brown 1992), suggest that: 1) herbivory does not have a negative effect on the target 

plant (i.e., compensation), or 2) neighboring plants are not necessarily competitors. Thus,

1
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it is important to understand how plants respond to herbivory, how neighboring plants 

affect this response, and how herbivory alters the interactions between plants.

It is generally assumed that neighboring plants are competitors, and plant 

competition is clearly one of the most dominant forces influencing plant communities 

(Connell 1983, Aarssen and Epp 1990, Goldberg and Barton 1992). However, plants can 

also have neutral or positive effects on each other. Plants can facilitate one another by 

ameliorating environmental conditions such as light, water, temperature, and damage by 

herbivores, and plants can positively affect one another via shared pollinators or 

microbial symbionts such as mycorrhizal fungi (Callaway 1995, Callaway 1997). Such a 

broad range of potential interactions among plants again suggests the importance of 

considering plant interactions in the context of other biotic interactions.

Within the last ten years plant community ecology has been revolutionized by a 

new understanding of the role of soil microbes in plant communities. Soil microbes can 

alter competitive outcomes (Goodwin 1992, Newman et al. 1992, Hartnett et al. 1993, 

Moora and Zobel 1996), reverse the outcome of herbivory (Callaway et al. 2001), and 

drive diversity changes in communities (van der Heiden et al. 1998, Smith et al. 1999). 

Furthermore, plants and soil microbes can participate in negative or positive feedback 

loops with strong implications for community  composition, diversity, and dynamics 

(Bever et al. 1997, Watkinson 1998, Klironomos 2002). As for herbivory and plant-plant 

interactions, it is clear that a realistic understanding of microbial effects must come 

within the context of other biotic interactions.

My dissertation examines the role of herbivory in the interactions between 

Centaurea and Festuca species. Numerous species of insects have been introduced as

2
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biological controls to reduce the spread of invasive Centaurea species in North America; 

however, Centaurea species continue to expand their ranges (Miiller-Scharer and 

Schroeder 1993). Biological control theory assumes that herbivory has negative effects 

upon Centaurea and that herbivore damage on Centaurea will decrease its competitive 

ability, releasing native neighbors from competition. However, this outcome has not 

been tested rigorously in the context of multiple interactions.

In contrast to biological control theory, previous research suggests that herbivory 

may not have strong negative effects on the invasive weed, C. maculosa Lam., and in 

some cases, may increase its competitive ability (Callaway et al. 1999). I examined the 

effects of herbivory on Centaurea in three different systems with the following 

objectives: 1) to determine the effects of herbivory on Centaurea, 2) to examine whether 

neighboring plants exacerbate the effects of herbivory on Centaurea, 3) to assess whether 

herbivory on Centaurea has positive indirect effects on neighbors, and 4) to identify the 

mechanism for C. maculosa’s increased competitive ability after herbivory.

Centaurea may increase its competitive ability by increasing its allelopathic 

effects on neighbors. Allelopathy is the production of secondary chemicals by a plant 

that has negative effects upon neighboring plants (Rice 1984). Evidence suggests that C. 

maculosa is allelopathic to F. idahoensis (Ridenour and Callaway 2001). Plants also 

produce secondary chemicals for protection from herbivores (Zangerl et al. 1997, 

Underwood 1998); therefore, it is possible that anti-herbivore secondary chemicals may 

have a dual function as allelopathic chemicals (Lovett and Hoult 1995, Tang et al. 1995, 

Siemens et al. 2002). Thus, herbivory could increase the negative effects of allelopathy 

and increase Centaurea's competitive ability.

3
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Arbuscular mycorrhizal (AM) fungi are important in plant growth (Koide 1991, 

Newman et al. 1992, Marschner and Dell 1994) and can form mycorrhizal links between 

plants (Newman et al. 1992). AM fungi are important in the interactions between C. 

maculosa and F. idahoensis. Marler et al. (1999) suggests that C. maculosa may 

parasitize F. idahoensis through AM fungi. Since AM fungi are important for resource 

and water uptake, it is possible they play an important role in plant compensatory 

response to herbivory (Callaway et al. 2001). If herbivory increases nutrient uptake 

through AM fungi and plants are linked via mycorrhizal hyphae, herbivory may increase 

the amount of carbon or nutrients transferred from the undamaged plant to the damaged 

plant. Therefore, herbivory could increase C. maculosa’s  competitive ability through 

AM fungi.

hi Chapter 1 ,1 examine the compensatory response of the North American 

invader, C. maculosa, over a range of Trichoplusia ni Hubner herbivory either alone or in 

the presence of a neighboring C. maculosa, or the North American natives, F. idahoensis 

and F. scabrella. Additionally, I determine whether herbivory on C. maculosa has 

positive effects on neighboring plants. In this experiment I also investigate whether 

herbivory increases the allelopathic effects of C. maculosa thereby increasing its 

competitive ability.

Chapter 2 examines the interactions between herbivory and neighboring F. ovina 

on two Centaurea genotypes, C. stoebe ssp. micranthos and C. stoebe ssp. stoebe. 

Centaurea stoebe ssp. micranthos (=C. maculosa) is the invasive genotype in North 

America and C. stoebe ssp. stoebe occurs in western Europe. In this experiment I also

4
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assess whether AM fungi assist C. stoebe subspecies in their compensatory response and 

if this increases its competitive effects o n F  ovina.

Chapter 3 looks at how herbivory and neighboring F. paniculata interact to affect 

C. uniflora. Centaurea uniflora and F. paniculata are commonly associated with one 

another in subalpine and alpine communities of the French Alps. This experiment is 

designed to also determine if the interactions between C. uniflora and F. paniculata are 

similar to those found between C. maculosa and North American Festuca species.

The results of my dissertation are important not only for understanding how 

simultaneous biotic factors in the community interact to determine plant-plant 

interactions, but also to determine whether insect herbivory by biological control agents 

will reduce the competitive ability o f Centaurea. If herbivory is not effective at reducing 

its competitive ability, we may need to re-assess the use and introduction of numerous 

non-native insect species to control Centaurea species.

hi summary, my findings indicate that herbivory can negatively affect Centaurea 

species, but only at high levels or under unusually stressful conditions, hi contrast to 

theoretical predictions, neighboring native plants were not good competitors to 

Centaurea and did not exacerbate the effects of herbivory on Centaurea in any of my 

experiments. Consistent with this lack of competitive interaction, neighboring plants 

never responded positively to damage upon Centaurea. However, in contrast to 

Callaway et al. (1999) (also see Siemens et al. 2002) no experiment demonstrated that 

Centaurea increased its competitive ability after herbivory. Centaurea maculosa was 

allelopathic to F. idahoensis', however, herbivory did not increase allelopathic effects 

suggesting allelopathy does not play a role in enhancing the competitive ability of

5
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damaged C. maculosa. AM fungi were important in plant growth, but did not affect the 

compensatory response of Centaurea subspecies.

My dissertation research suggests that herbivory by biological control agents may 

be less effective than hoped to reduce the competitive ability of Centaurea species. 

Centaurea species are often resilient to damage and neighbors are unlikely to benefit 

from damage on Centaurea. This has important implications on the assumption that 

biological control agents will benefit native plants. Complex interactions in this system 

make it difficult to predict whether herbivory is an effective method of control for 

Centaurea.

6
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CHAPTER 1

Effects of herbivory on Centaurea maculosa: roles of compensatory growth

and allelopathy

ABSTRACT

Herbivory can have negative, positive or no effect on the final biomass or

reproduction of plants. However, the use of insects as biological controls is based on the

fundamental assumption that herbivory will negatively affect target weeds and release

natives from competition. Previous studies in North America and Europe found that

Centaurea maculosa, one of western North America’s worst invasive, exotic plants, is

remarkably tolerant to herbivory, and under some conditions, herbivory may increase its

competitive effects on native plant species. I conducted experiments to investigate the

following mechanisms hypothesized increase the competitive ability of C. maculosa

when subjected to herbivory: 1) herbivory stimulates compensatory growth by C.

maculosa which increases its competitive effects, and 2) herbivory stimulates secondary

chemical production by C. maculosa, perhaps as induced defenses, which increases

allelopathic effects on neighboring plants. I conducted a greenhouse and field

experiment to test the compensatory growth hypothesis. In the greenhouse experiment,

herbivory by Trichoplusia ni had a negative effect on the final biomass of C. maculosa,

but the effects of herbivory were absent below 40% leaf damage. Contrary to plant

competition theory, which holds that neighbors should have negative effects on plants,

the presence of a conspecific had no effect upon the biomass of C. maculosa; in contrast,

the biomass of C. maculosa was larger when grown with Festuca idahoensis and F.

scabrella. The presence of another C. maculosa, Festuca idahoensis or F. scabrella did
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not increase negative effects of herbivory on C. maculosa. Furthermore, herbivory on C. 

maculosa did not have positive effects on neighboring plants. Similar results were found 

with defoliation of C. maculosa in the field. Fifty percent defoliation of C. maculosa had 

a negative effect on the shoot biomass of C. maculosa', however, defoliation did not affect 

the number of C. maculosa flowers produced per plant. Festuca idahoensis neighbors 

did not increase the negative effects of herbivory on C. maculosa, and there was no 

positive effect on F. idahoensis when C. maculosa was damaged. In the greenhouse 

experiment, activated carbon added to absorb allelopathic chemicals reduced the 

competitive effects of C. maculosa on F. idahoensis, but not on F. scabrella or on 

conspecifics. However, there was no evidence that C. maculosa was more allelopathic 

after herbivory. hi sum, the total range of herbivory applied in these experiments reduced 

the final biomass of C. maculosa, but not its reproduction. More importantly, the 

negative effects of herbivory on C. maculosa biomass did not alter the effects of this 

invader on native bunchgrasses.

KEYWORDS: allelopathy, Centaurea maculosa, compensatory growth, competition, 

herbivory
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INTRODUCTION

Herbivory and competition are two of the most important forces structuring plant 

communities. Simultaneous herbivory and competition usually have greater negative 

impacts on plant performance than either process alone (Archer and Detling 1984, 

Cottam et al. 1986, Reichman 1988, but see Fowler and Rausher 1985, Rees and Brown 

1992). The combined effects of herbivory and competition can be difficult to predict 

because plant responses to herbivory depend on neighboring species, abiotic conditions, 

and intensity o f the damage. Herbivory can have negative effects on plants 

(undercompensation) (Harper 1977, Crawley 1983), no effects (equal compensation) (Lee 

and Bazzaz 1980, Fowler and Rausher 1985), or positive effects (overcompensation) 

(McNaughton 1986, Paige and Whitham 1987, Alward and Joem 1993). Such a range in 

responses suggests that herbivory may not necessarily reduce the competitive ability of a 

plant. However, no studies have investigated the effects of compensatory growth on 

competitive ability.

Understanding how variable responses to herbivory affect plant interactions is of 

fundamental interest to ecologists, and is crucial for predicting the effectiveness of 

biological control herbivores against exotic, invasive weeds. Over 949 exotic species 

have been introduced around the globe as biological controls to reduce the spread of 

invasive plants (Julien and Griffiths 1998). The introduction of exotic insects is based on 

the assumption that invasive plants are successful because they lack natural enemies and 

that the introduction of natural enemies will reduce the competitive advantage invaders 

have over natives (Waage and Mills 1992, Blossey and Notzold 1995, Van Driesche and 

Bellows 1996, Tilman 1999). Based on a relatively simplistic interpretation of plant
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competition theory, herbivore damage is expected to decrease the competitive ability of 

weeds and release undamaged neighbors from competition. However, the indirect effects 

of biological controls on native plants have rarely been tested.

Centawrea species from Europe and Asia are some of the most damaging and 

invasive weeds in North America (Maddox and Mayfield 1985, Maddox et al. 1985, 

Roche and Roche 1988, Muller-Scharer and Schroeder 1993). Centaurea maculosa Lam. 

(spotted knapweed) is one of North America’s worst weeds and was introduced from 

Eurasia in the late 1800’s. Centaurea maculosa invasion often results in the development 

of dense, almost monospecific stands of C. maculosa and the competitive exclusion of 

virtually all native species (Ridenour and Callaway 2001).

Biological control agents were first introduced to control Centaurea species in 1970, 

and now there are at least 13 species of insects established in North America for this 

purpose (Sheley et al. 1998). However, Muller-Scharer and Schroeder (1993) observed 

that despite extensive biological control efforts, Centaurea species are still expanding 

their ranges. The ineffectiveness of these biological controls may be because many are 

not yet well established, their effects will take longer to be fully realized, or that their 

effects on Centaurea are weak. The lack of success where biological controls are well 

established suggests the latter.

The lack of success o f biological control agents to control C. maculosa populations is 

consistent with a recent experiment which showed that, in contrast to the general 

expectations that herbivory will reduce the competitive ability of a plant, herbivory by 

biocontrols may slightly increase the competitive ability of C. maculosa (Callaway et al. 

1999). hi their experiment, the reproductive output and root biomass of native Festuca
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idahoensis were slightly but significantly lower when neighboring C. maculosa were 

attacked by Agapeta zoegana L. (Lepidoptera: Cochylidae), a common specialist 

biocontrol, and Trichoplusia ni Hubner (Lepidoptera: Noctuidae), a non-biocontrol 

generalist herbivore. Other studies have shown that herbivory by biocontrol herbivores 

does not reduce the growth o f C. maculosa (Muller-Scharer 1991, Steinger and Muller- 

Scharer 1992) and in some cases causes overcompensatory root growth (Muller 1989) or 

flower production (Ridenour and Callaway, in press).

I propose two hypotheses to explain the potential increase in competitive effects 

of C. maculosa on F. idahoensis. First, C. maculosa may compensate for herbivory by 

increasing its growth rate, concomitantly increasing uptake of limited resources. 

Compensatory growth to herbivory would then improve the competitive ability of C. 

maculosa. Second, herbivory on C. maculosa may stimulate the production of secondary 

chemicals, perhaps as induced defenses, which may increase allelopathic effects on 

neighboring plants (Lovett and Hoult 1995, Tang et al. 1995). Plant secondary 

metabolites can provide protection against herbivores (Zangerl et al. 1997, Underwood 

1998) and may alter plant-plant interactions (Gant and Clebsch 1975, Petranka and 

McPherson 1979, Mahall and Callaway 1992). Siemens et al. (2002) found that the 

induced chemical defenses o f Brassica rapa also acted as allelopathic agents against 

competitors. Herbivory-stimulated growth and allelopathy may explain why C. maculosa 

can increase its competitive effect on neighbors after being damaged. I tested whether C. 

maculosa increased its competitive ability through compensatory growth or allelopathy in 

a greenhouse and field experiment. In the greenhouse, C. maculosa was exposed to 

Trichoplusia ni herbivory in the presence and absence of neighbors and with or without
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activated carbon added to the soil to reduce concentrations o f  allelochemicals. hi a field 

experiment, I defoliated C. maculosa in the presence and absence o f a neighbor.
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METHODS

Greenhouse experiment

A greenhouse experiment was conducted at The University o f Montana in which

C. maculosa was planted alone, with a conspecific, and with each o f two dominant native 

grasses in the intermountain prairie o f Montana, F. idahoensis Elmer or F. scabrella 

Torrey ex. Hook. There were 60 replicates per neighbor treatment for a total o f240 pots. 

All plants were grown from seed in 4-L pots with a silica sand-field soil mixture (4:1). 

Twenty/thirty grade silica sand was used and field soil was collected near Missoula, 

Montana where C. maculosa was abundant. All plants were watered every other day with 

tap water and fertilized biweekly with V* strength Hoagland’s solution modified by using 

inositol hexaphosphate. Centaurea maculosa and F. idahoensis have arbuscular 

mycorrhizal (AM) fungi that are important in nutrient and phosphorus uptake by plants 

(Koide 1991, Marschner and Dell 1994, Newsham et al. 1995). Previous studies have 

shown that AM fungi are important for interactions between C. maculosa and F. 

idahoensis (M arleretal. 1999). Inositol hexaphosphate is not directly available to plants 

and requires mycorrhizal fungi, soil microbes or root exudates to convert this organic 

form of phosphorus into inorganic phosphorus (DeLucia et al. 1997).

To investigate the role of root exudates on C. maculosa's response to herbivory,

20 ml of activated carbon was added per liter o f sand-soil mixture to half of the pots (120 

total). Activated carbon has previously been shown to reduce the negative effects o f root 

exudates from C. maculosa (Ridenour and Callaway 2001) and other species (Mahall and 

Callaway 1992). Activated carbon has a high affinity for organic compounds, such as the 

suspected allelopathic chemicals, and a weak affinity for inorganic electrolytes such as
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the nutrients in Hoagland’s solution (CheremisinofFand EUerbusch 1978). To remove 

potential contamination o f activated carbon by soluble phosphates and reduce saturation 

of binding sites, I acid-washed the activated carbon with 2 M HC1. The activated carbon 

was shaken in acid in a 1:10 w/v ratio for 1 hour and then filtered through Whatman #2 

filter paper. The acid-washed activated carbon was then washed at least once in 

deionized water in the same manner described above to remove any residual HC1. I 

measured the pH of the activated carbon and the sand-soil-activated carbon mixture to 

determine if acid-washing altered soil properties relative to the sand-soil mixture without 

activated carbon.

Alter 16 weeks o f growth, I randomly chose one of the two C. maculosa plants in 

the pots with conspecifics and the single C. maculosa in all other treatments, for 

herbivory by T. ni. After leaving T. ni on plants for 3-4 days, herbivory ranged in 

intensity from 0 (controls with no insects) to 90% of the total leaf area. Trichoplusia ni 

Hubner (cabbage looper moth) is native to Europe, but abundant in North America. 

Trichoplusia ni is not used as a biocontrol agent for C. maculosa. However, T. ni larvae 

have been observed eating C. maculosa leaves in the field, and other studies have 

demonstrated that T. ni does not eat F. idahoensis (Callaway et al. 1999). Trichoplusia ni 

was used because it is easy to manipulate and measure precise levels o f leaf damage. 

Cages were placed over all targets to ensure that T. ni only ate the target C. maculosa. 

Immediately after the herbivory treatment, I visually determined the percentage of 

damaged leaf area for each leaf. For each target plant, I counted the total number of 

leaves and expressed the percent damage of all leaves combined as a percentage of total 

plant leaf area. Six weeks after herbivory, all target plants and corresponding neighbors
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when present were harvested, dried at 60°C for 48 hours, and shoots and roots o f both 

species were weighed.

In sum, there were 4 neighboring treatments, the presence or absence o f carbon 

and a gradient o f herbivory from 0 to 90%. All data were analyzed with ANCOVA. 

Treatment differences in total biomass of target C. maculosa were analyzed with 

neighbors and carbon as fixed factors, hi order to include the specific level o f herbivory, 

herbivory on C. maculosa was used as a covariate. Herbivory was not included as a 

factor to avoid auto correlation between the covariate and factor. Herbivory was used as 

a covariate because it was assumed that the experiment started after herbivores had been 

applied. This allowed me to examine the plant’s response to herbivory after damage. 

Leaf number immediately before herbivory was used as an additional covariate to control 

for initial size differences among plants. Since biomass before herbivory was not 

obtainable, leaf number was used as a surrogate for biomass. The total biomass of 

neighboring plants was also analyzed using an ANCOVA with species and carbon as 

fixed factors, and herbivory and leaf number before herbivory on the target C. maculosa 

were used as covariates. hi this model the interaction o f leaf number and neighbor was 

added to examine whether neighbor effects and responses varied depending on their size. 

Three-way interactions were eliminated from either model because they were not 

significant. All data were log transformed to meet ANCOVA assumptions. Comparison 

of means was performed using the Bonferroni correction method. All means reported are 

mean ± 1 standard error.
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Field experiment

The field site was located on Mount Sentinel adjacent to The University o f 

Montana campus (N 46°50.612', W 113°58.454'; elevation, 1374m). This site was 

dominated by both C. maculosa and F. idahoensis. In the spring o f2000,1 chose eighty 

individual pairs of C. maculosa and F. idahoensis. Environmental conditions at this site 

are exceptionally harsh, relative to other areas where C. maculosa is more abundant, and 

there are fairly isolated pairs o f C. maculosa and F. idahoensis with few or no other 

nearby neighbors. Centaurea maculosa target plants were approximately the same size 

and age. The initial mean number of C. maculosa leaves was 22.14±1.58 (± I standard 

error) and mean height was 8.71±0.21cm. The mean height o f all F. idahoensis before 

clipping was 15.64±0.40 cm. Twenty pairs, chosen at random from the original 80 pairs, 

received one of the four following treatments: C. maculosa not defoliated-/7. idahoensis 

present; C. maculosa not defoliated-/7. idahoensis absent; C. maculosa defoliated-/7. 

idahoensis present; C. maculosa defoliated-/7, idahoensis absent. Festuca idahoensis was 

removed by clipping all aboveground biomass at the beginning of the experiment and 

each month if  regrowth occurred. I imposed severe defoliation upon C. maculosa by 

clipping 50% of its aboveground biomass with scissors on June 1 and July 7,2000. 

Although F. idahoensis was removed in some neighbor treatments, F. idahoensis was not 

defoliated as a “herbivory’ treatment. This experiment was designed to run for two 

years; however, summer precipitation in 2000 was exceptionally low (see discussion) and 

there was high mortality of C. maculosa. Therefore, I established another 80 pairs in the 

spring o f2001 and repeated the same experiment. Clipping in 2001 occurred on June 25 

and August 15,2001. Survival o f all C. maculosa plants was recorded at the end o f2000
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and 2001 (alive or dead). In addition, aboveground biomass o f all plants was collected 

and the number o f flowers was counted on September 13,2001.

Survival data o f C. maculosa for 2000 were analyzed using a binary logistic 

regression with defoliation and neighbor as covariates. The high mortality of plants in 

2000 reduced sample sizes so that statistical analyses o f biomass and flower number were 

not possible; therefore, biomass and flower data were only analyzed for pairs identified in 

2001. The biomass and flower data o f C. maculosa were analyzed with a two-way 

ANOVA using defoliation and neighbor as fixed factors. The biomass and flower data of 

F. idahoensis were analyzed with a one-way ANOVA using defoliation as a fixed factor. 

All means reported are mean ± I standard error.
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RESULTS

Greenhouse experiment

Herbivory had a negative effect upon the total biomass o f the target C. maculosa 

when considering the entire 0-90% herbivory intensity gradient (Fig. 1, Table I).

Without herbivory, the mean biomass o f the target C. maculosa was 0.83±0.053g and 

when using all herbivory levels combined (1-90%, mean % damage = I7.81±l9.9l) the 

mean biomass o f target C. maculosa was reduced to 0.70±0.04g, a 16% reduction. 

However, the effect o f herbivory was only evident when the highest intensities of 

herbivory were included. When analyses were conducted with all intensities >40% 

excluded, the effects o f herbivory were weak on the biomass o f target C. maculosa 

(P=0.069). In the full analysis, neither neighbors nor activated carbon altered the growth 

response of the target C. maculosa to herbivory. Leaf number before clipping was 

significandy related to the final biomass o f target C. maculosa.

Activated carbon used to absorb allelochemicals did not significantly affect the 

total biomass of the target C. maculosa (Fig. 1, Table 1). When combining all neighbor 

situations, the mean total biomass of the target C. maculosa without activated carbon was 

0.76±0.04g and with activated carbon was 0.71±0.05g. Neighboring plants did not affect 

the response of the target C. maculosa to activated carbon. Acid-washing the activated 

carbon altered the pH of the activated carbon or sand-soil-activated carbon mixture 

relative to the sand-soil mixture without activated carbon (P=0.001). The pH of soil 

without activated carbon was 7.49±0.12 and with activated carbon was 7.98±0.03.

The presence of neighbors significandy affected the total biomass of the target C. 

maculosa (Fig. 2), but effects were not competitive. The total biomass of C. maculosa
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alone was 0.69±0.04g. When grown with a conspecific, C. maculosa biomass decreased 

to 0.59±0.04g; however, this was not significant (F=1.000). The biomass o f C. maculosa 

was significantly larger when grown with F. idahoensis (0.75±0.04g) than when grown 

alone or with a conspecific (P=0.025 and P=0.014, respectively). Target C. maculosa 

biomass was 0.89±0.04g when grown with F. scabrella, which was significantly larger 

than when grown alone or with a conspecific, but not when grown with F. idahoensis 

(P=0.005, P=0.003, andF=l.000, respectively).

The neighbors o f target C. maculosa also differed in their total biomass (Fig. 3, 

Table 2). The mean total biomass of the undamaged C. maculosa was 0.85±0.04g, which 

was significantly larger than F. idahoensis and F. scabrella (P<0.0005 and 7*0.0005, 

respectively). The biomass of F. idahoensis (0.1 l±0.03g) and F. scabrella (0.1 l±0.06g) 

were not significantly different from each other (P=0.065). Leaf number of the neighbor 

before herbivory on target C. maculosa significantly explained the total biomass of the 

neighboring plant and the relationship between leaf number and biomass differed for each 

species.

Over all treatments, activated carbon did not affect neighboring species (Fig. 3, 

Table 2). However, species responded differently to activated carbon. Adding activated 

carbon increased the biomass of F. idahoensis from 0.08±0.03g to 0.14±0.04g, slightly 

increased the biomass of F. scabrella from 0.10±0.06g to 0.12±0.06g, and decreased C. 

maculosa biomass from 0.96±0.04g to 0.74±0.06g. This suggests that activated carbon 

has a strong positive effect uponF. idahoensis but not on F. scabrella or C. maculosa.

Herbivory on the target C. maculosa did not have positive effects on neighboring 

species and all species responded similarly to herbivory on the target C. maculosa (Fig. 3,
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Table 2). There was no interaction between activated carbon in the soil and herbivory on 

the target C. maculosa suggesting activated carbon did alter the neighbors’ response 

when C. maculosa was damaged.

Field experiment 

Survival

Across all treatments, only 48% of the C. maculosa plants identified in 2000 (the 

exceptionally dry summer) survived while 98% o f the C. maculosa plants identified in 

2001 survived (Table 3). hi 2000, defoliating C. maculosa significantly decreased its 

survival (Wald statistic=8.013, P=0.005). Sixty-four percent o f the non-defoliated C. 

maculosa plants survived while only 30% of defoliated C. maculosa plants survived. The 

presence o f F. idahoensis tended to increase the survival o f C. maculosa in 2000, but this 

was not significant (Wald statistic=l.l45, P=0.284).
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Biomass and reproduction

For pairs identified in 20 0 1 , the final shoot biomass o f C. maculosa was 

negatively affected by defoliation (Fig. 4 , / >d e f o t i a m m = 0 - 004) .  The mean aboveground 

biomass of C. maculosa was reduced by 40% when clipped, even though 50% o f the 

biomass was removed at two different times and the final harvest was only six weeks 

after the last clipping. Eliminating the aboveground biomass of F. idahoensis had no 

effect upon the shoot biomass o f C. maculosa (Fig. 3, Fneighbor=0*420). Centaurea 

maculosa responded similarly to defoliation regardless of the presence of F. idahoensis 

(Fig. 3, d̂efoliation x neighbor=0 .860). Neither defoliation nor neighbor affected the number of 

C. maculosa flowers (Pdefoiiabon=0-744, Pneighbor=0-544), and there was no interaction 

between defoliation and neighbor upon the number of C. maculosa flowers (̂ defoliation x 

neighbor=0-575). However, the trend was towards overcompensation in the presence o f F. 

idahoensis and undercompensation in its absence. When F. idahoensis was present, C. 

maculosa flower number was 3 .95± 1.18  when C. maculosa was not defoliated and 

4.20±1.07 when C. maculosa was defoliated, hi the absence of F. idahoensis, C. 

maculosa flower number was 5.20±0.98 when not defoliated and 4.25±1.02 when 

defoliated. Defoliation of C. maculosa did not affect the final shoot biomass or the 

number o f flowers ofF. idahoensis (Fdefoiianon=0-422,Fdefoiiation=0-931, respectively); 

however defoliating C. maculosa tended to release F. idahoensis from competition.

When C. maculosa was not defoliated, the shoot biomass o f F. idahoensis was 

l.65±0.35g compared to 2.12±0.46g for those with defoliated C. maculosa neighbors, 

and the flower number of F. idahoensis was ll.90±3.15 compared to 12.30±3.32.
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DISCUSSION

I first hypothesized that C. maculosa might increase its competitive ability 

through compensatory growth. However, in both experiments, high levels of T. ni 

herbivory and artificial defoliation had negative effects upon the biomass o f the target C. 

maculosa. Centaurea maculosa appeared to grow at faster rates after herbivory and was 

able to attain its original biomass at low levels of herbivory in the greenhouse 

experiment. High levels o f defoliation had a negative effect upon the biomass of C. 

maculosa in the field, but did not affect C. maculosa reproduction. Other studies have 

found that artificial defoliation, leaf herbivory (T. ni) and root herbivory (Agapeta 

zoegana and Cyphocleonus achates Fahr. (Coleoptera: Curculionidae)) have minimal 

negative effects upon C. maculosa and C. melitensis biomass and sometimes cause 

overcompensation (Muller 1989, Muller-Scharer 1991, Steinger and Muller-Scharer 

1992, Callaway et al. 1999, Callaway et al. 2001). However, in these experiments, C. 

maculosa was given more time to recover from herbivory than in my experiment. Also in 

contrast to my study, none of the previous studies examined herbivory along a gradient o f 

damage intensity. Understanding the gradient o f responses may be crucial because low 

levels of herbivory may not have strong negative effects on C. maculosa, but high levels 

of herbivory may significantly reduce C. maculosa biomass. It is difficult to predict the 

generality o f the greenhouse results since sample sizes were low at the highest levels o f 

herbivory and plants only experienced a single bout of herbivory.

Defoliation had a negative effect upon the final shoot biomass o f C. maculosa in 

the field in 2001; however, C. maculosa appears to be resilient to damage. It is 

remarkable that C. maculosa maintained 40% of its shoot biomass and survival was
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100% in 2001 when 50% o f the shoot biomass o f C. maculosa was removed twice in a 

growing season and plants had only one month to recover. More importantly, severe 

defoliation did not decrease fecundity. Long-term damage may cause a reduction in 

reproduction in successive years; however, within this study period, defoliated plants 

were just as fecund as undamaged plants.

Water was not manipulated in this study; however, my field experiment suggested 

the timing o f precipitation throughout the year was important to the survival o f C. 

maculosa. Annual precipitation was 31.45cm and 33.73cm for 2000 and 2001, 

respectively. However, peak precipitation in 2000 occurred in September (6.38cm) after 

a very dry summer, whereas in 2001 precipitation patterns were more typical o f the 

region with the peak in June (9.93cm). In Missoula, MT, peak precipitation usually 

occurs in May and June and changes in the timing of precipitation have the potential to 

affect the phenologies of C. maculosa and F. idahoensis. Festuca idahoensis flowers in 

May-June while C. maculosa flowers in July-August. Low precipitation in June o f2000 

likely contributed to the reduced survival of C. maculosa. The mean number o f F. 

idahoensis flowers in 2000 and 2001 were 0.263±0.129 and 16.921±2.025, respectively. 

The drastic increase in F. idahoensis flowers in 2001 suggests that late precipitation in 

2000 had a strong positive effect upon reproduction. This may have been due to the high 

mortality o f C. maculosa in 2000 or the late precipitation in 2000 directly benefited F. 

idahoensis.

According to theory o f plant competition, neighboring plants should have 

negative effects upon the biomass of the target plant. However, in the experiments 

reported here neighboring plants positively affected target C. maculosa biomass. In the
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field, the presence o f F. idahoensis was correlated with a slight increase in the survival of 

C. maculosa, hi the greenhouse, CL maculosa grown with F. idahoensis and F. scabrella 

neighbors were significantly larger than controls and when grown with conspecifics. The 

fact that conspecifics had stronger competitive effects than natives on target CL maculosa 

may have been simply because natives were much smaller than CL maculosa plants. The 

positive effects o f Festuca corroborate with the results o f Marler et al. (1999) who 

showed F. idahoensis can have a positive effect on C. maculosa through mycorrhizal 

fungi.

Herbivory had negative effects upon C. maculosa, but neighbors did not 

exacerbate this effect. Most previous studies have shown that herbivory makes an 

individual more susceptible to competition (or vice versa), with generally additive 

negative effects on the target plant (Archer and Detling 1984, Cottam et al. 1986, 

Reichman 1988). However, C. maculosa subjected to herbivory or defoliation grew no 

larger alone than with C. maculosa, F. idahoensis or F. scabrella neighbors. Although 

target C. maculosa plants with neighbors may have fewer resources immediately 

available to them, it is possible that C. maculosa obtains resources from neighbors or 

benefits from soil microbial changes caused by neighbors. Resource and carbon transfer 

between plants through mycorrhizal links has been documented in several cases 

(Chiariello et al. 1982, Francis and Read 1984, Grime et al. 1987, Watkins et al. 1996, 

Simard et al. 1997). Marler et al. (1999) hypothesized that C. maculosa might obtain 

nutrients or carbon from neighbors through arbuscular mycorrhizal (AM) fungi, and 

similar processes appear to occur for C. melitensis (Callaway et al. 2001, in press).
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However, the question o f carbon transfer from native plants to C. maculosa is still 

unresolved (Carey and Callaway in review, Zabinski et al. in review).

Herbivory is assumed to shift competitive interactions in favor o f undamaged 

plants (Crawley 1989, Louda et al. 1990, Blossey and Notzold 1995, Tilman 1999). 

Herbivory negatively affected target C. maculosa, but herbivory on the target C. 

maculosa did not have positive effects on neighboring C. maculosa, F. idahoensis or F. 

scabrella. However, in contrast to Callaway et al. (1999), I found no evidence that 

herbivory on C. maculosa increased its competitive ability. Biological control theory and 

practice assumes that herbivory will reduce the competitive ability o f the weed releasing 

natives from competition; however, the results from this study suggest that herbivory 

may not be effective at reducing the competitive ability of C. maculosa.

Fletcher and Renney (1963) found that C. maculosa and C. repens exudates have 

phytotoxic effects on the germination and growth o f barley and lettuce, and Kelsey and 

Locken (1987) isolated the compound cnicin from C. maculosa which had negative 

effects on the germination and growth of native North American plant species. In my 

experiment, C. maculosa had a strong allelopathic effect upon F. idahoensis. Other 

studies have shown that C. maculosa inhibits the growth of F. idahoensis through 

allelopathy (Ridenour and Callaway 2001) and that the closely related C. diffusa is also 

allelopathic (Callaway and Aschehoug 2000). Activated carbon did not alter the effects 

of herbivory on C. maculosa, suggesting that reducing its allelochemical effect on 

neighbors does not affect its growth response to herbivory. hi addition, as levels of 

herbivory increased on C. maculosa, neighboring plants did not benefit from activated 

carbon. Therefore, there was no evidence that C. maculosa increased its competitive
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ability via increased allelochemical exudation. However, I may have failed to see a 

positive response by neighbors if  the amount of activated carbon used was not sufficient 

to reduce large amounts o f allelochemicals exuded by C. maculosa.

It is important to examine plant responses to herbivory under various competitive 

situations. This is especially important in the context o f biological control o f weeds 

where it is assumed that herbivory will decrease the competitive ability o f the weed 

releasing natives from competition. In contrast, my results suggest that herbivory does 

not always have strong negative effects on C. maculosa and that herbivory does not 

decrease its competitive ability. In addition, compensatory growth and allelopathy do not 

appear to be mechanisms for any potential increase in Centaurea’s competitive ability. 

Most importantly, in this experiment, there was no evidence that herbivory on the 

noxious invader, C. maculosa, benefits either neighboring conspecifics or native grasses.
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Table 1 ANCOVA on the effects o f neighbor, carbon and herbivocy on the total biomass 

of C. maculosa. The P values of significant terms (P<0.05) are indicated in boldface 

type.

Source df MS F P

Neighbor 3 0.236 4.709 0.003

Carbon 1 0.152 3.027 0.083

Herbivory 1 1.243 24.782 <0.0005

Leaf# 1 12.703 253.297 <0.0005

Neighbor x Carbon 3 0.116 2.311 0.077

Neighbor x Herbivory 3 0.074 0.148 0.931

Carbon x Herbivory 1 0.134 2.679 0.103

Error 215 0.050
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Table 2 ANCOVA on the effects of species, carbon and herbivory on the total biomass of 

the neighboring C. maculosa, F. idahoensis, or F. scabrella. The P values o f significant 

terms (PO.05) are indicated in boldface type.

Source d f MS F P

Species 2 1.006 13.693 <0.0005

Carbon 1 0.001 0.016 0.901

Herbivory 1 0.001 0.002 0.966

Leaf# I 4.943 67.284 <0.0005

Species x Carbon 2 0.360 4.905 0.009

Species x Herbivory 2 0.042 0.566 0.569

Carbon x Herbivory 1 0.014 0.189 0.665

Species x Leaf 2 1.356 18.462 <0.0005

Error 157 0.073
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Table 3 Survival of C. maculosa during 2000 and 2001 with or without defoliation and 

with or without F. idahoensis.

Treatment Alive

2000

Dead Survival Alive

2001

Dead Survival

C  maculosa not defoliated 

F. idahoensis present

12 5 71% 19 1 95%

C. maculosa not defoliated 

F. idahoensis absent

11 8 58% 20 0 100%

C. maculosa defoliated 

F. idahoensis present

7 13 35% 19 I 95%

C. maculosa defoliated 

F. idahoensis absent

3 10 23% 20 0 100%

Total 33 36 48% 78 2 98%
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Fig. 1 Effects o f herbivory on the unstandardized residuals o f target C. maculosa total 

biomass when grown with F. idahoensis, F. scabrella or C. maculosa or grown alone 

either a) without activated carbon or b) with activated carbon in pots in the greenhouse. 

Unstandardized residuals were obtained using a model with neighbor and carbon as fixed 

factors and leaf number as a covariate. Herbivory as a covariate was removed from this 

model. Data are based on ANCOVA results from Table 1.

Fig. 2 Effect of neighboring species on target C. maculosa. Adjusted means and standard 

errors shown are from untransformed data. Error bars represent + 1 SEM.

Fig. 3 Effects o f target C. maculosa herbivory on the unstandardized residuals of 

neighboring species total biomass either a) without activated carbon or b) with activated 

carbon in pots in the greenhouse. Unstandardized residuals were obtained using a model 

with neighbor and carbon as fixed factors and leaf number as a covariate. Herbivory as a 

covariate was removed from this model. Data are based on ANCOVA results from Table 

2.

Fig. 4 Total biomass of C. maculosa with or without F. idahoensis, with or without 

defoliation in the field in 2001. Error bars represent + 1 SEM.
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CHAPTER 2

North American and European genotypes o f Centaurea stoebe respond 

similarly to neighbors, defoliation, and arbuscular mycorrhizal fungi 

ABSTRACT

Invasive species may be superior competitors in their recipient communities due

to unusual competitive ability, mutualistic interactions, or lack of herbivore pressure.

However, the relative importance of these processes is poorly understood. Comparing

ecological traits o f invasive species to those of closely related, non-invading taxa may

provide insight to why invasive species are so successful. Centaurea stoebe (C.

maculosa) is an exotic, invasive plant in North America that is native to Europe and Asia.

However, there are two genotypes of C. stoebe in Europe: tetraploid C. stoebe ssp.

micranthos and diploid C. stoebe ssp. stoebe. Centaurea stoebe ssp. micranthos is the

only one of these taxa identified in North America to date. To determine whether the

American genotype possesses ecological characteristics that may confer it advantages

over the European genotype, I investigated the effects o f the European neighbor Festuca

ovina, defoliation, and European arbuscular mycorrhizal (AM) fungi on the growth

responses of C. stoebe ssp. micranthos and C. stoebe ssp. stoebe. Both C. stoebe

subspecies were grown with F. ovina, defoliated or not defoliated, and AM fungi

colonization were reduced using the fungicide, benomyl. Over all treatments combined,

there were no differences in the total biomass between the genotypes of C. stoebe, but

positive effects o f F. ovina (P=0.023), negative effects o f defoliation (/MXOOS), and

negative effects o f fungicide (FO.OOl) on C. stoebe subspecies biomass. Severe

defoliation of C. stoebe did not have positive effects on F. ovina. However, the response
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of F. ovina depended upon which subspecies o f C. stoebe was defoliated and whether or 

not fungicide was applied. Defoliation o f C. stoebe ssp. micranthos without fungicide 

had positive effects upon F. ovina biomass, but defoliation with fungicide reduced F. 

ovina biomass. In contrast, for C. stoebe ssp. stoebe fungicide did not change the 

interactions between defoliated C. stoebe ssp. stoebe and F. ovina suggesting that F. 

ovina may interact slightly different with C. stoebe ssp. micranthos than with C. stoebe 

ssp. stoebe. The lack o f strong differences between the invader, C. stoebe ssp. 

micranthos. and the genotype found only in Eurasia to date, C. stoebe ssp. stoebe, suggest 

that the invasive success o f the former cannot be attributed to particular ecological traits. 

In addition, these results suggest that polyploidy does not affect the response of C. stoebe 

ssp. micranthos to the presence of F. ovina, defoliation, and AM fungi.

KEYWORDS: AM fungi, Centaurea maculosa, Centaurea stoebe, compensatory 

growth, Festuca ovina, herbivory
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INTRODUCTION

Why some species successfully invade new regions is a central question in 

ecology (Vitousek et al. 1996, Davis et al. 2000, Mack et al. 2000). In addition to 

possessing key population-level characteristics (Mack 1985, Sakai et al. 2001), a 

successful invader must be able to competitively exclude local residents or at least 

prevent them from retaking colonized habitat. Successful invaders may gain competitive 

advantages by rapid growth and resource uptake (Baker 1974, Roy 1990), mutualistic 

interactions (Richardson et al. 2000), and the absence o f consumers (Crawley 1989, 

Blossey and Notzold 1995, Williamson 1996); however, we still lack a fundamental 

understanding o f why some species are successful at invasion while other related and 

ecologically similar species are not. One promising approach for understanding the 

ecology of invasive success is the quantitative comparison of ecological traits of 

successful invaders to those of closely related taxa (Radford 2000, Lambrinos 2001, 

Sultan 2001). For example, closely related taxa may differ in ploidy levels which may 

result in different physiological, ecological, and genetic traits among related species 

(Lumaret 1988, Thompson and Lumaret 1992). In some cases, it has been suggested that 

traits derived from polyploidy may be responsible for the invasive success o f plants (Roy 

1990, Soltis and Soltis 2000). There have been few explicit ecological comparisons of 

successful genotypes of invaders to closely related genotypes that are not currently 

invasive.

There are over 500 species in the genus Centaurea in Eurasia and northern and 

eastern Africa, and more than a dozen of these have become highly successful invaders in 

North America, South America, Australia, and southern Africa (Bremer 1994). One of
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the most widespread invasive Centaurea species, C. maculosa Lam. (Asteraceae, spotted 

knapweed), has extensively invaded native grasslands in western North America since the 

late I800’s. Centaurea maculosa is a superior competitor, often excluding virtually all 

native species and creating dense monocultures (Ridenour and Callaway 2001). However, 

the taxonomy of the genus Centaurea is exceptionally complex (Garcia-Jacas et al.

2000). Earlier literature indicates that the North American invader is the tetraploid, C. 

biebersteinii DC. (2n=36) (Dostal 1976, Muller 1989, Stinson et al. 1994, Garcia-Jacas 

1998). The most recent genetic and morphological research indicates that the North 

American invader is C. stoebe L. ssp. micranthos (Gugler) Hayek, a perennial, 

polycarpic, tetraploid plant (2n=36) (Ochsmann 2001). This taxon is very difficult to 

distinguish from what has been called C. maculosa and is often confused with a closely 

related, almost morphologically identical conspecffic, C. stoebe L. ssp. stoebe.

Centaurea stoebe ssp. stoebe is biennial, monocarpic, and diploid (2n=l8) (Dostal 1976, 

Ochsmann 2001). There is no current evidence that C. stoebe ssp. stoebe has been 

introduced and become invasive in North America. For taxonomic accuracy, from here 

on I use the names C. stoebe ssp. stoebe for the non-invader and C. stoebe ssp. 

micranthos for the invader in North America. However, virtually all published papers 

refer to the latter as Centaurea maculosa. Comparisons o f the ecology of these two 

genotypes have the potential to shed light on the basis for the success of one of the most 

devastating invasive plants in North America and on general principles o f invasion in 

plant communities.

A crucial ecological aspect of the success o f C. stoebe ssp. micranthos is its 

strong competitive effect on North American species. The competitive superiority o f C.
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stoebe ssp. micranthos, and the closely related C. diffusa, over natives has been attributed 

to a number o f different mechanisms including allelopathy (Muir and Majak 1983; 

Callaway and Aschehoug 2000; Ridenour and Callaway 2001), competition for resources 

(Jacobs and Sheley 1999, Callaway and Aschehoug 2000, LeJeune and Seastedt 2001), 

lack of herbivores, and mechanisms meditated by arbuscular mycorrhizal (AM) fungi 

(Marler et al. 1999).

Understanding the effects of herbivory on C. stoebe subspecies is also 

fundamental to understanding the success of C. stoebe ssp. micranthos. Numerous 

insects have been introduced as biological control agents to reduce the spread of C. 

stoebe ssp. micranthos (Muller-Scharer and Schroeder 1993, Story and Piper 2001) and 

sheep are often used in efforts to control it (Olson and Wallander 1997, Olson and 

Wallander 2001). However, previous research suggests that herbivory and defoliation are 

not highly effective at controlling C. stoebe subspecies. Agapeta zoegana L.

(Lepidoptera: Cochylidae) and Cyphocleonus achates Fahr. (Coleoptera: Curculionidae), 

both root feeders, have weak effects on C. stoebe ssp. stoebe in native systems (Muller 

1989, Muller-Scharer 1991, Steinger and Muller-Scharer 1992) and on C. stoebe ssp. 

micranthos in invaded systems (Callaway et al. 1999), and some experiments suggest that 

both C. stoebe subspecies have the potential to compensate for biomass lost to herbivory 

in a matter o f weeks. The shoot herbivore, Trichoplusia ni Hubner (Lepidoptera: 

Noctuidae), also has been shown to have weak effects on C. stoebe ssp. micranthos, 

failing to decrease its biomass (Callaway et al. 1999, Newingham and Callaway, in prep). 

In addition, sheep grazing often fails to have significant negative impacts on C. stoebe 

ssp. micranthos (Olson and Wallander 1997). Thirteen species o f insects have been
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introduced to control C. stoebe ssp. micranthos; however, C. stoebe ssp. micranthos 

continues to spread in North American grasslands (Muller-Scharer and Schroeder 1993). 

Due to the taxonomic confusion, these biological control agents appear to have been 

collected from C. stoebe ssp. stoebe, G. vallesiaca Jordan and C. stoebe ssp. serbica 

(Prodan) Ochsmann instead of G stoebe ssp. micranthos (Smith 2001) which may affect 

their ability to significantly impact C. stoebe ssp. micranthos populations.

Biological control theory assumes that herbivory has negative effects upon weeds 

that will release neighboring natives from competition (Blossey and Notzold 1995, Van 

Driesche and Bellows 1996, Tilman 1999). This assumption is based on previous 

evidence that herbivory and competition are additive in their negative effects (Archer and 

Detling 1984, Reichman 1988). However, herbivory is not always negative, neighboring 

plants are not always competitors, and herbivory and competition are not always additive. 

Plants often compensate for herbivory (Fowler and Rausher 1985, McNaughton 1986, 

Paige and Whitham 1987, Alward and Joem 1993) and neighbors can act as facilitators 

rather than competitors (Callaway 1995, Callaway 1997). Variable responses to 

herbivory and interactions with neighbors may complicate predictions o f how herbivory 

by biological controls will affect the interactions between invasive plants and natives.

AM fungi can enhance plant growth by increasing nutrient and water uptake 

(Koide 1991, Newman et al. 1992, Marschner and Dell 1994) and can form fungal links 

whereby nutrients and carbon are transferred from one plant to another (Chiariello et al. 

1982, Francis and Read 1984, Grime et al. 1987, Simard et al. 1997). In addition, AM 

fungi may be important in plant compensatory responses to herbivory (Callaway et al.

2001). AM fungi are a crucial component o f the ecology of C. stoebe ssp. micranthos.
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Marler et al. (1999) found that AM fongi did not have an effect on C. stoebe ssp. 

micranthos when grown alone, but when Festuca idahoensis was grown with C. stoebe 

ssp. micranthos, AM fungi were highly beneficial to C. stoebe ssp. micranthos. They 

hypothesized that either AM fungi played a role in the transfer of fixed carbon or 

nutrients from F. idahoensis to C. stoebe ssp. micranthos (see Grime et al. 1987) or that 

F. idahoensis altered the soil fungal community in a way that favored C. stoebe ssp. 

micranthos. AM fungi have also been shown to have strong, but inconsistent, effects on 

other Centaurea species (Callaway et al. 2001, Callaway et al. in press).

Here I report on a greenhouse experiment in which I measured the effects of 

defoliation, AM fungi, and neighbors on the growth of C. stoebe ssp. stoebe from eastern 

France and C. stoebe ssp. micranthos from western Montana. This experiment was 

designed to ask the following questions: I) Does the compensatory growth response of C. 

stoebe ssp. micranthos differ from that of C. stoebe ssp. stoebe? 2) How do AM fungi 

affect the compensatory response of C. stoebe subspecies? 3) Does the presence of F. 

ovina alter the compensatory response o f C. stoebe subspecies? 4) What are the indirect 

effects on F. ovina when the two C. stoebe subspecies are damaged?
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METHODS

An experiment was conducted in an outdoor garden at Joseph Fourier University 

in Grenoble, France. I chose to conduct the experiment within the native range and 

biological communities o f both C. stoebe subspecies for two reasons. First, I could not 

predict how C. stoebe ssp. stoebe might respond to North American conditions, and more 

importantly, to eliminate any risks o f introducing C. stoebe ssp. stoebe in North America. 

All plants were planted in 4L pots that were placed outside, but not submerged in the 

ground. Pots consisted o f a 1:8 soil:sand mixture that was evenly mixed throughout the 

pot. Soil was collected at Saillans du Gua in the Vercors Massif (N 45° 2', E 5° 40'), and 

the sand was collected at Saint-Lattier in the Bas-Dauphine area (N 45° 09’, E 5° 19% 

both near Grenoble, France. Centaurea stoebe ssp. stoebe is present at both o f these 

sites. Centaurea stoebe ssp. micranthos seeds were collected near Missoula, MT, and C. 

stoebe ssp. stoebe seeds were collected in the Rhine valley north of Mulhouse, France.

Centaurea stoebe individuals were planted either with or without single F. ovina 

neighbors. Festuca ovina commonly occurs with C. stoebe ssp. stoebe in western 

European grasslands. Festuca ovina transplants were collected from Saint-Lattier,

France, where sand was collected, and were transplanted into pots on April 26,1999. At 

the time of transplant, F. ovina mean leaf number was 8.39±3.35 cm and the mean height 

was 8.52±l.97cm (± 1 standard error). Centaurea seeds were germinated on petri dishes 

on May 3, 1999, and seedlings were transplanted into pots on May 5,1999. Plants grew 

for the first 7 weeks in soil inoculum to ensure AM fungi were present to allow 

establishment of plants. Then half o f the pots were treated with the fungicide, benomyl 

(Benlate, Dupont). Benzimidazole fungicides have been shown to consistently reduce
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AM fungi in other experiments with Centaurea species (Marler et al. 1999, Callaway et 

al. 2001). Benomyl was added at a rate of SO mg kg'1 soil every two weeks and non- 

benomyl pots were given an equivalent amount o f water. Plants were fertilized once on 

May 11,1999 with Compo Floranid (N-P-K=20-5-8). This low phosphorus fertilizer was 

chosen to increase colonization o f AM fungi.

After allowing the plants to grow for 2 months, I clipped all C. stoebe leaves 

except one that was «3 cm long. The biomass of all clipped leaves was recorded. 

Clipping the plants allowed me to inflict a specified amount o f damage to the plant and 

avoid the variability encountered when using insects. Plants were grown for another 4 

weeks and then harvested. Aboveground and belowground biomass was dried at 60°C 

for 48 hours and weighed. Root segments o f all plants were washed, cleared with 2.5% 

KOH for 48 hours, acidified in 5% HC1 for 12 hours, and stained with trypan blue for 12 

hours (Phillips and Hayman 1970). AM fungal colonization was assessed using the 

magnified intersection method developed by McGonigle et al. (1990).

There were 15 replicates for each treatment combination of subspecies, neighbor, 

defoliation and fungicide. Sample sizes were reduced due to slug herbivory on seedlings. 

The effects of subspecies, neighbor, defoliation and fungicide on C. stoebe biomass were 

analyzed using a four-way ANOVA. The effects o f subspecies, defoliation and fungicide 

on F. ovina biomass were analyzed using a three-way ANOVA. Data were log 

transformed to obtain homogeneity o f variance and normality. Centaurea stoebe biomass 

at the time of harvest was used and previously clipped biomass was not included. Adding 

the clipped biomass did not change the results. Reported means are mean ±  I standard 

error.
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RESULTS

The American genotype, C. stoebe ssp. micranthos did not grow larger (Figure 1 

& 2, Table 1), nor was it more competitive than the French genotype, C. stoebe ssp. 

stoebe, and there were no differences in biomass between the subspecies for any 

treatment. Overall, the presence o f F. ovina had positive effects on the biomass o f C. 

stoebe subspecies, but these effects did not differ between C. stoebe ssp. micranthos and 

C. stoebe ssp. stoebe. Defoliation reduced the biomass o f both C. stoebe subspecies by 

50% across all treatments, but the effects of defoliation did not differ between C. stoebe 

ssp. micranthos and C. stoebe ssp. stoebe. Fungicide had strong negative effects on both 

subspecies, reducing biomass across all treatments by 82%. However, as for the other 

primary effects, the biomass o f C. stoebe ssp. micranthos and C. stoebe ssp. stoebe did 

not differ among fungicide treatments.

Not only were there no differences in the effect o f F. ovina on the two C. stoebe 

subspecies, but also there was no difference in the overall competitive effect o f the C. 

stoebe subspecies on F. ovina (Figure 3, Table 2). There was also no overall effect o f 

subspecies on the response of F. ovina to defoliation on C. stoebe or fungicide. 

Defoliating C. stoebe did not affect total biomass of F. ovina, suggesting that damage to 

C. stoebe did not reduce its competitive effects on F. ovina. The only ecological 

difference that I detected between the subspecies was that the combined effects o f 

defoliation and fungicide depended upon the subspecies o f C. stoebe grown with F. 

ovina. Defoliating C. stoebe ssp. micranthos without fungicide increased the biomass of 

F. ovina, whereas defoliating C. stoebe ssp. micranthos with fungicide decreased F.
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ovina biomass. In contrast, defoliating C  stoebe ssp. stoebe had no significant effect on 

the biomass o f F. ovina with or without fungicide.

The presence of Festuca ovina had a significant positive effect on the total 

biomass o f C. stoebe ssp. micranthos and C. stoebe ssp. stoebe (Fig. 1 & 2, Table 1). In 

addition, over all treatments fungicide had a negative effect on the total biomass of both 

C. stoebe subspecies. The biomass o f C. stoebe was 5.6 times larger without fungicide 

application. However, the response o f C. stoebe to the presence of F. ovina depended on 

the use o f fungicide. The biomass o f both C. stoebe subspecies when grown with F. 

ovina was 3.5 times larger when with fungicide and 1.6 times larger without fungicide 

compared to C. stoebe was grown alone in each respective fungicide treatment. Both 

subspecies o f C. stoebe were largest when grown with F  ovina and without fungicide.

Defoliation reduced the biomass of both C. stoebe subspecies across all treatments 

combined by 50% (Fig. 1 & 2, Table I). However, the strength o f this negative effect 

was not consistent across all treatments. In pair-wise comparisons, defoliation had a 

significant negative effect on C. stoebe ssp. micranthos only when grown with F. ovina 

with fungicide (P=0.05). Over all treatments, defoliation tended to have a stronger 

negative effect on C. stoebe without fungicide. However, there was no significant 

interaction between defoliation and neighbors or defoliation and fungicide.

Over all treatments, fungicide significantly decreased the total biomass o f F. 

ovina (Figure 3, Table 2). However, fungicide reduced the total biomass of F. ovina but 

only when C. stoebe was defoliated. For both subspecies combined, defoliating C. stoebe 

without fungicide increased the biomass of F. ovina by 18%. Defoliating C. stoebe in 

addition to adding fungicide decreased the biomass of F. ovina by 33% suggesting that
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defoliation and fungicide were additive in their negative effects. For all neighbor and 

defoliation treatments combined, fungicide reduced percent AM fungal colonization from 

55.0±5.3%  to 18.3±3.8%  for C. stoebe ssp. micranthos, 53.8±5.1%  to 22.3±4.6% for C. 

stoebe ssp. stoebe, and 4l.9±4.4% to 11.1±3.1%  for F. ovina.

Shoot and root biomass were also analyzed separately for C. stoebe in response to 

all treatments, and overall, these results did not differ from those for total biomass. For 

shoot biomass, neighbor, defoliation, and fungicide were all significant (̂ neighbor <0.0005, 

Fdefoiianon=0-004, PfUngicidc<0.0005), with a marginally significant interaction between 

neighbor and fungicide (P„eighborx fimgfadc=0-057). Neighbor, defoliation and fungicide 

were also significant for root biomass (̂ neighbor <0.0005, / >defoiiation=0-002, 

Ffungicide<0.0005), with a significant interaction between neighbor and fungicide (Pneighborx 

fungicfde=0.037). Neighbor, defoliation and fungicide were not significant for the 

rootrshoot biomass o f C. stoebe ( />neighbor<0 .5 l9 , Pdefoiiation:=0-495, Frungiddc<0.1l6), 

indicating that none of the factors affected biomass allocation.
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DISCUSSION

I predicted that the tetraploid American genotype, C. stoebe ssp. micranthos, 

would possess ecological characteristics different from the diploid French genotype, C. 

stoebe ssp. stoebe, explaining the invasive success o f C. stoebe ssp. micranthos in North 

America. Although I have no direct comparison o f the invasive capabilities o f the two C. 

stoebe subspecies, in the particular conditions o f this experiment C. stoebe ssp. 

micranthos did not differ for any o f the ecological factors tested from its closely related 

counterpart, C. stoebe ssp. stoebe. Both subspecies were almost identical in total biomass 

combined across all treatments and responded similarly to the presence of F. ovina 

defoliation, and fungicide. Other responses may occur in different abiotic conditions, 

different neighbors and herbivores, or different microbial communities, but my results 

suggest that the success o f C. stoebe ssp. micranthos in North America is not due to 

unique characteristics relative to its non-invasive conspecific subspecies.

As noted, a potentially important difference between these two genotypes is that 

C. stoebe ssp. micranthos is tetraploid while C. stoebe ssp. stoebe is diploid. Polyploids 

can be better competitors, more resistant to herbivores and pathogens, and able to 

colonize broader ecological habitats than their diploid ancestors (Levin 1983, Schoen et 

al. 1992, Otto and Whitton 2000, but see Thompson et al. 1997). Furthermore, exotic 

invaders have been hypothesized to gain an advantage through polyploidy (Rodriguez 

1996, Soltis and Soltis 2000). However, it appears that polyploidy does not confer any 

advantage to C. stoebe ssp. micranthos in its response to the presence of F. ovina 

defoliation, or AM fungi. However, polyploidy may increase the invasive success of C.
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stoebe ssp. micranthos via other physiological and ecological characteristics not tested 

here.

in contrast to my results, but also in contrast to the general ecological assumption 

that polyploids tend to be vegetative- and reproducdvely superior, Muller (1989) found 

that the diploid, C. stoebe ssp. stoebe had a larger dry weight, basal diameter, 

seeds/flower head and flower heads/plant than the tetraploid, C. stoebe ssp. micranthos. 

Muller (1989) also found significant differences between the two C. stoebe subspecies 

when subjected to root herbivory by the root-boring biocontrol insect, Agapeta zoegana. 

Root herbivory increased the rooting intensity o f the diploid C. stoebe ssp. stoebe causing 

overcompensation, but this did not occur in the tetraploid, C. stoebe ssp. micranthos. I 

did not find any differences in the effect of above-ground defoliation on the root, shoot or 

total biomass of the diploid and tetraploid C. stoebe subspecies, which suggests that shoot 

damage can rapidly be compensated for (but see below), but may not induce the same 

kind of over compensatory response as root damage.

AM fungi appear to have important effects on interactions between several 

Centaurea species and native neighbors (Marler et al. 1999, Callaway et al. 2001). In my 

experiment there was weak evidence that AM fungi have different effects on interactions 

between C. stoebe subspecies and F. ovina after defoliation on C. stoebe. Defoliating C. 

stoebe ssp. micranthos without fungicide increased the biomass of F. ovina, whereas 

defoliating C. stoebe ssp. micranthos with fungicide decreased F. ovina biomass. 

Defoliating C. stoebe ssp. stoebe had no significant effect on the biomass o f F. ovina with 

or without fungicide. It is difficult to interpret the ecological significance o f the different
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effects o f C. stoebe on F. ovina since this interaction was weak. Other experiments are 

necessary to clarify differences between subspecies.

Across all treatments combined, neither C. stoebe subspecies compensated fully 

in biomass during the relatively short, four-week period following defoliation. However, 

this low compensation was only significant for C. stoebe ssp. micranthos grown with F. 

ovina with fungicide. Many other studies have demonstrated that C. stoebe ssp. 

micranthos is highly tolerant o f herbivory and defoliation, and under some conditions, 

may even overcompensate (i.e. grow larger or reproduce more after herbivory). hi field 

experiments in Switzerland, Muller-Scharer (1991) found that low levels of Agapeta 

zoegana root herbivory increased (overcompensation) survival, shoot number, and 

fecundity o f C. stoebe ssp. stoebe, but the effects o f herbivory were highly complex and 

were negative under other conditions. Callaway et al. (1999) reported that C. stoebe ssp. 

micranthos plants experiencing leaf herbivory from T. ni and A. zoegana were stronger 

competitors against F. idahoensis. Kennett et al. (1992) found that defoliating 75% of 

potted C. stoebe ssp. micranthos leaves 4 times in «6 months had no effect on the final 

biomass o f the defoliated plants. In other experiments, the root-feeding weevil, 

Cyphocleonus achates reduced the seed output o f C. stoebe ssp. stoebe. However, when 

C. stoebe ssp. stoebe was grown without neighbors, the presence of C. achates and A. 

zoegana increased seed output (Muller and Schroeder 1989). In this experiment, both C. 

stoebe subspecies only grew for four weeks after defoliation, which may have limited its 

ability to compensate for defoliation.

Understanding the conditions in which herbivory harms invasive plants is crucial 

to the success o f biological control. For example, Machinski and Whitham (1989) found
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that Ipomopsis arizonica overcompensated when resources were abundant, but could not 

compensate when resources were low. Furthermore, artificial defoliation does not always 

elicit the same results as true herbivory (Hartley and Lawton 1987, Baldwin 1990, 

Agrawal et al. 2001). Artificially defoliating C. stoebe may not provide the chemical 

cues needed to cause strong compensatory growth, but other experiments have 

demonstrated compensatory responses by C. melitensis and C. solstitialis in response to 

clipping (Callaway et al. 2001, Callaway et al. in preys). Another possible reason for the 

lack of compensation in this experiment might be the particular soil properties (microbes 

or nutrients) o f European soil supporting natural populations o f C. stoebe ssp. stoebe 

versus soil fiom other origins used in experiments by Marler et al. (1999), Callaway et al. 

(2001), and Callaway et al. (in press). Soil microbes play a crucial role in the 

competitive ability of Centaurea species (Marler et al. 1999, Callaway et al. 2001, 

Callaway et al. in press) and microbial communities fiom different habitats may have 

different ecological effects.

Most literature suggests that plant competition reduces plant compensatory 

responses to herbivory (Mueggler 1972, Bentley and Whittaker 1979, Crawley 1989).

For example, Maschinski and Whitham (1989) found that the compensatory response o f 

I. arizonica was dependent upon plant competition and the timing o f herbivory. Steinger 

and Muller-Scharer (1992) found that C. stoebe ssp. stoebe compensated less when 

grown with the European native, F. pratensis. However, Newingham and Callaway (in 

prep) found that the presence of conspecifics, F. idahoensis, or F. scabrella did not 

increase the negative effects of Trichoplusia ni herbivory on C. s. micranthos. This 

suggests that North American native plants and conspecifics may have minimal effects on

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the response of C. stoebe ssp. micranthos to herbivory, whereas European natives may 

have negative effects on the growth response of C. stoebe ssp. stoebe (see Callaway and 

Aschehoug 2000).

Across all treatments, the biomass o f the two C. stoebe subspecies was 1.7 times 

larger in the presence o f Festuca ovina. However, F. ovina did not promote a 

compensatory growth response by C. stoebe as has been found in experiments with C. 

melitensis and Nassella pulchra (Callaway et al. 2001). Why C. stoebe benefits from the 

presence of F. ovina is unclear, but the role of AM fungi may be important. Grime et al 

(1987) found that C. nigra increased almost 10 times in biomass when grown with F. 

ovina when AM fungi were present in the soil, hi these same experiments, C. nigra 

received far more o f a l4C label applied to F. ovina when AM fungi were present. Marler 

et al. (1999) found that F. idahoensis had a positive effect on C. stoebe ssp. micranthos in 

the presence of AM fungi, but the evidence for carbon transfer has been contradictory 

(Carey et al. in review', Zabinski et al. in review). It is possible that the positive effect of 

F. ovina on C. stoebe may have been mediated through AM fungi. However, in this 

experiment fungicide slightly increased the positive effect of F. ovina rather than 

decreasing it.

Even in the absence o f F. ovina, AM fungi had a very strong positive effect on the 

biomass of both C. stoebe subspecies. This is in contrast to findings by Marler et al. 

(1999) who did not see direct effects of AM fungi on either C. maculosa or F. idahoensis, 

but did find that AM fungi increased indirect negative effects of C. maculosa on F. 

idahoensis. The positive effects of AM fungi on plants can depend on both the species of
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AM fungi and the plant species (van der Heijden et al. 1998a, b), and fungal communities 

are likely to differ between American and French soils.

Although defoliation had a negative effect on C. stoebe, defoliation did not 

positively affect F. ovina. This contrasts with competition theory of plants (Crawley 

1989, Herms and Matson 1992) and the fundamental assumption of controlling invasive 

weeds with insects and grazers, both of which predict that damage to a plant will reduce 

its competitive ability (Blossey and Notzold 1995, Tilman 1999). The opposing 

responses of F. ovina with or without fungicide suggest that it is difficult to predict how 

defoliation will change competitive interactions between plants. These results support a 

number of others demonstrating that artificial and herbivore damage to invasive 

Centaurea species does not decrease its competitive aggressiveness (Callaway et al.

1999, Callaway et al. 2001, Newingham and Callaway, in prep).

Closely related species o f plants provide an opportunity to investigate whether 

certain genotypes possess characteristics that increase invasive success (Lambrinos 2001, 

Sultan 2001). In this study, C. stoebe subspecies did not respond differently to 

defoliation in the presence or absence of neighboring plants or fungicide; however, 

fungicide had weak effects on the way that the subspecies interacted with F. ovina. 

Therefore, it is still unclear why C. stoebe ssp. micranthos is such a successful invader in 

North America. These results and those of Muller (1989) suggest that generalizations 

about closely related plants with different ploidy levels may be difficult, and that 

tetraploidy does not necessarily provide the invasive C. stoebe ssp. micranthos any clear 

advantage over its diploid congener, C. stoebe ssp. stoebe.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I am indebted to Gregoire Boquien for bis hard work on this project. Philippe 

Choler, Pierre Liancourt, Emmanuel Corcket, and Mathieu Tilquin were extremely 

helpful and supportive throughout this project. Christian Richey prepared the roots for 

mycorrhizal analysis. Le jardin botanique de la ville de Lyon, Parc de la Tete D’Or 

provided me with the C. stoebe ssp. stoebe seeds. This study was funded by a grant and 

International Supplement to R. Callaway and C. Zabinski from the National Science 

Foundation, DEB-9726829, and a grant to R. Callaway from the Andrew W. Mellon 

Foundation.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LITERATURE CITED

Agrawal, A. A., and M. F. Sherriffs. 2001. Induced plant resistance and susceptibility to 

late-season herbivores in wild radish. Annals o f the Entomological Society of America 

94:71-75.

Alward, R. D., and A. Joern. 1993. Plasticity and overcompensation in grass responses to 

herbivory. Oecologia 95:358-364.

Archer, S., and J. K. Detling. 1984. The effects of defoliation and competition on 

regrowth of tillers of two North American mixed-grass prairie graminoids. Oikos 

43:351-357.

Baker, H. G. 1974. The evolution o f weeds. Annual Review of Ecology and Systematics 

5:1-24.

Baldwin, I. T. 1990. Herbivory simulations in ecological research. Trends in Ecology and 

Evolution 5:91-93.

Bentley, S., and J. B. Whittaker. 1979. Effects of grazing by a chrysomelid beetle, 

Gastrophysa viridula, on competition between Rumex obtusifolius and Rumex crispus. 

Journal of Ecology 67:79-90.

Blossey, B., and R. Notzold. 1995. Evolution of increased competitive ability in invasive 

nonindigenous plants: a hypothesis. Journal of Ecology 83:887-889.

Bremer, K. 1994. Asteraceae: cladistics and classification. Timber Press, Oregon, USA. 

Callaway, R. M. 1995. Positive interactions among plants. Botanical Review 61:306-349. 

Callaway, R. M. 1997. Positive interactions in plant communities and the individualistic- 

continuum concept. Oecologia 112:143-149.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Callaway, R. M., and E. T. Aschehoug. 2000. Invasive plants versus their old and new 

neighbors: a mechanism for exotic invasion. Science 290:521-523.

Callaway, R. M., T. H. DeLuca, and W. M. Belliveau. 1999. Biological control 

herbivores may increase competitive ability of the noxious weed Centaurea maculosa. 

Ecology 80:1196-1201.

Callaway, R. M., B. A. Newingham, C. A. Zabinski, and B. E. Mahall. 2001. 

Compensatory growth and competitive ability of an invasive weed are enhanced by soil 

fungi and native neighbors. Ecology Letters 4:429-433.

Callaway, RM. B.E. Mahall, C. Wicks, J. Pankey and C. Zabinski. in press. Soil fungi 

and the effects o f an invasive forb on native versus naturalized grasses: neighbor 

identity matters. Ecology.

Carey, E. V., M. J. Marler, and R. M. Callaway, in review. Mycorrhizae transfer carbon 

from a native grass to an invasive weed: evidence from stable isotopes and physiology. 

Plant Ecology.

Chiariello, N., J. C. Hickman, and H. A. Mooney. 1982. Endomycorrhizal role for 

interspecific transfer of phosphorus in a community o f annual plants. Science 217:941- 

943.

Crawley, M. J. 1989. Insect herbivores and plant population dynamics. Annual Review of 

Entomology 34:531-564.

Davis, M. A., J. P. Grime, and K. Thompson. 2000. Fluctuating resources in plant 

communities: a general theory of invasibility. Journal of Ecology 88:528-534.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Dostal, J. 1976. Centaurea L. Pages 254-301 in V. H. H. T.G. Tutin, N.A. Burges, DM. 

Moore, D.H. Valentine, SM . Walters, and D A . Webb, editor. Flora Europaea. 

Cambridge University Press, Cambridge.

Fowler, N. L., and M. D. Rausher. 1985. Joint effects of competitors and herbivores on 

growth and reproduction in Aristolochia reticulata. Ecology 66:1580-1587.

Francis, R., and D. J. Read. 1984. Direct transfer o f carbon between plants connected by 

vesicular-arbuscular mycorrhizal mycelium. Nature 307:53-56.

Garcia-Jacas, N. 1998. New chromosome counts in the subtribe Centaureinae 

(Asteraceae, Cardueae) from West Asia, II. Botanical Journal o f the Linnean Society 

128:403-412.

Garcia-Jacas, N., A. Susanna, V. Mozaffarian, and R. Ilarslan. 2000. The natural 

delimitation of Centaurea (Asteraceae: Cardueae): ITS sequence analysis o f the 

Centaurea jacea group. Plant Systematics and Evolution 223:185-199.

Grime, J. P., J. M. L. Mackey, S. H. Hillier, and D. J. Read. 1987. Floristic diversity in a 

model system using experimental microcosms. Nature 328:420-422.

Hartley, S. E., and J. H. Lawton. 1987. Effects o f different types o f damage on the 

chemistry of birch foliage and the responses o f birch feeding insects. Oecologia 74:432- 

437.

Herms, D. A., and W. J. Mattson. 1992. The dilemma of plants: to grow or defend. The 

Quarterly Review of Biology 67:283-335.

Jacobs, J. S., and R. L. Sheley. 1999. Competition and niche partitioning among 

Pseudoroegneria spicata, Hedysarum boreale, and Centaurea maculosa. Great Basin 

Naturalist 50:175-181.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kennett, G. A., J. R. Lacey, C. A. Butt, K. M. Olson-Rutz, and M. R. Haferkamp. 1992. 

Effects o f defoliation, shading and competition on spotted knapweed and bluebunch 

wheatgrass. Journal o f Range Management 45:363-369.

Koide, R. T. 1991. Nutrient supply, nutrient demand and plant response to mycorrhizal 

infection. New Phytologist 117:365-386.

Lambrinos, J. G. 2001. The expansion history o f a sexual and asexual species of 

Cortaderia in California, USA. Journal of Ecology 89:88-98.

LeJeune, K. D., and T. R. Seastedt. 2001. Centaurea species: the forb that won the west.

Conservation Biology 15:1568-1574.

Levin, D. A. 1983. Polyploidy and novelty in flowering plants. The American Naturalist 

122:1-25.

Lumaret, R. 1988. Adaptive strategies and ploidy levels. Acta Oecologia 9:83-93.

Mack, R. N. 1985. Invading plants: their potential contribution to population biology. 

Pages 127-142 in J. White, editor. Plant populations: essays in honour o f John L. 

Harper. Academic Press, London.

Mack, R. N., D. Simberloff, W. M. Lonsdale, H. Evans, M. Clout, and F. A. Bazzaz. 

2000. Biotic invasions: Causes, epidemiology, global consequences, and control. 

Ecological Applications 10:689-710.

Marler, M., C. A. Zabinski, and R. M. Callaway. 1999. Mycorrhizae indirectly enhance 

competitive effects of an invasive forb on a native bunchgrass. Ecology 80:1180-1186. 

Marschner, H., and B. Dell. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant and 

Soil 159:89-102.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Maschinski, J., and T. G. Whitham. 1989. The continuum o f plant responses to herbivory: 

the influence of plant association, nutrient availability, and timing. The American 

Naturalist 134:1-19.

McGonigle, T. P., M. H. Miller, D. G. Evans, G. L. Fairchild, and J. A. Swan. 1990. A 

new method which gives an objective measure o f colonization o f roots by vesicular- 

arbuscular mycorrhizal fungi. New Phytologist 115:495-501.

McNaughton, S. J. 1986. On plants and herbivores. The American Naturalist 128:765- 

770.

Mueggler, W. F. 1972. Influence of competition on the response of bunchgrass 

wheatgrasses to clipping. Journal o f Range Management 25:88-92.

Muir, A. D., and W. Majak. 1983. Allelopathic potential o f diffuse knapweed (Centaurea 

diffusa) extracts. Canadian Journal of Plant Science 63:989-996.

Muller, H. 1989. Growth pattern of diploid and tetraploid spotted knapweed, Centaurea 

maculosa Lam. (Compositae), and effects of the root-mining moth Agapeta zoegana 

(L.) (Lep.: Cochylidae). Weed Research 29:103-111.

Muller, H., and D. Schroeder. 1989. The biological control o f diffuse and spotted 

knapweed in North America - what did we learn? Pages 151-169 in P. K. F. a. J. R. 

Lacey, editor. Proceedings o f the 1989 Knapweed Symposium, Montana State 

University.

Muller-Scharer, H. 1991. The impact of root herbivory as a function of plant density and 

competition: survival, growth, and fecundity of Centaurea maculosa in field plots. 

Journal of Ecology 28:759-776.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Muller-Scharer, H., and D. Schroeder. 1993. The biological control of Centaurea ssp. in 

North America: do insects solve the problem? Pesticide Science 37:343-353.

Newingham, B. N., and R. M. Callaway, in prep. Effects o f herbivory on Centaurea 

maculosa: roles o f compensatory growth and allelopathy.

Newman, E. I., W. R. Eason, D. M. Eissenstat, and M. I. R. F. Ramos. 1992. Interactions 

between plants: the role of mycorrhizae. Mycorrhiza 1:47-53.

Ochsmann, J. 2001. On the taxonomy o f spotted knapweed (Centaurea stoebe L.). Pages 

33-41 in L. Smith, editor. Proceedings o f the International Knapweed Symposium, 

Coeur d'Alene, ED.

Olson, B. E., and R. T. Wallander. 1997. Biomass and carbohydrates of spotted 

knapweed and Idaho fescue after repeated grazing. Journal o f Range Management 

50:409-412.

Olson, B. E., and R. T. Wallander. 2001. Sheep grazing spotted knapweed and Idaho 

fescue. Journal o f Range Management 54:25-30.

Otto, S. P., and J. Whitton. 2000. Polyploidy incidence and evolution. Annual Review of 

Genetics 34:401-437.

Paige, K. N., and T. G. Whitham. 1987. Overcompensation in response to mammalian 

herbivory: the advantage of being eaten. American Naturalist 129:407-416.

Phillips, J. M., and D. S. Hayman. 1970. Improved procedures for clearing roots and 

staining parasitic and vesicular-arbuscular mycorrhizal firngi for rapid assessment of 

infection. Transactions of the British Mycological Society 55:158-160.

Radford, I. J., and R. D. Cousens. 2000. Invasiveness and comparative life-history traits 

of exotic and indigenous Senecio species in Australia. Oecologia 125:531-542.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reichman, O. J. 1988. Comparison o f the effects of crowding and pocket gopher 

disturbance on mortality, growth and seed production o f Berteroa incana. The 

American Midland Naturalist 120:58-69.

Richardson, D. M., N. Allsopp, C. M. D'Antonio, S. J. Milton, and M. Rejmanek. 2000. 

Plant invasions - the role of mutualisms. Biological Reviews o f the Cambridge 

Philosophical Society 75:65-93.

Ridenour, W. M., and R. M. Callaway. 2001. The relative importance of allelopathy in 

interference: the effects of an invasive weed on a native bunchgrass. Oecologia 

126:444-450.

Rodriguez, D. J. 1996. A model for the establishment of polyploidy in plants. The 

American Naturalist 147:33-46.

Roy, J. 1990. In search of the characteristics o f plant invaders. Pages 335-352 in A. J. H. 

a. M. D. F. di Castri, editor. Biological invasions in Europe and the Mediterranean 

Basin. Kluwer Academic, Dordrecht.

Sakai, A. K., F. W. Allendorf, J. S. Holt, D. M. Lodge, J. Molofsky, K. A. With, S. 

Baughman, R. J. Cabin, J. E. Cohen, N. C. Ellstrand, D. E. McCauley, P. ONeil, I. M. 

Parker, J. N. Thompson, and S. G. Weller. 2001. The population biology of invasive 

species. Annual Review of Ecology and Systematics 32:305-332.

Schoen, D. J., J. J. Burdon, and A. H. D. Brown. 1992. Resistance o f Glycine tomentella 

to soybean leaf rust Phakopsora pachyrhizi. Theoretical and Applied Genetics 83:827- 

832.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Simard, S. W., D. A. Perry, M. D. Jones, D. D. Myrold, D. M. Durail, and R. Molina. 

1997. Net transfer o f carbon between ectomycorrhizal tree species in the field. Nature 

388:579-582.

Smith, L. 2001. Considerations for resuming foreign exploration for natural enemies of 

spotted and diffuse knapweed. Pages 18-26 in L. Smith, editor. Proceedings of the 

International Knapweed Symposium, Coeur d’Alene, ID.

Soltis, P. S., and D. E. Soltis. 2000. The role o f genetic and genomic attributes in the 

success of polyploids. Proceedings of the National Academy of Sciences 97:7051-7057.

Steinger, T., and H. Muller-Scharer. 1992. Physiological and growth responses of 

Centaurea maculosa (Asteraceae) to root herbivory under varying levels of 

interspecific plant competition and soil nitrogen availability. Oecologia 91:141-149.

Stinson, C. S. A., D. Schroeder, and K. Marquardt. 1994. Investigations on Cyphocleonus 

achates (Fahr.) (Col., Curculionidae), a potential biological control agent of spotted 

knapweed (iCentaurea maculosa Lam.) and diffuse knapweed (C. diffusa Lam.) 

(Compositae) in North America. Journal of Applied Entomology 117:35-50.

Story, J. M., and G. L. Piper. 2001. Status of biological control efforts against spotted and 

diffuse knapweed. Pages 11-17 in L. Smith, editor. Proceedings o f the International 

Knapweed Symposium, Coeur d'Alene, ID.

Sultan, S. E. 2001. Phenotypic plasticity for fitness components in Polygonum species of 

contrasting ecological breadth. Ecology 82:328-343.

Thompson, J. D., and R. Lumaret. 1992. The evolutionary dynamics o f polyploid plants: 

origins, establishment and persistence. Trends in Ecology and Evolution 7:302-307.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Thompson, J. N., B. M. Cunningham, K. A. Segraves, D. M. Althoff, and D. Wagner. 

1997. Plant polyploidy and insect/plant interactions. The American Naturalist 150:730- 

743.

Tilman, D. 1999. The ecological consequences o f changes in biodiversity: a search for 

general principles. Ecology 80:1455-1474.

van der Heijden, M. G. A., T. Boiler, A. Wiemken, and I. R. Sanders. 1998a. Different 

arbuscular mycorrhizal fungal species are potential determinants o f  plant community 

structure. Ecology 79:2082-2091.

van der Heijden, M. G. A., J. N. Klironomos, M. Ursic, P. Moutoglis, R. Streitwolf- 

Engel, T. Boiler, A. Wiemken, and I. R. Sanders. 19986. Mycorrhizal fungal diversity 

determine plant biodiversity, ecosystem variability and productivity. Nature 396:69-72.

Van Driesche, R. G., and T. S. Bellows. 1996. Biological control. Chapman & Hall, New 

York.

Vitousek, P. M., C. M. D'Antonio, L. L. Loope, and R. Westbrooks. 1996. Biological 

invasions as global environmental change. American scientist 84:468-478.

Williamson, M. 1996. Biological invasions. Chapman & Hall, London.

Zabinski, C., L. Quinn, and R. Callaway, in review. Phosphorus uptake, not carbon 

transfer, explains arbuscular mycorrhizal enhancement of Centaurea maculosa in the 

presence of native grasses. Functional Ecology.

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 1 ANOVA on the effects o f subspecies, neighbor, defoliation and fungicide on the 

total biomass o f C. stoebe subspecies. TheP values o f significant terms (P<0.05) are 

indicated in boldface type.

Source df MS F P

Subspecies = S 1 4.76E-07 2.05E-06 0.999

Neighbor=N 1 5.122 22.029 <0.0005

Defoliation = D 1 2.133 9.173 0.003

Fungicide = F 1 23.219 99.861 <0.0005

S x N 1 0.450 1.937 0.166

S xD 1 0.117 0.505 0.478

N xD I 0.143 0.614 0.434

S x N x D 1 0.065 0.278 0.599

S x F 1 0.131 0.562 0.455

N x F I 0.937 4.028 0.047

S x N x F I 0.089 0.382 0.537

D xF I 0.001 0.002 0.963

S x D x F 1 0.119 0.513 0.475

N x D x F 1 0.067 0.288 0.592

S x N x D  xF 1 0.062 0.269 0.605

Error 136 0.232
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Table 2 ANOVA on the effects o f subspecies, defoliation and fungicide on the total 

biomass o f F. ovina. The P values o f significant terms (/*<0.05) are indicated in boldface 

type.

Source df MS F P

Subspecies = S I 0.022 0.065 0.800

Defoliation = D 1 0.032 0.096 0.758

Fungicide =  F 1 1.501 4.453 0.039

SxD I 0.229 0.679 0.413

FxD 1 2.040 6.052 0.016

FxS I 0.091 0.270 0.605

S x D x F I 1.431 4.245 0.043

Error 67 0.337
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Fig. 1 Total biomass o f C. stoebe ssp. micranthos alone or with F. ovina, with or without 

fungicide, and with or without defoliation. Error bars represent + 1 SE. Asterisks 

represent P<0.05 in pair wise comparisons.

Fig. 2 Total biomass o f C. stoebe ssp. stoebe alone or with F. ovina, with or without 

fungicide, and with or without defoliation. Error bars represent + 1 SE.

Fig. 3 Total biomass of F. ovina with C. stoebe ssp. micranthos or C. stoebe ssp. stoebe, 

with or without fungicide, and with or without defoliation. Error bars represent + 1 SE.

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C. 
sto

eb
e 

ss
p.

 m
icr

an
th

os
 

to
ta

l 
bi

om
as

s 
(g

)

Fig. 1

6

5

4

3 

2 

1

0
6

5

4 

3 

2 

1 

0
No fungicide Fungicide

alone ■ ■  no clipping 
clipping

F. ovina

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



C. 
sto

eb
e 

ss
p.

 s
toe

be
 

to
ta

l 
bi

om
as

s 
(g

)

Fig. 2

no cuppingalone
cupping

F. ovina

No fungicide Fungicide

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F. 
ov

ina
 

to
ta

l 
bi

om
as

s 
(g

)

Fig. 3

with C. stoebe ssp. micranthos

no cupping 
clipping

with C. stoebe ssp. stoebe

No fungicide Fungicide

80

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

The effects of Festuca paniculata on the compensatory growth response of 

Centaurea uniflora to defoliation

ABSTRACT

Biotic and abiotic conditions affect compensatory growth by plants, and plant 

competition theory assumes that neighboring plants will augment the negative effects of 

herbivory. hi contrast to competition theory, Festuca species appear to enhance the 

compensatory response of Centaurea species in highly controlled conditions. Therefore I 

tested the effect of Festuca paniculata L. on the compensatory growth response of 

Centaurea uniflora L. in the field over two growing seasons in subalpine vegetation in 

the French Alps. These species compose the well-known European plant association, 

“Centaureo-Festucetum spadiceae”. Over 50% of aboveground C. uniflora biomass was 

clipped at each of seven times throughout two growing seasons in the presence or 

absence of F. paniculata. Centaurea uniflora equally compensated for damage in the 

first year, but was negatively affected by defoliation in the second year. Defoliating C. 

uniflora reduced final aboveground biomass by 44% and flower number by 64%. 

Although C. uniflora did not fully recover from defoliation, C. uniflora had a strong 

compensatory response considering the large amount of leaf tissue that was removed. In 

general, Festuca paniculata had significant competitive effects on C. uniflora, but F. 

paniculata neither enhanced compensatory responses of C. uniflora nor increased the 

negative effects of defoliation as predicted by competition theory.
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INTRODUCTION

Compensatory growth, or the tolerance o f plants to herbivory, has been well 

documented in agricultural systems, but few studies have examined compensation in 

natural systems (see reviews by Verkaar 1988, Trumble et al. 1993, Strauss and Agrawal 

1999). Plants may undercompensate (Harper 1977, Crawley 1983), equally compensate 

(Lee and Bazzaz 1980, Fowler and Rausher 1985), or overcompensate in response to 

tissue damage (McNaughton 1986, Paige and Whitham 1987, Alward and Joem 1993), 

and the degree o f compensation is influenced by both abiotic and biotic conditions 

experienced by the plant. For example, the compensatory ability of Ipomopsis arizonica 

depended on the presence of neighboring plants, nutrient availability, and the timing of 

herbivory (Maschinksi and Whitham 1987).

Plant-plant interactions can have a strong influence on compensatory growth. 

Competition theory of plants predicts that neighbors should reduce compensatory growth 

because neighbors reduce the amount o f resources available to a plant recovering from 

damage (Bentley and Whittaker 1979, Whittaker 1979, Crawley 1983, Louda et al. 1990). 

However, plants may facilitate their neighbors (Bertness and Callaway 1994, Callaway 

1995) and may not always decrease plant compensatory responses. Newingham and 

Callaway (in prep) found that the presence of Festuca idahoensis Elmer and F. scabrella 

Torrey ex. Hook, had no effect on the compensatory response of Centaurea maculosa 

Lam. Other species of Festuca appear to enhance the compensatory response of 

Centaurea species to defoliation or herbivory (Grime 1987, Callaway et al. 2001).

The Centaureo-Festucetum spadiceae group is a well-known plant association in 

the European literature and occurs in the southwestern Alps (Braun-Blanquet 1972,
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Guinochet 1938, Lacoste 1972). This subalpine/alpme plant community is dominated by 

Centaurea uniflora L. and Festuca paniculata L. (=F. spadicea (L.) Sch. and Thell.) and 

occurs in harsh abiotic conditions where low temperatures, high UV radiation, and a short 

growing season exist. The Centaureo-Festucetum spadiceae association can be found 

between 1700 and 2500 m but is most developed between 1900 and 2300 m. This plant 

association is widespread, but no one has investigated interactions between C. uniflora 

and F. paniculata.

Since facilitation is common in harsher climates, facilitation may occur between 

F. paniculata and C. uniflora and therefore explain this common association. Not only 

are Centaurea and Festuca species co-members o f defined plant communities, but also 

several studies have demonstrated facilitative interactions between Centaurea and 

Festuca species. Grime et al. (1987) found that the facilitative effect of F. ovina 

depended upon the identity of neighboring plant species and that it had a strong 

facilitative effect upon Centaurea nigra through interactions with arbuscular mycorrhizal 

(AM) fungi. Part o f this effect was to ameliorate the effects of defoliation. Other 

research suggests that interactions between C. maculosa and F. idahoensis depend on 

indirect effects o f AM fungi. Marler et al. (1999) found that F. idahoensis had a 

significant facilitative effect on C. maculosa via AM fungi. In a field experiment, 

Callaway et al. (unpublished data) found that F. idahoensis and Koeleria cristata had 

facilitative effects upon C. maculosa in the presence o f AM fungi, whereas other species 

had competitive effects upon C. maculosa.

Studies also show that the invasive plant, C. maculosa, has strong competitive 

effects on the North American native, F. idahoensis. First, Ridenour and Callaway
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(2001) found that C. maculosa had strong allelopathic effects on F. idahoensis. Second, 

insect herbivory can have relatively weak effects on the invasive non-native, C. maculosa 

(Muller-Scharer 1991, Steinger and Muller-Scharer 1992, Callaway et al. 1999), and 

under some conditions, herbivory on C. maculosa increases its competitive effects on F. 

idahoensis (Callaway et al. 1999). The numerous studies reporting that Festuca 

facilitates Centaurea and Centaurea has strong competitive effects on Festuca suggest 

that there maybe important species-specific interactions between Centaurea and Festuca.

Grazing by sheep, goats, and cattle is extensive in the subalpine and alpine 

meadows of the French Alps (Jouglet and Doree 1991, Braun-Blanquet 1972); therefore, 

defoliation may play an important role in structuring subalpine and alpine plant 

communities. However, there have been relatively few studies on the effects o f 

herbivory on alpine plant community structure (Oksanen and Oksanen 1989, Blumer and 

Diemer 1996, Diemer 1996). Furthermore, few studies have examined plant 

compensatory responses to herbivory in subalpine/alpine communities (but see Paige and 

Whitham 1987). Considered with the unusual interactions that have been reported for 

Centaurea and Festuca species, the Centaureo-Festucetum spadiceae association 

provides a exceptional setting in which to examine the role of plant-plant interactions on 

plant compensatory growth responses to herbivory. I examined the role of F. paniculata 

in the compensatory response o f C. uniflora to artificial defoliation. My experiment was 

designed to answer the following questions: 1) does F. paniculata facilitate C. uniflora,

2) does C. uniflora compensate for defoliation, 3) when repeatedly defoliated, does the 

compensatory response o f C. uniflora decrease over time, and 4) does F. paniculata alter 

the compensatory response o f C. unifloral
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METHODS

The field experiment was conducted near the Alpine Field Station o f Lautaret in 

the French Alps near the Col du Lautaret situated between Grenoble and Brian9on, 

France (elevation, 2250m; N 45°02'09", E 6°24'21"). Mean temperature at the Col du 

Lautaret in July (the warmest month) is 11°C and average annual precipitation is 1300 

mm. This site was dominated by both C. uniflora and F. paniculata and therefore was 

characterized as the Centaureo-Festucetum spadiceae association. The natural treeline 

occurs near 2350 m, but this field site was located in grasslands that have developed after 

deforestation and grazing.

hi June of 1999,1 selected ninety C. uniflora individuals of similar size 

surrounded predominantly by F. paniculata. There were three different treatments of the 

neighboring F. paniculata: F. paniculata present and not manipulated, F. paniculata 

present and leaves pushed aside so that no shade was over target C. uniflora individuals, 

and F  paniculata leaves completely clipped. All aboveground biomass of Festuca 

paniculata was continually clipped throughout the growing season to remove any 

regrowth. I left one-third o f F. paniculata plants intact but with the leaves pushed aside 

to mimic microclimate alteration (increased light and exposure to wind and snow) that 

occurred when F. paniculata was clipped. This allowed me to compare root effects alone 

to shoot and root effects combined (Cahill 2002). For half of the C. uniflora individuals 

in each neighbor treatment, I clipped 70% of C. uniflora leaves. Clipping occurred 

approximately monthly (June to August) during the 1999 and 2000 growing seasons. 

Leaves and flowers were counted and C. uniflora leaves were clipped on the following 

dates: June 16, July 5 and July 20,1999, and June 3, July 1, and August 2,2000.
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Aboveground biomass o f C. uniflora was harvested on August 25,2000. Plants were 

dried at 60°C for 48 hours and weighed.

Centaurea uniflora leaf number was analyzed using a repeated measures ANOVA 

with time (7 dates) as the within-subject factor, and using defoliation and neighbor as 

between-subject factors. Sphericity was violated for the leaf number analysis and the 

Greenhouse-Geisser correction was e<l; however, the univariate and multivariate 

ANOVA did not produce different P values o f significance. I only report results from the 

univariate ANOVA. Flower number was counted on the same dates as leaf number; 

however, only flower number at the end of each year was included in the analysis. A 

repeated measures ANOVA was used with year (2 years) as the within-subject factor and 

defoliation and neighbor as between-subject factors. Final biomass was analyzed using a 

two-way ANOVA with defoliation and neighbor as factors. Data were square root 

transformed when needed to meet ANOVA assumptions. Post hoc comparison of means 

was performed using the Bonferroni correction method. Means are reported as mean ± 1 

standard error o f mean.
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RESULTS 

Leaf production
Leaf number was highly correlated with the biomass o f Centaurea uniflora 

(R2=0.975); therefore leaf number was an accurate surrogate for the effects of herbivory 

on the biomass of C. uniflora. Neighboring F. paniculata had a significant negative 

effect upon C. uniflora leaf number (Fig. 1, Table 1). There was no difference between 

F. paniculata present and F. paniculata pushed aside; but the removal o f F. paniculata 

shoots resulted in higher leaf numbers produced by C. uniflora than when F. paniculata 

was present or pushed aside. Clipping F. paniculata increased C. uniflora leaf number, 

but the effects o f clipping varied over time. In 1999, clipping F. paniculata shoots had 

no effect on C. uniflora leaf number (P=0.577); however, by 2000 clipping F. paniculata 

significantly increased the leaf number of neighboring C. uniflora (P<0.0005) suggesting 

competitive release. When C. uniflora was not defoliated and F. paniculata was clipped, 

C. uniflora mean leaf number at the end of 1999 was 35.87±4.60 and increased to 

64.00±10.50 at the end o f2000.

Defoliation of Centaurea uniflora significantly reduced leaf number after 2 years, 

demonstrating a lack of equal compensation to severe defoliation, but the effects of 

defoliation varied over time (Fig. 1, Table I). In the first year, defoliation did not affect 

C. uniflora leaf number, but in the second year defoliation had a negative effect on leaf 

number. Neighboring F. paniculata did not the response of C. uniflora to defoliation.

Flower production

The number of flowers produced by C. uniflora was also affected by neighboring

F. paniculata (Fig. 2, Table 2). Centaurea uniflora flower number was not significantly
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different in pair-wise comparisons o f the two treatments where F. paniculata was left 

intact versus its leaves pushed aside. Although non-significant in pair-wise comparisons, 

flower number tended to be greater when F. paniculata was clipped compared to when F. 

paniculata was present (P=0.078) or when pushed aside (F=0.069). The response of C. 

uniflora to neighboring F. paniculata did not change over time; however, separate one­

way ANOVAs for each year indicated that neighboring F. paniculata did not affect C. 

uniflora in 1999 (F=0.496) but decreased flower number in 2000 (P=0.022).

Across years, defoliation of C. uniflora significantlydecreased its flower number 

(Fig. 2, Table 2). In 1999, defoliation did not affect the number o f C. uniflora flowers, 

but by 2000 defoliation decreased flower number by 64%. As for leaf production, 

neighboring F. paniculata did not affect the response of C. uniflora flower number to 

defoliation.

Aboveground biomass

Festuca paniculata reduced the biomass of C. uniflora (Fig. 3, df=2, F=5.11,

P=0.008). There was no difference in biomass of C. uniflora between the treatments in 

which F. paniculata was not manipulated versus when F  paniculata leaves were pushed 

aside. The biomass o f C. uniflora was greater when F. paniculata was clipped than when 

F. paniculata was not manipulate (P=0.016) or when leaves were pushed aside 

(F=0.021). Two years o f repeated defoliation of Centaurea uniflora reduced its final 

aboveground biomass 44% (df=l, F=49.29, F<0.0005). The total biomass of non­

defoliated plants was 1.30±0.43g versus 0.73±0.36 g for defoliated plants. Neighboring
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F. paniculata did not affect the response o f C. uniflora to defoliation (df=2, F=0.32, 

P=0.726).

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DISCUSSION

Despite previous evidence for positive effects o f Festuca and other bunchgrass 

species on Centaurea species (Grime et al. 1987, M arleret al. 1999, Callaway et al. 2001, 

Callaway et al. unpublished data), F. paniculata did not facilitate C. uniflora growth. In 

the first year o f treatments, F. paniculata had no effect upon C. uniflora, and in the 

second year F. paniculata had competitive effects on C. uniflora. Generally, pushing F. 

paniculata foliage to the side did not alter its effects on C. uniflora suggesting that the 

main effect o f F. paniculata was via root competition rather than shade. However, my 

results should be interpreted with caution, in particular because belowground interactions 

were not manipulated. Although F. paniculata was continually clipped throughout both 

growing seasons, belowground competition may have remained important. Furthermore, 

the positive response o f C. uniflora may have been caused by nutrient flux from 

decomposing F. paniculata roots rather than decreased competition (see Fahey et al.

1988).

A second caveat involved the conditions at my study site. Choler et al. (2001) 

examined the role of facilitation and competition in subalpine and alpine communities 

near my experimental site and at 2100 m they found that competition dominated plant 

interactions. However, at 2600 m the general effects o f neighbors were facilitative at 

exposed, convex sites, but at sheltered, concave sites neighbors were competitive. They 

attributed these differences to harsher conditions at the convex sites. My experimental 

site was located between these two elevations (2250 m) and the microtopography was 

concave. Similar experiments in more stressful microsites or at higher elevations may 

have detected facilitative effects of F. paniculata on C. uniflora.
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I found that C. uniflora recovered from repeated defoliation in the first year but 

could not recover in the second year. The biomass of C. uniflora was 44% lower at the 

end of the second year; however, C. uniflora demonstrated extraordinary compensation 

for damage since 70% o f its leaves were removed at each o f seven different times. This 

was especially surprising since high altitude plants usually have slower growth rates than 

species at lower elevations (Korner 1999). Additionally, the shorter growing seasons at 

high elevations may reduce the ability o f plants to compensate for tissue loss. Although 

C. uniflora did not demonstrate equal compensation, its remarkable response to long 

term, severe defoliation indicates that compensation is possible even in harsh subalpine 

environments.

Festuca paniculata had a competitive effect on C. uniflora; however, it did not 

affect the compensatory growth o f C. uniflora. Clipped and unclipped plants responded 

similarly to competition with F. paniculata and indicate that competition does not always 

exacerbate the effects o f defoliation. Previous studies have found mixed results o f the 

combined effects o f competition and herbivory. Some studies suggest that competition 

and herbivory are additive (Archer and Detling 1984, Fowler and Rausher 1985, Cottam 

et al. 1986) while others have found no interaction between competition and herbivory 

(Parker and Salzman 1985, Rees and Brown 1992).

There are two possible explanations for the change in effects o f defoliation and F. 

paniculata between years. The increased effects of defoliation in the second year may 

have been due to the cumulative effects of defoliation, which caused a reduction in the 

ability of the plant to further compensate, or environmental conditions were harsher in the 

second year. The competitive release of C. uniflora in the second year could have been
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because removing shoots in the first year did not eliminate root competition and C. 

uniflora benefited from root decomposition in the second year, or environmental 

conditions in the second year favored C. uniflora without neighbors.

Festuca paniculata did not facilitate the compensatory growth response of C. 

uniflora; however, the presence o f F. paniculata did not reduce C. uniflora compensatory 

growth. These results provide evidence suggesting that competition with neighbors does 

not always reduce the compensatory response of plants to damage as predicted by 

competition theory of plants. I found no evidence that F. paniculata facilitated C. 

uniflora although these plants are commonly associated with one another.
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Table 1 Repeated measures ANOVA on C. uniflora leaf number overtime when 

defoliated or not defoliated and when F. paniculata was present, pushed aside, or clipped. 

Significant terms (P<0.05) are indicated in bold. Greenhouse-Geiger (G-G) corrected P

values are listed.

Source df MS F P G-G

Defoliation I 129.579 9.119 0.003

Neighbor 2 188.282 13.250 <0.0005

Defoliation 2 9.035 0.636 0.532

x neighbor

Error 83 14.209

Time 6 35.097 29.695 <0.0005 <0.0005

Time x defoliation 6 22.056 18.661 <0.0005 <0.0005

Time x neighbor 12 16.613 14.056 <0.0005 <0.0005

Time x defoliation 12 1.711 1.447 0.141 0.204

x neighbor

Error (Time) 498 1.182

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 2 Repeated measures ANOVA on C. uniflora flower number at the end o f 1999 

and 2000 when defoliated or not defoliated and when F. paniculata was present, pushed 

aside, or clipped. Significant terms (P<0.05) are indicated in bold.

Source df MS F P

Defoliation I 2.186 5.093 0.027

Neighbor 2 1.490 3.471 0.036

Defoliation 2 0.034 0.079 0.924

x neighbor

Error 83 0.429

Year 1 1.967 5.474 0.022

Year x defoliation 1 5.742 15.982 <0.0005

Year x neighbor 2 0.417 1.160 0.318

Year x defoliation 2 0.092 0.257 0.774

x neighbor

Error (Year) 83 0.359
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Fig. 1 Centaurea uniflora leaf number when defoliated versus not defoliated, and when 

neighboring F. paniculata was present, pushed aside, or clipped, over 7 sampling dates in 

1999 and 2000. Error bars represent +ISE.

Fig. 2 Centaurea uniflora flower number when defoliated versus not defoliated, and 

when neighboring F. paniculata was present, pushed aside, or clipped, at the end of 1999 

and 2000. Error bars represent +1SE.

Fig. 3 Centaurea uniflora final aboveground biomass after being defoliated versus not 

defoliated in 1999 and 2000 when neighboring F. paniculata was present, pushed aside, 

or clipped. Error bars represent +ISE.
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