
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1997

Space VLBI user assistance software: an object-oriented design Space VLBI user assistance software: an object-oriented design

implemented in Java implemented in Java

IstvaÌ?n Noszticzius
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Noszticzius, IstvaÌ?n, "Space VLBI user assistance software: an object-oriented design implemented in
Java" (1997). Graduate Student Theses, Dissertations, & Professional Papers. 8330.
https://scholarworks.umt.edu/etd/8330

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8330&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8330?utm_source=scholarworks.umt.edu%2Fetd%2F8330&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of MONTANA

Pennission is gi'anted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly puiposes and is properly cited m
published works and reports.

* * Please check "Yes" or "No" and provide sigjiature

Yes, I grant pennission
No, I do not grant pennission _____

Author's Signature

Date R 9 7 ! / 31

CUM

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

Space VLBI User assistance software
An Object-Oriented design

implemented in Java

by

Istvan Noszticzius, B.S.

presented in partial fulfillment of the requirements
for the degree of

Master of Science

The University of Montana

1997

:ed by:

!hairperson

Dean, Graduate School

Date

UMI Number: EP39131

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT
O isssrta tion P u b lisN n g

UMI EP39131

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Noszticzius, Istvan, M.S., July 1997 Computer Science

Space VLBI User Assistance Software: An Object Oriented Design and Implementation in Java
(64 pp.)

Director: Dr. Alden Wright

Very long baseline interferometry (VLBI) is a radio astronomical observing technique that achieves high
angular resolution by means of radio telescopes separated by many thousands of kilometers on the surface
of the Earth. This resolution can be further enhanced by using satellites for even longer baselines. The
geometry of such observations is very complicated due to the orbiting telescope and its constraints that also
have to be taken into account with the ground based network.

A simulation software called SPAS (Space VLBI User Assistance Software) was developed for
visualizing such observations at the Satellite Geodetic Observatory, Hungary. This software runs on DOS
machines only, so the need arose for a version that can be run on other operating systems too. Since the
original software is highly complicated with several modules only a partial design and implementation was
feasible.

Emphasis was placed on the design of this new SPAS - called JavaSPAS, since it is implemented in Java -
which was carried out in an object oriented fashion with the design artifacts generated according to the
Booch-method. The architectural design is based on four different class categories - collections of classes -
that represent elementary blocks of the software. These include basic astronomical classes, the
observational elements and parameters, the main modules and the graphical user interface. On the lower
level, the detailed design shows the structure of these categories and also how they behave and interact to
produce the simulation output. At the end a very detailed interface of each important class is shown in one
of the appendices.

During the implementation part a couple of questions were raised concerning Java, so comments and
insights are given on different aspects of the language, in a more general overview and in relevant detail
too, including precision requirements, multi-threaded execution and visibility of class variables and
methods.

Table of Contents

1. Background...5
1.1 Brief introduction to space VLBI... 5
1.2 The role of a support software... 7

2. The original SPAS... 8
2.1 Structure and modules.. 8
2.2 Software engineering - design and implementation.. 9

3. JavaSPAS - an Object Oriented Design..11
3.1 Overview...11
3.2 Architectural Design... 11
3.3 Detailed Design.. 15

3.3.1 “BasicData” classes...15
3.3.2 “Observation” classes..18
3.3.3 “GUI” (Graphical User Interface) Classes...20
3.3.4 “Modules” Classes... 25
3.3.5 Scenarios..28

4. JavaSPAS - implementation...33
4.1 Why Java.. 33
4.2 Important Java Features... 34
4.3 Implementation Details.. 36

4.3.1 How to physically store the code...37
4.3.2 Optimizations..38
4.3.3 Other language dependent features...39

5. Appendices...42
A. Pseudocode class definitions & source code .. 42
B. JavaSPAS database text file format... 48

B .l LEX-type lexical specification.. 48
B.2 Y ACC-type grammar specification...49
B.3 A simple example database file... 51

C JavaSPAS setup text file form at...53
C.l LEX-type lexical specification.. 53
C.2 YACC-type grammar specification...54
C.3 A simple example setup file ...55

D. The Booch method artifacts.. 56
E. Explanation of satellite constraints and their encoding...58
p. Glossary..62
G. Bibliography.. 64

111

List of Tables

Table 1 The main characteristics of currently planned space VLBI satellites (page 6)
Table 2 - Java primitive Data Types (page 35)
Table 3 - Java visibility modifiers and their effect (page 40)
Table E .l - RadioAstron constraint list (page 58)
Table E.2 - VSOP constraint list (page 58)
Table E J - Simplified RadioAstron constraint list (page 61)

List of illustrations

Figure I - Scheme of the space VLBI experiment (Page 6)
Figure 2 - The evolutionary development approach (Page 10)
Figure 3 - JavaSPAS class categories (Page 13)
Figure 4 - JavaSPAS system state transition diagram (Page 14)
Figure 5 - BasicData class category inheritance and structure diagram (Page 16)
Figure 6 - Alternative Position class hierarchy (Page 17)
Figure 7 - Observation class category inheritance diagram (Page 18)
Figure 8 — Observation class category structure diagram (Page 19)
Figure 9 - Graphical User Interface class category inheritance diagram (Page 21)
Figure 10 - SetupDialog structure design (Page 22)
Figure 11 — StationSelectDialog structure design (Page 23)
Figure 12 - MainWindow structure design (page 23)
Figure 13 - SimulationWindow structure design (page 24
Figure 14 - SimulationWindow state transition diagram (page 24)
Figure 15 - Modules class category inheritance diagram (page 25)
Figure 16 - Modules class category structure diagram (page 26)
Figure 17 - UVPlot state transition diagram (page 27)
Figure 18 - 3DView state transition diagram (page 28)
Figure 19 - System startup and closing interaction diagram (page 29)
Figure 20 - An opening of a SimulationWindow: object diagram (page 30)
Figure 21 - Simulation setup-start-stop interaction diagram (Page 31)
Figure 22 - UpdateActiveStation() object diagram (Page 32)
Figure 23 - JavaSPAS files hierarchy (Page 37)

IV

1. Background

1.1 Brief introduction to space VLBI

Very long baseline interferometry (VLBI) is a radio astronomical observing technique that achieves high

angular resolution by means of radio telescopes separated by many thousands of kilometers on the surface

of the Earth. The signals from artificial or natural radio sources are simultaneously recorded at the telescope

sites and later cross-correlated at a central processing facility. In the last 20 years VLBI has been very

successful in high resolution imaging of radio sources, radio source position measurements and in

determination of geodetic parameters related to Earth rotation and crustal movements. The angular

resolution achieved by this technique is presently superior to any other method of astronomical observation.

The resolution of the Earth-based VLBI, however, is limited by the physical dimension of the Earth at any

given wavelength. Therefore it has been proposed that the angular resolution be further increased by putting

radio telescopes into space. Thus the concept of space VLBI was bom.

A schematic diagram of a space VLBI system is illustrated on Figure 1. It consists of four basic

components:

• the space radio telescope(s),

• the telemetry and control stations,

• ground radio telescope(s),

• processing facility.

Note that the first two points are the concerns of the space agencies, while the last two points are

technically covered by the ground based VLBI facilities. Thus in order to operate space VLBI, a very

complicated interaction (and understanding) between the two groups is necessary.

Currently two dedicated space VLBI satellites are in an advanced stage of development, for being used in

the second half of this decade with radio telescopes of 8-10 m diameter. The VSOP satellite is being

developed in Japan, and has already been launched in February of 1997, and currently is undergoing

different testing procedures before real observations can begin. The RadioAstron satellite is being

constructed by the Russian Space Agency in international collaboration with seven other countries or

agencies. The main characteristics are given in Table 1. The primary goal of these missions is astrophysical.

Many more space VLBI satellites are under consideration with improved characteristics to be realized

after the turn of the century.

S IG N A L R E C E P T IO N IN SPACE

S I G N A L
R E C E P T I O N
O N G R O U N D

Q_£5C L P

d i g i t i z a t i o n
A N D
R E C O R D I N G

FR E Q U E N C Y
STANDARD

FR EQ U EN CY
ST A N D A RD TAPE

T R A N S P O R T

CENTRAL CORRELATION
F A C I I I T Y

Figure 1
Scheme of the space VLBI experiment.

Space VLBI experim ents VSOP R adioA stron
Country Japan Russia + 7 countries
Launch date 1997 1998 ?
Expected lifetime 5 years 3 years
Height at apogee 20 000 km 75 000 km
Maximum baseline length 30 000 km 85 000 km
Observing frequencies 22 GHz, 5 GHz, 1.6 GHz 22 GHz, 5 GHz, 1.6 GHz, 0.3

GHz
Maximum angular resolution 90 micro arc sec 30 micro arc sec
Telescope diameter 8 m 10 m
Sensitivity 40 mjy 20 mJy

Table 1
The main characteristics of currently planned space VLBI satellites.

1.2 The role of a support software

Space VLBI is a new technique which will be open for a wide community of users. The need for space

VLBI assistance software is based on the fact that space VLBI observations are more complicated

geometrically and operationally than ground based VLBI. Moreover they are also one or two orders of

magnitude more expensive, which justify a very careful preparation, optimization and care for the details.

The complications are due to the addition of an orbiting radio telescope to the network of ground radio

telescopes. Consequently the station network geometry is changing fast and continuously in both the

terrestrial and celestial reference frame. Observational limitations should be taken into account due to the

orbit geometry and technical constraints of the satellite. Although the orbit can be considered fixed in the

celestial frame for a short period of time, it may change considerably on the longer term, due to

perturbations. Therefore the optimal periods for observing a given source depend on this “orbit evolution”.

Space VLBI also requires a complicated scheme of tracking, telemetry and control operations. Because

there are no hydrogen masers on the satellites, the on-board oscillators are slaved to ground-based

frequency standards via two way link from the telemetry stations. The VLBI data from the satellite, during

one observing session, may be recorded on magnetic tapes in short sections at several telemetry stations,

each with different clock characteristics.

2. The Original SPAS

2.1 Structure and modules

SPAS is a software developed at the Satellite Geodetic Observatory, Hungary, by a dedicated team of

software engineers and astronomers. The program runs on IBM PC compatibles under MS-DOS. The

software visualizes the complex geometry of space VLBI experiments, checks the technical restrictions of

the satellites and ground based equipment. It is useftil for approximate scheduling of space VLBI

observations with the satellites in preparation (VSOP and RadioAstron). SPAS is used for optimization of

ground based tracking and contributing radio telescope networks and also to design future space VLBI

experiments. Some operations of the software are also applicable for other space related simulations and

demonstrations.

• SubSat plots the subsatellite tracks and locations of telemetry stations on Earth's map.

• SatVis displays and lists the visibility schedule of satellites from tracking stations. It gives the

tracking time coverage of satellites from telemetry stations.

• Obsint displays and lists the observability schedule of radio source from ground VLBI stations

and space VLBI satellites. It gives the time coverage of observations.

• TopoPos plots tracks of radio source and satellites on the sky in horizontal system as seen from

ground stations. It lists the azimuth and elevation values.

• UVPlot produces UV-plot for selected baselines.

• 3DView shows a 3-dimensional movie of the rotating Earth, the ground VLBI stations and the

satellites as seen from the direction of radio source.

• SkySurv creates a survey for a specified area of the sky deciding if certain parts are or are not

observable from ground VLBI stations and satellites at a given time.

• Access creates a long term survey for a sky area. It shows how long the certain parts are

observable from ground VLBI stations and satellites during a time interval.

• CheckArc gives information about the possible attitudes of space VLBI satellite when observing a

selected radio source during a time interval. It takes the on-board observing constrains into

account.

• Beam selects radio sources within the primary beam of space VLBI antenna for phase referencing

purposes.

• Sensitivity plots the RMS sensitivity of baselines as a function of integration time. It plots the

minimum detectable brightness temperature and the signal-to-noise ratio for the baselines as a

function of time.

9
• Cone selects radio sources in special geometric configurations with respect to the satellite orbit

normal.

• Calculator performs basic calculations, unit conversions and coordinate transformations.

Note that in JavaSPAS my goals were to only design and implement two of these modules: notably

UVPlot and 3DView. While SDView gives an overview of a Space VLBI experiment, UVPlot is one of the

most common tools used in VLBI radio astronomy.

2.2 Software engineering - Design and implementation

There is really no such thing as “pure” software engineering. Software engineering is an applied science:

One must get involved in a field that the software is being written for. This usually includes interacting with

the people in that field, trying to understand the problem and translating it into code in an orderly fashion.

The original SPAS package was developed in the Pascal language, following strict software engineering

standards set up by the European Space Agency (ESA) [1]. This standard actually describes a “framework”

for software development, with some options to choose from concerning the approach to the software life­

cycle. The so called “evolutionary” software life-cycle (see Figure 2), chosen for SPAS is comparable to

the “spiral-model” of development [7], because multiple releases for a program can be created by refining

each phase in the model as necessary.

There are several reasons to use these approaches, for example (taken from [1]):

• Some user experience is required to refine and complete the requirements (shown by dashed lines

inside OM boxes in Figure 2)

• Some parts of the implementation may depend on availability of future technology

• Some new user requirements are anticipated but not yet known

• Some requirements may be significantly more difficult to meet than others , and it is decided not to

allow them to delay a usable delivery.

10
The five basic phases in the ESA software life-cycle are:

• User Requirements (UR): This is the “problem definition” phase for the project [2].

• Software Requirements (SR): This is the “analysis” phase for the project [3].

• Architectural Design (AR): Define the architecture of the software [4].

• Detailed Design and Production (DD): Define the detailed design and code the software [5].

• Transfer (TR): Acceptance (installation o f the software)

After completing these phases an operations and maintenance (OM) phase is entered, during which the

software is carefully monitored to confirm that it meets all the requirements specified.

During and after these phases different levels of testing are to be conducted (unit test, integration tests,

system tests and acceptance tests,), in the case of SPAS some were done against other software to assure the

validity of the calculations and simulations.

DEV-1

D EV-2

D E V -3

OM-1

Figure 2 The evolutionary development approach
DEV box is equivalent to UR /SR /A D /D D and TR phases

dashed lines inside OM boxes represent user experience required to refine and complete previous DEV phase,
while dashed lines outside the OM boxes represent experience on which next DEV phase can be based

{from [1])

3. JavaSPAS - an Object Oriented Design

3.1 Overview

Since it would have obviously been beyond my resources to do all five phases of the ESA software life­

cycle (see chapter 2.2) - and those have been already done - I tried to concentrate on a object-oriented

version of the Architectural and Detailed design parts. The design incorporates the two planned simulation

modules: UVPlot and 3DView, but due to its modularity it would be easily extendible to other ones as

necessary. For the design I decided to use the “Booch method” [8], which seems to have notation for most

of the “scenarios” that I came across in planning my object oriented version of SPAS. Not all types of the

diagrams are used, since the Booch method tries to be prepared for all types of design-cases, not all of

which are applicable to SPAS. One such omitted diagram type is the Process Diagram, which is used to

show of process/processor allocation in a physical design, not relevant in this case. Another one is the

Module Diagrams which are used to show the allocation of classes and objects to modules in the physical

design of the system - in the case of JavaSPAS this the same that is shown in the class category diagram

(Figure 3). On the other hand one thing the Booch notation seems to lack is the notion of classes of which

there can be only one object (such as Database) - so those are marked with a *.

While the architectural design is an overview of the basic structure, giving the high level building block

categories needed for the program, the detailed design is a more thorough examination of how those

categories are built and how objects in them interact with one an other. To avoid congestion only the

relevant features of classes are shown in each diagram - that is, the ones which help one to understand a

given part of the design. A full declaration of each class can be found in Appendix A.

Also note that some building block elements are not necessarily used, but they are included in the design

to provide a full version which can be extended to more higher level modules (based on the original SPAS

module structure).

3.2 Architectural Design

In the architectural (high level) design I divided up the components of JavaSPAS into four basic

categories: BasicData, Observation, GUI (Graphical User Interface) and Modules. The hierarchy of these

“class categories” with the their contained classes is shown in Figure 3.

11

12
The purpose of these basic categories are as follows:

Modules: This is category of “control classes” . Most of the objects of these classes are active,

meaning that they have their own thread of control. Spas is the main class - it initializes

and starts all activity, including the bringing up of the user interface (MainWindow),

which in turn then handles events which start other processes (like simulations). Each

simulation can have its own setup too, thus there can be more than one simulation of the

same type running with different configurations.

Gui: The Graphical User Interface elements of Spas. Note that most of these classes can be

built on classes available in the Java AWT (Abstract Windowing Toolkit), thus they do

not have to be fully designed and implemented from scratch.

These graphical elements interact with other class categories, by accepting things to

display (e.g. simulation display in a window) and/or by modifying contents of other

classes on input (e.g. modifying an observation setup through a setup window).

Observation: Elements (objects) that make up and contribute to an observation session. These include

satellites, stations, the source, etc. A given configuration of all these is stored in a

ObservationSetup object, which can be modified, loaded/saved and assigned to different

simulations.

BasicData: Basic (mostly astronomical) data types which make up the contents of objects taking part

in an observation. These data types include the calculations necessary to convert them

from one to an other (if possible). As a design decision these conversion routines were not

put in a separate (utility) class but are embedded in the classes themselves. Nevertheless

because of the need for general mathematical routines a separate Calculator class is

added.

Observation
O bservationSetup
VLBI Station
Telemetry Station
Satellite
Source
Moon
Sun
Earth
CetestiatObJect
Station
ObservationObJect

Modules
Database*
Others
UVPlot
SDView
Simulation
Spas*

13

BasicData
TopocenthcPosition
Horizontal Position
GeomagneticPosition
GaiacticPosition
Constraints
SourceCharacteristics
AntennaCharacteristics
Characteristics
Calculator*
RectangularPosition
ITRFPosition
GeographicPosition
PolarPosition
ICRFPosition
KeplerianOrbil
EquatorlaiPosition
EciipticPosltion
Position
MJD
MiiitaryTime
DateTime

Menu
Menultem
M enuBar
M enuCom ponent
C anvas
C om ponent
FiieDiaiog
Fram e
Window
Panel
Dialog
Container
QuestionDiaiog
ButtonPanei
InformationPanei
ErrorDialog
M essageD iaiog
OtherW indows
O ther SetupDiaiogs
UVPiotSetupDiaiog
UVPiotWindow
SDViewWindow
SetupDialog
SimulationWindow
SDViewSetupDiatog
MainWindow
Choice
CheckBox
Button
Label
ImageButton
StationSelectionDiaiog
Sim ulationPanet
BufferedPanel

Figure 3
JavaSPAS class categories

(High level module diagram)

A state transition diagram {Figure 4) describes how the program works at the system level, which is

essentially equivalent to the MainWindow class behavior. Other class level state transition diagrams for

classes that exhibit interesting event-ordered behavior can be found in the detailed design. Not shown in

these diagrams for clarity reasons are “error” events which are handled in “error states”, since nearly all

14
States can have them. The behavior described by the system state transition diagram shows that each module

can be run independently of the main one, or even more than one instance of each module can be started.

That is the user could run two 3DView modules and have them execute at the same time.

Initializing

Loading Resources

r j
I

Loading Database

r j
Loading Setup

/M od ify ing m aln_setufT\ / lo a d in g file^\

Done -

Done Done "Ok"

Gui Event Checking "Ok"

module button press “Cancel"

Cancel

Starting Module

Selecting load file

Doing data input

j "Cancel" menu exit

module started

load menu

setup menu

/h av in g fl(e^“

"Ok"

Selecting save file Checking Menu Selection

save menu
Quit -►

eaning up

Figure 4
JavaSPAS system state transition diagram

15

3.3 Detailed Design

The Detailed Design is where all the relationships between the classes in each category are defined from a

number of viewpoints (inheritance, structure) in class diagrams. In the case of the Graphical User

Interface the structure is described via prototype design of the on-screen appearance. Explanation of how

classes work (behavior) is done with state transition diagrams for classes that exhibit such interesting event

oriented behavior, while some important and/or interesting scenarios are described with interaction and/or

object diagrams.

3.3.1 “BasicData” classes

Figure 5 shows the inheritance hierarchy of the BasicData class category and the structure of some of its

classes. These classes are the low-level building blocks, from which other components (notably the

Observation classes) create more advanced, and higher level class types. All classes include a conversion

routine which shows the given object state in a string (human readable) format, which is essential for

debugging purposes, as well as saving object states into different text files (observation setup, database).

The main classes in this category are:

• Position (abstract) class. This is a parent class of a fundamental hierarchy, since everything taking

part in an observation has some kind of position. These include different systems (e.g. ICRF/ÏTRF)

most of which can be converted to other types, where the conversion routines are embedded into a

given class. Some conversion routines need other data types as input (e.g. a DateTime class) due to

the nature of these position types (some celestial based some terrestrial based). This hierarchy is

centered on the way data is represented in each type of position from a calculation point of view. For

example both ICRF and ITRF positions have the same parent class (Rectangular), since both are

traditionally represented with X, Y and Z coordinates, while geographical and ecliptic positions are

both represented with longitude and latitude thus they also have the same parent class (Polar). An

alternative approach might be to create a hierarchy, where position data classes are solely structured

according to whether they are terrestrial or celestial (Figure 6) or even one that combines both

hierarchies through multiple inheritance (although this latter one would be quite messy, and in my

opinion the problems created by it would outweigh the benefits gained).

/ R a tio n ^
 /

16

RGCtangJafRadon \
/

>;y,z: floating partlong, lat: floating point

/ V
ITRFRation

— ^ { /

ICRFPcsiticn

Equatorial Ration
Hon zoiial Position GslacAoPosftion ̂ Geograph'cRation '

1/ V ̂
TopoœntrioPositiûn

- / V
1 DateTime

/ V
. Constraints

frequency : floating point

. MlitatyTirre

SoLTceChafcCtefisticsMemaCharacteristics

Figure 5
BasicData class category inheritance and structure diagram

17
DateTime (abstract) class. Subclasses encapsulate the notion o f different date and time formats, as

well as the routines to convert between them. MJD is the Modified Julian Date (see the entry in

Appendix F - glossary), which is a very convenient way of calculating time and date differences.

Also most astronomical calculations are tailored to the Modified Julian Date or Julian Date.

MiiitaryTime is the way the user inputs time data to the program, i. e. as a 24 hour clock with

calendar date.

Characteristics class. Describes various characteristics of objects on different frequencies. For

example sources have different flux densities on different frequencies, while antennas (stations or

satellites) list their sensitivity values on different frequencies. Thus, usually more than one object of

this type is instantiated when used.

Constraints class. A class encapsulating the encoded version of satellite constraints. The method is

the same as in the original SPAS. See Appendix E for a detailed explanation and examples of

constraints-encoding.

Calculator class. A collection of mathematical routines that are not available in the target language.

These could range from very simple (like taking the fractional part o f a number) to more complex

(like matrix or vector manipulation).

p bservationO bject

/ ^ ^
CelestialObject

Station

/ Earth

Satellite
Sun Moon Source

VLBI Station j

Figure 6
Alternative Position class hierarchy

18

3.3.2 “Observation” classes

The classes in this category describe all the different object types that can affect or take part in a Space

VLBI observation {ObservationObJect) as well as a collection o f these objects with other relevant features

(such as start and stop time) that make up a concrete observational setup (ObservationSetup). These can

each be saved to and loaded from disk - see comment on text files in chapter 3.3.4 (Database class). Figure

7 shows the inheritance hierarchy of the classes in this category, while Figure 8 shows the fundamental

structure o f the classes themselves. Note that subclasses inherit all elements of their parent classes that are

shown.

All of the observation objects have more than one coordinate (either by type or by number) - the reason

being is optimization at the design level: To avoid repeated calculation of different but equivalent position

types. For example Satellite has two KeplerianOrbit classes - one for the database information, and one that

is to be evolved (iterated) during simulations. If this weren’t the case the original orbital elements would

have to be computed iteratively from the base value every time - substantially slowing the simulation (to a

point where it is unusable). Satellite also inherits RectangularPosition classes which describe the same

position of the satellite but are used in different calculations.

EciipticPosltion

V

Position

r
TerrestialPosItlon

CelestialPosition

GeomagneticPosition HorizontalPositionKeplenanOitiit

GeographicPosition
(

EquatorlaiPositionGaiacticPosition
/

ITRFPosition
TopocenlricPosition

ICRFPosition

Figure 7
Observation class category inheritance diagram

19

CelestialObject 'Station

diameter : floating point i ITRFPosition)
active ; tiooiean

PolarPosition)

ICRFPosition 1

J OtjsefvationCtoject '|

/
\

name, alias : string

AntennaCharacteristics

/ A
Sun

OtjservationSetup

g_to_s : boolean
gJo_g : boolean

\ s_to_s : boolean
\3D zoom : floating point

- /A
Moon

MJD

Source

VLBI Station
Telemetry Station ^

KeplerianOrbit 1 SourceCharacteristicsConstraints j

/
ITRFPosition 1

Figure 8
Observation class category structure diagram

20
3.3.3 “GUI” (Graphical User Interface) classes

The graphical user interface is a separate category, so that the appearance of the program can be easily

changed if needed (e.g. by a usability analysis). The classes here include the windows, buttons and message

dialogs that appear on the screen as well as the handling the messages generated by those components (e.g.

a button press).

Although separate from the Modules category, these GUI classes obviously very closely interact with the

corresponding classes in that category. The effect of that collaboration is shown on the state transition

diagram of the SimulationWindow class (Figure 14), where all the events are generated by the user

interface, but the class' state also depends on what state the “underlying” Simulation class is in (e.g. running

or idle). Depending on that, the interface can be in different states (e.g. whether the Start button is enabled

or not). Also the Simulation class displays its results in the Simulation?anel part of the SimulationWindow.

Simulation?anel has two varieties; the simple one, where everything drawn is immediately shown and the

Buffered?anel version where results are shown when specifically requested. This latter one makes it easier

to produce animation with less flicker (e.g. for JDView) while the former one is used for modules like

UV?lot where results are shown as they are calculated.

Note that the hierarchy of the elements in the GUI (Figure 9) is based on the Java 1.0 AWT (Abstract

Windowing Toolkit - see [10] page 239) hierarchy, thus if implementing the GUI in Java only the SPAS

specific parts need to be programmed.

Rather than showing the structure of the GUI classes in a traditional Booch diagram with “has”

relationships, the planned appearance is designed with various tools and prototyping. Figure 12 shows the

MainWindow, created in Java as a prototype. It includes ImageButtons for all of the original SPAS

modules, though only 3DView and UVFlot are shown to be active. The Menu includes options to load/save

the main setup (of type ObservationSetup), as well as to modify it. Figure 10 shows how SetupDialog

would look on-screen (as designed by the Visual J++ Resource Wizard [9]), while Figure 11 shows the

StationSelection dialog window that can be reached through pressing the “Satellites”, “VLBI Stations” or

‘Telemetry Stations” buttons (obviously different entries are shown depending on which button was

pressed). Each module can have its own set of parameters above these, reachable through the “More” button

(like a zoom factor for 3DView) - which brings up a dialog window for the extra parameters. Also some

modules might disable parts of the setup dialog show in Figure 10, in case not all parameters of it are

needed (e.g. for a module that plots subsatellite tracks, there would be no need to select VLBI stations - thus

the button would be “grayed out”). For a more detailed explanation of what each parameter does see the

description of the setup text file format (in Appendix C).

Component j
Choice

CheckBox^ y Container

-

InformationPanei

Button ^ y Window

r
ImageButton SimdationPanel

ButtonPanei
y Framey Dialog

BufferedPanel

21

/— y \ ^ '-C
ationSeleclionDialog / SetupDialog

1 V

y \
fiteinWindow^

I ^ J V
UVPIotSetifOialog SetupDiaiogs / E r m r ^

\ I \ I ^
V.

QuestionDiaiog SDViewWindow

SimulationWirxJow

UVPiotWindow QherV/indows

MenuComponent

V. 1

Menultem
MenuBar J

y fvlenu

Figure 9
Graphical User Interface class category inheritance diagram

22
SimulationWindow structure design is shown in Figure 13. This is the general design on which subclasses

of SimulationWindow build on. There are three main parts: an InformationPanei (for showing the necessary

data and legend to understand the simulation display), a ButtonPanei (with all the necessary buttons to

control the simulation) and a SimulationPanel (where the output of the simulation goes).

The behavior of MainWindow is essentially the same as the behavior of the whole system (see Figure

3.3.2), while the behavior of each SimulationWindow is also similar, as described in Figure 14.

SetupDialog

3 * . I I iiiT y

g M i i J S C iJ E d

j^ 'ecess 0

i lG r o u n d ‘4,0'

iGfoundd^blce

mm

Figure 10
SetupDialog structure design

s talîonSelecîD ialog

sc.<'j!#î̂ *̂ r-r*< ̂ 5#Statbnl

s f m m z m a
s tm o m

a tm # u

Btlîïona

w ? ? : ' '

23

Figure 11
S ta t ionSelec tD ia log structure design

Java SPAS
Setup
f.LbadSetu

î^Quil,

KW'rf/X'.WW'.WW.'
........

Setup ̂ \

E M ô n n

i ïi

.

xù',i i i i i » L î t z s a

Figure 12
M a in W in do w structure design

3DView 24

SimuiationPanel

Figure 13
S in iu la t ion W indow structure design

i n i t i a l iz in g

i d l e

a t s t a r t
-"OK"'

"STEP-"
(t o s t a r t)— "START"

"STEP+"
(to e n d)

"STEP+"

"STEP-"
(to s t a r t)

a t e n d m o d i f y i n g s e t u pr u n n i n g

“START"

f i n i s t i e d -■"CANCEL"—

in b e t w e e n
"STEP+"
(to e n d)

c l e a n i n g u p close L - c o n TINUE"

-c lo s e -

"STEP+"
"STEP-"

F igure 14
S im u la t io n W in do w state transition diagram

capital letters denote button press events by user

25
The SimulationWindow state transition diagram (Figure 14) shows that the class can be essentially in two

major states: either idle or running and in either of those states it is still active checking GUI events (e.g.

button press actions, which are in shown capital letters) that can lead to state changes. Error states are not

shown to avoid congestion of the diagram. Also note that buttons that are not valid in a given state are

“grayed out”, as in Figure 13, which shows SimulationWindow in the “idle - at start” state.

The buttons (in capital letters) evoke the following actions

• START Starts running the simulation

• STOP Stops the simulation

• CONTINUE Continues the simulation from the point where it was aborted

• STEP+ Steps one timestep forward in the simulation

• STEP- Steps one timestep backward in the simulation

• SETUP Brings up a SetupDialog window to modify the observational setup

parameters for the current simulation

j S p a s ’

(
/

Ar
D a t a b a s e

J

r
S i m u la t i o n

/

V
„ J

Figure 15
Modules class category inheritance diagram

3.3.4 “Modules” classes

The classes in the Modules class category are at the highest level. Most of them are the ones actually

performing the simulations (Simulation class) and displaying the results in the appropriate SimuiationPanel

object. All objects of type Simulation are active - that is they have their own thread of control providing the

possibility of more than one simulation (even of the same type) running in parallel with others.

26
Simple description of each basic class in this category:

• Spas. The “startup” class - initializes all necessary objects including MainWindow - which is then

responsible for handling all events (see Figure 3.3.2)

• DataBase. Encapsulates all of the available data (stations, sources, satellites, etc.) and the methods to

access them. It is initialized once, at startup, and after that it provides services to other classes

(mostly to ObservationSetup, see Figure 19) As a low level design decision all data and setup

parameters are saved and loaded from human readable text files. This not only makes it easier to

debug the program, but also provides the possibility of skipping the design/implementation of

otherwise essential parts (like a user interface for the database) of the software, without crippling it in

any way. Yet the option of adding these parts later is not lost either, and until then users can

create/modify setup and database files (after understanding the text file structure - see Appendix B)

with their favorite text editor.

/ '
/ Spas*

V

/

1

ObservationSetup

~ 1
J

/
SImualtion

J

1

/ 1/^
ObservationSetup

V 1

V. ^

y DataBase*

1

y SourceSatellite
/ -

TelemetryStation VLSI Station

V, V V
V J J

Figure 16
Modules class category structure diagram

27

SDView. This operation produces a three dimensional movie of the rotating Earth and the orbiting

satellites. The viewing direction is the radio source direction. The viewing distance remains the same

during a run. The ground VLBl stations are also indicated (however Telemetry stations are not, it

would make the output overly confusing). The operation shows the active ground-to-ground, ground-

to-space and/or space-to-space baselines step by step. A baseline is active when geometric and

technical restrictions don't obstruct the observation at its both ends at the current time. See Figure 18

for this module’s state transition diagram.

UVPlot, This operation produces UV-plot of VLB I baselines. You can select ground-to-ground,

ground-to-space and/or space-to-space baselines to plot. A UV-plot is the projection of the baselines

on a plane perpendicular to the direction of radio source to be observed. The axes are scaled

conventionally with the observing wavelength. The projection of a baseline is plotted on the diagram

when geometric and technical restrictions don't obstruct the observation at its both ends at the current

time. See Figure 17 for this module’s state transition diagram.

running

do se
dose initializing

idle UV_setup.UpdateActiveStationsO
generate UV transform matrix_start/_

stop/
generating all active
 stationcairs__

not at
end

reset
next ,

station
' pair no more

station pairstransforming difference
vector to UV plane

resetting

rescale
coordinate

system checking time

transforming UV
coordinates to screen

at end

Figure 17
UVPlot state transition diagram

28

running

itation = telemetid o se initializing
d o se

3D_setup.UpdateAllStalionsO going through all stationsidle
start/ transforming Earth

to screenreset

station = VLBl no more
stations

station = satellite

r connecting active ^
baselineschecking if behind Earth

no

^ transforming station \
 to screen______

checking time

at end

-not at end-

Figure 18
3DView state transition diagram

3.3.5 Scenarios

Scenarios are described in two ways: either with object diagrams or with interaction diagrams (see

Appendix D). While as Booch [8] puts it “Object and interaction diagrams are sufficiently close in terms of

their semantics that it is possible for tools to generate one diagram from the other with minimal loss of

information”, they provide different style views. With interaction diagrams the emphasis is on the relative

order of the events/actions, while object diagrams permit the inclusion of other information about the

objects’ relationships.

29
The first interaction diagram (Figure 19) shows how a general system startup happens (what objects are

initialized, in what order and how). Also shown is the “shutdown” event for ending the program, which is

actually a very simple close event initiated by the user, e.g. selecting the “Quit” menu in MainWindow.

Notice that DataBase initializes itself during the first call (from ObservationSetup) it has to handle, since

there is no need for its existence before that. Also it creates all the Sources, Satellites, VLBIStations and

Telemetry Stations as it reads them fi-om the database text file. These can be later used in different setups.

The scenario here has the option of source precession set in the setup file, so the source position is

precessed at this point (and whenever the user changes the start or stop time from the SetupDialog later).

:MainWindow :Spas o b % i ^ S e t u p
iD ataB ase

_ ReadFile _ GetStation()
M (filename) V -------- SetSate!lite()

‘ GetSource()

S : Source Satellite Station
(V L B l/

Telem etry)

openO JT
done

•loopO

event
checking

loopO

close()

“ D

createO

inltlalizeO

— done -------
GetStationO !

- SetSatelliteQ
S GetSourceQ ’

 precess((start+stop)/2)-

createO
createO -►

Figure 19
System startup and closing interaction diagram

Once MainWindow has started its main loop it acts upon receiving such events as an ImageButton press

by opening the appropriate SimulationWindow. This is not a simple process (shown in Figure 20), since the

newly opened SimulationWindow has to set up all of its panels : ButtonPanel , InformationPanel, and

SimuiationPanel. For ButtonPanel this is done by the SimulationWindow itself, but the other two has to be

filled with information by the underlying Simulation module. This is done by calling that module with the

appropriate parameters so that it can draw the default output into the given SimuiationPanel, and print the

relevant setup information into the given InformationPanel.

30

HandleEventsQG:lmageButtonPress{)

m ain_setup:ObservationSetup

:M ainW indow

active
■.SimulationWindow

active
1:0pen{)

2:redraw()

3:initiaIize{S, I) iButtonPanel

2:redraw()

2:redraw()

SiSimulationPanel

{Simulation

active 5:draw()

4:reset{main_setup)
{InformationPanel

5:draw(text)

local_setup{ObservationSetup

Figure 20
An opening of a SimulationWindow: object diagram

For example in the case of UVPlot the default output would be the scaled UV coordinates, while for

SDView it would be the view of the earth-satellites-stations configuration as seen at the starting time of the

observation from the source’s point view.

Once a SimulationWindow is open, the user can change the local setup parameters, start/stop running the

simulation, or have it step forward or backward in time. A setup-start-stop scenario is shown in Figure 21

where the user first changes the local setup, and accepts it (with the “OK” button), then starts running the

simulation (with “START’ button) and before it ends he or she stops it (with the “STOP” button).

locaLsetup
:ObservationSetup

:SetupDialog iSimulationWindow :Simu!ation (SimuiationPanel 31

get() •

- set()

--------"SETUP"—

"OK"4---- 1

------------ done — ^

UpdateActiveStations(time)
 GetAIIStationsO -

event
checking

loopO

-"START"-

event
checking

loopQ

-"STOP"-

running
loopQ

draw()

Figure 21
Simulation setup-start-stop interaction diagram

Notice that the SetupDialog is modal to SimulationWindow - that is the user can do nothing with the

Simulation until he/she has exited the SetupDialog (by clicking on the “OK” or “CANCEL” buttons). On

the other hand we can see that the Simulation - once started by the user - has an independent thread of

execution which either ceases to exist when it finishes (reaching the StopTime of the setup) or when the

user generates an asynchronous stop message by clicking on the “STOP” button.

The key point in the simulation is the running loop. This is where each of the simulation modules differ,

although there are common parts. Such parts include increasing the time by a time step value each pass and

the calls made to the local ObservationSetup to update all the active stations for that given time (position,

observing status). Which of those stations are updated and will be actually used can differ on the selected

baseline type parameter, and the simulation module too. For example SDView still displays a satellite even

if it can not observe the source (although with a different color) while UVPlot strictly uses the active

stations only for plotting.

32
Figure 22 shows a very simple - and highly unlikely - scenario, where the updating of the active stations

initiated by a Simulation in a local ObservationSetup takes place. In this setup, there is only one

TelemetryStation, one VLBlStation and one Satellite, the GroundToSpace baseline type is selected and the

use o f Satellite constraints are on. Note that Satellite Sa is only considered active if all of the following are

true (short circuit boolean evaluation is to be used to optimize the calculations):

a) TelemetryStation T can see Sa, that is ToSatellite(Sa) is true.

b) Sa sees Source S, that is ToSource(T, S, time) is true. The reason T is passed as an argument is that

constraints checking includes whether the satellite can see T (should be only checked if T could see

the satellite in the first place). Constraints checking also includes a lot of other things - see Appendix

E for a list.

iVLBI Station
:Simulation

2:ToSource(S, time)

lObservationSetup
0:UpdateActiveStations(tim e)

g_to_s: boolean

(TRUE)
1 :UpdatePosition(time)

S : Source
S a : Satellite

2b:ToSource(T, S, time)

2a:ToSatellite(Sa)

2c:GetPosition()

T : Telem etry Station

Figure 22
UpdateActiveStationsO object diagram

4. JavaSPAS - implementation

In implementing JavaSPAS I found class diagrams and object diagrams especially useful. While the

former guided in creating the structure of the system (see Figure 23), the latter made clear of the interfaces

and variables each class/object needs. Not all of the design is implemented in code yet, but the framework

for running simulations is done, as well as simple versions of the SDView and UVPlot modules themselves.

This includes a great part of the user interface and windows, and the underlying class hierarchies and

necessary methods to support those simulations.

4.1 Why Java?

The main purpose of my project was to design and partially implement the original SPAS so that it would

run under Unix type operating systems. My first approach was to use C and C++ with Motif® libraries. This

would have required little or no re-design of the software, mostly just re-coding the original version - apart

from the user interface that would have to be redone in X-Window/Motif.

There would have been a couple of disadvantages of this method, including;

• Software would have had to be recompiled (left to the user) in cases where the binary version is

not available for the given system.

• Complicated makefiles (and possible #ifdefs in the code) would be needed to generalize code (and

that still does not guarantee complete portability)

• The program would only run on Unix systems (with Motif libraries needed for recompilation)

• Graphical User Interface can not be fully object oriented, unless C++ wrapper classes are used for

the M otif ® libraries.

Because of all the above possible problems and the availability of the new programming language Java,

which includes features that would solve these problems, I have decided to design and partially implement

SPAS in that language. Since Java is object oriented and since the original design of SPAS is procedural

oriented, implementation implied re-designing SPAS from the basics in an object oriented fashion. Also,

Java is a language whose specification is still evolving. What this means is that a given implementation

might have to be modified (e.g. a transition from Java 1.0 to 1.1) to accommodate changes, but if the design

is solid and well established the effect should be minimal. Thus I concentrated on the object oriented design

of the software rather than the implementation.

33

34
Apart from the above mentioned problems Java has numerous advantages:

• Software needs no recompilation on different systems (same “binary” under different OS’s)

• No need for huge extra libraries - Java includes most of the user interface components needed.

This also makes it possible to distribute the source code without having to worry about proprietary

libraries’ copyrighted code,

• Program runs not only on Unix systems but on any other that supports the Java virtual machine

(notably Windows 95/NT, thus extending the “user domain” of the program by a large amount)

4.2 Important Java features

Based on Sun’s “The Java Language; A White Paper” [11], I’ll try to summarize here the features of Java

I find relevant and important to the implementation of the Object-Oriented SPAS design. According to that

paper Java is “a simple, object-oriented, network-savvy, interpreted, robust, secure, architecture neutral,

portable, high-performance, multithreaded, dynamic language.” Even Sun admits that this is a set of so-

called “buzzwords”, so we have to go into more detail what each of those mean.

Simple and Robust

Java syntax is based mostly on C/C+-f, but without the “confusing” parts. What this means that things like

multiple inheritance, operator (not method!) overloading are eliminated. While I fully agree with the

elimination of multiple inheritance (although there is a similar feature in Java accomplished with the use of

Interfaces) I found operator overloading useful in C++ and would have used it in Java too. An other thing

simplified compared to C/C++ is storage management. Java uses automatic garbage collection, which

makes it very easy to do dynamic memory allocation from the heap, without “memory leaks”, which are a

very common and hard-to-debug problem found in mid- to large size C/C++ software packages. On the

other hand this feature can cause quite a problem for people who start with Java and then try to move on to

some other language, most of which does not include automatic garbage collection.

Java also implements a simplified pointer model that eliminates the possibility of overwriting memory

and corrupting data. Other runtime checkings (like array subscript checking) and strong typing (e.g. no

implicit integer to pointer casting) add to the robustness of the language.

Object Oriented

The object oriented technique is a way to design and implement software that is easily extendible and

maintainable. Its benefits show mostly when applied to large complex systems (like SPAS). The basic (very

35
simplified) idea is that one packs data and the functions that act on that data into one entity (encapsulation).

Other important object oriented features include modularity, hierarchy, typing and concurrency all of which

Java implements.

Portable and Architecture neutral

This is one o f Java’s most important features, since most of today’s widely used computer languages do

not support portability and architecture independence as Java does. And surprisingly this not only applies to

the source code, but the also the byte code, which is the object file format executed by the virtual Java

machine on any platform. Java also defines the sizes of the primitive data types (see Table 3), as well as the

behavior of arithmetic on them. Interestingly enough in my experience printing results can be a little bit

different depending on the environment, but this is certainly not the problem of the language, but the result

of different floating point output routines of Java 1.0/1.1 implementations. These differences are due to the

fact that floating point to string conversion was not specified in Java 1.0 (see the section on precision

requirements in chapter 4.3.3).

Type Contains Size (bit)
b o o le a n true or false I

c h a r Unicode character 16(1)
b y t e signed (!) integer 8

s h o r t signed integer 16
i n t signed integer 32

lo n g signed integer 64
f l o a t IEEE 754 floating point 32

d o u b le IEEE 754 floating point 64

Table 2
Java primitive Data Types

(unconventional values/sizes are marked with a “ !’)

Interpreted and High-performance

Java compilers generate architecture-independent byte code, which is executed by the “Java Virtual

Machine” by translating (interpreting) it to machine code on-the fly. This seems to contradict the possibility

that Java is high performance, since interpreted code runs much-much slower than compiled, but in fact

just-in-time compilers already exist, which take the byte code, and translate it to native machine code at run

time. The execution time of such Java programs is nearly indistinguishable from a comparable program

written in C. Yet the overall idea here is that for the sake of portability, one always should be willing to

sacrifice some speed.

36
Secure and Network-sawv

Java grew out of a networking environment so it is obvious that it has all the necessary libraries (classes)

to support protocols like TCP/IP and anything on top of that (like FTP or HTTP), handling connections

with the same ease as reading or writing local files. Also it supports all the necessary features to keep it

safe, for example it makes the distinction between Applets (which are Java programs that one can run in a

browser like Netscape coming directly from the net) and Applications that are stand-alone Java programs

(run by a separate Java virtual machine). To prevent any security problems Applets are generally not

allowed to read, write, create, execute, rename or delete any local files.

Multi-threaded

Java supports a multi-threaded programming paradigm, which makes it possible for well-written

programs to gain speed on multi-processor systems. Even on single-processor systems there can be an

advantage, for example in better interactive responsiveness. In JavaSPAS this means that one can start

multiple simulations at the same time, and still be able to access graphical user interface features

(menus/buttons) to control those running simulations.

Dynamic

Java was designed to adapt to an evolving environment - among many things to make it dynamic are: It

creates objects only when they are needed (conserves resources), classes have a run-time representation, so

unlike in C or C++ a running program can find out which class a given object belongs to by checking this

information. This information also makes it possible to dynamically link classes into a running system.

4.3 Implementation details

As for now JavaSPAS is implemented as an application. The main reason for this decision is that applets

are not allowed to read any local files. Thus if the user modified the default observation setup, he/she could

not save the modified file on the local system. Providing JavaSPAS as an applet in the future may

nevertheless be a good idea, since a lot more people have a Java-capable browser installed than the number

that are willing to install a Java runtime-environment just to try out a new piece of software. In other words

it would make JavaSPAS even more accessible.

Some basic questions have to be resolved when putting the above design into code no matter what

language is used. Here is the list I found important - with actions I took in the JavaSPAS implementation:

37
4.3.1 How to physically store the code

When coding the design I had to decide on a couple of conventions (like naming), regarding the

placement of files (which more or less Java "decides for itself’) and some features which I would have liked

to use, but were not available (like separate class specifications and bodies).

Root directory

•/Modules

-/Gul-

-/Observation!—

— /BasicData—

"Java
".class

*.java
".class

".Java
",class

"Java
".class

Spas.java
S pas.c lass

Figure 23
JavaSPAS files hierarchy

W here do we pu t classes related to their category

Java’s basic class hierarchy is two-leveled: On the higher level there are the collection of closely related

classes, called packages, and on the lower level there are the classes themselves. When a class is a part of a

given package it m ust be placed in a directory named exactly as that package and the source code file name

must be the name of one of the classes in that file with a Java extension. After compiling the Java the byte­

code is stored in .class files in the same directory - with one .class file for every class in that package.

In the case of JavaSPAS this means that the source {Java) and byte-code (.class) class files are put in a

hierarchy as in Figure 23. Notice that the “startup” module Spas is put outside of this hierarchy - yet

logically it belongs to the Modules package. Also note that supporting packages (e.g. that are part of Java)

are not shown here.

38
Do we separate class specifications from class bodies

Unfortunately Java does not support separate specifications and bodies, thus both of those go into the

same Java source file. Whatever is visible to the outside world from that file is the specification of that

package (as seen in Appendix A). Note that different visibility rules apply to classes in the same package

and classes in different packages (see Table 3).

What naming conventions to use

The convention I followed originates from the Java in a Nutshell book [10]: Class and method names are

with capitalized letters (similar to the “Hungarian” notation [11] - e.g. like ToSource()) while actual objects

and variables are with all lowercase letters (like g_to_s). Following this simple rule it is easy to decide

whether an entity I am using in the code is a class or an instantiation of a class, and the code becomes much

more readable. Note that one has to be careful when using predefined Java basic types: Float is not the

same as float (see explanation in first section of chapter 4.3.2).

Also the code includes quite a lot o f commenting (especially in critical parts) for the ease of later

modification and/or enhancement.

4.3.2 Optimizations

Apart from possible optimizations in the calculations, Java language features should be used to provide

the best results in running time.

W here to use pass»bv-reference instead of pass-by-value

Java “decides” for the programmer where to use pass-by-value and where pass-by-reference. The rule is

simple: Only basic data types (see Table 2) are passed by value (that is if passed to a method, their value is

copied and any modifications to it inside the method will not affect the original variable’s value) anything

else is passed by reference (that is if passed to a method, any modification to it inside the method will affect

the original object too). This is optimized for speed, since more complex objects would take more time to

be copied for pass-by-value, never the less the programmer can emulate this type of behavior if needed. On

the other hand if one would like to pass variables of basic data types by reference, a wrapper class can be

used (like Float for float).

39
M em ory allocation/deallocation

As mentioned previously Java has automatic garbage collection - which makes it very easy to program

but harder to optimize. This means not only optimization for memory usage - that we would be able to free

memory as soon as it is not needed - but also for speed, since the automatic garbage collector can free up

and compact memory at any time. This can be especially problematic in real-time applications, fortunately

JavaSPAS is not one of them. There are various “tricks” to help the garbage collector, e.g. by setting an

object reference to null, whenever it is not needed. An other - more radical approach - could be to disable

the garbage collector, and call it explicitly when needed, or even to do away with it completely and

implement our own.

M ulti threaded execution

As mentioned before, writing a program to take advantage of Java’s multi-threaded features (through the

Runnable interface and the Thread class) can not only speed up its execution on multi-processor systems,

but it can also increase a program’s user interface responsiveness (even on single CPU systems) by

allocating a separate thread to the calculations and the GUI (Graphical User Interface). This is exactly what

JavaSPAS does - all the simulations run as separate threads, thus the user can still interact with

buttons/menus in the program after starting a simulation.

4.3.3 Other language dependent features

M ultiple inheritance

Although the design for JavaSPAS does not contain explicit multiple inheritance, it is there implicitly.

For example SDView is not only a type of Simulation but it also has its own thread meaning that in some

ways it is a type of Thread too. Java handles this with interfaces - in the case of SDView the module inherits

from Simulation and implements the Runnable interface (although this is done through Simulation too).

The difference between real multiple inheritance and the Java interface implementation is that Java

interfaces can only contain abstract methods which have to be implemented by the class that uses the

interface, while in real inheritance one can use already implemented methods from any super-class.

Visibility

According to one of the basic paradigm’s of object oriented programming (information hiding), classes

should only have controlled access to methods and variables to other classes. Java defines four levels of

such control as shown in Table S. Unfortunately the "'private protected" visibility modifier is not

implemented in Java, although it would be quite useful in my opinion. The reason is that given a class

40
variable usually one does not want any other class in the same package to be able to access it (as done with

private) but wants it to be accessible to sub-classes (as done with protected). The solution (shown “grayed

out”) would be the private protected visibility modifier. So why is it not in the language? According to the

comp.lang.java.programmer FAQ [13]:

3.6 What happened to "private protected"?
A. It first appeared in JDK 1.0 PCS (it had not been in the Beta's). Then it

was removed in JDK 1.0.1. It was complicated to explain, it was an
ugly hack syntax-wise, and it didn't fit consistently with the other
access modifiers. More people disliked it than liked it, and it added
very little capability to the language. It's always a bad idea to reuse
existing keywords with a different meaning. Using two of them together
only compounds the sin.
The official story is that it was a bug. That's not the full story.
Private protected was put in because it was championed by a strong advocate.
It was pulled out when he was overruled by popular acclamation.

Situation default
(package)

public protected private ? private ' /

accessible to non-subclass
from same package? yes yes yes no

accessible to subclass from
same package? yes yes yes no

accessible to non-subclass
from different package? no yes no no

accessible to subclass from
different package?

no yes no no

Inherited by subclass in same
package? yes yes yes no

Inherited by subclass in
different package? no yes yes no

Table 3
Java visibility modifiers and their effect. Based on [10].

Note that the last column is not available from Java 1.0.1 on

Precision requirements

JavaSPAS does a lot of calculation - including iteration - which are sensitive to even small differences.

While the precision requirements are not huge, consistency of results across different platforms is desirable.

Java provides just that - it has all the floating point types defined in detail (see Table 2), and also the

behavior of calculations on them. What was not specified precisely in Java 1.0 is the printing of the results

(that is the conversion from double or floa t to string). As put in the comp.lang.java.programmer FAQ [13]:

41
There is a limitation of FP in JDK 1,0 (fixed in JDK 1.1). Namely, when
you output a floating point number in Java 1.0, the result is
system-dependent and contains no more than six digits after the decimal
point. This bug is fixed in Java 1.1.

This can lead to strange results in the output when JavaSPAS is run on different Java versions. Consider

the following example, where a date in MilitaryTime format is converted to MJD and back;

Compiled with
Microsoft (R) Visual J++ Compiler Version 1.00.6229
1) Viewed with

Microsoft (R) Command-line Loader for Java (tm) Version 1.00.6211
Results of MilitaryTime to MJD and back conversion:
MilitaryTime = 1999/12/31, 23:59:59.999
MJD = 51544 (4677316967000963520)
MilitaryTime = 1999/12/31, 23:59:59.999
MJD = 51544 (4677316967000963520)

2) Viewed with
Sun Microsystems Java(tm) Runtime Loader Version 1.1.2
MilitaryTime = 1999/12/31, 23:59:59.999
MJD = 51543.99999998836 (4677316967000963520)
MilitaryTime = 1999/12/31, 23 : 59:59.998994171619415
MJD = 51543.99999998836 (4677316967000963520)

In brackets after the MJD values are the long integer (Double.doubleToLongBits()) representations of the

double value, which shows that the results are the same in both cases, but with the Sun 1.1.x runtime loader

the full precision is shown, while the Microsoft one (1.0.x) rounds up the values for displaying.

4, Appendices

A. Pseudocode class definitions & Source code

This appendix shows the interface of each class in detail (public variables and methods, as well as some
important private ones.) The pseudocode definitions are given in simple English, with keywords shown in
bold. The preliminary version’s commented source code [14] might give more insight on the behavior of
each class. Mathematical models of the methods can be found in [5].

Note that maintaining this pseudocode definition-list is not an easy task, and although helpful in the
implementation of the software, should be later maintained from the source code through some automated
tool.

Modules class category

class S p a s
constants
classes
variables
methods

File names, Resource names
Ma inWi nd ow, O b s e r v a t i o n S e t u p

Initialize()
/ * called upon startup */

Class D a t a b a s e
constants
classes
variables
methods

Resource names
array of Source, array of V L B l S t a t i o n
array of T e l e m e t r y S t a t i o n , array of S a t e l l i t e

Initialize()
/* called upon startup: reads database from file - see Appendix B
GetVLBIStation(string) returns V L B l S t a t i o n
/* Returns a V L B l S t a t i o n with the given name */
GetTelemetryStation(string) returns T e l e m e t r y S t a t i o n
/* Returns a T e l e m e t r y S t a t i o n with the given name */
GetSatellite(string) returns S a t e l l i t e
/* Returns a S a t e l l i t e with the given name */
GetSource(string) returns Source
/* Returns a Source with the given name */

Class S i m u l a t i o n
constants
classes
variables
methods

S i m u i a t i o n P a n e l , O b s e r v a t i o n S e t u p
boolean active
Initialize(SimuiationPanel, O b s e r v a t i o n S e t u p)
/* called upon opening a S i m u l a t i o n W i n d o w */
Start{), Stop(), Continue()
/ * Starts/restarts, stops, continues running the simulation * /

Reset (O b s e r v a t i o n S e t u p)
/♦ Resets the simulation (e.g. with new observation parameters)
/* actually called from Initialize()

Class 3 DV i e w inherits Simulation
constants
classes
variables
methods

Class U V P l o t inherits S i m u l a t i o n
constants
classes
variables
methods

42

43
BasicData class category

Note that most classes in this category have al least two types of initializers:
• one that accepts the basic components of a class to create a new object

e.g. for PolarPosition : Initialize(doubIe oi, double 0 2)
• one that accepts an object of the given class to copy it and create a new object

e.g. for PolarPosition : \mÛ2i\\ZQ{PolarPosition)
Also note that most member classes and variables can be reached (read and set) through class methods.

Class P o s i t i o n
constants
classes
variables
methods

Class P o l a r P o s i t i o n inherits P o s i t i o n
constants : -
classes : -
variables
methods

double ai, 0 2 [rad]
ToRectangular() returns R e c t a n g u l a r P o s i t i o n
/ * converts to rectangular coordinates */

Class E c l i p t i c P o s i t i o n inherits P o l a r P o s i t i o n
constants
classes
variables
methods

Class E q u a t o r i a l P o s i t i o n inherits P o l a r P o s i t i o n
constants
classes
variables
methods : ToEcliptic(double) returns E c l i p t i c P o s i t i o n

/* converts to ecliptic coordinates, needs obliquity of ecliptic */
ToGalactic(> returns G a l a c t i c P o s i t i o n
/* converts to galactic coordinates * /
ToHorizontal (Wi7DTime, G e o g r a p h i c P o s i t i o n) returns H o r i z o n t a l P o s i t i o n
/ * converts to galactic coordinates */

Class H o r i z o n t a l P o s i t i o n inherits P o l a r P o s i t i o n
constants
classes
variables
methods : ToEc[uatorial (AfJOTime, G e o g r a p h i c P o s i t i o n) returns EquatorialPosition

/* converts to equatorial coordinates * /

Class T o p o c e n t r i c P o s i t i o n inherits H o r i z o n t a l P o s i t i o n
constants
classes
variables
methods

Class G a l a c t i c P o s i t i o n inherits P o l a r P o s i t i o n
constants
classes
variables
methods : ToEquatorial() returns E q u a t o r i a l P o s i t i o n

/* converts -to equatorial coordinates * /

Class G e o m a g n e t i c P o s i t i o n inherits P o l a r P o s i t i o n
constants : -
classes : -
variables : double height
methods : ToGeographic() returns G e o g r a p h i c P o s i t i o n

/* converts to geographic coordinates * /

44
Class G e o g r a p h i c P o s i t i o n Inherits P o l a r P o s i t i o n
constants
classes
variables : double height
methods : ToITRF() returns I T R F P o s i t i o n

/* converts to ITRF coordinates * /
ToGeomagnetic() returns G e o m a g n e t i c P o s i t i o n
/ * converts to geomagnetic coordinates */

Class R e c t a n g u l a r P o s i t i o n inherits P o s i t i o n
constants
classes
variables : double x, y, z
methods : Arc(RectangularPosition) returns double

/ * returns arc between two unit(!) vectors [rad] */
ToPolarO returns P o l a r P o s i t i o n
/* converts to polar coordinates */

Class I T R F P o s i t i o n inherits R e c t a n g u l a r P o s i t i o n
constants
classes
variables
methods : ToICRF(WJCTime) returns I C R F P o s i t i o n

/ * converts to ICRF coordinates */
ToHorizontal(GeographicPosition) returns H o r i z o n t a l P o s i t i o n
/ * converts to horizontal coordinates * /
ToGeographic() returns G e o g r a p h i c P o s i t i o n
/* converts to geographic coordinates */

Class JCRFPosition inherits R e c t a n g u l a r P o s i t i o n
constants
classes
variables
methods : ToITRF(WJDTime) returns I T R F P o s i t i o n

/* converts to ITRF coordinates */
ToKeplerian() returns K e p l e r i a n O r b i t
/ * converts to Keplerian orbital elements */

Class K e p l e r i a n O r b i t inherits P o s i t i o n
constants : -
classes : MJDTime
variables : -
methods : ToICRF() returns I C R F P o s i t i o n

/ * converts to ICRF coordinates */
Class D a t e T i m e
constants
classes
variables
methods EclipticObliquity() returns double

/* returns the obliquity of ecliptic */
CAST() returns double
/* Returns the Greenwich Apparent Sidereal Time [rad] */

Class MJDTime inherits DateTime
constants
classes
variables
methods ToMilitaryTime() returns M i l i t a r y T i m e

/* converts into military time format * /

Class M i l i t a r y T i m e inherits D a t e T i m e
constants
classes
variables
methods ToMJDTime() returns MJDTime

/ * converts into Modified Julian Date time format * /

45
Class C h a r a c t e r i s t i c s
constants
classes
variables
methods

double frequency [GHz]

Class A n t e n n a C h a r a c t e r i s t i c s Inherits C h a r a c t e r i s t i c s
constants
classes
variables
methods

double system_temperature [K], double efficiency [0..1]

Class S o u r c e C h a r a c t e r i s t i c s inherits C h a r a c t e r i s t i c s
constants
classes
variables
methods

double flux_density [Jy], double flux_density_error [Jy]

Class C o n s t r a i n t
constants ; -
classes
variables

methods

/* See Appendix E for explanation of these parameters
int type,
double refdir_x, refdir^y, refdir_z,
double refnor_x, refnor_y, refnor_z,
double angle, int object, double earthdistance

Class Calculator
constants
classes
variables
methods

double ToDeg, double ToRad

IntPart(double) returns double
/ * returns the integer part of a number */
FracPart(double) returns double
/* returns the fractional part of a number
RotMatR(double) returns double[3][3]
/* Creates a 3x3 rotation matrix (array) -
/ * R can be 1, 2 or 3 (for X, Y, Z) rotation matrix) */
MatMul(double[31 [3]/ double[3]) returns double[3]
/* Multiplies two a 3x1 vector and a 3x3 matrix (arrays) */

needs rotation angle [rad] */

Observation class category

Note that most classes in this category have al least two types of initializers:
• one that accepts the basic components of a class to create a new object

e.g. for VLBlStation : Initialize(string name, string alias, double antenna_diameter,
string mounting, ITRFPosition it_coord,
a rray of string terminal_types,
a rray of AntennaCharacteristics characteristics,
a rray of double local_horizon)

• one that accepts an object of the given class to copy it and create a new object
e.g. for VLBlStation : Initialize(VLB/5taticin v)

Also note that most member classes and variables can be reached (read and set) through class methods.

Class O b s e r v â t i o n O b j e c t
constants
classes
variables
methods

string name, string alias

46
Class E arth Inherits O b s e r v â t io n O b jec t
constants : array of ITRFPosition /* map of continents */

radius /* Earth radius [km] */
flattening, J2, GCG /* other Earth features */

classes
variables
methods GetEclipticVector(ICRFPosition, double) returns double[3]

/* returns a ICRF-centric ecliptic unit vector of Earth's center */
/* also needs obliquity of ecliptic */

Class C e l e s t i a l O b j e c t inherits O b servâ t io n O b je c t
constants
classes : P o la r P o s i t io n
variables
methods
Class 5un inherits C e l e s t i a l O b j e c t
constants
classes
variables
methods

radius /* Sun radius [km] */

GetEclipticLong(WIDTime) returns double
/* returns geocentric ecliptic longitude of the Sun */

Class Moon inherits C e l e s t i a l O b j e c t
constants : radius /* Moon radius [km] * /
classes : -
variables : -
methods : GetEclipticLongDist(MIDTime) returns double[3]

/* returns geocentric ecliptic longitude, latitude, distance of the Moon */
Class S o u r c e inherits C e l e s t i a l O b j e c t
constants : -
classes : array of S o u r c e C h a r a c t e r i s t i c s , E q u a t o r i a l P o s i t i o n
variables : -
methods : Precess(MJDTime, MJDTime)

/ * Converts source mean coordinates from epoch MJDl to MJD2 */
Class S t a t i o n inherits O b s e r v a t i o n O b j e c t
constants : -
classes : array of AntennaCharacteristics, I T R F P o s i t i o n , I C R F P o s i t i o n
variables : double antenna_diameter [m]
methods : ToSource(Source, MJDTime)

/ * returns whether given source is visible from station * /

Class S a t e l l i t e inherits S t a t i o n
constants : -
classes : K e p l e r i a n O r b i t (2), array of C o n s t r a i n t
variables ; double mass [kg], double cross_section [m''2] ,

double solar_cell_area [m''2], double atmospheric_coeff
double radiation_coeff

methods : UpdatePosition(MIDTime)
/* Updates Satellite Orbital elements + its ICRF position*/
/* Evolves orbital elements to given date taking first */
/ * order secular perturbations into account */
ToSource(array of T e l e m e t r y S t a t i o n , S o u r c e , MJDTime) returns boolean
/* returns whether given source is visible from satellite */

Class T e l e m e t r y S t a t i o n inherits S t a t i o n
constants : -
classes : -
variables ; string mounting, array of double local_horizon
methods : ToSatellite(Sateliite) returns boolean

/* returns whether given satellite is visible from station */
/* note: Satellite ITRF position must be updated !!! */

47
Class V L B lS ta tion inherits T e le m e tx y S ta t io n
constants
classes
variables
methods

array of string tenninal_types
ToSource (WJX)Time, Source) returns boolean
/* returns whether given source is visible from station 7

Class O b s e r v a t i o n S e t u p
constants : Resource names
classes : array of S a t e l l i t e , array of V L B l S t a t i o n , array of T e l e m e t r y S t a t i o n

S o u r c e , MJDTime (3), Sun, Moon, E a r t h
variables : boolean ground_to_ground, ground_to_space, space_to_space,

double observing_frequency [GHz], double bandwidth [MHz],
int cutoff_mode, double cutoff_angle [rad],
boolean satellite_constraints, boolean precession, double d3zoom

methods : UpdateActiveStations(MJDTime)
/* Updates active ("can observe") stations'/satellites' status/position */
UpdateAllStations (MJDTime)
/* Updates all stations'/satellites' status/position */
ToSource(MJDTime) returns boolean
/* returns whether observation is feasible with given configuration */
ReadFile(string)
/* Reads observation setup parameters from given file - see Appendix C */
WriteFile(string)
/* Writes observation setup parameters to given file - see Appendix C * /

GUI (Graphical User Interface) class category

Since the classes in this category are based mainly on an implementation of a given windowing system
(the Java Abstract Windowing Toolkit 1.0 in this case) the pseudocode definitions are not shown. The
relevant information can be found in [10].

B. JavaSPAS database text file format
48

This appendix describes the format of the text file (Using LEX and Y ACC), which is used as the database
- from which the user can select stations, sources and satellites through the setup dialog window. Note that
this file {database.txt in the Resources directory) is only read once - at startup - and it is never written from
within JavaSPAS. To edit it use any text editor.

B .l LEX-type lexical specification

/ * * /

/* JavaSPAS database LEX file */
/ * * /

%{
%}

ereturn
newline
tab
space
colon
comma
slash
semicolon
pound
quote
dot
letter
digit
sign
digits
opt_fract
opt_exp
number
string
comment
separator
startlist
endlist

[\r]
[\n]
t \ t]
[]
[:]
[,]
[/]
[;]
[#]
[" "]
[.][a-zA-Z]
[0-9]
((" + ") I (" - "))
{{digit}+)
({dot}{digits})
(("£'■ I "e") ({sign}?) ({digits}))
(({sign}?){digits}) ({opt_fract}?) ({opt_exp}?)
{quote} J * {quote}
{semicolon} [''\r\n] * {newline}
[{creturn}|{newline}|{tab}j{space}|{colon}|{slash}
[<]
[>]

{comma}]+

/* Iceywords */
VLBI_header
Telemetry_header
Satellite_header
Source_header
Mount_l
Mount_2
Mount_3
Mounting
Terminal_l
Terminal_2
Terminal_3
Terminal_4
Terminal_5
Terminal_6
Terminal.?
Terminal_8
Terminal_9
Terminals

"[VLBI.Stations]"
"[Telemetry.Stations]"
"[Satellites]"
"[Sources]"
"Azimutal"
"Equatorial"
"XYEW"
{[Mount1]I[Mount2]|[Mount3]}
"Mk2 "
"M)c3 "
"Mk3A"
"Mk4 "
"S2"
"K3"
"K4 "
"VLBA"
"VSOP"
{[Terminal.l} [Terminal_2] [Termina1_3]
[Terminal_4] [Terminal_5] [Terminal_6]
[Terminal.?] [Terminal.8] [Terminal_9]

}

%%

{newline}
{comment}
{separator}
%%

{ /* increase line number */ }
{ /* do nothing */ }
{ /* do nothing */)
{ /* unrecognized character * / }

49
B.2 YACC-type grammar specification

/* JavaSPAS database YACC file
/ * * /

%{
/* capitalized identifiers are tokens from LEX */

%}

%%

database

vlbi_sect
telemetry_sect
satellite_sect
source_sect
vlbi_list

telemetry^list :
1

satellite_list :
I

source list :

vlbi def

te1emetry_def

vlbi_station_section
telemetry_station_section
satellite_section
source_section
VLBI_HEADER vlbi_list
TELEMETRY_HEADER telemetry_list
SATELLITE_HEADER satellite_list
SOURCE_HEADER source_list
vlbi_def vlbi_list
/* epsilon */
telemetry_def telemetry_list
/* epsilon */
satellite_def satellite_list
/ * epsilon * !

source_def source_list
/* epsilon */

/* name */
/* alias */
/* antenna mounting */
/* antenna diameter [m] */
/* station ITRF coordinates */
/* list of station local horizon values [deg] */

/* list of antenna terminal types */

STRING
STRING
MOUNTING
NUMBER
coordinates
STARTLIST
lochoriz_list
ENDLIST
STARTLIST
terminal_list
ENDLIST
STARTLIST
character_list /* list of antenna characteristics */
ENDLIST
STRING
STRING
MOUNTING
NUMBER
coordinates
STARTLIST
lochoriz_list
ENDLIST

/* name */
/* alias */
/* antenna mounting */
/* antenna diameter [m] */
/* station ITRF coordinates */
/* list of station local horizon values [deg] */

50
satellite def

source_def

coordinates

terminal_list

character_list

character_def

lochoriz_list

orbit

constr_list

STRING /* name */
STRING /* alias */
NUMBER /* antenna diameter [m] */
orbit / * orbital elements */
NUMBER / * mass [kg] */
NUMBER / * cross section [m2] */
NUMBER / * solar cell area [m2] */
NUMBER /* atmospheric coefficient [] */
NUMBER /* radiation coefficient [] */
STARTLIST
character_list /* list of satellite antenna characteristics */
ENDLIST
STARTLIST
constr_list /* list of satellite constraints */
ENDLIST
STRING /* name */
STRING /* alias */
NUMBER NUMBER NUMBER /* Right ascension {RA)[hour:min:sec] */
NUMBER NUMBER NUMBER /* Declination [deg:min:sec] * /
flux_list /* list of source fluxes */
NUMBER /* X coordinate [km] */
NUMBER /* Y coordinate [km] */
NUMBER /* Z coordinate [km] */
TERMINALS /* see LEX definition of terminal types */
terminal_list
/* epsilon */
character_def charac ter_li s t
/* epsilon */
NUMBER /* frecjuency [GHz] */
NUMBER /* system temperature [K] * /
NUMBER /* efficiency [%] */
NUMBER /* local horizon angle, max. 360 numbers

/* last value is "held" [deg] */
lochoriz_list
/* epsilon */
NUMBER /* semi-major axis (a) [km] */
NUMBER /* numerical eccentricity (e) [] */
NUMBER /* orbit inclination (i) [deg] */
NUMBER /* argument of perigee (w)[deg] */
NUMBER /* longitude of ascending node (loan) [deg] */
NUMBER /* mean anomaly (m) [deg] */
date time /* epoch of orbital elements */
constr_def constr_list
/* epsilon */

constr._def : for a detailed explanation see Appendix E */
NUMBER type */
normal_vec tor direction */
normal_vector plane */
NUMBER reference angle [deg] */
NUMBER reference object */
NUMBER earth distance */

date : NUMBER year */
NUMBER month * /
NUMBER day */

time NUMBER hour */
NUMBER minute */
NUMBER second */

normal._vector : NUMBER [0..1] V
NUMBER [0..1] */
NUMBER [0..1] */

fluxlist

flux_def

flux_def flux_list
/* epsilon */
NUMBER
NUMBER
NUMBER

/* frequency [GHz]
/* flux [Jy] */
/* error [Jy] */

51

B.3 A simple example database file

[VLBI_Stations]
"Arecibo" “ARC" Azimutal 305.00
2390.46300 -5564.83770 1994.66970
< 70 >
< S2 >
< 1.60000 35.000 50.00

5.00000 45.000 50.00 >
"Effelsberg" "Bonn" Azimutal 100.00
4033.94750 486.99045 4900.43074
< 10 >
< VLBA Mk4 >
< 1.60000 30.000 50.00

5.00000 65.000 50.00
22.00000 180.000 50.00 >

[Telemetry_Stations]
"Usuda" "Usuda" Azimutal 10.00
-3855.36000 3427.43000 3740.97000
< 10 >

[Satellites]
"RadioAstron
46812.900 0.
5000.000 80.
<

0.32700
1.60000
5.00000

2 2 . 0 0 0 0 0
>
<

"RadioAstron" 10
820000 51.000 285.000 255.000 280.000 1997/01/01 00:00:00
000 50.000 0.500000 0.500000

100 .00 0
50.000
50.000

150.000

50.00
50.00
50.00
30.00

1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 60.00 0 0 .00
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 90. 00 0 0 .00
0.0000 1.0000 0.0000 0.0000 0.0000 0.0000 67.00 0 0.00
0.0000 -1.0000 0.0000 0.0000 0.0000 0.0000 67.00 0 0.00
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 30.00 2 -13622.00
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 20.00 1 0.00
1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 25.00 3 0.00
-0.8660 0.0000 0.5000 0.0000 0.0000 0.0000 -90.00 4 0.00
0.0000 0.8191 -0.5735 0.0000 0.0000 0.0000 30.00 0 0.00
0.0000 -0.8191 -0.5735 0.0000 0.0000 0.0000 30.00 0 0.00
-0.9659 0.0000 -0.2588 0.0000 0.0000 0.0000 30.00 0 0.00
0.0000 0.8191 -0.5735 0.0000 0.0000 0.0000 20.00 1 0. 00
0.0000 -0.8191 -0.5735 0.0000 0.0000 0.0000 20.00 1 0.00
-0.9659 0.0000 -0.2588 0.0000 0.0000 0.0000 20.00 1 0.00
0.0000 0.8191 -0.5735 0.0000 0.0000 0.0000 25.00 3 0 .00
0.0000 -0.8191 -0.5735 0.0000 0.0000 0 .0000 25.00 3 0.00
-0.9659 0.0000 -0.2588 0.0000 0.0000 0.0000 25.00 3 0.00

52
[Sources]
"0106+013" "4C+01.02"
01:08:39 01:35:00
<

1.600000 2.000000 0.000000
5.000000 2.500000 0.000000

22.000000 3.500000 0.000000

53

C. JavaSPAS setup text file format

This appendix describes the format of the text file (Using LEX and YACC), which is used to store global
setup parameters. Note that this file {setup.txt in the Resources directory) is read and written so theoretically
there is no need to edit it with a text editor. As a matter of fact user comments included in the file that way
might not be preserved when saving it from within JavaSPAS.

C.l LEX'type lexical specification

/* ---------------------------------------
/ * JavaSPAS database LEX file

%{
%}

creturn
newline
tab
space
colon
comma
slash
semicolon
equal
pound
quote
dot
letter
digit
sign
digits
opt_fract
opt_exp
number
string
comment
separator
startlist
endlist
On
Off
OnOf f
StartTime
StopTime
TimeStep
BaseLine
GtoS
GtoG
StoS
ObsFreq
Bandwidth
VStation
TStation
Satellite
Source
CutoffAngle
CutoffMode
LocHoriz
SatConstr
Precession
Zoom

l\rl
[\n]
[\t]
[
Î:
[,
[/
[;
[=
[#
["
[.
[a-zA-Z]
10-9)
((" + ") I (•*-")>
({digit}+)
({dot}{digits})
((••£■• 1 "e") ({sign}?) {{digits}))
(({sign}?){digits})({opt_fract}?)({opt_exp}?)
{quote} ["'"]* {quote}
{semicolon} (''\r\n] * {newline}
[{creturn}|{newline}|{tab}|{space}|{colon}|{slash}|{comma}|{equal}]+
(<]
(>]
("Yes")I("On")
("No")I("Off")
{On}I(Off)
"StartTime"
"StopTime"
"TimeStep"
"BaseLine"
"GroundToSpace"
"GroundToGround"
"SpaceToSpace"
"ObservingFrequency"
"Bandwidth"
"VLBIStation"
"TelemetryStation"
"Satellite"
"Source"
"Cutoff Angle"
"CutoffMode"
"LocalHorizon"
"SatelliteConstraints"
"Precession"
"Zoom"

%%

(newline)
(comment)
(separator)
%%

{ /* increase line number */ }
{ /* increase line number */ }
{ /* do nothing */ }
{ /* unrecognized character * /

54
C.2 YACC-type grammar specification

/* JavaSPAS setup YACC file

%{
/* capitalized identifiers are tokens from LEX */

%}

%%

setup

start_time
stop_time
time_step
obs_frequency
bandwidth
baseline

v_station
t_station
satellite
source
cutoff_angle

start_time
stop_time
time_step
obs_frequency
bandwidth
baseline
v_station
t_station
cutoff_angle
cutoff_mode
satellite
sat_constr
source
precession
zoom
STARTIME date time
STOPTIME date time
TIMESTEP time
OBSFREQ NUMBER
BANDWIDTH NUMBER
BASELINE GTOG
BASELINE GTOS
BASELINE STOS
VSTATION STRING
TSTATION STRING
SATELLITE STRING
SOURCE STRING
CUTOFFANGLE NUMBER

* Starting time of observation */
* Ending time of observation */
* Size of consecutive simulation time steps
* Observation frequency [GHz] */
* Bandwidth [MHz] * /

* Use ground to ground baselines */
* Use ground to space baselines */
* Use space to space baselines */
* VLBI station name from database */
* telemetry station name from database */
* satellite name from database */
* source name from database */
* cutoff angle for stations [deg] */

cutoff_mode : CUTOFFMODE CUTOFFANGLE / * use cutoff angle value for stations */
1 CUTOFFMODE LOCHORIZ /* use local horizon value for each station

sat_constr : SATCONSTR ONOFF /* use satellite constraints or not */
precession : PRECESSION ONOFF /* use source precession or not */
date : NUMBER /* year */

NUMBER I * month */
NUMBER / * day */

time : NUMBER / * hour * /
NUMBER 1 * minute */
NUMBER /* second */

55
C.3 A simple example setup file

; T i m e--
StartTime = 1996/12/01 00:00:00
StopTime = 1996/12/02 00:00:00
TimeStep = 00:03:00
; --- Observation---
ObservingFrequency = 1.6000
Bandwidth = 32.0000
; --- Baselines---
BaseLine = GroundToGround
BaseLine = GroundToSpace
BaseLine = SpaceToSpace
; --- Stations---
CutoffAngle = 0
CutoffMode = LocalHorizon
VLBIStation = "Effelsberg"
VLBIStation = "GreenBank"
VLBIStation = "Goldstone"
VLBIStation = "Arecibo"
TelemetryStation = "Goldstone"
TelemetryStation = "Usuda"
TelemetryStation = "GreenBank"
; --- Satellites---
SatelliteConstraints = On
Satellite = "VSOP"
; --- Source----
Precession = On
Source = "0234+285"
; -- 3 DV i e w ----
Zoom = 1.0000

56

D. The Booch method artifacts

Shown here are the elements of the Booch notation [8] that are used in the JavaSPAS design.

Class diagram
Shows the existence of classes and their relationships in the logical view of a system

Class icons

class name

\ attributes

Class relationships
class category

name
classes o using

— has

-► inheritance

State Transition Diagram
Shows the state of a given context and the events that cause a transition from one state to another

State icon
r state

action

History

H

State transitions

event/action

► start

stop

Nesting

superstate

state 1

I
state 2

z
state 3

57
Object Diagram
Shows the existence of objects and their relationships in the logical view of the system

Object icon

name : class

attributes

Link

-order : mesasge/event-

Synchronization

 ► simple

— p. synchronous

asynchronous

Interaction Diagram
Traces the execution of a scenario

objecti :class1 object2:class2 object3:class3

— e v e n t ►

focus
of control'

operationO

operationO

 event

< — event

58

E. Explanation of satellite constraints and their encoding

This chapter is based on Appendix C of [5].

CType RefDir RefDir RefDir RefNor RefNor RefNor Angle Object Earth
X Y Z X Y Z [deg] Distance

[km]

1 0 0 1 0 0 0 ->•90 Sun 0

3 0 0 -I 0 1 0 -30 Sun 0

3 0 0 -1 0 -1 0 -30 Sun 0
11 0 cos 35° -sin 35° 0 0 0 -t-30 Sun 0

11 0 -cos 35° -sin 35° 0 0 0 -t-30 Sun 0

11 -COS 1 5 " 0 -sin 15° 0 0 0 -t-30 Sun 0

11 0 cos 35° -sin 35° 0 0 0 -t-20 Moon 0

11 0 -cos 35° -sin 35° 0 0 0 -t-20 M oon 0

11 -cos 15° 0 -sin 15° 0 0 0 4-20 M oon 0

11 0 cos 35° -sin 35° 0 0 0 +25 Earth-
Edge

0

11 0 -cos 35° -sin 35° 0 0 0 +25 Earth-
Edge

0

11 -cos 15° 0 -sin 15° 0 0 0 +25 Earth-
Edge

0

3 0 0 0 0 1 0 -23 Sun 0
3 0 0 0 0 -1 0 -23 Sun 0

3 0 0 -1 1 0 0 -30 Sun 0

3 0 0 -1 -1 0 0 -90 Sun 0

1 -cos 30° 0 sin 30° 0 0 0 -90 Earth-
Station

0

3 0 0 0 0 1 0 -30 Sun 0

3 0 0 0 0 -1 0 -30 Sun 0
1 0 0 1 0 0 0 +30 Earth-

Center
-13622

1 1 0 0 0 0 0 +60 Sun 0
1 1 0 0 0 0 0 +5 M oon 0
1 1 0 0 0 0 0 +5 Earth-

Edge
0

1 1 0 0 0 0 0 +30 Sun 0
1 1 0 0 0 0 0 +20 Moon 0
1 1 0 0 0 0 0 +25 Earth-

Edge
0

T able E. 1
RadioAstron constraint list

CType RefDir RefDir RefDir RefNor RefNor RefNor Angle Object Earth
X Y Z X Y Z [deg] Distance

[km]
1 1 0 0 0 0 0 +70 Sun 0
1 1 0 0 0 0 0 +70 Earth-

Station
0

4 0 0 0 0 0 0 0 fXimmv 0
1 0 1 0 0 0 0 +85 Sun 0
1 0 n 1 0 0 0 0 -95 Sun 0
1 1 0 0 0 0 0 + 1 Earth-

Edge
0

T ab le E.2
VSOP constraint list

59
Explanation o f constraint parameters

Reference direction (RefDirX, RefDirY, RefDirZ):
X, y and z are the coordinates of the unit vector which defines the reference direction in the satellite's
coordinate system. The reference direction should be compared with the direction of a celestial object.
The satellite's coordinate system is a right-handed Cartesian system. The X axis coincides with the main axis
o f the on-board radio telescope. During the observation this axis points to the radio source on the sky. The
solar panels lie along the Y and -Y axes. The Z axis points to the "bottom” of the satellite where usually the
high-gain communications antenna is mounted.

Reference normal vector (RefNorX, RefNorY, RefNorZ):
X, y and z coordinates are relevant for the Type 2 constraints only. They define the normal (unit) vector of a
plane in the satellite's system. The direction of the celestial object should be projected to this plane.

Angle [°]:
The angular limitation between the reference direction and the direction of the celestial object (or its
projection). Note that the sign of Angle is only an indicator: A positive value means that the angle between
the two directions should always be more than the Angle. A negative value means that the angle should be
less than the Angle to perform successful observation with the satellite.

Object:
There are different celestial objects which the pointing restrictions connected to. These objects are coded in
the following way;
0 = Sun (center), 1 = Moon (center), 2 = Earth (center), 3 = Earth (edge), 4 = Earth (tracking station)

Earth distance [km]:
A constraint may be valid only for certain satellite-Earth distances. Non-zero value of this parameter defines
this distance limit. A negative value means that the constraint should be considered only for Earth distances
less than the distance limit. A positive value means that the constraint is valid only for larger Earth distances
than the distance limit. The distance of the satellite from the Earth is measured from the Earth's surface.

Explanation o f constraint types:

CType =1
A reference direction in satellite coordinate system is given by a unit vector (RefDirX, RefDirY, RefDirZ).
Direction of a celestial object (Object) is also given.
If Angle < 0 then the angle between the two directions (Object’s and RefDir) must not exceed Angle.
If Angle > 0 then the angle between the two directions (Object’s and RefDir) must exceed Angle.

CType =11,12 and 13
These are CType = 1 constraints but only two of them must be OK at the same time.

CType = 2
A reference direction in satellite coordinate system is given by a unit vector (RefDirX, RefDirY, RefDirZ).
Direction of a celestial object (Object) is also given.
A plane in satellite system is given by a normal vector (RefNorX, RefNorY, RefNorZ). The direction of
Object must be projected onto this plane.
If Angle < 0 then the angle between the reference and projected directions must not exceed Angle.
If Angle > 0 then the angle between the reference and projected directions must exceed Angle.

CType = 3
A reference plane in satellite system is given by a normal vector (RefNorX, RefNorY, RefNorZ). Direction
of a celestial object (Object) is also given.

60
If Angle < 0 then the angle between the reference plane and the object’s direction must not exceed Angle.
If Angle > 0 then the angle between the reference plane and the object’s direction must exceed Angle.
If one of RefDirX, RefDirY or RefDirZ equal with +1 or -1 then the reference plane is only the semi-plane
±X, ±Y or ±Z respectively.

CType = 3 constraints can be translated into CType = 1 constraints easily or even formally using the
following algorithm:
If CType = 3 then

If Angle < 0 then
if RefDirX = 1 or RefDirX = -1 then

create a new Record:
(1, RefDirX, 0, 0, 0, 0, 0, -tc/2, Object, EarthDistance)

(end if)
if RefDirY = 1 or RefDirY = -1 then

create a new Record:
(1, 0, RefDirY, 0, 0 ,0 ,0 , -7t/2, Object, EarthDistance)

(end if)
if RefDirZ = 1 or RefDirZ = -1 then

create a new Record:
(1, 0, 0, RefDirZ,, 0 ,0 ,0 , -7t/2, Object, EarthDistance)

(end if)
(end if)

CType = 1
RefDirX = RefNorX
RefDirY = RefNorY
RefDirZ = RefNorZ
RefNorX = 0
RefNorY = 0
RefNorZ = 0
Angle = -Sgn(Angle) * (ti/2 - Abs(Angle))

(end if)
Next i

EarthDistance
If EarthDistance < 0 then the constraint is valid only for distances above the Earth surface less than
EarthDistance.
If EarthDistance > 0 then the constraint is valid only for distances above the Earth surface more than
EarthDistance.

CType = 4
Satellite cannot observe in the shadow of Earth, when no sunlight reaches the solar panels (’’eclipse”
constraint).

61
The protocol of RadioAstron constraints contains a lot of redundant information. This is due to the identical
or overlapping constraints from different on-board equipment. Avoiding the redundancy we give a complete
but reduced list of RadioAstron constraints below. The listed parameters can be used as inputs for the SPAS
program.

c -
Ty-
pe

RefDir
X

RefDir
Y

RefDir
Z

RefNor
X

RefNor
Y

RefNor
z

Angle
[deg]

Object Earth
Distance

[km]
I I 0 0 0 0 0 4-60 Sun 0
1 1 0 0 0 0 0 4-20 M oon 0
I 1 0 0 0 0 0 4-25 EarthEdge 0
1 0 1 0 0 0 0 4-67 Sun 0
1 0 -1 0 0 0 0 4-67 Sun 0
1 0 0 1 0 0 0 4-90 Sun 0
1 -COS 30® 0 sin 30° 0 0 0 -90 Earths tation 0
1 0 0 1 0 0 0 4-30 EarthCenter -13622
11 0 COS 35° -sin 35° 0 0 0 4-30 Sun 0
11 0 -cos 35° -sin 35° 0 0 0 4-30 Sun 0
11 -cos 15® 0 -sin 15° 0 0 0 4-30 Sun 0

11 0 cos 35® -sin 35° 0 0 0 4-20 M oon 0
11 0 -cos 35° -sin 35° 0 0 0 +20 Moon 0

11 -cos 15® 0 -sin 15° 0 0 0 +20 Moon 0

11 0 cos 35° -sin 35° 0 0 0 +25 EarthEdge 0
11 0 -cos 35° -sin 35° 0 0 0 +25 Earth Edge 0
11 -cos 15® 0 -sin 15® 0 0 0 +25 EarthEdge 0

Table E.3
Simplified RadioAstron constraint list

62

F. Glossary

This glossary is taken from the SPAS User Manual [6], but only relevant portions are included here.

active baseline: both antennae at the ends of the baseline can observe the same radio source.
antenna efficiency; is a proportionality constant on a given frequency, which shows how effective is the
telescope at absorbing radiation of this frequency from any particular source direction and making this
power available at the output terminals. In ideal case the antenna efficiency is 1. In practice, typical range
of the antenna efficiency is 0.4-0.7 depending on the observing frequency.
azimuth; see horizontal system
baseline; formed by two VLBI antennae (ground VLBI stations and/or satellites)
declination; see equatorial system.
ecliptic system; Definition: the primary reference plane is the plane of ecliptic, the secondary is the
ecliptic meridian of the vernal equinox. (Z axis points to north ecliptic pole, X to the vernal equinox and Y
completes a right-hand system.) A direction on the celestial sphere is defined by the angles ecliptic
longitude and ecliptic latitude. The longitude is measured from 0 ° to 360 ° in the ecliptic plane from the
vernal equinox to the east. The latitude is measured from -90 “ to 90 The sign is positive above the
ecliptic.
elevation; see horizontal system.
elevation cut-off angle: the minimum elevation angle where a source or satellite can be observed from a
station.
equatorial system; Definition: the primary reference plane is the plane of equator, the secondary is the
equinoctial colure. (Z axis points to north equatorial pole, X to the vernal equinox and Y completes a
right-hand system.) A direction on the celestial sphere is defined by the angles right ascension and
declination. The right ascension is measured from 0 h to 24 h in the equatorial plane from the vernal
equinox to the east. The declination is measured from -90 ° to 90 The sign is positive above the
equator.
flux density; is the energy flux per unit frequency interval radiated by the radio source and measured at
the receiver site. The radio astronomical unit of the flux density is the Jansky, 1 Jy = 10 W Hz"^.
galactic system; The Z axis points to galactic pole, X to the galactic center (as defined in 1971) and Y
completes a right-hand system. The coordinates of the galactic pole in the equatorial S)’Stem: 12 h 49 m
right ascension, 27 ° 24 ' declination. A direction on the celestial sphere is defined by the angles galactic
longitude and galactic latitude. The galactic longitude is measured from 0 ° to 360 ° in the plane of
galactic equator from X axis towards the Y axis. The galactic latitude is measured from -90 ° to 90 The
sign is positive above the galactic equator.
geographic system; The Z axis points to north equatorial pole, X to the Greenwich meridian and Y
completes a right-hand system. A point can be given by angles longitude, latitude and height above the
reference surface. The reference surface is a rotational ellipsoid. Its semi-major axis is the Earth
equatorial radius (« = 6378.1363 km), the flattening i s /=(«-/?)/« = 1/298.257 (lERS recommended
values, b is the semi-minor or polar axis). Longitude is measured from 0 ° to 360 ° in the equatorial plane
from the Greenwich meridian to the east. Latitude is the angle between the equatorial plane and the
geodetic normal. It is measured from -90° to 90°. The sign is positive above the equator.
geomagnetic system; Spherical terrestrial coordinate system. The poles are defined as the poles of the
Earth’s magnetic field considered as a dipole. A direction in the system is defined by the geomagnetic
longitude and latitude.
horizontal system; Definition: the primary reference plane is the plane of horizon, the secondary is the
observer's celestial meridian. (Z axis points to zenith, X to north and Y completes a left-hand system.) A
direction on the celestial sphere is defined by the angles azimuth and elevation. The azimuth is measured
from 0 ° to 360 ° in the horizontal plane; it is 0 ° northward and 90 ° eastward. The elevation is measured
from -90 ° to 90 °. The sign is positive above the horizon. The system is called topocentric if its origin
coincides with the observer's location.
ICRF (lERS Celestial Reference Framel; equatorial system defined and maintained by the lERS.

63
ITRF (lERS Terrestrial Reference Frame): eeosraphic system defined and maintained by the lERS.
Julian Date (JD); Practical unit of time used in astronomy. The definition: days elapsed from B.C. 4713
January 1,12 h Universal Time. Its simplified version is the Modified Julian Date.
Keplerian orbital elements: Unperturbed motion of a satellite around the Earth, governed by the central
gravitation only, has six independent parameters. Usually the following Keplerian orbital elements are
used: semi-major axis (a) and numerical eccentricity (e) of orbital ellipse, orbit inclination (i), argument
of perigee (<u), longitude of ascending node (J3) and mean anomaly at epoch (M). These elements
determine the position and velocity of satellite at epoch.
latitude; see ecliptic system, geographic system, geomagnetic system.
local horizon: the minimal elevation angle as a function of azimuth where observations can be carried
out from a VLBI station or telemetry station.
longitude: see ecliptic system, geographic system, geomagnetic system.
Modified Julian Date (MJD): Simplified version of Julian Date.
MJD = JD - 2 400 000.5 .
mounting (of radio telescope): It is the mechanical steering of the radio telescope, part of the
mechanical structure. Fully steerable telescopes are generally placed on either an equatorial or an alt­
azimuth type mounting. Transit telescopes have limited steerability, usually restricted to close of the
meridian.
nutation: see precession.
observability: If a source (or satellite) can be observed from VLBI station (or telemetry station) it is
called observable. It means that the object is above the local horizon of the station (i.e. it is visible) and
other restrictions don't obstruct the observation.
precession: The precession and nutation mean the motion of the coordinate systems with respect to the
stars due to the gravitational action of the extra-terrestrial bodies (Sun, Moon, planets) on the Earth's
equatorial bulge. The effect of the Sun and Moon are resolved into two components; the lunisolar
precession (moving of the celestial pole around ecliptic pole with amplitude of 23.5 ° and period 25 800
years) and the astronomic nutation (relatively short periodic motions of celestial pole superimposed on
lunisolar precession). The planetary precession is the effect of planets. The lunisolar and planetary
precessions are considered together as general precession.
refraction; Change of direction of electromagnetic wave propagation in an inhomogenous medium like
the Earth's atmosphere. From the ground based observer's point of view the elevation of a celestial object
increases due to the refraction. The refraction angle is a function of elevation, it is 0 in zenith.
right ascension: see equatorial system
satellite conflict: Two satellites are in the field of view of the same telemetry/tracking station at the same
time. A priority decision is needed in this case.
satellite constraints: on-board technical restrictions which determine the pointing of the antenna on the
spacecraft.
satellite main axis: The axis of the radio antenna of the space VLBI satellite. This axis is considered as
the X axis of satellite reference frame in SPAS.
secular perturbations: perturbations on satellite orbits which are linear functions of time (cf. Earth
gravity field).
telemetry station: ground station (antenna) used for command uploading to satellites.
topocentric horizontal coordinates: see horizontal system.
tracking station: ground station (antenna) used for data downloading from satellites; it often coincides
with a telemetry station.
UV-plot: is a projection of the baselines to a plane perpendicular to the source direction in units of
wavelength, u is the east component and v is the north component of the projected baseline vector seen
from the source. The third component w is the component of the baseline vector in the direction of the
source.
visibility: If a source (or satellite) is above the local horizon of the station, the object is called visible.
However, the observability may be impossible due to technical restrictions.
VLBI station: ground radio telescope used in VLBI measurement.

64

G. Bibliography

[1]. ESA Software Engineering standards, ESA PSS-05-0 Issue 2, February, 1991, Paris, France
[2]. S. Frey, SPAS User Requirements Document V2.1, May, 1993, Penc, Hungary
[3]. S. Frey, SPAS Software Requirements Document V I.3, October 11, 1993, Penc Hungary
[4]. G. Heitler, SPAS Architectural Design Document, V3.1, June 20, 1994, Penc, Hungary
[5]. G. Heitler, (ed.) SPAS Detailed Design Document, V3.5, December 11, 1995, Penc, Hungary
[6]. S. Frey, SPAS User Manual, Volume 1, V2.4, March 31, 1996, Penc Hungary
[7]. Barry W. Boehm, A Spiral Model of Software Development and Enhancement,

Computer, May 1988 pp. 61-72
[8]. G. Booch, Object-Oriented Analysis and Design - With Applications, second edition. The

Benjamin/Cummings Publishing Company, Inc., 1994
[9]. H Deitel, P. Deitel, Java How to Program: with an Introduction to Visual J++, Pretience Hall, Inc.,

1997
[10]. D. Flanagan, Java in a Nutshell, first edition (Java 1.0), O’Reilly & Associates, Inc., 1996

WWW references:

[11]. The Java White Papers by Sun Microsystems, Inc., http://java.sun.com/docs/white/index.html
[12]. The Hungarian Notation (C. Simonyi), http://www.freenet.tlh.fi.us/-joeo/hungarian.html
[13]. comp.lang.java.programmer FAQ list, July 15 1997, compiled by Peter van der Linden

http://www.best.com/~pvdl/javafaq.txt
[14]. JavaSPAS source (*.java) and object (*.class) code: http://www.sgo.fomi.hu/~noszti/javaspas/

Freely available Java packages used in the JavaSPAS implementation:

[15]. ImageButton.java and related classes
Copyright(c) 1997 DTAI, Incorporated (http://www.dtai.com)

[16]. MultiLineLabel.java and related classes (from [10])

http://java.sun.com/docs/white/index.html
http://www.freenet.tlh.fi.us/-joeo/hungarian.html
http://www.best.com/~pvdl/javafaq.txt
http://www.sgo.fomi.hu/~noszti/javaspas/
http://www.dtai.com

	Space VLBI user assistance software: an object-oriented design implemented in Java
	Let us know how access to this document benefits you.
	Recommended Citation

	Unknown

