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There are several isoxazoles in general medical practice and their metabolic fate and 

disposition is well known, and thus, this heterocyclic ring is often considered among the 

privileged scaffolds or templates for drug design and discovery. Many examples can be found of 

3-aryl-isoxazoles which in theory have a chiral axis, yet actual experimental examples of direct 

determinations of isoxazole rotational barriers are few and far between. The dihedral angle of the 

3-aryl to isoxazole bond in antibacterials of the oxacillin series increased with substitution in the 

2- and 6- positions of the phenyl. Although his calculated barrier was low, this implied that 

atropisomers are possible for unsymmetrical substitution. The chirality of these systems differs 

from that of other compounds as their configuration is inverted by rotation about single bonds 

and can be accomplished by thermal equilibration.  Thus, depending on the barrier to rotation, 

some of these atropisomers may only be isolated at low temperatures, if at all. 

Recognition of the chiral elements, helicity and sugar morphology, of DNA by a small 

chiral molecule has long been an area of interest for the design of new antitumor medicines. It is 

expected that chiral atropisomers would exhibit a significant eudismic ratio when the functional 

groups of the chiral small molecule addresses the chiral portion of the molecular target. Our 

working hypothesis is based on docking studies with our putative molecular target G4-DNA, and 

indicates a eudismic ratio for atropisomers which arises precisely from the functional group 

which renders the molecule axially chiral. The study described herein propose to characterize at 

atomic resolution the first such atropisomerc isoxazole interacting with G4, an interaction that 

spans the domain interface from the G-tetrad deck to the sugar phosphate backbone, thus 

providing a rigorous framework for the development of selectivity among the major classes of 

G4 structures.  

The goal is rational design of therapeutic aryl isoxazoles in which the barrier to 

stereochemical inversion (rotation) can be tailored to the application.  By this means, we can 

probe the efficacy (binding efficiency) of potential drugs locked in a particular atropisomeric 

form vs freely/restricted rotating at physiological temperatures. In the course of these studies we 

have prepared analogs with enhanced bioactivity in the sub-micromolar to nanomolar range, 

which in principle contain a chiral axis. It is important for our current study to experimentally 

elucidate these conformational dynamics, and knowledge of such dynamics will be useful in the 

broader impact sense of providing energetic benchmarks for others in the field. 
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Chapter 1 

Isoxazoles in the PDB 

1.1 Introduction       

It is commonly accepted that a majority of the published work in organic chemistry 

involved at least one heterocyclic ring. Heterocycles can play a pivotal role not only as goals in 

synthesis, but as mediators of synthetic transformations. Isoxazoles are unique in their chemical 

behavior not only among heterocyclic compounds in general but also among related azoles. This 

is because isoxazoles possess the typical properties of aromatic systems, which are in fact rather 

pronounced in these derivatives, together with high lability of the ring under certain conditions, 

particularly route to liberate the latent functionality. From a purely formal point of view 

isoxazole can be considered an analog of pyridine just as furan is an analog of benzene. Such 

formal analogy is to some extent valid; for isoxazole resembles pyridine more than other 

heterocyclic compounds as far as chemical properties are concerned. It differs from pyridine in 

undergoing more readily electrophilic substitutions reactions and possessing a more labile ring 

this relationship thus resembles that between furan and benzene.  

 The isoxazole ring appears in several drugs in general medical practice, and is found 

routinely in drug discovery leads, to the point where some consider it a privileged scaffold. The 

literature on crystallography has continued to expand at an accelerating pace in recent years, and 

it seemed that a summary of the observed interactions of the isoxazole moiety with biological 

targets could be useful to those involved in design and discovery. Especially intriguing in light of 

the fact that most medicinal chemists use some form of molecular modelling, is that a collection 

of the observed interactions could prove useful in assessment of hypothesis generation. 



 

 

2 

 

The current review covers isoxazole ligands in the Protein data bank (PDB) reviewed April 27, 

2015, there were 174 isoxazole containing ligands and 215 discreet drug-receptor interactions 

deposited and released to the PDB. There has been classic work on topics such as 

sulfamethoxazole, beta-lactams, antivirals, and the AMPA receptor, as well as intense recent 

interest in topics such as BRD, FXR, kinases and HSP90. We have attempted to describe here 

the most essential interactions defining the potential role of an isoxazole in drug-receptor 

interactions. The full analysis of the data set is summarized in the Table, and a more detailed 

comprehensive discussion will appear in an invited review to Future Medicinal Chemistry. 



 

 

3 

 

1.2 Types of interactions 

Our general discussion of interactions will begin with common modes of interaction that have 

been observed in coordination chemistry
1
.  

 

 

Chart 1-1. Isoxazole binding modes observed in metal complexes, generalized to interactions 

with Lewis Acids ∂+. In the Munsey review, conjugated amino groups were considered in the 

coordination chemistry with metals, here generalized to conjugated Lewis bases (LB). Reprinted 

with permission from reference 1. 
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The depiction of three dimensional shape in two dimensions is often a difficult undertaking, 

however, the Stierand and Rarey notation used on the PDB is the best current solution
2
. 

Chart 1-2. The ligand interactions in the protein data bank are based on the graphic 

nomenclature. Reprinted with permission from reference 2. 
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1.3 Sulfamethoxazole 

Dihydropteroate synthase enzyme in bacteria has been a target for many years to help 

combat bacterial infections in both gram-positive and gram-negative organisms. Since bacteria 

have to synthesize folic acid for DNA synthesis, targeting this enzyme would allow for selective 

toxicity to bacterial cells. Sulfa drugs interrupt this essential folate pathway by competing with  

 

 

Figure 1-1. Sulfamethoxazole interactions with dihydropteroate synthase. Left, image from the 

RCSB PDB of PDB ID 3TZF. Right, Ligand Explorer reveals hydrophobic interactions with the 

isoxazole. Yun, M.K.,  Wu, Y.,  Li, Z.,  Zhao, Y.,  Waddell, M.B.,  Ferreira, A.M.,  Lee, 

R.E.,  Bashford, D.,  White, S.W.  Catalysis and sulfa drug resistance in dihydropteroate 

synthase. Science. 2012. 335: 1110-1114. 

 

the 4-Aminobenzoic acid (PABA) precursor. Sulfamethoxazole was the first isoxazole 

containing drug to hit the market. The first dihydropteroate synthase crystallized with 

sulfamethoxazole appeared in 2012. The 5-methyl-3- sulfonamide isoxazole plays a role as a 

spacer for anchoring two hydrogen bonds with one each of the carbonyl groups of the sulfone to 

Ser222B
3
, and Ligand Explorer reveals direct isoxazole hydrophobic interactions that are seen 

for the C3 and C4 carbons of the isoxazole with Proline 64 (Figure 1-1).  
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1.4 Beta-lactamase  

β-Lactamases are one of the most recognizable and most widely prescribed antibiotics 

used to treat a number of bacterial infections. β-Lactamases, such as penicillins, cephalosporins,  

Figure 1-2. Cloxacillin interactions with β-lactamase. Left, image from the RCSB PDB of PDB 

ID 1FCM. Left, interaction map and Right, Ligand Explorer reveals hydrophobic interactions 

with the isoxazole. Patera, A.,  Blaszczak, L.C.,  Shoichet, B.K. Crystal structures of Substrate 

and Inhibitor Complexes with AmpC-Lactamase: Possible Implications for Substrate-Assisted 

Catalysis. J.Am.Chem.Soc. 2000, 122: 10504-10512. 

 

and carbapenems work by inhibiting cell wall synthesis inhibiting of the peptidoglycan layer in 

the cell wall.  β -lactam analogs preserve the β-lactam core of the drug but explore diverse 

functionality of the amide bond substituents to help understand the different pharmacological 

profiles and different bacterial spectra of action. However, different levels of resistance to β-

lactamases comes with such a diverse pharmacophore, as well as,  the added concern of overuse 

and misuse of these drugs.
4, 5

 

Lactamases are categorized into three classes (A, B, and C) with many subclasses. While 

class B enzymes use a zinc-based mechanism for hydrolysis as opposed to a nucleophilic serine-

based two-step mechanism for class A and C, the potential problem lies in the covalent bond that 

β-lactams form with such diverse β-lactamases
4,5

.  However, as more classes of β–lactamases 
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being discovered and characterized, the diversity in their substrate selectivity profiles became 

apparent.  

With many β-lactamases having been crystallized with antibiotics containing isoxazoles 

(Chart 1-3), a ligand interactions diagram can start unfolding. Many of the interactions that occur 

with isoxazole in the binding pocket are aliphatic hydrophobic interactions of the C5-methyl-

isoxazole and isoxazole-aryl, although direct isoxazole interactions were noted in 1NYY (Figure 

1-2). Another interesting case comes from Patera (2000) when they crystallized cloxacillin 

(open-form) with in beta-lactamase not only showing hydrophobic interactions of the C5-methyl-

isoxazole with Tyr218, but also the first known resolved  axially chiral 3-aryl- isoxazole found in 

the literature. With continued efforts, the structural bases for isoxazole containing β-lactamase 

antibiotics structure-activity-relationship will continue to grow and become well understood and 

remain areas of intense investigation. 

 

Chart 1-3. Ligands containing isoxazole moieties of β-lactamase.
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1.5 Rhinovirus 

Small icosahedral RNA viruses that are a part of the Picornaviridae family, including the 

rhinoviruses are the most common and leading viral infection in humans for upper respiratory 

tract infections, also known as the common cold. Human rhinoviruses are composed of a capsid, 

that contains four viral proteins VP1, VP2, VP3 and VP4 consisting of 60 copies of each. VP1, 

VP2, and VP3 form the major part of the protein capsid with 8 anti-parallel-barrels. The smaller 

VP4 protein has a polypeptide chain and lies at the internal surface of the capsid. Rhinoviruses 

have a surface “canyon” which is the binding site for many surface molecules. Below the floor of 

the “canyon” within the VP-1 barrel, lies a hydrophobic pocket which is hypothesized to play a 

role in maintaining the capsid stability. Thus, effort into building a small molecule to stabilize 

the capsid via binding in the hydrophobic space (Figure 1-3, shown below) to an extent that the 

virus cannot release its RNA  

Figure 1-3. W56 ligand interactions of Antiviral human rhinovirus 14.  Left, image from the 

RCSB PDB of PDB ID 2RS5. Right, Ligand Explorer reveals Nring-H-Bond –Asn219 and p-

Ring-Isox-π-Leu106/Phe124 interactions with the isoxazole. Badger, J., Minor, I., Oliveira, 

M.A., Smith, T.J., Rossmann, M.G. Proteins 1989, 6: 1-19. 

 

into the target cell is underway. A new development in antiviral drugs came when Pleconaril 
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made to clinical trials. Although the FDA did reject the new-drug application due to safety 

concerns, although it is under further investigation, it is a breakthrough in the sense that small 

molecules could be designed to bind in the hydrophobic pocket to prevent RNA release (Chart 1-

4 and 1-5).
6, 7

 

 

Chart 1-4. Isoxazole ligands for rhinovirus. 
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Chart 1-5. Isoxazole ligands for rhinovirus. 
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1.6 MMP 

Matrix metalloproteinases (MMPs) are part of a large family of proteases that are zinc-

dependent endopeptidases. Collectively, MMPs degrade all kinds of extracellular matrix proteins 

and participate in connective tissue remodeling and in numerous other physiological processes
8
. 

With MMPs being implicated in multiple pathways, extensive efforts to develop new and more  

Figure 1-4. R47 ligand interactions with matrix metalloproteinase 12. Left, image from the 

RCSB PDB of PDB ID 4GQL. Right, Ligand Explorer reveals π-Ring-Isox- π -His218; C3-Ph-

Tyr240/His218 interactions with the isoxazole. Czarny, B.,  Stura, E.A.,  Devel, L.,  Vera, 

L.,  Cassar-Lajeunesse, E.,  Beau, F.,  Calderone, V.,  Fragai, M.,  Luchinat, C.,  Dive, V. 

J.Med.Chem. 2013, 56: 1149-1159. 

 

potent inhibitors is a target for a variety of therapeutic applications with the initial broad-

spectrum inhibitor, a synthetic inhibitor, showed disappointing results in clinical trials
9
. The first 

MMP inhibitor containing an isoxazole was shown in 2007 for MMP9, since then only literature 

has been seen for MMP12 with the most recent derivatives by Czarny
10

 (Chart 1-6) showing sub-

nano-molar to pico-molar activity is attainable. The isoxazole side chain extends deep into the 

cavity of MMP-12 and ring stacks on the His218 imidazole ring (Figure 1-4, shown above). 
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Chart 1-6. Isoxazole ligands at the matrix metalloproteinases (MMP). 
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1.7 Heat Shock Protein 90 (HSP90) 

Heat shock protein 90 (HSP90) has a complex function involving homodimerization, 

assisting protein folding, stabilizes proteins against heat stress and aids in protein degradation.  

Figure 1-5. 2JG ligand interactions with HSP90. Left, image from the RCSB PDB of PDB ID 

2VCI. Right, Ligand Explorer reveals Nring-H-Bond–Thr184 interactions with the isoxazole.  

Brough, P.A.,  Aherne, W.,  Barril, X.,  Borgognoni, J.,  Boxall, K.,  Cansfield, J.E.,  Cheung, 

K.M.,  Collins, I.,  Davies, N.G.M.,  Drysdale, M.J.,  Dymock, B.,  Eccles, S.A.,  Finch, 

H.,  Fink, A.,  Hayes, A.,  Howes, R.,  Hubbard, R.E.,  James, K.,  Jordan, A.M.,  Lockie, 

A.,  Martins, V.,  Massey, A.,  Matthews, T.P.,  Mcdonald, E.,  Northfield, C.J.,  Pearl, 

L.H.,  Prodromou, C.,  Ray, S.,  Raynaud, F.I.,  Roughley, S.D.,  Sharp, S.Y.,  Surgenor, 

A.,  Walmsley, D.L.,  Webb, P.,  Wood, M.,  Workman, P.,  Wright, L. J.Med.Chem. 2008, 51: 

196. 

 

The chaperone cycle is driven by hydrolysis of ATP to ADP with a binding pocket in the N-

terminal domain, in which most inhibitors are bound within. The dysregulation of pathways 

involving stabilizing a number of proteins that play a key role in assisting survival, proliferation, 

invasion and metastasis is why HSP90 inhibitors are investigated as potential anti-cancer drugs. 

HSP90 is expressed in normal cell homeostatis, comprising 1-2% of total cellular protein, 

however, many theories have been proposed for rationales for selectively of HSP90 in cancer 

cells versus normal cells 
11

. A group from Vernalis
11

, found that bioisoteric replacement of a 

pyrazole with 3,4-diaryl isoxazole-5-carboxamides resulted in potent anticancer activity (Figure 
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1-5, shown above). The crystal structure revealed binding at the ATP binding pocket of heat 

shock protein 90 (HSP90). Key interactions include Oring-hydrogen bond with Thr184 and 

hydrophobic interactions of Met98 with the isoxazole ring (Chart 1-7). 

 

Chart 1-7. Isoxazole ligands for chaperone protein Heat Shock Protein 90 (HSP90). 
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1.8 Farnesoid X receptor (FXR) 

The farnesoid X receptor (FXR), also known as, the bile acid receptor (BAR), is a part of 

a large nuclear receptor family which regulates gene transcription. Just like other nuclear 

receptors, FXR, when activated, translocated to the nucleus, forms a dimer and binds to a 

response element of DNA, which up- or down-regulates the expression of certain genes. FXR is 

expressed highly in the liver and intestine and to a less extent in gallbladder, kidney and adrenal  

 

Figure 1-6. 034 ligand interactions with FXR. Left, image from the RCSB PDB of PDB ID 

3RVF. Right, Ligand Explorer reveals Bifurcated-Nring-Oring-H-bond-Asn447A, π-Ring-C3-Cl2-

Ph-π-Phe329A and C5-iPr-Leu387A interactions with the isoxazole. Akwabi-Ameyaw, 

A.,  Caravella, J.A.,  Chen, L.,  Creech, K.L.,  Deaton, D.N.,  Madauss, K.P.,  Marr, 

H.B.,  Miller, A.B.,  Navas, F.,  Parks, D.J.,  Spearing, P.K.,  Todd, D.,  Williams, S.P.,  Wisely, 

G.B. Bioorg.Med.Chem.Lett. 2011, 21: 6154-6160. 

 

glands. FXR is a key controller of bile acid homeostasis, as well as, helps maintain glucose 

homeostasis. With such diverse functions, FXR has the potential in many aspects of health 

practices, such as: inflammatory bowel disease, diabetes, obesity, and liver cancer among other 

possibilities. This first isoxazole continuing FXR inhibitor in the literature was found to be from 

Akwabi-Ameyaw
12

 in 2008. Since then, many other groups have come out with additional potent 

isoxazole containing inhibitors for FXR
13–17

 (Chart 1-8). Interesting binding interactions came 
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from Akwabi-Ameyaw
14

 (Figure 1-6) showing a bifurcated Nring-Oring-H-bond with Asn447A 

and additional hydrophobic interactions with -Ring-C3-Cl2-Ph--Phe329A and C5-iPr-

Leu387A. 

 

Chart 1-8. Isoxazole ligands at the Farnesoid X Receptor (FXR). 
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1.9 Human angiotensin-I converting enzyme (hACE) 

Human angiotensin-I converting enzyme (hACE) is a well-accepted agent used for the 

treatment of hypertension, electrolyte homeostasis, and related cardiovascular diseases. ACE 

enzyme is a membrane-bound zinc metalloprotease having two primary functions: the first, 

catalyzing the conversion of a peptide hormone that acts a potent vasoconstrictor, and two, 

degrades a potent vasodilator.
18

 With a majority of the commercially available ACE inhibitors 

being designed back in the 1970s, a second generation of ACE inhibitors (Chart 1-9) that has 

enhanced selectively without the undesirable side effects will be boosted by the availability of 

high resolution structures currently being published. One example comes from Masuyer
19

 

showing hydrophobic interactions to both Val380A and Val518A (Figure 1-7).  

 

Figure 1-7. 3EF ligand interactions with hACE. Left, image from the RCSB PDB of PDB ID 

4CA5. Right, Ligand Explorer reveals Val380A and Val518A hydrophobic interactions with the 

isoxazole. Masuyer, G.,  Akif, M.,  Czarny, B.,  Beau, F.,  Schwager, S.L.,  Sturrock, 

E.D.,  Isaac, R.E.,  Dive, V.,  Acharya, K.R. FEBS J. 2014, 281: 943. 
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Chart 1-9. Isoxazole ligands at the human angiotensin converting enzyme (hACE). 
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1.10 Bromodomain (BRD)  

The bromodomain protein module, which binds to acetylated lysine, is emerging as an 

important epigenetic therapeutic target. Conway and colleagues reported the structure-guided 

optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET 

(bromodomain and extra terminal domain) bromodomain family with good ligand efficiency
20

. 

The first bromodomain crystallized with an isoxazole ligand appeared in 2011, and since then 

there has been intense activity in the area, with 28 structures. The 3, 5-dimethyl isoxazole plays a 

bioisosteric role for the endogenous acetyl lysine group at the BRDs (Chart 1-10), and the 

majority of  

Figure 1-8. 2LO ligand interactions with bromodomain. Left, image from the RCSB PDB of 

PDB ID 4NR5. Right, Ligand Explorer reveals bifurcated-Nring-Oring-H-bond-Asn1168A and C5-

Me-Pro1110A interactions with the isoxazole. Filippakopoulos, P.,  Picaud, S.,  Felletar, I.,  Hay, 

D.,  Fedorov, O.,  Martin, S.,  Pike, A.W.,  Von Delft, F.,  Brennan, P.,  Arrowsmith, 

C.H.,  Edwards, A.M.,  Bountra, C.,  Knapp, S. 2015, TBP. 

 

structures in the literature at the time of this review contain this moiety. Commonly found is an 

anchoring hydrogen bond to the isoxazole ring oxygen (Figure 1-8, shown above), although 

considering distances in many of the structure indicate that both oxygen and nitrogen may lie 
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within interaction distance, as in 2LO-4NR7, which shows a bifurcated Nring-Oring Mode A 

interaction with an aspartame residue which usually binds the acetylated lysine. 

 

Chart 1-10. Isoxazole ligands of Bromodomains (BRD). 
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1.11 AMPA Receptor 

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptor or 

AMPAR) is a transmembrane receptor for glutamate that is part of a large ionotropic glutamate 

receptor (iGluR) family that mediates fast synaptic transmission in the central nervous system 

(CNS). AMPARs are comprised of four subtypes of iGluRs: GluR1 through GluR4, which 

combine to form tetramers consisting of symmetric 'dimer of dimers' of GluR2 and either GluR1, 

GluR3 or GluR4. Each AMPAR has four sites to which an agonist (i.e. glutamate) can bind, one 

for each subunit. The structural studies performed by Gouaux (among others) has led to a very 

thorough Structure Activity Relationship (SAR) for ligands binding to GluR2 based on co-

crystallographic studies on the S1S2J construct.
21

 The structural studies performed by Gouaux 

(among others) has led to a very thorough Structure Activity Relationship (SAR) for ligands 

binding (Char 1-11) to GluR2 based on co-crystallographic studies on the S1S2J construct.
22

 

AMPA crystallized at GluR2 is perhaps the classic bridging Mode B interactions of the Nring-H-

Bond with Glu193C with additional C3-OH-H-Bond with Thr143C (Figure 1-9, shown below). 

 Figure 1-9. AMPA ligand interactions with AMPAR. Left, image from the RCSB PDB of PDB 

ID 1FTM. Right, Ligand Explorer reveals Nring-H-Bond -Glu193C; C3-OH-H-Bond-Thr143C 

interactions with the isoxazole. Armstrong, N., Gouaux, E. Neuron 2000, 28: 165-181. 

.
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Chart 1.11. Isoxazole ligands at AMPAR. 
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1.12 Kinases 

 Over the past 15 years, protein kinases have become and proven to be an important class 

of drug targets for the pharmaceutical industry. With many already FDA approved and hundreds 

more undergoing development and clinical trials to treat an assortment of disease ranging from: 

cancer, anti-inflammatory diseases, and signaling networks that control the immune system, 

there is plenty of drive that suggests that there will be a surge of interest in this area for many 

years to come (Chart 1-12 a-d). One example being ERK2, small molecule inhibitors have been 

targeted in oncology clinical development across multiple disease indications. Kang, Stuckey  

Figure 1-10. E75 ligand interactions with ERK2. Left, image from the RCSB PDB of PDB ID 

4FUX. Right, Ligand Explorer reveals C3-Ph-Ala50A interactions with the isoxazole. Kang, 

Y.N.,  Stuckey, J.A.,  Xie, X. TBP. 

and Xie have solved two ERK2 crystal structures containing inhibitors with isoxazole groups, 

although they are in press. One of them 4FUX (Figure 1-10) contains an amino-pyrimidine 

moiety analogous to that reported by Ward
23

 for covalent adduct 4ZZM, and both show a similar 

backbone interaction with methionine. A hydrophobic interaction of VAL47 with the C-3 of the 
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isoxazole ring was observed, as well as interactions of the LYS52 methylenes with the C3 

phenyl. 

 

Chart 1-12a. Ligands containing isoxazole moieties of kinase proteins. 

Chart 1-12b. Ligands containing isoxazole moieties of kinase proteins. 
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Chart 1-12c. Ligands containing isoxazole moieties of FGFR kinase proteins. 

 

Chart 1-12d. Ligands containing isoxazole moieties of p38 kinase proteins. 
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1.13 Conclusion 

The isoxazole ring appears in several drugs in general medical practice, and is found 

routinely in drug discovery leads, to the point where some consider it a privileged scaffold. The 

literature on crystallography has continued to expand at an accelerating pace in recent years, and 

it seemed that a summary of the observed interactions of the isoxazole moiety with biological 

targets could be useful to those involved in design and discovery. Especially intriguing in light of 

the fact that most medicinal chemists use some form of molecular modelling, is that a collection 

of the observed interactions could prove useful in critical assessment of hypothesis generation. 

Isoxazoles play four major roles as seen in the PDB: first, they serve as bioisoteres as seen in 

sulfamethoxazole; second, the serve as a spacer as seen in HSP90 derivatives with hydrophobic 

interactions; third, the isoxazole ring as direct interaction in the binding site, the most notably a 

bifurcated Nring-Oring hydrogen bond in AMPA, FXR and HIV integrase; and fourth, an isoxazole 

being used as a prodrug as seen in Leflunomide (Chapter 5), a immunosuppressive disease-

modifying anti-rheumatic drug (DMARD). There are several isoxazoles in general medical 

practice, and their metabolic fate and disposition is well known (Chapter 5), and thus, this 

heterocyclic ring is often considered among the privileged scaffolds or templates for drug design 

and discovery. 



 

 

27 

 

References 

(1)  Munsey, M. S.; Natale, N. R. The Coordination Chemistry of Isoxazoles. Coord. Chem. 

Rev. 1991, 109 (2), 251–281. 

(2)  Stierand, K.; Rarey, M. Drawing the PDB: Protein−Ligand Complexes in Two 

Dimensions. ACS Med. Chem. Lett. 2010, 1 (9), 540–545. 

(3)  Yun, M.-K.; Wu, Y.; Li, Z.; Zhao, Y.; Waddell, M. B.; Ferreira, A. M.; Lee, R. E.; 

Bashford, D.; White, S. W. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase. 

Science 2012, 335 (6072), 1110–1114. 

(4)  Caselli, E.; Powers, R. A.; Blasczcak, L. C.; Wu, C. Y. E.; Prati, F.; Shoichet, B. K. 

Energetic, Structural, and Antimicrobial Analyses of β-Lactam Side Chain Recognition by β-

Lactamases. Chem. Biol. 2001, 8 (1), 17–31. 

(5)  June, C. M.; Vallier, B. C.; Bonomo, R. A.; Leonard, D. A.; Powers, R. A. Structural 

Origins of Oxacillinase Specificity in Class D β-Lactamases. Antimicrob. Agents Chemother. 

2014, 58 (1), 333–341. 

(6)  Badger, J.; Minor, I.; Oliveira, M. A.; Smith, T. J.; Rossmann, M. G. Structural Analysis 

of Antiviral Agents That Interact with the Capsid of Human Rhinoviruses. Proteins Struct. 

Funct. Bioinforma. 1989, 6 (1), 1–19. 

(7)  Zhang, Y.; Simpson, A. A.; Ledford, R. M.; Bator, C. M.; Chakravarty, S.; Skochko, G. 

A.; Demenczuk, T. M.; Watanyar, A.; Pevear, D. C.; Rossmann, M. G. Structural and 

Virological Studies of the Stages of Virus Replication That Are Affected by Antirhinovirus 

Compounds. J. Virol. 2004, 78 (20), 11061–11069. 

(8)  Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda, 

M.; Bode, W.; Goettig, P. Crystal Structures of MMP-9 Complexes with Five Inhibitors: 



 

 

28 

 

Contribution of the Flexible Arg424 Side-Chain to Selectivity. J. Mol. Biol. 2007, 371 (4), 989–

1006. 

(9)  Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Matrix Metalloproteinase Inhibitors and 

Cancer—Trials and Tribulations. Science 2002, 295 (5564), 2387–2392. 

(10)  Czarny, B.; Stura, E. A.; Devel, L.; Vera, L.; Cassar-Lajeunesse, E.; Beau, F.; Calderone, 

V.; Fragai, M.; Luchinat, C.; Dive, V. Molecular Determinants of a Selective Matrix 

Metalloprotease-12 Inhibitor: Insights from Crystallography and Thermodynamic Studies. J. 

Med. Chem. 2013, 56 (3), 1149–1159. 

(11)  Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J. E.; 

Cheung, K.-M. J.; Collins, I.; Davies, N. G. M.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; 

Finch, H.; Fink, A.; Hayes, A.; Howes, R.; Hubbard, R. E.; James, K.; Jordan, A. M.; Lockie, A.; 

Martins, V.; Massey, A.; Matthews, T. P.; McDonald, E.; Northfield, C. J.; Pearl, L. H.; 

Prodromou, C.; Ray, S.; Raynaud, F. I.; Roughley, S. D.; Sharp, S. Y.; Surgenor, A.; Walmsley, 

D. L.; Webb, P.; Wood, M.; Workman, P.; Wright, L. 4,5-Diarylisoxazole Hsp90 Chaperone 

Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. J. Med. Chem. 2008, 51 

(2), 196–218. 

(12)  Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. 

L.; Deaton, D. N.; Jones, S. A.; Kaldor, I.; Liu, Y.; Madauss, K. P.; Marr, H. B.; McFadyen, R. 

B.; Miller, A. B.; III, F. N.; Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G. 

B. Conformationally Constrained Farnesoid X Receptor (FXR) Agonists: Naphthoic Acid-Based 

Analogs of GW 4064. Bioorg. Med. Chem. Lett. 2008, 18 (15), 4339–4343. 

(13)  Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. 

L.; Deaton, D. N.; Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Navas III, F.; 



 

 

29 

 

Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Bruce Wisely, G. FXR Agonist Activity 

of Conformationally Constrained Analogs of GW 4064. Bioorg. Med. Chem. Lett. 2009, 19 (16), 

4733–4739. 

(14)  Akwabi-Ameyaw, A.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.; Madauss, 

K. P.; Marr, H. B.; Miller, A. B.; Navas III, F.; Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, 

S. P.; Wisely, G. B. Conformationally Constrained Farnesoid X Receptor (FXR) Agonists: 

Alternative Replacements of the Stilbene. Bioorg. Med. Chem. Lett. 2011, 21 (20), 6154–6160. 

(15)  Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.; 

Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Parks, D. J.; Todd, D.; Williams, 

S. P.; Wisely, G. B. Substituted Isoxazole Analogs of Farnesoid X Receptor (FXR) Agonist 

GW4064. Bioorg. Med. Chem. Lett. 2009, 19 (11), 2969–2973. 

(16)  Bass, J. Y.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.; Madauss, K. P.; 

Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Mills, W. Y.; Navas III, F.; Parks, D. J.; Smalley 

Jr., T. L.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G. B. Conformationally 

Constrained Farnesoid X Receptor (FXR) Agonists: Heteroaryl Replacements of the 

Naphthalene. Bioorg. Med. Chem. Lett. 2011, 21 (4), 1206–1213. 

(17)  Feng, S.; Yang, M.; Zhang, Z.; Wang, Z.; Hong, D.; Richter, H.; Benson, G. M.; 

Bleicher, K.; Grether, U.; Martin, R. E.; Plancher, J.-M.; Kuhn, B.; Rudolph, M. G.; Chen, L. 

Identification of an N-Oxide Pyridine GW4064 Analog as a Potent FXR Agonist. Bioorg. Med. 

Chem. Lett. 2009, 19 (9), 2595–2598. 

(18)  Akif, M.; Schwager, S. L.; Anthony, C. S.; Czarny, B.; Beau, F.; Dive, V.; Sturrock, E. 

D.; Acharya, K. R. Novel Mechanism of Inhibition of Human Angiotensin-I-Converting Enzyme 

(ACE) by a Highly Specific Phosphinic Tripeptide. Biochem. J. 2011, 436 (1), 53–59. 



 

 

30 

 

(19)  Masuyer, G.; Akif, M.; Czarny, B.; Beau, F.; Schwager, S. L. U.; Sturrock, E. D.; Isaac, 

R. E.; Dive, V.; Acharya, K. R. Crystal Structures of Highly Specific Phosphinic Tripeptide 

Enantiomers in Complex with the Angiotensin-I Converting Enzyme. FEBS J. 2014, 281 (3), 

943–956. 

(20)  Hewings, D. S.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Picaud, S.; Tumber, A.; 

Wells, C.; Olcina, M. M.; Freeman, K.; Gill, A.; Ritchie, A. J.; Sheppard, D. W.; Russell, A. J.; 

Hammond, E. M.; Knapp, S.; Brennan, P. E.; Conway, S. J. Optimization of 3,5-

Dimethylisoxazole Derivatives as Potent Bromodomain Ligands. J. Med. Chem. 2013, 56 (8), 

3217–3227. 

(21)  Natale, N.; Magnusson, K.; Nelson, J. Can Selective Ligands for Glutamate Binding 

Proteins Be Rationally Designed? Curr. Top. Med. Chem. 2006, 6 (8), 823–847. 

(22)  Armstrong, N.; Gouaux, E. Mechanisms for Activation and Antagonism of an AMPA-

Sensitive Glutamate Receptor. Neuron 2000, 28 (1), 165–181. 

(23)  Ward, R. A.; Colclough, N.; Challinor, M.; Debreczeni, J. E.; Eckersley, K.; Fairley, G.; 

Feron, L.; Flemington, V.; Graham, M. A.; Greenwood, R.; Hopcroft, P.; Howard, T. D.; James, 

M.; Jones, C. D.; Jones, C. R.; Renshaw, J.; Roberts, K.; Snow, L.; Tonge, M.; Yeung, K. 

Structure-Guided Design of Highly Selective and Potent Covalent Inhibitors of ERK1/2. J. Med. 

Chem. 2015, 58 (11), 4790–4801. 

 

 



 

 

31 

 

T
a

b
le

 1
.-

1
 C

ry
s
ta

llo
g

ra
p

h
y
 o

r 
N

M
R

 o
f 
Is

o
x
a

z
o
le

 B
in

d
in

g
 P

ro
te

in
s
. 

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_
_

_
_
_
_
_
_

 

P
D

B
 

 
T

a
rg

e
t 

 
 

P
D

B
 

 
R

e
s
o
lu

ti
o
n

 
 

L
ig

a
n

d
 I
n

te
ra

c
ti
o
n

s
 

 
 

 
 

R
e

fe
re

n
c
e
 

L
ig

a
n

d
  

 
 

 
A

c
c
e

s
s
io

n
  

N
o

. 
 

 
 

 
N

o
. 

 
 

 

A
M

Q
 

 
A

M
P

A
R

-G
lu

R
2
 

1
F

T
M

  
1

.7
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
3

C
; 
C

3
-O

H
-H

-B
o

n
d

-T
h
r1

4
3

C
 

A
rm

s
tr

o
n

g
, 
2

0
0
0
 

 
 

G
lu

R
2

-L
4

8
3

Y
 

1
L

B
8
 

 
2

.3
 

 
N

ri
n

g
-H

-B
o

n
d

-G
lu

1
9

3
B

; 
C

3
-O

H
-H

-B
o

n
d

-T
h
r1

4
3

B
 

S
u

n
, 
2

0
0

2
 

 
 

 
 

 
1

M
Y

2
  

1
.8

 
 

N
ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
3

C
; 
C

3
-O

H
-H

-B
o

n
d

-T
h
r1

4
3

C
 

J
in

, 
2

0
0

3
 

 
 

G
lu

R
2

-L
6

5
0

T
 

1
P

1
Q

  
2

.0
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
3

C
; 
C

3
-O

H
-H

-B
o

n
d

-T
h
r1

4
3

C
 

A
rm

s
tr

o
n

g
, 
2

0
0
3
 

 

 
 

G
lu

R
2

-L
6

5
0

T
 

1
P

1
U

 
 

2
.0

 
 

C
3

-O
H

-H
-B

o
n

d
-S

e
r1

4
2

B
 

 
 

 
 

A
rm

s
tr

o
n

g
, 
2

0
0
3
 

 
G

lu
R

2
-L

4
8
3

Y
-L

6
5

0
T

 
1

P
1

W
  

1
.8

 
 

N
ri
n

g
-G

lu
1

9
3

B
; 
C

3
-O

H
-H

-B
o

n
d

-T
h
r1

4
3

B
  

 
A

rm
s
tr

o
n

g
, 
2

0
0
3
 

 
 

G
L

u
R

3
 

 
3

D
P

4
 
 

2
.1

1
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
3

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
3

A
 

 
A

h
m

e
d

, 
2

0
0

8
 

 
 

G
L

u
R

4
 

 
3

F
A

T
 
 

1
.9

0
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
1

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
1

A
 

 
K

a
s
p

e
r,

 2
0
0

8
 

A
M

1
 

 
G

L
u

R
2
 

 
1

M
5

E
  

1
.4

6
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
3

A
; 

C
3

-C
O

O
H

-H
-B

o
n

d
-T

h
r1

4
3
A

 
H

o
g

n
e

r,
 2

0
0

2
 

G
L

u
R

2
 

 
1

M
5

F
  

1
.9

5
 

 
C

3
-C

O
O

H
-H

-B
o

n
d

-T
h
r1

4
3

A
 

 
 

 
H

o
g

n
e

r,
 2

0
0

2
 

A
T

1
 

 
G

L
u

R
2
 

 
1

N
0
T

 
 

2
.1

0
 

 
R

in
g

-I
s
o

x
-G

lu
1

9
3
 

 
 

 
 

 
H

o
g

n
e

r,
 2

0
0

3
 

G
L

u
R

5
 

 
1

V
S

O
  

1
.8

5
 

 
B

ri
d

g
e

d
 H

2
O

-O
ri
n

g
/ 

N
ri
n

g
 

 
 

 
 

H
a
ld

, 
2
0

0
7
 

B
R

H
 

 
G

L
u

R
2
 

 
1

M
5

C
  

1
.6

5
 

 
N

ri
n

g
-H

-B
o

n
d

 -
T

h
r1

4
3
A

 
 

 
 

 
H

o
g

n
e

r,
 2

0
0

2
 

G
L

u
R

2
 

 
1

M
5

D
  

1
.7

3
 

 
N

ri
n

g
-H

-B
o

n
d

 –
T

h
r1

4
3

A
; 

C
3

-O
H

-H
-B

o
n

d
-G

lu
1
9

3
A

 
H

o
g

n
e

r,
 2

0
0

2
 

C
E

2
 

 
G

L
u

R
2
 

 
1

N
N

K
  

1
.8

5
 

 
N

ri
n

g
-H

-B
o

n
d

 –
T

h
r1

4
0

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
0

A
(O

H
/N

H
) 

L
u
n

n
, 
2

0
0

3
 

 

G
L

u
R

2
 

 
1

N
N

P
  

1
.9

0
 

 
N

ri
n

g
-H

-B
o

n
d

 –
T

h
r1

4
0

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
0

A
(O

H
/N

H
) 

L
u
n

n
, 
2

0
0

3
 

M
P

9
 

 
G

L
u

R
2
 

 
2

P
2

A
 
 

2
.2

6
 

 
N

ri
n

g
-H

-B
o

n
d

 –
T

h
r1

4
0

B
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
0

A
(N

H
) V

o
g

e
n

s
o
n

, 
2
0

0
7

 

S
H

I 
 

G
L

u
R

2
 

 
1

M
Q

D
  

1
.4

6
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
0

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
0

A
 

 
K

a
s
p

e
r,

 2
0
0

2
 

G
L

u
R

2
 

 
1

M
S

7
  

1
.9

7
 

 
N

ri
n

g
-H

-B
o

n
d

 -
G

lu
1

9
0

A
; 

C
3

-O
H

-H
-B

o
n

d
-T

h
r1

4
0

A
 

 
K

a
s
p

e
r,

 2
0
0

2
 

 B
N

1
 

 
A

M
P

A
R

-G
lu

R
2
 

1
M

5
B

  
1

.8
5
 

 
N

ri
n

g
-H

-B
o

n
d

-T
h
r1

4
3

(O
H

);
 
 

 
 

 
H

o
g

n
e

r,
 2

0
0

2
 

 
 

 
 

 
 

 
 

 
C

3
-O

H
-H

-B
o

n
d

-B
a

c
k
b
o

n
e

-N
H

-T
h
r1

4
3
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
1

M
X

V
  

1
.9

5
 

 
A

M
P

A
, 

B
rW

 1
0

m
M

 
 

 
 

 
 

J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
X

W
 

 
1

.9
 

 
A

M
P

A
, 

B
rW

 1
m

M
 

 
 

 
 

 
J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
X

X
  

2
.0

 
 

A
M

P
A

, 
B

rW
 1

0
0

u
M

  
 

 
 

 
J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
X

Y
  

1
.9

5
 

 
A

M
P

A
, 

B
rW

 1
0

u
M

 
 

 
 

 
 

J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
X

Z
  

1
.9

 
 

A
M

P
A

, 
B

rW
 1

u
M

 
 

 
 

 
 

J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
Y

0
  

1
.9

 
 

A
M

P
A

, 
B

rW
 1

0
0

n
M

  
 

 
 

 
J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
Y

1
  

1
.9

 
 

A
M

P
A

, 
B

rW
 1

0
n

M
 

 
 

 
 

 
J
in

, 
2

0
0

3
 

 
 

 
 

 
1

M
Y

2
  

1
.8

 
 

A
M

A
P

A
, 

Z
n

2
+

 
 

 
 

 
 

J
in

, 
2

0
0

3
 

 



 

 

32 

 

3
E

F
 

 
h

A
C

E
  

 
4

C
A

5
 
 

1
.8

5
 

 
V

a
l3

8
0

A
; 
V

a
l5

1
8

A
 

 
 

 
 

 
M

a
s
u

y
e

r,
 2

0
1

4
 

 
 

h
A

C
E

  
 

4
C

A
6
 
 

1
.9

1
 

 
S

e
r3

5
7

A
; 

T
h

r3
5

8
A

 
 

 
 

 
 

M
a

s
u

y
e

r,
 2

0
1

4
 

 
A

n
C

E
, 
d

ro
s
o

p
h

ili
a

 
 

4
C

A
7
 
 

1
.8

2
 

 
P

h
e

3
6

3
A

 
 

 
 

 
 

 
M

a
s
u

y
e

r,
 2

0
1

4
 

3
E

S
 

 
h

A
C

E
  

 
2

X
Y

9
 
 

1
.9

7
 

 
G

lu
3

7
6

A
; 
V

a
l3

8
0

A
 

 
 

 
 

 
A

k
if
, 

2
0
1

1
 

 
 

h
A

C
E

  
 

2
X

Y
D

  
2

.1
5
 

 
T

h
r4

9
6

A
 

 
 

 
 

 
 

A
k
if
, 

2
0
1

1
 

 
A

n
C

E
, 
d

ro
s
o

p
h

ili
a

 
 

4
C

A
8
 
 

1
.9

9
 

 
 

 
 

 
 

 
 

 
M

a
s
u

y
e

r,
 2

0
1

4
 

 1
A

6
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
H

X
O

  
1

.7
6
 

 
 

 
 

 
 

 
 

 
Z

h
a

o
, 
2

0
1

3
 

1
H

2
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
J
0

R
 

 
1

.7
2
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

 
 

 
 

 
H

e
w

in
g

s
, 

2
0

1
3
 

1
H

3
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
J
0

S
 

 
1

.8
4
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

 
 

 
 

 
H

e
w

in
g

s
, 

2
0

1
3
 

1
X

A
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
L

R
6
 

 
1

.2
9
 

 
O

ri
n

g
-5

-N
H

2
-d

o
u

b
le

-H
-b

o
n

d
-A

s
n

1
4
0

A
 

 
 

G
e

h
lin

g
, 

2
0
1

3
 

1
G

H
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

3
Z

Y
U

  
1

.5
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

 
 

 
 

 
D

a
w

s
o

n
, 
2

0
1
1
 

 
B

ro
m

o
d

o
m

a
in

 h
B

R
D

2
 

4
A

L
G

  
1

.6
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
1

0
A

; 
C

3
-M

e
-V

a
l5

7
A

 
 

 
S

e
a

l,
 2

0
1
2
 

K
R

G
 

B
ro

m
o
d

o
m

a
in

 h
C

R
E

B
B

P
 

3
S

V
H

  
1

.8
 

 

-R

in
g

-
-T

y
r1

1
0

2
A

 
 

 
 

 
F

lip
p

a
k
o

p
o

u
lo

s
, 

T
B

P
 

0
Q

1
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
G

P
J
 
 

1
.6

 
 

O
ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

5
-M

e
-I

le
u

1
4
6

A
  

 
H

a
y
, 

T
B

P
 

3
6

Z
 

B
ro

m
o
d

o
m

a
in

-A
T

A
D

2
A

 
4

T
T

E
  
 

1
.8

 
 

O
ri
n

g
-H

-b
o

n
d

-A
s
n

1
0

6
4
A

; 
C

3
-M

e
-V

a
l1

0
1

3
A

 
P

o
n

c
e
t-

M
o

n
ta

n
g
e

, 
2
0

1
5

 

3
7

N
 

B
ro

m
o
d

o
m

a
in

 A
T

A
D

2
A

 
4

T
U

4
 
 

1
.7

3
  

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
0

6
4
A

; 
C

3
-M

e
-V

a
l1

0
0

8
A

 
P

o
n

c
e
t-

M
o

n
ta

n
g
e

, 
2
0

1
5

 

A
9

N
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

2
 

4
A

9
N

 
 

1
.8

5
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
5

6
A

; 
C

3
-M

e
-P

ro
9

8
A

 
 

 
B

a
m

b
o

ro
u

g
h
, 

2
0

1
2

 

A
9

O
 

B
ro

m
o

d
o

m
a

in
 h

B
R

D
2

 
4

A
9

O
  

1
.7

8
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
5

6
A

; 
C

3
-M

e
-P

ro
9

8
A

 
 

 
B

a
m

b
o

ro
u

g
h
, 

2
0

1
2

 

 
 

 
 

 
 

 
 

 
C

5
-E

t-
L

e
u
1

0
8
A

 
 

A
9

P
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

2
 

4
A

L
H

 
 

1
.9

7
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
5

6
A

; 
C

3
-M

e
-P

ro
9

8
A

  
 

 
B

a
m

b
o

ro
u

g
h
, 

2
0

1
2

 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-L

e
u

1
0

8
A

 

P
9

M
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

2
 

4
A

9
M

  
2

.0
6
 

 
O

ri
n
g
-H

-b
o

n
d

-A
s
n

1
5

6
A

; 
C

3
-M

e
-P

ro
9

8
A

 
 

 
B

a
m

b
o

ro
u

g
h
, 

2
0

1
2

 

S
5

B
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

2
 

4
A

K
N

  
1

.8
2
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
5

6
A

; 
C

3
-M

e
-V

a
l1

0
3
A

  
 

S
e

a
l,
 2

0
1
2
 

 
B

ro
m

o
d

o
m

a
in

 h
B

R
D

4
 

4
B

W
1
  

1
.4

 
 

O
ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

3
-M

e
-P

ro
8

2
A

  
 

 
M

ir
g

u
e

t,
 2

0
1

4
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-I

le
1

4
6

A
 

3
P

2
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
W

IV
 
 

1
.5

6
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

5
-M

e
-L

e
u

9
2

A
  

 
 

M
c
K

e
o

w
n
, 
2

0
1
4

 

 
 

 
 

 
 

 
 

 
C

3
-M

e
-P

ro
8

2
A

 

U
T

H
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
B

W
2
  

1
.9

2
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

5
-M

e
-L

e
u

9
2

A
 

 
 

M
ir
g

u
e

t,
 2

0
1

4
 

W
D

R
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

3
S

V
F

 
 

1
.9

8
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

5
-M

e
-L

e
u

9
2

A
  

 
F

lip
p

a
k
o

p
o

u
lo

s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
C

3
-M

e
-I

le
u

1
4
6

A
 

O
D

R
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

3
S

V
G

  
1

.6
8
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

3
-M

e
-I

le
1

4
6
A

 
 

F
lip

p
a

k
o

p
o

u
lo

s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-L

e
u

8
2

A
 

2
L

K
 

B
ro

m
o
d

o
m

a
in

 h
C

R
E

B
B

P
  

4
N

R
4

  
1

.6
9
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
1

6
8
A

; 
C

3
-M

e
-V

a
l1

1
1

5
A

  
F

lip
p

a
k
o

p
o

u
lo

s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-V

a
l1

1
7
4

A
 

2
L

L
  
 

B
ro

m
o
d

o
m

a
in

 h
C

R
E

B
B

P
  

4
N

R
5

  
1

.6
6
 

 
B

if
u

rc
a
te

d
-N

ri
n

g
-O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
1
6

8
A

 
 

F
lip

p
a

k
o

p
o

u
lo

s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
 C

5
-M

e
-P

ro
1

1
1
0

A
 

 

 
B

ro
m

o
d

o
m

a
in

 h
B

R
D

4
 

4
N

R
8

  
1

.6
3
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

3
-M

e
-L

e
u

9
2

A
  

 
F

lip
p

a
k
o

p
o

u
lo

s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-I

le
4

6
A

 
 



 

 

33 

 

 

2
L

O
 

B
ro

m
o
d

o
m

a
in

 h
C

R
E

B
B

P
  

4
N

R
7

  
1

.2
 

 
M

o
d

e
 A

: 
B

if
u

rc
a

te
d

-N
ri
n

g
-O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
1
6

8
A

  
  

  
 F

lip
p

a
k
o

p
o
u

lo
s
, 

T
B

P
 

 
 

 
 

 
 

 
 

 
C

3
-M

e
-V

a
l1

1
7
4

A
; 

C
5

-M
e

-P
ro

1
1

1
0

A
 

9
B

6
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
B

W
4
  

1
.6

7
 

 
O

ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

  
 

 
 

 
M

ir
g

u
e

t,
 2

0
1

4
 

9
B

M
 

B
ro

m
o
d

o
m

a
in

 h
B

R
D

4
 

4
B

W
3
  

1
.5

 
 

O
ri
n

g
-H

-b
o

n
d

-A
s
n

1
4

0
A

; 
C

3
-M

e
-P

ro
8

2
A

 
 

  
M

ir
g

u
e

t,
 2

0
1

4
 

 3
4
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
3

R
V

F
  

3
.1

 
 

B
if
u

rc
a
te

d
-N

ri
n

g
-O

ri
n

g
-H

-b
o

n
d

-A
s
n

4
4
7

A
 

 
  

  
  
A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

1
1

 

 
 

 
 

 
 

 
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-

-P

h
e

3
2

9
A

; 
C

5
-i
P

r-
L

e
u

3
8
7

A
 

0
6

4
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
D

C
T

  
2

.5
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-

 -

P
h

e
3
2

9
A

; 
 

 
 

  
  

  
A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

0
8

 

 
 

 
 

 
 

 
 

 
C

5
-i
P

r-
L

e
u

2
8
7

A
 &

 A
la

2
9

1
A

 

O
6

2
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
D

C
U

  
2

.9
5
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-

 -

P
h

e
3
2

9
A

 
 

 
  

  
  
A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

0
8

 

8
2

X
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
H

C
5

  
2

.6
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-

 -

P
h

e
3
2

9
A

; 
 

 
  

  
  
A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

0
9

 

 
 

 
 

 
 

 
 

 
C

3
-C

l 2
-P

h
-P

h
e

3
2
9

A
; 

N
ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

 

0
8

8
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
H

C
6

  
3

.2
 

 
C

5
-i
P

r-
L

e
u

3
8
7

A
  

 
 

 
 

  
  

 A
k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

0
9

 

 
 

 
 

 
 

 
 

 
C

3
-C

l 2
-P

h
-M

e
t2

6
5

A
, 
M

e
t2

9
0

A
, 
A

la
2
9

1
A

, 
M

e
t3

2
8

A
, 

Il
e
3

3
5
A

 

3
7

G
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
R

U
U

  
2

.5
 

 
N

ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

, 
C

5
-i
P

r-
L

e
u

2
8
7

A
  

 
  

  
 A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

1
1

 

 
 

 
 

 
 

 
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-

 -

P
h

e
3
2

9
A

; 
C

3
-C

l 2
-P

h
-M

e
t2

9
0
A

 
 

 
 

 

5
9

G
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
R

U
T

  
3

.0
 

 
N

ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

; 
C

5
-i
P

r-
L

e
u

2
8
7

A
  

 
  

  
 A

k
w

a
b

i-
A

m
e

y
a

w
, 
2
0

1
1

 

 
 

 
 

 
 

 
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-
-P

h
e

3
2
9

A
; 

C
3

-C
l 2

-P
h

-M
e

t2
9

0
A

 

6
4

3
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
F

X
V

 
 

2
.2

6
 

 

-R

in
g

-C
3

-C
l 2

-4
-p

y
ri
d
y
l-

-P

h
e

3
3

3
A

; 
 

 
F

e
n

g
, 
2

0
0

9
 

 
 

 
 

 
 

 
 

 
C

3
-C

l 2
-N

-4
-p

y
ri

d
y
l-

-T
y
r3

7
3

A
; 
 

7
0

8
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
G

D
2
  

3
.2

 
 

N
ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

; 
C

5
-i
P

r-
-L

e
u

2
8

7
A

  
 

B
a

s
s
, 

2
0

0
9
 

 
 

 
 

 
 

 
 

 
 

 
C

3
-C

l 2
-P

h
-m

e
th

y
ln

e
-s

u
lf
o

x
id

e
-i
Il
e
3

5
2
A

 &
 M

e
t3

6
5
A

 

P
8

8
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
P

8
8
 

 
2

.9
5
 

 

-R

in
g

-C
3

-C
l 2

-P
h

-
-P

h
e

3
2
9

A
  

 
 

 
B

a
s
s
, 

2
0

1
1
 

 
 

 
 

 
 

 
 

 
N

ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

; 
C

5
-i
P

r-
A

la
2

9
1

A
 

8
9

P
 

F
a
rn

e
s
o

id
 X

 R
e

c
e

p
to

r 
 

3
P

8
9
 

 
2

.3
 

 
N

ri
n

g
-H

-b
o

n
d

-H
is

4
4

7
A

; 

-R

in
g

-C
3

-C
l 2

-P
h

-
 -

P
h

e
3
2

9
A

; 
B

a
s
s
, 

2
0
1

1
 

 
 

 
 

 
 

 
 

 
C

3
-C

l 2
-P

h
-L

e
u

2
8
7

A
 

 2
E

Q
 

H
S

P
9

0
 

 
 

2
V

C
J
 
 

2
.5

 
 

S
p

a
c
e

r 
fo

r 
3
,4

 a
n

d
 5

 s
u

b
s
ti
tu

e
n

ts
  

 
 

B
ro

u
g
h

, 
2
0

0
8

 

2
G

J
 

H
S

P
9

0
 

 
 

2
V

C
I 

 
2

.0
 

 
S

p
a

c
e

r 
fo

r 
3
,4

 a
n

d
 5

 s
u

b
s
ti
tu

e
n

ts
  

 
 

B
ro

u
g
h

, 
2
0

0
8

 

2
G

G
 

H
S

P
9

0
 

 
 

2
U

W
D

  
1

.9
 

 
S

p
a

c
e

r 
fo

r 
3
,4

 a
n

d
 5

 s
u

b
s
ti
tu

e
n

ts
   

 
 

S
h

a
rp

, 
2

0
0

8
 

9
U

N
 

H
S

P
9

0
 

 
 

4
B

7
P

 
 

1
.7

 
 

S
p

a
c
e

r 
o

r 
3
,4

 a
n

d
 5

 s
u
b

s
ti
tu

e
n

ts
 

 
 

 
F

o
g

lia
tt

o
, 

2
0

1
3
 

X
K

L
 

H
S

P
9

0
 

 
 

4
B

Q
J
 
 

2
.0

 
 

S
p

a
c
e

r 
o

r 
3
,4

 a
n

d
 5

 s
u
b

s
ti
tu

e
n

ts
 

 
 

 
B

ra
s
c
a

, 
2

0
1
3
 

X
Q

K
 

H
S

P
9

0
 

 
 

2
Y

E
I 

 
2

.2
 

 
P

h
e

1
3

8
A

; 

-R

in
g

-I
s
o

x
--

-T

y
r1

3
9

A
 

 
 

R
o
u

g
h

le
y
, 

2
0

1
1
 

 
 

 
 

 
 

 
 

 
c
o

-c
ry

s
ta

l 
w

it
h

 X
Q

I 

 
H

S
P

9
0
 

 
 

2
Y

E
J
 

 
2

.2
 

 
P

h
e

1
3

8
A

; 
c
o

-c
ry

s
ta

l 
w

it
h

 X
Q

I 
 

 
 

R
o
u

g
h

le
y
, 

2
0

1
1
 

2
D

3
 

H
S

P
9

0
 

 
 

2
Y

E
8
 
 

2
.3

 
 

P
h

e
1
3

8
A

 
 

 
 

 
 

 
R

o
u

g
h

le
y
, 

2
0

1
1
 

Y
J
W

 
H

S
P

9
0
 

 
 

2
Y

J
W

  
1

.6
1
 

 
N

ri
n

g
-H

-b
o

n
d

-T
h
r1

8
4

A
; 
4

-P
h

-

-c

a
ti
o

n
-L

y
s
5

8
A

 
 

V
a

lle
e

, 
2

0
1

1
 

 
H

S
P

9
0
 

 
 

2
Y

K
2
 
 

1
.7

4
 

 
N

ri
n

g
-H

-b
o

n
d

-T
h
r1

8
4

A
; 
C

5
-M

e
 &

 4
-P

h
 A

s
n
5

1
A

 
 

V
a

lle
e

, 
2

0
1

1
 

 



 

 

34 

 

F
J
2

  
H

S
P

9
0
 

 
 

4
L

W
E

  
1

.5
 

 
S

p
a

c
e

r 
o

r 
3
,4

 a
n

d
 5

 s
u
b

s
ti
tu

e
n

ts
 

 
 

 
L

i,
 2

0
1

4
 

F
J
3

 
H

S
P

9
0
 

 
 

4
L

W
F

  
1

.7
5
 

 
N

ri
n

g
-H

-b
o

n
d

-T
h
r1

8
4

A
; 
M

e
t9

8
A

 
 

 
 

L
i,
 2

0
1

4
 

F
J
5

 
H

S
P

9
0
 

 
 

4
L

W
H

  
1

.7
 

 
N

ri
n

g
-H

-b
o

n
d

-T
h
r1

8
4

A
; 

 
 

 
 

L
i,
 2

0
1

4
 

F
J
6

 
H

S
P

9
0
 

 
 

4
L

W
I 

 
1

.7
 

 
N

ri
n

g
-H

-b
o

n
d

-T
h
r1

8
4

A
; 

 
 

 
 

L
i,
 2

0
1

4
 

 A
A

V
 

K
in

a
s
e

, 
p

3
8

a
 M

A
P

K
  

4
A

A
C

  
2

.5
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
1

6
9

A
  

 
 

 
 

B
ro

w
n

, 
2
0

1
2
 

O
C

G
 

K
in

a
s
e

-p
3

8
a
  

 
3

O
C

G
 

3
9

P
 

K
in

a
s
e

-p
3

8
a
  

 
3

M
V

M
 

F
M

J
 

K
in

a
s
e

-p
3

8
a
  

 
3

F
M

J
 

Y
M

4
 

K
in

a
s
e

, 
A

u
ro

ra
-A

 
 

2
X

6
E

 
 

3
.3

5
 

 
C

3
-C

H
2
-L

e
u
1

3
9
A

; 
C

5
-C

H
3
-L

e
u

2
6

3
A

 
 

 
B

a
v
e

ts
ia

s
, 

2
0

1
0
 

V
E

K
 

K
in

a
s
e

, 
A

u
ro

ra
-A

  
 

4
B

0
G

  
2

.5
 

 
C

3
-C

H
2
-V

a
l1

3
9

4
7
A

; 
C

5
-C

H
3
-L

e
u

2
6
3

A
 

 
 

B
a

v
e

ts
ia

s
, 

2
0

1
2

 

E
7

1
  

K
in

a
s
e

, 
E

R
K

2
 

 
4

F
V

9
 

 
2

.1
1
 

 
C

3
-H

-A
la

5
0

A
  

 
 

 
 

 
K

a
n

g
, 

2
0

1
2
 

E
7

5
 

K
in

a
s
e

, 
E

R
K

2
 

 
4

F
U

X
  

2
.2

 
 

C
3

-P
h

-A
la

5
0
A

 
 

 
 

 
 

K
a

n
g
, 

2
0

1
2
 

4
4

X
 

K
in

a
s
e

 c
-M

e
t  

 
4

X
Y

F
 
 

1
.8

5
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

2
3

0
A

  
 

 
 

 
P

e
te

rs
o
n

, 
2

0
1
5
 

4
6

G
 

K
in

a
s
e

 c
-M

e
t  

 
4

X
M

O
  

1
.7

5
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

2
3

0
A

 
 

 
 

 
P

e
te

rs
o
n

, 
2

0
1
5
 

6
C

3
 

K
in

a
s
e

 c
-F

M
S

 
 

2
I0

V
 

 
2

.8
 

 
C

3
-M

e
-A

la
8

0
0
A

 
 

 
 

 
 

S
c
h

u
b
e

rt
, 
2

0
0
7
 

0
S

8
 

K
in

a
s
e

-F
G

F
R

 
 

4
F

6
4
 

 
2

.0
5
 

 
C

5
-C

H
2
-V

a
l4

9
2
 

 
 

 
 

 
N

o
rm

a
n

 2
0
1

2
 

0
S

9
 

K
in

a
s
e

-F
G

F
R

 
 

4
F

6
5
 

 
2

.2
6
 

 
h

y
d

ro
p
h

o
b

ic
-L

e
u

6
3

0
; 
C

5
-C

H
2
-V

a
l4

9
2
 

 
 

N
o
rm

a
n

 2
0
1

2
 

2
K

5
 

K
in

a
s
e

-F
G

F
R

 
 

4
N

K
9
 
 

2
.5

7
 

 
C

3
-C

H
3
-L

e
u

6
3

0
; 

C
5

-C
H

2
-G

ly
4

8
5

/L
e
u

4
8

4
/V

a
l4

9
5

 
K

le
in

, 
2
0

1
4
 

2
K

7
 

K
in

a
s
e

-F
G

F
R

 
 

4
N

K
A

  
2

.1
9
 

 
C

3
-C

H
3
-L

e
u

6
3

0
 

 
 

 
 

 
K

le
in

, 
2
0

1
4
 

2
M

2
 

K
in

a
s
e

-F
G

F
R

 
 

4
N

K
S

  
2

.5
0
 

 
C

3
-C

H
3
-L

e
u

6
3

0
/A

la
6
4
0

 
 

 
 

 
K

le
in

, 
2
0

1
4
 

Q
1

A
 

K
in

a
s
e

-R
IP

1
  

 
4

N
E

U
  

2
.5

7
 

 
h

y
d

ro
p
h

o
b

ic
-A

s
p

1
5
6

/M
e

t6
7

; 
C

5
-t

-b
u

ty
l-
L

e
u

7
0

/V
a

l7
5

 
H

a
rr

is
, 
2

0
1

3
 

 M
3

I 
C

y
c
lo

p
h

ill
in

 D
 

 
3

R
C

I 
 

1
.4

4
 

 
M

o
d

e
 B

: 
L

B
=

N
H

2
-H

-B
o

n
d

s
-A

s
n

1
4
4

X
 

 
 

C
o
lli

a
n

d
re

, 
2

0
1
2

 
 

M
IO

 
C

y
c
lo

p
h

ill
in

 D
 

 
3

R
D

A
  

1
.0

7
 

 
N

ri
n

g
-H

-B
o

n
d

-A
rg

9
7

X
 

 
 

 
 

C
o
lli

a
n

d
re

, 
2

0
1
2

 

 3
S

D
 

P
ro

te
o

s
o

m
e

 2
0

S
 

 
3

S
D

I 

 W
5

6
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
R

S
5
 
 

3
.0

0
 

 
N

ri
n

g
-H

-B
o

n
d

 –
A

s
n
2

1
9

; 
p

-R
in

g
-I

s
o

x
-

-L
e
u

1
0
6

/P
h

e
1
2

4
 B

a
d

g
e

r 
1
9
8

9
 

W
5

9
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
R

S
3
 
 

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
 

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
8

R
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
R

R
1

  
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
 

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
3

5
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

1
R

U
C

  
3

.1
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
1

R
U

E
  

2
.9

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
1

R
U

G
  

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
2

R
0
6
 

 
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
1

1
- 

H
u
m

a
n

 E
n

te
ro

v
ir
u

s
 D

6
8

 
4

W
M

7
  

2
.3

2
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
3
 

 
 

 
 

L
iu

 2
0

1
5
 

 
 

 
 

 
1

N
A

1
 
 

3
.3

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

Z
h
a

n
g
 2

0
0

4
 

 



 

 

35 

 

 
1

N
C

Q
  

2
.5

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

Z
h
a

n
g
 2

0
0

4
 

 
 

 
 

 
1

N
C

R
  

2
.7

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
0

/L
e

u
1

0
0

/M
e

t2
1

4
 

 
 

Z
h
a

n
g
 2

0
0

4
 

 
 

 
 

 
1

N
D

3
  

2
.8

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/M
e

t2
1

4
 

 
 

 
Z

h
a

n
g
 2

0
0

4
 

 
 

 
 

 
1

C
8
M

  
2

.8
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
0

/L
e

u
1

0
0

 
 

 
 

C
h

a
k
ra

v
a

rt
y
 T

B
P

 

W
3

3
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
R

0
7
 

 
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
4

2
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

1
R

0
8
 

 
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
0

6
 

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
4

3
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
R

M
2

  
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
/T

y
r1

5
2

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
5

4
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
H

W
C

  
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
7

/L
e

u
1

0
6

 
 

 
 

K
im

 1
9

9
3
 

 
 

 
 

 
2

H
W

E
  

3
.8

0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
0

3
  

 
 

 
 

K
im

 1
9

9
3
 

W
9

1
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

2
H

W
B

  
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
0

6
 

 
 

 
 

K
im

 1
9

9
3
 

 
 

 
 

 
2

H
W

D
  

3
.8

0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
0

6
 

 
 

 
 

K
im

 1
9

9
3
 

W
0

1
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

6
 

1
Q

J
U

  
2

.8
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
0

/L
e

u
1

0
0

/M
e

t2
1

4
 

 
 

H
a
d

fi
e

ld
 1

9
9
9
 

W
0

2
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

6
 

1
Q

J
X

 
 

2
.8

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
0

/L
e

u
1

0
0

/M
e

t2
1

4
 

 
 

H
a
d

fi
e

ld
 1

9
9
9
 

W
0

3
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

6
 

1
Q

J
Y

 
 

2
.8

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
0

/M
e

t2
1

4
 

 
 

 
H

a
d

fi
e

ld
 1

9
9
9
 

W
7

1
 

H
u
m

a
n

 E
n

te
ro

v
ir
u

s
 A

7
1

 
3

Z
F

F
 

 
3

.4
0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
5

5
; 
C

3
-M

e
-I

le
2

4
/V

a
l1

7
9
 

 
P

le
v
k
a

 2
0

1
3
 

 
 

 
 

 
3

Z
F

G
  

3
.2

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
5

5
/V

a
l1

9
0

; 
C

3
-M

e
-I

le
2
4

/V
a

l1
7

9
 

P
le

v
k
a

 2
0

1
3
 

 
C

o
x
s
a

c
k
ie

 v
ir
u

s
 A

9
 
 

1
D

4
M

  
2

.9
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

9
2

; 
C

3
-M

e
-L

e
u

2
1

6
 

 
 

H
e
n

d
ry

 1
9

9
9
 

 
P

o
lio

v
ir
u

s
 t

y
p
e

 3
 

 
1

P
IV

 
 

2
.9

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

1
2

/P
h

e
2
3

8
; 
C

3
-M

e
-T

y
r1

1
2

/P
h
e

2
3
8

H
ir
e
m

a
th

 1
9
9

5
 

 
 

 
 

 
2

R
0
4
 

 
3

.0
0
 

 

-R

in
g

-I
s
o

x
-

T

y
r1

9
7
 

 
 

 
 

B
a

d
g
e

r 
1
9
8

9
 

W
8

4
 

H
u
m

a
n

 R
h

in
o

v
ir
u

s
 1

4
 

1
R

U
D

  
2

.9
0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
/T

ry
1

5
2

; 
C

3
-M

e
-S

e
r1

7
5
/V

a
l1

7
6

 H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
1

R
U

H
  

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
/T

ry
1

5
2

; 
C

3
-M

e
-S

e
r1

7
5
/V

a
l1

7
6

 H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
1

R
U

I 
 

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
/T

ry
1

5
2

; 
C

3
-M

e
-S

e
r1

7
5
/V

a
l1

7
6

 H
a
d

fi
e

ld
 1

9
9
5
 

 
 

 
 

 
2

R
S

1
 
 

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
8

6
/T

ry
1

5
2

; 
C

3
-M

e
-S

e
r1

7
5
/V

a
l1

7
6

 B
a

d
g
e

r 
1
9

8
9

 

A
G

7
 

H
u
m

a
n

 E
n

te
ro

v
ir
u

s
 A

7
1

 
4

G
H

T
  

1
.9

6
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
2

5
/P

h
e

1
7

0
; 
C

5
-M

e
-L

e
u
1

2
5

  
W

u
 2

0
1
3
 

 
H

u
m

a
n

 E
n

te
ro

v
ir
u

s
 9

3
 3

C
 
3

R
U

O
  

1
.5

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
7

0
; 
C

5
-M

e
-L

e
u

1
2

5
 

 
 

C
o
s
te

n
a

ro
 2

0
1

1
 

 
 

 
 

 
3

Q
Z

Q
  

1
.7

0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
2

5
/P

h
e

1
7

0
; 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-L

e
u

1
2

5
/P

h
e
1

7
0

  
 

 
 

 
W

a
n

g
 2

0
1

1
 

 
 

 
 

 
3

Q
Z

R
  

1
.0

4
 

 

 -

R
in

g
-I

s
o

x
-

-L
e

u
1

2
5
/P

h
e

1
7

0
; 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

5
-M

e
-L

e
u

1
2

5
/P

h
e
1

7
0

  
 

 
 

 
W

a
n

g
 2

0
1

1
 

 
 

 
 

 
3

R
0
F

 
 

1
.3

1
 

 

-R

in
g

-I
s
o

x
-

L

e
u
1

2
5

/P
h

e
1
7

0
 

 
 

 
W

a
n

g
 2

0
1

1
 

 
 

 
 

 
3

S
J
I 

 
1

.8
0
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
1
2

5
; 
C

5
-M

e
-L

e
u

1
2

5
 

 
 

L
u

 2
0

1
1
 

 
 

 
 

 
3

S
J
O

 
 

1
.7

0
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
7

0
; 
C

5
-M

e
-P

h
e

1
7

0
 

 
 

L
u

 2
0

1
1
 

 
T

y
p
e

 2
 R

h
in

o
v
ir
u

s
 

 
1

C
Q

Q
  

1
.8

5
 

 

-R

in
g

-I
s
o

x
-

-P
h

e
1
7

0
; 
C

5
-M

e
-I

le
1

2
5
/P

h
e

1
7
0

 
 

M
a

tt
h

e
w

s
 1

9
9
9
 

  1
0

5
 

B
e

ta
-l
a
c
ta

m
a

s
e
 

 
1

N
Y

Y
  

1
.9

0
 

 
n

o
 i
n

te
ra

c
ti
o
n

s
 

 
 

 
 

 
W

a
n

g
 2

0
0

3
 

 
 

 
 

 
1

J
W

Z
  

1
.8

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r1

0
5

; 
C

5
-M

e
-A

la
2

3
7

/G
ly

2
3
8

/M
e

t6
9

 
W

a
n

g
 2

0
0

2
 

 



 

 

36 

 

 
 

 
 

 
1

F
S

Y
 
 

1
.7

5
 

 
C

5
-M

e
-T

y
r2

2
1

 
 

 
 

 
 

C
a
s
e

lli
 2

0
0
1
 

1
S

6
 

B
e

ta
-l
a
c
ta

m
a

s
e
 

 
4

J
X

G
 
 

1
.6

5
 

 
C

5
-M

e
-T

y
r2

2
1

 
 

 
 

 
 

D
o
c
te

r 
T

B
P

 

 
 

 
 

 
4

M
L

L
 
 

1
.3

7
 

 

-R

in
g

-I
s
o

x
-

-L
e

u
2
5

5
; 
C

5
-M

e
-G

ly
2

1
6

; 

  
  

  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
  
  

  
  
  

C
3

-P
h

-G
ly

2
3

8
/S

e
r2

3
7
 

 
 

 
 

J
u

n
e

 2
0

1
4
 

 
 

 
 

 
4

F
9
4
 

 
2

.4
0
 

 
C

5
-M

e
-T

rp
2

2
1

; 
C

3
-P

h
-L

e
u

 1
6

8
 

 
 

 
J
u

n
e

 T
B

P
 

1
U

3
 

B
e

ta
-l
a
c
ta

m
a

s
e

-g
ly

s
in

e
  

4
K

Z
5
 

 
1

.3
5
 

 
C

5
-P

h
-T

y
r2

2
1

; 
N

ri
n

g
-H

-b
o

n
d

-A
s
n

1
5

2
; 
 

 

  
  

  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
  
  

  
  
  

B
ri
d
g

e
d
 H

2
O

-O
ri
n

g
 

 
 

 
 

 
B

a
re

lie
r 

2
0
1

4
 

C
X

U
 

B
e

ta
-l
a
c
ta

m
a

s
e
 

 
4

R
1
G

  
1

.9
2
 

 
C

5
-M

e
-T

rp
7

2
0

/T
h

r8
9

3
; 

C
3

-P
h

-T
rp

7
9
1

/H
is

7
1

8
 

 
F

ili
p
p

o
v
a

 T
B

P
 

 
 

 
 

 
1

F
C

M
  

2
.4

6
 

 
C

5
-M

e
-T

y
r2

1
8

 
 

 
 

 
 

P
a

te
ra

 2
0
0

0
 

0
W

O
 

B
e

ta
-l
a
c
ta

m
a

s
e
 

 
4

E
Y

B
  

1
.1

6
 

 

-R

in
g

-I
s
o

x
-

-G
ly

6
9

; 
C

5
-M

e
-L

e
u

6
5

/T
rp

9
3
 

 
 

 
 

 
 

 
 

 
 

 
 

 
C

3
-P

h
-H

is
1

2
2

/M
e
t1

5
4

/G
ln

1
2
3

 
 

 
 

K
in

g
 2

0
1
2
 

 0
W

0
 

P
e

n
ic

ill
in

 b
in

d
in

g
 p

ro
te

in
 

4
F

S
F

 
 

2
.2

0
 

 

-R

in
g

-I
s
o

x
-

-V
a

l3
3
3

; 
B

ri
d

g
e

d
 H

2
O

-O
ri
n

g
/ 

N
ri
n

g
 

 
M

it
to

n
-F

ry
 2

0
1
2
 

C
X

V
 

P
e

n
ic

ill
in

 b
in

d
in

g
 p

ro
te

in
 

3
M

Z
D

  
1

.9
0
 

 

-R

in
g

-I
s
o

x
-

-S
e

r8
6
  

 
 

 
 

N
ic

o
la

 2
0

1
0
 

 B
I7

 
F

a
c
to

r 
X

a
 

 
 

2
J
K

H
 
 

1
.2

5
 

 

-R

in
g

-I
s
o

x
-

-V
a

l3
3
3

; 
B

ri
d

g
e

d
 H

2
O

-N
ri
n

g
  

 
S

a
lo

n
e

n
 2

0
0
9
 

II
A

 
F

a
c
to

r 
X

a
 

 
 

2
B

O
H

  
2

.2
0
 

 

-R

in
g

-I
s
o

x
-

-G
ln

1
9

2
/C

y
s
1
9

1
 

 
 

 
N

a
z
a

re
 2

0
0

5
 

II
B

 
F

a
c
to

r 
X

a
 

 
 

2
B

Q
6
  

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-G
ln

1
9

2
 

 
 

 
 

N
a
z
a

re
 2

0
0

5
 

X
W

G
 

F
a

c
to

r 
X

a
 

 
 

2
Y

5
F

 
 

1
.2

9
 

 

-R

in
g

-I
s
o

x
-

-C
y
s
1
9

1
; 
B

ri
d

g
e
d

 H
2
O

-N
ri
n

g
 

 
S

a
lo

n
e

n
 2

0
1
2
 

V
Y

R
 

F
a

c
to

r 
X

a
 

 
 

4
B

T
T

 
 

2
.5

9
 

 
n

o
 i
n

te
ra

c
ti
o
n

s
 

 
 

 
 

 
M

e
n

e
y
ro

l 
2
0

1
3

 

2
F

N
 

F
a

c
to

r 
X

a
 

 
 

4
N

3
L
 

 
1

.9
4
 

 

-R

in
g

-I
s
o

x
-

-C
y
s
1
9

1
 

 
 

 
 

B
e

lv
is

o
 2

0
1

4
 

 5
M

R
 

M
M

M
P

9
 

 
 

2
O

V
Z

  
2

.0
0
 

 

-R

in
g

-I
s
o

x
-

-H
is

4
0

1
; 
C

3
-P

h
-H

is
4

0
1

/T
y
r4

2
3

/M
e

t4
2

2
 

T
o
c
h

o
w

ic
z
 2

0
0

7
 

E
E

A
 

M
M

P
1

2
 

 
 

3
L

IL
 

 
1

.8
0
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
/T

ry
2

4
0

; 
C

3
-P

h
-T

y
r2

4
0

/V
a

l2
3
5

 
D

e
v
e

l 
2

0
1

0
 

E
E

C
 

M
M

P
1

2
 

 
 

3
L

IR
 

 
1

.9
0
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
/T

ry
2

4
0

; 
C

3
-P

h
-L

y
s
2
4

1
/T

y
r2

4
0

/V
a

l2
3
5

  
  
D

e
v
e
l 
2

0
1
0
 

R
4
7
 

M
M

P
1

2
 

 
 

4
G

Q
L
  

1
.1

5
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
; 
C

3
-P

h
-T

y
r2

4
0

/H
is

2
1

8
 

 
C

z
a
rn

y
 2

0
1

3
 

R
4
B

 
M

M
P

1
2

 
 

 
4

G
R

0
  

1
.5

0
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
; 
C

3
-P

h
-T

y
r2

4
0

/H
is

2
1

8
 

 
C

z
a
rn

y
 2

0
1

3
 

R
4
C

 
M

M
P

1
2

 
 

 
4

G
R

8
  

1
.3

0
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
; 
C

3
-P

h
-T

h
r2

3
9
/T

h
r2

4
0

/H
is

2
1

8
 

C
z
a
rn

y
 2

0
1

3
 

R
4
5
 

M
M

P
1

2
 

 
 

4
G

R
3
  

1
.4

9
 

 

-R

in
g

-I
s
o

x
-

-H
is

2
1

8
/ 
T

y
r2

4
0

; 
C

3
-P

h
-T

y
r2

4
0

/T
h
r2

3
9

 
C

z
a
rn

y
 2

0
1

3
 

 A
2

Y
 

In
fl
u

e
n

z
a

 A
 

 
 

2
L

Y
0
 

 
N

M
R

 
 


-R

in
g

-I
s
o

x
-

-V
a

l2
7
  

 
 

 
 

W
a

n
g

 2
0

1
3
 

0
M

M
 

In
fl
u

e
n

z
a

 A
 

 
 

3
T

G
6
 
 

3
.0

0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r5

2
/T

rp
1

0
4

; 
C

3
-P

h
-T

y
r5

2
/ 

T
y
r3

1
3
 

E
d

a
v
e
tt

a
l 
T

B
P

 

0
M

F
 

In
fl
u

e
n

z
a

 A
 

 
 

4
D

Y
A

  
2

.7
5
 

 

-R

in
g

-I
s
o

x
-

-T
y
r5

2
/T

rp
1

0
4

; 
C

3
-P

h
-T

y
r5

2
/ 

T
y
r3

1
3
 

L
e

w
is

 T
B

P
 

0
M

H
 

In
fl
u

e
n

z
a

 A
 

 
 

4
D

Y
B

  
2

.8
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r5

2
/T

rp
1

0
4

; 
C

3
-P

h
-T

y
r3

1
3
 

 
L

e
w

is
 T

B
P

 

0
M

R
 

In
fl
u

e
n

z
a

 A
 

 
 

4
D

Y
N

  
2

.4
0
 

 

-R

in
g

-I
s
o

x
-

-T
y
r5

2
/T

rp
1

0
4

; 
C

3
-P

h
-T

y
r5

2
/ 

T
y
r3

1
3
 

L
e

w
is

 T
B

P
 

0
M

S
 

In
fl
u

e
n

z
a

 A
 

 
 

4
D

Y
P

  
2

.8
2
 

 

-R

in
g

-I
s
o

x
-

-T
y
r5

2
/T

rp
1

0
4

; 
C

3
-P

h
-T

y
r5

2
/ 

T
y
r3

1
3
 

L
e

w
is

 T
B

P
 

 



 

 

37 

 

 

M
O

K
 

H
IV

 i
n
te

g
ra

s
e
 

 
3

V
Q

D
  

2
.0

0
 

 
C

4
-C

O
O

-H
-B

o
n
d
 –

S
e

r1
9
5

; 

-R

in
g

-I
s
o

x
-

-G
lu

1
9
8

  
W

ie
le

n
s
 2

0
1

3
 

M
P

K
 

H
IV

 i
n
te

g
ra

s
e
 

 
3

Q
V

C
  

2
.3

0
 

 
C

4
-C

H
2

O
H

-H
-B

o
n
d
 –

S
e

r1
9

5
/A

s
n
1

8
4



















































-R

in
g

-I
s
o

x
-

-G
lu

1
9

8
; 

C
4
-C

H
2
-

-H
is

1
8
5

/S
e

r1
9

5
  

W
ie

le
n

s
 2

0
1

3
 

0
N

K
 

H
IV

 i
n
te

g
ra

s
e
 

 
3

V
Q

4
  

1
.9

0
 

 
C

3
-C

H
2

O
H

-H
-B

o
n
d
 –

A
s
p

2
0

2
/T

h
r2

0
6
; 

  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
 

-R
in

g
-I

s
o

x
-

-G
lu

1
9
8

/G
ly

1
9
7

/I
le

2
0
4

; 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
C

4
-P

h
-G

ly
1

9
7
/P

ro
1
0

9
/T

rp
1

0
8

 
 

 
 

W
ie

le
n

s
 2

0
1

3
 

 A
F

8
 

H
IV

 p
ro

te
a

s
e
  

 
3

S
A

C
  

1
.5

0
 

 
B

if
u

rc
a
te

d
-N

ri
n

g
-O

ri
n

g
-H

-b
o

n
d

-A
s
p

3
0
; 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 

-R

in
g

-I
s
o

x
-

-I
le

4
7
 
 

 
 

 
 

A
lt
m

a
n

 T
B

P
 

F
7

1
 

H
IV

 p
ro

te
a

s
e
  

 
3

S
A

6
 
 

1
.7

5
 

 

-R

in
g

-I
s
o

x
-

-I
le

4
7
 
 

 
 

 
 

A
lt
m

a
n

 T
B

P
 

    



 

 

38 

 

Chapter 2 

Synthesis of New Quinolinequinone Derivatives and Preliminary  

Exploration of their Cytotoxic Properties 

Reprinted with permission from Charles M. Keyari, Alison K. Kearns, Nathan S. Duncan*, 

Emily A. Eickholt, Geoffrey Abbott, Howard D. Beall, and Philippe Diaz. Synthesis of New 

Quinolinequinone Derivatives and Preliminary Exploration of their Cytotoxic Properties. J. Med. 

Chem. 2013, 56, 3806−3819. dx.doi.org/10.1021/jm301689x. Copyright 2015 American 

Chemical Society. 

*Role of author was contribution of computational modeling 

2.1 Introduction  

Lavendamycin (Figure 2-1) is a quinolinequinone antibiotic with antitumor activity first 

isolated from Streptomyces lavendulae by Balitz et al. in 1982.
1,2

 It is structurally related to 

streptonigrin, which was first isolated from Streptomyces flocculus.
3,4

 Streptonigrin is known for 

its potent cytotoxic properties, antitumor activity, in vitro and in vivo antiviral properties, and 

 

Figure 2-1. Natural quinolinequinone antibiotics. 
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potent, broad-spectrum antimicrobial properties. Although lavendamycin is not suitable for 

clinical use due to its toxicity, its analogues are less toxic and hence have potential as antitumor 

agents.
5
 Recent findings

6–11
 suggest that some indolequinones and quinolinequinones are 

excellent substrates for the quinone reductase enzyme NAD(P)H:quinone oxidoreductase 1 

(NQO1) and are selectively cytotoxic to cancer cell lines that overexpress NQO1. NQO1 is a 

ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones to hydroquinones, 

and it is highly expressed in many solid tumors.
12

 This forms the basis for the synthesis of novel 

quinolinequinones structurally related to lavendamycin as potential NQO1-directed antitumor 

agents.  

Behforouz et al.
13

 first demonstrated that 7-aminoquinoline-5,8-diones can be efficiently 

prepared from commercially available 8-hydroxy-2-methylquinoline. Fryatt et al.
7
 also showed 

that, by starting with 6-methoxyquinoline, 6-methoxy-2-chloroquinoline-5,8-dione was prepared, 

and subsequent palladium(0)-catalyzed reaction with boronic acids gave novel 

quinolinequinones under reflux for 24 h. Furthermore, in 2004,
14

 arylboronic acids were shown 

to be more reactive than their counterparts, the arylpinacolboronate esters, when reacted with 

indole bromides in Suzuki couplings under reflux. The lower reactivity was attributed to steric 

factors in the arylpinacolboronate esters. Also, 3-arylindazoles have been synthesized by the 

reaction of haloindazoles (3-bromoindazole and 3-iodoindazole) with arylboronic acids under 

Pd(0) catalysis in Suzuki-type cross couplings.
15

 The reaction times ranged from 1 to 18 h under 

reflux conditions. In this study we report a direct, more efficient approach to 7-aminoquinoline 

quinones starting from commercially available 7-amino-8-hydroxyquinoline under microwave 

conditions where the reaction times are shorter. Computational, metabolism, and cytotoxicity 

studies on the quinoline-5,8-diones are also described. 
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2.2 Chemistry 

The synthesis commenced with nitration of 5-chloro-8-hydroxyquinoline under HNO3/H2SO4 

according to a procedure reported by Musser et al.
16

 to give the 5-chloro-7-nitro-8-

hydroxyquinoline (1) in good yield (79%). Hydrogenation under Pd/C catalysis at 40−50 psi 

 

Scheme 2-1. a.Reagents and conditions: (i) HNO3/H2SO4; (ii) H2/Pd−C, MeOH, 40−50 psi, 

overnight; (iii) CH3COCl, DIEA, THF, 2 h; (iv) H2O/MeOH, reflux, 1 h; (v) BnBr, K2CO3, 

DMF, 50 °C, 24 h; (vi) mCPBA, ClCH2CH2Cl, 48 h; (vii) POCl3, CHCl3, reflux, 2 h; (viii) 

BCl3·SMe2, CH2Cl2, overnight; (ix) Fremy’s salt, rt, 1 h; (x) RB(OH)2, Pd(PPh3)4, 110−140 °C, 

μW 20−25 min. 

 

not only reduced the nitro group to the free amine but also removed the chloride to provide the 

desired 7-amino-8-hydroxyquinoline (2) in excellent yield (99%). A direct approach to the amino 

alcohol 2 involves heating a mixture of 8-hydroxyquinoline and N-methyl-N-phenylhydrazine at 

90 °C, albeit very low yields were obtained.
17

 Our attempt to synthesize the amino alcohol by 

heating in a microwave between 130 and 160 °C did not improve the yield. 

Acetylation proceeded smoothly where both the amino and hydroxyl groups were 

protected. The resulting diacetylated product (3) was hydrolyzed in MeOH/H2Ounder reflux to 
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form 7-acetamido-8-hydroxyquinoline. Subsequent benzylation of the free hydroxyl was effected 

by reaction with BnBr/K2CO3 in N,N-dimethylformamide (DMF) at 50 °C for 24 h to give the 

 

Table 2-1. Suzuki Couple Products. Asterisk indicates Stille coupling reaction.  

 

7-acetamido-8-benzyloxyquinoline (4) in 90% yield. Oxidation with m-chloroperoxybenzoic 

acid (mCPBA) in 1,2-dichloroethane at room temperature (rt) for 48 h gave the N-oxide (5) in 

82% yield.
18

 The key intermediate in the synthesis, 2-chloro-7- acetamido-8-benzyloxyquinoline 
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(6), was obtained in 62% yield by refuxing the N-oxide with POCl3 in CHCl3.
19

 The high 

regioselectivity of the reaction can be rationalized in terms of sterics as well as formation of an 

oxyphosphorane adduct anion in a rapid concerted mechanism.
20

 We also attempted to reflux the 

N-oxide 5 with SO2Cl2 as reported in literature,
9
 but this only resulted in massive decomposition 

of the starting material. Deprotection of the benzyl group was effected with BCl3·SMe2 in 

CH2Cl2 and subsequent oxidation with Fremy’s salt [potassium nitrosodisulfonate, (KO3S)2NO] 

gave 7-acetamido-2-chloroquinoline-5,8-dione (8) in 71% yield.
7
 The results are summarized in 

Scheme 2.1 above.  

After successful formation of quinolinequinone 8, the stage was now set for Suzuki 

coupling chemistry. This was accomplished by reaction with different boronic acids under Pd(0) 

catalysis in a microwave as illustrated in Table 2-1. Generally, the reactions were complete 

within 20−30 min in good yields except for the arylboronate ester, where only 27% of the 

product (16) was obtained. The mechanistic details of the reaction have been well studied, with 

oxidative addition, transmetalation, and reductive elimination being the most critical steps.
21

 

Interestingly, 7-amino-2-(2-pyridyl)quinoline-5,8-dione was prepared in nine steps starting from 

3-hydroxybenzoic acid where the key step was a Friedlander condensation of 2-acetylpyridine 

and 2-amino-3-benzyloxy-4-bromobenzaldehyde to give 8-benzyloxy-7-bromo-2-(2′-

pyridyl)quinoline.
22

 Although this seems an attractive strategy, the method lacks the flexibility 

needed to create a library of lavendamycin analogues.  

The final step in the synthesis involved removal of the acetate protecting group, which 

was effected by reaction with H2SO4/MeOH at rt. The tert-butyloxycarbonyl (Boc)-protected 

derivatives were also subjected to trifluoroacetic acid (TFA)/CH2Cl2 at rt for 2 h to provide the 

7-acetamido derivatives. 
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Table 2-2. Reduction Ratesa and Oxygen Consumptionb as a Result of Quinoline-5,8-Dione Metabolism 

by Recombinant Human NQO1 and Electrochemical Reduction Potentials versus Ferrocenec,d. 

aSpectrophotometric assay with cytochrome c as terminal electron acceptor (550 nm). bOxygen 

concentration monitored via an oxygen electrode. cE1/2 values calculated as (Epc+Epa)/2 are average 

values from voltammograms recorded atpotential sweep rate of 50 mV/s. Epc = cathodic peak potential; 

Epa = anodic peak potential. dnr = nonreversible, anodic peak only. 
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2.3 Electrochemistry 

Eletrochemistry was performed to compare the electrochemical behavior of the 

quinolinequinones with their reduction rates by NQO1, and the data are shown in Table 2-2. 

Tetrahydrofuran (THF) was used as the solvent for all compounds except 15, which was run in 

dimethyl sulfoxide (DMSO). The compounds were run against an Ag/AgCl electrode and 

cathodic and anodic peak potentials, Epc and Epa, respectively, were measured at a potential 

sweep rate of 50 mV/s, and the midpoint of the peak potentials was used to determine E1/2 

values, (Epc + Epa)/2. Unfortunately, many of the analogues did not show reversible 

electrochemistry, and in some cases there were multiple somewhat difficult, but some 

conclusions can be drawn. For instance, most of the acetylated quinolinequinones had a 

reduction peak between −1.08 and −1.18 V, an indication that they are easier to reduce than the 

nonacetylated compounds due to the presence of this electron-withdrawing group. This is 

consistent with what we reported previously for lavendamycins. However, there was no 

correlation between reduction potentials and reduction rates by NQO1, in line with previous 

publications on this topic.
6–8, 23, 24

 This suggests that steric interactions are more likely to be 

predictive of substrate efficiency than reduction potentials. 

2.4 NMR Spectroscopy and Spectrophotometry 

Complexation of zinc(II) triflate by compounds 13, 19, 22, and 23 was studied by 1H 

NMR spectroscopy. No new peaks were observed in the NMR spectra, indicating that free and 

complexed forms of zinc(II) triflate were in a rapid exchange relative to NMR time scale. The 

aromatic region of the NMR spectrum of compound 19 in THF-d8 at room temperature is shown 

in Figure 2-2. 
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There was a small difference in chemical shifts of H-2′ (moving upfield) and H-3 

(moving downfield) after addition of 1 equiv of zinc(II) triflate to the NMR solution (Table S1, 

Supporting Information, and Figure 2-2) whereas the changes in δ of the other protons were 

barely noticeable. The biggest change in δ of H-2′ (−0.04 ppm) and H-3′ (+0.07 ppm) occurs 

after addition of 10 equiv of Zn(SO3CF3)2. This suggests that weak binding occurs at low Zn2+ 

concentration.  

 

Figure 2-2. proton region of NMR spectrum of 19 upon addition of increasing equivalents of 

Zn(SO3CF3)2 in THF-d8. Note the change in δ of H-2′and H-3 upon addition of Zn2+. 

Equivalents of Zn2+: A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, and G = 10. 
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In contrast, addition of only 1 equiv of Zn(SO3CF3)2 to compound 22 caused larger 

chemical shift variations of all the protons (Table S2, Supporting Information, and Figure 2-3). 

 

Figure 2-3. Aromatic protons region NMR spectra of 22 upon addition of increasing equivalents 

of Zn(SO3CF3)2 in THF-d8. Equivalents of Zn2+: A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, and 

G = 10. 

 

Increasing the amount of Zn2+ (2−10 equiv) added to compound 22 made little or no 

difference in δ afterward (>0.01 ppm). This means that the quinoline derivative binds the Zn2+ 

more efficiently than compound 19 and only 1 equiv of Zn2+ is enough to cause chemical shift 

variations.  
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Figure 2-4. Aromatic proton region NMR spectra of 23 upon addition of increasing equivalents 

of Zn(SO3CF3)2 in THF-d8. Equivalents of Zn2+: A = 0, B = 1, C = 2, D = 3, E = 4, F = 5, and 

G = 10. 

 

Similar observations were made with compounds 23 (Table S3, Supporting Information, 

and Figure 2-4) and 13 (Table S4, Supporting Information). This is consistent with the results 

reported by Long and Harding,
25

 where they demonstrated that the 1:1 bipyridyl complex of 

streptonigrin was the major complex formed at room temperature by performing an NMR study 

in THF-d8 with addition of Zn2+. Titration of compound 23 with Zn2+ in a mixture of dimethyl 

sulfoxide/methanol (1:3) was monitored by a spectrophotometer as reported in literature.
26

 A plot 
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of Δλ355 against Zn2+ concentration gave a moderate affinity constant of 1.41 × 104M−1 for 

compound 23 binding with Zn2+. 

2.5 Results and Discussion 

Quinolinequinone metabolism by recombinant human NQO1 was examined via a 

spectrophotometric assay that employs cytochrome c as the terminal electron acceptor. Initial 

rates of reduction (micromoles of cytochrome c reduced per minute per milligram of NQO1) 

were calculated from the linear portion (0−30 s) of the reaction graphs. The 7-acetamido-2-(2-

pyridinyl) compound 13 displayed the highest reduction rate by NQO1 (Table 2-2), although it 

was the only acetylated analogue with a high reduction rate. In all other cases, 7-amino 

compounds had much higher reduction rates than corresponding 7-acetamido compounds with 

identical substituents at the quinolone 2-position. Although unusual, higher rates for acetylated 

analogues have been observed in other series.6,11 With regard to the aromatic substituents at the 

quinoline 2-position, no clear trend in reduction rates was observed except that bulkier groups 

generally decreased reduction rates. Oxygen consumption is a measure of the ability of the 

reduced quinone (hydroquinone) to redox-cycle following reduction by NQO1. This could lead 

to production of toxic reactive oxygen species and ultimately to cell death. Oxygen consumption 

was measured for select quinolinequinones, and the trend, if not the magnitude, mirrored the 

reduction rates (Table 2-2).  

Cell survival wasmeasured by the [3-(4,5-dimethylthiazol-2-yl)- 

2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. In previous work, we demonstrated 

that IC50 values generated from standard clonogenic assays and MTT assays were positively 

correlated, suggesting that the MTT assay is a reliable indicator of cytotoxicity.6 We utilized 

MDA-MB-468 human breast cancer cells stably transfected with human NQO1 cDNA 
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Table 2-3. Cytotoxicity of Quinoline-5,8-diones toward MDA468-WT (NQO1-deficient) and 

MDA468-NQ16 (NQO1-rich) Human Breast Cancer Cell Lines. 

 

(MDA468-NQ16) along with the nontransfected wild-type cells (MDA468) to compare the 

cytotoxicity of the quinolinequinones (Table 2-3).
27
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Quinolinequinone cytotoxicity (IC50) to MDA468 cells was generally in the single-digit 

micromolar range following 2-h exposures, with some in the high nanomolar range (11, 13, and 

22). Surprisingly, selectivity ratios [IC50 (MDA468)/IC50 (MDA468-NQ16)] were generally 

<1, meaning that the quinolinequinones were less cytotoxic to the NQO1-rich MDA468-NQ16 

cells rather than more cytotoxic. This suggests that NQO1 was protective to the cells rather than 

functioning as an activating enzyme.
27

 Only two compounds (11 and 23) were selectively 

cytotoxic to the MDA468-NQ16 cells. The reason for the general absence of selective 

cytotoxicity with this particular series of compounds is unclear, but it is consistent with NQO1’s 

primary role as a detoxification enzyme.
27

  

Molecular docking of the quinolinequinones in the NQO1 active site was performed by 

use of Sybyl 8.1.1 and GOLD 5.1 for scoring. Three good NQO1 substrates (13, 20, and 24) and 

three poor NQO1 substrates (9, 11, and 17) were docked and scored with ChemPLP and 

ChemScore (Table 2-4). The highest scores representing a good fit for the model were found for 

20 and 24, consistent with the metabolism data. The exception again was 13, which scored the 

lowest but was the best substrate. Interatomic distances between quinolinequinone carbonyl 

groups and flavin adenine dinucleotide (FAD) atom N5 and His161 were shortest for 20, but all 

were within a reasonable distance for hydride transfer from FAD when the dynamic effects of 

the quinone−enzyme interaction are considered. Figure 2-5 shows possible docking 

conformations for 20 and 11 with NQO1. All quinolinequinones orient with the quinone ring 

above the FAD isoalloxazine ring as needed for hydride transfer.  

The mechanism of action of lavendamycin and streptonigrin is not clearly understood. 

However, previous studies demonstrated that quinone moieties are reduced by NQO1 to the 
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corresponding hydroquinones, which undergo autoxidation to produce activated oxygen species 

 

Table 2-4. Computational Parameters for Selected Quinoline-5,8-diones. 

including not only semiquinone derivatives but also superoxide and hydroxyl radicals.
28

 In 

addition, both streptonigrin and lavendamycin chelate divalent cationic metal ions. This property 

might confer to streptonigrin and lavendamycin the ability to shuttle iron cations into the cells, 

which in turn can catalyze production of reactive oxygen species through a Fenton reaction. On 

the other hand, this chelation can result in depletion of intracellular cationic metals, which might 

result in cell death.
29

 Generation of the semiquinone radical, after reduction of the quinone to the 

hydroquinone followed by autoxidation, results in a decrease of activity in nine compounds. The 
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best NQO1 substrates are less active compounds (13, 20, and 24) in NQO1 expressing cells. In 

contrast, poor NQO1 substrates such as compound 22 or 11, exhibit the best activity in both 

 

Figure 2-5. Quinolinequinones docked in NQO1 active site: 20, cyan; 11, magenta; FAD, green. 

 

cancer cells expressing NQO1 and those not expressing NQO1. According to the NMR 

experiments, quinoline derivative 22 and compound 13 bind the Zn2+ more efficiently than 
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compound 19, and only 1 equiv of Zn2+ is enough to cause important chemical shift variations. 

Similar observations were made with compound 23, which was less cytotoxic than compound 

22. Even though metal chelation by these compounds is still a plausible mechanism to explain 

their activity against breast cancer cells, another mode of action cannot be discarded. Most active 

compounds (11, 13, and 22) are potential tridentate ligands for metals. Compound 23 exhibits 

lower activity than the corresponding acetylated amino analogue 13. It was proposed that metals 

can assist tautomeric shift from the active quinone analogues to the quinoid analogue, which has 

a structure isoelectronic with the biologically inactive azastreptonigrin.
24

 This tautomeric shift 

can explain the decrease of activity of the amino derivative compared to the amido derivative. In 

our series of aryl-substituted quinonequinolines, the active molecules are the quinone derivatives 

and not the semiquinone derivatives. A similar mode of action to the bidentate metal ligand 

derivative 8-hydroxyquinoline is currently under investigation.
30,31

 

2.6 Conclusions 

A ten-step synthetic scheme led to good yields for quinolinequinone analogues of 

lavendamycin projected as NQO1-directed antitumor agents. Unexpectedly, 10 of 11 analogues 

demonstrated excellent cytotoxicity (IC50 values of single-digit micromolar or better) toward 

MDA468 breast cancer cells, but only two were selectively cytotoxic to NQO1-expressing 

MDA468-NQ16 cells. Compounds 22 and 11 are poor NQO1 substrates and exhibit the best 

activity against breast cancer cells. In our novel series of aryl-substituted quinonequinolines, the 

active molecules appears to be the quinone derivatives and not the semiquinone derivatives 

resulting from NQO1 reduction, suggesting that the mode of action of this novel series differs 

from that of lavendamycin and involves an unidentified target. Quinolinequinone derivatives 11, 

13, and 22 cytotoxicities (IC50) to MDA468 cells were in the high nanomolar range. Our results 
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seem to indicate that compounds 11, 13, and 22 effects could be also, at least partially, mediated 

by metal chelation. These aryl quinonequinoline derivatives represent a promising class of 

cytotoxic agents with potential novel therapeutic value. 

2.7 Experiments Section 

2.7.1 Cell Culture.  

MDA-MB-468 (MDA468) human breast cancer cells and stably NQO1-transfected 

MDA468-NQ16
32

 were a gift from Dr. David Ross (University of Colorado-Denver, Denver, 

CO). MDA468 cells had no measurable NQO1 activity whereas activity in MDA468-NQ16 cells 

was 1070 nmol·min−1 (mg of total cell protein) −1, with dichlorophenolindophenol (DCPIP) as 

the standard electron acceptor. Cells were grown in RPMI 1640 medium with L-glutamine and 

penicillin/streptomycin, supplemented with 10% fetal bovine serum (FBS). Cell culture medium 

and supplements were obtained from Invitrogen (Carlsbad, CA). The cells were incubated at 37 

°C under a humidified atmosphere containing 5% CO2. 

2.7.2 Spectrophotometric Cytochrome c Assay.  

Quinolinequinone reduction was monitored by a spectrophotometric assay in which the 

rate of reduction of cytochrome c was quantified at 550 nm. Briefly, the assay mixture contained 

cytochrome c (70 μM), reduced nicotinamide adenine dinucleotide (NADH; 1 mM), recombinant 

human NQO1 (0.1−10 μg) (gift from Dr. David Ross, University of Colorado-Denver, Denver, 

CO), and quinonlinequinones (25 μM) in a final volume of 1 mL of Tris-HCl (25 mM, pH 7.4) 

containing 0.7 mg/mL bovine serumalbumin (BSA) and 0.1%Tween-20. Reactions were carried 

out at room temperature and started by the addition of NADH. Rates of reduction were 

calculated from the initial linear part of the reaction curve (0−30 s), and results were expressed in 

terms of micromoles of cytochrome c reduced per minute per milligram of NQO1 by use of a 
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molar extinction coefficient of 21.1 mM−1·cm−1 for cytochrome c. All reactions were carried 

out at least in triplicate. 

2.7.3 Oxygen Consumption.  

Oxygen concentration was monitored with a MI-730 micro-oxygen electrode 

(Microelectrodes, Bedford, NH) with concentrations adjusted for temperature (25 °C). Assay 

mixtures contained 25 μM quinonlinequinones, 200 μM NADH, and 1 μg/mL NQO1 in a 2 mL 

Tris-HCl/BSA/Tween (0.1%) buffer system. Reactions were started with NADH and measured 

over 3-min intervals at room temperature. All reactions were carried out in triplicate. 

2.7.4 Electrochemistry.  

Cyclic voltammograms (CV) were collected for 10 analogues on a BAS CV-50W 

electrochemical analyzer using a standard three-electrode cell. Experiments were performed with 

an Ag/AgCl reference electrode, a glassy carbon working electrode, and a to the ferrocene (0/+) 

couple in the solvent used, primarily THF, which occurs at +0.60 V versus Ag/AgCl. The 

compounds were run at concentrations of 1 mMin THF, except compound 15 which was run in 

DMSO, with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte. All 

samples were purged and run under an Ar atmosphere during the course of the experiment, and 

the electrodes were washed and wiped down between each sample. Each CV was collected at a 

sweep rate of 50 mV/s in the potential range of 0 to −2Vat room temperature of 21 °C.  

2.7.5 NMR Spectroscopy.  

One-dimensional 1H NMR spectra were recorded at room temperature on a Bruker 

Avance IIITM spectrometer (The Woodlands, Texas) at 400 MHz using a 5-mm probe and a 

simple pulse-acquire sequence. Acquisition parameters consisted of spectral width of 4000 Hz 
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with an acquisition time of 3.98 s, number of scans 128, and relaxation delay 1 s. Complexes 

were prepared in a mixture of CDCl3 and THF-d8. 

2.7.6 Cell Viability Assay.  

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 

96-well plates at a density of 10 000 cells/mL and allowed to attach overnight (16 h). 

Quinolinequinone solutions were applied in medium for 2 h, removed, and replaced with fresh 

medium, and the plates were incubated at 37 °C under a humidified atmosphere containing 5% 

CO2 for 3−5 days. MTT (50 μg) was added and the cells were incubated for another 4 h. 

Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were 

dissolved in 100 μL of DMSO, and absorbance was determined on a plate reader at 560 nm. 

IC50 values (concentration at which cell survival equals 50% of control) were determined from 

semilog plots of percent of control versus concentration. Selectivity ratios were defined as IC50 

value for the MDA468 cell line divided by IC50 value for the MDA468-NQ16 cell line. 

2.7.7 Molecular Modeling.  

 For docking purposes, the crystallographic coordinates of the human NQO1 complex 

with 

3-(hydroxymethyl)-5-(2-methylaziridin-1-yl)-1-methyl-2-phenylindole-4,7-dione (25) were 

obtained from the Brookhaven Database (PDB code 1H69
33

 and resolution 1.86 Å) and the 

structure was edited accordingly to provide a monomer of the protein. The protein complex was 

then minimized within Sybyl 7.3 (Tripos Ltd., St. Louis, MO) while all heavy atoms were held 

stationary. The ligand was then removed to leave the receptor complex, which was used for the 

subsequent docking studies. For preparation of ligand structures, fragments from Sybyl 8.1.1 

were used to construct the compounds and all symmetric compounds were prepared as 
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monoanionic ligands. Ligands were subject to 1000 iterations of energy minimization by the 

Powell method with MMFF94s force field. For computational docking, GOLD 5.1 software was 

used in combination with the ChemPLP
34

 scoring function (rescoring with ChemScore).
35

 

The active site was defined as being any volume within 8 Å of the quinone scaffold of 25 

in its crystal pose in 1H69. Each GA run used the default parameters of 100 000 genetic 

operations on an initial population of 100 members divided into five subpopulations, with 

weights for crossover, mutation, and migration being set to 95, 95, and 10, respectively. GOLD 

allows a user-definable number of GA runs per ligand, each of which starts from a different 

orientation. For these experiments, the number of GA runs was set to 10, and scoring of the 

docked poses was performed with the ChemPLP scoring function with ChemScore rescore. Each 

GOLD run was saved and the strongest scoring binding pose of each ligand (subject to a rmsd 

default distance threshold of 1.5 Å) was compared to that of the reference ligand position 

observed in the crystal structure. The best output poses (orientations) of the ligands generated 

were analyzed on the basis of ChemPLP/ChemScore score, feasibility of hydride transfer 

process, and H-bonding to the enzyme. The best pose(s) were visualized with PyMOL Molecular 

Graphics System version 1.3. 

2.7.8 Chemistry 

All moisture sensitive reactions were performed in an inert, dry atmosphere of argon in 

flame dried glassware. Air sensitive liquids were transferred via syringe or cannula through 

rubber septa. Reagent grade solvents were used for extraction and flash chromatography. THF 

was distilled from Na/benzophenone under argon; dichloromethane (CH2Cl2) and chloroform 

(CHCl3) were distilled from CaH2 under argon. All other reagents and solvents which were 

purchased from commercial sources, were used directly without further purification. The 
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progress of reactions was checked by analytical thin-layer chromatography (Sorbent 

Technologies, Silica G TLC plates w/UV 254). The plates were visualized first with UV 

illumination followed by charring with ninhydrin (0.3% ninhydrin (w/v), 97:3 EtOH-AcOH). 

Flash column chromatography was performed using prepacked Biotage SNAP cartridges on a 

Biotage Isolera One instrument. Microwave reactions were performed using a Biotage Initiator 

instrument. The solvent compositions reported for all chromatographic separations are on a 

volume/volume (v/v) basis. 
1
HNMR spectra were recorded at 400 or 500 MHz and are reported 

in parts per million (ppm) on the δ scale relative to tetramethylsilane as an internal standard. 

13
CNMR spectra were recorded at 100 or 125 MHz and are reported in parts per million (ppm) 

on the δ scale relative to CDCl3 (δ 77.00). Melting points were determined on a Stuart melting 

point apparatus from Bibby Scientific Limited and are uncorrected. High Resolution mass 

spectrometry (HRMS) was performed on a Waters/Micromass LCT-TOF instrument. All 

compounds were more than 95% pure. 

5-chloro-8-hydroxy-7-nitroquinoline (1). This compound was prepared according to the literature 

12 
procedure to yield a yellow solid, 4.40 g (79%). M.p. 198-200C, [lit.

12
, m.p. 192-194C]; 

1
H 

NMR (500 MHz, DMSO) δ 9.09 (dd, J = 4.2, 0.5 Hz, 1H), 8.58 (dd, J = 8.5, 0.8 Hz, 1H), 8.18 (s, 

1H), 7.94 (dd, J = 8.5, 4.3 Hz, 1H). 
13

C NMR (126 MHz, DMSO) δ 150.5, 150.1, 139.9, 133.6, 

132.3, 128.5, 125.9, 122.0, 117.9. HRMS (TOF MS ES+) for C9H6ClN2O3
+
 (MH+) calcd. 

225.0067, found 225.0055. 

7-Amino-8-hydroxyquinoline (2). Compound 1 (2.4 g, 10.69 mmol) was placed in a 

hydrogenation apparatus equipped with a magnetic stir bar and methanol added. Pd/C (150 mg) 

in a small amount of MeOH (60 mL) was added and stirring commenced. H2 gas was introduced 

at a pressure of 40-50 psi and reacted at rt overnight. TLC showed full conversion. The black 
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solution was filtered using a celite pad and concentrated under reduced pressure to yield 2 as a 

black oil, 99% yield. 
1
H NMR (500 MHz, CDCl3) δ 8.66 (dd, J = 4.4, 1.6 Hz, 1H), 8.03 (dd, J = 

8.2, 1.6 Hz, 1H), 7.24 (d, J = 8.7 Hz, 1H), 7.17 (dd, J = 8.2, 4.4 Hz, 1H), 7.10 (d, J = 8.7 Hz, 

1H). 
13

C NMR (126 MHz, CDCl3) δ 148.0, 137.9, 136.6, 136.1, 132.1, 122.4, 119.3, 118.5, 

117.7. HRMS (TOF MS ES+) for C9H9N2O
+ 

(MH+) calcd. 161.0715, found 161.0707. 

7-acetamido-8-acetyloxyquinoline (3). Compound 2 (330 mg, 2.06 mmol) was dissolved in dried 

THF (10 mL) and DIEA added with stirring. AcCl (176 L) in 1mL THF was added drop wise 

while stirring and reacted at rt for 2 hrs. Then concentrated under reduced pressure followed by 

redissolving in CH2Cl2 (20 mL) and water (10 mL). The two layers were allowed to partition and 

extracted 2x 20 mL CH2Cl2. The combined organic layers were dried over MgSO4, filtered and 

concentrated under reduced pressure. Then purified on a Biotage SNAP cartridge (25 g) at a flow 

rate of 25 mL/min to yield an orange solid, 382 mg (76%); m.p. 151-153C; 
1
H NMR (500 MHz, 

CDCl3) δ 8.85 (dd, J = 4.1, 1.3 Hz, 1H), 8.49 (d, J = 9.1 Hz, 1H), 8.13 (dd, J = 8.3, 1.5 Hz, 1H), 

7.70 (d, J = 9.1 Hz, 1H), 7.67 (s, 1H), 7.36 (dd, J = 8.2, 4.2 Hz, 1H), 2.56 (s, 1H), 2.04 (s, 1H);
 

13
C NMR (126 MHz, CDCl3) δ 169.7, 168.5, 150.6, 140.7, 135.8, 134.9, 130.8, 125.8, 125.6, 

121.3, 120.6, 24.5, 21.0; HRMS (TOF MS ES+) for C13H13N2O3
+ 

(MH+) calcd. 245.0926, found 

245.0923. 

7-acetamido-8-benzyloxyquinoline (4). To a solution of 3 (1.2 g, 4.91 mmol) in MeOH (100 mL) 

was added water (10 mL) and the reaction stirred under reflux for 1 hr. The black solution was 

concentrated and in vacuo and flash chromatographed on a KP-Sil 100 g Biotage SNAP cartridge 

using MeOH: DCM as the solvent (0-5% MeOH). A white solid (0.9 g) obtained and used for the 

next step directly. Rf= 0.11 (5% MeOH:CH2Cl2).  
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To a solution of 7-acetamido-8-hydroxyquinoline (2.27 g, 11.23 mmol) in 40 mL DMF was 

added K2CO3 (2.33 g, 16.80 mmol) and BnBr (2 mL, 16.80 mmol) respectively. The reaction 

was stirred at 50C for 24 hrs after which TLC showed almost all the starting material was 

consumed. The reaction mixture was diluted with 30 mL CH2Cl2, filtered with a pad of celite and 

concentrated under reduced pressure. The residue was loaded onto a 100 g Biotage SNAP 

cartridge by dissolving in a small amount of CH2Cl2 and eluted with EtOAc:heptane gradient (0-

50%). Yield 2.95 g (90%) of a yellow oil was obtained.  Rf= 0.50 (60% EtOAc:heptane).
 1

H 

NMR (500 MHz, CDCl3) δ 8.95 (dd, J = 4.2, 1.7 Hz, 1H), 8.58 (d, J = 9.0 Hz, 1H), 8.14 (dd, J = 

8.3, 1.7 Hz, 1H), 7.77 (s, 1H), 7.57 (d, J = 9.0 Hz, 1H), 7.40 – 7.35 (m, 6H), 5.49 (s, 2H), 1.93 (s, 

4H). 
13

C NMR (126 MHz, CDCl3) δ 168.3, 150.0, 142.0, 141.0, 137.4, 136.2, 132.0, 128.9, 

128.8, 128.8, 126.0, 124.0, 120.0, 120.0, 77.3, 24.6. HRMS (TOF MS ES+) for C18H17N2O2
+
 

(MH+) calcd. 293.1290, found 293.1264. 

7-acetamido-8-(benzyloxy)quinoline-1-oxide (5). The starting material (4) (428 mg, 1.46 mmol) 

was dissolved in 4.3 mL 1,2-dichloroethane with stirring. The mCPBA (340 mg, 1.76 mmol) was 

added (0.5 M) and the reaction stirred at rt for 48 hrs. TLC showed almost all the starting 

material was consumed. The precipitated mCPBA was filtered and washed with 5 mL 1, 2-

dichloroethane. The filtrate was concentrated under reduced pressure and flash chromatographed 

on a KP-sil 100 g Biotage SNAP cartridge using a 5% MeOH: DCM gradient at a flow rate of 25 

mL/min to yield a yellow solid, 373 mg (82%). M.p. 145-147C; Rf 0.24 (5%MeOH:DCM). 
1
H 

NMR (500 MHz, DMSO) δ 9.45 (s, 1H), 8.46 (d, J = 6.1 Hz, 1H), 8.20 (d, J = 8.9 Hz, 1H), 7.81 

(d, J = 8.3 Hz, 1H), 7.77 (d, J = 9.0 Hz, 1H), 7.58 – 7.50 (2H), 7.40 – 7.30 (aromatic, 4H). 
13

C 

NMR (126 MHz, DMSO) δ 168.9, 139.8, 138.1, 137.1, 136.4, 133.3, 129.8, 129.1, 128.1, 128.0, 
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124.7, 124.4, 120.8, 77.7, 23.8. HRMS (TOF MS ES+) for C18H17N2O3
+
 (MH+) calcd. 309.1239, 

found 309.1227. 

7-acetamido-8-benzyloxy-2-chloroquinoline (6). Phosphoryl chloride (280 L, 3.0 mmol) in 

CHCl3 (1.0 mL) was added to a stirred solution of the oxide 5 (770 mg, 2.50 mmol) in 21 mL 

CHCl3 and stirred for 15 min. The mixture was then refluxed for 2 hrs, cooled and poured into 

ice (50 g) and the pH adjusted to 12 with NaOH (aq.). The aq. layer was extracted with 2 x 50 

mL CH2Cl2, washed with 2 x 20 mL H2O, dried over MgSO4, filtered and concentrated under 

reduced pressure to yield a brown oil. Then purified on a HP-Sil 25 g Biotage SNAP cartridge 

using EtOAc:heptane gradient (0-50%) as the solvent. Yield 504 mg (62%) of an off-white solid 

was obtained.  Rf= 0.58 (60% EtOAc:heptane); M.P. 92-94C; 
1
H NMR (500 MHz, CDCl3) δ 

8.60 (d, J = 9.0 Hz, 1H), 8.06 (d, J = 8.5 Hz, 1H), 7.81 (s, 1H), 7.54 (d, J = 9.0 Hz, 1H), 7.45 – 

7.35 (m, 1H), 7.32 (d, J = 8.5 Hz, 1H), 5.48 (s, 1H), 1.96 (s, 1H).
 13

C NMR (126 MHz, CDCl3) δ 

168.4, 150.5, 141.4, 140.3, 139.0, 137.2, 133.0, 128.9, 128.8, 128.8, 124.3, 123.3, 121.1, 120.1, 

77.4, 24.7. HRMS (TOF MS ES+) for C18H16ClN2O2
+
 (MH+) calcd. 327.0900, found 327.0936. 

7-acetamido-2-chloro-8-hydroxyquinoline (7). To a solution of 6 (330 mg, 1.01 mmol) in 

CH2Cl2 (10.1 mL) under an Ar atmosphere was added BCl3SMe2 (10.1 mL) via a syringe and 

stirred at rt overnight. TLC showed the reaction was complete. The reaction was then quenched 

with saturated NaHCO3(aq.) and extracted with 2x20 mL CH2Cl2. The organic layers were 

combined, dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified on 50 g KP-Sil Biotage SNAP cartridge using a MeOH: CH2Cl2 gradient (0-5% MeOH) 

at a flow rate of 25 mL/minute to give a yellow solid, 198 mg (82%). M.P. 176-178C; Rf= 0.50 

(5%  MeOH:CH2Cl2). 
1
H NMR (400 MHz, CDCl3) δ 8.60 (d, J = 9.0 Hz, 1H), 8.05 (d, J = 8.5 

Hz, 1H), 7.82 (brs, 1H), 7.72 (s, 1H), 7.35 (d, J = 9.0 Hz, 1H), 7.30 (d, J = 8.5 Hz, 1H), 2.29 (s, 
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3H). 
13

C NMR (101 MHz, CDCl3) δ 168.6, 149.7, 138.9, 138.2, 137.1, 124.4, 123.3, 121.5, 

121.3, 118.0, 24.9. HRMS (TOF MS ES+) for C11H10ClN2O2
+
 (MH+) calcd. 237.0431, found 

237.0424. 

7-Acetamido-2-chloroquinoline-5,8-dione (8). To a solution of 7 (300 mg, 1.27 mmol) in acetone 

(30 mL) was added a solution of Fremy’s salt  in NaH2PO4 buffer (0.3 M, 30 mL) and the 

mixture stirred at rt for 1 hr. A further solution of Fremy’s salt in the buffer (0.3M, 30 mL) was 

added and stirring continued for 2 hrs. The acetone was removed under reduced pressure and the 

residue extracted with 2 x 50 mL CH2Cl2. The CH2Cl2 phases were combined, dried over MgSO4 

and concentrated under reduced pressure. The residue was purified on a 25 g HP-Sil Biotage 

SNAp cartridge using EtOAc:heptanes gradient (0-60%) to obtain a yellow solid, 225 mg (71% 

over 2 steps); m.p. 224-226C (decomposes into a black mass), Rf= 0.49 (60% EtOAc:heptane). 

1
H NMR (500 MHz, CDCl3) δ 8.41 (s, 1H), 8.39 (d, J = 8.2 Hz, 1H), 7.97 (s, 1H), 7.74 (d, J = 

8.2 Hz, 1H), 2.34 (s, 3H).
 13

C NMR (126 MHz, CDCl3) δ 183.4, 178.1, 169.5, 156.7, 145.9, 

140.4, 137.2, 129.9, 128.0, 116.3, 25.1. HRMS (TOF MS ES+) for  C11H8ClN2O3
+
 (MH+) calcd. 

251.0223, found 250.0203. 

General procedure for Suzuki coupling under microwave conditions. The 7-acetamido-2-

chloroquinoline-5,8-dione 8 (21 mg, 0.08 mmol)  was dissolved in 4 mL dimethoxyethane 

(DME) and degassed under reduced pressure. The palladium (0) catalyst, Pd(PPh3)4 (10 mg, 

0084 mmol) was added and the solution degassed further. The mixture was stirred under Ar 

atmosphere for 10 minutes. Na2CO3 solution (0.2 mL, 2.0 M) was added followed by the boronic 

acid (0.126 mmol). The mixture was then heated using a Biotage microwave initiator at 110-

140C for 20 minutes. After cooling, TLC showed all the starting material was consumed. The 

reaction mixture was poured into DCM and washed with 2 x 10 mL water. Then dried over 
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MgSO4, filtered and concentrated under reduced pressure. The residue was purified on HP-Sil 25 

g Biotage SNAP cartridge using EtOAc:heptane gradient (0-50%) at a flow rate of 20 mL/min. 

For very polar products, MeOH:CH2Cl2 (0-10%MeOH) was used as solvent for purification. 

7-acetamido-2-(4-(trifluoromethyl)phenyl)quinoline-5,8-dione (9). Yield 21 mg (70%) of a 

yellow solid was obtained.  Rf= 0.47 (50% EtOAc:heptane); m.p. 250C(decomposes); 
 1

H NMR 

(500 MHz, CDCl3) δ 8.53 (d, J = 8.2 Hz, 1H), 8.45 (s, 1H), 8.27 (d, J = 8.1 Hz, 2H), 8.17 (d, J = 

8.2 Hz, 1H), 7.99 (s, 1H), 7.80 (d, J = 8.2 Hz, 2H), 2.35 (s, 4H).
13

C NMR (126 MHz, CDCl3) δ 

184.1, 179.1, 169.5, 160.1, 146.1, 140.6, 135.7, 128.3, 128.0, 126.0, 126.0, 126.0, 125.3, 116.5, 

25.2; HRMS (TOF MS ES+) for  C18H12F3N2O3
+
(MH+) calcd. 361.0800, found 361.0834. 

7-acetamido-2-(3-pyridinyl))quinoline-5,8-dione (10). Yield 21 mg (41%) of a yellow solid 

obtained, Rf= 0.19 (5% MeOH:DCM); m.p. >300C(decomposes); 
1
H NMR (500 MHz, CDCl3) 

δ 9.29 (s, 1H), 8.72 (d, J = 3.9 Hz, 1H), 8.56 (d, J = 8.2 Hz, 1H),8.55 (m, 1H), 8.21 (d, J = 8.2 

Hz, 1H), 8.00 (s, 1H), 7.56 (dd, J = 8.0, 4.9 Hz, 1H), 2.35 (s, 3H). 
13

C NMR (126 MHz, CDCl3) 

δ 184.2, 179.0, 170.4, 158.9, 150.7, 148.1, 146.1, 140.9, 135.7, 135.7, 128.1, 125.3, 116.6, 24.6
 
; 

HRMS (TOF MS ES+) for  C16H12N3O3
+
MH+) calcd. 294.0879, found 294.0914. 7-amino-2-(3-

pyridinyl)quinoline-5,8-dione: 6 mg (12%) of a red solid was obtained.  Rf= 0.13 (5% 

MeOH:DCM); m.p. 195-197C (decomposes, turns black); 
1
H NMR (500 MHz, CDCl3) δ 9.29 

(d, J = 1.7 Hz, 1H), 8.67 (dd, J = 4.9, 1.4 Hz, 1H), 8.58 (ddd, J = 8.0, 2.2, 1.7 Hz, 1H), 8.52 (d, J 

= 8.2 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.59 (ddd, J = 8.0, 4.9, 0.7 Hz, 1H), 6.07 (s, 1H). 
13

C 

NMR (126 MHz, CDCl3) δ 181.9, 179.8, 157.0, 150.4, 149.6, 147.6, 146.3, 135.4, 135.0, 133.5, 

129.4, 124.7, 123.8, 102.1.  HRMS (TOF MS ES+) for   C14H10N3O2
+
MH+) calcd. 252.0773, 

found  252.0795. 
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7-acetamido-2-(8’-quinolinyl)quinoline-5,8-dione (11). Yield 31 mg (51%) of a yellow solid was 

obtained. Rf= 0.25 (70% EtOAc:heptane), crystallized from MeOH/CH2Cl2; m.p. 295C 

(decomposes); 
1
H NMR (500 MHz, CDCl3) δ 8.93 (dd, J = 4.2, 1.8 Hz, 1H), 8.53 (d, J = 8.1 Hz, 

1H), 8.48 (d, J = 8.1 Hz, 1H), 8.34 (dd, J = 8.3, 1.8 Hz, 1H), 8.22 (dd, J = 7.2, 1.4 Hz, 1H), 8.04 

(dd, J = 8.2, 1.4 Hz, 1H), 8.00 (s, 1H), 7.76 (dd, J = 8.1, 7.3 Hz, 1H), 7.54 (dd, J = 8.3, 4.2 Hz, 

1H), 2.34 (s, 3H).
 13

C NMR (126 MHz, CDCl3) δ 184.8, 179.1, 170.9, 161.9, 150.5, 145.7, 145.1, 

140.9, 136.7, 136.5, 133.3, 131.9, 131.7, 130.2, 128.4, 127.6, 126.3, 121.4, 116.5, 24.2. HRMS 

(TOF MS ES+) C20H14N3O3
+
 (MH+) calcd. 344.1035, found  344.1022. 

7-acetamido-2-(2-(1-tert-butoxycarbonylindolyl))quinoline-5,8-dione (12). Yield 63mg (67%) of 

an orange was obtained. Rf= 0.40 (50% EtOAc:heptane); m.p. 191-193C (decomposes); 
1
H 

NMR (500 MHz, CDCl3) δ 8.47 (s, 1H), 8.45 (d, J = 8.1 Hz, 1H), 8.15 (d, J = 8.4 Hz, 1H), 7.97 

(s, 1H), 7.89 (d, J = 8.1 Hz, 1H), 7.60 (d, J = 7.8 Hz, 1H), 7.40 (t, J = 7.8 Hz, 1H), 7.27 (dd, J = 

9.1, 5.9 Hz, 1H), 6.98 (s, 1H), 2.33 (s, 3H), 1.41 (s, 9H). 
13

C NMR (126 MHz, CDCl3) δ 184.2, 

179.0, 169.6, 157.4, 149.7, 145.3, 140.4, 138.1, 137.5, 134.2, 128.6, 127.9, 127.6, 126.0, 123.3, 

121.5, 116.5, 115.2, 114.0, 84.2, 27.8, 25.1.  HRMS (TOF MS ES+) C24H22N3O5
+
(MH+) calcd. 

432.1559, found 432.1568. 

7-acetamido-2-(2-pyridinyl)quinoline-5,8-dione (13). Yield 37 mg (71%) of a yellow solid was 

obtained. Rf= 0.19 (5% MeOH:CH2Cl2), crystallized from MeOH/CH2Cl2; m.p. 255-258C 

(decomposes);
 1

H NMR (500 MHz, DMSO) δ 10.08 (s, 1H), 8.78 (ddd, J = 4.8, 1.6, 0.8 Hz, 1H), 

8.53 (d, J = 7.9 Hz, 1H), 8.46 (d, J = 8.2 Hz, 1H), 8.08 (td, J = 7.7, 1.8 Hz, 1H), 7.77 (s, 1H), 

7.58 (ddd, J = 7.5, 4.7, 1.1 Hz, 1H), 2.28 (s, 3H).
 13

C NMR (126 MHz, DMSO) δ 184.6, 178.4, 

171.5, 158.6, 153.6, 149.8, 146.4, 142.5, 137.8, 135.0, 128.5, 125.5, 124.6, 121.7, 115.3, 24.7. 

HRMS (TOF MS ES+) C16H12N3O3
+
 (MH+) calcd. 294.0879, found   294.0914. 
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7-acetamido-2-(2-(1-tert-butoxycarbonylpyrrolyl))quinoline-5,8-dione (14). Yield 36 mg (53%) 

of a yellow solid was obtained. Rf= 0.30 (50% EtOAc:heptane); m.p. 191-193C (decomposes), 

recrystallized from methanol; 
1
H NMR (500 MHz, CDCl3) δ 8.42 (s, 1H), 8.39 (d, J = 8.2 Hz, 

1H), 7.95 (s, 1H), 7.79 (d, J = 8.2 Hz, 1H), 7.42 (dd, J = 3.2, 1.7 Hz, 1H), 6.64 (dd, J = 3.4, 1.7 

Hz, 1H), 6.29 (t, J = 3.3 Hz, 1H), 2.32 (s, 3H), 1.43 (s, 9H). 
13

C NMR (126 MHz, CDCl3) δ 

184.3, 179.2, 169.5, 156.9, 148.8, 145.3, 140.3, 134.0, 132.5, 128.0, 127.3, 125.5, 118.6, 116.4, 

111.2, 84.4, 27.7, 25.1. HRMS (TOF MS ES+) C20H20N3O5
+
 (MH+) calcd. 382.1403, found 

382.1381. 

7-acetamido-2-(4-pyrazolyl))quinoline-5,8-dione (15). Yield 31 mg (42%) of a brown solid was 

obtained. Rf= 0.33 (5% MeOH:CH2Cl2); m.p. 270C (decomposes), recrystallized from 

methanol; 
1
H NMR (500 MHz, DMSO) δ 13.34 (s, 1H), 9.97 (s, 1H), 8.55 (s, 1H), 8.25 (d, J = 

8.2 Hz, 1H), 8.21 (s, 1H), 8.11 (d, J = 8.2 Hz, 1H), 7.69 (s, 1H), 2.26 (s, 3H).
 13

C NMR (126 

MHz, DMSO) δ 184.6, 178.6, 171.4, 156.1, 146.6, 142.1, 134.2, 126.1, 123.8, 121.2, 115.1, 24.6. 

HRMS (TOF MS ES+) C14H11N4O3
+
 (MH+) calcd. 283.0831, found 283.0846. 

7-acetamido-2-(3-(2-acetamido-pyridinyl))quinoline-5,8-dione (16). The quinone 8 (71 mg, 0.28 

mmol) was dissolved in 2 mL 1,4-dioxane and degassed under reduced pressure. PdCl2(dppf) (20 

mg), K3PO4 (238 mg) and the boronate were added and the solution degassed further. The 

mixture was stirred under Ar atmosphere for 10 minutes. The mixture was then heated heated 

using a Biotage microwave initiator at 120C for 30 minutes. After cooling, the reaction mixture 

was poured into CH2Cl2 and washed with 2 x 10 mL water and extracted 2x 30 mL DCM. The 

combined organic phases were dried over MgSO4, filtered and concentrated under reduced 

pressure. The residue was purified on a HP-Sil 25 g Biotage SNAP cartridge using 

MeOH:CH2Cl2 gradient (0-5%) at a flow rate of 20 mL/min. Yield 23mg (23%) of a brown solid 
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was obtained. Rf= 0.32 (5% MeOH:CH2Cl2); m.p. 249C (decomposes); 
1
H NMR (500 MHz, 

DMSO) δ 10.82 (s, 1H), 10.04 (s, 1H), 9.17 (d, J = 2.5 Hz, 1H), 8.60 (dd, J = 8.8, 2.5 Hz, 1H), 

8.45 (d, J = 8.3 Hz, 1H), 8.38 (d, J = 8.2 Hz, 1H), 8.27 (d, J = 8.8 Hz, 1H), 7.75 (s, 1H), 2.28 (s, 

3H), 2.14 (s, 3H).
 13

C NMR (126 MHz, DMSO) δ 184.6, 178.5, 171.5, 169.7, 157.4, 153.6, 

147.3, 146.6, 142.4, 137.0, 134.8, 128.0, 127.2, 124.1, 115.3, 113.0, 24.7, 24.0. HRMS (TOF 

MS ES+) C18H15N4O4
+
 (MH+) calcd. 351.1093, found 351.1064. 

7-acetamido-2-(2-indolyl)quinoline-5,8-dione (17). The starting material 12 (39 mg, 0.09 mmol)  

was dissolved in 2.5 mL CH2Cl2 and cooled to 0C using an ice bath. Trifluoroacetic acid (140 

L) was the added dropwise and reacted at rt for 2 hrs. TLC showed full conversion.  Then 

quenched with sat. NaHCO3 (10 mL) and extracted 2x20 mL CH2Cl2.  The organic layers were 

combined, dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-70%) at a 

flow rate of 20 mL/min. Yield 17 mg (59%) of a red solid was obtained after recrystallization 

from MeOH. M.p. 185C, decomposes; Rf= 0.38 (70% EtOAc:heptane). 
1
H NMR (500 MHz, 

CDCl3) δ 8.35 (d, J = 8.3 Hz, 1H), 8.14 (d, J = 8.3 Hz, 1H), 7.92 (s, 1H), 7.67 (d, J = 8.0 Hz, 

1H), 7.49 (d, J = 8.3 Hz, 1H), 7.29 (t, J = 7.6 Hz, 1H), 7.23 (s, 1H), 7.13 (t, J = 7.4 Hz, 1H), 2.34 

(s, 3H).
 13

C NMR (126 MHz, CDCl3) δ 184.2, 180.4, 170.5, 154.7, 145.4, 140.3, 137.8, 134.7, 

134.4, 128.3, 126.6, 124.4, 124.4, 121.5, 120.2, 117.0, 111.7, 104.4, 24.4. HRMS (TOF MS 

ES+) C19H14N3O3
+
 (MH+) calcd. 332.1035, found 332.1030. 

7-acetamido-2-(2-(pyrrolyl))quinoline-5,8-dione (18). The starting material 14 (30 mg, 0.08 

mmol)  was dissolved in 3 mL CH2Cl2 and cooled to 0C using an ice bath. Trifluoroacetic acid 

(150 L) was the added dropwise and reacted at rt for 2 hrs. TLC showed full conversion.  Then 

quenched with sat. NaHCO3 (10 mL) and extracted 2x20 mL CH2Cl2.  The organic layers were 
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combined, dried over MgSO4, filtered and concentrated under reduced pressure. The residue was 

purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-50%) at a 

flow rate of 20 mL/min. Yield 21 mg (93%) of a red solid was obtained after recrystallization 

from MeOH. M.P. 255C, decomposes. Rf= 0.11 (50% EtOAc:heptane).
 1

H NMR (500 MHz, 

DMSO) δ 11.65 (s, 1H), 9.95 (s, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.05 (d, J = 8.4 Hz, 1H), 7.69 (s, 

1H), 7.07 – 7.04 (m, 2H), 6.28 – 6.22 (m, 1H), 2.27 (s, 3H). 
13

C NMR (126 MHz, DMSO) δ 

184.6, 178.7, 171.4, 154.0, 146.6, 141.9, 133.9, 130.1, 125.3, 123.8, 121.8, 115.2, 111.9, 110.4, 

24.7. HRMS (TOF MS ES+) C15H12N3O3
+
 (MH+) calcd. 282.0879, found 282.0909. 

General procedure for removal of the acetate group with MeOH-H2SO4. To the starting material 

(0.1 mmol) in a 20 mL vial was added 175L of H2SO4 in 3.0 mL MeOH and stirred at rt for 3 

hrs. The red solution was then neutralized with 5 mL 5% NaHCO3 (aq.) and extracted with 5 X 

10 mL CH2Cl2. The combined organic extracts were dried over MgSO4, filtered and concentrated 

under reduced pressure. Then purified on a HP-Sil 25 g Biotage SNAP cartridge using 

EtOAc:heptanes (0-70%) or MeOH:CH2Cl2 gradient (0-5%) at a flow rate of 20 mL/min.  

7-Amino-2-(4-(trifluoromethyl)phenyl)quinoline-5,8-dione (19). The general procedure was used 

to obtain 6.0 mg (67%) of a red solid; Rf= 0.38 (60% EtOAc:heptane); m.p. 151-153C 

(decomposes, turns black); 
1
H NMR (500 MHz, CDCl3) δ 8.28 (d, J = 8.2 Hz, 1H), 8.05 (d, J = 

8.2 Hz, 2H), 7.95 (d, J = 8.2 Hz, 1H), 7.58 (d, J = 8.3 Hz, 2H), 5.84 (s, 1H).
 13

C NMR (126 

MHz, CDCl3) δ 182.2, 180.1, 158.7, 150.3, 146.3, 140.6, 135.1, 129.4, 127.7, 125.5, 125.5, 

125.1, 105.8, 102.4. HRMS (TOF MS ES+) C16H10F3N2O2
+
 (MH+) calcd. 319.0694, found 

319.0666. 

7-amino-2-(3-pyridinyl)quinoline-5,8-dione (20). The general procedure was used to obtain 10 

mg (83%) of a red solid.  Rf= 0.16 (5% MeOH:CH2Cl2); m.p. 195-197C (decomposes, turns 
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black). 
1
H NMR (500 MHz, CDCl3) δ 9.29 (d, J = 1.7 Hz, 1H), 8.67 (dd, J = 4.9, 1.4 Hz, 1H), 

8.58 (ddd, J = 8.0, 2.2, 1.7 Hz, 1H), 8.52 (d, J = 8.2 Hz, 1H), 8.22 (d, J = 8.2 Hz, 1H), 7.59 (ddd, 

J = 8.0, 4.9, 0.7 Hz, 1H), 6.07 (s, 1H). 
13

C NMR (126 MHz, CDCl3) δ 181.9, 179.8, 157.0, 150.4, 

149.6, 147.6, 146.3, 135.4, 135.0, 133.5, 129.4, 124.7, 123.8, 102.1. HRMS (TOF MS ES+) for   

C14H10N3O2
+
MH+) calcd. 252.0773, found 252.0795. 

7-amino-2-(2-indolyl)quinoline-5,8-dione (21). The general procedure was used to obtain 19 mg 

(63%) of a dark-brown solid.  Rf= 0.22 (70% EtOAc:heptane); m.p. 235C decomposes. 
1
H 

NMR (500 MHz, CDCl3) δ 8.33 (d, J = 8.3 Hz, 1H), 8.10 (d, J = 8.3 Hz, 1H), 7.67 (d, J = 8.0 

Hz, 1H), 7.49 (d, J = 8.2 Hz, 1H), 7.39 (s, 1H), 7.27 (ddd, J = 8.1, 7.1, 1.1 Hz, 1H), 7.19 (s, 1H), 

7.12 (td, J = 7.5, 0.8 Hz, 1H), 6.01 (s, 1H).
 13

C NMR (126 MHz, CDCl3) δ 182.6, 181.6, 153.6, 

149.5, 145.9, 137.6, 135.0, 134.2, 128.3, 128.0, 124.1, 124.0, 121.3, 120.0, 111.7, 103.5, 102.9. 

HRMS (TOF MS ES+) for  C17H12N3O2
+
 (MH+) calcd. 290.0930, found 290.0900. 

7-amino-2-(8-quinolinyl)quinoline-5,8-dione (22). The general procedure was used to obtain 55 

mg (71%) of a brown solid.  Rf= 0.29 (5% MeOH:CH2Cl2); m.p. 243-245C, recrystallized from 

MeOH. 
1
H NMR (500 MHz, CD3OD) δ 8.92 (dd, J = 4.2, 1.8 Hz, 1H), 8.49 (d, J = 8.1 Hz, 1H), 

8.40 (d, J = 8.1 Hz, 1H), 8.33 (dd, J = 8.3, 1.8 Hz, 1H), 8.21 (dd, J = 7.2, 1.5 Hz, 1H), 8.02 (dd, J 

= 8.2, 1.4 Hz, 1H), 7.75 (dd, J = 8.1, 7.3 Hz, 1H), 7.53 (dd, J = 8.3, 4.2 Hz, 1H), 6.06 (s, 1H).
 13

C 

NMR (126 MHz, CDCl3) δ 182.8, 180.1, 160.5, 150.3, 150.2, 146.2, 145.2, 136.7, 136.7, 133.2, 

131.6, 131.5, 129.8, 129.1, 128.4, 126.3, 121.2, 102.4. HRMS (TOF MS ES+) for  C18H12N3O2
+
 

(MH+) calcd. 302.0930, found 302.0939. 

7-amino-2-(2-pyridinyl)quinoline-5,8-dione (23). The general procedure was used to obtain 16 

mg (76%) of a red solid.  Rf= 0.25 (20% MeOH:CH2Cl2), recrystallized from MeOH. 
1
H NMR 

(500 MHz, DMSO) δ 8.75 (d, J = 4.1 Hz, 1H), 8.72 (d, J = 8.2 Hz, 1H), 8.50 (d, J = 7.9 Hz, 1H), 
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8.40 (d, J = 8.1 Hz, 1H), 8.05 (t, J = 7.7 Hz, 1H), 7.58 – 7.53 (m, 1H), 5.89 (s, 1H). HRMS (TOF 

MS ES+) for C14H10N3O2
+
 (MH+) calcd. 252.0773 found 252.0749. 

7-Amino-2-(2-pyrrolyl)quinoline-5,8-dione (24). The general procedure was used to obtain 11 

mg (78%) of a red solid.  Rf= 0.37 (5% MeOH:CH2Cl2); m.p. 230C (decomposes), 

recrystallized from MeOH. 
1
H NMR (500 MHz, CDCl3) δ 8.23 (d, J = 8.4 Hz, 1H), 7.84 (d, J = 

8.4 Hz, 1H), 7.06 (dd, J = 2.5, 1.3 Hz, 1H), 6.91 (dd, J = 3.7, 1.3 Hz, 1H), 6.32 (dd, J = 3.7, 2.6 

Hz, 1H), 5.97 (s, 1H). 
13

C NMR (126 MHz, CDCl3) δ 183.0, 181.7, 153.5, 149.4, 145.7, 133.9, 

129.9, 126.6, 122.7, 122.3, 110.8, 110.3, 102.5. HRMS (TOF MS ES+) for C13H10N3O2
+ 

(MH+) 

calc. 240.0773, found 240.0779. 
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Chapter 3 

Improved design and biological activity of 10-alkoxy-anthracenyl-isoxazole 

derivatives for G-quadruplex antitumor agents 

3.1 Introduction 

G-quadruplex DNA (Figure 3-1) structures have been of serious interest as targets for cancer 

chemotherapeutics due to their novel structures, when compared to genomic DNA, and their 

Figure 3-1. c-MYC G-quadruplex Pu22 sequence (PDB: 2L7V) 

isolated locations in human genes.
1–3

 Additionally, inhibition of the c-MYC proto-oncogene, 

which is over expressed in up to 80% of tumor cells,
1
 has been correlated to quadruplex 

stabilization in the promoter region where these structures form.
4,5

 Molecules that stabilize these 

quadruplexes of DNA (G4-DNA) are typically medium sized planar aromatics often showing 

selectivity for G4-DNA over B-DNA.
6–8

  

Given the conserved elements of the various G4-DNA
1
 structures as they occur in vitro 

and in vivo we designed a novel class of combilexin molecules based on two moieties known to 

interact with genomic DNA, an intercalator and minor-groove binder; yet pre-organized such 
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that intercalation and/or minor-groove binding with B-DNA would be highly disfavored. 

Though, ideally suited for -stacking and hydrogen bond donor-acceptor interactions with G4-

DNA.  

3.2 Structural Features of a Q-quadruplex binder 

G4-DNA binding molecules have been the subject of much study in the past decade with many 

examples showing a high degree of selectivity and binding stability.
1,9–13 

Parkinson has 

demonstrated that a competition dialysis study of many known DNA binding compounds reveals 

some striking and significant G4-DNA interactions.
13

  Most importantly, the Parkinson dialysis                   

 

   Figure 3-2. Quadruplex-DNA binding molecules 

study shows a very distinct structure to activity relationship where the molecules with the highest 

affinity for G4-DNA share similar properties. These compounds all contain a large planar moiety 
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that is responsible for pi stacking interactions and side groups consisting of hydrogen bond 

donors and/or acceptors (Figure 3-2).  

The anthracene isoxazole ester system (AIM) (Figure 3-3) was designed to stabilize g-

quadruplex DNA because of the orthogonal properties between the isoxazole and anthracene 

moieties to enhance - stacking, and possible intercalation, with G-DNA structures. Hurley had 

previously shown that there were several possible binding modes for quindoline derivatives to 

Figure 3-3. Combining functionalities to form a selective G4-DNA ligand  

quadruplex DNA based on substitution patterns using molecular modeling,
14

 H NMR and X-ray 

crystalography.
12

 Hurley showed that the porphyrns 5,10,15,20-tetra-(N-methyl-2-

pyridyl)pophine (TMPyP2) and 5,10,15,20-tetra-(N-methyl-2-pyridyl)pophine (TMPyP4), bind 

G-quadruplex structures externally atop the G-tetrad.
15

  Given these findings we felt the next step 

was to use computer based molecular modeling to determine which mode of binding best suited 

the AIM-2 system. 

It is proposed that designing the optimal G4-DNA binder must also contain some mimic 

of a bio-molecule (e.g. peptide bonds) so as to minimize recognition as an antigen, quick 

metabolism (See Chapter 5), and excretion from the body before it can exert its function.  
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Because of the compact nature of duplex DNA a G4-DNA binding ligand would need to be pre-

organized so that unfavorable steric interactions would keep the required large planar group from 

intercalating between the base pairs.  Figure 3-3 shows how an isoxazole system, containing an 

anthracene and peptide linked hydrogen bond acceptor, methyl pyrrole, could serve the purpose 

addressing all of the important factors (i.e. preorganization, hydrogen bond acceptor/donor, and 

small size). Variation of the peptide length and number of methyl pyrrole (0-2) units served to 

define a simple SAR as it relates to tumor growth inhibition
16

.  Full description of the synthesis 

of G4-DNA binding isoxazoles is detailed below in this chapter. 

 

3.3 Molecular Modeling of alkoxy series with Quadruplex DNA 

A training set of AIMs was constructed and prepared using Accelrys Discovery Studio 4.0. The 

minimization during ligand preparation took into account both amide and imidate tautomers at  

the C-4 amide of the isoxazole. The coordinates for the Pu22 sequence of the human c-myc 

oncogene used were the NMR structure reported by Hurley and Yang, pdb accession number 

2L7V. The ligand docking was conducted using the CHARMm forcefield, at physiological pH, 

and docking at both binding sites, the top15 poses were obtained for each tautomer of the 

training set.  Consensus scoring was evaluated using CDocker Interaction energy, comparing 

versions of the PLP, Jain, PMF and Ludi scoring protocols (10 total scoring functions), and 

compared to the Hurley and Wang quindoline as control. The best pose for the most active 

compound 8c in the present study is shown above (Figure 3.4), allowing the ligand to minimize 

within a 14Å binding sphere. The larger binding sphere enabled the AIM to tumble during the 

minimization process, to achieve substantially higher binding energies for the final poses. 
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 In the best binding pose each functional group of the AIM interacts with the G-4, the 

dimethyl amino double tail lies along the sugar-phosphate backbone, the 10-biphenyl moiety  

 

Figure 3-4. Discovery Studio 4.0 best energy pose for 8c, docked at site 1 of the human Pu22 

sequence of the c-myc oncogene. 

 

occupies the groove. The CDocker Interaction Energy prediction of 80.5 kcal/mol was 

substantially higher than that calculated for the literature quindoline (range of 46-49 kcal/mol at 

sites 1 and 2), and also provides interactions which bridge between the G tetrad and adjacent 

functional groups, and therefore could potentially provide enhanced sequence selectivity. The 

best site 2 pose was within an approximate strong hydrogen bond energy of site 1 (ca. 5 

kcal/mol). 
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3.4 Synthesis to alkoxy anthracene pyrrole doubletails 

3.4.1 Preparation of Anthryl-10-oxy-isoxazole-DTs (AAIMs)  

The anthracenyl isoxazole DTs can be made by starting with commercially available 9- 

anthraldehyde using bromine in dichloromethane achieved the 10-bromo substituted 

anthraldehyde 1
17

 in 80% yield (Scheme 3-1).  Using a modified SNAr (addition-elimination 

mechanism) procedure from Bair
18

, the nucleophilic aromatic substitution reaction using 

Scheme 3-1. Synthesis of anthryl-oxy-DT conjugate 8a-e. 

alkoxides as the nucleophile gave us 2 with yields greater than 90%. Oxime formation of 10-oxy 

substituted aldehyde was achieved using hydroxylamine HCl. The oxime then reacted with N-

chlorosuccinimide (NCS) to give the oximinoyl chloride.  The formation of the isoxazole was 

accomplished via a 1,3-dipolar  cycloaddition to give the anthracene isoxazole ester 3
19

. The 

double tail moiety was achieved through the acetylation of N-methyl pyrrole using 

trichloroacetyl chloride previously described
16

.  Subsequent nitration gave product in 75% yield 
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when performed on a molar scale.  Next, the nitro pyrrole could be coupled with 3-

dimethylaminopropylamine and hydrogenated. Once the ester was characterized, it was 

hydrolyzed to the carboxylic acid 5. Then using thionyl chloride gave acid chloride 6 which were 

then reacted with the amine-pyrrole double tail 7 using a modified Schotten-Baumann reaction to 

give the final product 8a-e.  

3.4.2 Crystal Structure of 8a 

Our previous report of CD melting point increase and selective NMR anisotropy indicates 

that certain structural features of the AIMs correspond to increased anti-tumor activity
20

, namely, 

a  dihedral angle between the mean plane of the isoxazole (all atoms) and the mean plane of the 

anthracene (all atoms) shown to be 70.47°, while the ester carbonyl and ether atom is virtually 

co-planar with the isoxazole mean plane having a dihedral angle of 4.51°. The anthracene ring is 

virtually planar as evident by the sum of the eighteen intra-ring torsion angle of 5.40°. These 

values are similar to other sc-xrd of isoxazole-3-anthracenes
21–26

 and isoxazole-3-

anthroquinones
27

.  Furthermore, pairs of weak C—H---O hydrogen bonds link the molecules into 

dimers, and weak C—H--- interactions further link these molecules. Full sc-xrd data and 

parameters are given in the Supplementary Data. 
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Figure 3-5. Single crystal x-ray diffractometry of 4a. 
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3.5 MTT Cell Viability Assay 

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 

96-well plates at a density of 10,000 cells/mL and allowed to attach overnight (16-18h). AAIM 

solutions were applied in medium for 24  h, removed, and replaced with fresh medium, and the 

plates were incubated at 37 °C under a humidified atmosphere containing 5% CO2 for 3−5 days.  

Table 3-1. Cytotoxicity activity of 8a-e against human glioma SNB-19 cells 

MTT (50 μg) was added and the cells were incubated for another 4 h. Medium/MTT solutions 

were removed carefully by aspiration, the MTT formazan crystals were dissolved in 100 μL of 

DMSO, and absorbance was determined on a plate reader at 560 nm. IC50 values (concentration 
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at which cell survival equals 50% of control) were determined from semilog plots of percent of 

control versus concentration. The results are shown in Table 3-1.  

Compounds shown in Table 3-1 have low micromolar binding affinities, which some are 

much better than the previously reported analogues.
20

 The phosphate backbone chain in the 

NMR structure is solvent exposed (Figure 3-1) and can be accessed with lipophilic groups to 

increase binding affinity. For example, Compound 8a lacking any corresponding ring system in 

the 10-position greatly decrease the cytotoxicity of the group, reinforcing the importance of the  

-  stacking and  -face interactions between the phenyl group and the phosphate backbone. 

Substitution of this phenoxy by a naphthyl (compound 8d and 8e), phenyl (compound 8b) or 

biphenyl (compound 8c) was well tolerated and in general decreased the IC50 values with the 

addition on each phenyl ring. These alkoxy derivatives are all good hydrogen bond acceptors and 

gave increasing potencies.  

Summary: Anthryl-10-alkoxy-isoxazole-pyrrole-doubletails can be readily made and 

easily substituted to enlarge the oxy-ether library series. Current studies are focused on whether 

the AAIMs may represent useful tools for the study of quadruplex DNA, and ultimately lead to 

clinically useful inhibitors. 
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Supplementary Material 

 

Experimental Section. General. All chemicals were purchased from commercial vendors and 

were used without any further purification unless otherwise indicated. Solvents were reagents 

grade and dried just prior to use by standard methods. All reactions were performed under inert 

atmosphere. Tetrahydrofuran (THF) was dried over sodium/benzophenone and distilled prior to 

use. Triethylamine (EtN3) was dried with calcium hydride (CaH2). Melting points were 

determined in open capillary tubes on a Melt-Temp apparatus and are uncorrected. High 

resolution mass spectra (HRMS) were obtained using a Micromass electrospray ionization 

(ES)/time-of-flight mass spectrometry (LCTOF). Mass spectrometer samples were introduced 

using a Waters model 2690 separations module HPLC fitted with a C-18 reversed phase column 

(2.1 mm i.d., 5 cm). Flash chromatography was performed using Sorbent Technologies standard 

silica gel (60 Å) with reagent grade solvents using in house compressed air. 

 

Cell Viability Assay. Growth inhibition was determined by the MTT colorimetric assay. Cells 

were plated in 96-well plates at a density of 10 000 cells/mL and allowed to attach overnight (16 

h).  Anthryl-10-oxy-isoxazole-DT solutions were applied in medium for 2 h, removed, and 

replaced with fresh medium, and the plates were incubated at 37 °C under a humidified 

atmosphere containing 5% CO2 for 3−5 days. MTT (50 μg) was added and the cells were 

incubated for another 4 h. Medium/MTT solutions were removed carefully by aspiration, the 

MTT formazan crystals were dissolved in 100 μL of DMSO, and absorbance was determined on 

a plate reader at 560 nm. IC50 values (concentration at which cell survival equals 50% of 

control) were determined from semilog plots of percent of control versus concentration.  
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NMR. The 1H and 13C NMR high-resolution spectra were obtained with a Bruker 

AC200 (UltraShield™ 400MHz) using X-Win NMR (3.1) at ambient temperature in 

CDCl3 unless otherwise specified. The signal assignments were performed on the basis 

of a series of 2D experiments with z-gradient selection: 1H-1H COSY (Correlation 

Spectroscopy), 1H-13C HMQC ((Heteronuclear Multiple Quantum Coherence) and 1H-

13C HMBC (Heteronuclear Multiple Bond Correlation). 

 

 

 

Scheme 3-1. Synthesis of anthryl-oxy-DT conjugate 8a-e. 

. 
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Method of 10-methoxy anthryl isoxazole ester formation 

To a suspension of anthraldehyde (4.175g, 20.244mmol; Sigma-Aldrich, 97%) in 

methylene chloride (120mL) was added Br2 (1.1 eq., 1.2mL, 23.428mmol) diluted in methylene 

chloride (5mL) drop wise over 5 minutes. The reaction was covered with septa and guard column 

(charged with CaCl2 and NaOH(s)) and allowed to stir at 63°C until TLC showed no starting 

material remained (ca. 5 hours). Once the solution reached room temperature, 25g Na2SO3 in 

200mL H2O was added to neutralize excess Br2. The solution was then transferred to a 

separatory funnel, washed with 50mL metheylene chloride and the organic layer extracted and 

dried with sodium sulfate and concentrated under reduced pressure to yield 1 (Rf=0.34, 10:1 

Hex/EtOAc). Recrystallized from chloroform/hexanes. 

10-Bromoanthracene-9-carbaldehyde (1). (83%)
 1

H NMR (CDCl3) δ 11.52 (s, 1H), 8.90-8.93 

(m, 2H), 8.69-8.71 (m, 2H), 7.64-7.74 (m, 4H). 
13

C NMR (CDCl3) δ 193.28, 131.94, 131.82, 

130.29, 129.02, 128.91, 128.29, 128.29, 127.47, 127.40, 125.70, 123.84. mp 205-208°C. Spectral 

data are in accord with those reported previously.
28,29

 

 

General Procedure for 10-alkoxy aldehyde. 

The bromo-aldehyde 1 (0.150g, 0.5261mmol) was taken up in 2mL of DMF (dried over 

sieves) under a nitrogen atmosphere.  Freshly distilled methanol (1.2 eq., 0.03mL) was added via 

syringe. Sodium hydride (1.2 eq., 0.0253g) was added with a water condenser. The solution was 

allowed to stir at 60°C for 3.5 hours under an argon atmosphere. Once the solution cooled to 

room temperature, 50mL DI H2O and 50mL diethyl ether was added and allowed to stir for 15 

minutes. The solution was transferred to a separatory funnel and washed with 50mL diethyl 

ether. The combined organic layers were washed with 50mL Brine, dried over sodium sulfate 
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and concentrated under reduced pressure. The solid was taken up in minimal methylene chloride 

and ran on a prepared hexanes silica column in 12:1 (Hexanes:EtOAc) until all desired product 2 

was collected. 

10-Methoxyanthracene-9-carbaldehyde (2a). (85%) 
1
H NMR (CDCl3) δ 11.49 (s, 1H), 9.09 (d, 

J=9.03 Hz, 2H), 8.42 (d, J=8.66 Hz, 2H), 7.70-7.74 (m, 2H), 7.58-7.62 (m, 2H), 4.22 (s, 3H).
 13

C 

NMR (CDCl3)  δ 191.93, 159.18, 134.12, 133.89, 129.34, 127.23, 125.60, 124.21, 123.96, 

123.11, 121.17, 63.96. MS (ESI) m/z  236 (22.37, M+), 237(100, M+1), 238 (18.80, M+2). 

(Rf=0.46 4:1:1 Hex/EtOAc/DCM).  

10-phenoxyanthracene-9-carbaldehyde (2b).  In 250 mL round-bottom, add 50 mL dry 

Benzene, phenol (0.2748 g, 2.920 mmol) , sodium (0.048 g, 2.088 mmol), and 18-crown-6 

(0.4632 g, 1.752 mmol) with 25 mL DMF. The reaction was heated to 150°C for 1 hr until all 

sodium as dissolved. Brominated (405.4 mg, 1.432 mmol) in 15 mL dry Benzene was added to 

the hot alkoxide solution and stirred under heat for 1.5 hours. Once cool, 50 mL EtOAc and 50 

mL diH2O was added to a sepratory funnel containing the reaction mixture. The contents were 

extracted with 3x40mL EtOAc, 2x15mL 10% NaOH and finally 3x100mL H2O until a neutral 

pH. Dried over Na2SO4 and concentrated to obtain 2b (0.4216 g, 98.7%) 
1
H NMR (Acetone-d6) δ 

11.58 (s, 1H), 9.17 (d, J=9.16 Hz, 2H), 8.22 (d, J=8.66 Hz, 2H), 7.79 (t, J=7.65, 7.78, 15.43 Hz, 

2H), 7.61 (t, J=8.28, 6.65, 14.93 Hz, 2H), 7.32 (m, 2H), 7.07 (t, J=7.28, 6.40, 13.68 Hz, 1H), 

6.86 (d, J=7.78 Hz, 2H).
 13

C NMR (Acetone-d6)  δ 193.37, 161.00, 152.38, 134.19, 131.04, 

130.27, 127.37, 125.47, 125.11, 124.20, 123.92, 123.43, 116.20. MS (ESI) m/z  299.1162 (100, 

M+1), 300.1200(23.40, M+2). HRMS (ESI) accurate mass calcd. for C21H15O2 (M+1) requires 

299.1071, found 299.1072. (Rf=0.34 1:1 Hex/DCM).  
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10-([1,1'-biphenyl]-4-yloxy)anthracene-9-carbaldehyde (2c). By the same procedure as that 

described for 2b, from 20 mL dry THF, [1,1'-biphenyl]-4-ol (2.6325 g, 15.16 mmol), sodium 

(0.3386 g, 14.73 mmol), 18-crown-6 (3.8928 g, 14.73 mmol) refluxed for 2.75 hour. Add bromo-

aldehyde solid (3.3524 g, 11.757 mmol) to reaction round bottom, cool to room temperature and 

stir overnight (ca. 18.5 hours).  50 mL EtOAc and 50 mL diH2O was added to a sepratory funnel 

containing the reaction mixture. The contents were extracted with 3x40mL DCM, 2x25mL 10% 

NaOH and finally 3x100mL H2O until a neutral pH. Dried over Na2SO4 and concentrated to 

obtain 2c (3.5861 g, 90.71%). (Rf=0.19 1:1 Hex/DCM).  
1
H NMR (Acetone-d6) δ 11.59 (s, 1H), 

9.16 (d, J=9.03 Hz, 2H), 8.26 (d, J=8.66 Hz, 2H), 7.79 (m, 2H), 7.61 (m, 6H), 7.42 (t, J=7.40, 

7.91, 15.31 Hz, 2H), 7.31 (t, J=7.40, 14.81 Hz, 1H), 6.95 (m, 2H).
 13

C NMR (Acetone-d6)  δ 

193.39, 160.61, 152.31, 141.09, 136.41, 135.27, 134.18, 130.30, 129.81, 129.52, 128.00, 127.80, 

127.55, 127.47, 125.46, 125.13, 124.32, 123.91, 116.55. MS (ESI) m/z  379.1668 (100, M+1), 

380.1725(38, M+2). HRMS (ESI) accurate mass calcd. for C27H19O2 (M+1) requires 375.1385, 

found 375.1385.  

10-(naphthalen-1-yloxy)anthracene-9-carbaldehyde (2d). By the same procedure as that 

described for 2b, from 22 mL dry THF, naphthalen-1-ol (2.2085 g, 15.319 mmol), sodium 

(0.3784 g, 16.459 mmol), 18-crown-6 (4.6613 g, 17.635 mmol) refluxed for 4.5 hours. Add 

bromo-aldehyde (3.3524 g, 11.757 mmol) solid to reaction round bottom, cool to room 

temperature and stir overnight (ca. 17 hours).  50 mL EtOAc and 50 mL diH2O was added to a 

sepratory funnel containing the reaction mixture. The contents were extracted with 3x50mL 

DCM, 2x25mL 10% NaOH and finally 3x100mL H2O until a neutral pH. Dried over Na2SO4 and 

concentrated to obtain 2d (3.3524 g, 81.84%). (Rf=0.54 1:1 Hex/DCM). 
1
H NMR (CDCl3) δ 

11.58 (s, 1H), 9.10 (d, J=8.91 Hz, 2H), 8.84 (d, J=8.03 Hz, 1H), 8.21 (d, J=8.66 Hz, 2H), 7.97 (d, 
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J=7.91 Hz, 1H), 7.71 (m, 4H), 7.53 (d, J=8.03 Hz, 1H), 7.46 (m, 2H), 7.09 (t, J=7.78, 8.03, 15.81 

Hz, 1H), 6.08 (d, J=7.65 Hz, 1H).
 13

C NMR (CDCl3)  δ 192.18, 155.83, 152.47, 134.89, 133.53, 

129.47, 127.89, 127.05, 126.30, 126.23, 125.72, 124.65, 124.54, 123.89, 123.29, 122.73, 122.07, 

121.68. HRMS (ESI) accurate mass calcd. for C25H17O2 (M+1) requires 349.1229, found 

349.1232. 

10-(naphthalen-2-yloxy)anthracene-9-carbaldehyde (2e). By the same procedure as that 

described for 2b, from 20 mL dry THF, naphthalen-2-ol (2.2751 g), sodium (0.3386 g), 18-

crown-6 (3.8928 g) refluxed for 4.5 hours. Add bromo-aldehyde (3.0089 g, 10.55 mmol) solid to 

reaction round bottom, cool to room temperature and stir overnight (ca. 15.5 hours).  50 mL 

EtOAc and 50 mL diH2O was added to a sepratory funnel containing the reaction mixture. The 

contents were extracted with 3x50mL DCM, 2x25mL 10% NaOH and finally 3x100mL H2O 

until a neutral pH. Dried over Na2SO4 and concentrated to obtain 2e (2.2676 g, 62%). (Rf=0.90 

DCM). 
1
H NMR (400 MHz, CHLOROFORM-d) δ ppm 11.55 (s, 1 H), 9.09 (d, J=9.03 Hz, 2 H), 

8.27 (d, J=8.78 Hz, 2 H), 7.88 (m, 1 H), 7.71 (m, 3 H), 7.48 (m, 4 H), 7.37 (m, 2 H), 6.78 (d, 

J=2.51 Hz, 1 H)
. 13

C NMR (101 MHz, CHLOROFORM-d) δ ppm 193.44, 193.45, 192.25, 

157.85, 152.05, 134.20, 134.10, 133.56, 131.85, 131.72, 130.82, 130.29, 129.78, 129.59, 129.44, 

129.10, 128.88, 127.73, 127.68, 127.22, 127.10, 126.95, 126.76, 126.71, 126.61, 126.47, 126.32, 

126.19, 125.98, 125.85, 124.90, 124.49, 123.94, 123.86, 123.77, 123.53, 123.40, 122.73, 117.75, 

117.35, 109.98, 109.44. 

General Procedure of 10-alkoxy oxime 

To a suspension of 2a (0.6066g, 2.567mmol) in EtOH:THF:H2O (50:25:25 mL) was 

dissolved hydroxylamine hydrochloride (0.4002g, 6.206mmol) and pyridine (1.11eq, 0.23mL) 

The reaction was covered with a septa under an argon atmosphere let stir at room temperature for 
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1 hour. The solution was first concentrated under reduced pressure then transferred to a 

separatory funnel and washed 1 x 10mL 1N HCl (cold) and the combined aqueous layers washed 

2 x 50mL H2O, 2 x 50mL Brine, 2 x 50mL CH2Cl2, dried over sodium sulfate, filtered, and the 

solvent removed under vacuum.  

10-Methoxyanthracene-9-carbaldehyde oxime (3a): (92% yield). (Rf=0.35 4:1:1 

Hex/EtOAc/DCM). 
1
H NMR (CDCl3) δ 9.20 (s, 1H), 8.45-8.46 (m, 2H), 8.36-8.38 (m, 2H), 

7.53-7.60 (m, 4H), 4.17 (s, 3H).
 13

C NMR (CDCl3) δ 154.22, 148.95, 131.20, 126.90, 125.36, 

125.29, 124.29, 122.72, 119.83, 63.45. MS (ESI) m/z 234 (100, M-H2O), 235 (28.54, M-H2O)
+
, 

252 (38.87, M+1). (Rf=0.34, 4:1:1 Hex/EtOAc/DCM). 

10-phenoxyanthracene-9-carbaldehyde oxime (3b). By the same procedure as that described 

for 3a, from aldehyde (0.4216g, 1.413mmol) in EtOH:THF:H2O (40:12:12 mL) was dissolved 

hydroxylamine hydrochloride (0.5324g) and pyridine (3mL) The reaction was covered with a 

septa under an argon atmosphere and condenser and heated to 40°C for 8 hours, then stirred 

room temperature overnight. Washed 2 x 60mL 1N HCl (cold) and the combined aqueous layers 

washed 3 x 125mL H2O, 3 x 125mL Brine, 3 x 40mL CH2Cl2. Obtained (0.4380 g, 98.92%). 

(Rf=0.62 4:1:1 Hex/EtOAc/DCM). 
1
H NMR (Acetone-d6) δ 10.91 (s, 1H), 9.25 (s, 1H), 8.60 (d, 

J=8.91 Hz, 2H), 8.12 (d, J=8.53 Hz, 2H), 7.63 (m, 2H), 7.54 (m, 2H), 7.30 (t, J=8.53, 7.53, 16.06 

Hz, 1H), 7.03 (t, J=7.40, 14.81 Hz, 1H), 6.83 (d, J=7.91 Hz, 2H).
 13

C NMR (Acetone-d6)  δ 

161.09, 147.62, 147.55, 131.93, 130.91, 127.80, 127.06, 126.78, 125.54, 124.05, 123.41, 123.05, 

116.08. MS (ESI) m/z 314 (100, M+1), 315 (25, M+2). HRMS (EI) accurate mass calcd. for 

C21H16N1O1 (M+1) requires 314.1181, found 314.1148.  

10-([1,1'-biphenyl]-4-yloxy)anthracene-9-carbaldehyde oxime (3c).By the same procedure as 

that described for 3a, from aldehyde (1.8039g, 4.814mmol) in EtOH:THF:H2O (100:35:35 mL) 
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was dissolved hydroxylamine hydrochloride (1.8369g) and pyridine (10mL) The reaction was 

covered with a septa under an argon atmosphere and condenser and heated to 40°C for 6 hours, 

then stirred room temperature overnight. Washed 1 x 100mL 1N HCl (cold) and the combined 

aqueous layers washed 4 x 125mL H2O, 2 x 100mL Brine, 2 x 25mL CH2Cl2. Obtained (1.6234 

g, 86.59%). (Rf=0.36 4:1:1 Hex/EtOAc/Et2O). 
1
H NMR (Acetone-d6) δ 10.90 (s, 1H),  

9.26 (s, 1H), 8.60 (d, J=8.91 Hz, 2H), 8.17 (d, J=8.53 Hz, 2H), 7.63 (m, 10H), 7.41 (t, J=7.53, 

7.91, 15.43 Hz, 2H), 7.30 (t, J=7.40, 7.28, 14.68 Hz, 1H), 6.92 (d, J=8.78 Hz, 2H).
 13

C NMR 

(Acetone-d6)  δ 161.22, 148.13, 148.05, 141.47, 136.58, 135.78, 132.46, 130.28, 129.92, 128.41, 

128.35, 128.02, 127.67, 127.33, 126.06, 124.70, 123.91, 117.05. MS (ESI) m/z 390 (100, M+1), 

391 (23, M+2). HRMS (ESI) accurate mass calcd. for C27H20N1O2 (M+1) requires 390.1494, 

found 390.1446. 

10-(naphthalen-1-yloxy)anthracene-9-carbaldehyde oxime (3d).By the same procedure as 

that described for 3a, from aldehyde (0.2289g, 0.657mmol) in EtOH:THF:H2O (20:20:15 mL) 

was dissolved hydroxylamine hydrochloride (1.0440g) and pyridine (8mL) The reaction was 

covered with a septa under an argon atmosphere and condenser and heated to 40°C for 1 hours, 

then stirred room temperature overnight. Washed 2 x 50mL 1N HCl (cold) and the combined 

aqueous layers washed 4 x 50mL H2O, 3 x 50mL Brine, 2 x 20mL CH2Cl2. Obtained (0.2376 g, 

99.5%). (Rf=0.46 4:1:1 Hex/EtOAc/Et2O). 
1
H NMR (CDCl3) δ 9.27 (s, 1H), 8.87 (d, J=8.03 Hz, 

1H), 8.50 (d, J=8.91 Hz, 2H), 8.14 (d, J=8.53 Hz, 2H), 7.95 (d, J=7.91 Hz, 1H), 7.70 (m, 2H), 

7.57 (t, J=7.28, 7.91, 15.18 Hz, 2H), 7.51 (d, J=8.03 Hz, 1H), 7.41 (t, J=7.53, 15.06 Hz, 2H), 

7.08 (t, J=7.78, 8.03, 15.81 Hz, 1H), 6.11 (d, J=7.65 Hz, 1H).
 13

C NMR (CDCl3)  δ 155.80, 

148.77, 147.80, 134.85, 131.12, 127.81, 127.13, 126.87, 126.81, 12606, 125.97, 125.80, 125.71, 
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125.29, 124.79, 124.60, 122.94, 122.87, 121.85, 121.64, 121.43. HRMS (ESI) accurate mass 

calcd. for C25H17N1O2 (M+1) requires 364.1338, found 364.1374. 

10-(naphthalen-2-yloxy)anthracene-9-carbaldehyde oxime (3e).By the same procedure as that 

described for 3a, from aldehyde (2.2676g, 6.509mmol) in EtOH:THF:H2O (135:50:50 mL) was 

dissolved hydroxylamine hydrochloride (2.48370g) and pyridine (13.5mL) The reaction was 

covered with a septa under an argon atmosphere and stirred at room temperature overnight (19 

hours). Concentrated, then washed 1 x 100mL 1N HCl (cold) and the combined aqueous layers 

washed 3 x 150mL H2O, 1 x 150mL Brine, 2 x 25mL CH2Cl2. Obtained (2.3636 g, 99.93%). 

(Rf=0.33 4:1:1 Hex/EtOAc/Et2O). MS (ESI) 364.1190 (100). 

The starting oxime 3a (0.6450g, 2.5669mmol) was taken up in 35mL of chloroform at 

room temperature, to which the solution was added 10mol% pyridine (0.490mL of 5M) and 

recrystallized NCS (1.2 eq, 0.3903g, 2.92mmol) over 5 minutes.  The solution was allowed to 

stir at 40°C under argon for 3 hours.  The organic layer was washed with 3 x 30mL DI H2O, 4 x 

25mL Brine, then the aqueous layer washed 2 x 20mL CHCl3, dried with sodium sulfate, filtered, 

and the solvent removed under reduced pressure. The intermediate was purified only through 

extractive isolation using water and CHCl3 and taken on to the next reaction as is. To a solution 

of the intermediate in absolute ethanol (40mL) was added 2.4 equivalents of ethyl acetoacetate 

(0.7701g, 5.85mmol) dissolved in 10 mL EtOH and sodium (2eq, 0.1133g, 4.29mmol) slowly. 

The mixture was allowed to stir at room temperature under argon for 2 hours until TLC in 4:1:1 

Hex/EtOAc/DCM revealed all nitrile oxide had been consumed.  Finally, the ethanol was 

removed via rotary evaporation and the solid dissolved in CHCl3, washed 2 x 50mL DI H2O, 2 x 

50mL Brine, and the aqueous layer washed 1 x 20mL CHCl3, dried sodium sulfate, and 
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concentrated under reduced pressure. The solid was then chromatographed using 1:1 

Hex/EtOAc, then 1:2 and flushed with EtOAc until all desired product 4 was collected. 

N-hydroxy-10-methoxyanthracene-9-carbimidoyl chloride: Was not purified, carried on 

through in situ procedure only. 
1
H NMR(400 MHz, CDCl3) δ 8.36 (d, J=8.78 Hz, 2H), 8.31 (d, 

J=8.78, 2H), 7.70 (t, J=15.06, 7.40 Hz, 2H), 7.60 (t, J=15.31, 8.28 Hz, 2H), 4.20 (s, 3H). 

Ethyl 3-(10-methoxyanthracen-9-yl)-5-methylisoxazole-4-carboxylate (4a). Yield from two 

steps 77%. (Rf=0.49 1:2 Hex/DCM. 
1
H NMR (CDCl3) δ ppm 8.39 (d, J=8.53 Hz, 2 H), 7.70 (d, 

J=8.66 Hz, 2 H), 7.48 - 7.54 (m, 2 H), 7.42 - 7.47 (m, 2 H), 4.20 (s, 3 H), 3.73 (q, J=7.07 Hz, 2 

H), 2.93 (s, 3 H), 0.37 (t, J=7.09 Hz, 3 H).
 13

C NMR (CDCl3) δ 176.10, 161.40, 160.34, 153.91, 

131.64, 126.29, 125.71, 125.01, 123.90, 122.30, 118.62, 111.32, 63.55, 59.90, 14.01, 13.30, 

12.74. HRMS (ESI) accurate mass calcd. for C22H20N1O4 (M+1) requires 362.1392, found 

362.1392. 

Ethyl 5-methyl-3-(10-phenoxyanthracen-9-yl)isoxazole-4-carboxylate (4b).  

By the same procedure as that described for 4a, from oxime (0.2080g, 0.6638mmol) in 

chloroform (20mL) was added 10mol% pyridine (1.33mL from 5M) and NCS (1.15eq, 0.1023g. 

The reaction was warmed to 40°C for 3hr under an argon atmosphere. Washed 3 x 20mL H2O, 4 

x 15mL Brine, 2 x 10mL CH2Cl2, dried and taken onto next reaction. To a solution of the 

intermediate in absolute ethanol (15mL) was added 1.46 equivalents of ethyl acetoacetate 

(0.1260g) dissolved in 5mL EtOH and sodium (1.22eq, 0.0186g) slowly. The mixture was 

allowed to stir at room temperature under argon for 1.5 hours until TLC in 4:1:1 

Hex/EtOAc/DCM revealed all nitrile oxide had been consumed.  Finally, the ethanol was 

removed via rotary evaporation and the solid dissolved in CHCl3, washed 2 x 50mL DI H2O, 2 x 

50mL Brine, and the aqueous layer washed 1 x 20mL CHCl3, dried sodium sulfate, and 
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concentrated under reduced pressure. The solid was then chromatographed using 

dichloromethane until all desired product 4 was collected. Obtained (Yield from two steps 

0.2177 g, 77%). (Rf=0.42 DCM).
1
H NMR (Acetone-d6) δ 8.15 (m, 2H), 7.75 (m, 2H), 7.51 (m, 

4H), 7.31 (t, J=7.65, 8.28, 15.94 Hz, 2H), 7.05 (t, J=7.28, 7.40, 14.68 Hz, 1H), 6.88 (d, J=8.03 

Hz, 2H), 3.76 (q, J=7.15, 14.31 Hz, 2H), 2.93 (s, 3H), 0.50 (t, J=7.03, 7.15, 14.18 Hz, 3H). 
 13

C 

NMR (Acetone-d6)  δ 177.62, 161.86, 161.11, 160.91, 147.86, 132.60, 130.89, 127.66, 127.01, 

126.88, 125.26, 123.23, 123.08, 122.14, 116.08, 112.15, 60.72, 13.57. MS (ESI) m/z  236 (22.37, 

M+), 237(100, M+1), 238 (18.80, M+2). HRMS (ESI) accurate mass calcd. for C27H22N1O4 

(M+1) requires 424.1549, found 424.1578. 

Ethyl 3-(10-([1,1'-biphenyl]-4-yloxy)anthracen-9-yl)-5-methylisoxazole-4-carboxylate (4c). 

By the same procedure as that described for 4a, from oxime (1.6234g, 4.1685mmol) in 

chloroform (140mL) was added 10mol% pyridine (8.33mL from 5M) and NCS (1.2eq, 0.6914g. 

The reaction was warmed to 40°C for 5hr under an argon atmosphere. Washed 4 x 125mL H2O, 

2 x 125mL Brine, 2 x 25mL CH2Cl2, dried and taken onto next reaction. To a solution of the 

intermediate in absolute ethanol (100mL) was added 2.42 equivalents of ethyl acetoacetate 

(1.3mL) dissolved in 35mL EtOH and sodium (2.15eq, 0.2060g) slowly. The mixture was 

allowed to stir at room temperature under argon for 17 hours until TLC in 4:1:1 

Hex/EtOAc/DCM revealed all nitrile oxide had been consumed.  Finally, the ethanol was 

removed via rotary evaporation and the solid dissolved in CHCl3, washed 2 x 100mL DI H2O, 2 

x 100mL Brine, and the aqueous layer washed 2 x 20mL CHCl3, dried sodium sulfate, and 

concentrated under reduced pressure. The solid was then chromatographed using 4:1 Hex/EtOAc 

until all desired product 4 was collected. Obtained (0.2177 g, 77%). Obtained (Yield from two 

steps 1.3741g, 66%). (Rf=0.38 2:1 Hex/DCM).
 1

H NMR (CDCl3) δ 8.21(m, 2H), 7.72 (m, 2H), 
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7.47 (m, 10H), 7.31 (m, 1H), 6.95 (m, 2H), 3.79 (q, J=7.15 Hz, 14.31, 2H), 2.96 (s, 3H), 0.45 (t, 

J=7.03, 7.15 Hz, 14.18).
13

C NMR (CDCl3)  δ 176.41, 161.50, 160.23, 159.64, 147.14, 140.48, 

135.10, 131.86, 128.72, 128.46, 126.87, 126.78, 126.62, 125.82, 125.76, 124.34, 122.62, 120.41, 

115.60, 111.43, 60.18, 13.46, 12.97. HRMS (ESI) accurate mass calcd. for C33H26N1O4 (M+1) 

requires 500.1862, found 500.1863. 

Ethyl 5-methyl-3-(10-(naphthalen-1-yloxy)anthracen-9-yl)isoxazole-4-carboxylate (4d).  

By the same procedure as that described for 4a, from oxime (0.2217g, 0.6100mmol) in 

chloroform (20mL) was added 10mol% pyridine (1.22mL from 5M) and NCS (1.2eq, 0.1038g. 

The reaction was warmed to 40°C for 4hr under an argon atmosphere. Washed 4 x 50mL H2O, 3 

x 50mL Brine, 2 x 25mL CH2Cl2, dried and taken onto next reaction. To a solution of the 

intermediate in absolute ethanol (15mL) was added 2.2 equivalents of ethyl acetoacetate 

(0.17mL) dissolved in 5mL EtOH and sodium (2.1eq, 0.0295g) slowly. The mixture was allowed 

to stir at room temperature under argon for 1 hour until TLC in 4:1:1 Hex/EtOAc/DCM revealed 

all nitrile oxide had been consumed.  Finally, the ethanol was removed via rotary evaporation 

and the solid dissolved in CHCl3, washed 2 x 100mL DI H2O, 2 x 100mL Brine, and the aqueous 

layer washed 2 x 20mL CHCl3, dried sodium sulfate, and concentrated under reduced pressure. 

The solid was then chromatographed using dichloromethane until all desired product 4 was 

collected. Obtained (Yield from two steps 0.2411 g, 83%). (Rf=0.41 DCM).
 1

H NMR (CDCl3) δ 

8.92 (d, J=8.26 Hz, 1H), 8.18 (d, J=8.66 Hz, 2H), 7.98 (d, J=8.16 Hz, 1H), 7.78 (m, 3H), 7.69 

(m, 1H), 7.54, (d, J=8.28 Hz , 1H), 7.48 (m, 2H), 7.39 (m, 2H), 7.12 (bs, 1H), 6.21 (bd, J=7.28 

Hz, 1H), 3.85 (bs, 2H), 3.00 (s, 3H), 0.52 (bs, 3H).
 13

C NMR (CDCl3)  δ 176.30, 161.43, 160.26, 

155.82, 147.54, 134.79, 131.65, 128.00, 127.76, 126.79, 126.66, 126.60, 126.47, 125.98, 125.78, 

125.71, 125.58, 124.77, 124.62, 124.59, 124.27, 124.10, 122.49, 122.31, 122.20, 121.82, 121.56, 
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120.33, 111.41, 108.16, 107.77, 60.14, 13.42, 13.01. HRMS (ESI) accurate mass calcd. for 

C31H24N1O4 (M+1) requires 474.1705, found 474.1700. 

Ethyl 5-methyl-3-(10-(naphthalen-2-yloxy)anthracen-9-yl)isoxazole-4-carboxylate (4e). 

By the same procedure as that described for 4a, from oxime (2.3653g, 6.509mmol) in chloroform 

(220mL) was added 10mol% pyridine (6.5mL from 5M) and NCS (1.2eq, 1.0752g. The reaction 

was warmed to 40°C for 6.5hr under an argon atmosphere. Washed 4 x 150mL H2O, 2 x 125mL 

Brine, 2 x 25mL CH2Cl2, dried and taken onto next reaction. To a solution of the intermediate in 

absolute ethanol (150mL) was added 2.4 equivalents of ethyl acetoacetate (2mL) dissolved in 

55mL EtOH and sodium (2eq, 0.2993g) slowly. The mixture was allowed to stir at room 

temperature under argon for 15.5 hours until TLC in 4:1:1 Hex/EtOAc/DCM revealed all nitrile 

oxide had been consumed.  Finally, the ethanol was removed via rotary evaporation and the solid 

dissolved in CHCl3, washed 2 x 100mL DI H2O, 2 x 100mL Brine, and the aqueous layer washed 

2 x 20mL CHCl3, dried sodium sulfate, and concentrated under reduced pressure. The solid was 

then chromatographed using dichloromethane until all desired product 4 was collected. Obtained 

(Yield from two steps 2.605 g, 85%). (Rf=0.33 4:1:1Hex/EtOAc/Et2O).
 1

H NMR (CDCl3) δ 8.05 

(m, 2H), 7.72 (d, J=8.91 Hz, 1H), 7.65 (m, 1H), 7.58 (d, J=8.28 Hz, 2H), 7.25 (m, 8H), 6.68, (d, 

J=2.38 Hz, 1H), 3.64 (q, J=7.15 Hz, 14.31, 2H), 2.81 (s, 3H), 0.45 (t, J=7.03, 7.15 Hz, 14.18).
 

13
C NMR (CDCl3)  δ 176.4, 161.5, 160.3, 158.0, 147.2, 134.3, 134.1, 131.7, 130.1, 129.5, 127.7, 

127.2, 126.9, 126.7, 126.6, 126.6, 126.2, 125.8, 125.8, 124.3, 124.2, 122.6, 120.4, 117.6, 111.5, 

109.7, 60.2, 13.4, 13.0. HRMS (ESI) accurate mass calcd. for C31H24N1O4 (M+1) requires 

474.1705, found 474.1705. 
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General Procedure from ester to double tail. 

Ester 8a-e (0.5 mmol) was dissolved in THF (5 mL). To the solution was then added 

methanol (5 mL) and aqueous KOH (5 eq. in 10 mL H2O). The solution was then brought to 

reflux for three hours until completion of the reaction as indicated by TLC. The reaction was 

then cooled to room temperature and the organic solvents were removed under reduced pressure. 

The aqueous mixture was diluted with then diluted with water (10 mL). The aqueous solution 

was cooled to 0 °C and acidified to pH 2 with 1M HCl. The resulting precipitate was filtered and 

washed with water (3 x 5 mL). The solid was then dissolved in ethyl acetate and dried over 

sodium sulfate. The solid was removed by filtration and the solution was concentrated under 

reduced pressure to yield the carboxylic acid. 

To the carboxylic acid was added excess thionyl chloride (10 mL). The solution was 

stirred at room temperature for 18 hr under a drying tube equipped with CaCl2 and NaOH. The 

reaction mixture was concentrated under reduced pressure. The chlorinating agent was chased 

with chloroform and hexanes to yield to acid chloride. 

The acid chloride was dissolved in dry methylene chloride (5 mL) and to the solution was 

added triethyl amine (2 eq.). To a stirring solution of the acid chloride, at 0 °C, was slowly added 

the amino pyrrole 7 in methylene chloride (5 mL). The mixture was allowed to warm to room 

temperature while stirring for 24 hr. The reaction mixture was diluted with chloroform (40 mL) 

and washed with water (20 mL). The aqueous fraction was then extracted with methylene 

chloride (3 x 10 mL). The combined organic fractions were dried over sodium sulfate, filtered, 

and concentrated. The product was then purified by column chromatography eluting 10% 

ammonium hydroxide in methanol. 
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N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-3-(10-

methoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 8a. 

Yield from two steps 62%. 1H NMR (CDCl3) δ 8.43 (d, 2H, J=8.41 Hz anthracene-H), 

7.72 (d, 2H, J= 8.78 Hz, anthracene-H), 7.54 (m, 4H, anthracene-H), 6.59 (s, 1H, 

pyrrole-H), 6.49 (s, 1H, pyrrole-H), 5.06 (s, 1H, amide-H), 4.24 (s, 3H, methoxy), 3.45 

(s, 3H, pyrrole methyl), 3.30 (bs, 4H, double tail), 3.01 (s, 3H, isoxazole methyl), 2.18 

(bs, 16H, double tail), 1.63 (bs, 4H, double tail). 13C NMR (CDCl3) δ 176.03, 163.55, 

157.70, 157.41, 155.42, 131.90, 127.94, 125.92, 125.22, 124.27, 123.96, 122.77, 

119.85, 116.05, 115.69, 112.80, 101.89, 63.72, 56.75, 45.32, 35.15, 13.62. HRMS (EI) 

accurate mass calcd. for C36H45O4N6 (M+1) requires 625.3502, found 625.3215. 

 

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-

3-(10-phenoxyanthracen-9-yl)isoxazole-4-carboxamide, 8b. 

Yield from two steps 86%. 1H NMR (CDCl3) δ 8.24 (d, 2H, J=8.41 Hz anthracene-H), 

7.77 (d, 2H, J= 8.41 Hz, anthracene-H), 7.52 (m, 4H, anthracene-H), 7.25 (d, 2H, 

J=8.41 Hz, aryl-H), 7.04 (t, 1H, J=7.28, 14.56 Hz,  aryl-H), 6.85 (d, 2H, J=8.16 Hz, aryl-

H), 6.62 (s, 1H, pyrrole-H), 6.49 (s, 1H, pyrrole-H), 5.10 (s, 1H, amide-H), 3.47 (s, 3H, 

pyrrole methyl), 3.30 (bs, 4H, double tail), 3.03 (s, 3H, isoxazole methyl), 2.15 (bs, 16H, 

double tail), 1.61 (bs, 4H, double tail). 13C NMR (CDCl3) δ 176.11, 163.55, 159.88, 

157.62, 157.27, 148.64, 131.79, 129.94, 128.14, 126.55, 125.15, 124.66, 124.07, 

123.10, 122.32, 119.90, 117.80, 115.67, 115.24, 112.93, 101.82, 56.75, 45.28, 35.21, 

35.21, 13.62. HRMS (ESI) accurate mass calcd. for C41H47O4N6 (M+1) requires 

687.3659, found 687.3629. 
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3-(10-([1,1'-biphenyl]-4-yloxy)anthracen-9-yl)-N-(5-(bis(3-

(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methylisoxazole-4-

carboxamide, 8c. 

Yield from two steps 73%. 1H NMR (CDCl3) δ 8.27 (bd, 2H, J=8.91 Hz anthracene-H), 

7.78 (bd, 2H, J= 7.91 Hz, anthracene-H), 7.52 (m, 8H, anthracene-H, aryl-H), 7.41 (t, 

2H, J=7.53, 15.18 Hz, aryl-H), 7.30 (t, 1H, J=7.40, 14.68 Hz, aryl-H), 6.91 (d, 2H, J=8.53 

Hz, aryl-H), 6.64 (s, 1H, pyrrole-H), 6.53 (s, 1H, pyrrole-H), 5.12 (s, 1H, amide-H), 3.47 

(s, 3H, pyrrole methyl), 3.26 (t, 4H, J=7.28, 14.56, double tail), 3.03 (s, 3H, isoxazole 

methyl), 2.15 (bs, 16H, double tail), 1.59 (bs, 4H, double tail). 13C NMR (CDCl3) δ 

176.04, 163.51, 159.40, 157.56, 157.25, 148.54, 140.16, 135.42, 131.75, 128.74, 

128.53, 128.14, 126.96, 126.73, 126.60, 125.14, 124.60, 124.04, 123.02, 119.88, 

117.89, 115.65, 115.50, 112.92, 101.74, 56.65, 45.16, 35.18, 13.58. HRMS (ESI) 

accurate mass calcd. for C47H51O4N6 (M+1) requires 763.3948, found 763.3972. 

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-

3-(10-(naphthalen-1-yloxy)anthracen-9-yl)isoxazole-4-carboxamide, 8d. 

Yield from two steps 48%. 
1
H NMR (CDCl3) δ ppm 8.98 (m, 1 H), 8.44 (m, 1 H), 8.22 (dd, 

J=18.51, 8.72 Hz, 2 H), 8.06 (m, 1 H), 7.81 (m, 5 H), 7.54 (m, 5 H), 6.64 (m, 2 H), 5.18 (m, 1 

H), 3.50 (m, 3 H), 3.36 (br. s., 4 H), 3.06 (m, 4 H), 2.18 (br. s., 16 H), 1.68 (br. s., 4 H). 
13

C 

NMR (CDCl3) δ 176.21, 163.64, 158.75, 157.10, 157.27, 157.19, 140.09, 148.52, 147.95, 

134.88, 132.93, 131.82, 130.89, 128.57, 128.25, 128.19, 127.89, 127.03, 126.84, 126.63, 126.17, 

125.64, 125.36,  125.25, 125.17, 124.78, 124.63, 124.45, 124.18, 122.97, 122.70, 122.47, 122.14, 

121.73, 119.79, 118.68, 115.89, 112.99, 108.28, 107.60, 107.19, 102.04, 60.95, 56.79, 45.32, 
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35.20, 15.52, 13.65. HRMS (ESI) accurate mass calcd. for C45H49O4N6 (M+1) requires 

737.3815, found 737.3833. 

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-

3-(10-(naphthalen-2-yloxy)anthracen-9-yl)isoxazole-4-carboxamide, 8e. 

Yield from two steps 42% 
1
H NMR (CDCl3) δ ppm 8.26 (d, J=8.53 Hz, 2 H), 7.72 - 7.93 (m, 4 

H), 7.31 - 7.58 (m, 8 H), 6.77 (d, J=1.88 Hz, 1 H), 6.49 - 6.68 (m, 2 H), 5.20 (d, J=1.13 Hz, 1 H), 

3.42 - 3.58 (m, 3 H), 3.29 (br. s., 4 H), 3.04 (s, 3 H), 2.00 - 2.34 (m, 16 H), 1.58 (br. s., 4 H). 
13

C 

NMR (101 MHz, CHLOROFORM-d) δ ppm 176.08, 163.52, 163.43, 157.76, 157.61, 157.53, 

157.24, 157.14, 152.59, 148.58, 148.43, 134.17, 131.90, 131.80, 131.67, 130.25, 130.18, 129.53, 

128.23, 128.13, 127.90, 127.57, 126.95, 126.87, 126.79, 126.55, 125.12, 124.57, 124.54, 124.42, 

124.10, 123.64, 123.03, 122.68, 119.82, 119.76, 117.89, 117.24, 115.68, 112.98, 112.93, 109.69, 

101.93, 56.69, 45.22, 35.20, 35.15, 13.58. HRMS (ESI) accurate mass calcd. for C45H49O4N6 

(M+1) requires 737.3815, found 737.3809. 

 

Results and Discussion.  

These novel compounds were purified and characterized by EI-MS and a sequence of 

NMR techniques, such as: 1H, 13C, 1H-1H COSY, HSQC and HMBC. Of the ID-dansyl 

analogs that were examined by NMR, all were found to display more signals than 

expected, even after careful chromatography, which we rationalized by their ability to 

adopt multiple conformations (Fig SM-1). 
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Computer programs:  

SAINT V8.27B (Bruker AXS Inc., 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 

(Sheldrick, 2008). 

 

Computing details  

Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data 

reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXS 

(Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); 

molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material 

for publication: Olex2 (Dolomanov et al., 2009). 

 

Crystal data 

C22H19NO4 ? 

Mr = 361.38 Dx = 1.328 Mg m
−3

 

Orthorhombic, Pbca Melting point: ? K 

Hall symbol: ? Mo Kα radiation, λ = 0.71073 Å 

a = 7.9091 (3) Å Cell parameters from 9912 reflections 

b = 16.5970 (7) Å θ = 2.6–27.4° 

c = 27.5365 (12) Å µ = 0.09 mm
−1

 

V = 3614.6 (3) Å
3
 T = 100 K 
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Z = 8 Prism, yellow 

F(000) = 1520 0.29 × 0.28 × 0.21 mm 

 

Data collection 

Bruker SMART BREEZE CCD  

diffractometer  

4109 independent reflections 

Radiation source: 2 kW sealed X-ray tube 2911 reflections with I > 2σ(I) 

? monochromator Rint = 0.042 

Detector resolution: ? pixels mm
-1

 θmax = 27.4°, θmin = 2.5° 

φ and ω scans  h = −10 10 

Absorption correction: multi-scan  

SADABS-2012/1 (Bruker, 2012) 

k = −21 20 

Tmin = 0.912, Tmax = 1.000 l = −35 35 

24975 measured reflections 

 

 

Refinement 

Refinement on F
2
 Secondary atom site location: ? 

Least-squares matrix: full Hydrogen site location: inferred from 
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neighbouring sites 

R[F
2
 > 2σ(F

2
)] = 0.045 H-atom parameters constrained  

wR(F
2
) = 0.112 

w = 1/[σ
2
(Fo

2
) + (0.0453P)

2
 + 1.5524P]  

where P = (Fo
2
 + 2Fc

2
)/3 

S = 1.03 (Δ/σ)max = 0.001 

4109 reflections Δρmax = 0.29 e Å
−3

 

247 parameters Δρmin = −0.29 e Å
−3

 

0 restraints Extinction correction: none 

? constraints Extinction coefficient: ? 

Primary atom site location: structure-invariant 

direct methods  

 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters 

(Å
2
) 

 

X y Z Uiso*/Ueq 

 

O1 −0.35989 (14) 0.96574 (7) 0.03187 (4) 0.0244 (3) 

 

O2 0.08525 (15) 0.86256 (8) −0.02913 (4) 0.0326 (3) 

 

O3 0.15087 (14) 0.85246 (7) 0.04993 (4) 0.0221 (3) 

 

O4 0.15548 (14) 0.81274 (7) 0.25306 (4) 0.0268 (3) 
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N1 −0.31613 (18) 0.95133 (8) 0.08136 (5) 0.0242 (3) 

 

C1 0.1407 (2) 0.97991 (11) 0.23304 (6) 0.0262 (4) 

 

H1 0.1984 0.9627 0.2615 0.031* 

 

C2 0.1298 (2) 1.05948 (11) 0.22282 (6) 0.0314 (4) 

 

H2 0.1805 1.0977 0.2440 0.038* 

 

C3 0.0434 (2) 1.08603 (11) 0.18080 (7) 0.0312 (4) 

 

H3 0.0354 1.1421 0.1743 0.037* 

 

C4 −0.0282 (2) 1.03283 (10) 0.14967 (6) 0.0248 (4) 

 

H4 −0.0854 1.0522 0.1217 0.030* 

 

C5 −0.13449 (19) 0.74685 (9) 0.10343 (6) 0.0195 (4) 

 

H5 −0.1910 0.7627 0.0745 0.023* 

 

C6 −0.1161 (2) 0.66719 (10) 0.11336 (6) 0.0237 (4) 

 

H6 −0.1590 0.6282 0.0913 0.028* 

 

C7 −0.0337 (2) 0.64178 (10) 0.15626 (6) 0.0277 (4) 

 

H7 −0.0208 0.5859 0.1627 0.033* 

 

C8 0.0271 (2) 0.69681 (10) 0.18821 (6) 0.0250 (4) 

 

H8 0.0809 0.6790 0.2171 0.030* 
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C9 0.0755 (2) 0.83883 (10) 0.21113 (6) 0.0211 (4) 

 

C10 −0.08595 (19) 0.89041 (9) 0.12594 (5) 0.0172 (3) 

 

C11 −0.01913 (19) 0.94783 (10) 0.15827 (6) 0.0193 (4) 

 

C12 0.0659 (2) 0.92129 (10) 0.20144 (6) 0.0206 (4) 

 

C13 0.01135 (19) 0.78115 (10) 0.17903 (6) 0.0190 (4) 

 

C14 −0.07079 (19) 0.80738 (9) 0.13549 (5) 0.0170 (3) 

 

C15 −0.1677 (2) 0.91653 (9) 0.08000 (6) 0.0181 (3) 

 

C16 −0.1090 (2) 0.90742 (9) 0.03098 (6) 0.0177 (3) 

 

C17 −0.2353 (2) 0.93860 (9) 0.00304 (6) 0.0201 (4) 

 

C18 −0.2625 (2) 0.94596 (11) −0.05010 6) 0.0263 (4) 

 

H18A −0.3440 0.9051 −0.0607 0.039* 

 

H18B −0.1549 0.9379 −0.0671 0.039* 

 

H18C −0.3066 0.9997 −0.0576 0.039* 

 

C19 0.0495 (2) 0.87249 (9) 0.01309 (6) 0.0193 (4) 

 

C20 0.3063 (2) 0.80968 (11) 0.03884 (6) 0.0269 (4) 

 

H20A 0.3835 0.8442 0.0197 0.032* 

 

H20B 0.2820 0.7602 0.0200 0.032* 
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C21 0.3843 (2) 0.78877 (12) 0.08684 (7) 0.0346 (5) 

 

H21A 0.4879 0.7576 0.0815 0.052* 

 

H21B 0.3043 0.7566 0.1059 0.052* 

 

H21C 0.4115 0.8384 0.1045 0.052* 

 

C22 0.0470 (2) 0.81194 (12) 0.29442 (6) 0.0304 (4) 

 

H22A −0.0540 0.7799 0.2872 0.046* 

 

H22B 0.0136 0.8672 0.3024 0.046* 

 

H22C 0.1069 0.7881 0.3221 0.046* 

 

 

Atomic displacement parameters (Å
2
) 

 

U
11

 U
22

 U
33

 U
12

 U
13

 U
23

 

O1 0.0228 (6) 0.0306 (7) 0.0198 (6) 0.0084 (5) −0.0030 (5) 0.0022 (5) 

O2 0.0289 (7) 0.0516 (9) 0.0172 (6) 0.0090 (6) 0.0026 (5) −0.0030 (6) 

O3 0.0176 (6) 0.0305 (7) 0.0183 (6) 0.0067 (5) 0.0008 (5) −0.0013 (5) 

O4 0.0182 (6) 0.0434 (8) 0.0187 (6) 0.0029 (5) −0.0031 (5) 0.0038 (5) 

N1 0.0247 (8) 0.0309 (8) 0.0170 (7) 0.0068 (6) −0.0025 (6) 0.0020 (6) 

C1 0.0219 (9) 0.0393 (11) 0.0174 (8) −0.0058 (8) 0.0024 (7) −0.0040 (8) 
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C2 0.0328 (10) 0.0360 (11) 0.0255 (10) −0.0112 (8) 0.0061 (8) −0.0117 (8) 

C3 0.0398 (11) 0.0235 (10) 0.0302 (10) −0.0033 (8) 0.0077 (8) −0.0041 (8) 

C4 0.0272 (9) 0.0244 (9) 0.0227 (9) 0.0018 (7) 0.0044 (7) −0.0022 (7) 

C5 0.0186 (8) 0.0241 (9) 0.0160 (8) 0.0008 (7) 0.0013 (6) 0.0015 (7) 

C6 0.0248 (9) 0.0232 (9) 0.0233 (9) −0.0022 (7) 0.0035 (7) −0.0017 (7) 

C7 0.0343 (10) 0.0207 (9) 0.0282 (10) 0.0049 (8) 0.0056 (8) 0.0048 (8) 

C8 0.0254 (9) 0.0284 (10) 0.0213 (9) 0.0066 (8) 0.0024 (7) 0.0074 (7) 

C9 0.0133 (8) 0.0350 (10) 0.0150 (8) 0.0034 (7) 0.0012 (6) 0.0031 (7) 

C10 0.0146 (8) 0.0225 (9) 0.0147 (8) 0.0035 (7) 0.0022 (6) −0.0003 (6) 

C11 0.0157 (8) 0.0247 (9) 0.0174 (8) 0.0018 (7) 0.0053 (6) −0.0017 (7) 

C12 0.0154 (8) 0.0289 (9) 0.0176 (8) −0.0016 (7) 0.0030 (6) −0.0019 (7) 

C13 0.0145 (8) 0.0255 (9) 0.0170 (8) 0.0026 (7) 0.0038 (6) 0.0023 (7) 

C14 0.0129 (8) 0.0237 (9) 0.0143 (8) 0.0016 (6) 0.0031 (6) 0.0008 (6) 

C15 0.0178 (8) 0.0171 (8) 0.0194 (8) 0.0009 (6) −0.0007 (6) −0.0001 (6) 

C16 0.0199 (8) 0.0167 (8) 0.0165 (8) −0.0003 (6) −0.0010 (7) 0.0001 (6) 

C17 0.0214 (8) 0.0173 (8) 0.0215 (8) −0.0021 (7) 0.0002 (7) 0.0003 (7) 

C18 0.0285 (10) 0.0305 (10) 0.0199 (9) 0.0001 (8) −0.0054 (7) 0.0034 (7) 
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C19 0.0205 (8) 0.0203 (9) 0.0171 (8) −0.0021 (7) −0.0007 (7) −0.0006 (7) 

C20 0.0184 (9) 0.0339 (10) 0.0284 (9) 0.0070 (8) 0.0043 (7) −0.0024 (8) 

C21 0.0247 (10) 0.0470 (12) 0.0322 (10) 0.0123 (9) −0.0033 (8) −0.0035 (9) 

C22 0.0280 (10) 0.0439 (11) 0.0194 (9) −0.0033 (9) −0.0035 (8) 0.0066 (8) 

 

Geometric parameters (Å, °)  

O1—N1 1.4262 (17) C8—C13 1.428 (2) 

O1—C17 1.3433 (19) C9—C12 1.396 (2) 

O2—C19 1.2075 (18) C9—C13 1.398 (2) 

O3—C19 1.3348 (18) C10—C11 1.407 (2) 

O3—C20 1.4523 (19) C10—C14 1.408 (2) 

O4—C9 1.3860 (19) C10—C15 1.485 (2) 

O4—C22 1.426 (2) C11—C12 1.435 (2) 

N1—C15 1.309 (2) C13—C14 1.431 (2) 

C1—H1 0.9500 C15—C16 1.436 (2) 

C1—C2 1.353 (3) C16—C17 1.363 (2) 

C1—C12 1.433 (2) C16—C19 1.467 (2) 

C2—H2 0.9500 C17—C18 1.484 (2) 
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C2—C3 1.414 (3) C18—H18A 0.9800 

C3—H3 0.9500 C18—H18B 0.9800 

C3—C4 1.354 (2) C18—H18C 0.9800 

C4—H4 0.9500 C20—H20A 0.9900 

C4—C11 1.432 (2) C20—H20B 0.9900 

C5—H5 0.9500 C20—C21 1.499 (2) 

C5—C6 1.358 (2) C21—H21A 0.9800 

C5—C14 1.429 (2) C21—H21B 0.9800 

C6—H6 0.9500 C21—H21C 0.9800 

C6—C7 1.414 (2) C22—H22A 0.9800 

C7—H7 0.9500 C22—H22B 0.9800 

C7—C8 1.356 (2) C22—H22C 0.9800 

C8—H8 0.9500 

  

C17—O1—N1 109.30 (11) C9—C13—C8 121.85 (15) 

C19—O3—C20 118.06 (12) C9—C13—C14 119.07 (14) 

C9—O4—C22 113.18 (12) C5—C14—C13 117.62 (14) 

C15—N1—O1 105.33 (12) C10—C14—C5 122.86 (14) 
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C2—C1—H1 119.7 C10—C14—C13 119.51 (14) 

C2—C1—C12 120.68 (16) N1—C15—C10 119.67 (14) 

C12—C1—H1 119.7 N1—C15—C16 111.30 (14) 

C1—C2—H2 119.8 C16—C15—C10 129.01 (14) 

C1—C2—C3 120.32 (16) C15—C16—C19 129.34 (14) 

C3—C2—H2 119.8 C17—C16—C15 104.71 (14) 

C2—C3—H3 119.4 C17—C16—C19 125.94 (14) 

C4—C3—C2 121.11 (17) O1—C17—C16 109.35 (14) 

C4—C3—H3 119.4 O1—C17—C18 116.66 (14) 

C3—C4—H4 119.4 C16—C17—C18 133.96 (15) 

C3—C4—C11 121.10 (17) C17—C18—H18A 109.5 

C11—C4—H4 119.4 C17—C18—H18B 109.5 

C6—C5—H5 119.3 C17—C18—H18C 109.5 

C6—C5—C14 121.49 (15) H18A—C18—H18B 109.5 

C14—C5—H5 119.3 H18A—C18—H18C 109.5 

C5—C6—H6 119.7 H18B—C18—H18C 109.5 

C5—C6—C7 120.53 (16) O2—C19—O3 123.86 (15) 
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C7—C6—H6 119.7 O2—C19—C16 125.26 (15) 

C6—C7—H7 119.8 O3—C19—C16 110.88 (13) 

C8—C7—C6 120.30 (16) O3—C20—H20A 110.5 

C8—C7—H7 119.8 O3—C20—H20B 110.5 

C7—C8—H8 119.5 O3—C20—C21 106.02 (13) 

C7—C8—C13 120.97 (15) H20A—C20—H20B 108.7 

C13—C8—H8 119.5 C21—C20—H20A 110.5 

O4—C9—C12 119.34 (15) C21—C20—H20B 110.5 

O4—C9—C13 118.58 (15) C20—C21—H21A 109.5 

C12—C9—C13 122.05 (15) C20—C21—H21B 109.5 

C11—C10—C14 120.85 (14) C20—C21—H21C 109.5 

C11—C10—C15 120.31 (14) H21A—C21—H21B 109.5 

C14—C10—C15 118.80 (14) H21A—C21—H21C 109.5 

C4—C11—C12 117.56 (15) H21B—C21—H21C 109.5 

C10—C11—C4 122.94 (15) O4—C22—H22A 109.5 

C10—C11—C12 119.48 (14) O4—C22—H22B 109.5 

C1—C12—C11 119.21 (15) O4—C22—H22C 109.5 
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C9—C12—C1 121.82 (15) H22A—C22—H22B 109.5 

C9—C12—C11 118.97 (15) H22A—C22—H22C 109.5 

C8—C13—C14 119.07 (15) H22B—C22—H22C 109.5 

O1—N1—C15—C10 −177.98 (13) C11—C10—C14—C5 −179.10 (14) 

O1—N1—C15—C16 0.40 (17) C11—C10—C14—C13 1.0 (2) 

O4—C9—C12—C1 1.7 (2) C11—C10—C15—N1 −72.2 (2) 

O4—C9—C12—C11 −179.18 (13) C11—C10—C15—C16 109.79 (19) 

O4—C9—C13—C8 −0.3 (2) C12—C1—C2—C3 0.4 (3) 

O4—C9—C13—C14 −179.69 (13) C12—C9—C13—C8 177.59 (15) 

N1—O1—C17—C16 −0.65 (17) C12—C9—C13—C14 −1.8 (2) 

N1—O1—C17—C18 177.80 (13) C13—C9—C12—C1 −176.22 (15) 

N1—C15—C16—C17 −0.79 (18) C13—C9—C12—C11 2.9 (2) 

N1—C15—C16—C19 179.49 (15) C14—C5—C6—C7 0.5 (2) 

C1—C2—C3—C4 −0.8 (3) C14—C10—C11—C4 178.65 (14) 

C2—C1—C12—C9 179.94 (16) C14—C10—C11—C12 0.2 (2) 

C2—C1—C12—C11 0.8 (2) C14—C10—C15—N1 110.33 (17) 

C2—C3—C4—C11 0.1 (3) C14—C10—C15—C16 −67.7 (2) 
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C3—C4—C11—C10 −177.46 (15) C15—C10—C11—C4 1.2 (2) 

C3—C4—C11—C12 1.1 (2) C15—C10—C11—C12 −177.29 (14) 

C4—C11—C12—C1 −1.5 (2) C15—C10—C14—C5 −1.6 (2) 

C4—C11—C12—C9 179.36 (15) C15—C10—C14—C13 178.48 (13) 

C5—C6—C7—C8 0.4 (3) C15—C16—C17—O1 0.85 (17) 

C6—C5—C14—C10 179.19 (15) C15—C16—C17—C18 −177.22 (17) 

C6—C5—C14—C13 −0.9 (2) C15—C16—C19—O2 175.21 (16) 

C6—C7—C8—C13 −0.8 (3) C15—C16—C19—O3 −4.6 (2) 

C7—C8—C13—C9 −179.00 (15) C17—O1—N1—C15 0.15 (16) 

C7—C8—C13—C14 0.4 (2) C17—C16—C19—O2 −4.4 (3) 

C8—C13—C14—C5 0.5 (2) C17—C16—C19—O3 175.79 (15) 

C8—C13—C14—C10 −179.59 (14) C19—O3—C20—C21 −174.81 (14) 

C9—C13—C14—C5 179.86 (14) C19—C16—C17—O1 −179.42 (14) 

C9—C13—C14—C10 −0.2 (2) C19—C16—C17—C18 2.5 (3) 

C10—C11—C12—C1 177.07 (14) C20—O3—C19—O2 −5.8 (2) 

C10—C11—C12—C9 −2.1 (2) C20—O3—C19—C16 174.02 (13) 

C10—C15—C16—C17 177.39 (15) C22—O4—C9—C12 85.45 (18) 
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C10—C15—C16—C19 −2.3 (3) C22—O4—C9—C13 −96.56 (17) 

 

Hydrogen-bond geometry (Å, °)  

D—H···A D—H H···A D···A D—H···A 

C18—H18B···O2 0.98 2.50 3.133 (2) 122 

C21—H21A···O2
i
 0.98 2.58 3.371 (2) 138 

Symmetry code: (i) x+1/2, −y+3/2, −z. 

 

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the 

full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of 

e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are 

only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of 

cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. 
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Chapter 4 

 

3-Aryl isoxazoles exhibit atropisomerism 

4.1 Introduction 

 3-Aryl isoxazole amides (AIMs) exhibit robust anticancer activity in the in vitro NCI 

Developmental Therapeutics Program's 60 cell line protocol (NCI 60), comparable to several 

agents currently in general medical practice (such as bleomycin and rubidazone)
1
. It is 

hypothesized that unsymmetrical AIMs should exhibit enantioselectivity of action at our putative 

target, G-Quadruplex (G4) DNA. Calculations at the B3LYP/6-31G* level of theory indicated 

that the barrier to rotation in many examples should be consistent with isolable atropoisomers, 

that is, in the range of 23.2 - 25.6 kcal/mole
2
. Nitrile oxide cycloaddition using unsymmetrical 

naphthyl-nitrile oxides gave isoxazoles in modest to good yields. Reaction of acid chlorides with 

(S)-2-butyl amine gives diastereomeric 3-aryl isoxazolyl amides which were studied by dynamic 

NMR. The barrier to rotation about the chiral axis in 8g was determined by line-shape analysis to 

be approximately 18.4 kcal/mole. 

4.2 Atropisomerism  

Chapter 3 examined structure-activity relationship (SAR) of AIMs, although the 

plausibility of restricted rotation at the aryl-isoxazole ring juncture has not yet been examined.  

Atropisomerism or axial chirality is non-superimposability of an organic compound about a 

hindered axis. These molecules should result in isolable enantiomers should they meet the so-

called Oki criteria of having a barrier of 22.3 kcal/mol at 300
o
K and a half-life of approximately 

1000s (16.7 min).
2
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Figure 4-1. Transition state for compound 8g. 

We tested the plausibility of axially chiral isoxazoles employing calculations at the 

B3LYP/6-31G* level of theory. The results on number of examples are summarized in Table 4-

1.
3, 4

 The structure was rotated through increments of 10°, and again minimized. A transition is 

shown in Figure 4-1, where the isoxazolyl 4-moiety must move out of conjugation with the 

isoxazole in order to pass by the peri-proton, and represents the usual saddle point significant 

deformation at the aromatic ring and lengthening of the isoxazole-3-aryl single bond is observed. 

A compensating factor, however, is that the isoxazole at this juncture moves into conjugation 

with the 3-aryl functionality. Substituents were varied at the C-4 position (esters 5, amides 8) and 

C-5 (2-methyl and 2-methoxy naphthyl, 1- and 2,10-dimethoxy-anthracenyl) , and we observed 
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that were in the range (23.2 to 25.6 kcal/mole) where the isolation of rotomers would be 

expected to indeed be possible. 

4.3 Dynamic NMR  

If a molecule exists in two interconvertible conformations, both approximately equally 

populated, it may show, depending on the frequency of interconversion, either the nuclear 

magnetic resonance spectra corresponding to the individual conformations or an average 

spectrum of confirmations A and B. If one has two conformations A and B in equilibrium in a 

substance and one heats the substance until a given pair of resonance lines due to A and B just 

coalesces (or if, originally, there was only one set of lines, if one cools the substance until the 

resonance lines just begin to split), this temperature is called the coalescence temperature Tc.
2, 5

 

Molecules are in constant motion, and the different conformations which are interconverted by 

bond rotations and other molecular gymnastics often have different NMR spectra. Variable-

temperature NMR, often referred to as dynamic NMR (DNMR), can be used to study the kinetics 

of these exchanges.
5
 

 The energy of activations, EA, for a simple reaction such as the rotation of amides can be 

accessed from the Arrhenius equation for the reaction rate, k. 

𝑘 = 𝐴−
EA

𝑅𝑇       (1) 

If in equation 1, R is a gas constant, T the absolute temperature and A roughly 

corresponds to the fraction of species that reaches the transition state and successfully passes 

over the product side of the reaction. A is usually referred as the pre-exponential term and 

represents the frequency of collisions between reactant molecule, is called a ‘constant’ in spite of 

the fact that it does vary a little with T. 

A different approach gives the Eyring equation 
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𝑘𝑐 = 𝐾 kBT/h−∆G‡/RT
     (2) 

or ∆𝐺 ‡ =  𝑅𝑇 (ln
𝑘𝐵

ℎ
+  𝑙𝑛𝑇 − 𝑙𝑛𝑘𝑐)      (3) 

In this, k is the rate constant, kB is the Boltzmann constant, h is the Planck constant and ∆G‡ is 

the free energy of activation (∆G‡ = ∆H‡ - T∆S‡). The kinetic constant (k value) is obtained at 

each given temperature and the free energy of activation (ΔG‡) can then be derived by means of 

Equation (3), above giving the activation energy to reach the transition state.
5
 

 The ‘constant’ K is analogous to the ‘constant’ A in the Arrhenius equation and is 

likewise subject to variation in non-simple reactions: it relates the ‘reaction success rate’. 

Provided the transition state can easily transfer energy to the surroundings (and this is commonly 

true in large molecules), the K is near unity. For a mutual exchange or mutual site exchange (in 

which the exchange produces indistinguishable molecules) and for first-order cases, H.S. 

Gutowsky showed that the rate of rotation, kc, at the temperature of coalescence, Tc, is given by  

kc =  π ∆v/√2      (4) 

The lifetime, tc, of the separate isomers at the point of coalescence is the reciprocal of the rate, 

1/kc. 

Using these equations allows ΔG‡ values between about 4.5 and about 23 kcalmol
–1

 to be 

determined. The temperature ranges over which k values can be accurately measured by DNMR 

technique are usually quite small. A number of books and reviews have previously been devoted 

to describing the applications of DNMR in conformational analysis 
2,5,6

. An example of a 

variable temperature NMR is shown in Figure 4-2 for compound 9 showing the coalescence 

point at about 43°C. Table 4-2 shows the experimental DNMR calculations for the set of 

compounds, which are still in progress and will be reported in due course.  
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4.4 Bond Rotation 

The discovery of bioactive natural products containing chiral axes, as well as, catalysts 

changed the concept of axial chirality in rotationally hindered systems. The most popular 

systems used for asymmetric synthesis contain the binaphthyl scaffold, such as BINAP or 

BINOL
5
 

7
.  The putative diastereomers of the 3-aryl isoxazoles were expected to show non-

equivalence in the NMR if the barrier to rotation was sufficiently high to provide for slow 

exchange of the atropoisomers at any temperature. The 3-(2-methoxyphenyl) derivative 2 

indicated no observed non-equivalence, even at reduced temperature in the NMR. This is in 

reasonable agreement with a calculated low barrier to rotation. The 3-(2-methoxy-naphthlyl) 8 

isoxazole indicated broadening of several signals at room temperature. 

 Examination of the 3-(2-methylnaphthyl) analog 7 showed clear non-equivalence in both 

deuterochloroform and DMSO. Variable temperature NMR indicated gradual broadening of the 

signals, and coalescence at about 140
o
C. Because the signals being examined were coupled, line 

shape analysis was used to ascertain the experimental rotational barrier, which was found to be 

approximately 18 kcal/mole. This barrier amply demonstrates the plausibility of axial chirality in 

this system. The discrepancy between the experimental and theoretical barriers could be from an 

underestimation of the energy necessary for aromatic ring deformation or bond lengthening 

along the isoxazole-3-aryl axis at the saddle point, or overestimation of the energy gained from 

conjugation of the isoxazole and naphthalene ring, since the peri-proton of the latter provides an 

apparent encumbrance to full conjugation between these rings. Clearly, while further 

computational and experimental studies are warranted, atropoisomeric isoxazoles can indeed 

exist and potentially exist long enough allowing to isolate and analytical separation if the half-

life of the interconversion is ~1000 s (16.7 min) or longer. 
2,7
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Compound DH
‡
 (Expt) DS

‡ 
(Expt) DG

‡ 
(Expt) DH

‡
 (Calc) DG

‡
 (Calc) 

8a submitted     

8b -4.1  -6.16* -7.8 -9.7 

8c submitted     

8d submitted  NMR-2 diast.   

8e submitted     

8f submitted   -14.2 -15.5 

8g doublet -13.8±0.1 -15.3±0.1 -18.4±0.2 -20.7 -24.6 

8g triplet -12.5±0.1 -18.5±0.1 -18.0±0.2 

8h -10.9±0.05 -8.9±0.1 -13.6±0.1 -22.3 -24.7 

8i -7.84±0.02 -10.1±0.2    

9a submitted  ~18   

9b submitted  Locked 200°C    

9c submitted  Locked 85°C   

 

Activation barriers in cal/mol 
 

Table 4-1. Computational and /or experimental barriers at the 3-aryl-isoxazole junction. 

 As determined by variable temperature NMR. 
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Figure 4-2. Variable temperature NMR of compound 8i. 
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4.5 Synthesis of desired Anthryl-isoxazole-secbutyl amides and doubletails 

The synthesis for the phenyl and naphthyl series shown in Scheme 4-1 was carried based 

upon work done by the Natale group.
8
 From the ester, the synthesis was carried out in a similar 

manner to that of Scheme 4-2 with hydrolysis with potassium hydroxide and subsequent acid 

chloride reaction with thionyl chloride. The final step uses a modified Schotten-Baumann 

reaction with a one-phase organic solvent system with trimethylamine base. 

Biehl and coworkers have described a facile route for the formation of unsymmetrical 

anthracenes using novel benzyne chemistry.
9
  The more modern of the techniques provides a 

considerably safer and more convenient pathway where the generation of hydrogen cyanide gas, 

on the molar scale, is not required.
10

 Using the Biehl aryne technique it was possible to generate 

the first potentially axially chiral anthracene isoxazole ester system (Scheme 4-2).  

Scheme 4-2 depicts the route used to synthesize 15 using the Biehl aryne technique.  As 

mentioned above, the important 2-acylphenylacetonitrile intermediate 10 was synthesized via a 

more facile route
10

. The Price method
11

 was given up as too dangerous in lieu of the recently 

published route proposed by Canepa and Bravo.
10

 The Canepa synthesis utilizes Ethyl o-toluate 

as a substrate for radical bromination of the ortho methyl group using N-Bromo succinamide 

(Scheme 4-2) in Carbon Tetrachloride (CCl4).  The expense of CCl4 is often prohibitive for large 

scale reactions but with careful collection, washing, and recycling this solvent can be reused 

many times over.  This product 10 can thus be obtained in a safe manner and in higher yield
21

 

than the Price method. Scheme 5-2 outlines the aryne synthesis combined with the method used 

by Natale and coworkers
22

 to generate unsymmetrical anthracene isoxazole ester 15 with a large 

degree of selectivity that contradicts the findings of Stevens.
12

 Again, with this benzyne reaction, 

there is a substantial learning curve where optimal yields of the nitrile 11 are only obtained when 
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the second addition, via cannula, of Lithium Diisopropyl Amine (LDA) is performed very slowly 

(ca. 20 min.).  Subsequent methylation of the C-10 hydroxyl group was achieved with the 

addition of a three-fold excess of dimethylsulfate in refluxing THF until the color turns a deep 

yellow-green yielding 12. The structure of the 2,10-dimethoxy-1-cyano 12 was confirmed by 

single crystal x-ray diffractometry  

Attempts were made to reduce the unsymmetrical anthracene nitrile using DIBAL-H in 

solutions of Hexanes (insoluble nitrile) and THF, but no aldehyde was obtained after hydrolysis 

using 10% aqueous sulfuric acid.  Full reduction of the anthracene nitrile, in <5 hours at 0
o
C, was 

obtained when DIBAL-H in toluene was employed.  Hydrolysis, using 5% aqueous sulfuric acid, 

gave the unsymmetrical anthracene aldehyde 13 in ~70% yield.  Reaction of 13 with hydroxyl 

amine hydrochloride in chloroform afforded the oxime 14 in ~95% yield.  Formation of the 

oximinoyl chloride intermediate was performed using recrystallized N-Chlorosuccinamide (from 

benzene) and dry ethanol at 0
o
C (yield not calculated).  Finally, the intermediate was reacted 

with the ethyl acetoacetate and sodium alkoxide in absolute ethanol to give the final product 15 

in 70% yield (not optimized) after two steps. 
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Scheme 4-1. Synthesis of phenyl and naphthyl sec-butyl amides 8a, c-d, f, i. 
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Scheme 4-2. Synthesis of anthryl-sec butyl amides 9a-b and anthryl-DT conjugate 10a-b. 
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4.6 Crystal Structure of 12 

Within the unit cell, evidence of the 10-methoxy methyl hydrogens show van der Waals 

interactions to the 10-methoxy oxygen in the molecule directly below. While the 2-methoxy 

oxygen and 3-H proton on the same molecule both have interactions with the 3-H and 2-methoxy 

oxygen, respectively, in the molecule directly parallel to it. Thus, the unit cell shows molecule 

flips both horizontally and vertically for each column structure.  Full sc-xrd data and parameters 

are given in the Supplementary Data. 

Figure 4-3. Single crystal x-ray structure of 12. 

 

4.7 MTT Cell Viability Assay 

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96-well 

plates at a density of 10,000 cells/mL and allowed to attach overnight (16-18h). AAIM solutions 

were applied in medium for 24  h, removed, and replaced with fresh medium, and the plates were 

incubated at 37 °C under a humidified atmosphere containing 5% CO2 for 3−5 days. MTT (50 

μg) was added and the cells were incubated for another 4 h. Medium/MTT solutions were 

removed carefully by aspiration, the MTT formazan crystals were dissolved in 100 μL of 

DMSO, and absorbance was determined on a plate reader at 560 nm. IC50 values (concentration 
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at which cell survival equals 50% of control) were determined from semilog plots of percent of 

control versus concentration. Two compounds shown in Table 4-2 have low micromolar binding 

affinities, in which the addition of the methoxy group does correlate to better activity versus a 

single methoxy group shown in Chapter 3.
13

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4-2. Cytotoxicity activity of 10a-b against human glioma SNB-19 cells. 

 

4.8 Summary 

Anthryl-10-alkoxy-isoxazole-pyrrole-doubletails can be readily made and easily 

substituted to enlarge the oxy-ether library series. Current studies are focused on whether the 

AAIMs may represent useful tools for the study of quadruplex DNA, and ultimately lead to 

clinically useful inhibitors. We have provided experimental verifcation of atropisomerism in 3-

aryl isoxazoles, which was suggested from computation. Our original motivation for this study 

sprang from the concept that anti-cancer activity of the related AIMs might exhibit a eudismic 

ratio, and hence increased efficacy. We shall report on our progress in this arena in due course. 
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Supplementary Material 

General Experimental Section 

All chemicals were purchased from commercial vendors and were used without any 

further purification unless otherwise indicated. Solvents were reagent grade and dried just prior 

to use by standard methods. All reactions were performed under inert atmosphere. 

Tetrahydrofuran (THF) was dried over sodium/benzophenone and distilled prior to use. 

Triethylamine (NEt3) was dried with calcium hydride (CaH2). Melting points were determined 

in open capillary tubes on a Melt-Temp apparatus and are uncorrected. High resolution mass 

spectra (HRMS) were obtained using a Micromass electrospray ionization (ES)/time-of-flight 

mass spectrometry (LCTOF). Mass spectrometer samples were introduced using a Waters model 

2690 separations module HPLC fitted with a C-18 reversed phase column (2.1 mm i.d., 5 cm). 

Flash chromatography was performed using Sorbent Technologies standard silica gel (60 Å) with 

reagent grade solvents using in house compressed air. 

Cell Viability Assay  

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 

96-well plates at a density of 10 000 cells/mL and allowed to attach overnight (16 h).  Anthryl-

10-oxy-isoxazole-DT solutions were applied in medium for 2 h, removed, and replaced with 

fresh medium, and the plates were incubated at 37 °C under a humidified atmosphere containing 

5% CO2 for 3−5 days. MTT (50 μg) was added and the cells were incubated for another 4 h. 

Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were 

dissolved in 100 μL of DMSO, and absorbance was determined on a plate reader at 560 nm. 

IC50 values (concentration at which cell survival equals 50% of control) were determined from 

semilog plots of percent of control versus concentration.  

NMR 
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The 1H and 13C NMR high-resolution spectra were obtained with a Bruker 

AC200 (UltraShield™ 400MHz) using X-Win NMR (3.1) at ambient temperature in 

CDCl3 unless otherwise specified. The signal iii assignments were performed on the 

basis of a series of 2D experiments with z-gradient selection: 1H-1H DQF COSY 

(Correlation Spectroscopy), 1H-13C HMQC ((Heteronuclear Multiple Quantum 

Coherence) and 1H-13C HMBC (Heteronuclear Multiple Bond Correlation). 

Preparation (S)-N-(sec-butyl)-5-methyl-3-(o-tolyl)isoxazole-4-carboxamide, 8a.  

o-Tolualdehyde 1a (4.0247 g, 37.50 mmol), hydroxylamine hydrochloride (5.3847 g), 

and sodium acetate·3H20 (20.4119 g) was dissolved in THF/ethanol/water (70 mL: 35 mL: 35 

mL). After stirring at rt for 30 minutes, the mixture was concentrated then washed 2 x 125 H2O, 

2 x 125 mL Brine and 2 x 50mL EtOAc, dried over anhydrous sodium sulfate, filtered, and 

concentrated to produce the oxime 2a, 4.386 g (97%). The oxime 2a (2.5444 g, 18.825 mmol) 

was treated with N-Chlorosuccinimide (3.1087 g), 10mol% pyridine (5 drops) in 200mL 

chloroform and was heated to 40°C for 6 hours. The solution was washed with 4 x 150mL H2O, 

2 x 125mL Brine, and 2 x 25mL chloroform, then dried over anhydrous sodium sulfate, filtered, 

and concentrated to produce the product 3a. To a solution of the nitrile oxide 3a in ethanol (30 

mL), was added ethyl acetoacetate (5.8mL) and sodium (0.8655g) in ethanol (100mL), dropwise, 

and the reaction mixture allowed to stir at room temperature overnight. The solution was 

concentrated, washed with 2 x 75mL H2O, 2 x 50mL brine, then dried over anhydrous sodium 

sulfate, filtered, and concentrated. The crude product was purified on a flash column starting 

10:1 Hex/EtOAc, 8:1 Hex/EtOAc, and 6:1 Hex/EtOAx until all product 5a was collected, 4.3526 

g, 94%. Ester 5a (0.3315 g, 1.352 mmol) in methanol/THF (25mL:16.5mL)  was refluxed in 2.1 

M KOH for 2.5 h, acidified with 1N aqueous HCl, to give the carboxylic acid 6a (0.2878g, 
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98%). The carboxylic acid 6a was stir in an ice bath and allowed to warm up overnight in neat 

SOCl2 (8mL), the mixture was then concentrated using hexanes, then dichloromethane three 

times and the residue was used without further purification in the next step. To acid chloride 7a 

in 7mL of DCM was added (S)-sec-Butyl amine (0.1192 g) and 2 mL TEA, the mixture was 

stirrred at rt for 2.5 hours, after which time it was concentrated and purified by flash 

chromotagraphy (4:1:1 Hex/EtOAc) to give the product 8a (0.1254 g, 34%).  
1
H NMR (400 

MHz, d-CHCl3) δ ppm 7.46 (m, 1H), 7.35 (m, 3H), 4.99 (bd, J=8 Hz, 1H), 3.84 (m, 1H), 2.80 (s, 

3H), 2.23 (s, 3H), 1.17 (m, 1H), 1.08 (m, 1H), 0.84 (d, J=8 Hz, 3H); 0.63 (t, J=8, 16 Hz, 3H). 
13

C 

NMR (100 MHz, d-CHCl3) δ ppm 174.63, 160.45, 159.64, 137.73, 130.85, 130.61, 129.70, 

128.11, 126.57, 111.13, 45.97, 29.07, 19.72, 19.57, 13.20, 9.63. Accurate Mass Calculated for 

C16H21N2O2:  273.1603, Found: 273.1594. 

Preparation of (S)-N-(sec-butyl)-3-(2-chlorophenyl)-5-methylisoxazole-4-carboxamide, 8c. 

Ester 5c matched previously reported literature.
14

 Ester 5c (0.4789 g, 1.802 mmol) in 

methanol/THF (22mL:33mL) was refluxed in 2.1M KOH for 48 h, acidified with 1N aqueous 

HCl, to give the carboxylic acid 6c (0.4301g, 96%). The carboxylic acid 6c was stir in an ice 

bath and allowed to warm up overnight in neat SOCl2 (10mL), the mixture was then concentrated 

using hexanes, then dichloromethane three times and the residue was used without further 

purification in the next step. The acid chloride 7c and (S)-sec-Butyl amine (0.1581g, 1.18 eq) 

were dissolved in 10 mL of dry dichloromethane (dried over CaCl2) with 2 mL of triethyl amine 

(TEA), after stirring 2.5 hours at room temperature, the product was purified by silica column 

(4:1 Hex:EtOAc) to give the amide 8c (0.4797g, 96%). 
1
H NMR (400 MHz, d-CHCl3) δ ppm 

7.49 (m, 4H),  4.95 (bd, J=8 Hz, 1H), 3.89 (m, 1H), 2.77 (s, 3H), 1.20 (m, 2H), 0.91 (d, J=8 Hz, 

3H); 0.68 (t, J=8, 16 Hz, 3H). 
13

C NMR (100 MHz, d-CHCl3
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134.26, 131.85, 131.52, 130.21, 128.06, 127.47, 112.04, 46.26, 29.18, 19.75, 12.98, 9.70. 

Accurate Mass Calculated for C15H18N2O2:  293.1057, Found: 293.1059. 

Preparation of N-((S)-sec-butyl)-3-(2-chloro-6-methylphenyl)-5-methylisoxazole-4-

carboxamide, 8d.  

2-chloro-6-methylbenzaldehyde 1d (1.000 g, 6.469 mmol), hydroxylamine hydrochloride 

(3.5212 g), and sodium acetate·3H20 (3.5212 g) was dissolved in THF/ethanol/water (12 mL: 6 

mL: 6 mL). After stirring at rt for 2.5 hours, the mixture was concentrated then washed 2 x 100 

H2O, 2 x 75 mL Brine and 2 x 25mL EtOAc, dried over anhydrous sodium sulfate, filtered, and 

concentrated to produce the oxime 2d, 1.0965 g (99%). The oxime 2d (1.0965 g, 6.465 mmol) 

was treated with N-Chlorosuccinimide (1.0679 g), 10mol% pyridine (6.5mL of 1mM stock 

solution) in 100mL chloroform was heated to 40°C for 5.5 hours. The solution was washed with 

4 x 150mL H2O, 2 x 125mL Brine, and 2 x 25mL chloroform, then dried over anhydrous sodium 

sulfate, filtered, and concentrated to produce the product 3d. To a solution of the nitrile oxide 3d 

in ethanol (120 mL), was added ethyl acetoacetate (2mL) and sodium (0.2973g) in ethanol 

(45mL), dropwise, and the reaction mixture allowed to stir at room temperature overnight. The 

solution was concentrated, washed with 2 x 75mL H2O, 2 x 50mL brine, then dried over 

anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified on a flash 

column starting 10:1 Hex/EtOAc (~220mL), then 8:1 Hex/EtOAc until all product 5d was 

collected, 1.6472 g, 91%. Ester 5c (0.4118 g, 1.472 mmol) in methanol/THF (18mL:27mL) was 

refluxed in 2.08 M KOH for 1 h, acidified with 1N aqueous HCl, to give the carboxylic acid 6d 

(0.3322g, 90%). The carboxylic acid 6d was stir in an ice bath and allowed to warm up overnight 

in neat SOCl2 (8mL), the mixture was then concentrated using hexanes, then dichloromethane 

three times and the residue was used without further purification in the next step. To acid 
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chloride 7d in 7mL of DCM was added (S)-sec-Butyl amine (0.1158 g) and 2 mL TEA, the 

mixture was stirrred at rt for 2.5 hours, after which time it was concentrated and purified by flash 

chromotagraphy (8:1:1 Hex/EtOAc/DCM, then 6:1:1) to give the product 8d (0.247 g, 61%). 
1
H 

NMR (400 MHz, d-CHCl3) δ ppm 7.40 (m, 4H), 7.29 (m, 2H), 4.96 (bt, 1H), 3.87 (m, 2H), 2.82 

(d, 3H), 2.19 (s, 3H), 1.24 (m, 2H), 1.08 (m, 2H), 0.91 (d, J=8 Hz, 3H), 0.83 (d, J=8 Hz, 3H), 

0.70 (t, J=8, 16 Hz, 3H), 0.60 (t, J=8, 16 Hz, 3H). 
13

C NMR (100 MHz, d-CHCl3

174.96, 160.23, 160.18, 157.18, 140.64, 140.51, 134.62, 134.50, 131.41, 129.06, 126.99, 127.51, 

127.44, 111.18, 111.08, 46.01, 45.95, 29.17, 20.23, 20.16, 19.90, 19.84, 13.25, 13.22, 9.60, 9.53. 

Accurate Mass Calculated for C16H20N2O2Cl1: 307.1213, Found: 307.1206. 

Preparation of (S)-N-(sec-butyl)-5-methyl-3-(naphthalen-1-yl)isoxazole-4-carboxamide, 8f. 

1-naphthaldehyde 1f (2.000 g, 12.8 mmol), hydroxylamine hydrochloride (1.7789 g), and sodium 

acetate·3H20 (3.1499 g) was dissolved in THF/ethanol/water (64 mL: 32mL: 32 mL). After 

stirring at rt for overnight, the mixture was concentrated then washed 4 x 50 H2O, 2 x 100 mL 

Brine and 2 x 25mL EtOAc, dried over anhydrous sodium sulfate, filtered, and concentrated to 

produce the oxime 2f, 1.979 g (99%). The oxime 2f (1.000 g, 12.8 mmol) was treated with N-

Chlorosuccinimide (1.8801g), pyridine (2 drops) in 130mL chloroform was stirred at 40°C for 4 

hours. The solution was washed with 3 x 50mL H2O, 2 x 50mL Brine, and 2 x 25mL chloroform, 

then dried over anhydrous sodium sulfate, filtered, and concentrated to produce the product 3f. 

To a solution of the nitrile oxide 3f in ethanol (100 mL), was added ethyl acetoacetate (2mL) and 

sodium (0.2917g) in ethanol (150mL), dropwise, and the reaction mixture allowed to stir at room 

temperature overnight. The solution was concentrated, washed with 2 x 75mL H2O, 2 x 50mL 

brine, then dried over anhydrous sodium sulfate, filtered, and concentrated. Product 5f was 

collected, 1.5678 g, 79%. Ester 5f (1.5678 g, 5.5732 mmol) in methanol/THF (22mL:22mL) was 
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refluxed in 2 M KOH for 3 h then allowed to cool to rt overnight, acidified with 1N aqueous 

HCl, to give the carboxylic acid 6f (1.4604g, 99%). The carboxylic acid 6f was stir in an ice bath 

and allowed to warm up overnight in neat SOCl2 (40mL), the mixture was then concentrated 

using hexanes, then dichloromethane three times and the residue was used without further 

purification in the next step. To acid chloride 7f in 3mL of DCM was added (S)-sec-Butyl amine 

(0.0695 g) and 1 mL TEA, the mixture was stirrred at rt overnight, after which time it was 

concentrated and purified by flash chromotagraphy using 41 Hex/EtOAc to give the product 8f 

(0.1366 g, 68%). 
1
H NMR (400 MHz, d-CHCl3) δ ppm 8.05 (dd, J=8, 12 Hz, 1H),  7.95 (d, J=8 

Hz, 1H), 7.58 (m, 5H), 4.79 (bd, J=8 Hz, 1H), 3.67 (m, 1H), 2.86 (s, 3H), 0.86 (m, 1H), 0.71 (m, 

1H), 0.49 (d, J=8 Hz, 1H), 0.32 (t, J=8, 16 Hz, 3H). 
13

C NMR (100 MHz, d-CHCl3) δ ppm  

174.63. 160.25. 158.96. 133.50. 131.48. 130.85. 128.49. 128.32. 127.65. 126.98. 125.69. 125.32. 

124.94. 112.29. 45.85, 28.75, 19.30, 13.19, 9.24. Accurate Mass Calculated for C19H21N2O2:  

309.1603, Found: 309.1594. 

Preparation of 3-(2-(benzyloxy)naphthalen-1-yl)-N-((S)-sec-butyl)-5-methylisoxazole-4-

carboxamide, 8i.  

2-(Benzyloxy)-1-naphthaldehyde 1i (1.000 g, 3.8124 mmol), hydroxylamine hydrochloride 

(0.5298 g), and sodium acetate·3H20 (1.5564 g) was dissolved in THF/ethanol/water (20 mL: 

10mL: 10 mL). After stirring at rt for overnight, the mixture was concentrated then washed 4 x 

50 H2O, 2 x 75 mL Brine and 2 x 25mL EtOAc, dried over anhydrous sodium sulfate, filtered, 

and concentrated to produce the oxime 2i, 1.057 g (95%). The oxime 2i (1.0065 g, 3.6294 mmol) 

was treated with N-Chlorosuccinimide (0.5463g), pyridine (3 drops) in 40mL chloroform was 

stirred at room temperature for 5 hours. The solution was washed with 3 x 50mL H2O, 2 x 50mL 

Brine, and 2 x 25mL chloroform, then dried over anhydrous sodium sulfate, filtered, and 
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concentrated to produce the product 3i. To a solution of the nitrile oxide 3i in ethanol (35 mL), 

was added ethyl acetoacetate (1mL) and sodium (0.150g) in ethanol (100mL), dropwise, and the 

reaction mixture allowed to stir at room temperature overnight. The solution was concentrated, 

washed with 2 x 75mL H2O, 2 x 50mL brine, then dried over anhydrous sodium sulfate, filtered, 

and concentrated. Product 5i was collected, 1.3959 g, 99%. Ester 5i (1.0098 g, 3.629 mmol) in 

methanol/THF (15mL:15mL) was refluxed in 2 M KOH for 3 h then allowed to cool to rt 

overnight, acidified with 1N aqueous HCl, to give the carboxylic acid 6i (1.2781g, 98%). The 

carboxylic acid 6i was stir in an ice bath and allowed to warm up overnight in neat SOCl2 

(25mL), the mixture was then concentrated using hexanes, then dichloromethane three times and 

the residue was used without further purification in the next step. To acid chloride 7i in 4mL of 

DCM was added (S)-sec-Butyl amine (0.0660 g) and 2 mL TEA, the mixture was stirred at rt for 

24 hours, after which time it was concentrated and purified by flash chromatography using DCM 

to give the product 8i (0.2478 g, 68%). 
1
H NMR (400 MHz, d-CHCl3) δ ppm 7.92 (d, J=8 Hz, 

1H),  7.78 (d, J=8 Hz, 1H), 7.31 (m, 10H), 5.23 (bs, 1H), 5.19 (s, 2H), 3.65 (m, 1H), 2.82 (d, 

3H), 0.87 (bs, 2H), 0.66 (bs, 2H), 0.41 (bs, 3H), 0.13 (bs, 3H). 
13

C NMR (100 MHz, d-CHCl3

ppm 174.22, 160.45, 155.80, 154.54, 136.21, 133.06, 132.28, 128.87, 128.48, 127.98, 127.95, 

127.91, 126.83, 124.69, 123.91, 114.63, 112.64, 111.56, 71.39, 45.64, 28.78, 19.71, 19.21, 13.03, 

9.22, 8.96. Accurate Mass Calculated for C26H27N2O3: 415.2022, Found: 415.2010.
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Preparation of Ethyl 3-(2,10-dimethoxy-9-anthracenyl)-5-methyl-4-isoxazole carboxylate, 

15.  

To 500mL of CCl4 was added 25.41 g (151.65 mmol) of Ethyl o-toluate (Alfa Aesar).  Next, 

33.470 g (20% molar excess) of N-Bromosuccinamide (NBS, recrystalized from Benzene) was 

added to the ester solution.  The solution was brought to reflux (85°C), after five minutes the 

solution turned orange then changed back to clear with two layers noticeable.  The solution 

stirred at refluxing temperature for 25 hours, cooled to room temperature and the solution was 

filtered off, washing with CCl4. 

The resulting pale yellow oil was column chromatographed using 20:1 Hex/EtOAc to 

yield the product 9, Ethyl o-(bromomethyl)benzoate: b.p. 90-95
o
C spectra in agreement with 

literature values.
15

  

 The brominated phenyl ester 9 (37.6172, 154.7mmol) was taken up in 200mL of absolute 

ethanol at room temperature, to which solution was added an aqueous solution (25mL H2O) of 

KCN (10.4938g: 154.70mmol) and the solution brought to reflux for 6 hours then cooled to room 

temperature.  The ethanol was evaporated under vacuum then 200mL of distilled H2O was added 

to the resulting solution.  Chloroform (200mL) was used to extract the aqueous layer.  The 

organic layer was then washed with 5% HNaCO3 (200mL) and then with H2O (200mL).  The 

organic phase was dried with anhydrous sodium sulfate, filtered, and the solvent removed under 

reduced pressure.  A very clear oil Ethyl 2-(cyanomethyl)benzoate, 10, resulted, spectra in 

agreement with literature values.
10

 

 To a solution of freshly distilled THF (20 mL), containing 3.0196g (15.856 mmol) of 10 

and stirring at -78
o
C under an argon atmosphere, was added 1eq. of LDA (generated at -78

o
C in 

freshly distilled THF using a 1:1 equivalence of freshly distilled diisopropyl amine and n-BuLi).  
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The bright orange-red solution was allowed to reaction for 15 minutes whereupon 1.02 eq (2.02 

mL) of 4-bromoanisole was added via syringe.  A solution containing 2 eq. of lithium 

diisopropyl amine (LDA) was cannulated slowly, over 1 hour, into the lithiated ester solution 

now at a temperature of -42
o
C.  The resulting dark purple-black solution was allowed to stir at -

42
o
C for an additional 30 minutes.  The reaction mixture was warmed to room temperature (c.a. 

2 hr) and quenched with an excess of aqueous ammonium chloride and allowed to stir 10 min.  

The THF was removed via rotary evaporator and the dark orange solution taken up in 150mL of 

CH2Cl2.  This was washed with 200mL of 0.5M HCl whereupon the solution turned bright 

yellow.  The organic layers were washed with 500mL of brine solution and then 500mL of 

deionized water.  The organic phase was dried using anhydrous sodium sulfate, filtered, and the 

solvent removed under reduced pressure to give a dark orange solid.  The solid (3.8791 g, 15.856 

mmol) was taken up in freshly distilled THF (150 mL) and placed under an argon atmosphere.  

To this solution was added (2.341 g, 1.25 eq) of potassium tert-butoxide whereupon the solution 

turned orange.  To this mixture was added, via syringe, (Me)2SO4 (6.015mL, 4 eq) and the 

solution brought to reflux (95°C).  This was allowed to stir refluxing until the solution color was 

dark yellow-green (ca. 3.5 hrs.) and TLC revealed all of the starting material was consumed. 

The resulting dark orange solid was taken up in just enough CH2Cl2 where it was 

completely soluble then ~70g of silica gel was added and solvent removed under vacuum.  The 

resulting powder was placed on a wet (10:1 Hex/EtOAc) prepared column, covered in sea sand, 

and eluted with 8:1 Hexanes/Ethyl Acetate (Rf=0.50).  Once the front running 4-bromoanisole 

was eluted from the column the solvent polarity was increased using stepwise elution of ~300ml 

each of 6:1, 4:1, and finally 2:1 Hex/EtOAc until the all of the product 12 was collected. 2,10-

dimethoxy-9-anthracenecarbonitrile, 12. Yield 75%, 
1
H NMR(CDCl3) δ 8.37 (d, J=8.66 Hz, 1H), 
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8.33 (d, J=8.66 Hz, 1H), 8.27 (d, J=9.41 Hz, 1H), 7.71 (m, 1H), 7.57 (m, 2H), 7.26 (dd, 1H), 4.19 

(s, 3H), 4.06 (s, 3H); 
13

C-NMR (CDCl3) δ 
13

C NMR (101 MHz, CHLOROFORM-d) δ ppm 

160.45, 157.88, 137.01, 135.19, 129.15, 125.25, 125.06, 123.21, 122.93, 121.35, 120.43, 117.99, 

101.63, 98.83, 77.31, 77.20, 76.68, 64.12, 55.70.  MS (ESI) m/z 264(100, M+1), 265(21, M+1
+
),. 

 Under an argon atmosphere DIBAL-H (in toluene) was added via syringe (2 mL) to a 

solution of 12 (0.400g: 1.5192mmol) in freshly distilled toluene (20mL) at 0
o
C and allowed to 

stir for 2 hour.  H2SO4 (5%) was added to the toluene solution and stirred vigorously for 1 hour.  

The bright yellow-green solution was separated and washed with 3x100mL portions of cold H2O.  

The toluene was not dried but rather removed by rotary evaporation.  The resulting solid was 

chromatographed on silica starting 12:1 Hex/EtOAc followed by increasing solvent polarity 

stepwise using 10:1, 8:1, 6:1 yielding 13 (0.3964g, 98%).  The aldehyde 13 (0.2690 g, 1.01 

mmol) was then taken up in THF:EtOH:H2O (25:25:18mL) to which was added NH2OH·HCl 

(1.1671) and pyridine (10 mL) and the mixture stirred at room temperature for 1 hour.  The 

solvent was removed by rotary evaporation and the solid taken up in CH2Cl2 (100mL) and 

washed with 2x100mL of H2O and 2x50 Brine.  The CH2Cl2 was dried with anhydrous sodium 

sulfate, filtered, and the solvent removed under vacuum to yield a dark green solid of 14 (99%, 

0.2840g).  

2,10-dimethoxy-9-anthracenecarboxaldehyde, 13. 
1
H NMR(CDCl3) δ 

1
H NMR (400 MHz, 

CHLOROFORM-d) δ ppm 11.41 (s, 1 H), 8.92 (d, J=8.91 Hz, 1 H), 8.68 (d, J=2.38 Hz, 1 H), 

8.37 (d, J=8.53 Hz, 1 H), 8.30 (d, J=9.41 Hz, 1 H), 7.69 (m, 1 H), 7.54 (m, 1 H), 7.25 (dd, 

J=2.38, 9.41 Hz, 1 H), 4.18 (s, 3 H), 4.04 (s, 3 H).
 13

C NMR (101 MHz, CHLOROFORM-d) δ 

ppm 191.37, 161.23, 159.75, 135.80, 135.61, 129.24, 124.81, 124.61, 123.45, 122.91, 122.46, 

120.61, 120.52, 118.72, 101.19, 64.04, 55.50. MS (ESI) m/z 267(100, M+1), 268(20, M+1
+
) 
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2,10-dimethoxy-9-anthracenecarboxaldehyde oxime, 14. 
1
H NMR(CDCl3) δ 

1
H NMR (400 

MHz, CHLOROFORM-d) δ ppm 9.13 (s, 1 H), 8.35 (d, J=8.78 Hz, 1 H), 8.30 (d, J=8.53 Hz, 1 

H), 8.24 (d, J=9.41 Hz, 1 H), 7.67 (d, J=2.01 Hz, 1 H), 7.54 (m, 1 H), 7.47 (m, 1 H), 7.20 (dd, 

J=9.41, 2.26 Hz, 1 H), 4.13 (s, 2 H), 3.98 (s, 2 H);  
13

C NMR (101 MHz, CHLOROFORM-d) δ 

ppm 158.64, 154.59, 149.10, 132.59, 131.98, 127.10, 124.61, 124.38, 122.95, 122.81, 120.65, 

120.21, 117.37, 101.52, 63.55, 55.32). MS (ESI) m/z 282(100, M+1), 283 (21, M+1
+
). 

 The oxime 14 (0.3400 g, 1.253 mmol) was taken up in chloroform which was added 

recrystallized N-Chlorosuccinamide (NCS) (0.2084 g) and 10mol% pyridine.  The solution was 

allowed to stir at 40°C for 4.5 hours whereupon the solution was washed with 4x50mL of 

distilled H2O,  2x100 Brine and extracted with chloroform (2x25mL).  The organic solvent was 

dried with anhydrous sodium sulfate, filtered, and removed via rotary evaporator. The 

intermediate was purified only through extractive isolation using water and CH2Cl2 and taken on 

to the next reaction as is. To a solution of the intermediate in absolute ethanol (35mL) was added 

ethylacetoacetate (0.37mL) in 9mL ethanol and 0.0341g sodium and the mixture allowed to stir 

at room temperature for 2 hours until TLC in 4:1 Hex/EtOAc revealed all intermediate had been 

consumed. Finally, the ethanol was removed via rotary evaporation and the solid 

chromatographed stepwise starting 12:1 Hex/EtOAc, 10:1, 8:1, 6:1, 4:1 to until all final product 

15 was collected (4:1 Hex/EtOAc Rf=0.29, yield 64%).   

Ethyl 3-(2,10-dimethoxy-9-anthracenyl)-5-methyl-4-isoxazole carboxylate, 15.  
1
H NMR (400 

MHz, CHLOROFORM-d) δ ppm 8.32 (dd, J=8.34, 0.82 Hz, 1 H), 8.29 (d, J=9.41 Hz, 1 H), 7.59 

(m, 1 H), 7.43 (td, J=8.63, 1.32 Hz, 2 H), 7.20 (dd, J=9.41, 2.26 Hz, 1 H), 6.83 (d, J=2.26 Hz, 1 

H), 4.17 (s, 3 H), 3.81 (s, 3 H), 3.75 (m, 2 H), 2.93 (s, 3 H), 0.38 (t, J=7.09 Hz, 3 H);  
13

C NMR 

(101 MHz, CHLOROFORM-d) δ ppm 176.19, 161.56, 160.54, 157.94, 154.20, 132.99, 132.44, 



 

 

154 

 

126.48, 125.20, 124.28, 124.15, 122.67, 122.40, 120.44, 119.96, 116.43, 111.08, 101.65, 63.49, 

59.98, 55.15, 13.41, 12.82. HRMS (ESI) accurate mass calcd. for C23H22O5N (M)
+1

 requires 

392.1498, found 391.1480. 

Ester 15 (0.1142g, 0.292 mmol) was dissolved in THF (4.5 mL) then added methanol 

(3.5 mL). Solution was cooled down to 0°C and aqueous KOH (0.6079g in 3.8mL H2O) was 

added. The solution was then taken out of the bath allowed to stir at room temperature for 7 

hours under argon until completion of the reaction as indicated by TLC. The organic solvents 

were removed under reduced pressure. The aqueous mixture was diluted with then diluted with 

water (50 mL) and 25 mL DCM and acidified to pH 2 with 1N HCl. Washed 3 x 20 mL DCM 

and dried over sodium sulfate, concentrated under reduced pressure to yield the carboxylic acid 

16 (yield 0.1082g, 100%). 

To the carboxylic acid 16 at 0°C was added cold excess neat thionyl chloride (6 mL). The 

solution was taken out of the ice bath and allowed to warm up and stir at room temperature for 

2.75 hrs under a drying tube equipped with CaCl2 and NaOH. The reaction mixture was 

concentrated under reduced pressure. The mixture was then concentrated using hexanes, then 

dichloromethane three times and the residue was used without further purification in the next 

step. The mixture of 17 was divided in two separate round bottoms for the next step. 

To half of the acid chloride 17 in 3 mL of DCM was added (S)-sec-Butyl amine (0.0128 

g) and 1 mL TEA, the mixture was stirred at rt for 21 hr, after which time it was concentrated 

and purified by flash chromatography starting 8:1 Hex/EtOAc then 6:1, 4:1, 2:1, 1:1 until all 

product was collected 8f (0.0178 g, 58%) and 8g (0.0092 g, 29%) 

To the other half of acid chloride 17 in 5 mL of DCM was added 7 (0.07250 g) and 1 mL 

TEA, the mixture was stirrred at rt for 19 hr, after which time it was concentrated and purified by 
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prep-plate using 10:10:3 DCM:DCM/NH4OH:MeOH until all product was collected 9f (0.0209 

g, 55%) and 9g (0.0145 g, 29%). 

N-((S)-sec-butyl)-3-(2,10-dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 9a. 
 

1
H NMR (400 MHz, d-CHCl3) δ ppm 

1
H NMR (400 MHz, CHLOROFORM-d) δ ppm 8.34 (m, 1 

H), 8.30 (dd, J=9.54, 3.01 Hz, 1 H), 7.60 (m, 1 H), 7.50 (m, 2 H), 7.23 (dt, J=9.44, 2.49 Hz, 1 

H), 6.80 (dd, J=4.58, 2.32 Hz, 1 H), 4.72 (t, J=6.59 Hz, 1 H), 4.18 (s, 3 H), 3.82 (s, 3 H), 3.53 

(m, 1 H), 2.96 (s, 3 H), 0.72 (m, 1 H), 0.42 (m, 1 H), 0.30 (dd, J=18.70, 6.53 Hz, 3 H), 0.05 (dt, 

J=19.10, 7.45 Hz, 3 H). 
13

C NMR (100 MHz, d-CHCl3) δ ppm 175.40, 160.11, 158.99, 158.00, 

155.39, 133.43, 133.29, 132.59, 132.46, 127.84, 124.93, 124.90, 124.84, 124.74, 124.60, 124.56, 

122.97, 122.89, 122.70, 122.67, 120.92, 120.87, 120.65, 120.55, 114.28, 112.69, 100.99, 100.90, 

63.75, 55.40, 55.37, 45.45, 28.59, 28.53, 19.30, 19.24, 13.49, 8.76, 8.70. Accurate Mass 

Calculated for C25H27N2O4: 419.1971, Found: 417.1959 

N-((S)-sec-butyl)-3-(1-chloro-2,10-dimethoxyanthracen-9-yl)-5-methylisoxazole-4-

carboxamide, 9b. 
 

1
H NMR (400 MHz, Acetone) δ ppm 8.56 (d, J=9.54 Hz, 1 H), 8.39 (m, 1 H), 7.74 (dd, J=9.66, 

1.88 Hz, 1 H), 7.56 (m, 3 H), 5.02 (m, 1 H), 4.22 (s, 3 H), 4.10 (d, J=3.01 Hz, 3 H), 3.54 (m, 1 

H), 2.84 (s, 3 H), 2.05 (dt, J=4.39, 2.20 Hz, 3 H), 0.87 (m, 1 H), 0.51 (m, 1 H), 0.34 (d, J=6.53 

Hz, 1 H), 0.23 (t, J=7.47 Hz, 1 H), 0.01 (t, J=7.47 Hz, 1 H)  
13

C NMR (100 MHz, d-CHCl3) δ 

ppm 173.66, 161.01, 160.98, 160.84, 160.80, 157.12, 157.09, 156.25, 156.23, 135.42, 135.32, 

130.72, 130.67, 129.30, 126.55, 126.18, 126.11, 125.09, 123.77, 123.70, 123.51, 122.93, 122.89, 

116.29, 116.26, 115.91, 115.05, 114.98, 64.67, 57.62, 46.27, 46.21, 20.18, 20.01, 13.12, 9.51, 

9.30. Accurate Mass Calculated for C25H26N2O4Cl1: 453.1581, Found: 453.1561. 
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N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-3-(2,10-

dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 10a., 
1
H NMR (400 MHz, 

Acetone) δ ppm 8.56 (d, J=9.54 Hz, 1 H), 8.39 (m, 1 H), 7.74 (dd, J=9.66, 1.88 Hz, 1 H), 7.56 

(m, 3 H), 5.02 (m, 1 H), 4.23 (s, 3 H), 4.10 (d, J=3.01 Hz, 3 H), 3.54 (m, 1 H), 2.84 (s, 3 H), 0.87 

(m, 2 H), 0.41 (dd, J= 6.53, 61.36 Hz, 3H), 0.12 (dt, J=7.47, 14.93 Hz, 3H). 
13

C NMR (100 MHz, 

d-CHCl3) δ ppm 173.66, 161.01, 160.98, 160.84, 160.80, 157.12, 157.10, 156.25, 156.23, 

135.43, 135.32, 130.72, 130.67, 129.30, 126.55, 126.18, 126.11, 125.10, 123.77, 123.52, 122.93, 

122.89, 116.29, 15.93, 115.05, 64.67, 57.62, 46.27, 46.21, 20.18, 20.01, 13.12, 9.51, 9.30. 

Accurate Mass Calculated for C25H26N2O4Cl1:  453.1581, Found: 453.1561. 

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-3-(1-chloro-2,10-

dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 10b. 
 

1
H NMR (400 MHz, Acetone) δ ppm 8.55 (d, J=9.66 Hz, 1 H), 8.37 (d, J=7.78 Hz, 1 H), 7.71 (d, 

J=9.66 Hz, 1 H), 7.54 (m, 3 H), 6.84 (d, J=1.63 Hz, 1 H), 5.61 (d, J=1.51 Hz, 1 H), 4.24 (s, 3 H), 

4.07 (s, 3 H), 3.48 (s, 3 H), 3.34 (m, 4 H), 2.89 (s, 3 H), 2.15 (t, J=6.65 Hz, 4 H), 2.08 (s, 10 H). 

13
C NMR (100 MHz, Acetone) δ ppm 172.43, 164.16, 161.74, 158.39, 156.84, 156.00, 135.51, 

130.94, 128.98, 126.42,  126.39, 125.31, 125.00, 123.71, 123.52, 122.95, 122.04, 121.95, 116.86, 

116.16, 115.78, 115.32, 115.25, 102.36, 102.28, 64.57, 57.55, 45.57, 35.31, 27.05, 13.25. 

Accurate Mass Calculated for C37H46N6O5C1: 689.3218, Found: 689.3226. 
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NMR assignments of 2,10-dimethoxy-9-anthracenecarboxaldehyde, 13  

NMR assignments of the regiochemsitry of our system was establish using 
1
H, 

13
C, 

DEPT, 
1
H-

1
H COSEY, HSQC (H-C 1-bond), and HMBC (H-C 2,3-bonds) experiments on the 

aldehyde 1d.  The aldehyde proton (Figure 3, H1), being the easiest to assign due to its large 

downfield shift, carbon coupling was first established using HSQC. HMBC was used to 

determine the relationship between C2 and H4 (Figure 4). Heteronuclear Multiple Bond 

Coherence (HMBC) showed the coupling between C5 and H4, in addition, HMBC showed a 

crosspeak for C5 and H17.  Were the anthracene substituted at C6 no C5-H17 crosspeak would be 

observed.   

 

Supplementary Material Figure 3.   Numbering for Carbon/Proton for NMR assignments. 
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Supplementary Material Figure 4. HMBC (2,3 carbon couplings) full spectrum 
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X-ray diffraction data for 12 were collected at 150K on a Bruker D8 Venture using CuKα (λ = 

1.54178) radiation. Data have been corrected for absorption using SADABS
1
 area detector 

absorption correction program. Using Olex2
2
, the structure was solved with the ShelXT structure 

solution program using Direct Methods and refined with the ShelXL refinement package using 

least squares minimization. All non-hydrogen atoms were refined with anisotropic thermal 

parameters. Hydrogen atoms were refined in calculated positions in a ridged group model with 

isotropic thermal parameters U(H) = 1.2Ueq (C) for C(H) groups and U(H)=1.5Ueq (C) for all 

C(H,H,H) groups. Calculations and refinement of structures were carried out using APEX
3
, 

SHELXTL
4
, Olex2. 
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Crystallographic Data for 3ND-77:  C17H13NO2, M =263.28, monoclinic, space group P21/c, a 

= 4.0681(3), b = 34.841(3), c = 8.9400(6), β = 93.317(4), V = 1265.02(16), Z = 4, T = 150 K, 

μ(CuKα) = 0.733 mm
-1

, ρcalcd = 1.382 g ml
-1

, 2ϴmax = 114.108, 25793 reflections collected, 1713 

unique (Rint = 0.1007, Rsigma = 0.0536) R1 = 0.0532 (I > 2σ(I)), wR2 = 0.1357 (all data). 

Acknowledge  

Daniel Decato and Orion Berryman, University of Montana 

National Science Foundation (NSF)-MRI (CHE - 1337908) 

1) G. M. Sheldrick, SADABS: Area Detector Absorption Correction; University of Göttingen: 

Göttingen, Germany, 2001.  

2) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A 

complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339-

341. 

3) Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA. 

4) Sheldrick, G. M. A short history of SHELX (2008).  Acta Cryst. A64, 112-122. 

Table 1 Crystal data and structure refinement for 3ND-77. 

Identification code 3ND-77 

Empirical formula C17H13NO2 

Formula weight 263.28 

Temperature/K 150 

Crystal system monoclinic 

Space group P21/c 

a/Å 4.0681(3) 
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b/Å 34.841(3) 

c/Å 8.9400(6) 

α/° 90 

β/° 93.317(4) 

γ/° 90 

Volume/Å
3
 1265.02(16) 

Z 4 

ρcalcg/cm
3
 1.382 

μ/mm
-1

 0.733 

F(000) 552.0 

Crystal size/mm
3
 0.3 × 0.05 × 0.05 

Radiation CuKα (λ = 1.54178) 

2Θ range for data collection/° 5.072 to 114.108 

Index ranges -4 ≤ h ≤ 4, -37 ≤ k ≤ 37, -9 ≤ l ≤ 9 

Reflections collected 25793 

Independent reflections 1713 [Rint = 0.1007, Rsigma = 0.0536] 

Data/restraints/parameters 1713/0/183 

Goodness-of-fit on F
2
 1.060 

Final R indexes [I>=2σ (I)] R1 = 0.0532, wR2 = 0.1196 

Final R indexes [all data] R1 = 0.0964, wR2 = 0.1356 

Largest diff. peak/hole / e Å
-3

 0.23/-0.20 
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Table 2 Fractional Atomic Coordinates (×10
4
) and Equivalent Isotropic Displacement 

Parameters (Å
2
×10

3
) for 3ND-77. Ueq is defined as 1/3 of of the trace of the orthogonalised 

UIJ tensor. 

Atom x y z U(eq) 

O1 7123(5) 4965.0(6) 3316(2) 34.9(6) 

O2 4858(5) 3288.7(6) 5818(2) 33.9(6) 

N1 -910(7) 4076.4(8) -726(3) 42.0(8) 

C1 4217(7) 4390.6(9) 2480(3) 28.6(8) 

C2 6155(7) 4595.4(9) 3487(3) 28.9(8) 

C3 7318(8) 4429.4(10) 4874(3) 32.6(9) 

C4 6538(7) 4064.6(9) 5202(3) 30.5(8) 

C5 874(7) 2848.3(9) 3799(3) 31.8(9) 

C6 -999(8) 2636.9(9) 2794(4) 36.4(9) 

C7 -2177(8) 2800.5(10) 1421(4) 36.1(9) 

C8 -1425(7) 3168.1(10) 1081(3) 32.7(9) 

C9 1378(7) 3782.5(9) 1786(3) 27.7(8) 

C10 3665(7) 3459.3(9) 4490(3) 26.7(8) 

C11 3372(7) 4006.3(9) 2791(3) 26.5(8) 

C12 4514(7) 3835.8(9) 4189(3) 27.9(8) 

C13 1713(7) 3232.5(9) 3487(3) 28.6(8) 

C14 551(7) 3399.3(9) 2085(3) 26.3(8) 

C15 6051(9) 5156.4(10) 1963(4) 43.5(10) 
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C16 2921(8) 3364.8(10) 7082(3) 41.3(10) 

C17 144(8) 3947.1(9) 387(4) 31.6(9) 

 

Table 3 Anisotropic Displacement Parameters (Å
2
×10

3
) for 3ND-77. The Anisotropic 

displacement factor exponent takes the form: -2π
2
[h

2
a*

2
U11+2hka*b*U12+…]. 

Atom U11 U22 U33 U23 U13 U12 

O1 40.8(14) 36.6(15) 26.2(13) 2.2(11) -6.3(11) -3.4(11) 

O2 36.0(13) 41.9(14) 23.1(13) 5.1(11) -4.6(11) 4.2(11) 

N1 44.3(18) 52(2) 28.5(18) 1.3(16) -5.3(15) -0.6(15) 

C1 31.8(19) 35(2) 19.4(18) 0.5(16) 1.6(15) 3.6(16) 

C2 30.1(19) 29(2) 27(2) -3.7(17) 2.3(16) -1.4(16) 

C3 35(2) 42(2) 21(2) -5.6(16) -6.4(16) 0.5(17) 

C4 29.3(19) 39(2) 22.2(18) 1.0(17) -3.7(15) 3.6(17) 

C5 31(2) 37(2) 27.4(19) 0.8(17) 2.2(16) 4.6(17) 

C6 37(2) 34(2) 39(2) -1.2(18) 7.2(18) 1.3(17) 

C7 34(2) 42(2) 32(2) -9.3(18) 1.6(17) -3.3(17) 

C8 30.5(19) 43(2) 23.9(19) -3.3(17) -1.6(16) 1.1(17) 

C9 32.7(19) 35(2) 15.6(18) 2.1(15) 0.0(15) 2.3(17) 

C10 26.2(18) 35(2) 18.4(19) 2.4(16) 0.8(15) 8.5(16) 

C11 21.8(17) 34(2) 23.9(19) -3.2(16) -0.1(15) 2.9(15) 

C12 25.1(18) 34(2) 23.6(19) -2.4(16) -2.6(15) 5.6(16) 
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C13 28.2(18) 32(2) 25(2) -3.3(16) 2.7(16) 5.5(16) 

C14 19.8(17) 38(2) 21.0(19) -2.3(16) 1.3(15) 3.7(15) 

C15 50(2) 44(2) 36(2) 8.7(18) -9.2(18) -5.3(18) 

C16 40(2) 65(3) 19.2(19) 6.3(18) 0.7(17) 2.6(18) 

C17 33(2) 37(2) 24(2) -4.1(17) 0.9(17) -5.7(16) 

 

Table 4 Bond Lengths for 3ND-77. 

Atom Atom Length/Å   Atom Atom Length/Å 

O1 C2 1.358(4)   C5 C13 1.413(4) 

O1 C15 1.428(4)   C6 C7 1.411(4) 

O2 C10 1.390(3)   C7 C8 1.355(4) 

O2 C16 1.439(4)   C8 C14 1.420(4) 

N1 C17 1.153(4)   C9 C11 1.410(4) 

C1 C2 1.363(4)   C9 C14 1.406(4) 

C1 C11 1.414(4)   C9 C17 1.440(5) 

C2 C3 1.424(4)   C10 C12 1.387(4) 

C3 C4 1.346(4)   C10 C13 1.405(4) 

C4 C12 1.431(4)   C11 C12 1.436(4) 

C5 C6 1.361(4)   C13 C14 1.437(4) 

 

Table 5 Bond Angles for 3ND-77. 

Atom Atom Atom Angle/˚   Atom Atom Atom Angle/˚ 
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C2 O1 C15 117.5(2)   C12 C10 O2 119.4(3) 

C10 O2 C16 114.3(2)   C12 C10 C13 123.1(3) 

C2 C1 C11 120.3(3)   C1 C11 C12 119.5(3) 

O1 C2 C1 125.6(3)   C9 C11 C1 122.4(3) 

O1 C2 C3 113.5(3)   C9 C11 C12 118.1(3) 

C1 C2 C3 120.8(3)   C4 C12 C11 117.7(3) 

C4 C3 C2 120.1(3)   C10 C12 C4 123.0(3) 

C3 C4 C12 121.5(3)   C10 C12 C11 119.2(3) 

C6 C5 C13 121.0(3)   C5 C13 C14 118.9(3) 

C5 C6 C7 120.3(3)   C10 C13 C5 122.7(3) 

C8 C7 C6 120.5(3)   C10 C13 C14 118.3(3) 

C7 C8 C14 121.4(3)   C8 C14 C13 117.9(3) 

C11 C9 C17 119.5(3)   C9 C14 C8 123.5(3) 

C14 C9 C11 122.6(3)   C9 C14 C13 118.6(3) 

C14 C9 C17 117.9(3)   N1 C17 C9 178.6(4) 

O2 C10 C13 117.4(3)           

  

Table 6 Hydrogen Atom Coordinates (Å×10
4
) and Isotropic Displacement Parameters 

(Å
2
×10

3
) for 3ND-77. 

Atom x y z U(eq) 

H1 3431 4507 1567 34 
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H3 8648 4576 5570 39 

H4 7350 3957 6126 37 

H5 1630 2736 4724 38 

H6 -1517 2378 3017 44 

H7 -3506 2652 731 43 

H8 -2238 3273 152 39 

H15A 6910 5022 1106 65 

H15B 6867 5421 1988 65 

H15C 3639 5158 1865 65 

H16A 609 3303 6819 62 

H16B 3114 3637 7354 62 

H16C 3720 3206 7932 62 

 

 



 

 

178 

 

Chapter 5 

Future Direction 

5.1 ADME-Tox Considerations 

With the initial SAR (Chapter 3) and conformational dynamics (Chapter 4) established 

for the AIM system, future focus could then be made on the biological issues that are important 

when designing a medicine: Absorption, Distribution, Metabolism, Excretion, and Toxicity 

(ADME-Tox). Accurately predicting the fate of a drug and its metabolites is currently becoming 

mandatory when a potential drug is under development. It has been a challenge to recognize all 

the factors that contribute to pharmacokinetic and pharmacodynamic unpredictability within and 

between individuals. This issue will continue to remain a challenge of particular importance for 

drugs and a particular interest for many years to come. That is why it is a good idea to look for 

an early understanding of the key metabolites for a new chemical entity in drug development and 

discovery. In contrast, far fewer drugs fail in clinical development due to pharmacokinetic 

problems in humans in comparison to the situation ~25 years ago.  

There are several pathways by which a small molecule can be metabolized in the body 

with the most common being enzymatic.
1,2

  There are four main fractions that are involved in 

metabolic reactions of drugs and chemicals: cytochrome P-450 (CYP-450) plays the dominating 

role of metabolism at ~75%, uridine diphosphate glucuronyl transferase (UGT) around ~12%, 

esterases at ~8%, while the oxidoreductase enzymes flavin-containing monooxygenase (FMO), 

aldo-keto reductase (AKR), and monoamine oxidase (MAO) collectively participate in the 

metabolism of all chemicals to the extent of ∼5%.
1–3

 It has been shown that the most common 

metabolism pathways for drugs containing secondary and tertiary amines is N-dealkylation, 

while, oxygenation of compounds constitutes the second most common process.
4
 The isoxazole 
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was incorporated because of the known metabolic pathway by CYP-450 3A4 as is well described 

and documented with the antibiotic oxacillin
5,6 

and valdecoxib
6–8

. 

Natale and coworkers have developed a lateral metalation technique useful for a wide 

variety of isoxazole systems that can place a hydroxyl group at the C5-methyl of the isoxazole on 

the alpha, beta, and gamma positions that should mimic potential CYP-450 metabolites.
9–12

 The 

synthesis of compounds that mimic potential CYP-450 metabolites should be undertaken with a 

dual purpose; 1) Future studies in CYP-450 assays to prepare authentic materials to determine 

the primary metabolites of a series of 3-(9-anthracenyl)-5-methyl 4-isoxazolecarboxylic esters; 

2) Addition of a point of chirality to study the structure to activity relationship (SAR) of 

anthracene isoxazole amides in quadruplex binding studies. Additionally, absorption, 

distribution, and excretion of a C5-hydroxylated isoxazole should be more favorable as the 

hydrophobicity of the system, because of the highly lipophilic anthracene, should be reduced 

allowing for better blood solubility and providing a handle by which transport enzymes can grab 

onto the molecule and distribute it to cells. Though the P450 family is large, only a handful 

(Figure 5-1) are involved in the majority of drug metabolism.
1,2,13
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Figure 5-1. Fraction of clinically used drugs metabolized by P450 isoforms. Reprinted 

with permission from Rendic, Slobodan and Guengerich, F. Peter. Chem. Res. Toxicol. 

2015, 28, 38−42. Copyright  2015 American Chemical Society
2
. 
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5.2 Lipinaki’s Rule 

Lipinski has established a "rule of 5" that helps to predict a compound's absorption and 

distribution properties based on four criteria: calculated log-P (cLogP (octanol water partition 

coefficient)), number of hydrogen bond donors, number of hydrogen bond acceptors, and 

molecular weight.
14

 The "rule of five" comes from the factor's values being five or multiples of 

five for optimal absorptivity and distribution.  Table 5-1 shows how to assess a molecule's 

properties to obtain a prediction.  Lipinski's guidelines apply to passive transport for the purposes 

of oral bioavailability. 

Property All parameters are: Any parameter is: 

LogP ≤ 5 > 5 

H-Bond Donors ≤ 5 > 5 

H-Bond Acceptors ≤ 10 > 10 

Molecular Weight ≤ 500 > 500 

Lipinski Prediction Good absorption  

and/or permeation 

Poor absorption  

and/or permeation 

 

Table 5-1. Lipinski Values for absorption/permeation prediction. 

To help assess the ‘drug likeness’ of the AIM series, ChemAxon Marvin Calculator 

Plugin Demo
15

 was used (Table 5-2). This free-to-use tool can help researchers to calculate both 

the octanol-water partition coefficients for single protonation state (logP) of a compound and the 

pH-dependent logD values. Both calculated logP and logD (clogP and clogD) predictions are 

based on a modified version of the method of Viswanadhan
16

, where the predicted partition 

coefficients are composed of the molecules’ atomic values and physicochemical properties. The 

calculator applies modifications that include the redefinition of some atom types (sulfur, carbon, 

nitrogen and metal ions) to include electron delocalization and contributions of ionic forms. 

Within the parameters, three constant calculations are present: first, since logD vales are pH-

dependent, the logD calculation relies on pKa prediction; second, the logP value of zwitterions is 
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calculated from the logD at the isoelectric point; and third, the effect of hydrogen bonds on logP 

is considered if the formation of a six membered ring between the suitable donor and acceptor 

atoms can take place. The AIM series compounds (Table 5-2) is the best fit of the AIM series 

with a cLogD ranging from 0.38-3.68, one hydrogen bond donors, ten hydrogen  bond acceptors, 

and the molecular weights being high from 624.77 to 762.94 g/mole. 

 
 

 

Table 5-2. Lipinski values for the AIM compounds. 

 

5.3 Anthracene and Isoxazole Metabolism 

The primary in vivo metabolite of anthracene is 1,2 dihydrodiol (Figure 5-2) and its 

glucoronide conjugates.
17

  An AIM molecule where the symmetry of the anthracene moiety was 

disrupted by the substitution at the C2 position similar to the main anthracene metabolite.  With 

the addition of a planar C4-ethyl ester C5-methyl functionalized isoxazole ring in the anthracene-

C9 position the system now possesses a chiral axis so long as there is not free rotation about the 

Compound 
 

R1 

 

R2 

 

R3 

cLogD @ 

pH=7.4 

Molecular 

weight 

8a H H Methoxy 0.38 624.77 

8b H H Phenoxy 2.04 686.84 

8c H H Biphenyloxy 3.68 762.94 

8d H H 1-naphthyloxy 3.03 736.90 

8e H H 2-naphthyloxy 3.03 736.90 

8f H Methoxy Methoxy 0.22 654.35 

8g Cl Methoxy Methoxy 0.82 689.24 
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anthracene-C9 isoxazole-C3 bond* (Figure 5-4).  Furthermore, the C2-anthracene substitution 

can potentially mimic the primary metabolite and change the properties of the electron rich 

anthracene which could aid electrostatic interactions with the electron-deficient nucleotides of a 

G-quadruplex structure.  The anthracene-C10 group is a product of the synthesis and should also 

play a potential role in changing the electronic properties of the anthracene much like the C2 

substitution.  

 
 

Figure 5-2.  Anthracene metabolism  

 

It is clear from the above that we would prefer to avoid the anthracene metabolism. Here 

its worthwhile introducing the role of the isoxazole, which is Sollbruchstellen, which translates 

in English roughly to predetermined breaking point that is built to break on demand. This 
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concept was popularized by Schollkopf in his asymmetric amino acid synthesis via 

diketopiperazides.
18

 In the present study, the isoxazole is the Trojan horse for a safer metabolic 

route. For a select few medicines containing an isoxazole ring system CYP-450 metabolism is 

well known and characterized.
6,19–22

 The most common pathway for CYP-450 metabolism of 

isoxazoles is hydroxylation at the C5 position of the ring when an aliphatic carbon is present, 

such as a methyl or methylene, the earliest example being the oxacillins, including cloxacillin 

(discussed in Chapter 1).
5,6,21,23 

In the oxacillin series the C-5 hydroxymethylene metabolites 

retain biological activity. This event is frequently followed by the addition of glucose and then  

 

Figure 5-3. Reported fates of isoxazole CYP-450 metabolism 
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subsequent excretion (Figure 5-3 A and B), an early example being oxacillin.
5,6

 Other pathways, 

such as isoxazole ring-opening of the O-N (Figure 5-3 C, D) bond (Figure 5-3 C and D), 
19,22

 are 

also know and characterized. 

Collaborations are just in the beginning stages with our colleague Mike Wempe at the 

University of Colorado Anshutz Medical campus. With his knowledge and expertise in Drug 

Metabolism and Pharmacokinetics (DMPK) studies, we are confident and excited to start our 

journey to better understand PK parameters of our AIM compounds. Mike will begin pre-clinical 

studies by examining Cyp3A4 metabolism of isoxazoles. Initial studies would be evaluated in rat 

liver microsomes (RLM) using an LC-MS-MS technique, which has been shown to be very 

sensitive with detection limits as low as 1 ng.
24,25

 Authentic C-5 hydroxyl products have been 

prepared previously by our group.
12,26

  

5.4 Computational Modeling 

Computational and comparative molecular modeling studies were performed on all seven 

compounds in Table 5-2 and three of the drugs shown in Figure 5-3 (Oxacillin, Leflunomide and 

Rupintrivir). For docking purposes, the crystallographic coordinates of the crystal structure of 

human cytochrome P4503A4 bound to an inhibitor ritonavir
27

 were obtained from the 

Brookhaven Database (PDB code 3NXU and resolution 2.00 Å). The protein complex was then 

loaded within AutoDock Tools 1.5.6 (The Scripps Research Institute) and the ligand was then 

removed to leave the binding site unoccupied, which was used for the subsequent docking 

studies without any further modification. For preparation of ligand structures, fragments from 

ChemBioDraw Ultra 2010 were used to construct the compounds and loaded each in AutoDock 

Tools to confirm number of rotatable bonds, charge, and hybridization, and then the ligands were 

subject to iterations of MM2 energy minimization within ChemBio3D Draw 2010 (v.12.0). For 
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computational docking, AutoDock Vina 1.1.2 software was used in combination with the built-in 

scoring function.
28

 The active site was defined as being any volume within center_x = 36.834, 

center_y = -15.442, center_z = 28.77, size_x = 34, size_y = 60, size_z = 40. AutoDock Vina 

defaults a number of up to 10 runs per ligand, each of which starts from a different orientation. 

Each AutoDock Vina run was saved and the strongest scoring binding pose of each ligand 

(subject to a rmsd default distance threshold of 2.0 Å) was compared to that of the reference 

ligand position observed in the crystal structure. The best pose(s) were visualized with PyMOL 

Molecular Graphics System version 1.3. 

The computational studies were consistent with reported metabolism studies showing C-5 

methyl hydroxylation being predominant for Oxacillin
5
 (Figure 5-5) and Rupintrivir

21
 (Figure 5-

6) and isoxazole ring opening between the nitrogen and oxygen in Leflunomide
19

 (Figure 5-7). 

All seven compounds did show anthracene ring oxidation as the primary mechanism of oxidation 

rather than C-5 methyl oxidation as previously thought. An example showing the ring oxidation 

is shown in Figure 5-8 in the phenoxy example. Furthermore, both the unsymmetrical derivatives 

(8f-g) only showed possible anthracene ring hydroxylation on either the 3 or 4 position for the 

2,10-dimethoxy compound 8f (Figure 5-9) or the 7/8 position for the 1-Chloro-2,10-methoxy 

compound 8g (Figure 5-10). Comparisons can be made between the ligands from the AutoDock 

Vina
28

 docking knowing that a hydrogen bond can vary in strength depending on the 

temperature, pressure, bond angle and the environment (dielectric constant), but a common rule 

of thumb is 1-2 kcal/mol. Leflunomide (Figure 5-7) scored the lowest at -8.6 kcal/mol, followed 

by Rupintrivir (Figure 5-6) at -10.0 kcal/mol and Oxacillin (Figure 5-5) at -10.3 kcal/mol. While 

not surprising as both Rupintrivir and Oxacillin both have C-5 hydroxylation metabolism, this 

requires more of a stronger bond to the CYP for hydroxylation to occur, as for Leflunomide 
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doesn’t require as much energy for the one-electron transfer ring opening to occur. On the other 

side, the 1-Chloro-2,10-dimethoxy AIM DT 8g (Figure 5-10) only scored at -8.5 kcal/mol and 

the 2,10-dimethoxy AIM DT 8f (Figure 5-9) scored in at -8.8 kcal/mol with the phenoxy AIM 

DT 8b (Figure 5-8) scored way above the rest at -11.6 kcal/mol. The excessively high scoring of 

8b could be attributed to how well it fits into the CYP pocket above the heme. Comparing the 

phenoxy group versus the dimethoxy, the extra lipophilic ring helps gets added interactions with 

the residues without twisting too many residues outside of the pocket.  

 

Figure 5-4. Predicted axial chiral AIM 8c anthracene major metabolite mimic 

While not shown, all seven compounds also had poses with the dimethylamine 

doubletails over the heme group. Thus, the predicted metabolism for the axial chiral compounds 

and oxy series compounds are not consistent with our previous idea (Figure 5-4). Since 

anthracene metabolism and its resulting toxicity is a concern, our initial metabolism studies can 

(1) assess whether the computational model is valid and then either (2) future work should 
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determine  if substitution at the C-5, and/or anthracene 2,3, or 10 positions populate the 

conformation of conformers docking at CYP 3A4 with the isoxazole C-5 proximal to the heme,  

or (3) blocking the putative anthracenyl ring metabolism sites with halogens. The question to be 

determined in the future is whether selectivity will be observed for the safer isoxazole 

metabolism routes.  
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Figure 5-5. Oxacillin, magenta, docked in CYP450 3A4 active site, green; HEME, orange. 
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Figure 5-6. Rupintrivir, cyan, docked in CYP450 3A4 active site, green; HEME, orange. 
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Figure 5-7. Leflunomide, white, docked in CYP450 3A4 active site, green; HEME, orange. 
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Figure 5-8. Compound 8b, yellow, docked in CYP450 3A4 active site, green; HEME, orange. 
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Figure 5-9. Compound 8f, red, docked in CYP450 3A4 active site, green; HEME, orange. 
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Figure 5-10. Compound 8g, pink, docked in CYP450 3A4 active site, green; HEME, orange. 
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