Molecular Modeling Assisted Design and Synthesis of Unsymmetrical Anthracene Isoxazole Small Molecule Anti-tumor Agents

Nathan S. Duncan
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Duncan, Nathan S., "Molecular Modeling Assisted Design and Synthesis of Unsymmetrical Anthracene Isoxazole Small Molecule Anti-tumor Agents" (2015). Graduate Student Theses, Dissertations, \& Professional Papers. 4619.
https://scholarworks.umt.edu/etd/4619

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

Isoxazole Small Molecule Anti-tumor Agents

By

NATHAN SCOTT DUNCAN

B.S. Biochemistry, Missouri Southern State University, Joplin, Missouri, 2010
M.S. Medicinal Chemistry, University of Montana, Missoula, Montana, 2013

Dissertation
presented in partial fulfillment of the requirements
for the degree of
Doctorate of Philosophy
in Medicinal Chemistry
The University of Montana
Missoula, Montana
May 2015
Approved by:
Sandy Ross, Dean of The Graduate School Graduate School

Nicholas R. Natale, Director, Medicinal Chemistry Program
Department of Biomedical and Pharmaceutical Sciences
Howard D. Beall
Department of Biomedical and Pharmaceutical Sciences
Donald Stierle
Department of Biomedical and Pharmaceutical Sciences
Keith Parker
Department of Biomedical and Pharmaceutical Sciences
Orion B. Berryman
Department of Chemistry \& Biochemistry

"Molecular Modeling Assisted Design and Synthesis of Unsymmetrical Anthracene Isoxazole

Small Molecule Anti-tumor Agents"

Chairperson: Nicholas R. Natale

Co-Chairperson: Howard D. Beall, Donald Stierle, Keith Parker, Orion B. Berryman

There are several isoxazoles in general medical practice and their metabolic fate and disposition is well known, and thus, this heterocyclic ring is often considered among the privileged scaffolds or templates for drug design and discovery. Many examples can be found of 3-aryl-isoxazoles which in theory have a chiral axis, yet actual experimental examples of direct determinations of isoxazole rotational barriers are few and far between. The dihedral angle of the 3-aryl to isoxazole bond in antibacterials of the oxacillin series increased with substitution in the 2- and 6- positions of the phenyl. Although his calculated barrier was low, this implied that atropisomers are possible for unsymmetrical substitution. The chirality of these systems differs from that of other compounds as their configuration is inverted by rotation about single bonds and can be accomplished by thermal equilibration. Thus, depending on the barrier to rotation, some of these atropisomers may only be isolated at low temperatures, if at all.

Recognition of the chiral elements, helicity and sugar morphology, of DNA by a small chiral molecule has long been an area of interest for the design of new antitumor medicines. It is expected that chiral atropisomers would exhibit a significant eudismic ratio when the functional groups of the chiral small molecule addresses the chiral portion of the molecular target. Our working hypothesis is based on docking studies with our putative molecular target G4-DNA, and indicates a eudismic ratio for atropisomers which arises precisely from the functional group which renders the molecule axially chiral. The study described herein propose to characterize at atomic resolution the first such atropisomerc isoxazole interacting with G4, an interaction that spans the domain interface from the G-tetrad deck to the sugar phosphate backbone, thus providing a rigorous framework for the development of selectivity among the major classes of G4 structures.

The goal is rational design of therapeutic aryl isoxazoles in which the barrier to stereochemical inversion (rotation) can be tailored to the application. By this means, we can probe the efficacy (binding efficiency) of potential drugs locked in a particular atropisomeric form vs freely/restricted rotating at physiological temperatures. In the course of these studies we have prepared analogs with enhanced bioactivity in the sub-micromolar to nanomolar range, which in principle contain a chiral axis. It is important for our current study to experimentally elucidate these conformational dynamics, and knowledge of such dynamics will be useful in the broader impact sense of providing energetic benchmarks for others in the field.

ACKNOWLEDGEMENT

First of all I would like to thank all those who have contributed to this work throughout their efforts to evaluate and characterize the biological activity of the compounds which I have synthesized, including Dr. Andrea Stierle and Dr. Don Stierle. I would also like to thank the Department of Biomedical and Pharmaceutical Sciences for providing me with the outstanding educational opportunity and resources to complete my dissertation. I extend my heartfelt appreciation to the members of my dissertation committee: Dr. Natale, Dr. Beall, Dr. Parker, and Dr. Berryman. I would especially like to express my gratitude to my mentor, Dr. Nick R. Natale for his patience and guidance in helping me to complete this project throughout the past years. Finally I am grateful for the support of my family including my parents, my brother, my sister and above all my wife Laura for her patience and fortitude.

TABLE OF CONTENTS

Abstract	ii
Acknowledgements	iii
Table of Contents	iv-v
List of Figures	vi-vii
List of Charts	viii
List of Tables	ix
List of Schemes	x

Table of Contents iv-v
List of Figures vi-vii
List of Charts viii
List of Tables ix
List of Schemes x
Chapter 1 Isoxazoles in the PDB
1.1 Introduction... 1

1.3 Sulfamethoxazole... 5
1.4 Beta-lactamase.. 6
1.5 Rhinovirus .. 8
1.6 Matrix metalloproteinase (MMP) .. 11
1.7 Heat Shock Protein 90 (HSP90)... 13
1.8 Farnesoid X Receptor (FXR) .. 15
1.9 Human angiotensin-I converting enzyme (hACE).. 17
1.10 Bromodomain (BRD) .. 19
1.11 AMPA Receptor... 21
1.12 Kinases... 23
1.13 Conclusion.. 26

Chapter 2 Synthesis of New Quinolinequinone Derivatives and Preliminary Exploration of their Cytotoxic Properties
2.1 Introduction... 38
2.2 Chemistry.. 40
2.3 Electrochemistry... 44
2.4 NMR Spectroscopy and Spectrophotometry ... 44
2.5 Results and Discussion... 48
2.6 Conclusion... 53
2.7 Experimental Section.. 54
2.7.1 Cell Culture... 54
2.7.2 Spectrophotometric Cytochrome c Assay................................ 54
2.7.3 Oxygen Consumption.. 55
2.7.4 Electrochemistry .. 55
2.7.5 NMR Spectroscopy ... 55
2.7.6 Cell Viability Assay .. 56
2.7.7 Molecular Modeling ... 56
2.7.8 Chemistry ... 57

Chapter 3 Improved design and biological activity of 10-alkoxy-anthracenyl-isoxazole derivatives for G-quadruplex antitumor agents
3.1 Introduction 76
3.2 Structural Features of a Q-quadruplex binder 77
3.3 Molecular Modeling of alkoxy series with Quadruplex DNA 79
3.4 Synthesis to alkoxy anthracene pyrrole doubletails 80
3.4.1 Preparation of Anthryl-10-oxy-isoxazole-DTs (AAIMs) 80
3.4.2 Crystal Structure of 8a. 80
3.5 MTT Cell Viability Assay 84
Chapter 4 3-Aryl isoxazoles exhibit atropisomerism
4.1 Introduction 127
4.2 Atropisomerism 127
4.3 Dynamic NMR 129
4.4 Bond Rotation. 131
4.5 Synthesis of desired Anthryl-isoxazole-secbutyl amides 134
4.6 Crystal Structure of 12 138
4.7 MTT Cell Viability Assay 138
4.8 Summary. 139
Chapter 5 Future Direction
5.1 ADME-Tox Considerations 178
5.2 Lipinski’s Rule 181
5.3 Anthracene and Isoxazole Metabolism 182
5.4 Computational Modeling 185

List of Figures

Figure 1-1. Sulfamethoxazole interactions with dihydropteroate synthase. 5
Figure 1-2. Ligand explorer Cloxacillin interactions with β-lactamase 6
Figure 1-3. Interactions of Antiviral interactions human rhinovirus 14 8
Figure 1-4. R47 ligand interactions with matrix metalloproteinase 12 11
Figure 1-5. 2JG ligand interactions with HSP90 13
Figure 1-6. 034 ligand interactions with FXR 15
Figure 1-7. 3EF ligand interactions with hACE 17
Figure 1-8. Interaction of ligand 2LO with bromodomain 19
Figure 1-9. Bridged Mode B Nring-H-Bond interaction with ligand AMQ 21
Figure 1-10. Critical hydrophobic interactions with ligand E75 23
Figure 2-1. Natural quinolinequinone antibiotics 38
Figure 2-2. Proton region of NMR spectrum of 19 upon addition of increasing equivalents of
Zn(SO3CF3)2 in THF-d8 45
Figure 2-3. Aromatic protons region NMR spectra of 22 upon addition of increasing equivalentsof Zn (SO3CF3)2 in THF-d8.. 46Figure 2-4. Aromatic proton region NMR spectra of 23 upon addition of increasing equivalentsof $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$ in THF-d847
Figure 2-5. Quinolinequinones docked in NQO1 active site 52
Figure 3-1. c-MYC G-quadruplex Pu22 sequence (PDB: 2L7V) 76
Figure 3-2. Quadruplex-DNA binding molecules 77
Figure 3-3. Combining functionalities to form a selective G4-DNA ligand 78
Figure 3-4. Discovery Studio 4.0 best energy pose for 8 c , docked at site 1 of the human Pu22
sequence of the c-MYC oncogene 80
Figure 3-5. Single crystal x-ray diffractometry of 4 a 83
Figure 4-1. Transition state for compound $\mathbf{8 g}$ 128
Figure 4-2. Variable temperature NMR of compound $\mathbf{8 i}$. 133
Figure 4-3. Single crystal x-ray structure of $\mathbf{1 2}$ 138
Figure 5-1. Fraction of clinically used drugs metabolized by P450 isoforms 180
Figure 5-2. Anthracene metabolism 183
Figure 5-3. Reported fates of isoxazole CYP-450 metabolism 184
Figure 5-4. Predicted axial chiral AIM 8c anthracene major metabolite mimic 187
Figure 5-5. Oxacillin, magenta, docked in CYP450 3A4 active site 189
Figure 5-6. Rupintrivir, cyan, docked in CYP450 3A4 active site 190
Figure 5-7. Leflunomide, white, docked in CYP450 3A4 active 191
Figure 5-8. Compound $\mathbf{8 b}$, yellow, docked in CYP450 3A4 active site 192
Figure 5-9. Compound 8f, red, docked in CYP450 3A4 active site 193
Figure 5-10. Compound 8g, pink, docked in CYP450 3A4 active site. 194

List of Charts

Chart 1-1. Isoxazole binding modes observed in metal complexes, generalized to interactions with Lewis Acids $\partial+$. 3
Chart 1-2. The ligand interactions in the protein data bank are based on the graphic nomenclature 4
Chart 1-3. Ligands containing isoxazole moieties of β-lactamase. 7
Chart 1-4. Isoxazole ligands for rhinovirus 9
Chart 1-5. Isoxazole ligands for rhinovirus 10
Chart 1-6. Isoxazole ligands at the matrix metalloproteinases (MMP) 12
Chart 1-7. Isoxazole ligands for chaperone protein Heat Shock Protein 90 (HSP90) 14
Chart 1-8. Isoxazole ligands at the Farnesoid X Receptor (FXR. 16
Chart 1-9. Isoxazole ligands at the human angiotensin converting enzyme (hACE) 18
Chart 1-10. Isoxazole ligands of Bromodomains (BRD) 20
Chart 1-11. Isoxazole ligands at AMPAR 22
Chart $1-12 \mathrm{a} / \mathrm{b}$. Ligands containing isoxazole moieties of kinase proteins 24
Chart 1-12c. Ligands containing isoxazole moieties of FGFR kinase proteins 25
Chart 1-12d. Ligands containing isoxazole moieties of p38 kinase proteins 25

List of Tables

Table 1-1. Crystallography or NMR of Isoxazole Binding Proteins................................31-37
Table 2-1. Suzuki Couple Products. Asterisk indicates Stille coupling reaction.................... 41
Table 2-2. Reduction Ratesa and Oxygen Consumptionb as a Result of Quinoline-5,8-Dione
\qquad
Table 2-3. Cytotoxicity of Quinoline-5,8-diones toward MDA468-WT (NQO1-deficient) and MDA468-NQ16 (NQO1-rich) Human Breast Cancer Cell Lines............................ 49

Table 2-4. Computational Parameters for Selected Quinoline-5,8-diones.................................. 51
Table 3-1. Cytotoxicity activity of 8a-e against human glioma SNB-19 cell.......................... 84
Table 4-1. Computational and /or experimental barriers at the 3-aryl-isoxazole junction........ 132
Table 4-2. Cytotoxicity activity of 10a-b against human glioma SNB-19 cells.................. 139
Table 5-1. Lipinski Values for absorption/permeation prediction..................................... 181
Table 5-2. Lipinski values for the AIM compounds... 182

List of Schemes

Scheme 2-1. Synthesis of 7-amino-2-substituted quinoline-5,8-dione 40
Scheme 3-1. Synthesis of anthryl-oxy-DT conjugate 8a-e81

Scheme 4-1. Synthesis of phenyl and naphthyl sec-butyl amides 8a, c-d, f, i....................... 136
Scheme 4-2. Synthesis of anthryl-sec butyl amides 9a-b and anthryl-DT conjugate 10a-b 137

Chapter 1

Isoxazoles in the PDB

1.1 Introduction

It is commonly accepted that a majority of the published work in organic chemistry involved at least one heterocyclic ring. Heterocycles can play a pivotal role not only as goals in synthesis, but as mediators of synthetic transformations. Isoxazoles are unique in their chemical behavior not only among heterocyclic compounds in general but also among related azoles. This is because isoxazoles possess the typical properties of aromatic systems, which are in fact rather pronounced in these derivatives, together with high lability of the ring under certain conditions, particularly route to liberate the latent functionality. From a purely formal point of view isoxazole can be considered an analog of pyridine just as furan is an analog of benzene. Such formal analogy is to some extent valid; for isoxazole resembles pyridine more than other heterocyclic compounds as far as chemical properties are concerned. It differs from pyridine in undergoing more readily electrophilic substitutions reactions and possessing a more labile ring this relationship thus resembles that between furan and benzene.

The isoxazole ring appears in several drugs in general medical practice, and is found routinely in drug discovery leads, to the point where some consider it a privileged scaffold. The literature on crystallography has continued to expand at an accelerating pace in recent years, and it seemed that a summary of the observed interactions of the isoxazole moiety with biological targets could be useful to those involved in design and discovery. Especially intriguing in light of the fact that most medicinal chemists use some form of molecular modelling, is that a collection of the observed interactions could prove useful in assessment of hypothesis generation.

The current review covers isoxazole ligands in the Protein data bank (PDB) reviewed April 27, 2015, there were 174 isoxazole containing ligands and 215 discreet drug-receptor interactions deposited and released to the PDB. There has been classic work on topics such as sulfamethoxazole, beta-lactams, antivirals, and the AMPA receptor, as well as intense recent interest in topics such as BRD, FXR, kinases and HSP90. We have attempted to describe here the most essential interactions defining the potential role of an isoxazole in drug-receptor interactions. The full analysis of the data set is summarized in the Table, and a more detailed comprehensive discussion will appear in an invited review to Future Medicinal Chemistry.

1.2 Types of interactions

Our general discussion of interactions will begin with common modes of interaction that have been observed in coordination chemistry ${ }^{1}$.

$\mathrm{N}_{\text {ring }}$

$\mathrm{O}_{\text {ring }}$

LB

Mode A:
$\mathrm{N}_{\text {ring }} \mathrm{O}_{\text {ring }}$

Mode B : $\mathrm{N}_{\text {ring }}$ LB-Bridging

Mode C: $\mathrm{O}_{\text {ring }}$ LB-Bridging

Mode D: N-Aryl bridging

Mode E: O-Aryl bridging

Chart 1-1. Isoxazole binding modes observed in metal complexes, generalized to interactions with Lewis Acids $\partial+$. In the Munsey review, conjugated amino groups were considered in the coordination chemistry with metals, here generalized to conjugated Lewis bases (LB). Reprinted with permission from reference 1 .

The depiction of three dimensional shape in two dimensions is often a difficult undertaking, however, the Stierand and Rarey notation used on the PDB is the best current solution ${ }^{2}$.

Chart 1-2. The ligand interactions in the protein data bank are based on the graphic nomenclature. Reprinted with permission from reference 2.

1.3 Sulfamethoxazole

Dihydropteroate synthase enzyme in bacteria has been a target for many years to help combat bacterial infections in both gram-positive and gram-negative organisms. Since bacteria have to synthesize folic acid for DNA synthesis, targeting this enzyme would allow for selective toxicity to bacterial cells. Sulfa drugs interrupt this essential folate pathway by competing with

Figure 1-1. Sulfamethoxazole interactions with dihydropteroate synthase. Left, image from the RCSB PDB of PDB ID 3TZF. Right, Ligand Explorer reveals hydrophobic interactions with the isoxazole. Yun, M.K., Wu, Y., Li, Z., Zhao, Y., Waddell, M.B., Ferreira, A.M., Lee, R.E., Bashford, D., White, S.W. Catalysis and sulfa drug resistance in dihydropteroate synthase. Science. 2012. 335: 1110-1114.
the 4-Aminobenzoic acid (PABA) precursor. Sulfamethoxazole was the first isoxazole containing drug to hit the market. The first dihydropteroate synthase crystallized with sulfamethoxazole appeared in 2012. The 5-methyl-3- sulfonamide isoxazole plays a role as a spacer for anchoring two hydrogen bonds with one each of the carbonyl groups of the sulfone to Ser222B ${ }^{3}$, and Ligand Explorer reveals direct isoxazole hydrophobic interactions that are seen for the C 3 and C 4 carbons of the isoxazole with Proline 64 (Figure 1-1).

1.4 Beta-lactamase

β-Lactamases are one of the most recognizable and most widely prescribed antibiotics used to treat a number of bacterial infections. β-Lactamases, such as penicillins, cephalosporins,

Figure 1-2. Cloxacillin interactions with β-lactamase. Left, image from the RCSB PDB of PDB ID 1FCM. Left, interaction map and Right, Ligand Explorer reveals hydrophobic interactions with the isoxazole. Patera, A., Blaszczak, L.C., Shoichet, B.K. Crystal structures of Substrate and Inhibitor Complexes with AmpC-Lactamase: Possible Implications for Substrate-Assisted Catalysis. J.Am.Chem.Soc. 2000, 122: 10504-10512.
and carbapenems work by inhibiting cell wall synthesis inhibiting of the peptidoglycan layer in the cell wall. β-lactam analogs preserve the β-lactam core of the drug but explore diverse functionality of the amide bond substituents to help understand the different pharmacological profiles and different bacterial spectra of action. However, different levels of resistance to β lactamases comes with such a diverse pharmacophore, as well as, the added concern of overuse and misuse of these drugs. ${ }^{4,5}$

Lactamases are categorized into three classes (A, B, and C) with many subclasses. While class B enzymes use a zinc-based mechanism for hydrolysis as opposed to a nucleophilic serinebased two-step mechanism for class A and C, the potential problem lies in the covalent bond that β-lactams form with such diverse β-lactamases ${ }^{4,5}$. However, as more classes of β-lactamases
being discovered and characterized, the diversity in their substrate selectivity profiles became apparent.

With many β-lactamases having been crystallized with antibiotics containing isoxazoles (Chart 1-3), a ligand interactions diagram can start unfolding. Many of the interactions that occur with isoxazole in the binding pocket are aliphatic hydrophobic interactions of the C5-methylisoxazole and isoxazole-aryl, although direct isoxazole interactions were noted in 1NYY (Figure 1-2). Another interesting case comes from Patera (2000) when they crystallized cloxacillin (open-form) with in beta-lactamase not only showing hydrophobic interactions of the C5-methylisoxazole with Tyr218, but also the first known resolved axially chiral 3-aryl- isoxazole found in the literature. With continued efforts, the structural bases for isoxazole containing β-lactamase antibiotics structure-activity-relationship will continue to grow and become well understood and remain areas of intense investigation.

1U3, $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$
105, $\mathrm{R}=\mathrm{B}(\mathrm{OH})_{2}$

1S6, R=H CXU, R=CI

owo

Chart 1-3. Ligands containing isoxazole moieties of β-lactamase.

1.5 Rhinovirus

Small icosahedral RNA viruses that are a part of the Picornaviridae family, including the rhinoviruses are the most common and leading viral infection in humans for upper respiratory tract infections, also known as the common cold. Human rhinoviruses are composed of a capsid, that contains four viral proteins VP1, VP2, VP3 and VP4 consisting of 60 copies of each. VP1, VP2, and VP3 form the major part of the protein capsid with 8 anti-parallel-barrels. The smaller VP4 protein has a polypeptide chain and lies at the internal surface of the capsid. Rhinoviruses have a surface "canyon" which is the binding site for many surface molecules. Below the floor of the "canyon" within the VP-1 barrel, lies a hydrophobic pocket which is hypothesized to play a role in maintaining the capsid stability. Thus, effort into building a small molecule to stabilize the capsid via binding in the hydrophobic space (Figure 1-3, shown below) to an extent that the

virus cannot release its RNA
Figure 1-3. W56 ligand interactions of Antiviral human rhinovirus 14. Left, image from the RCSB PDB of PDB ID 2RS5. Right, Ligand Explorer reveals $\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond -Asn219 and p-Ring-Isox- π-Leu106/Phe124 interactions with the isoxazole. Badger, J., Minor, I., Oliveira, M.A., Smith, T.J., Rossmann, M.G. Proteins 1989, 6: 1-19.
into the target cell is underway. A new development in antiviral drugs came when Pleconaril
made to clinical trials. Although the FDA did reject the new-drug application due to safety concerns, although it is under further investigation, it is a breakthrough in the sense that small molecules could be designed to bind in the hydrophobic pocket to prevent RNA release (Chart 14 and 1-5). ${ }^{6,7}$

W33. $R_{1}=5, R_{2}=H$
W43. $\mathrm{R}_{1}=7, \mathrm{R}_{2}=(\mathrm{S})-\mathrm{CH}_{3}$

Chart 1-4. Isoxazole ligands for rhinovirus.

W54. $\mathrm{R}_{1}=5, \mathrm{R}_{2}=\mathrm{CH}_{3}$

Chart 1-5. Isoxazole ligands for rhinovirus.

1.6 MMP

Matrix metalloproteinases (MMPs) are part of a large family of proteases that are zincdependent endopeptidases. Collectively, MMPs degrade all kinds of extracellular matrix proteins and participate in connective tissue remodeling and in numerous other physiological processes ${ }^{8}$.

With MMPs being implicated in multiple pathways, extensive efforts to develop new and more

Figure 1-4. R47 ligand interactions with matrix metalloproteinase 12. Left, image from the RCSB PDB of PDB ID 4GQL. Right, Ligand Explorer reveals π-Ring-Isox- π-His218; C3-PhTyr240/His218 interactions with the isoxazole. Czarny, B., Stura, E.A., Devel, L., Vera, L., Cassar-Lajeunesse, E., Beau, F., Calderone, V., Fragai, M., Luchinat, C., Dive, V. J.Med.Chem. 2013, 56: 1149-1159.
potent inhibitors is a target for a variety of therapeutic applications with the initial broadspectrum inhibitor, a synthetic inhibitor, showed disappointing results in clinical trials ${ }^{9}$. The first MMP inhibitor containing an isoxazole was shown in 2007 for MMP9, since then only literature has been seen for MMP12 with the most recent derivatives by Czarny ${ }^{10}$ (Chart 1-6) showing sub-nano-molar to pico-molar activity is attainable. The isoxazole side chain extends deep into the cavity of MMP-12 and ring stacks on the His218 imidazole ring (Figure 1-4, shown above).

Chart 1-6. Isoxazole ligands at the matrix metalloproteinases (MMP).

1.7 Heat Shock Protein 90 (HSP90)

Heat shock protein 90 (HSP90) has a complex function involving homodimerization, assisting protein folding, stabilizes proteins against heat stress and aids in protein degradation.

Figure 1-5. 2JG ligand interactions with HSP90. Left, image from the RCSB PDB of PDB ID 2VCI. Right, Ligand Explorer reveals $\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond-Thr184 interactions with the isoxazole. Brough, P.A., Aherne, W., Barril, X., Borgognoni, J., Boxall, K., Cansfield, J.E., Cheung, K.M., Collins, I., Davies, N.G.M., Drysdale, M.J., Dymock, B., Eccles, S.A., Finch, H., Fink, A., Hayes, A., Howes, R., Hubbard, R.E., James, K., Jordan, A.M., Lockie, A., Martins, V., Massey, A., Matthews, T.P., Mcdonald, E., Northfield, C.J., Pearl, L.H., Prodromou, C., Ray, S., Raynaud, F.I., Roughley, S.D., Sharp, S.Y., Surgenor, A., Walmsley, D.L., Webb, P., Wood, M., Workman, P., Wright, L. J.Med.Chem. 2008, 51: 196.

The chaperone cycle is driven by hydrolysis of ATP to ADP with a binding pocket in the N terminal domain, in which most inhibitors are bound within. The dysregulation of pathways involving stabilizing a number of proteins that play a key role in assisting survival, proliferation, invasion and metastasis is why HSP90 inhibitors are investigated as potential anti-cancer drugs. HSP90 is expressed in normal cell homeostatis, comprising 1-2\% of total cellular protein, however, many theories have been proposed for rationales for selectively of HSP90 in cancer cells versus normal cells ${ }^{11}$. A group from Vernalis ${ }^{11}$, found that bioisoteric replacement of a pyrazole with 3,4-diaryl isoxazole-5-carboxamides resulted in potent anticancer activity (Figure
$1-5$, shown above). The crystal structure revealed binding at the ATP binding pocket of heat shock protein 90 (HSP90). Key interactions include Oring-hydrogen bond with Thr184 and hydrophobic interactions of Met98 with the isoxazole ring (Chart 1-7).

2D3

XQK

9UN. R = N-methyl-piperdin-4-yl-
XKL R = Et

YJW R ${ }_{1}=-\mathrm{Me} ; \mathrm{R}_{2}=\mathrm{H}$ 2GG $\mathrm{R}_{1}=-\mathrm{C}(\mathrm{O}) \mathrm{NHEt}, \mathrm{R}_{2}=\mathrm{OMe}$

FJ2, $\mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{Cl}$
FJ5 R $\mathrm{R}_{1}=$ cyclopropyl,
$\mathrm{R}_{2}=-\mathrm{CH}_{2}$-N-morpholino,

$$
\mathrm{R}_{3}=\mathrm{i} \operatorname{Pr}
$$

FJ6 $\mathrm{R}_{1}=$ cyclopropyl,
$\mathrm{R}_{2}=-\mathrm{OMe}, \mathrm{R}_{3}=\mathrm{iPr}$

Chart 1-7. Isoxazole ligands for chaperone protein Heat Shock Protein 90 (HSP90).

1.8 Farnesoid X receptor (FXR)

The farnesoid X receptor (FXR), also known as, the bile acid receptor (BAR), is a part of a large nuclear receptor family which regulates gene transcription. Just like other nuclear receptors, FXR, when activated, translocated to the nucleus, forms a dimer and binds to a response element of DNA, which up- or down-regulates the expression of certain genes. FXR is expressed highly in the liver and intestine and to a less extent in gallbladder, kidney and adrenal

Figure 1-6. 034 ligand interactions with FXR. Left, image from the RCSB PDB of PDB ID 3RVF. Right, Ligand Explorer reveals Bifurcated- $\mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}-\mathrm{H}$-bond-Asn447A, π-Ring-C3-Cl 2_{2} $\mathrm{Ph}-\pi$-Phe329A and C5-iPr-Leu387A interactions with the isoxazole. Akwabi-Ameyaw, A., Caravella, J.A., Chen, L., Creech, K.L., Deaton, D.N., Madauss, K.P., Marr, H.B., Miller, A.B., Navas, F., Parks, D.J., Spearing, P.K., Todd, D., Williams, S.P., Wisely, G.B. Bioorg.Med.Chem.Lett. 2011, 21: 6154-6160.
glands. FXR is a key controller of bile acid homeostasis, as well as, helps maintain glucose homeostasis. With such diverse functions, FXR has the potential in many aspects of health practices, such as: inflammatory bowel disease, diabetes, obesity, and liver cancer among other possibilities. This first isoxazole continuing FXR inhibitor in the literature was found to be from Akwabi-Ameyaw ${ }^{12}$ in 2008. Since then, many other groups have come out with additional potent isoxazole containing inhibitors for FXR^{13-17} (Chart 1-8). Interesting binding interactions came
from Akwabi-Ameyaw ${ }^{14}$ (Figure 1-6) showing a bifurcated $\mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}-\mathrm{H}$-bond with Asn447A and additional hydrophobic interactions with π-Ring-C3-Cl $2-\mathrm{Ph}-\pi, \pi$-Phe329A and $\mathrm{C} 5-\mathrm{iPr}-$ Leu387A.

34. $R=\{$

37G. R $=\{$

59G. $R=\{$

643. $R\{$

89P. R §

82X. $R=\{$

Chart 1-8. Isoxazole ligands at the Farnesoid X Receptor (FXR).

1.9 Human angiotensin-I converting enzyme (hACE)

Human angiotensin-I converting enzyme (hACE) is a well-accepted agent used for the treatment of hypertension, electrolyte homeostasis, and related cardiovascular diseases. ACE enzyme is a membrane-bound zinc metalloprotease having two primary functions: the first, catalyzing the conversion of a peptide hormone that acts a potent vasoconstrictor, and two, degrades a potent vasodilator. ${ }^{18}$ With a majority of the commercially available ACE inhibitors being designed back in the 1970s, a second generation of ACE inhibitors (Chart 1-9) that has enhanced selectively without the undesirable side effects will be boosted by the availability of high resolution structures currently being published. One example comes from Masuyer ${ }^{19}$ showing hydrophobic interactions to both Val380A and Val518A (Figure 1-7).

Figure 1-7. 3EF ligand interactions with hACE. Left, image from the RCSB PDB of PDB ID 4CA5. Right, Ligand Explorer reveals Val380A and Val518A hydrophobic interactions with the isoxazole. Masuyer, G., Akif, M., Czarny, B., Beau, F., Schwager, S.L., Sturrock, E.D., Isaac, R.E., Dive, V., Acharya, K.R. FEBS J. 2014, 281: 943.
3ES

Chart 1-9. Isoxazole ligands at the human angiotensin converting enzyme (hACE).

1.10 Bromodomain (BRD)

The bromodomain protein module, which binds to acetylated lysine, is emerging as an important epigenetic therapeutic target. Conway and colleagues reported the structure-guided optimization of 3,5-dimethylisoxazole derivatives to develop potent inhibitors of the BET (bromodomain and extra terminal domain) bromodomain family with good ligand efficiency ${ }^{20}$.

The first bromodomain crystallized with an isoxazole ligand appeared in 2011, and since then there has been intense activity in the area, with 28 structures. The 3, 5-dimethyl isoxazole plays a bioisosteric role for the endogenous acetyl lysine group at the BRDs (Chart 1-10), and the

Figure 1-8. 2LO ligand interactions with bromodomain. Left, image from the RCSB PDB of PDB ID 4NR5. Right, Ligand Explorer reveals bifurcated- $\mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}-\mathrm{H}$-bond-Asn1168A and C5-Me-Pro1110A interactions with the isoxazole. Filippakopoulos, P., Picaud, S., Felletar, I., Hay, D., Fedorov, O., Martin, S., Pike, A.W., Von Delft, F., Brennan, P., Arrowsmith, C.H., Edwards, A.M., Bountra, C., Knapp, S. 2015, TBP.
structures in the literature at the time of this review contain this moiety. Commonly found is an anchoring hydrogen bond to the isoxazole ring oxygen (Figure 1-8, shown above), although considering distances in many of the structure indicate that both oxygen and nitrogen may lie
within interaction distance, as in 2LO-4NR7, which shows a bifurcated Nring-Oring Mode A interaction with an aspartame residue which usually binds the acetylated lysine.

3P2

2LK $\mathrm{R}_{1}=\mathrm{CH}_{2}-\mathrm{p}^{-\mathrm{C}_{6}} \mathrm{H}_{4} \mathrm{Cl}$
2LL R $\mathrm{R}_{1}=\mathrm{CH}_{2} \mathrm{CH}_{2}$-N-Morpholine
$\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$
2LO $\mathrm{R}_{1}=(\mathrm{R}) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)$ - N -Morpholine $\mathrm{R}_{2}=\mathrm{CH}_{2} \mathrm{CH}_{2}-3-\mathrm{Cl}, 4-\mathrm{MeO}-\mathrm{C}_{6} \mathrm{H}_{3}$

Chart 1-10. Isoxazole ligands of Bromodomains (BRD).

1.11 AMPA Receptor

The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA receptor or AMPAR) is a transmembrane receptor for glutamate that is part of a large ionotropic glutamate receptor (iGluR) family that mediates fast synaptic transmission in the central nervous system (CNS). AMPARs are comprised of four subtypes of iGluRs: GluR1 through GluR4, which combine to form tetramers consisting of symmetric 'dimer of dimers' of GluR2 and either GluR1, GluR3 or GluR4. Each AMPAR has four sites to which an agonist (i.e. glutamate) can bind, one for each subunit. The structural studies performed by Gouaux (among others) has led to a very thorough Structure Activity Relationship (SAR) for ligands binding to GluR2 based on cocrystallographic studies on the S1S2J construct. ${ }^{21}$ The structural studies performed by Gouaux (among others) has led to a very thorough Structure Activity Relationship (SAR) for ligands binding (Char 1-11) to GluR2 based on co-crystallographic studies on the S1S2J construct. ${ }^{22}$ AMPA crystallized at GluR2 is perhaps the classic bridging Mode B interactions of the $\mathrm{N}_{\text {ring }}-\mathrm{H}-$ Bond with Glu193C with additional C3-OH-H-Bond with Thr143C (Figure 1-9, shown below).

Figure 1-9. AMPA ligand interactions with AMPAR. Left, image from the RCSB PDB of PDB ID 1FTM. Right, Ligand Explorer reveals $\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu193C; C3-OH-H-Bond-Thr143C interactions with the isoxazole. Armstrong, N., Gouaux, E. Neuron 2000, 28: 165-181.

AMQ. $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
AM1. $\mathrm{R}_{1}=\mathrm{CO}_{2} \mathrm{H}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
SHI. $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$
CE2. $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$
BN1. $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=2$-methyl-1,2,3,4-tetrazol-5-yl
MP9. $\mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=2$-(phenylmethyl)-1,2,3,4-tetrazol-5-yl]-1,2-oxazol-4-yl

AT1

Chart 1.11. Isoxazole ligands at AMPAR.

1.12 Kinases

Over the past 15 years, protein kinases have become and proven to be an important class of drug targets for the pharmaceutical industry. With many already FDA approved and hundreds more undergoing development and clinical trials to treat an assortment of disease ranging from: cancer, anti-inflammatory diseases, and signaling networks that control the immune system, there is plenty of drive that suggests that there will be a surge of interest in this area for many years to come (Chart 1-12 a-d). One example being ERK2, small molecule inhibitors have been targeted in oncology clinical development across multiple disease indications. Kang, Stuckey

Figure 1-10. E75 ligand interactions with ERK2. Left, image from the RCSB PDB of PDB ID 4FUX. Right, Ligand Explorer reveals C3-Ph-Ala50A interactions with the isoxazole. Kang, Y.N., Stuckey, J.A., Xie, X. TBP.
and Xie have solved two ERK2 crystal structures containing inhibitors with isoxazole groups, although they are in press. One of them 4FUX (Figure 1-10) contains an amino-pyrimidine moiety analogous to that reported by $\mathrm{W} \operatorname{ard}^{23}$ for covalent adduct 4ZZM, and both show a similar backbone interaction with methionine. A hydrophobic interaction of VAL47 with the C-3 of the
isoxazole ring was observed, as well as interactions of the LYS52 methylenes with the C3 phenyl.

E75, Erk2

RIP1

Chart 1-12a. Ligands containing isoxazole moieties of kinase proteins.

6C3 c-FMS
Chart 1-12b. Ligands containing isoxazole moieties of kinase proteins.

$\mathrm{R}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$ FGFR

Chart 1-12c. Ligands containing isoxazole moieties of FGFR kinase proteins.

Chart 1-12d. Ligands containing isoxazole moieties of p38 kinase proteins.

1.13 Conclusion

The isoxazole ring appears in several drugs in general medical practice, and is found routinely in drug discovery leads, to the point where some consider it a privileged scaffold. The literature on crystallography has continued to expand at an accelerating pace in recent years, and it seemed that a summary of the observed interactions of the isoxazole moiety with biological targets could be useful to those involved in design and discovery. Especially intriguing in light of the fact that most medicinal chemists use some form of molecular modelling, is that a collection of the observed interactions could prove useful in critical assessment of hypothesis generation. Isoxazoles play four major roles as seen in the PDB: first, they serve as bioisoteres as seen in sulfamethoxazole; second, the serve as a spacer as seen in HSP90 derivatives with hydrophobic interactions; third, the isoxazole ring as direct interaction in the binding site, the most notably a bifurcated $\mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}$ hydrogen bond in AMPA, FXR and HIV integrase; and fourth, an isoxazole being used as a prodrug as seen in Leflunomide (Chapter 5), a immunosuppressive diseasemodifying anti-rheumatic drug (DMARD). There are several isoxazoles in general medical practice, and their metabolic fate and disposition is well known (Chapter 5), and thus, this heterocyclic ring is often considered among the privileged scaffolds or templates for drug design and discovery.

References

(1) Munsey, M. S.; Natale, N. R. The Coordination Chemistry of Isoxazoles. Coord. Chem. Rev. 1991, 109 (2), 251-281.
(2) Stierand, K.; Rarey, M. Drawing the PDB: Protein-Ligand Complexes in Two Dimensions. ACS Med. Chem. Lett. 2010, 1 (9), 540-545.
(3) Yun, M.-K.; Wu, Y.; Li, Z.; Zhao, Y.; Waddell, M. B.; Ferreira, A. M.; Lee, R. E.; Bashford, D.; White, S. W. Catalysis and Sulfa Drug Resistance in Dihydropteroate Synthase. Science 2012, 335 (6072), 1110-1114.
(4) Caselli, E.; Powers, R. A.; Blasczcak, L. C.; Wu, C. Y. E.; Prati, F.; Shoichet, B. K. Energetic, Structural, and Antimicrobial Analyses of β-Lactam Side Chain Recognition by β Lactamases. Chem. Biol. 2001, 8 (1), 17-31.
(5) June, C. M.; Vallier, B. C.; Bonomo, R. A.; Leonard, D. A.; Powers, R. A. Structural Origins of Oxacillinase Specificity in Class D β-Lactamases. Antimicrob. Agents Chemother. 2014, 58 (1), 333-341.
(6) Badger, J.; Minor, I.; Oliveira, M. A.; Smith, T. J.; Rossmann, M. G. Structural Analysis of Antiviral Agents That Interact with the Capsid of Human Rhinoviruses. Proteins Struct. Funct. Bioinforma. 1989, 6 (1), 1-19.
(7) Zhang, Y.; Simpson, A. A.; Ledford, R. M.; Bator, C. M.; Chakravarty, S.; Skochko, G.
A.; Demenczuk, T. M.; Watanyar, A.; Pevear, D. C.; Rossmann, M. G. Structural and Virological Studies of the Stages of Virus Replication That Are Affected by Antirhinovirus Compounds. J. Virol. 2004, 78 (20), 11061-11069.
(8) Tochowicz, A.; Maskos, K.; Huber, R.; Oltenfreiter, R.; Dive, V.; Yiotakis, A.; Zanda,
M.; Bode, W.; Goettig, P. Crystal Structures of MMP-9 Complexes with Five Inhibitors:

Contribution of the Flexible Arg424 Side-Chain to Selectivity. J. Mol. Biol. 2007, 371 (4), 9891006.
(9) Coussens, L. M.; Fingleton, B.; Matrisian, L. M. Matrix Metalloproteinase Inhibitors and Cancer-Trials and Tribulations. Science 2002, 295 (5564), 2387-2392.
(10) Czarny, B.; Stura, E. A.; Devel, L.; Vera, L.; Cassar-Lajeunesse, E.; Beau, F.; Calderone, V.; Fragai, M.; Luchinat, C.; Dive, V. Molecular Determinants of a Selective Matrix Metalloprotease-12 Inhibitor: Insights from Crystallography and Thermodynamic Studies. J. Med. Chem. 2013, 56 (3), 1149-1159.
(11) Brough, P. A.; Aherne, W.; Barril, X.; Borgognoni, J.; Boxall, K.; Cansfield, J. E.;

Cheung, K.-M. J.; Collins, I.; Davies, N. G. M.; Drysdale, M. J.; Dymock, B.; Eccles, S. A.; Finch, H.; Fink, A.; Hayes, A.; Howes, R.; Hubbard, R. E.; James, K.; Jordan, A. M.; Lockie, A.; Martins, V.; Massey, A.; Matthews, T. P.; McDonald, E.; Northfield, C. J.; Pearl, L. H.; Prodromou, C.; Ray, S.; Raynaud, F. I.; Roughley, S. D.; Sharp, S. Y.; Surgenor, A.; Walmsley, D. L.; Webb, P.; Wood, M.; Workman, P.; Wright, L. 4,5-Diarylisoxazole Hsp90 Chaperone Inhibitors: Potential Therapeutic Agents for the Treatment of Cancer. J. Med. Chem. 2008, 51 (2), 196-218.
(12) Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K.
L.; Deaton, D. N.; Jones, S. A.; Kaldor, I.; Liu, Y.; Madauss, K. P.; Marr, H. B.; McFadyen, R.
B.; Miller, A. B.; III, F. N.; Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G.
B. Conformationally Constrained Farnesoid X Receptor (FXR) Agonists: Naphthoic Acid-Based Analogs of GW 4064. Bioorg. Med. Chem. Lett. 2008, 18 (15), 4339-4343.
(13) Akwabi-Ameyaw, A.; Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K.
L.; Deaton, D. N.; Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Navas III, F.;

Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Bruce Wisely, G. FXR Agonist Activity of Conformationally Constrained Analogs of GW 4064. Bioorg. Med. Chem. Lett. 2009, 19 (16), 4733-4739.
(14) Akwabi-Ameyaw, A.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.; Madauss, K. P.; Marr, H. B.; Miller, A. B.; Navas III, F.; Parks, D. J.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G. B. Conformationally Constrained Farnesoid X Receptor (FXR) Agonists: Alternative Replacements of the Stilbene. Bioorg. Med. Chem. Lett. 2011, 21 (20), 6154-6160.
(15) Bass, J. Y.; Caldwell, R. D.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.;

Madauss, K. P.; Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Parks, D. J.; Todd, D.; Williams, S. P.; Wisely, G. B. Substituted Isoxazole Analogs of Farnesoid X Receptor (FXR) Agonist GW4064. Bioorg. Med. Chem. Lett. 2009, 19 (11), 2969-2973.
(16) Bass, J. Y.; Caravella, J. A.; Chen, L.; Creech, K. L.; Deaton, D. N.; Madauss, K. P.;

Marr, H. B.; McFadyen, R. B.; Miller, A. B.; Mills, W. Y.; Navas III, F.; Parks, D. J.; Smalley
Jr., T. L.; Spearing, P. K.; Todd, D.; Williams, S. P.; Wisely, G. B. Conformationally
Constrained Farnesoid X Receptor (FXR) Agonists: Heteroaryl Replacements of the
Naphthalene. Bioorg. Med. Chem. Lett. 2011, 21 (4), 1206-1213.
(17) Feng, S.; Yang, M.; Zhang, Z.; Wang, Z.; Hong, D.; Richter, H.; Benson, G. M.;

Bleicher, K.; Grether, U.; Martin, R. E.; Plancher, J.-M.; Kuhn, B.; Rudolph, M. G.; Chen, L. Identification of an N-Oxide Pyridine GW4064 Analog as a Potent FXR Agonist. Bioorg. Med. Chem. Lett. 2009, 19 (9), 2595-2598.
(18) Akif, M.; Schwager, S. L.; Anthony, C. S.; Czarny, B.; Beau, F.; Dive, V.; Sturrock, E. D.; Acharya, K. R. Novel Mechanism of Inhibition of Human Angiotensin-I-Converting Enzyme (ACE) by a Highly Specific Phosphinic Tripeptide. Biochem. J. 2011, 436 (1), 53-59.
(19) Masuyer, G.; Akif, M.; Czarny, B.; Beau, F.; Schwager, S. L. U.; Sturrock, E. D.; Isaac, R. E.; Dive, V.; Acharya, K. R. Crystal Structures of Highly Specific Phosphinic Tripeptide Enantiomers in Complex with the Angiotensin-I Converting Enzyme. FEBS J. 2014, 281 (3), 943-956.
(20) Hewings, D. S.; Fedorov, O.; Filippakopoulos, P.; Martin, S.; Picaud, S.; Tumber, A.;

Wells, C.; Olcina, M. M.; Freeman, K.; Gill, A.; Ritchie, A. J.; Sheppard, D. W.; Russell, A. J.;
Hammond, E. M.; Knapp, S.; Brennan, P. E.; Conway, S. J. Optimization of 3,5-
Dimethylisoxazole Derivatives as Potent Bromodomain Ligands. J. Med. Chem. 2013, 56 (8), 3217-3227.
(21) Natale, N.; Magnusson, K.; Nelson, J. Can Selective Ligands for Glutamate Binding

Proteins Be Rationally Designed? Curr. Top. Med. Chem. 2006, 6 (8), 823-847.
(22) Armstrong, N.; Gouaux, E. Mechanisms for Activation and Antagonism of an AMPA-

Sensitive Glutamate Receptor. Neuron 2000, 28 (1), 165-181.
(23) Ward, R. A.; Colclough, N.; Challinor, M.; Debreczeni, J. E.; Eckersley, K.; Fairley, G.;

Feron, L.; Flemington, V.; Graham, M. A.; Greenwood, R.; Hopcroft, P.; Howard, T. D.; James,
M.; Jones, C. D.; Jones, C. R.; Renshaw, J.; Roberts, K.; Snow, L.; Tonge, M.; Yeung, K.

Structure-Guided Design of Highly Selective and Potent Covalent Inhibitors of ERK1/2. J. Med.
Chem. 2015, 58 (11), 4790-4801.
Table 1.-1 Crystallography or NMR of Isoxazole Binding Proteins.

PDB Ligand No.	Target	PDB Accession No.	Resolution	Ligand Interactions	Reference
AMQ	AMPAR-GluR2	1FTM	1.7	N $\mathrm{r}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu193C; C3-OH-H-Bond-Thr143C	Armstrong, 2000
	GluR2-L483Y	1LB8	2.3	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond-Glu193B; C3-OH-H-Bond-Thr143B	Sun, 2002
		1MY2	1.8	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu193C; C3-OH-H-Bond-Thr143C	Jin, 2003
	GluR2-L650T	1P1Q	2.0	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu193C; C3-OH-H-Bond-Thr143C	Armstrong, 2003
	GluR2-L650T	1P1U	2.0	C3-OH-H-Bond-Ser142B	Armstrong, 2003
	GluR2-L483Y-L650T	1P1W	1.8	N ${ }_{\text {ring }}$-Glu193B; C3-OH-H-Bond-Thr143B	Armstrong, 2003
	GLuR3	3DP4	2.11	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu193A; C3-OH-H-Bond-Thr143A	Ahmed, 2008
	GLuR4	3FAT	1.90	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu191A; C3-OH-H-Bond-Thr141A	Kasper, 2008
AM1	GLuR2	1M5E	1.46	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond -Glu193A; C3-COOH-H-Bond-Thr143A	Hogner, 2002
	GLuR2	1M5F	1.95	C3-COOH-H-Bond-Thr143A	Hogner, 2002
AT1	GLuR2	1N0T	2.10	Ring-Isox-Glu193	Hogner, 2003
	GLuR5	1VSO	1.85	Bridged $\mathrm{H}_{2} \mathrm{O}-\mathrm{O}_{\text {ring }} / \mathrm{N}_{\text {ring }}$	Hald, 2007
BRH	GLuR2	1M5C	1.65	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Thr143A	Hogner, 2002
	GLuR2	1M5D	1.73	N $\mathrm{r}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Thr143A; C3-OH-H-Bond-Glu193A	Hogner, 2002
CE2	GLuR2	1NNK	1.85	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond -Thr140A; C3-OH-H-Bond-Thr140A(OH	NH) Lunn, 2003
	GLuR2	1NNP	1.90	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond -Thr140A; C3-OH-H-Bond-Thr140A(OH	(NH) Lunn, 2003
MP9	GLuR2	2P2A	2.26	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond -Thr140B; C3-OH-H-Bond-Thr140A(NH)	Vogenson, 2007
SHI	GLuR2	1MQD	1.46	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu190A; C3-OH-H-Bond-Thr140A	Kasper, 2002
	GLuR2	1MS7	1.97	$\mathrm{N}_{\text {ring }}-\mathrm{H}-\mathrm{Bond}$-Glu190A; C3-OH-H-Bond-Thr140A	Kasper, 2002
BN1	AMPAR-GluR2	1M5B	1.85	$\mathrm{N}_{\text {ring }}-\mathrm{H}$-Bond-Thr143(OH); C3-OH-H-Bond-Backbone-NH-Thr143	Hogner, 2002
		1MXV	1.95	AMPA, BrW 10mM	Jin, 2003
		1MXW	1.9	AMPA, BrW 1mM	Jin, 2003
		1MXX	2.0	AMPA, BrW 100uM	Jin, 2003
		1MXY	1.95	AMPA, BrW 10uM	Jin, 2003
		1MXZ	1.9	AMPA, BrW 1uM	Jin, 2003
		1MY0	1.9	AMPA, BrW 100nM	Jin, 2003
	ω	1MY1	1.9	AMPA, BrW 10nM	Jin, 2003
	$\stackrel{\sim}{\sim}$	1MY2	1.8	AMAPA, Zn2+	Jin, 2003

Masuyer, 2014
Masuyer, 2014
Masuyer, 2014
Akif, 2011
Akif, 2011
Masuyer, 2014

Zhao, 2013
Hewings, 2013
Hewings, 2013
Gehling, 2013
Dawson, 2011
Seal, 2012
Flippakopoulos, TBP
Hay, TBP
Poncet-Montange, 2015
Poncet-Montange, 2015
Bamborough, 2012
Bamborough, 2012
Bamborough, 2012
Bamborough, 2012
Seal, 2012
Mirguet, 2014
McKeown, 2014 McKeown, 2014
 dal 'soןnodoyedd! $!$ 」

Flippakopoulos, TBP
Flippakopoulos, TBP
Flippakopoulos, TBP
Flippakopoulos, TBP

3EF	hACE	4CA5
	hACE	4CA6
	AnCE, drosophilia	4CA7
3ES	hACE	2XY9
	hACE	2XYD
	AnCE, drosophilia	4CA8
1A6	Bromodomain hBRD4	4HXO
1 H 2	Bromodomain hBRD4	4J0R
1H3	Bromodomain hBRD4	4J0S
1XA	Bromodomain hBRD4	4LR6
1GH	Bromodomain hBRD4	3ZYU
	Bromodomain hBRD2	4ALG
KRG	Bromodomain hCREBBP	3SVH
0Q1	Bromodomain hBRD4	4GPJ
$36 Z$	Bromodomain-ATAD2A	4TTE
37N	Bromodomain ATAD2A	4TU4
A9N	Bromodomain hBRD2	4A9N
A90	Bromodomain hBRD2	4A90
A9P	Bromodomain hBRD2	4ALH
P9M	Bromodomain hBRD2	4A9M
S5B	Bromodomain hBRD2	4AKN
	Bromodomain hBRD4	4BW1
3P2	Bromodomain hBRD4	4WIV
UTH	Bromodomain hBRD4	4BW2
WDR	Bromodomain hBRD4	3SVF
ODR	Bromodomain hBRD4	3SVG
2LK	Bromodomain hCREBBP	4NR4
2LL	Bromodomain hCREBBP	4NR5
	Bromodomain hBRD4	4NR8

$\begin{array}{lc}\text { Mode A: Bifurcated- } \mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}-\mathrm{H} \text {-bond-Asn1168A } & \text { Flippakopoulos, TBP } \\ \text { C3-Me-Val1174A; C5-Me-Pro1110A } & \\ \mathrm{O}_{\text {ring }}-\mathrm{H} \text {-bond-Asn140A } & \text { Mirguet, 2014 } \\ \mathrm{O}_{\text {ring }}-\mathrm{H} \text {-bond-Asn140A; C3-Me-Pro82A } & \text { Mirguet, 2014 }\end{array}$
Akwabi-Ameyaw, 2011
Akwabi-Ameyaw, 2008 Akwabi-Ameyaw, 2008 Akwabi-Ameyaw, 2009

[^0]C3-Cl2-Ph-Met265A, Met290A, Ala291A, Met328A, Ile335A
$\mathrm{N}_{\text {ring }}$-H-bond-His447A, C5-iPr-Leu287A Akwabi-Ameyaw, 2011
π-Ring-C3-Cl2-Ph- π-Phe329A; C3-Cl 2 -Ph-Met290A
$\mathrm{N}_{\text {ring }}$-H-bond-His447A; C5-iPr-Leu287A Akwabi-Ameyaw, 2011

Feng, 2009

Bass, 2009

 π-Ring-C3-Cl2-4-pyridyl- π-Phe333A; $\mathrm{C} 3-\mathrm{Cl}_{2}-\mathrm{N}-4$-pyridyl-H \square bond-Tyr373A;
 π-Ring-C3-Cl 2 -Ph- π-Phe329A π-Ring-C3- $\mathrm{Cl}_{2}-\mathrm{Ph}-\pi$-Phe329A;
 $\forall \angle 8 \varepsilon$ Пə7-גd!-9つ
Bifurcated- $\mathrm{N}_{\text {ring }}-\mathrm{O}_{\text {ring }}-\mathrm{H}$-bond-Asn447A π-Ring-C3-Cl $\mathrm{Cl}_{2}-\mathrm{Ph}-\pi$-Phe329A; C5-iPr-Leu387A π-Ring-C3-Cl - - $\mathrm{Ph}-\pi$-Phe329A; C5-iPr-Leu287A \& Ala291A π-Ring-C3- Cl_{2}-Ph- π-Phe329A
$\mathrm{N}_{\text {ring }}-\mathrm{H}$-bond-His447A; C5-iPr-Ala291A
$\mathrm{N}_{\text {ring }}-\mathrm{H}$-bond-His447A; π-Ring-C3-Cl $2-\mathrm{Ph}-\pi$-Phe329A; Bass, 2011 $\mathrm{C} 3-\mathrm{Cl}_{2}$ - Ph -Leu287A

Spacer for 3,4 and 5 substituents Spacer for 3,4 and 5 substituents Spacer for 3,4 and 5 substituents słuən!!!sqns s pue t' 10 дəつeds Spacer or 3,4 and 5 substituents Phe138A; π-Ring-Isox-- π-Tyr139A co-crystal with XQI

Phe138A; co-crystal with XQI $\stackrel{\varangle}{0}$
$\stackrel{0}{0}$
$\frac{0}{2}$
$\frac{1}{2}$

2 LO	Bromodomain hCREBBP	4NR7
$9 \mathrm{B6}$	Bromodomain hBRD4	4BW4
9BM	Bromodomain hBRD4	4BW3
34	Farnesoid X Receptor	3RVF
064	Farnesoid X Receptor	3DCT
062	Farnesoid X Receptor	3DCU
82X	Farnesoid X Receptor	3HC5
088	Farnesoid X Receptor	3HC6
37G	Farnesoid X Receptor	3RUU
59G	Farnesoid X Receptor	3RUT
643	Farnesoid X Receptor	3FXV
708	Farnesoid X Receptor	3GD2
P88	Farnesoid X Receptor	3P88
89P	Farnesoid X Receptor	3P89
2EQ	HSP90	2VCJ
2GJ	HSP90	2 VCI
2GG	HSP90	2UWD
9UN	HSP90	4B7P
XKL	HSP90	4BQJ
XQK	HSP90	2YEI
	HSP90	$2 \mathrm{2YEJ}$
2D3	4HSP90	2YE8
YJW	HSP90	2YJW
	HSP90	2YK2

カLOZ カLOZ カLOZ カLOZ
 تَتَتْتَ تَ

2LOZ＇имодя

てเOZ ‘әрие！｜｜Оつ
عLOZ＇s
ャレ0Z＇u！̣｜＞
ヤレ0Z ‘u！̣｜＞
己10Z ueuxon
己10Z Uemion
LOOZ ‘uəqnyos
G10Z ‘uosiolod
G10Z＇uosiəlod
乙，0乙 ‘buè
て10乙 ‘6uey
てLOZ ‘se！słəneg
010Z ‘se！słəへеg

Spacer or 3，4 and 5 substituents
 $\mathrm{N}_{\text {ring }}-\mathrm{H}$－bond－Thr184A；

Xャャトus \forall－spuog－ $\mathrm{H}^{-2} \mathrm{HN}=87$ ：я әроW
$\mathrm{N}_{\text {ring }}-\mathrm{H}$－Bond－Arg97X

$\stackrel{+}{\dot{H}} \stackrel{+}{\dot{+}}$
©

 Yd甘W e8\＆d＇əseu！

 Kinase－p38aKinase－p38a

Kinase，Aurora－A Kinase，Aurora－A Kinase，ERK2 Kinase，ERK2 Kinase c－Met Kinase c－Met | ∞ |
| :---: |
| \sum_{1}^{∞} |
| 0 |
| 0 |
| 0 |
| |
| |

 Kinase－RIP1

3SD Proteosome 20S

$$
\begin{array}{ll}
\text { W56 } & \text { Human Rhinovirus } 14 \\
\text { W59 } & \text { Human Rhinovirus } 14 \\
\text { W8R } & \text { Human Rhinovirus } 14 \\
\text { W35 } & \text { Human Rhinovirus } 14
\end{array}
$$

π-Ring-Isox- π-Tyr197/Leu106 π-Ring-Isox- π-Tyr197/Met214 π-Ring-Isox- π-Tyr190/Leu100 π-Ring-Isox- π-Tyr197/Leu106 π-Ring-Isox- π-Leu106 π-Ring-Isox- π-Phe186/Tyr152 π-Ring-Isox- π-Tyr197/Leu106 π-Ring-Isox- π-Tyr197/Leu106

0
\vdots

π-Ring-Isox- π-Tyr190/Leu100/Met214 π-Ring-Isox- π-Tyr190/Met214 Kim 1993 Kim 1993 Kim 1993 Kim 1993 Hadfield 1999 Hadfield 1999 6661 P|ə! peH Plevka 2013 Plevka 2013 6661 Кириән
 6861 ৷əбрея π-Ring-Isox- π-Phe186/Try152; C3-Me-Ser175/Val176 Hadfield 1995 π-Ring-Isox- π-Phe186/Try152; C3-Me-Ser175/Val176 Hadfield 1995
 π-Ring-Isox- π-Phe186/Try152; C3-Me-Ser175/Val176 Badger 1989 Wu 2013
Costenaro 2011
Wang 2011
Wang 2011
Wang 2011
Lu 2011
Lu 2011
Matthews 1999 Wang 2003
Wang 2002 no interactions
π-Ring-Isox- π-Tyr105; C5-Me-Ala237/Gly238/Met69 no interactions
π-Ring-Isox- π-Tyr105; C5-Me-Ala237/Gly238/Met69 π-Ring-Isox- π-Phe170; C5-Me-Phe170
π-Ring-Isox- π-Phe170; C5-Me-Ile125/Phe170 π-Ring-Isox- π-Leu125/Phe170;
C5-Me-Leu125/Phe170
π-Ring-Isox- π-Leu125/Phe170;
C5-Me-Leu125/Phe170
π-Ring-Isox- π-Leu125/Phe170
π-Ring-Isox- π-Leu125; C5-Me-Leu125
π-Ring-Isox- π-Phe170; C5-Me-Phe170
π-Ring-Isox- π-Phe170; C5-Me-Ile125/Ph π-Ring-Isox- π-Phe170; C5-Me-Leu125
π-Ring-Isox- π-Leu125/Phe170;
C5-Me-Leu125/Phe170 π-Ring-Isox- π-Leu125/Phe170; C5-Me-Leu125 C5-Me-Leu125/Phe170 π-Ring-Isox- π-Phe155/Val190; C3-Me-Ile24/Val179 π-Ring-Isox- π-Phe155; C3-Me-Ile24/Val179
 π-Ring-Isox- π-Tyr197

		1FSY	1.75	C5-Me-Tyr221	Caselli 2001
156	Beta-lactamase	4JXG	1.65	C5-Me-Tyr221	Docter TBP
		4MLL	1.37	π-Ring-Isox- π-Leu255; C5-Me-Gly216; C3-Ph-Gly238/Ser237	June 2014
		4F94	2.40	C5-Me-Trp221; C3-Ph-Leu 168	June TBP
1U3	Beta-lactamase-glysine	4KZ5	1.35	C5-Ph-Tyr221; $\mathrm{N}_{\text {ring }}-\mathrm{H}$-bond-Asn152; Bridged $\mathrm{H}_{2} \mathrm{O}-\mathrm{O}_{\text {ring }}$	Barelier 2014
CXU	Beta-lactamase	4R1G	1.92	C5-Me-Trp720/Thr893; C3-Ph-Trp791/His718	Filippova TBP
		1FCM	2.46	C5-Me-Tyr218	Patera 2000
OWO	Beta-lactamase	4EYB	1.16	π-Ring-Isox- π-Gly69; C5-Me-Leu65/Trp93 C3-Ph-His122/Met154/GIn123	King 2012
OW0	Penicillin binding protein	4FSF	2.20	π-Ring-Isox- π-Val333; Bridged $\mathrm{H}_{2} \mathrm{O}-\mathrm{O}_{\text {ring }} / \mathrm{N}_{\text {ring }}$	Mitton-Fry 2012
CXV	Penicillin binding protein	3MZD	1.90	π-Ring-Isox- π-Ser86	Nicola 2010
BI7	Factor Xa	2JKH	1.25	π-Ring-Isox- π-Val333; Bridged $\mathrm{H}_{2} \mathrm{O}-\mathrm{N}_{\text {ring }}$	Salonen 2009
IIA	Factor Xa	2 BOH	2.20	π-Ring-Isox- π-Gln192/Cys191	Nazare 2005
IIB	Factor Xa	2BQ6	3.00	π-Ring-Isox- π-Gln192	Nazare 2005
XWG	Factor Xa	2Y5F	1.29	π-Ring-Isox- π-Cys191; Bridged $\mathrm{H}_{2} \mathrm{O}-\mathrm{N}_{\text {ring }}$	Salonen 2012
VYR	Factor Xa	4BTT	2.59	no interactions	Meneyrol 2013
2FN	Factor Xa	4N3L	1.94	π-Ring-Isox- π-Cys191	Belviso 2014
5MR	MMMP9	2OVZ	2.00	π-Ring-Isox- π-His401; C3-Ph-His401/Tyr423/Met422	Tochowicz 2007
EEA	MMP12	3LIL	1.80	π-Ring-Isox- π-His218/Try240; C3-Ph-Tyr240/Val235	Devel 2010
EEC	MMP12	3LIR	1.90	π-Ring-Isox- π-His218/Try240; C3-Ph-Lys241/Tyr240/	Val235 Devel 2010
R47	MMP12	4GQL	1.15	π-Ring-Isox- π-His218; C3-Ph-Tyr240/His218	Czarny 2013
R4B	MMP12	4GR0	1.50	π-Ring-Isox- π-His218; C3-Ph-Tyr240/His218	Czarny 2013
R4C	MMP12	4GR8	1.30	π-Ring-Isox- π-His218; C3-Ph-Thr239/Thr240/His218	Czarny 2013
R45	MMP12	4GR3	1.49	π-Ring-Isox- π-His218/ Tyr240; C3-Ph-Tyr240/Thr239	Czarny 2013
A2Y	Influenza A	2LY0	NMR	π-Ring-lsox- π-Val27	Wang 2013
OMM	Influenza A	3TG6	3.00	π-Ring-Isox- π-Tyr52/Trp104; C3-Ph-Tyr52/ Tyr313	Edavettal TBP
OMF	Influenza A	4DYA	2.75	π-Ring-Isox- π-Tyr52/Trp104; C3-Ph-Tyr52/ Tyr313	Lewis TBP
OMH	Influenza A	4DYB	2.80	π-Ring-Isox- π-Tyr52/Trp104; C3-Ph-Tyr313	Lewis TBP
OMR	Influenza A	4DYN	2.40	π-Ring-Isox- π-Tyr52/Trp104; C3-Ph-Tyr52/ Tyr313	Lewis TBP
OMS	Influenza A	4DYP	2.82	π-Ring-Isox- π-Tyr52/Trp104; C3-Ph-Tyr52/ Tyr313	Lewis TBP

Wielens 2013
Wielens 2013
Wielens 2013

MOK	HIV integrase
MPK	HIV integrase
0NK	HIV integrase
AF8	
F7IV protease	
HIV protease	

Chapter 2

Synthesis of New Quinolinequinone Derivatives and Preliminary Exploration of their Cytotoxic Properties

Reprinted with permission from Charles M. Keyari, Alison K. Kearns, Nathan S. Duncan*,
Emily A. Eickholt, Geoffrey Abbott, Howard D. Beall, and Philippe Diaz. Synthesis of New
Quinolinequinone Derivatives and Preliminary Exploration of their Cytotoxic Properties. J. Med.
Chem. 2013, 56, 3806-3819. dx.doi.org/10.1021/jm301689x. Copyright 2015 American Chemical Society.
*Role of author was contribution of computational modeling

2.1 Introduction

Lavendamycin (Figure 2-1) is a quinolinequinone antibiotic with antitumor activity first isolated from Streptomyces lavendulae by Balitz et al. in 1982. ${ }^{1,2}$ It is structurally related to streptonigrin, which was first isolated from Streptomyces flocculus. ${ }^{3,4}$ Streptonigrin is known for its potent cytotoxic properties, antitumor activity, in vitro and in vivo antiviral properties, and

Lavendamycin

Streptonigrin

Figure 2-1. Natural quinolinequinone antibiotics.
potent, broad-spectrum antimicrobial properties. Although lavendamycin is not suitable for clinical use due to its toxicity, its analogues are less toxic and hence have potential as antitumor agents. ${ }^{5}$ Recent findings ${ }^{6-11}$ suggest that some indolequinones and quinolinequinones are excellent substrates for the quinone reductase enzyme $\mathrm{NAD}(\mathrm{P}) \mathrm{H}$:quinone oxidoreductase 1 (NQO1) and are selectively cytotoxic to cancer cell lines that overexpress NQO1. NQO1 is a ubiquitous flavoenzyme that catalyzes the two-electron reduction of quinones to hydroquinones, and it is highly expressed in many solid tumors. ${ }^{12}$ This forms the basis for the synthesis of novel quinolinequinones structurally related to lavendamycin as potential NQO1-directed antitumor agents.

Behforouz et al. ${ }^{13}$ first demonstrated that 7 -aminoquinoline-5,8-diones can be efficiently prepared from commercially available 8-hydroxy-2-methylquinoline. Fryatt et al. ${ }^{7}$ also showed that, by starting with 6-methoxyquinoline, 6-methoxy-2-chloroquinoline-5,8-dione was prepared, and subsequent palladium(0)-catalyzed reaction with boronic acids gave novel quinolinequinones under reflux for 24 h . Furthermore, in 2004, ${ }^{14}$ arylboronic acids were shown to be more reactive than their counterparts, the arylpinacolboronate esters, when reacted with indole bromides in Suzuki couplings under reflux. The lower reactivity was attributed to steric factors in the arylpinacolboronate esters. Also, 3-arylindazoles have been synthesized by the reaction of haloindazoles (3-bromoindazole and 3-iodoindazole) with arylboronic acids under $\operatorname{Pd}(0)$ catalysis in Suzuki-type cross couplings. ${ }^{15}$ The reaction times ranged from 1 to 18 h under reflux conditions. In this study we report a direct, more efficient approach to 7 -aminoquinoline quinones starting from commercially available 7 -amino-8-hydroxyquinoline under microwave conditions where the reaction times are shorter. Computational, metabolism, and cytotoxicity studies on the quinoline-5,8-diones are also described.

2.2 Chemistry

The synthesis commenced with nitration of 5-chloro-8-hydroxyquinoline under $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ according to a procedure reported by Musser et al. ${ }^{16}$ to give the 5-chloro-7-nitro-8hydroxyquinoline (1) in good yield (79\%). Hydrogenation under Pd / C catalysis at $40-50 \mathrm{psi}$

Scheme 2-1. a.Reagents and conditions: (i) $\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$; (ii) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{MeOH}, 40-50 \mathrm{psi}$, overnight; (iii) $\mathrm{CH}_{3} \mathrm{COCl}$, DIEA, THF, 2 h ; (iv) $\mathrm{H}_{2} \mathrm{O} / \mathrm{MeOH}$, reflux, 1 h ; (v) $\mathrm{BnBr}, \mathrm{K}_{2} \mathrm{CO}_{3}$, DMF, $50{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$; (vi) mCPBA, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 48 \mathrm{~h}$; (vii) $\mathrm{POCl}_{3}, \mathrm{CHCl}_{3}$, reflux, 2 h ; (viii) $\mathrm{BCl}_{3} \cdot \mathrm{SMe}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight; (ix) Fremy's salt, rt, 1 h ; (x) $\mathrm{RB}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 110-140{ }^{\circ} \mathrm{C}$, $\mu \mathrm{W} 20-25 \mathrm{~min}$.
not only reduced the nitro group to the free amine but also removed the chloride to provide the desired 7-amino-8-hydroxyquinoline (2) in excellent yield (99\%). A direct approach to the amino alcohol 2 involves heating a mixture of 8-hydroxyquinoline and N -methyl-N-phenylhydrazine at $90^{\circ} \mathrm{C}$, albeit very low yields were obtained. ${ }^{17}$ Our attempt to synthesize the amino alcohol by heating in a microwave between 130 and $160^{\circ} \mathrm{C}$ did not improve the yield.

Acetylation proceeded smoothly where both the amino and hydroxyl groups were protected. The resulting diacetylated product (3) was hydrolyzed in $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ under reflux to
form 7-acetamido-8-hydroxyquinoline. Subsequent benzylation of the free hydroxyl was effected by reaction with $\mathrm{BnBr} / \mathrm{K}_{2} \mathrm{CO}_{3}$ in N, N-dimethylformamide (DMF) at $50^{\circ} \mathrm{C}$ for 24 h to give the

Table 2-1. Suzuki Couple Products. Asterisk indicates Stille coupling reaction.

7-acetamido-8-benzyloxyquinoline (4) in 90% yield. Oxidation with m-chloroperoxybenzoic acid (mCPBA) in 1,2-dichloroethane at room temperature (rt) for 48 h gave the N -oxide (5) in 82% yield. ${ }^{18}$ The key intermediate in the synthesis, 2-chloro-7- acetamido-8-benzyloxyquinoline
(6), was obtained in 62% yield by refuxing the N -oxide with POCl_{3} in $\mathrm{CHCl}_{3 .}{ }^{19}$ The high regioselectivity of the reaction can be rationalized in terms of sterics as well as formation of an oxyphosphorane adduct anion in a rapid concerted mechanism. ${ }^{20}$ We also attempted to reflux the N -oxide 5 with SO 2 Cl 2 as reported in literature, ${ }^{9}$ but this only resulted in massive decomposition of the starting material. Deprotection of the benzyl group was effected with $\mathrm{BCl}_{3} \cdot \mathrm{SMe}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and subsequent oxidation with Fremy's salt [potassium nitrosodisulfonate, $\left(\mathrm{KO}_{3} \mathrm{~S}\right)_{2} \mathrm{NO}$] gave 7 -acetamido-2-chloroquinoline-5,8-dione (8) in 71% yield. ${ }^{7}$ The results are summarized in Scheme 2.1 above.

After successful formation of quinolinequinone 8, the stage was now set for Suzuki coupling chemistry. This was accomplished by reaction with different boronic acids under $\operatorname{Pd}(0)$ catalysis in a microwave as illustrated in Table 2-1. Generally, the reactions were complete within $20-30 \mathrm{~min}$ in good yields except for the arylboronate ester, where only 27% of the product (16) was obtained. The mechanistic details of the reaction have been well studied, with oxidative addition, transmetalation, and reductive elimination being the most critical steps. ${ }^{21}$ Interestingly, 7-amino-2-(2-pyridyl)quinoline-5,8-dione was prepared in nine steps starting from 3-hydroxybenzoic acid where the key step was a Friedlander condensation of 2-acetylpyridine and 2-amino-3-benzyloxy-4-bromobenzaldehyde to give 8-benzyloxy-7-bromo-2-(2'pyridyl)quinoline. ${ }^{22}$ Although this seems an attractive strategy, the method lacks the flexibility needed to create a library of lavendamycin analogues.

The final step in the synthesis involved removal of the acetate protecting group, which was effected by reaction with $\mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{MeOH}$ at rt . The tert-butyloxycarbonyl (Boc)-protected derivatives were also subjected to trifluoroacetic acid (TFA)/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt for 2 h to provide the 7-acetamido derivatives.
$\mathbf{2 3}$

Table 2-2. Reduction Ratesa and Oxygen Consumptionb as a Result of Quinoline-5,8-Dione Metabolism by Recombinant Human NQO1 and Electrochemical Reduction Potentials versus Ferrocenec,d. aSpectrophotometric assay with cytochrome c as terminal electron acceptor (550 nm). bOxygen concentration monitored via an oxygen electrode. cE1/2 values calculated as (Epc+Epa)/2 are average values from voltammograms recorded atpotential sweep rate of $50 \mathrm{mV} / \mathrm{s} . \mathrm{Epc}=$ cathodic peak potential; Epa $=$ anodic peak potential. $\mathrm{dnr}=$ nonreversible, anodic peak only.

2.3 Electrochemistry

Eletrochemistry was performed to compare the electrochemical behavior of the quinolinequinones with their reduction rates by NQO1, and the data are shown in Table 2-2. Tetrahydrofuran (THF) was used as the solvent for all compounds except 15, which was run in dimethyl sulfoxide (DMSO). The compounds were run against an $\mathrm{Ag} / \mathrm{AgCl}$ electrode and cathodic and anodic peak potentials, Epc and Epa, respectively, were measured at a potential sweep rate of $50 \mathrm{mV} / \mathrm{s}$, and the midpoint of the peak potentials was used to determine E1/2 values, $($ Epc + Epa)/2. Unfortunately, many of the analogues did not show reversible electrochemistry, and in some cases there were multiple somewhat difficult, but some conclusions can be drawn. For instance, most of the acetylated quinolinequinones had a reduction peak between -1.08 and -1.18 V , an indication that they are easier to reduce than the nonacetylated compounds due to the presence of this electron-withdrawing group. This is consistent with what we reported previously for lavendamycins. However, there was no correlation between reduction potentials and reduction rates by NQO1, in line with previous publications on this topic. ${ }^{6-8,23,24}$ This suggests that steric interactions are more likely to be predictive of substrate efficiency than reduction potentials.

2.4 NMR Spectroscopy and Spectrophotometry

Complexation of zinc(II) triflate by compounds $13,19,22$, and 23 was studied by 1 H NMR spectroscopy. No new peaks were observed in the NMR spectra, indicating that free and complexed forms of zinc(II) triflate were in a rapid exchange relative to NMR time scale. The aromatic region of the NMR spectrum of compound 19 in THF-d8 at room temperature is shown in Figure 2-2.

There was a small difference in chemical shifts of $\mathrm{H}-2^{\prime}$ (moving upfield) and $\mathrm{H}-3$ (moving downfield) after addition of 1 equiv of zinc(II) triflate to the NMR solution (Table S1, Supporting Information, and Figure 2-2) whereas the changes in δ of the other protons were barely noticeable. The biggest change in δ of $\mathrm{H}-2^{\prime}(-0.04 \mathrm{ppm})$ and $\mathrm{H}-3^{\prime}(+0.07 \mathrm{ppm})$ occurs after addition of 10 equiv of $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$. This suggests that weak binding occurs at low $\mathrm{Zn} 2+$ concentration.

Figure 2-2. proton region of NMR spectrum of 19 upon addition of increasing equivalents of $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$ in THF-d8. Note the change in δ of $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-3$ upon addition of $\mathrm{Zn} 2+$.
Equivalents of $\mathrm{Zn} 2+: \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \mathrm{D}=3, \mathrm{E}=4, \mathrm{~F}=5$, and $\mathrm{G}=10$.

In contrast, addition of only 1 equiv of $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$ to compound 22 caused larger chemical shift variations of all the protons (Table S2, Supporting Information, and Figure 2-3).

Figure 2-3. Aromatic protons region NMR spectra of 22 upon addition of increasing equivalents of $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$ in THF-d8. Equivalents of $\mathrm{Zn} 2+: \mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \mathrm{D}=3, \mathrm{E}=4, \mathrm{~F}=5$, and $\mathrm{G}=10$.

Increasing the amount of $\mathrm{Zn} 2+(2-10$ equiv) added to compound 22 made little or no difference in δ afterward ($>0.01 \mathrm{ppm}$). This means that the quinoline derivative binds the $\mathrm{Zn} 2+$ more efficiently than compound 19 and only 1 equiv of $\mathrm{Zn} 2+$ is enough to cause chemical shift variations.

Figure 2-4. Aromatic proton region NMR spectra of 23 upon addition of increasing equivalents of $\mathrm{Zn}(\mathrm{SO} 3 \mathrm{CF} 3) 2$ in THF-d8. Equivalents of $\mathrm{Zn} 2+\mathrm{A}=0, \mathrm{~B}=1, \mathrm{C}=2, \mathrm{D}=3, \mathrm{E}=4, \mathrm{~F}=5$, and $\mathrm{G}=10$.

Similar observations were made with compounds 23 (Table S3, Supporting Information, and Figure 2-4) and 13 (Table S4, Supporting Information). This is consistent with the results reported by Long and Harding, ${ }^{25}$ where they demonstrated that the $1: 1$ bipyridyl complex of streptonigrin was the major complex formed at room temperature by performing an NMR study in THF-d8 with addition of $\mathrm{Zn} 2+$. Titration of compound 23 with $\mathrm{Zn} 2+$ in a mixture of dimethyl sulfoxide/methanol (1:3) was monitored by a spectrophotometer as reported in literature. ${ }^{26}$ A plot
of $\Delta \lambda 355$ against $\mathrm{Zn} 2+$ concentration gave a moderate affinity constant of $1.41 \times 104 \mathrm{M}-1$ for compound 23 binding with $\mathrm{Zn} 2+$.

2.5 Results and Discussion

Quinolinequinone metabolism by recombinant human NQO1 was examined via a spectrophotometric assay that employs cytochrome c as the terminal electron acceptor. Initial rates of reduction (micromoles of cytochrome c reduced per minute per milligram of NQO1) were calculated from the linear portion $(0-30 \mathrm{~s})$ of the reaction graphs. The 7-acetamido-2-(2pyridinyl) compound 13 displayed the highest reduction rate by NQO1 (Table 2-2), although it was the only acetylated analogue with a high reduction rate. In all other cases, 7-amino compounds had much higher reduction rates than corresponding 7-acetamido compounds with identical substituents at the quinolone 2-position. Although unusual, higher rates for acetylated analogues have been observed in other series.6,11 With regard to the aromatic substituents at the quinoline 2-position, no clear trend in reduction rates was observed except that bulkier groups generally decreased reduction rates. Oxygen consumption is a measure of the ability of the reduced quinone (hydroquinone) to redox-cycle following reduction by NQO1. This could lead to production of toxic reactive oxygen species and ultimately to cell death. Oxygen consumption was measured for select quinolinequinones, and the trend, if not the magnitude, mirrored the reduction rates (Table 2-2).

Cell survival wasmeasured by the [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. In previous work, we demonstrated that IC50 values generated from standard clonogenic assays and MTT assays were positively correlated, suggesting that the MTT assay is a reliable indicator of cytotoxicity. 6 We utilized MDA-MB-468 human breast cancer cells stably transfected with human NQO1 cDNA
(19)

Table 2-3. Cytotoxicity of Quinoline-5,8-diones toward MDA468-WT (NQO1-deficient) and MDA468-NQ16 (NQO1-rich) Human Breast Cancer Cell Lines.
(MDA468-NQ16) along with the nontransfected wild-type cells (MDA468) to compare the cytotoxicity of the quinolinequinones (Table 2-3). ${ }^{27}$

Quinolinequinone cytotoxicity (IC50) to MDA468 cells was generally in the single-digit micromolar range following 2-h exposures, with some in the high nanomolar range (11, 13, and 22). Surprisingly, selectivity ratios [IC50 (MDA468)/IC50 (MDA468-NQ16)] were generally <1, meaning that the quinolinequinones were less cytotoxic to the NQO1-rich MDA468-NQ16 cells rather than more cytotoxic. This suggests that NQO1 was protective to the cells rather than functioning as an activating enzyme. ${ }^{27}$ Only two compounds (11 and 23) were selectively cytotoxic to the MDA468-NQ16 cells. The reason for the general absence of selective cytotoxicity with this particular series of compounds is unclear, but it is consistent with NQO1's primary role as a detoxification enzyme. ${ }^{27}$

Molecular docking of the quinolinequinones in the NQO1 active site was performed by use of Sybyl 8.1.1 and GOLD 5.1 for scoring. Three good NQO1 substrates (13, 20, and 24) and three poor NQO1 substrates (9,11 , and 17) were docked and scored with ChemPLP and ChemScore (Table 2-4). The highest scores representing a good fit for the model were found for 20 and 24 , consistent with the metabolism data. The exception again was 13 , which scored the lowest but was the best substrate. Interatomic distances between quinolinequinone carbonyl groups and flavin adenine dinucleotide (FAD) atom N5 and His161 were shortest for 20, but all were within a reasonable distance for hydride transfer from FAD when the dynamic effects of the quinone-enzyme interaction are considered. Figure 2-5 shows possible docking conformations for 20 and 11 with NQO1. All quinolinequinones orient with the quinone ring above the FAD isoalloxazine ring as needed for hydride transfer.

The mechanism of action of lavendamycin and streptonigrin is not clearly understood. However, previous studies demonstrated that quinone moieties are reduced by NQO1 to the
corresponding hydroquinones, which undergo autoxidation to produce activated oxygen species
$\mathbf{2 3}$

Table 2-4. Computational Parameters for Selected Quinoline-5,8-diones. including not only semiquinone derivatives but also superoxide and hydroxyl radicals. ${ }^{28}$ In addition, both streptonigrin and lavendamycin chelate divalent cationic metal ions. This property might confer to streptonigrin and lavendamycin the ability to shuttle iron cations into the cells, which in turn can catalyze production of reactive oxygen species through a Fenton reaction. On the other hand, this chelation can result in depletion of intracellular cationic metals, which might result in cell death. ${ }^{29}$ Generation of the semiquinone radical, after reduction of the quinone to the hydroquinone followed by autoxidation, results in a decrease of activity in nine compounds. The
best NQO1 substrates are less active compounds (13, 20, and 24) in NQO1 expressing cells. In contrast, poor NQO1 substrates such as compound 22 or 11, exhibit the best activity in both

Figure 2-5. Quinolinequinones docked in NQO1 active site: 20, cyan; 11, magenta; FAD, green.
cancer cells expressing NQO1 and those not expressing NQO1. According to the NMR experiments, quinoline derivative 22 and compound 13 bind the $\mathrm{Zn} 2+$ more efficiently than
compound 19 , and only 1 equiv of $\mathrm{Zn} 2+$ is enough to cause important chemical shift variations. Similar observations were made with compound 23, which was less cytotoxic than compound 22. Even though metal chelation by these compounds is still a plausible mechanism to explain their activity against breast cancer cells, another mode of action cannot be discarded. Most active compounds (11, 13, and 22) are potential tridentate ligands for metals. Compound 23 exhibits lower activity than the corresponding acetylated amino analogue 13. It was proposed that metals can assist tautomeric shift from the active quinone analogues to the quinoid analogue, which has a structure isoelectronic with the biologically inactive azastreptonigrin. ${ }^{24}$ This tautomeric shift can explain the decrease of activity of the amino derivative compared to the amido derivative. In our series of aryl-substituted quinonequinolines, the active molecules are the quinone derivatives and not the semiquinone derivatives. A similar mode of action to the bidentate metal ligand derivative 8-hydroxyquinoline is currently under investigation. ${ }^{30,31}$

2.6 Conclusions

A ten-step synthetic scheme led to good yields for quinolinequinone analogues of lavendamycin projected as NQO1-directed antitumor agents. Unexpectedly, 10 of 11 analogues demonstrated excellent cytotoxicity (IC50 values of single-digit micromolar or better) toward MDA468 breast cancer cells, but only two were selectively cytotoxic to NQO1-expressing MDA468-NQ16 cells. Compounds 22 and 11 are poor NQO1 substrates and exhibit the best activity against breast cancer cells. In our novel series of aryl-substituted quinonequinolines, the active molecules appears to be the quinone derivatives and not the semiquinone derivatives resulting from NQO1 reduction, suggesting that the mode of action of this novel series differs from that of lavendamycin and involves an unidentified target. Quinolinequinone derivatives 11, 13, and 22 cytotoxicities (IC50) to MDA468 cells were in the high nanomolar range. Our results
seem to indicate that compounds 11,13 , and 22 effects could be also, at least partially, mediated by metal chelation. These aryl quinonequinoline derivatives represent a promising class of cytotoxic agents with potential novel therapeutic value.

2.7 Experiments Section

2.7.1 Cell Culture.

MDA-MB-468 (MDA468) human breast cancer cells and stably NQO1-transfected MDA468-NQ16 ${ }^{32}$ were a gift from Dr. David Ross (University of Colorado-Denver, Denver, CO). MDA468 cells had no measurable NQO1 activity whereas activity in MDA468-NQ16 cells was $1070 \mathrm{nmol} \cdot \mathrm{min}-1$ (mg of total cell protein) -1 , with dichlorophenolindophenol (DCPIP) as the standard electron acceptor. Cells were grown in RPMI 1640 medium with L-glutamine and penicillin/streptomycin, supplemented with 10% fetal bovine serum (FBS). Cell culture medium and supplements were obtained from Invitrogen (Carlsbad, CA). The cells were incubated at 37 ${ }^{\circ} \mathrm{C}$ under a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$.

2.7.2 Spectrophotometric Cytochrome c Assay.

Quinolinequinone reduction was monitored by a spectrophotometric assay in which the rate of reduction of cytochrome c was quantified at 550 nm . Briefly, the assay mixture contained cytochrome c $(70 \mu \mathrm{M})$, reduced nicotinamide adenine dinucleotide ($\mathrm{NADH} ; 1 \mathrm{mM}$), recombinant human NQO1 ($0.1-10 \mu \mathrm{~g}$) (gift from Dr. David Ross, University of Colorado-Denver, Denver, $\mathrm{CO})$, and quinonlinequinones $(25 \mu \mathrm{M})$ in a final volume of 1 mL of Tris- $\mathrm{HCl}(25 \mathrm{mM}, \mathrm{pH} 7.4)$ containing $0.7 \mathrm{mg} / \mathrm{mL}$ bovine serumalbumin (BSA) and 0.1% Tween-20. Reactions were carried out at room temperature and started by the addition of NADH. Rates of reduction were calculated from the initial linear part of the reaction curve ($0-30 \mathrm{~s}$), and results were expressed in terms of micromoles of cytochrome c reduced per minute per milligram of NQO1 by use of a
molar extinction coefficient of $21.1 \mathrm{mM}-1 \cdot \mathrm{~cm}-1$ for cytochrome c . All reactions were carried out at least in triplicate.

2.7.3 Oxygen Consumption.

Oxygen concentration was monitored with a MI-730 micro-oxygen electrode (Microelectrodes, Bedford, NH) with concentrations adjusted for temperature ($25^{\circ} \mathrm{C}$). Assay mixtures contained $25 \mu \mathrm{M}$ quinonlinequinones, $200 \mu \mathrm{M} \mathrm{NADH}$, and $1 \mu \mathrm{~g} / \mathrm{mL}$ NQO1 in a 2 mL Tris-HCl/BSA/Tween (0.1\%) buffer system. Reactions were started with NADH and measured over 3-min intervals at room temperature. All reactions were carried out in triplicate.

2.7.4 Electrochemistry.

Cyclic voltammograms (CV) were collected for 10 analogues on a BAS CV-50W electrochemical analyzer using a standard three-electrode cell. Experiments were performed with an $\mathrm{Ag} / \mathrm{AgCl}$ reference electrode, a glassy carbon working electrode, and a to the ferrocene $(0 /+)$ couple in the solvent used, primarily THF, which occurs at +0.60 V versus $\mathrm{Ag} / \mathrm{AgCl}$. The compounds were run at concentrations of 1 mMin THF, except compound 15 which was run in DMSO, with 0.1 M tetrabutylammonium hexafluorophosphate as supporting electrolyte. All samples were purged and run under an Ar atmosphere during the course of the experiment, and the electrodes were washed and wiped down between each sample. Each CV was collected at a sweep rate of $50 \mathrm{mV} / \mathrm{s}$ in the potential range of 0 to -2 Vat room temperature of $21^{\circ} \mathrm{C}$.

2.7.5 NMR Spectroscopy.

One-dimensional 1H NMR spectra were recorded at room temperature on a Bruker Avance IIITM spectrometer (The Woodlands, Texas) at 400 MHz using a $5-\mathrm{mm}$ probe and a simple pulse-acquire sequence. Acquisition parameters consisted of spectral width of 4000 Hz
with an acquisition time of 3.98 s , number of scans 128 , and relaxation delay 1 s . Complexes were prepared in a mixture of CDCl 3 and THF-d8.

2.7.6 Cell Viability Assay.

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96 -well plates at a density of 10000 cells $/ \mathrm{mL}$ and allowed to attach overnight (16 h). Quinolinequinone solutions were applied in medium for 2 h , removed, and replaced with fresh medium, and the plates were incubated at $37^{\circ} \mathrm{C}$ under a humidified atmosphere containing 5\% CO_{2} for $3-5$ days. MTT $(50 \mu \mathrm{~g})$ was added and the cells were incubated for another 4 h . Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO, and absorbance was determined on a plate reader at 560 nm . IC50 values (concentration at which cell survival equals 50% of control) were determined from semilog plots of percent of control versus concentration. Selectivity ratios were defined as IC50 value for the MDA468 cell line divided by IC50 value for the MDA468-NQ16 cell line.

2.7.7 Molecular Modeling.

For docking purposes, the crystallographic coordinates of the human NQO1 complex with

3-(hydroxymethyl)-5-(2-methylaziridin-1-yl)-1-methyl-2-phenylindole-4,7-dione
were obtained from the Brookhaven Database (PDB code $1 \mathrm{H} 69^{33}$ and resolution $1.86 \AA$) and the structure was edited accordingly to provide a monomer of the protein. The protein complex was then minimized within Sybyl 7.3 (Tripos Ltd., St. Louis, MO) while all heavy atoms were held stationary. The ligand was then removed to leave the receptor complex, which was used for the subsequent docking studies. For preparation of ligand structures, fragments from Sybyl 8.1.1 were used to construct the compounds and all symmetric compounds were prepared as
monoanionic ligands. Ligands were subject to 1000 iterations of energy minimization by the Powell method with MMFF94s force field. For computational docking, GOLD 5.1 software was used in combination with the ChemPLP ${ }^{34}$ scoring function (rescoring with ChemScore). ${ }^{35}$

The active site was defined as being any volume within $8 \AA$ of the quinone scaffold of 25 in its crystal pose in 1 H 69 . Each GA run used the default parameters of 100000 genetic operations on an initial population of 100 members divided into five subpopulations, with weights for crossover, mutation, and migration being set to 95,95 , and 10 , respectively. GOLD allows a user-definable number of GA runs per ligand, each of which starts from a different orientation. For these experiments, the number of GA runs was set to 10 , and scoring of the docked poses was performed with the ChemPLP scoring function with ChemScore rescore. Each GOLD run was saved and the strongest scoring binding pose of each ligand (subject to a rmsd default distance threshold of $1.5 \AA$) was compared to that of the reference ligand position observed in the crystal structure. The best output poses (orientations) of the ligands generated were analyzed on the basis of ChemPLP/ChemScore score, feasibility of hydride transfer process, and H-bonding to the enzyme. The best pose(s) were visualized with PyMOL Molecular Graphics System version 1.3.

2.7.8 Chemistry

All moisture sensitive reactions were performed in an inert, dry atmosphere of argon in flame dried glassware. Air sensitive liquids were transferred via syringe or cannula through rubber septa. Reagent grade solvents were used for extraction and flash chromatography. THF was distilled from $\mathrm{Na} /$ benzophenone under argon; dichloromethane $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and chloroform $\left(\mathrm{CHCl}_{3}\right)$ were distilled from CaH_{2} under argon. All other reagents and solvents which were purchased from commercial sources, were used directly without further purification. The
progress of reactions was checked by analytical thin-layer chromatography (Sorbent Technologies, Silica G TLC plates w/UV 254). The plates were visualized first with UV illumination followed by charring with ninhydrin (0.3% ninhydrin (w/v), 97:3 EtOH-AcOH). Flash column chromatography was performed using prepacked Biotage SNAP cartridges on a Biotage Isolera One instrument. Microwave reactions were performed using a Biotage Initiator instrument. The solvent compositions reported for all chromatographic separations are on a volume/volume (v/v) basis. ${ }^{1} \mathrm{HNMR}$ spectra were recorded at 400 or 500 MHz and are reported in parts per million (ppm) on the δ scale relative to tetramethylsilane as an internal standard. ${ }^{13} \mathrm{CNMR}$ spectra were recorded at 100 or 125 MHz and are reported in parts per million (ppm) on the δ scale relative to CDCl 3 ($\delta 77.00$). Melting points were determined on a Stuart melting point apparatus from Bibby Scientific Limited and are uncorrected. High Resolution mass spectrometry (HRMS) was performed on a Waters/Micromass LCT-TOF instrument. All compounds were more than 95% pure.

5-chloro-8-hydroxy-7-nitroquinoline (1). This compound was prepared according to the literature ${ }^{12}$ procedure to yield a yellow solid, $4.40 \mathrm{~g}(79 \%)$. M.p. $198-200^{\circ} \mathrm{C}$, [lit. ${ }^{12}$, m.p. $\left.192-194{ }^{\circ} \mathrm{C}\right] ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 9.09(\mathrm{dd}, J=4.2,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{dd}, J=8.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}$, 1H), $7.94(\mathrm{dd}, J=8.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 150.5,150.1,139.9,133.6$, 132.3, 128.5, 125.9, 122.0, 117.9. HRMS (TOF MS ES+) for $\mathrm{C}_{9} \mathrm{H}_{6} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}$(MH+) calcd. 225.0067, found 225.0055.

7-Amino-8-hydroxyquinoline (2). Compound $1(2.4 \mathrm{~g}, 10.69 \mathrm{mmol})$ was placed in a hydrogenation apparatus equipped with a magnetic stir bar and methanol added. $\mathrm{Pd} / \mathrm{C}(150 \mathrm{mg})$ in a small amount of $\mathrm{MeOH}(60 \mathrm{~mL})$ was added and stirring commenced. H_{2} gas was introduced at a pressure of 40-50 psi and reacted at rt overnight. TLC showed full conversion. The black
solution was filtered using a celite pad and concentrated under reduced pressure to yield $\mathbf{2}$ as a black oil, 99% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.66(\mathrm{dd}, J=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=$ $8.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{dd}, J=8.2,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.0,137.9,136.6,136.1,132.1,122.4,119.3,118.5$, 117.7. HRMS (TOF MS ES+) for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{2} \mathrm{O}^{+}(\mathrm{MH}+)$ calcd. 161.0715, found 161.0707.

7-acetamido-8-acetyloxyquinoline (3). Compound $2(330 \mathrm{mg}, 2.06 \mathrm{mmol})$ was dissolved in dried THF (10 mL) and DIEA added with stirring. $\mathrm{AcCl}(176 \mu \mathrm{~L})$ in 1 mL THF was added drop wise while stirring and reacted at rt for 2 hrs . Then concentrated under reduced pressure followed by redissolving in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ and water (10 mL). The two layers were allowed to partition and extracted 2x $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Then purified on a Biotage SNAP cartridge (25 g) at a flow rate of $25 \mathrm{~mL} / \mathrm{min}$ to yield an orange solid, $382 \mathrm{mg}(76 \%)$; m.p. $151-153^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.85(\mathrm{dd}, J=4.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $7.70(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~s}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.7,168.5,150.6,140.7,135.8,134.9,130.8,125.8,125.6$, 121.3, 120.6, 24.5, 21.0; HRMS (TOF MS ES+) for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$(MH+) calcd. 245.0926, found 245.0923.

7-acetamido-8-benzyloxyquinoline (4). To a solution of $\mathbf{3}(1.2 \mathrm{~g}, 4.91 \mathrm{mmol})$ in $\mathrm{MeOH}(100 \mathrm{~mL})$ was added water (10 mL) and the reaction stirred under reflux for 1 hr . The black solution was concentrated and in vacuo and flash chromatographed on a KP-Sil 100 g Biotage SNAP cartridge using MeOH: DCM as the solvent $(0-5 \% \mathrm{MeOH})$. A white solid $(0.9 \mathrm{~g})$ obtained and used for the next step directly. $\mathrm{R}_{\mathrm{f}}=0.11\left(5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

To a solution of 7-acetamido-8-hydroxyquinoline ($2.27 \mathrm{~g}, 11.23 \mathrm{mmol}$) in 40 mL DMF was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.33 \mathrm{~g}, 16.80 \mathrm{mmol})$ and $\mathrm{BnBr}(2 \mathrm{~mL}, 16.80 \mathrm{mmol})$ respectively. The reaction was stirred at $50^{\circ} \mathrm{C}$ for 24 hrs after which TLC showed almost all the starting material was consumed. The reaction mixture was diluted with $30 \mathrm{mLCH}_{2} \mathrm{Cl}_{2}$, filtered with a pad of celite and concentrated under reduced pressure. The residue was loaded onto a 100 g Biotage SNAP cartridge by dissolving in a small amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and eluted with EtOAc:heptane gradient (0$50 \%)$. Yield $2.95 \mathrm{~g}(90 \%)$ of a yellow oil was obtained. $\mathrm{R}_{\mathrm{f}}=0.50$ (60% EtOAc:heptane). ${ }^{1} \mathrm{H}$ NMR (500 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 8.95(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=$ $8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 6 \mathrm{H}), 5.49(\mathrm{~s}, 2 \mathrm{H}), 1.93(\mathrm{~s}$, 4H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 168.3,150.0,142.0,141.0,137.4,136.2,132.0,128.9$, $128.8,128.8,126.0,124.0,120.0,120.0,77.3,24.6$. HRMS (TOF MS ES+) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ (MH+) calcd. 293.1290, found 293.1264.

7-acetamido-8-(benzyloxy)quinoline-1-oxide (5). The starting material (4) (428 mg, 1.46 mmol) was dissolved in 4.3 mL 1,2-dichloroethane with stirring. The m CPBA ($340 \mathrm{mg}, 1.76 \mathrm{mmol}$) was added $(0.5 \mathrm{M})$ and the reaction stirred at rt for 48 hrs . TLC showed almost all the starting material was consumed. The precipitated m CPBA was filtered and washed with $5 \mathrm{~mL} 1,2$ dichloroethane. The filtrate was concentrated under reduced pressure and flash chromatographed on a KP-sil 100 g Biotage SNAP cartridge using a $5 \% \mathrm{MeOH}$: DCM gradient at a flow rate of 25 $\mathrm{mL} / \mathrm{min}$ to yield a yellow solid, $373 \mathrm{mg}(82 \%)$. M.p. $145-147^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}} 0.24(5 \% \mathrm{MeOH}: \mathrm{DCM}) .{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO) $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.81$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.50(2 \mathrm{H}), 7.40-7.30$ (aromatic, 4 H$).{ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) $\delta 168.9,139.8,138.1,137.1,136.4,133.3,129.8,129.1,128.1,128.0$,
124.7, 124.4, 120.8, 77.7, 23.8. HRMS (TOF MS ES+) for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$(MH+) calcd. 309.1239, found 309.1227.

7-acetamido-8-benzyloxy-2-chloroquinoline (6). Phosphoryl chloride ($280 \mu \mathrm{~L}, 3.0 \mathrm{mmol}$) in $\mathrm{CHCl}_{3}(1.0 \mathrm{~mL})$ was added to a stirred solution of the oxide $5(770 \mathrm{mg}, 2.50 \mathrm{mmol})$ in 21 mL CHCl_{3} and stirred for 15 min . The mixture was then refluxed for 2 hrs , cooled and poured into ice (50 g) and the pH adjusted to 12 with NaOH (aq.). The aq. layer was extracted with 2×50 mL $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with $2 \times 20 \mathrm{~mL} \mathrm{H} \mathrm{O}$, dried over MgSO_{4}, filtered and concentrated under reduced pressure to yield a brown oil. Then purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-50\%) as the solvent. Yield 504 mg (62%) of an off-white solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.58\left(60 \%\right.$ EtOAc:heptane); M.P. $92-94{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.06(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~s}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.48(\mathrm{~s}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.4,150.5,141.4,140.3,139.0,137.2,133.0,128.9,128.8,128.8,124.3,123.3,121.1,120.1$, 77.4, 24.7. HRMS (TOF MS ES+) for $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}(\mathrm{MH}+$) calcd. 327.0900, found 327.0936. 7-acetamido-2-chloro-8-hydroxyquinoline (7). To a solution of 6 ($330 \mathrm{mg}, 1.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.1 \mathrm{~mL})$ under an Ar atmosphere was added $\mathrm{BCl}_{3} \bullet \mathrm{SMe}_{2}(10.1 \mathrm{~mL})$ via a syringe and stirred at rt overnight. TLC showed the reaction was complete. The reaction was then quenched with saturated NaHCO_{3} (aq.) and extracted with $2 \times 20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on 50 g KP -Sil Biotage SNAP cartridge using a $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient $(0-5 \% \mathrm{MeOH})$ at a flow rate of $25 \mathrm{~mL} /$ minute to give a yellow solid, $198 \mathrm{mg}(82 \%)$. M.P. $176-178^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{f}}=0.50$ ($5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.82(\mathrm{brs}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}$,

3H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta$ 168.6, 149.7, 138.9, 138.2, 137.1, 124.4, 123.3, 121.5, 121.3, 118.0, 24.9. HRMS (TOF MS ES+) for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}$(MH+) calcd. 237.0431, found 237.0424.

7-Acetamido-2-chloroquinoline-5,8-dione (8). To a solution of 7 ($300 \mathrm{mg}, 1.27 \mathrm{mmol}$) in acetone $(30 \mathrm{~mL})$ was added a solution of Fremy's salt in $\mathrm{NaH}_{2} \mathrm{PO}_{4}$ buffer ($0.3 \mathrm{M}, 30 \mathrm{~mL}$) and the mixture stirred at rt for 1 hr . A further solution of Fremy's salt in the buffer ($0.3 \mathrm{M}, 30 \mathrm{~mL}$) was added and stirring continued for 2 hrs . The acetone was removed under reduced pressure and the residue extracted with $2 \times 50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ phases were combined, dried over MgSO_{4} and concentrated under reduced pressure. The residue was purified on a 25 g HP-Sil Biotage SNAp cartridge using EtOAc:heptanes gradient (0-60\%) to obtain a yellow solid, $225 \mathrm{mg}(71 \%$ over 2 steps); m.p. $224-226^{\circ} \mathrm{C}$ (decomposes into a black mass), $\mathrm{R}_{\mathrm{f}}=0.49$ (60% EtOAc:heptane). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.41(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~s}, 1 \mathrm{H}), 7.74(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 183.4,178.1,169.5,156.7,145.9$, 140.4, 137.2, 129.9, 128.0, 116.3, 25.1. HRMS (TOF MS ES+) for $\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{ClN}_{2} \mathrm{O}_{3}{ }^{+}$(MH+) calcd. 251.0223, found 250.0203.

General procedure for Suzuki coupling under microwave conditions. The 7-acetamido-2-chloroquinoline-5,8-dione $\mathbf{8}$ ($21 \mathrm{mg}, 0.08 \mathrm{mmol}$) was dissolved in 4 mL dimethoxyethane (DME) and degassed under reduced pressure. The palladium (0) catalyst, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{mg}$, 0084 mmol) was added and the solution degassed further. The mixture was stirred under Ar atmosphere for 10 minutes. $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution $(0.2 \mathrm{~mL}, 2.0 \mathrm{M})$ was added followed by the boronic acid (0.126 mmol). The mixture was then heated using a Biotage microwave initiator at 110 $140^{\circ} \mathrm{C}$ for 20 minutes. After cooling, TLC showed all the starting material was consumed. The reaction mixture was poured into DCM and washed with $2 \times 10 \mathrm{~mL}$ water. Then dried over
MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-50\%) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. For very polar products, $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(0-10 \% \mathrm{MeOH})$ was used as solvent for purification. 7-acetamido-2-(4-(trifluoromethyl)phenyl)quinoline-5,8-dione (9). Yield 21 mg (70\%) of a yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.47$ (50% EtOAc:heptane); m.p. $250^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.45(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{~s}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $184.1,179.1,169.5,160.1,146.1,140.6,135.7,128.3,128.0,126.0,126.0,126.0,125.3,116.5$, 25.2; HRMS (TOF MS ES+) for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}(\mathrm{MH}+$) calcd. 361.0800, found 361.0834. 7-acetamido-2-(3-pyridinyl))quinoline-5,8-dione (10). Yield 21 mg (41\%) of a yellow solid obtained, $\mathrm{R}_{\mathrm{f}}=0.19$ ($5 \% \mathrm{MeOH}: \mathrm{DCM}$); m.p. $>300^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.55(\mathrm{~m}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=8.0,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.2,179.0,170.4,158.9,150.7,148.1,146.1,140.9,135.7,135.7,128.1,125.3,116.6,24.6$; HRMS (TOF MS ES+) for $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+} \mathrm{MH}+$) calcd. 294.0879, found 294.0914. 7-amino-2-(3-pyridinyl)quinoline-5,8-dione: $6 \mathrm{mg}(12 \%)$ of a red solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.13(5 \%$ $\mathrm{MeOH}: \mathrm{DCM}) ;$ m.p. $195-197^{\circ} \mathrm{C}$ (decomposes, turns black); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29$ (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.58(\mathrm{ddd}, J=8.0,2.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59(\mathrm{ddd}, J=8.0,4.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.9,179.8,157.0,150.4,149.6,147.6,146.3,135.4,135.0,133.5$, 129.4, 124.7, 123.8, 102.1. HRMS (TOF MS ES+) for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \mathrm{MH}+$) calcd. 252.0773, found 252.0795 .

7-acetamido-2-(8'-quinolinyl)quinoline-5,8-dione (11). Yield $31 \mathrm{mg}(51 \%)$ of a yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.25$ (70% EtOAc:heptane), crystallized from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; m.p. $295^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.93(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 8.48(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.34(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04$ $(\mathrm{dd}, J=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{~s}, 1 \mathrm{H}), 7.76(\mathrm{dd}, J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 184.8,179.1,170.9,161.9,150.5,145.7,145.1$, $140.9,136.7,136.5,133.3,131.9,131.7,130.2,128.4,127.6,126.3,121.4,116.5,24.2$. HRMS (TOF MS ES+) $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}(\mathrm{MH}+$) calcd. 344.1035, found 344.1022.

7-acetamido-2-(2-(1-tert-butoxycarbonylindolyl))quinoline-5,8-dione (12). Yield 63mg (67\%) of an orange was obtained. $\mathrm{R}_{\mathrm{f}}=0.40\left(50 \%\right.$ EtOAc:heptane); m.p. $191-193{ }^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.97$ (s, 1H), $7.89(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{dd}, J=$ 9.1, $5.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 184.2$, $179.0,169.6,157.4,149.7,145.3,140.4,138.1,137.5,134.2,128.6,127.9,127.6,126.0,123.3$, $121.5,116.5,115.2,114.0,84.2,27.8,25.1$. HRMS (TOF MS ES+) $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}(\mathrm{MH}+)$ calcd. 432.1559, found 432.1568 .

7-acetamido-2-(2-pyridinyl)quinoline-5,8-dione (13). Yield 37 mg (71\%) of a yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.19$ ($5 \% \mathrm{MeOH}: \mathrm{CH} 2 \mathrm{Cl} 2$), crystallized from $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$; m.p. $255-258^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}\right) \delta 10.08(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{ddd}, J=4.8,1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $8.53(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H})$, $7.58(\mathrm{ddd}, J=7.5,4.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) δ 184.6, 178.4, $171.5,158.6,153.6,149.8,146.4,142.5,137.8,135.0,128.5,125.5,124.6,121.7,115.3,24.7$. HRMS (TOF MS ES+) $\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}(\mathrm{MH}+)$ calcd. 294.0879, found 294.0914.

7-acetamido-2-(2-(1-tert-butoxycarbonylpyrrolyl))quinoline-5,8-dione (14). Yield 36 mg (53\%) of a yellow solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.30$ (50% EtOAc:heptane); m.p. 191-193 ${ }^{\circ} \mathrm{C}$ (decomposes), recrystallized from methanol; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 8.39(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=3.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{dd}, J=3.4,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 6.29(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $184.3,179.2,169.5,156.9,148.8,145.3,140.3,134.0,132.5,128.0,127.3,125.5,118.6,116.4$, 111.2, 84.4, 27.7, 25.1. HRMS (TOF MS ES+) $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{~N}_{3} \mathrm{O}_{5}{ }^{+}$(MH+) calcd. 382.1403, found 382.1381.

7-acetamido-2-(4-pyrazolyl))quinoline-5,8-dione (15). Yield 31 mg (42\%) of a brown solid was obtained. $\mathrm{R}_{\mathrm{f}}=0.33$ ($5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $270^{\circ} \mathrm{C}$ (decomposes), recrystallized from methanol; ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, ~ D M S O\right) ~ \delta 13.34(\mathrm{~s}, 1 \mathrm{H}), 9.97(\mathrm{~s}, 1 \mathrm{H}), 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{DMSO}) \delta 184.6,178.6,171.4,156.1,146.6,142.1,134.2,126.1,123.8,121.2,115.1,24.6$. HRMS (TOF MS ES+) $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{~N}_{4} \mathrm{O}_{3}{ }^{+}(\mathrm{MH}+$) calcd. 283.0831, found 283.0846.

7-acetamido-2-(3-(2-acetamido-pyridinyl))quinoline-5,8-dione (16). The quinone 8 ($71 \mathrm{mg}, 0.28$ mmol) was dissolved in 2 mL 1,4-dioxane and degassed under reduced pressure. $\mathrm{PdCl}_{2}(\mathrm{dppf})(20$ mg), $\mathrm{K}_{3} \mathrm{PO}_{4}(238 \mathrm{mg})$ and the boronate were added and the solution degassed further. The mixture was stirred under Ar atmosphere for 10 minutes. The mixture was then heated heated using a Biotage microwave initiator at $120^{\circ} \mathrm{C}$ for 30 minutes. After cooling, the reaction mixture was poured into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with $2 \times 10 \mathrm{~mL}$ water and extracted $2 \times 30 \mathrm{~mL}$ DCM. The combined organic phases were dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on a HP-Sil 25 g Biotage SNAP cartridge using $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient ($0-5 \%$) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. Yield $23 \mathrm{mg}(23 \%)$ of a brown solid
was obtained. $\mathrm{R}_{\mathrm{f}}=0.32\left(5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $249^{\circ} \mathrm{C}$ (decomposes); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 10.82(\mathrm{~s}, 1 \mathrm{H}), 10.04(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H})$, $8.45(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}), 2.28(\mathrm{~s}$, 3H), 2.14 (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO) δ 184.6, 178.5, 171.5, 169.7, 157.4, 153.6, 147.3, 146.6, 142.4, 137.0, 134.8, 128.0, 127.2, 124.1, 115.3, 113.0, 24.7, 24.0. HRMS (TOF MS ES+) $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{4} \mathrm{O}_{4}^{+}(\mathrm{MH}+)$ calcd. 351.1093, found 351.1064. 7-acetamido-2-(2-indolyl)quinoline-5,8-dione (17). The starting material 12 ($39 \mathrm{mg}, 0.09 \mathrm{mmol}$) was dissolved in $2.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ using an ice bath. Trifluoroacetic acid (140 $\mu \mathrm{L}$) was the added dropwise and reacted at rt for 2 hrs . TLC showed full conversion. Then quenched with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted $2 \times 20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-70\%) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. Yield 17 mg (59\%) of a red solid was obtained after recrystallization from MeOH . M.p. $185^{\circ} \mathrm{C}$, decomposes; $\mathrm{R}_{\mathrm{f}}=0.38$ (70% EtOAc:heptane). ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{~s}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~s}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 184.2,180.4,170.5,154.7,145.4,140.3,137.8,134.7$, 134.4, 128.3, 126.6, 124.4, 124.4, 121.5, 120.2, 117.0, 111.7, 104.4, 24.4. HRMS (TOF MS ES+ $) \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}(\mathrm{MH}+$) calcd. 332.1035, found 332.1030.

7-acetamido-2-(2-(pyrrolyl))quinoline-5,8-dione (18). The starting material 14 ($30 \mathrm{mg}, 0.08$ mmol) was dissolved in $3 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and cooled to $0^{\circ} \mathrm{C}$ using an ice bath. Trifluoroacetic acid $(150 \mu \mathrm{~L})$ was the added dropwise and reacted at rt for 2 hrs . TLC showed full conversion. Then quenched with sat. $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted $2 \times 20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layers were
combined, dried over MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptane gradient (0-50\%) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$. Yield 21 mg (93\%) of a red solid was obtained after recrystallization from MeOH. M.P. $255^{\circ} \mathrm{C}$, decomposes. $\mathrm{R}_{\mathrm{f}}=0.11$ ($50 \% \mathrm{EtOAc}:$ heptane). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO) $\delta 11.65(\mathrm{~s}, 1 \mathrm{H}), 9.95(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~s}$, $1 \mathrm{H}), 7.07-7.04(\mathrm{~m}, 2 \mathrm{H}), 6.28-6.22(\mathrm{~m}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{DMSO}\right) \delta$ 184.6, 178.7, 171.4, 154.0, 146.6, 141.9, 133.9, 130.1, 125.3, 123.8, 121.8, 115.2, 111.9, 110.4, 24.7. HRMS (TOF MS ES+ $) \mathrm{C}_{15} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{3}{ }^{+}$(MH+) calcd. 282.0879, found 282.0909.

General procedure for removal of the acetate group with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{SO}_{4}$. To the starting material (0.1 mmol) in a 20 mL vial was added $175 \mu \mathrm{~L}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 3.0 mL MeOH and stirred at rt for 3 hrs. The red solution was then neutralized with $5 \mathrm{~mL} 5 \% \mathrm{NaHCO}_{3}$ (aq.) and extracted with 5 X $10 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried over MgSO_{4}, filtered and concentrated under reduced pressure. Then purified on a HP-Sil 25 g Biotage SNAP cartridge using EtOAc:heptanes ($0-70 \%$) or $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient ($0-5 \%$) at a flow rate of $20 \mathrm{~mL} / \mathrm{min}$.

7-Amino-2-(4-(trifluoromethyl)phenyl)quinoline-5,8-dione (19). The general procedure was used to obtain $6.0 \mathrm{mg}(67 \%)$ of a red solid; $\mathrm{R}_{\mathrm{f}}=0.38$ (60% EtOAc:heptane); m.p. $151-153^{\circ} \mathrm{C}$ (decomposes, turns black); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (126 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.2,180.1,158.7,150.3,146.3,140.6,135.1,129.4,127.7,125.5,125.5$, 125.1, 105.8, 102.4. HRMS (TOF MS ES+) $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$(MH+) calcd. 319.0694, found 319.0666.

7-amino-2-(3-pyridinyl)quinoline-5,8-dione (20). The general procedure was used to obtain 10 $\mathrm{mg}(83 \%)$ of a red solid. $\mathrm{R}_{\mathrm{f}}=0.16\left(5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $195-197^{\circ} \mathrm{C}$ (decomposes, turns
black). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.29(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=4.9,1.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.58(\mathrm{ddd}, J=8.0,2.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.22(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.59$ (ddd, $J=8.0,4.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 181.9,179.8,157.0,150.4$, 149.6, 147.6, 146.3, 135.4, 135.0, 133.5, 129.4, 124.7, 123.8, 102.1. HRMS (TOF MS ES+) for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+} \mathrm{MH}+$) calcd. 252.0773, found 252.0795.

7-amino-2-(2-indolyl)quinoline-5,8-dione (21). The general procedure was used to obtain 19 mg (63%) of a dark-brown solid. $\mathrm{R}_{\mathrm{f}}=0.22$ (70% EtOAc:heptane); m.p. $235^{\circ} \mathrm{C}$ decomposes. ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.27(\mathrm{ddd}, J=8.1,7.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H})$, $7.12(\mathrm{td}, J=7.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 182.6,181.6,153.6$, $149.5,145.9,137.6,135.0,134.2,128.3,128.0,124.1,124.0,121.3,120.0,111.7,103.5,102.9$. HRMS (TOF MS ES+) for $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}(\mathrm{MH}+)$ calcd. 290.0930, found 290.0900.

7-amino-2-(8-quinolinyl)quinoline-5,8-dione (22). The general procedure was used to obtain 55 $\mathrm{mg}(71 \%)$ of a brown solid. $\mathrm{R}_{\mathrm{f}}=0.29\left(5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; m.p. $243-245^{\circ} \mathrm{C}$, recrystallized from $\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.92(\mathrm{dd}, J=4.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{dd}, J=8.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{dd}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J$ $=8.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{dd}, J=8.1,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 182.8,180.1,160.5,150.3,150.2,146.2,145.2,136.7,136.7,133.2$, 131.6, 131.5, 129.8, 129.1, 128.4, 126.3, 121.2, 102.4. HRMS (TOF MS ES+) for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}$ (MH+) calcd. 302.0930, found 302.0939.

7-amino-2-(2-pyridinyl)quinoline-5,8-dione (23). The general procedure was used to obtain 16 $\mathrm{mg}(76 \%)$ of a red solid. $\mathrm{R}_{\mathrm{f}}=0.25\left(20 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$, recrystallized from MeOH. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}) \delta 8.75(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$,
$8.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 1 \mathrm{H}), 5.89(\mathrm{~s}, 1 \mathrm{H})$. HRMS (TOF MS ES+) for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}{ }^{+}(\mathrm{MH}+)$ calcd. 252.0773 found 252.0749.

7-Amino-2-(2-pyrrolyl)quinoline-5,8-dione (24). The general procedure was used to obtain 11 $\mathrm{mg}(78 \%)$ of a red solid. $\mathrm{R}_{\mathrm{f}}=0.37$ ($5 \% \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$); m.p. $230^{\circ} \mathrm{C}$ (decomposes), recrystallized from $\mathrm{MeOH} .{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.23(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{dd}, J=2.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{dd}, J=3.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.32(\mathrm{dd}, J=3.7,2.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 5.97 ($\mathrm{s}, 1 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 183.0,181.7,153.5,149.4,145.7,133.9$, 129.9, 126.6, 122.7, 122.3, 110.8, 110.3, 102.5. HRMS (TOF MS ES+) for $\mathrm{C}_{13} \mathrm{H}_{10} \mathrm{~N}_{3} \mathrm{O}_{2}^{+}(\mathrm{MH}+)$ calc. 240.0773, found 240.0779.

References

(1) Balitz, D. M.; Bush, J. A.; Bradner, W. T.; Doyle, T. W.; O’Herron, F. A.; Nettleton, D. E. Isolation of Lavendamycin, a New Antibiotic from Streptomyces Lavendulae. J. Antibiot. (Tokyo) 1982, 35 (3), 259-265.
(2) Doyle, T. W.; Balitz, D. M.; Grulich, R. E.; Nettleton, D. E.; Gould, S. J.; Tann, C.; Moews, A. E. Structure Determination of Lavendamycin- a New Antitumor Antibiotic from Streptomyces Lavendulae. Tetrahedron Lett. 1981, 22 (46), 4595-4598.
(3) Rao, K. V.; Cullen, W. P. Streptonigrin, an Antitumor Substance. I. Isolation and Characterization. Antibiot. Аппи. 1959, 7, 950-953.
(4) Rao, K. V.; Biemann, K.; Woodward, R. B. The Structure of Streptonigrin. J. Am. Chem. Soc. 1963, 85 (16), 2532-2533.
(5) Podeszwa, B.; Niedbala, H.; Polanski, J.; Musiol, R.; Tabak, D.; Finster, J.; Serafin, K.; Milczarek, M.; Wietrzyk, J.; Boryczka, S.; Mol, W.; Jampilek, J.; Dohnal, J.; Kalinowski, D. S.; Richardson, D. R. Investigating the Antiproliferative Activity of Quinoline-5,8-Diones and Styrylquinolinecarboxylic Acids on Tumor Cell Lines. Bioorg. Med. Chem. Lett. 2007, 17 (22), 6138-6141.
(6) Hassani, M.; Cai, W.; Holley, D. C.; Lineswala, J. P.; Maharjan, B. R.; Ebrahimian, G.
R.; Seradj, H.; Stocksdale, M. G.; Mohammadi, F.; Marvin, C. C.; Gerdes, J. M.; Beall, H. D.; Behforouz, M. Novel Lavendamycin Analogues as Antitumor Agents: Synthesis, in Vitro Cytotoxicity, Structure-Metabolism, and Computational Molecular Modeling Studies with NAD(P)H:Quinone Oxidoreductase 1. J. Med. Chem. 2005, 48 (24), 7733-7749.
(7) Fryatt, T.; Pettersson, H. I.; Gardipee, W. T.; Bray, K. C.; Green, S. J.; Slawin, A. M. Z.;

Beall, H. D.; Moody, C. J. Novel Quinolinequinone Antitumor Agents: Structure-Metabolism

Studies with NAD(P)H:quinone Oxidoreductase (NQO1). Bioorg. Med. Chem. 2004, 12 (7), 1667-1687.
(8) Beall, H. D.; Winski, S.; Swann, E.; Hudnott, A. R.; Cotterill, A. S.; O’Sullivan, N.;

Green, S. J.; Bien, R.; Siegel, D.; Ross, D.; Moody, C. J. Indolequinone Antitumor Agents: Correlation between Quinone Structure, Rate of Metabolism by Recombinant Human NAD(P)H:Quinone Oxidoreductase, and in Vitro Cytotoxicity. J. Med. Chem. 1998, 41 (24), 4755-4766.
(9) Swann, E.; Barraja, P.; Oberlander, A. M.; Gardipee, W. T.; Hudnott, A. R.; Beall, H. D.; Moody, C. J. Indolequinone Antitumor Agents: Correlation between Quinone Structure and Rate of Metabolism by Recombinant Human NAD(P)H:Quinone Oxidoreductase. Part 21. J. Med. Chem. 2001, 44 (20), 3311-3319.
(10) Hassani, M.; Cai, W.; Koelsch, K. H.; Holley, D. C.; Rose, A. S.; Olang, F.; Lineswala, J. P.; Holloway, W. G.; Gerdes, J. M.; Behforouz, M.; Beall, H. D. Lavendamycin Antitumor Agents: Structure-Based Design, Synthesis, and NAD(P)H:Quinone Oxidoreductase 1 (NQO1) Model Validation with Molecular Docking and Biological Studies. J. Med. Chem. 2008, 51 (11), 3104-3115.
(11) Cai, W.; Hassani, M.; Karki, R.; Walter, E. D.; Koelsch, K. H.; Seradj, H.; Lineswala, J. P.; Mirzaei, H.; York, J. S.; Olang, F.; Sedighi, M.; Lucas, J. S.; Eads, T. J.; Rose, A. S.;

Charkhzarrin, S.; Hermann, N. G.; Beall, H. D.; Behforouz, M. Synthesis, Metabolism and in Vitro Cytotoxicity Studies on Novel Lavendamycin Antitumor Agents. Bioorg. Med. Chem.

2010, 18 (5), 1899-1909.
(12) Colucci, M. A.; Moody, C. J.; Couch, G. D. Natural and Synthetic Quinones and Their Reduction by the Quinone Reductase Enzyme NQO1: From Synthetic Organic Chemistry to Compounds with Anticancer Potential. Org. Biomol. Chem. 2008, 6 (4), 637-656.
(13) Behforouz, M.; Haddad, J.; Cai, W.; Arnold, M. B.; Mohammadi, F.; Sousa, A. C.; Horn, M. A. Highly Efficient and Practical Syntheses of Lavendamycin Methyl Ester and Related Novel Quinolindiones. J. Org. Chem. 1996, 61 (19), 6552-6555.
(14) Prieto, M.; Zurita, E.; Rosa, E.; Muñoz, L.; Lloyd-Williams, P.; Giralt, E. Arylboronic Acids and Arylpinacolboronate Esters in Suzuki Coupling Reactions Involving Indoles. Partner Role Swapping and Heterocycle Protection. J. Org. Chem. 2004, 69 (20), 6812-6820.
(15) Collot, V.; Dallemagne, P.; Bovy, P. R.; Rault, S. Suzuki-Type Cross-Coupling Reaction of 3-Iodoindazoles with Aryl Boronic Acids: A General and Flexible Route to 3-Arylindazoles. Tetrahedron 1999, 55 (22), 6917-6922.
(16) Musser, J. H.; Jones, H.; Sciortino, S.; Bailey, K.; Coutts, S. M.; Khandwala, A.; Sonnino-Goldman, P.; Leibowitz, M.; Wolf, P.; Neiss, E. S. Synthesis and Antiallergic Activities of 1,3-oxazolo[4,5-H]quinolines. J. Med. Chem. 1985, 28 (9), 1255-1259.
(17) Tang, Q.; Zhang, C.; Luo, M. A New Method for N-N Bond Cleavage of N,NDisubstituted Hydrazines to Secondary Amines and Direct Ortho Amination of Naphthol and Its Analogues. J. Am. Chem. Soc. 2008, 130 (18), 5840-5841.
(18) Campeau, L.-C.; Stuart, D. R.; Leclerc, J.-P.; Bertrand-Laperle, M.; Villemure, E.; Sun, H.-Y.; Lasserre, S.; Guimond, N.; Lecavallier, M.; Fagnou, K. Palladium-Catalyzed Direct Arylation of Azine and Azole N-Oxides: Reaction Development, Scope and Applications in Synthesis. J. Am. Chem. Soc. 2009, 131 (9), 3291-3306.
(19) LaMontagne, M. P.; Blumbergs, P.; Smith, D. C. Antimalarials. 16. Synthesis of 2Substituted Analogs of 8-[(4-Amino-1-Methylbutyl)amino]-6-Methoxy-4-Methyl-5-[3(trifluoromethyl)phenoxy]quinoline as Candidate Antimalarials. J. Med. Chem. 1989, 32 (8), 1728-1732.
(20) Rodríguez, J. G.; de los Rios, C.; Lafuente, A. Synthesis of N-Chloroquinolines and NEthynylquinolines ($\mathrm{n}=2,4,8$): Homo and Heterocoupling Reactions. Tetrahedron 2005, 61 (38), 9042-9051.
(21) Miyaura, N.; Suzuki, A. Palladium-Catalyzed Cross-Coupling Reactions of Organoboron Compounds. Chem. Rev. 1995, 95 (7), 2457-2483.
(22) Boger, D. L.; Duff, S. R.; Panek, J. S.; Yasuda, M. Inverse Electron Demand Diels-Alder Reactions of Heterocyclic Azadienes. Studies on the Total Synthesis of Lavendamycin: Investigative Studies on the Preparation of the CDE .beta.-Carboline Ring System and AB Quinoline-5,8-Quinone Ring System. J. Org. Chem. 1985, 50 (26), 5782-5789.
(23) Buffinton, G. D.; Ollinger, K.; Brunmark, A.; Cadenas, E. DT-Diaphorase-Catalysed Reduction of 1,4-Naphthoquinone Derivatives and Glutathionyl-Quinone Conjugates. Effect of Substituents on Autoxidation Rates. Biochem. J. 1989, 257 (2), 561-571.
(24) Gibson, N. W.; Hartley, J. A.; Butler, J.; Siegel, D.; Ross, D. Relationship between DT-Diaphorase-Mediated Metabolism of a Series of Aziridinylbenzoquinones and DNA Damage and Cytotoxicity. Mol. Pharmacol. 1992, 42 (3), 531-536.
(25) Long, G. V.; Harding, M. M. A Proton Nuclear Magnetic Resonance Study of the Interaction of zinc(II) with the Antitumour Drug Streptonigrin. J. Chem. Soc. Dalton Trans. 1996, No. 4, 549-552.

Lanthanide(III) Complexes of Anthracycline Antitumor Antibiotics. Inorg. Chem. 1998, 37 (9), 2255-2262.
(27) Ross, D.; Kepa, J. K.; Winski, S. L.; Beall, H. D.; Anwar, A.; Siegel, D.

NAD(P)H:quinone Oxidoreductase 1 (NQO1): Chemoprotection, Bioactivation, Gene Regulation and Genetic Polymorphisms. Chem. Biol. Interact. 2000, 129 (1-2), 77-97.
(28) Margaret Harding; Georgina Long. Interaction of the Antitumor Antibiotic Streptonigrin with Metal Ions and DNA. Curr. Med. Chem. 1997, 4, 405-420.
(29) Budimir, A. Metal Ions, Alzheimer's Disease and Chelation Therapy. Acta Pharm.

Zagreb Croat. 2011, 61 (1), 1-14.
(30) Kraus, J.-L.; Conti, F.; Madonna, S.; Tchoghandjian, A.; Beclin, C. Alternative

Responses of Primary Tumor Cells and Glioblastoma Cell Lines to N,N-Bis-(8-
Hydroxyquinoline-5-Y1 Methyl)-Benzyl Substituted Amines: Cell Death versus P53-Independent
Senescence. Int. J. Oncol. 2010, 37 (6), 1463-1470.
(31) King, O. N. F.; Li, X. S.; Sakurai, M.; Kawamura, A.; Rose, N. R.; Ng, S. S.; Quinn, A.
M.; Rai, G.; Mott, B. T.; Beswick, P.; Klose, R. J.; Oppermann, U.; Jadhav, A.; Heightman, T.
D.; Maloney, D. J.; Schofield, C. J.; Simeonov, A. Quantitative High-Throughput Screening Identifies 8-Hydroxyquinolines as Cell-Active Histone Demethylase Inhibitors. PLoS ONE 2010, 5 (11), e15535.
(32) Yan, C.; Kepa, J. K.; Siegel, D.; Stratford, I. J.; Ross, D. Dissecting the Role of Multiple Reductases in Bioactivation and Cytotoxicity of the Antitumor Agent RH1. Mol. Pharmacol. 2008, 74 (6), 1657-1665.
(33) Faig, M.; Bianchet, M. A.; Winski, S.; Hargreaves, R.; Moody, C. J.; Hudnott, A. R.;

Ross, D.; Amzel, L. M. Structure-Based Development of Anticancer Drugs: Complexes of NAD(P)H:Quinone Oxidoreductase 1 with Chemotherapeutic Quinones. Structure 2001, 9 (8), 659-667.
(34) Verdonk, M. L.; Giangreco, I.; Hall, R. J.; Korb, O.; Mortenson, P. N.; Murray, C. W. Docking Performance of Fragments and Druglike Compounds. J. Med. Chem. 2011, 54 (15), 5422-5431.
(35) Verdonk, M. L.; Cole, J. C.; Hartshorn, M. J.; Murray, C. W.; Taylor, R. D. Improved Protein-Ligand Docking Using GOLD. Proteins 2003, 52 (4), 609-623.

Chapter 3

Improved design and biological activity of 10-alkoxy-anthracenyl-isoxazole derivatives for G-quadruplex antitumor agents

3.1 Introduction

G-quadruplex DNA (Figure 3-1) structures have been of serious interest as targets for cancer chemotherapeutics due to their novel structures, when compared to genomic DNA, and their

Figure 3-1. c-MYC G-quadruplex Pu22 sequence (PDB: 2L7V)
isolated locations in human genes. ${ }^{1-3}$ Additionally, inhibition of the c-MYC proto-oncogene, which is over expressed in up to 80% of tumor cells, ${ }^{1}$ has been correlated to quadruplex stabilization in the promoter region where these structures form. ${ }^{4,5}$ Molecules that stabilize these quadruplexes of DNA (G4-DNA) are typically medium sized planar aromatics often showing selectivity for G4-DNA over B-DNA. ${ }^{6-8}$

Given the conserved elements of the various G4-DNA ${ }^{1}$ structures as they occur in vitro and in vivo we designed a novel class of combilexin molecules based on two moieties known to interact with genomic DNA, an intercalator and minor-groove binder; yet pre-organized such
that intercalation and/or minor-groove binding with B-DNA would be highly disfavored.

Though, ideally suited for π-stacking and hydrogen bond donor-acceptor interactions with G4DNA.

3.2 Structural Features of a Q-quadruplex binder

G4-DNA binding molecules have been the subject of much study in the past decade with many examples showing a high degree of selectivity and binding stability. ${ }^{1,9-13}$ Parkinson has demonstrated that a competition dialysis study of many known DNA binding compounds reveals some striking and significant G4-DNA interactions. ${ }^{13}$ Most importantly, the Parkinson dialysis

Telomestatin

Quarfloxin

RHPS4

Figure 3-2. Quadruplex-DNA binding molecules
study shows a very distinct structure to activity relationship where the molecules with the highest affinity for G4-DNA share similar properties. These compounds all contain a large planar moiety
that is responsible for pi stacking interactions and side groups consisting of hydrogen bond donors and/or acceptors (Figure 3-2).

The anthracene isoxazole ester system (AIM) (Figure 3-3) was designed to stabilize gquadruplex DNA because of the orthogonal properties between the isoxazole and anthracene moieties to enhance $\pi-\pi$ stacking, and possible intercalation, with G-DNA structures. Hurley had previously shown that there were several possible binding modes for quindoline derivatives to

Figure 3-3. Combining functionalities to form a selective G4-DNA ligand quadruplex DNA based on substitution patterns using molecular modeling, ${ }^{14} \mathrm{H}$ NMR and X-ray crystalography. ${ }^{12}$ Hurley showed that the porphyrns 5,10,15,20-tetra-(N-methyl-2pyridyl)pophine (TMPyP2) and 5,10,15,20-tetra-(N-methyl-2-pyridyl)pophine (TMPyP4), bind G-quadruplex structures externally atop the G-tetrad. ${ }^{15}$ Given these findings we felt the next step was to use computer based molecular modeling to determine which mode of binding best suited the AIM-2 system.

It is proposed that designing the optimal G4-DNA binder must also contain some mimic of a bio-molecule (e.g. peptide bonds) so as to minimize recognition as an antigen, quick metabolism (See Chapter 5), and excretion from the body before it can exert its function.

Because of the compact nature of duplex DNA a G4-DNA binding ligand would need to be preorganized so that unfavorable steric interactions would keep the required large planar group from intercalating between the base pairs. Figure 3-3 shows how an isoxazole system, containing an anthracene and peptide linked hydrogen bond acceptor, methyl pyrrole, could serve the purpose addressing all of the important factors (i.e. preorganization, hydrogen bond acceptor/donor, and small size). Variation of the peptide length and number of methyl pyrrole (0-2) units served to define a simple SAR as it relates to tumor growth inhibition ${ }^{16}$. Full description of the synthesis of G4-DNA binding isoxazoles is detailed below in this chapter.

3.3 Molecular Modeling of alkoxy series with Quadruplex DNA

A training set of AIMs was constructed and prepared using Accelrys Discovery Studio 4.0. The minimization during ligand preparation took into account both amide and imidate tautomers at the C-4 amide of the isoxazole. The coordinates for the Pu22 sequence of the human c-myc oncogene used were the NMR structure reported by Hurley and Yang, pdb accession number 2 L 7 V . The ligand docking was conducted using the CHARMm forcefield, at physiological pH , and docking at both binding sites, the top15 poses were obtained for each tautomer of the training set. Consensus scoring was evaluated using CDocker Interaction energy, comparing versions of the PLP, Jain, PMF and Ludi scoring protocols (10 total scoring functions), and compared to the Hurley and Wang quindoline as control. The best pose for the most active compound $\mathbf{8 c}$ in the present study is shown above (Figure 3.4), allowing the ligand to minimize within a $14 \AA$ binding sphere. The larger binding sphere enabled the AIM to tumble during the minimization process, to achieve substantially higher binding energies for the final poses.

In the best binding pose each functional group of the AIM interacts with the G-4, the dimethyl amino double tail lies along the sugar-phosphate backbone, the 10 -biphenyl moiety

Figure 3-4. Discovery Studio 4.0 best energy pose for $\mathbf{8 c}$, docked at site 1 of the human Pu22 sequence of the c-myc oncogene.
occupies the groove. The CDocker Interaction Energy prediction of $80.5 \mathrm{kcal} / \mathrm{mol}$ was substantially higher than that calculated for the literature quindoline (range of $46-49 \mathrm{kcal} / \mathrm{mol}$ at sites 1 and 2), and also provides interactions which bridge between the G tetrad and adjacent functional groups, and therefore could potentially provide enhanced sequence selectivity. The best site 2 pose was within an approximate strong hydrogen bond energy of site 1 (ca. 5 $\mathrm{kcal} / \mathrm{mol})$.

3.4 Synthesis to alkoxy anthracene pyrrole doubletails

3.4.1 Preparation of Anthryl-10-oxy-isoxazole-DTs (AAIMs)

The anthracenyl isoxazole DTs can be made by starting with commercially available 9anthraldehyde using bromine in dichloromethane achieved the 10-bromo substituted anthraldehyde $\mathbf{1}^{17}$ in 80% yield (Scheme 3-1). Using a modified $\mathrm{S}_{\mathrm{N}} \mathrm{Ar}$ (addition-elimination mechanism) procedure from Bair ${ }^{18}$, the nucleophilic aromatic substitution reaction using

Scheme 3-1. Synthesis of anthryl-oxy-DT conjugate 8a-e.
alkoxides as the nucleophile gave us $\mathbf{2}$ with yields greater than 90%. Oxime formation of 10 -oxy substituted aldehyde was achieved using hydroxylamine HCl . The oxime then reacted with N chlorosuccinimide (NCS) to give the oximinoyl chloride. The formation of the isoxazole was accomplished via a 1,3-dipolar cycloaddition to give the anthracene isoxazole ester $\mathbf{3}^{19}$. The double tail moiety was achieved through the acetylation of N -methyl pyrrole using trichloroacetyl chloride previously described ${ }^{16}$. Subsequent nitration gave product in 75% yield
when performed on a molar scale. Next, the nitro pyrrole could be coupled with 3dimethylaminopropylamine and hydrogenated. Once the ester was characterized, it was hydrolyzed to the carboxylic acid $\mathbf{5}$. Then using thionyl chloride gave acid chloride $\mathbf{6}$ which were then reacted with the amine-pyrrole double tail 7 using a modified Schotten-Baumann reaction to give the final product 8a-e.

3.4.2 Crystal Structure of 8a

Our previous report of CD melting point increase and selective NMR anisotropy indicates that certain structural features of the AIMs correspond to increased anti-tumor activity ${ }^{20}$, namely, a dihedral angle between the mean plane of the isoxazole (all atoms) and the mean plane of the anthracene (all atoms) shown to be 70.47°, while the ester carbonyl and ether atom is virtually co-planar with the isoxazole mean plane having a dihedral angle of 4.51°. The anthracene ring is virtually planar as evident by the sum of the eighteen intra-ring torsion angle of 5.40°. These values are similar to other sc-xrd of isoxazole-3-anthracenes ${ }^{21-26}$ and isoxazole-3anthroquinones ${ }^{27}$. Furthermore, pairs of weak $\mathrm{C}-\mathrm{H}---\mathrm{O}$ hydrogen bonds link the molecules into dimers, and weak $\mathrm{C}-\mathrm{H}---\pi$ interactions further link these molecules. Full sc-xrd data and parameters are given in the Supplementary Data.

Figure 3-5. Single crystal x-ray diffractometry of 4a.

3.5 MTT Cell Viability Assay

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96-well plates at a density of 10,000 cells $/ \mathrm{mL}$ and allowed to attach overnight (16-18h). AAIM solutions were applied in medium for 24 h , removed, and replaced with fresh medium, and the plates were incubated at $37{ }^{\circ} \mathrm{C}$ under a humidified atmosphere containing $5 \% \mathrm{CO}_{2}$ for $3-5$ days.

Table 3-1. Cytotoxicity activity of 8a-e against human glioma SNB-19 cells MTT ($50 \mu \mathrm{~g}$) was added and the cells were incubated for another 4 h . Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO, and absorbance was determined on a plate reader at $560 \mathrm{~nm} . \mathrm{IC}_{50}$ values (concentration
at which cell survival equals 50% of control) were determined from semilog plots of percent of control versus concentration. The results are shown in Table 3-1.

Compounds shown in Table 3-1 have low micromolar binding affinities, which some are much better than the previously reported analogues. ${ }^{20}$ The phosphate backbone chain in the NMR structure is solvent exposed (Figure 3-1) and can be accessed with lipophilic groups to increase binding affinity. For example, Compound 8a lacking any corresponding ring system in the 10 -position greatly decrease the cytotoxicity of the group, reinforcing the importance of the π - π stacking and π-face interactions between the phenyl group and the phosphate backbone. Substitution of this phenoxy by a naphthyl (compound 8d and 8e), phenyl (compound $\mathbf{8 b}$) or biphenyl (compound 8c) was well tolerated and in general decreased the IC50 values with the addition on each phenyl ring. These alkoxy derivatives are all good hydrogen bond acceptors and gave increasing potencies.

Summary: Anthryl-10-alkoxy-isoxazole-pyrrole-doubletails can be readily made and easily substituted to enlarge the oxy-ether library series. Current studies are focused on whether the AAIMs may represent useful tools for the study of quadruplex DNA, and ultimately lead to clinically useful inhibitors.

REFERENCES

(1) Balasubramanian, S.; Hurley, L. H.; Neidle, S. Targeting G-Quadruplexes in Gene Promoters: A Novel Anticancer Strategy? Nat. Rev. Drug Discov. 2011, 10 (4), 261-275.
(2) Ohnmacht, S. A.; Neidle, S. Small-Molecule Quadruplex-Targeted Drug Discovery. Bioorg. Med. Chem. Lett. 2014, 24 (12), 2602-2612.
(3) Siddiqui-Jain, A.; Hurley, L. H. DNA Structure: Visualizing the Quadruplex. Nat. Chem. 2013, 5 (3), 153-155.
(4) Siddiqui-Jain, A.; Grand, C. L.; Bearss, D. J.; Hurley, L. H. Direct Evidence for a GQuadruplex in a Promoter Region and Its Targeting with a Small Molecule to Repress c-MYC Transcription. Proc. Natl. Acad. Sci. 2002, 99 (18), 11593-11598.
(5) Brooks, T. A.; Hurley, L. H. Targeting MYC Expression through G-Quadruplexes. Genes Cancer 2010, 1 (6), 641-649.
(6) Vy Thi Le, T.; Han, S.; Chae, J.; Park, H.-J. G-Quadruplex Binding Ligands: From Naturally Occurring to Rationally Designed Molecules. Curr. Pharm. Des. 2012, 18 (14), 19481972.

Ren, J.; Chaires, J. B. Sequence and Structural Selectivity of Nucleic Acid Binding Ligands. Biochemistry (Mosc.) 1999, 38 (49), 16067-16075.
(8) Yang, D.; Okamoto, K. Structural Insights into G-Quadruplexes: Towards New Anticancer Drugs. Future Med. Chem. 2010, 2 (4), 619-646.
(9) Monchaud, D.; Teulade-Fichou, M.-P. A Hitchhiker's Guide to G-Quadruplex Ligands. Org. Biomol. Chem. 2008, 6 (4), 627-636.
(10) Bidzinska, J.; Cimino-Reale, G.; Zaffaroni, N.; Folini, M. G-Quadruplex Structures in the Human Genome as Novel Therapeutic Targets. Molecules 2013, 18 (10), 12368-12395.
(11) Collie, G. W.; Sparapani, S.; Parkinson, G. N.; Neidle, S. Structural Basis of Telomeric RNA Quadruplex-Acridine Ligand Recognition. J. Am. Chem. Soc. 2011, 133 (8), 2721-2728. (12) Dai, J.; Carver, M.; Hurley, L. H.; Yang, D. Solution Structure of a 2:1 Quindoline-cMYC G-Quadruplex: Insights into G-Quadruplex-Interactive Small Molecule Drug Design. J. Am. Chem. Soc. 2011, 133 (44), 17673-17680.
(13) Haider, S. M.; Neidle, S.; Parkinson, G. N. A Structural Analysis of G-Quadruplex/ligand Interactions. Biochimie 2011, 93 (8), 1239-1251.
(14) Ou, T.-M.; Lu, Y.-J.; Zhang, C.; Huang, Z.-S.; Wang, X.-D.; Tan, J.-H.; Chen, Y.; Ma, D.-L.; Wong, K.-Y.; Tang, J. C.-O.; Chan, A. S.-C.; Gu, L.-Q. Stabilization of G-Quadruplex DNA and Down-Regulation of Oncogene c-Myc by Quindoline Derivatives. J. Med. Chem. 2007, 50 (7), 1465-1474.
(15) Han, F. X.; Wheelhouse, R. T.; Hurley, L. H. Interactions of TMPyP4 and TMPyP2 with Quadruplex DNA. Structural Basis for the Differential Effects on Telomerase Inhibition. J. Am. Chem. Soc. 1999, 121 (15), 3561-3570.
(16) Han, X.; Li, C.; Mosher, M. D.; Rider, K. C.; Zhou, P.; Crawford, R. L.; Fusco, W.; Paszczynski, A.; Natale, N. R. Design, Synthesis and Biological Evaluation of a Novel Class of Anticancer Agents: Anthracenylisoxazole Lexitropsin Conjugates. Bioorg. Med. Chem. 2009, 17 (4), 1671-1680.
(17) Cakmak, O.; Aydogan, L.; Berkil, K.; Gulcin, I.; Buyukgungor, O. Highly Brominated Anthracenes as Precursors for the Convenient Synthesis of 2,9,10-Trisubstituted Anthracene Derivatives. Beilstein J. Org. Chem. 2008, 4, 50.
(18) Bair, K. W. Anthracene Derivatives. US4719049 A, January 12, 1988.
(19) Mirzaei, Y. R.; Weaver, M. J.; Steiger, S. A.; Kearns, A. K.; Gajewski, M. P.; Rider, K. C.; Beall, H. D.; Natale, N. R. Improved Synthesis of 3-Aryl Isoxazoles Containing Fused Aromatic Rings. Tetrahedron 2012, 68 (50), 10360-10364.
(20) Weaver, M. J.; Kearns, A. K.; Stump, S.; Li, C.; Gajewski, M. P.; Rider, K. C.; Backos, D. S.; Reigan, P. R.; Beall, H. D.; Natale, N. R. AIMing towards Improved Antitumor Efficacy. Bioorg. Med. Chem. Lett.
(21) Mosher, M. D.; Natale, N. R.; Vij, A. An Intercalating Isoxazole. Acta Crystallogr. C 1996, 52 (10), 2513-2515.
(22) Li, C.; Campbell, M. J.; Weaver, M. J.; Duncan, N. S.; Hunting, J. L.; Natale, N. R. Ethyl 3-(10-Bromoanthracen-9-Yl)-5-Methyl-1,2-Oxazole-4-Carboxylate. Acta Crystallogr. Sect. E Struct. Rep. Online 2013, 69 (12), o1804-o1805.
(23) Li, C.; Twamley, B.; Natale, N. R. Ethyl 3-(10-Chloroanthracenyl)-5-(1-Phenyl-2-Hydroxyethenyl)isoxazole-4-Carboxylate: An Enol Produced by Dess-Martin Oxidation. Acta Crystallogr. Sect. E Struct. Rep. Online 2006, 62 (2), o854-o856.
(24) Li, C.; Twamley, B.; Natale, N. R. Preparation and Crystal Structures of Two 3Anthracenyl Isoxazolyl Sulfonamides. J. Heterocycl. Chem. 2008, 45 (1), 259-264.
(25) Han, X.; Twamley, B.; Natale, N. R. Preparation of 3-(10'-Halo-9'-Anthracenyl)

Isoxazolecarboxylic Esters. J. Heterocycl. Chem. 2003, 40 (3), 539-545.
(26) Han, X.; Li, C.; Rider, K. C.; Blumenfeld, A.; Twamley, B.; Natale, N. R. The Isoxazole as a Linchpin for Molecules That Target Folded DNA Conformations: Selective Lateral Lithiation and Palladation. Tetrahedron Lett. 2002, 43 (43), 7673-7677.
(27) Duncan, N. S.; Beall, H. D.; Kearns, A. K.; Li, C.; Natale, N. R. Ethyl 3-(9-Chloro-10-Oxo-9,10-Dihydroanthracen-9-Y1)-5-Methylisoxazole-4-Carboxylate. Acta Crystallogr. Sect. E Struct. Rep. Online 2014, 70 (3), o315-o316.

Supplementary Material

Experimental Section. General. All chemicals were purchased from commercial vendors and were used without any further purification unless otherwise indicated. Solvents were reagents grade and dried just prior to use by standard methods. All reactions were performed under inert atmosphere. Tetrahydrofuran (THF) was dried over sodium/benzophenone and distilled prior to use. Triethylamine $\left(\mathrm{EtN}_{3}\right)$ was dried with calcium hydride $\left(\mathrm{CaH}_{2}\right)$. Melting points were determined in open capillary tubes on a Melt-Temp apparatus and are uncorrected. High resolution mass spectra (HRMS) were obtained using a Micromass electrospray ionization (ES)/time-of-flight mass spectrometry (LCTOF). Mass spectrometer samples were introduced using a Waters model 2690 separations module HPLC fitted with a C-18 reversed phase column (2.1 mm i.d., 5 cm). Flash chromatography was performed using Sorbent Technologies standard silica gel ($60 \AA$) with reagent grade solvents using in house compressed air.

Cell Viability Assay. Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96-well plates at a density of 10000 cells $/ \mathrm{mL}$ and allowed to attach overnight (16 h). Anthryl-10-oxy-isoxazole-DT solutions were applied in medium for 2 h , removed, and replaced with fresh medium, and the plates were incubated at $37{ }^{\circ} \mathrm{C}$ under a humidified atmosphere containing 5% CO2 for $3-5$ days. MTT ($50 \mu \mathrm{~g}$) was added and the cells were incubated for another 4 h . Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO, and absorbance was determined on a plate reader at 560 nm . IC50 values (concentration at which cell survival equals 50% of control) were determined from semilog plots of percent of control versus concentration.

NMR. The 1H and 13C NMR high-resolution spectra were obtained with a Bruker AC200 (UltraShield ${ }^{\text {TM }} 400 \mathrm{MHz}$) using X-Win NMR (3.1) at ambient temperature in CDCl_{3} unless otherwise specified. The signal assignments were performed on the basis of a series of 2D experiments with z-gradient selection: $1 \mathrm{H}-1 \mathrm{H}$ COSY (Correlation Spectroscopy), 1H-13C HMQC ((Heteronuclear Multiple Quantum Coherence) and 1H13C HMBC (Heteronuclear Multiple Bond Correlation).

Scheme 3-1. Synthesis of anthryl-oxy-DT conjugate 8a-e.

Method of 10-methoxy anthryl isoxazole ester formation

To a suspension of anthraldehyde (4.175g, 20.244mmol; Sigma-Aldrich, 97%) in methylene chloride (120 mL) was added Br_{2} (1.1 eq., $1.2 \mathrm{~mL}, 23.428 \mathrm{mmol}$) diluted in methylene chloride (5 mL) drop wise over 5 minutes. The reaction was covered with septa and guard column (charged with CaCl_{2} and $\mathrm{NaOH}(\mathrm{s})$) and allowed to stir at $63^{\circ} \mathrm{C}$ until TLC showed no starting material remained (ca. 5 hours). Once the solution reached room temperature, $25 \mathrm{~g} \mathrm{Na} 2 \mathrm{NO}_{3}$ in $200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ was added to neutralize excess Br_{2}. The solution was then transferred to a separatory funnel, washed with 50 mL metheylene chloride and the organic layer extracted and dried with sodium sulfate and concentrated under reduced pressure to yield $1(\mathrm{Rf}=0.34,10: 1$ Hex/EtOAc). Recrystallized from chloroform/hexanes.

10-Bromoanthracene-9-carbaldehyde (1). (83\%) ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 11.52(\mathrm{~s}, 1 \mathrm{H}), 8.90-8.93$ $(\mathrm{m}, 2 \mathrm{H}), 8.69-8.71(\mathrm{~m}, 2 \mathrm{H}), 7.64-7.74(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 193.28,131.94,131.82$, $130.29,129.02,128.91,128.29,128.29,127.47,127.40,125.70,123.84 . \mathrm{mp} 205-208^{\circ} \mathrm{C}$. Spectral data are in accord with those reported previously. ${ }^{28,29}$

General Procedure for 10-alkoxy aldehyde.

The bromo-aldehyde $1(0.150 \mathrm{~g}, 0.5261 \mathrm{mmol}$) was taken up in 2 mL of DMF (dried over sieves) under a nitrogen atmosphere. Freshly distilled methanol (1.2 eq., 0.03 mL) was added via syringe. Sodium hydride ($1.2 \mathrm{eq} ., 0.0253 \mathrm{~g}$) was added with a water condenser. The solution was allowed to stir at $60^{\circ} \mathrm{C}$ for 3.5 hours under an argon atmosphere. Once the solution cooled to room temperature, 50 mL DI $\mathrm{H}_{2} \mathrm{O}$ and 50 mL diethyl ether was added and allowed to stir for 15 minutes. The solution was transferred to a separatory funnel and washed with 50 mL diethyl ether. The combined organic layers were washed with 50 mL Brine, dried over sodium sulfate
and concentrated under reduced pressure. The solid was taken up in minimal methylene chloride and ran on a prepared hexanes silica column in 12:1 (Hexanes:EtOAc) until all desired product 2 was collected.

10-Methoxyanthracene-9-carbaldehyde (2a). (85\%) ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 11.49(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}$, $\mathrm{J}=9.03 \mathrm{~Hz}, 2 \mathrm{H}), 8.42(\mathrm{~d}, \mathrm{~J}=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 7.70-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \quad \delta 191.93,159.18,134.12,133.89,129.34,127.23,125.60,124.21,123.96$, 123.11, 121.17, 63.96. MS (ESI) $m / z 236$ (22.37, M+), 237(100, M+1), 238 (18.80, M+2). $(\mathrm{Rf}=0.46$ 4:1:1 Hex/EtOAc/DCM $)$.

10-phenoxyanthracene-9-carbaldehyde (2b). In 250 mL round-bottom, add 50 mL dry Benzene, phenol ($0.2748 \mathrm{~g}, 2.920 \mathrm{mmol}$), sodium ($0.048 \mathrm{~g}, 2.088 \mathrm{mmol}$), and 18-crown-6 $(0.4632 \mathrm{~g}, 1.752 \mathrm{mmol})$ with 25 mL DMF. The reaction was heated to $150^{\circ} \mathrm{C}$ for 1 hr until all sodium as dissolved. Brominated ($405.4 \mathrm{mg}, 1.432 \mathrm{mmol}$) in 15 mL dry Benzene was added to the hot alkoxide solution and stirred under heat for 1.5 hours. Once cool, 50 mLEtOAc and 50 $\mathrm{mL} \mathrm{diH}_{2} \mathrm{O}$ was added to a sepratory funnel containing the reaction mixture. The contents were extracted with $3 \times 40 \mathrm{~mL}$ EtOAc, $2 \times 15 \mathrm{~mL} 10 \% \mathrm{NaOH}$ and finally $3 \times 100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ until a neutral pH. Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain $\mathbf{2 b}(0.4216 \mathrm{~g}, 98.7 \%){ }^{1} \mathrm{H}$ NMR (Acetone-d d_{6}) δ $11.58(\mathrm{~s}, 1 \mathrm{H}), 9.17(\mathrm{~d}, \mathrm{~J}=9.16 \mathrm{~Hz}, 2 \mathrm{H}), 8.22(\mathrm{~d}, \mathrm{~J}=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{t}, \mathrm{J}=7.65,7.78,15.43 \mathrm{~Hz}$, $2 \mathrm{H}), 7.61(\mathrm{t}, \mathrm{J}=8.28,6.65,14.93 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, \mathrm{J}=7.28,6.40,13.68 \mathrm{~Hz}, 1 \mathrm{H})$, $6.86(\mathrm{~d}, \mathrm{~J}=7.78 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (Acetone-d ${ }_{6}$) δ 193.37, 161.00, 152.38, 134.19, 131.04, 130.27, 127.37, 125.47, 125.11, 124.20, 123.92, 123.43, 116.20. MS (ESI) m/z 299.1162 (100, $\mathrm{M}+1), 300.1200(23.40, \mathrm{M}+2)$. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{O}_{2}(\mathrm{M}+1)$ requires 299.1071, found 299.1072. ($\mathrm{Rf}=0.34$ 1:1 Hex/DCM).

10-([1,1'-biphenyl]-4-yloxy)anthracene-9-carbaldehyde (2c). By the same procedure as that described for 2b, from 20 mL dry THF, [1,1'-biphenyl]-4-ol ($2.6325 \mathrm{~g}, 15.16 \mathrm{mmol}$), sodium ($0.3386 \mathrm{~g}, 14.73 \mathrm{mmol}$), 18-crown-6 ($3.8928 \mathrm{~g}, 14.73 \mathrm{mmol}$) refluxed for 2.75 hour. Add bromoaldehyde solid ($3.3524 \mathrm{~g}, 11.757 \mathrm{mmol}$) to reaction round bottom, cool to room temperature and stir overnight (ca. 18.5 hours). 50 mL EtOAc and $50 \mathrm{~mL} \mathrm{diH} \mathrm{H}_{2} \mathrm{O}$ was added to a sepratory funnel containing the reaction mixture. The contents were extracted with $3 \times 40 \mathrm{~mL}$ DCM, $2 \times 25 \mathrm{~mL} 10 \%$ NaOH and finally $3 \times 100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ until a neutral pH . Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain 2c (3.5861 g, 90.71\%). (Rf=0.19 1:1 Hex/DCM). ${ }^{1} \mathrm{H}$ NMR (Acetone- d_{6}) $\delta 11.59(\mathrm{~s}, 1 \mathrm{H})$, 9.16 (d, J=9.03 Hz, 2H), 8.26 (d, J=8.66 Hz, 2H), 7.79 (m, 2H), 7.61 (m, 6H), 7.42 (t, J=7.40, $7.91,15.31 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{t}, \mathrm{J}=7.40,14.81 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (Acetone-d $\left.\mathrm{d}_{6}\right) \delta$ $193.39,160.61,152.31,141.09,136.41,135.27,134.18,130.30,129.81,129.52,128.00,127.80$, $127.55,127.47,125.46,125.13,124.32,123.91,116.55 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / z 379.1668$ (100, M+1), 380.1725(38, M+2). HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{O}_{2}(\mathrm{M}+1)$ requires 375.1385, found 375.1385 .

10-(naphthalen-1-yloxy)anthracene-9-carbaldehyde (2d). By the same procedure as that described for $\mathbf{2 b}$, from 22 mL dry THF, naphthalen-1-ol ($2.2085 \mathrm{~g}, 15.319 \mathrm{mmol}$), sodium ($0.3784 \mathrm{~g}, 16.459 \mathrm{mmol}$), 18 -crown-6 $(4.6613 \mathrm{~g}, 17.635 \mathrm{mmol})$ refluxed for 4.5 hours. Add bromo-aldehyde ($3.3524 \mathrm{~g}, 11.757 \mathrm{mmol}$) solid to reaction round bottom, cool to room temperature and stir overnight (ca. 17 hours). 50 mL EtOAc and 50 mL diH 2 O was added to a sepratory funnel containing the reaction mixture. The contents were extracted with $3 x 50 \mathrm{~mL}$ DCM, $2 \times 25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ and finally $3 \times 100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ until a neutral pH . Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain $2 \mathbf{d}(3.3524 \mathrm{~g}, 81.84 \%)$. $(\mathrm{Rf}=0.541: 1 \mathrm{Hex} / \mathrm{DCM}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 11.58 (s, 1H), 9.10 (d, J=8.91 Hz, 2H), 8.84 (d, J=8.03 Hz, 1H), 8.21 (d, J=8.66 Hz, 2H), 7.97 (d,
$\mathrm{J}=7.91 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~m}, 4 \mathrm{H}), 7.53(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.46(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{t}, \mathrm{J}=7.78,8.03,15.81$ $\mathrm{Hz}, 1 \mathrm{H}), 6.08(\mathrm{~d}, \mathrm{~J}=7.65 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 192.18,155.83,152.47,134.89,133.53$, $129.47,127.89,127.05,126.30,126.23,125.72,124.65,124.54,123.89,123.29,122.73,122.07$, 121.68. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{O}_{2}(\mathrm{M}+1)$ requires 349.1229 , found 349.1232.

10-(naphthalen-2-yloxy)anthracene-9-carbaldehyde (2e). By the same procedure as that described for $\mathbf{2 b}$, from 20 mL dry THF, naphthalen-2-ol (2.2751 g), sodium (0.3386 g), 18-crown-6 (3.8928 g) refluxed for 4.5 hours. Add bromo-aldehyde $(3.0089 \mathrm{~g}, 10.55 \mathrm{mmol})$ solid to reaction round bottom, cool to room temperature and stir overnight (ca. 15.5 hours). 50 mL EtOAc and $50 \mathrm{~mL} \mathrm{diH} \mathbf{H}_{2} \mathrm{O}$ was added to a sepratory funnel containing the reaction mixture. The contents were extracted with $3 \times 50 \mathrm{~mL}$ DCM, $2 \times 25 \mathrm{~mL} 10 \% \mathrm{NaOH}$ and finally $3 \times 100 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$ until a neutral pH. Dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated to obtain $\mathbf{2 e}(2.2676 \mathrm{~g}, 62 \%)$. ($\mathrm{Rf}=0.90$ DCM). ${ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM- d) $\delta \operatorname{ppm} 11.55(\mathrm{~s}, 1 \mathrm{H}), 9.09(\mathrm{~d}, J=9.03 \mathrm{~Hz}, 2 \mathrm{H})$, $8.27(\mathrm{~d}, J=8.78 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{~m}, 1 \mathrm{H}), 7.71(\mathrm{~m}, 3 \mathrm{H}), 7.48(\mathrm{~m}, 4 \mathrm{H}), 7.37(\mathrm{~m}, 2 \mathrm{H}), 6.78(\mathrm{~d}$, $J=2.51 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) $\delta \mathrm{ppm}$ 193.44, 193.45, 192.25, $157.85,152.05,134.20,134.10,133.56,131.85,131.72,130.82,130.29,129.78,129.59,129.44$, $129.10,128.88,127.73,127.68,127.22,127.10,126.95,126.76,126.71,126.61,126.47,126.32$, $126.19,125.98,125.85,124.90,124.49,123.94,123.86,123.77,123.53,123.40,122.73,117.75$, 117.35, 109.98, 109.44.

General Procedure of 10-alkoxy oxime

To a suspension of $\mathbf{2 a}(0.6066 \mathrm{~g}, 2.567 \mathrm{mmol})$ in $\mathrm{EtOH}: T H F: \mathrm{H}_{2} \mathrm{O}(50: 25: 25 \mathrm{~mL})$ was dissolved hydroxylamine hydrochloride $(0.4002 \mathrm{~g}, 6.206 \mathrm{mmol})$ and pyridine ($1.11 \mathrm{eq}, 0.23 \mathrm{~mL}$) The reaction was covered with a septa under an argon atmosphere let stir at room temperature for

1 hour. The solution was first concentrated under reduced pressure then transferred to a separatory funnel and washed $1 \times 10 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$ (cold) and the combined aqueous layers washed $2 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ Brine, $2 \times 50 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried over sodium sulfate, filtered, and the solvent removed under vacuum.

10-Methoxyanthracene-9-carbaldehyde oxime (3a): (92\% yield). ($\mathrm{Rf}=0.35$ 4:1:1 Hex/EtOAc/DCM). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 9.20(\mathrm{~s}, 1 \mathrm{H}), ~ 8.45-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.36-8.38(\mathrm{~m}, 2 \mathrm{H})$, 7.53-7.60(m, 4H), $4.17(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 154.22,148.95,131.20,126.90,125.36$, $125.29,124.29,122.72,119.83,63.45 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 234\left(100, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right), 235\left(28.54, \mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right)^{+}$, 252 (38.87, M+1). (Rf=0.34, 4:1:1 Hex/EtOAc/DCM).

10-phenoxyanthracene-9-carbaldehyde oxime (3b). By the same procedure as that described for 3a, from aldehyde $(0.4216 \mathrm{~g}, 1.413 \mathrm{mmol})$ in EtOH:THF: $\mathrm{H}_{2} \mathrm{O}(40: 12: 12 \mathrm{~mL})$ was dissolved hydroxylamine hydrochloride $(0.5324 \mathrm{~g})$ and pyridine $(3 \mathrm{~mL})$ The reaction was covered with a septa under an argon atmosphere and condenser and heated to $40^{\circ} \mathrm{C}$ for 8 hours, then stirred room temperature overnight. Washed $2 \times 60 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$ (cold) and the combined aqueous layers washed $3 \times 125 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 3 \times 125 \mathrm{~mL}$ Brine, $3 \times 40 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Obtained ($0.4380 \mathrm{~g}, 98.92 \%$). $\left(\mathrm{Rf}=0.62\right.$ 4:1:1 Hex/EtOAc/DCM). ${ }^{1} \mathrm{H}$ NMR $\left(\right.$ Acetone- $\left._{6}\right) \delta 10.91(\mathrm{~s}, 1 \mathrm{H}), 9.25(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}$, $\mathrm{J}=8.91 \mathrm{~Hz}, 2 \mathrm{H}), 8.12(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=8.53,7.53,16.06$ $\mathrm{Hz}, 1 \mathrm{H}), 7.03(\mathrm{t}, \mathrm{J}=7.40,14.81 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, \mathrm{~J}=7.91 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (Acetone-d $\left.{ }_{6}\right) \delta$ $161.09,147.62,147.55,131.93,130.91,127.80,127.06,126.78,125.54,124.05,123.41,123.05$, 116.08. MS (ESI) $m / z 314$ (100, M+1), 315 (25, M+2). HRMS (EI) accurate mass calcd. for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{~N}_{1} \mathrm{O}_{1}(\mathrm{M}+1)$ requires 314.1181, found 314.1148.

10-([1,1'-biphenyl]-4-yloxy)anthracene-9-carbaldehyde oxime (3c).By the same procedure as that described for 3a, from aldehyde ($1.8039 \mathrm{~g}, 4.814 \mathrm{mmol})$ in EtOH:THF: $\mathrm{H}_{2} \mathrm{O}(100: 35: 35 \mathrm{~mL})$
was dissolved hydroxylamine hydrochloride $(1.8369 \mathrm{~g})$ and pyridine $(10 \mathrm{~mL})$ The reaction was covered with a septa under an argon atmosphere and condenser and heated to $40^{\circ} \mathrm{C}$ for 6 hours, then stirred room temperature overnight. Washed $1 \times 100 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$ (cold) and the combined aqueous layers washed $4 \times 125 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}$ Brine, $2 \times 25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Obtained (1.6234 $\mathrm{g}, 86.59 \%) .\left(\mathrm{Rf}=0.364: 1: 1 \mathrm{Hex} / \mathrm{EtOAc}^{2} / \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H}$ NMR (Acetone- $\left.\mathrm{d}_{6}\right) \delta 10.90(\mathrm{~s}, 1 \mathrm{H})$, $9.26(\mathrm{~s}, 1 \mathrm{H}), 8.60(\mathrm{~d}, \mathrm{~J}=8.91 \mathrm{~Hz}, 2 \mathrm{H}), 8.17(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{~m}, 10 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.53$, $7.91,15.43 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{t}, \mathrm{J}=7.40,7.28,14.68 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, \mathrm{~J}=8.78 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (Acetone- d_{6}) $\delta 161.22,148.13,148.05,141.47,136.58,135.78,132.46,130.28,129.92,128.41$, 128.35, 128.02, 127.67, 127.33, 126.06, 124.70, 123.91, 117.05. MS (ESI) $\mathrm{m} / \mathrm{z} 390$ ($100, \mathrm{M}+1$), 391 (23, M+2). HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{1} \mathrm{O}_{2}(\mathrm{M}+1)$ requires 390.1494, found 390.1446 .

10-(naphthalen-1-yloxy)anthracene-9-carbaldehyde oxime (3d).By the same procedure as that described for 3a, from aldehyde (0.2289 g , 0.657 mmol) in EtOH:THF: $\mathrm{H}_{2} \mathrm{O}$ ($20: 20: 15 \mathrm{~mL}$) was dissolved hydroxylamine hydrochloride $(1.0440 \mathrm{~g})$ and pyridine (8 mL) The reaction was covered with a septa under an argon atmosphere and condenser and heated to $40^{\circ} \mathrm{C}$ for 1 hours, then stirred room temperature overnight. Washed $2 \times 50 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$ (cold) and the combined aqueous layers washed $4 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 3 \times 50 \mathrm{~mL}$ Brine, $2 \times 20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Obtained $(0.2376 \mathrm{~g}$, 99.5\%). ($\mathrm{Rf}=0.46$ 4:1:1 $\mathrm{Hex} / \mathrm{EtOAc}^{2} / \mathrm{Et}_{2} \mathrm{O}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.87(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}$, $1 \mathrm{H}), 8.50(\mathrm{~d}, \mathrm{~J}=8.91 \mathrm{~Hz}, 2 \mathrm{H}), 8.14(\mathrm{~d}, \mathrm{~J}=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=7.91 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{~m}, 2 \mathrm{H})$, $7.57(\mathrm{t}, \mathrm{J}=7.28,7.91,15.18 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, \mathrm{~J}=8.03 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, \mathrm{J}=7.53,15.06 \mathrm{~Hz}, 2 \mathrm{H})$, $7.08(\mathrm{t}, \mathrm{J}=7.78,8.03,15.81 \mathrm{~Hz}, 1 \mathrm{H}), 6.11(\mathrm{~d}, \mathrm{~J}=7.65 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 155.80$, 148.77, 147.80, 134.85, 131.12, 127.81, 127.13, 126.87, 126.81, 12606, 125.97, 125.80, 125.71,
125.29, 124.79, 124.60, 122.94, 122.87, 121.85, 121.64, 121.43. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{~N}_{1} \mathrm{O}_{2}(\mathrm{M}+1)$ requires 364.1338 , found 364.1374.

10-(naphthalen-2-yloxy)anthracene-9-carbaldehyde oxime (3e).By the same procedure as that described for 3a, from aldehyde ($2.2676 \mathrm{~g}, 6.509 \mathrm{mmol}$) in EtOH:THF: $\mathrm{H}_{2} \mathrm{O}(135: 50: 50 \mathrm{~mL})$ was dissolved hydroxylamine hydrochloride (2.48370 g) and pyridine (13.5 mL) The reaction was covered with a septa under an argon atmosphere and stirred at room temperature overnight (19 hours). Concentrated, then washed $1 \times 100 \mathrm{~mL} 1 \mathrm{~N} \mathrm{HCl}$ (cold) and the combined aqueous layers washed $3 \times 150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 1 \times 150 \mathrm{~mL}$ Brine, $2 \times 25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$. Obtained ($2.3636 \mathrm{~g}, 99.93 \%$). $(\mathrm{Rf}=0.33$ 4:1:1 Hex/EtOAc/Et 2 O$)$. MS (ESI) 364.1190 (100).

The starting oxime $\mathbf{3 a}(0.6450 \mathrm{~g}, 2.5669 \mathrm{mmol})$ was taken up in 35 mL of chloroform at room temperature, to which the solution was added $10 \mathrm{~mol} \%$ pyridine $(0.490 \mathrm{~mL}$ of 5 M$)$ and recrystallized NCS ($1.2 \mathrm{eq}, 0.3903 \mathrm{~g}, 2.92 \mathrm{mmol}$) over 5 minutes. The solution was allowed to stir at $40^{\circ} \mathrm{C}$ under argon for 3 hours. The organic layer was washed with $3 \times 30 \mathrm{~mL} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 4 \mathrm{x}$ 25 mL Brine, then the aqueous layer washed $2 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried with sodium sulfate, filtered, and the solvent removed under reduced pressure. The intermediate was purified only through extractive isolation using water and CHCl_{3} and taken on to the next reaction as is. To a solution of the intermediate in absolute ethanol (40 mL) was added 2.4 equivalents of ethyl acetoacetate ($0.7701 \mathrm{~g}, 5.85 \mathrm{mmol}$) dissolved in 10 mL EtOH and sodium (2eq, $0.1133 \mathrm{~g}, 4.29 \mathrm{mmol}$) slowly. The mixture was allowed to stir at room temperature under argon for 2 hours until TLC in 4:1:1 $\mathrm{Hex} / \mathrm{EtOAc} / \mathrm{DCM}$ revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl_{3}, washed $2 \times 50 \mathrm{~mL} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{x}$ 50 mL Brine, and the aqueous layer washed $1 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried sodium sulfate, and
concentrated under reduced pressure. The solid was then chromatographed using 1:1 $\mathrm{Hex} / \mathrm{EtOAc}$, then 1:2 and flushed with EtOAc until all desired product $\mathbf{4}$ was collected. N-hydroxy-10-methoxyanthracene-9-carbimidoyl chloride: Was not purified, carried on through in situ procedure only. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.36(\mathrm{~d}, \mathrm{~J}=8.78 \mathrm{~Hz}, 2 \mathrm{H}), 8.31(\mathrm{~d}$, $\mathrm{J}=8.78,2 \mathrm{H}), 7.70(\mathrm{t}, \mathrm{J}=15.06,7.40 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{t}, \mathrm{J}=15.31,8.28 \mathrm{~Hz}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H})$.

Ethyl 3-(10-methoxyanthracen-9-yl)-5-methylisoxazole-4-carboxylate (4a). Yield from two steps 77%. (Rf=0.49 1:2 Hex/DCM. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.39(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{~d}$, $J=8.66 \mathrm{~Hz}, 2 \mathrm{H}), 7.48-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.47(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{q}, J=7.07 \mathrm{~Hz}, 2$ H), $2.93(\mathrm{~s}, 3 \mathrm{H}), 0.37(\mathrm{t}, J=7.09 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 176.10,161.40,160.34,153.91$, $131.64,126.29,125.71,125.01,123.90,122.30,118.62,111.32,63.55,59.90,14.01,13.30$, 12.74. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{~N}_{1} \mathrm{O}_{4}(\mathrm{M}+1)$ requires 362.1392, found 362.1392.

Ethyl 5-methyl-3-(10-phenoxyanthracen-9-yl)isoxazole-4-carboxylate (4b).

By the same procedure as that described for $\mathbf{4 a}$, from oxime $(0.2080 \mathrm{~g}, 0.6638 \mathrm{mmol})$ in chloroform (20mL) was added $10 \mathrm{~mol} \%$ pyridine (1.33 mL from 5 M) and NCS (1.15eq, 0.1023 g . The reaction was warmed to $40^{\circ} \mathrm{C}$ for 3 hr under an argon atmosphere. Washed $3 \times 20 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 4$ x 15 mL Brine, $2 \times 10 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$, dried and taken onto next reaction. To a solution of the intermediate in absolute ethanol (15 mL) was added 1.46 equivalents of ethyl acetoacetate (0.1260 g) dissolved in 5 mL EtOH and sodium (1.22eq, 0.0186 g) slowly. The mixture was allowed to stir at room temperature under argon for 1.5 hours until TLC in 4:1:1 $\mathrm{Hex} / \mathrm{EtOAc} / \mathrm{DCM}$ revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl_{3}, washed $2 \times 50 \mathrm{~mL} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 2 \times$ 50 mL Brine, and the aqueous layer washed $1 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried sodium sulfate, and
concentrated under reduced pressure. The solid was then chromatographed using dichloromethane until all desired product 4 was collected. Obtained (Yield from two steps $0.2177 \mathrm{~g}, 77 \%) .(\mathrm{Rf}=0.42 \mathrm{DCM}) .{ }^{1} \mathrm{H}$ NMR $\left(\right.$ Acetone- $\left.\mathrm{d}_{6}\right) \delta 8.15(\mathrm{~m}, 2 \mathrm{H}), 7.75(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~m}$, 4H), 7.31 (t, J=7.65, 8.28, $15.94 \mathrm{~Hz}, 2 \mathrm{H}$), 7.05 (t, J=7.28, 7.40, $14.68 \mathrm{~Hz}, 1 \mathrm{H}$), 6.88 (d, J=8.03 $\mathrm{Hz}, 2 \mathrm{H}), 3.76(\mathrm{q}, \mathrm{J}=7.15,14.31 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 0.50(\mathrm{t}, \mathrm{J}=7.03,7.15,14.18 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (Acetone- d_{6}) $\delta 177.62,161.86,161.11,160.91,147.86,132.60,130.89,127.66,127.01$, $126.88,125.26,123.23,123.08,122.14,116.08,112.15,60.72,13.57$. MS (ESI) $\mathrm{m} / \mathrm{z} 236$ (22.37, $\mathrm{M}+$), 237(100, M+1), 238 ($18.80, \mathrm{M}+2$). HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{1} \mathrm{O}_{4}$ $(\mathrm{M}+1)$ requires 424.1549 , found 424.1578 .

Ethyl 3-(10-([1,1'-biphenyl]-4-yloxy)anthracen-9-yl)-5-methylisoxazole-4-carboxylate (4c). By the same procedure as that described for $\mathbf{4 a}$, from oxime $(1.6234 \mathrm{~g}, 4.1685 \mathrm{mmol}$) in chloroform (140 mL) was added $10 \mathrm{~mol} \%$ pyridine $(8.33 \mathrm{~mL}$ from 5 M$)$ and NCS (1.2eq, 0.6914 g . The reaction was warmed to $40^{\circ} \mathrm{C}$ for 5 hr under an argon atmosphere. Washed $4 \times 125 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, $2 \times 125 \mathrm{~mL}$ Brine, $2 \times 25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried and taken onto next reaction. To a solution of the intermediate in absolute ethanol (100 mL) was added 2.42 equivalents of ethyl acetoacetate (1.3 mL) dissolved in 35 mL EtOH and sodium ($2.15 \mathrm{eq}, 0.2060 \mathrm{~g}$) slowly. The mixture was allowed to stir at room temperature under argon for 17 hours until TLC in 4:1:1 $\mathrm{Hex} / \mathrm{EtOAc} / \mathrm{DCM}$ revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl_{3}, washed $2 \times 100 \mathrm{~mL} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 2$ x 100 mL Brine, and the aqueous layer washed $2 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried sodium sulfate, and concentrated under reduced pressure. The solid was then chromatographed using 4:1 Hex/EtOAc until all desired product 4 was collected. Obtained ($0.2177 \mathrm{~g}, 77 \%$). Obtained (Yield from two steps $1.3741 \mathrm{~g}, 66 \%) .(\mathrm{Rf}=0.38$ 2:1 Hex/DCM $) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~m}, 2 \mathrm{H}), 7.72(\mathrm{~m}, 2 \mathrm{H})$,
$7.47(\mathrm{~m}, 10 \mathrm{H}), 7.31(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{q}, \mathrm{J}=7.15 \mathrm{~Hz}, 14.31,2 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{t}$, $\mathrm{J}=7.03,7.15 \mathrm{~Hz}, 14.18) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 176.41,161.50,160.23,159.64,147.14,140.48$, $135.10,131.86,128.72,128.46,126.87,126.78,126.62,125.82,125.76,124.34,122.62,120.41$, $115.60,111.43,60.18,13.46,12.97$. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{~N}_{1} \mathrm{O}_{4}(\mathrm{M}+1)$ requires 500.1862 , found 500.1863 .

Ethyl 5-methyl-3-(10-(naphthalen-1-yloxy)anthracen-9-yl)isoxazole-4-carboxylate (4d).

By the same procedure as that described for $\mathbf{4 a}$, from oxime $(0.2217 \mathrm{~g}, 0.6100 \mathrm{mmol})$ in chloroform (20 mL) was added $10 \mathrm{~mol} \%$ pyridine $(1.22 \mathrm{~mL}$ from 5 M$)$ and NCS (1.2eq, 0.1038 g . The reaction was warmed to $40^{\circ} \mathrm{C}$ for 4 hr under an argon atmosphere. Washed $4 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 3$ x 50 mL Brine, $2 \times 25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried and taken onto next reaction. To a solution of the intermediate in absolute ethanol (15 mL) was added 2.2 equivalents of ethyl acetoacetate $(0.17 \mathrm{~mL})$ dissolved in 5 mL EtOH and sodium ($2.1 \mathrm{eq}, 0.0295 \mathrm{~g}$) slowly. The mixture was allowed to stir at room temperature under argon for 1 hour until TLC in 4:1:1 Hex/EtOAc/DCM revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl_{3}, washed $2 \times 100 \mathrm{~mL} \mathrm{DI} \mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}$ Brine, and the aqueous layer washed $2 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried sodium sulfate, and concentrated under reduced pressure. The solid was then chromatographed using dichloromethane until all desired product 4 was collected. Obtained (Yield from two steps $0.2411 \mathrm{~g}, 83 \%)$. $(\mathrm{Rf}=0.41 \mathrm{DCM}) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ 8.92 (d, J=8.26 Hz, 1H), 8.18 (d, J=8.66 Hz, 2H), 7.98 (d, J=8.16 Hz, 1H), 7.78 (m, 3H), 7.69 $(\mathrm{m}, 1 \mathrm{H}), 7.54,(\mathrm{~d}, \mathrm{~J}=8.28 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{bs}, 1 \mathrm{H}), 6.21(\mathrm{bd}, \mathrm{J}=7.28$ $\mathrm{Hz}, 1 \mathrm{H}), 3.85(\mathrm{bs}, 2 \mathrm{H}), 3.00(\mathrm{~s}, 3 \mathrm{H}), 0.52(\mathrm{bs}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 176.30,161.43,160.26$, $155.82,147.54,134.79,131.65,128.00,127.76,126.79,126.66,126.60,126.47,125.98,125.78$, $125.71,125.58,124.77,124.62,124.59,124.27,124.10,122.49,122.31,122.20,121.82,121.56$,
120.33, 111.41, 108.16, 107.77, 60.14, 13.42, 13.01. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{1} \mathrm{O}_{4}(\mathrm{M}+1)$ requires 474.1705 , found 474.1700 .

Ethyl 5-methyl-3-(10-(naphthalen-2-yloxy)anthracen-9-yl)isoxazole-4-carboxylate (4e).

By the same procedure as that described for $\mathbf{4 a}$, from oxime $(2.3653 \mathrm{~g}, 6.509 \mathrm{mmol})$ in chloroform $(220 \mathrm{~mL})$ was added $10 \mathrm{~mol} \%$ pyridine $(6.5 \mathrm{~mL}$ from 5 M$)$ and $\mathrm{NCS}(1.2 \mathrm{eq}, 1.0752 \mathrm{~g}$. The reaction was warmed to $40^{\circ} \mathrm{C}$ for 6.5 hr under an argon atmosphere. Washed $4 \times 150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 125 \mathrm{~mL}$ Brine, $2 \times 25 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$, dried and taken onto next reaction. To a solution of the intermediate in absolute ethanol $(150 \mathrm{~mL})$ was added 2.4 equivalents of ethyl acetoacetate $(2 \mathrm{~mL})$ dissolved in 55 mL EtOH and sodium (2eq, 0.2993 g) slowly. The mixture was allowed to stir at room temperature under argon for 15.5 hours until TLC in 4:1:1 Hex/EtOAc/DCM revealed all nitrile oxide had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid dissolved in CHCl_{3}, washed $2 \times 100 \mathrm{~mL}$ DI $\mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}$ Brine, and the aqueous layer washed $2 \times 20 \mathrm{~mL} \mathrm{CHCl}_{3}$, dried sodium sulfate, and concentrated under reduced pressure. The solid was then chromatographed using dichloromethane until all desired product $\mathbf{4}$ was collected. Obtained (Yield from two steps $2.605 \mathrm{~g}, 85 \%) .\left(\mathrm{Rf}=0.334: 1: 1 \mathrm{Hex} / \mathrm{EtOAc}_{\mathrm{L}} / \mathrm{Et}_{2} \mathrm{O}\right) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.05$ (m, 2H), 7.72 (d, J=8.91 Hz, 1H), 7.65 (m, 1H), 7.58 (d, J=8.28 Hz, 2H), 7.25 (m, 8H), 6.68, (d, $\mathrm{J}=2.38 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{q}, \mathrm{J}=7.15 \mathrm{~Hz}, 14.31,2 \mathrm{H}), 2.81(\mathrm{~s}, 3 \mathrm{H}), 0.45(\mathrm{t}, \mathrm{J}=7.03,7.15 \mathrm{~Hz}, 14.18)$. ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 176.4,161.5,160.3,158.0,147.2,134.3,134.1,131.7,130.1,129.5,127.7$, $127.2,126.9,126.7,126.6,126.6,126.2,125.8,125.8,124.3,124.2,122.6,120.4,117.6,111.5$, 109.7, 60.2, 13.4, 13.0. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{~N}_{1} \mathrm{O}_{4}(\mathrm{M}+1)$ requires 474.1705, found 474.1705.

General Procedure from ester to double tail.

Ester 8a-e (0.5 mmol) was dissolved in THF (5 mL). To the solution was then added methanol (5 mL) and aqueous KOH (5 eq. in $10 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$). The solution was then brought to reflux for three hours until completion of the reaction as indicated by TLC. The reaction was then cooled to room temperature and the organic solvents were removed under reduced pressure. The aqueous mixture was diluted with then diluted with water $(10 \mathrm{~mL})$. The aqueous solution was cooled to $0^{\circ} \mathrm{C}$ and acidified to pH 2 with 1 M HCl . The resulting precipitate was filtered and washed with water ($3 \times 5 \mathrm{~mL}$). The solid was then dissolved in ethyl acetate and dried over sodium sulfate. The solid was removed by filtration and the solution was concentrated under reduced pressure to yield the carboxylic acid.

To the carboxylic acid was added excess thionyl chloride (10 mL). The solution was stirred at room temperature for 18 hr under a drying tube equipped with CaCl 2 and NaOH . The reaction mixture was concentrated under reduced pressure. The chlorinating agent was chased with chloroform and hexanes to yield to acid chloride.

The acid chloride was dissolved in dry methylene chloride $(5 \mathrm{~mL})$ and to the solution was added triethyl amine (2 eq.). To a stirring solution of the acid chloride, at $0^{\circ} \mathrm{C}$, was slowly added the amino pyrrole 7 in methylene chloride (5 mL). The mixture was allowed to warm to room temperature while stirring for 24 hr . The reaction mixture was diluted with chloroform (40 mL) and washed with water (20 mL). The aqueous fraction was then extracted with methylene chloride ($3 \times 10 \mathrm{~mL}$). The combined organic fractions were dried over sodium sulfate, filtered, and concentrated. The product was then purified by column chromatography eluting 10% ammonium hydroxide in methanol.

N -(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1 H-pyrrol-3-yl)-3-(10-

 methoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 8a.Yield from two steps 62%. 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.43(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.41 \mathrm{~Hz}$ anthracene- H), 7.72 (d, 2H, J= 8.78 Hz , anthracene-H), 7.54 (m, 4H, anthracene-H), 6.59 (s, 1H, pyrrole-H), 6.49 (s, 1H, pyrrole-H), 5.06 (s, 1H, amide-H), 4.24 (s, 3H, methoxy), 3.45 (s, 3H, pyrrole methyl), 3.30 (bs, 4H, double tail), 3.01 (s, 3H, isoxazole methyl), 2.18 (bs, 16H, double tail), 1.63 (bs, 4H, double tail). 13C NMR (CDCl_{3}) $\delta 176.03,163.55$, 157.70, 157.41, 155.42, 131.90, 127.94, 125.92, 125.22, 124.27, 123.96, 122.77, 119.85, 116.05, 115.69, 112.80, 101.89, 63.72, 56.75, 45.32, 35.15, 13.62. HRMS (EI) accurate mass calcd. for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{O}_{4} \mathrm{~N}_{6}(\mathrm{M}+1)$ requires 625.3502, found 625.3215 .

N -(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-3-(10-phenoxyanthracen-9-yl)isoxazole-4-carboxamide, 8b.

Yield from two steps 86%. 1 H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 8.24(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.41 \mathrm{~Hz}$ anthracene-H), 7.77 (d, 2H, J= 8.41 Hz , anthracene-H), 7.52 (m, 4H, anthracene-H), 7.25 (d, 2H, $\mathrm{J}=8.41 \mathrm{~Hz}$, aryl-H), $7.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{J}=7.28,14.56 \mathrm{~Hz}$, aryl-H), $6.85(\mathrm{~d}, 2 \mathrm{H}, \mathrm{J}=8.16 \mathrm{~Hz}$, arylH), $6.62(\mathrm{~s}, 1 \mathrm{H}$, pyrrole-H), $6.49(\mathrm{~s}, 1 \mathrm{H}$, pyrrole-H), $5.10(\mathrm{~s}, 1 \mathrm{H}$, amide-H), $3.47(\mathrm{~s}, 3 \mathrm{H}$, pyrrole methyl), 3.30 (bs, 4H, double tail), 3.03 (s, 3H, isoxazole methyl), 2.15 (bs, 16H, double tail), 1.61 (bs, 4H, double tail). 13C NMR $\left(\mathrm{CDCl}_{3}\right) \delta 176.11,163.55,159.88$, 157.62, 157.27, 148.64, 131.79, 129.94, 128.14, 126.55, 125.15, 124.66, 124.07, 123.10, 122.32, 119.90, 117.80, 115.67, 115.24, 112.93, 101.82, 56.75, 45.28, 35.21, 35.21, 13.62. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{41} \mathrm{H}_{47} \mathrm{O}_{4} \mathrm{~N}_{6}(\mathrm{M}+1)$ requires 687.3659, found 687.3629.

3-(10-([1,1'-biphenyl]-4-yloxy)anthracen-9-yl)-N-(5-(bis(3-
(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methylisoxazole-4carboxamide, 8 c .

Yield from two steps 73%. 1 H NMR (CDCl_{3}) $\delta 8.27$ (bd, $2 \mathrm{H}, \mathrm{J}=8.91 \mathrm{~Hz}$ anthracene- H), 7.78 (bd, 2H, J= 7.91 Hz , anthracene-H), 7.52 (m, 8H, anthracene-H, aryl-H), 7.41 (t, 2H, J=7.53, 15.18 Hz, aryl-H), 7.30 (t, 1H, J=7.40, 14.68 Hz , aryl-H), 6.91 (d, 2H, J=8.53 Hz , aryl-H), $6.64(\mathrm{~s}, 1 \mathrm{H}$, pyrrole-H), 6.53 (s, 1H, pyrrole-H), 5.12 (s, 1H, amide-H), 3.47 (s, 3H, pyrrole methyl), 3.26 (t, 4H, J=7.28, 14.56, double tail), 3.03 (s, 3H, isoxazole methyl), 2.15 (bs, 16H, double tail), 1.59 (bs, 4H, double tail). 13C NMR (CDCl_{3}) δ 176.04, 163.51, 159.40, 157.56, 157.25, 148.54, 140.16, 135.42, 131.75, 128.74, 128.53, 128.14, 126.96, 126.73, 126.60, 125.14, 124.60, 124.04, 123.02, 119.88, $117.89,115.65,115.50,112.92,101.74,56.65,45.16,35.18,13.58$. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{47} \mathrm{H}_{51} \mathrm{O}_{4} \mathrm{~N}_{6}(\mathrm{M}+1)$ requires 763.3948, found 763.3972 .

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-3-(10-(naphthalen-1-yloxy)anthracen-9-yl)isoxazole-4-carboxamide, 8d.

Yield from two steps 48%. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.98(\mathrm{~m}, 1 \mathrm{H}), 8.44(\mathrm{~m}, 1 \mathrm{H}), 8.22(\mathrm{dd}$, $J=18.51,8.72 \mathrm{~Hz}, 2 \mathrm{H}), 8.06(\mathrm{~m}, 1 \mathrm{H}), 7.81(\mathrm{~m}, 5 \mathrm{H}), 7.54(\mathrm{~m}, 5 \mathrm{H}), 6.64(\mathrm{~m}, 2 \mathrm{H}), 5.18(\mathrm{~m}, 1$ H), 3.50 (m, 3 H), 3.36 (br. s., 4 H), 3.06 (m, 4 H), 2.18 (br. s., 16 H), 1.68 (br. s., 4 H). ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta 176.21,163.64,158.75,157.10,157.27,157.19,140.09,148.52,147.95$, 134.88, 132.93, 131.82, 130.89, 128.57, 128.25, 128.19, 127.89, 127.03, 126.84, 126.63, 126.17, 125.64, 125.36, 125.25, 125.17, 124.78, 124.63, 124.45, 124.18, 122.97, 122.70, 122.47, 122.14, 121.73, 119.79, 118.68, 115.89, 112.99, 108.28, 107.60, 107.19, 102.04, 60.95, 56.79, 45.32,
35.20, 15.52, 13.65. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{~N}_{6}(\mathrm{M}+1)$ requires 737.3815, found 737.3833.

N -(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-5-methyl-3-(10-(naphthalen-2-yloxy)anthracen-9-yl)isoxazole-4-carboxamide, 8e.

Yield from two steps $42 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta \mathrm{ppm} 8.26(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.93(\mathrm{~m}, 4$ H), $7.31-7.58(\mathrm{~m}, 8 \mathrm{H}), 6.77(\mathrm{~d}, J=1.88 \mathrm{~Hz}, 1 \mathrm{H}), 6.49-6.68(\mathrm{~m}, 2 \mathrm{H}), 5.20(\mathrm{~d}, J=1.13 \mathrm{~Hz}, 1 \mathrm{H})$, 3.42-3.58(m, 3 H), 3.29 (br. s., 4 H), 3.04 (s, 3 H), 2.00-2.34 (m, 16 H), 1.58 (br. s., 4 H). ${ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) δ ppm 176.08, 163.52, 163.43, 157.76, 157.61, 157.53, $157.24,157.14,152.59,148.58,148.43,134.17,131.90,131.80,131.67,130.25,130.18,129.53$, $128.23,128.13,127.90,127.57,126.95,126.87,126.79,126.55,125.12,124.57,124.54,124.42$, $124.10,123.64,123.03,122.68,119.82,119.76,117.89,117.24,115.68,112.98,112.93,109.69$, 101.93, 56.69, 45.22, 35.20, 35.15, 13.58. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{45} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{~N}_{6}$ $(\mathrm{M}+1)$ requires 737.3815 , found 737.3809 .

Results and Discussion.

These novel compounds were purified and characterized by EI-MS and a sequence of NMR techniques, such as: $1 \mathrm{H}, 13 \mathrm{C}, 1 \mathrm{H}-1 \mathrm{H}$ COSY, HSQC and HMBC. Of the ID-dansyl analogs that were examined by NMR, all were found to display more signals than expected, even after careful chromatography, which we rationalized by their ability to adopt multiple conformations (Fig SM-1).

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
29 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-36 $\quad \mathrm{H}: 0-45 \quad \mathrm{~N}: 0-6 \quad \mathrm{O}: 0-4$
2ND-80-2
2ND-80-HR2 $466(4.679) \quad 1:$ TOF MS ES+

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for $\mathrm{i}-\mathrm{FIT}=3$
Monoisotopic Mass, Even Electron Ions
26 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-41 $\quad \mathrm{H}: 0-47 \quad \mathrm{~N}: 0-6 \quad \mathrm{O}: 0-4$
3ND33hr
3ND33hr 537 (5.393) $1:$ TOF MS ES+

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
24 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-47 H: 0-5
N: 0-6
O: 0-4

3ND133 HRMS

Minimum:				-1.5						
Maximum:		5.0	10.0	50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Form	la		
763.3948	763.3972	-2.4	-3.1	25.5	156.4	0.0	C47	H5 1	N6	O4

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
26 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 0-45 $\quad \mathrm{H}: 0-49 \quad$ N: 0-6 $\quad \mathrm{O}: 0-4$
3ND140
3ND140 637 (6.394)

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
26 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 0-45 } & \mathrm{H}: 0-49 & \mathrm{~N}: 0-6 & \mathrm{O}: 0-4\end{array}$

3ND127

3ND127 $536(5.380) \quad 1:$ TOF MS ES+

Computer programs:
SAINT V8.27B (Bruker AXS Inc., 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008).

Computing details
Data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: $\underline{\text { SHELXS }}$ (Sheldrick, 2008); program(s) used to refine structure: SHELXL (Sheldrick, 2008); molecular graphics: Olex2 (Dolomanov et al., 2009); software used to prepare material for publication: Olex2 (Dolomanov et al., 2009).

Crystal data	
$\mathrm{C}_{22} \underline{\mathrm{H}_{19}} \underline{\mathrm{NO}_{4}}$	$\underline{?}$
$M_{r}=\underline{361.38}$	$D_{\mathrm{x}}=\underline{1.328} \mathrm{Mg} \mathrm{m}^{-3}$
$\underline{\text { Orthorhombic, } \underline{P b c a}}$	Melting point: $\underline{?} \mathrm{~K}$
Hall symbol: $\underline{?}$	$\underline{\text { Mo Ka radiation, } \lambda=\underline{0.71073}} \AA$
$a=\underline{7.9091(3)} \AA$	Cell parameters from $\underline{9912}$ reflections
$b=\underline{16.5970(7)} \AA$	$\theta=\underline{2.6} \underline{27.4^{\circ}}$
$c=\underline{27.5365(12)} \AA$	$\mu=\underline{0.09} \mathrm{~mm}^{-1}$
$V=\underline{3614.6(3)} \AA^{3}$	$T=\underline{100} \mathrm{~K}$

$Z=\underline{8}$	$\underline{\text { Prism }}, \underline{\text { yellow }}$
$F(000)=\underline{1520}$	$\underline{0.29} \times \underline{0.28} \times \underline{0.21} \mathrm{~mm}$

Data collection

$\underline{B r u k e r ~ S M A R T ~ B R E E Z E ~ C C D ~}$	
diffractometer	$\underline{4109}$ independent reflections
Radiation source: $\underline{2 \mathrm{~kW} \text { sealed X-ray tube }}$	$\underline{2911}$ reflections with $\underline{I>2 \sigma(I)}$
$\underline{?}$ monochromator	$R_{\mathrm{int}}=\underline{0.042}$
Detector resolution: $\underline{?}$ pixels mm^{-1}	$\theta_{\max }=\underline{27.4^{\circ}}, \theta_{\min }=\underline{2.5^{\circ}}$
$\underline{\varphi \text { and } \omega \text { scans }}$	$h=\underline{-10} \underline{10}$
Absorption correction: $\underline{\text { multi-scan }}$	$k=\underline{-21} \underline{20}$
$\underline{S A D A B S-2012 / 1(B r u k e r, ~ 2012)}$	$l=\underline{-35} \underline{35}$
$T_{\min }=\underline{0.912}, T_{\max }=\underline{1.000}$	
$\underline{24975}$	

Refinement

Refinement on $\underline{F^{2}}$

Least-squares matrix: full

Secondary atom site location: ?

Hydrogen site location: inferred from

	neighbouring sites
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=\underline{0.045}$	$\underline{\text { H-atom parameters constrained }}$
$w R\left(F^{2}\right)=\underline{0.112}$	$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0453 P)^{2}+1.5524 P\right]$ where $P=\left(F_{0}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=\underline{1.03}$	$(\Delta / \sigma)_{\text {max }}=\underline{0.001}$
$\underline{4109}$ reflections	$\Delta \rho_{\max }=\underline{0.29} \mathrm{e}^{\AA} \AA^{-3}$
$\underline{247}$ parameters	$\Delta \rho_{\text {min }}=\underline{-0.29} \mathrm{e}^{\AA^{-3}}$
$\underline{0}$ restraints	Extinction correction: none
$\underline{?}$ constraints	Extinction coefficient: ?
Primary atom site location: structure-invariant direct methods	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(\AA^{2}\right)$

	X	y	Z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$-0.35989(14)$	$0.96574(7)$	$0.03187(4)$	$0.0244(3)$
O2	$0.08525(15)$	$0.86256(8)$	$-0.02913(4)$	$0.0326(3)$
O3	$0.15087(14)$	$0.85246(7)$	$0.04993(4)$	$0.0221(3)$
O4	$0.15548(14)$	$0.81274(7)$	$0.25306(4)$	$0.0268(3)$

N1	-0.31613 (18)	0.95133 (8)	0.08136 (5)	0.0242 (3)
C1	0.1407 (2)	0.97991 (11)	0.23304 (6)	0.0262 (4)
H1	0.1984	0.9627	0.2615	0.031*
C2	0.1298 (2)	1.05948 (11)	0.22282 (6)	0.0314 (4)
H2	0.1805	1.0977	0.2440	0.038*
C3	0.0434 (2)	1.08603 (11)	0.18080 (7)	0.0312 (4)
H3	0.0354	1.1421	0.1743	0.037*
C4	-0.0282 (2)	1.03283 (10)	0.14967 (6)	0.0248 (4)
H4	-0.0854	1.0522	0.1217	0.030*
C5	-0.13449 (19)	0.74685 (9)	0.10343 (6)	0.0195 (4)
H5	-0.1910	0.7627	0.0745	0.023*
C6	-0.1161 (2)	0.66719 (10)	0.11336 (6)	0.0237 (4)
H6	-0.1590	0.6282	0.0913	0.028*
C7	-0.0337 (2)	0.64178 (10)	0.15626 (6)	0.0277 (4)
H7	-0.0208	0.5859	0.1627	0.033*
C8	0.0271 (2)	0.69681 (10)	0.18821 (6)	0.0250 (4)
H8	0.0809	0.6790	0.2171	0.030*

C9	0.0755 (2)	0.83883 (10)	0.21113 (6)	0.0211 (4)
C10	-0.08595 (19)	0.89041 (9)	0.12594 (5)	0.0172 (3)
C11	-0.01913 (19)	0.94783 (10)	0.15827 (6)	0.0193 (4)
C12	0.0659 (2)	0.92129 (10)	0.20144 (6)	0.0206 (4)
C13	0.01135 (19)	0.78115 (10)	0.17903 (6)	0.0190 (4)
C14	-0.07079 (19)	0.80738 (9)	0.13549 (5)	0.0170 (3)
C15	-0.1677 (2)	0.91653 (9)	0.08000 (6)	0.0181 (3)
C16	-0.1090 (2)	0.90742 (9)	0.03098 (6)	0.0177 (3)
C17	-0.2353 (2)	0.93860 (9)	0.00304 (6)	0.0201 (4)
C18	-0.2625 (2)	0.94596 (11)	-0.05010 6)	0.0263 (4)
H18A	-0.3440	0.9051	-0.0607	0.039*
H18B	-0.1549	0.9379	-0.0671	0.039*
H18C	-0.3066	0.9997	-0.0576	0.039*
C19	0.0495 (2)	0.87249 (9)	0.01309 (6)	0.0193 (4)
C20	0.3063 (2)	0.80968 (11)	0.03884 (6)	0.0269 (4)
H20A	0.3835	0.8442	0.0197	0.032*
H20B	0.2820	0.7602	0.0200	0.032*

C21	$0.3843(2)$	$0.78877(12)$	$0.08684(7)$	$0.0346(5)$
H21A	0.4879	0.7576	0.0815	0.052^{*}
H21B	0.3043	0.7566	0.1059	0.052^{*}
H21C	0.4115	0.8384	0.1045	0.052^{*}
C22	$0.0470(2)$	$0.81194(12)$	$0.29442(6)$	$0.0304(4)$
H22A	-0.0540	0.7799	0.2872	0.046^{*}
H22B	0.0136	0.8672	0.3024	0.046^{*}
H22C	0.1069	0.7881	0.3221	0.046^{*}
H				

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0228(6)$	$0.0306(7)$	$0.0198(6)$	$0.0084(5)$	$-0.0030(5)$	$0.0022(5)$
O2	$0.0289(7)$	$0.0516(9)$	$0.0172(6)$	$0.0090(6)$	$0.0026(5)$	$-0.0030(6)$
O3	$0.0176(6)$	$0.0305(7)$	$0.0183(6)$	$0.0067(5)$	$0.0008(5)$	$-0.0013(5)$
O4	$0.0182(6)$	$0.0434(8)$	$0.0187(6)$	$0.0029(5)$	$-0.0031(5)$	$0.0038(5)$
N1	$0.0247(8)$	$0.0309(8)$	$0.0170(7)$	$0.0068(6)$	$-0.0025(6)$	$0.0020(6)$
C1	$0.0219(9)$	$0.0393(11)$	$0.0174(8)$	$-0.0058(8)$	$0.0024(7)$	$-0.0040(8)$
(8) (8)						

C2	0.0328 (10)	0.0360 (11)	0.0255 (10)	-0.0112 (8)	0.0061 (8)	-0.0117 (8)
C3	0.0398 (11)	0.0235 (10)	0.0302 (10)	-0.0033 (8)	0.0077 (8)	-0.0041 (8)
C4	0.0272 (9)	0.0244 (9)	0.0227 (9)	0.0018 (7)	0.0044 (7)	-0.0022 (7)
C5	0.0186 (8)	0.0241 (9)	0.0160 (8)	0.0008 (7)	0.0013 (6)	0.0015 (7)
C6	0.0248 (9)	0.0232 (9)	0.0233 (9)	-0.0022 (7)	0.0035 (7)	-0.0017 (7)
C7	0.0343 (10)	0.0207 (9)	0.0282 (10)	0.0049 (8)	0.0056 (8)	0.0048 (8)
C8	0.0254 (9)	0.0284 (10)	0.0213 (9)	0.0066 (8)	0.0024 (7)	0.0074 (7)
C9	0.0133 (8)	0.0350 (10)	0.0150 (8)	0.0034 (7)	0.0012 (6)	0.0031 (7)
C10	0.0146 (8)	0.0225 (9)	0.0147 (8)	0.0035 (7)	0.0022 (6)	-0.0003 (6)
C11	0.0157 (8)	0.0247 (9)	0.0174 (8)	0.0018 (7)	0.0053 (6)	-0.0017 (7)
C12	0.0154 (8)	0.0289 (9)	0.0176 (8)	-0.0016 (7)	0.0030 (6)	-0.0019 (7)
C13	0.0145 (8)	0.0255 (9)	0.0170 (8)	0.0026 (7)	0.0038 (6)	0.0023 (7)
C14	0.0129 (8)	0.0237 (9)	0.0143 (8)	0.0016 (6)	0.0031 (6)	0.0008 (6)
C15	0.0178 (8)	0.0171 (8)	0.0194 (8)	0.0009 (6)	-0.0007 (6)	-0.0001 (6)
C16	0.0199 (8)	0.0167 (8)	0.0165 (8)	-0.0003 (6)	-0.0010 (7)	0.0001 (6)
C17	0.0214 (8)	0.0173 (8)	0.0215 (8)	-0.0021 (7)	0.0002 (7)	0.0003 (7)
C18	0.0285 (10)	0.0305 (10)	0.0199 (9)	0.0001 (8)	-0.0054 (7)	0.0034 (7)

C19	$0.0205(8)$	$0.0203(9)$	$0.0171(8)$	$-0.0021(7)$	$-0.0007(7)$	$-0.0006(7)$
C20	$0.0184(9)$	$0.0339(10)$	$0.0284(9)$	$0.0070(8)$	$0.0043(7)$	$-0.0024(8)$
C21	$0.0247(10)$	$0.0470(12)$	$0.0322(10)$	$0.0123(9)$	$-0.0033(8)$	$-0.0035(9)$
C22	$0.0280(10)$	$0.0439(11)$	$0.0194(9)$	$-0.0033(9)$	$-0.0035(8)$	$0.0066(8)$

Geometric parameters $\left(\AA,^{\circ}\right)$

$\mathrm{O} 1-\mathrm{N} 1$	1.4262 (17)	C8-C13	1.428 (2)
$\mathrm{O} 1-\mathrm{C} 17$	1.3433 (19)	C9-C12	1.396 (2)
O2-C19	1.2075 (18)	C9-C13	1.398 (2)
O3-C19	1.3348 (18)	C10-C11	1.407 (2)
$\mathrm{O} 3-\mathrm{C} 20$	1.4523 (19)	C10-C14	1.408 (2)
O4-C9	1.3860 (19)	C10-C15	1.485 (2)
$\mathrm{O} 4-\mathrm{C} 22$	1.426 (2)	C11-C12	1.435 (2)
N1-C15	1.309 (2)	C13-C14	1.431 (2)
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	C15-C16	1.436 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.353 (3)	C16-C17	1.363 (2)
$\mathrm{C} 1-\mathrm{C} 12$	1.433 (2)	C16-C19	1.467 (2)
$\mathrm{C} 2-\mathrm{H} 2$	0.9500	C17-C18	1.484 (2)

C2-C3	1.414 (3)	C18-H18A	0.9800
C3-H3	0.9500	C18-H18B	0.9800
C3-C4	1.354 (2)	C18-H18C	0.9800
$\mathrm{C} 4-\mathrm{H} 4$	0.9500	C20-H20A	0.9900
C4-C11	1.432 (2)	C20-H20B	0.9900
C5-H5	0.9500	C20-C21	1.499 (2)
C5-C6	1.358 (2)	C21-H21A	0.9800
C5-C14	1.429 (2)	C21-H21B	0.9800
C6-H6	0.9500	C21-H21C	0.9800
C6-C7	1.414 (2)	C22-H22A	0.9800
C7-H7	0.9500	C22-H22B	0.9800
C7-C8	1.356 (2)	C22-H22C	0.9800
C8-H8	0.9500		
C17-O1-N1	109.30 (11)	C9-C13-C8	121.85 (15)
C19-O3-C20	118.06 (12)	C9-C13-C14	119.07 (14)
C9-O4-C22	113.18 (12)	C5-C14-C13	117.62 (14)
C15-N1-O1	105.33 (12)	C10-C14-C5	122.86 (14)

$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.7	C10-C14-C13	119.51 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12$	120.68 (16)	N1-C15-C10	119.67 (14)
C12- $\mathrm{C} 1-\mathrm{H} 1$	119.7	N1-C15-C16	111.30 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.8	C16-C15-C10	129.01 (14)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.32 (16)	C15-C16-C19	129.34 (14)
C3-C2-H2	119.8	C17-C16-C15	104.71 (14)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.4	C17-C16-C19	125.94 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	121.11 (17)	$\mathrm{O} 1-\mathrm{C} 17-\mathrm{C} 16$	109.35 (14)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.4	$\mathrm{O} 1-\mathrm{C} 17-\mathrm{C} 18$	116.66 (14)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	119.4	C16-C17-C18	133.96 (15)
C3-C4-C11	121.10 (17)	C17-C18-H18A	109.5
C11-C4-H4	119.4	C17-C18-H18B	109.5
C6-C5-H5	119.3	C17-C18-H18C	109.5
C6-C5-C14	121.49 (15)	H18A-C18-H18B	109.5
C14-C5-H5	119.3	H18A-C18-H18C	109.5
C5-C6-H6	119.7	H18B-C18-H18C	109.5
C5-C6-C7	120.53 (16)	$\mathrm{O} 2-\mathrm{C} 19-\mathrm{O} 3$	123.86 (15)

C7-C6-H6	119.7	O2-C19-C16	125.26 (15)
C6-C7-H7	119.8	O3-C19-C16	110.88 (13)
C8-C7-C6	120.30 (16)	$\mathrm{O} 3-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	110.5
C8- $\mathrm{C} 7-\mathrm{H} 7$	119.8	$\mathrm{O} 3-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~B}$	110.5
C7-C8-H8	119.5	$\mathrm{O} 3-\mathrm{C} 20-\mathrm{C} 21$	106.02 (13)
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 13$	120.97 (15)	H20A-C20-H20B	108.7
C13-C8-H8	119.5	$\mathrm{C} 21-\mathrm{C} 20-\mathrm{H} 20 \mathrm{~A}$	110.5
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 12$	119.34 (15)	C21-C20-H20B	110.5
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 13$	118.58 (15)	$\mathrm{C} 20-\mathrm{C} 21-\mathrm{H} 21 \mathrm{~A}$	109.5
C12-C9-C13	122.05 (15)	C20-C21-H21B	109.5
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 14$	120.85 (14)	C20-C21-H21C	109.5
$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15$	120.31 (14)	H21A-C21-H21B	109.5
C14-C10-C15	118.80 (14)	H21A-C21-H21C	109.5
$\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$	117.56 (15)	H21B-C21-H21C	109.5
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 4$	122.94 (15)	$\mathrm{O} 4-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~A}$	109.5
$\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	119.48 (14)	$\mathrm{O} 4-\mathrm{C} 22-\mathrm{H} 22 \mathrm{~B}$	109.5
C1-C12-C11	119.21 (15)	$\mathrm{O} 4-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5

C9-C12-C1	121.82 (15)	H22A-C22-H22B	109.5
C9-C12-C11	118.97 (15)	H22A-C22-H22C	109.5
$\mathrm{C} 8-\mathrm{C} 13-\mathrm{C} 14$	119.07 (15)	$\mathrm{H} 22 \mathrm{~B}-\mathrm{C} 22-\mathrm{H} 22 \mathrm{C}$	109.5
O1-N1-C15-C10	-177.98(13)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 14-\mathrm{C} 5$	-179.10 (14)
O1-N1-C15-C16	0.40 (17)	C11-C10-C14-C13	1.0 (2)
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 1$	1.7 (2)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 15-\mathrm{N} 1$	-72.2 (2)
$\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 12-\mathrm{C} 11$	-179.18 (13)	C11-C10-C15-C16	109.79 (19)
O4-C9-C13-C8	-0.3 (2)	C12-C1-C2-C3	0.4 (3)
O4-C9-C13-C14	-179.69 (13)	C12-C9-C13-C8	177.59 (15)
N1-O1-C17-C16	-0.65 (17)	C12-C9-C13-C14	-1.8(2)
N1-O1-C17-C18	177.80 (13)	C13-C9-C12-C1	-176.22 (15)
N1-C15-C16-C17	-0.79 (18)	C13-C9-C12-C11	2.9 (2)
N1-C15-C16-C19	179.49 (15)	C14-C5-C6-C7	0.5 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	-0.8(3)	$\mathrm{C} 14-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 4$	178.65 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 9$	179.94 (16)	C14-C10-C11-C12	0.2 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 12-\mathrm{C} 11$	0.8 (2)	C14-C10-C15-N1	110.33 (17)
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11$	0.1 (3)	C14-C10-C15-C16	-67.7 (2)

C3-C4-C11-C10	-177.46 (15)	C15-C10-C11-C4	1.2 (2)
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12$	1.1 (2)	C15-C10-C11-C12	-177.29 (14)
$\mathrm{C} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 1$	-1.5 (2)	C15-C10-C14-C5	-1.6 (2)
C4- $\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 9$	179.36 (15)	C15-C10-C14-C13	178.48 (13)
C5-C6-C7-C8	0.4 (3)	C15-C16-C17-O1	0.85 (17)
C6-C5-C14-C10	179.19 (15)	C15-C16-C17-C18	-177.22 (17)
C6-C5-C14-C13	-0.9 (2)	C15-C16-C19-O2	175.21 (16)
C6-C7-C8-C13	-0.8 (3)	C15-C16-C19-O3	-4.6 (2)
C7-C8-C13-C9	-179.00 (15)	C17-O1-N1-C15	0.15 (16)
C7-C8-C13-C14	0.4 (2)	C17-C16-C19-O2	-4.4 (3)
C8-C13-C14-C5	0.5 (2)	C17-C16-C19-O3	175.79 (15)
C8-C13-C14-C10	-179.59 (14)	C19-O3-C20-C21	-174.81 (14)
C9-C13-C14-C5	179.86 (14)	C19-C16-C17-O1	-179.42 (14)
C9-C13-C14-C10	-0.2 (2)	C19-C16-C17-C18	2.5 (3)
C10-C11-C12-C1	177.07 (14)	$\mathrm{C} 20-\mathrm{O} 3-\mathrm{C} 19-\mathrm{O} 2$	-5.8(2)
C10-C11-C12-C9	-2.1(2)	C20-O3-C19-C16	174.02 (13)
C10-C15-C16-C17	177.39 (15)	C22-O4-C9-C12	85.45 (18)

| $\mathrm{C} 10-\mathrm{C} 15-\mathrm{C} 16-\mathrm{C} 19$ | $-2.3(3)$ | $\mathrm{C} 22-\mathrm{O} 4-\mathrm{C} 9-\mathrm{C} 13$ | $-96.56(17)$ |
| :--- | :--- | :--- | :--- | :--- |

Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 18 — \mathrm{H} 18 B \cdots \mathrm{O} 2$	0.98	2.50	$3.133(2)$	122
C21—H21A $\cdots \mathrm{O}^{\mathrm{i}}$	0.98	2.58	$3.371(2)$	138

Symmetry code: (i) $x+1 / 2,-y+3 / 2,-z$.

All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Supplementary References

(28) Gore, P. H.; Gupta, S. D.; Obaji, G. A. Anomalous Reactions of Cyanide with Two Hindered Aromatic Aldehydes. J. Für Prakt. Chem. 1984, 326 (3), 381-384.
(29) Vellis, P. D.; Mikroyannidis, J. A.; Bagnis, D.; Valentini, L.; Kenny, J. M. New Anthracene-Containing Phenylene- or Thienylene-Vinylene Copolymers: Synthesis, Characterization, Photophysics, and Photovoltaics. J. Appl. Polym. Sci. 2009, 113 (2), 11731181.

Chapter 4

3-Aryl isoxazoles exhibit atropisomerism

4.1 Introduction

3-Aryl isoxazole amides (AIMs) exhibit robust anticancer activity in the in vitro NCI Developmental Therapeutics Program's 60 cell line protocol (NCI 60), comparable to several agents currently in general medical practice (such as bleomycin and rubidazone) ${ }^{1}$. It is hypothesized that unsymmetrical AIMs should exhibit enantioselectivity of action at our putative target, G-Quadruplex (G4) DNA. Calculations at the B3LYP/6-31G* level of theory indicated that the barrier to rotation in many examples should be consistent with isolable atropoisomers, that is, in the range of $23.2-25.6 \mathrm{kcal} / \mathrm{mole}^{2}$. Nitrile oxide cycloaddition using unsymmetrical naphthyl-nitrile oxides gave isoxazoles in modest to good yields. Reaction of acid chlorides with (S)-2-butyl amine gives diastereomeric 3-aryl isoxazolyl amides which were studied by dynamic NMR. The barrier to rotation about the chiral axis in $\mathbf{8 g}$ was determined by line-shape analysis to be approximately $18.4 \mathrm{kcal} /$ mole.

4.2 Atropisomerism

Chapter 3 examined structure-activity relationship (SAR) of AIMs, although the plausibility of restricted rotation at the aryl-isoxazole ring juncture has not yet been examined. Atropisomerism or axial chirality is non-superimposability of an organic compound about a hindered axis. These molecules should result in isolable enantiomers should they meet the socalled Oki criteria of having a barrier of $22.3 \mathrm{kcal} / \mathrm{mol}$ at $300^{\circ} \mathrm{K}$ and a half-life of approximately $1000 \mathrm{~s}(16.7 \mathrm{~min}){ }^{2}$

Figure 4-1. Transition state for compound $\mathbf{8 g}$.
We tested the plausibility of axially chiral isoxazoles employing calculations at the B3LYP/6-31G* level of theory. The results on number of examples are summarized in Table 4-

1. ${ }^{3,4}$ The structure was rotated through increments of 10°, and again minimized. A transition is shown in Figure 4-1, where the isoxazolyl 4-moiety must move out of conjugation with the isoxazole in order to pass by the peri-proton, and represents the usual saddle point significant deformation at the aromatic ring and lengthening of the isoxazole-3-aryl single bond is observed. A compensating factor, however, is that the isoxazole at this juncture moves into conjugation with the 3-aryl functionality. Substituents were varied at the C-4 position (esters 5, amides $\mathbf{8}$) and C-5 (2-methyl and 2-methoxy naphthyl, 1- and 2,10-dimethoxy-anthracenyl), and we observed
that were in the range (23.2 to $25.6 \mathrm{kcal} / \mathrm{mole}$) where the isolation of rotomers would be expected to indeed be possible.

4.3 Dynamic NMR

If a molecule exists in two interconvertible conformations, both approximately equally populated, it may show, depending on the frequency of interconversion, either the nuclear magnetic resonance spectra corresponding to the individual conformations or an average spectrum of confirmations A and B. If one has two conformations A and B in equilibrium in a substance and one heats the substance until a given pair of resonance lines due to A and B just coalesces (or if, originally, there was only one set of lines, if one cools the substance until the resonance lines just begin to split), this temperature is called the coalescence temperature $T_{c}{ }^{2}{ }^{2,5}$ Molecules are in constant motion, and the different conformations which are interconverted by bond rotations and other molecular gymnastics often have different NMR spectra. Variabletemperature NMR, often referred to as dynamic NMR (DNMR), can be used to study the kinetics of these exchanges. ${ }^{5}$

The energy of activations, E_{A}, for a simple reaction such as the rotation of amides can be accessed from the Arrhenius equation for the reaction rate, k .

$$
\begin{equation*}
k=A^{-\frac{\mathrm{EA}}{R T}} \tag{1}
\end{equation*}
$$

If in equation $1, \mathrm{R}$ is a gas constant, T the absolute temperature and A roughly corresponds to the fraction of species that reaches the transition state and successfully passes over the product side of the reaction. A is usually referred as the pre-exponential term and represents the frequency of collisions between reactant molecule, is called a 'constant' in spite of the fact that it does vary a little with T .

A different approach gives the Eyring equation

$$
\begin{gather*}
k_{c}=K \mathrm{k}_{\mathrm{B}} \mathrm{~T} / \mathrm{h}^{-\Delta \mathrm{G} \nexists / \mathrm{RT}} \tag{2}\\
\text { or } \Delta G \neq=R T\left(\ln \frac{k_{B}}{h}+\ln T-\ln k_{c}\right) \tag{3}
\end{gather*}
$$

In this, k is the rate constant, k_{B} is the Boltzmann constant, h is the Planck constant and $\Delta \mathrm{G} \ddagger$ is the free energy of activation $(\Delta \mathrm{G} \ddagger=\Delta \mathrm{H} \ddagger-\mathrm{T} \Delta \mathrm{S} \ddagger)$. The kinetic constant (k value) is obtained at each given temperature and the free energy of activation ($\Delta G \neq$) can then be derived by means of Equation (3), above giving the activation energy to reach the transition state. ${ }^{5}$

The 'constant' K is analogous to the 'constant' A in the Arrhenius equation and is likewise subject to variation in non-simple reactions: it relates the 'reaction success rate'. Provided the transition state can easily transfer energy to the surroundings (and this is commonly true in large molecules), the K is near unity. For a mutual exchange or mutual site exchange (in which the exchange produces indistinguishable molecules) and for first-order cases, H.S. Gutowsky showed that the rate of rotation, k_{c}, at the temperature of coalescence, T_{c}, is given by

$$
\begin{equation*}
\mathrm{k}_{\mathrm{c}}=\pi \Delta \mathrm{v} / \sqrt{2} \tag{4}
\end{equation*}
$$

The lifetime, t_{c}, of the separate isomers at the point of coalescence is the reciprocal of the rate, $1 / \mathrm{k}_{\mathrm{c}}$.

Using these equations allows $\Delta G \neq$ values between about 4.5 and about $23 \mathrm{kcalmol}^{-1}$ to be determined. The temperature ranges over which k values can be accurately measured by DNMR technique are usually quite small. A number of books and reviews have previously been devoted to describing the applications of DNMR in conformational analysis ${ }^{2,5,6}$. An example of a variable temperature NMR is shown in Figure 4-2 for compound 9 showing the coalescence point at about $43^{\circ} \mathrm{C}$. Table 4-2 shows the experimental DNMR calculations for the set of compounds, which are still in progress and will be reported in due course.

4.4 Bond Rotation

The discovery of bioactive natural products containing chiral axes, as well as, catalysts changed the concept of axial chirality in rotationally hindered systems. The most popular systems used for asymmetric synthesis contain the binaphthyl scaffold, such as BINAP or BINOL $^{5}{ }^{7}$. The putative diastereomers of the 3-aryl isoxazoles were expected to show nonequivalence in the NMR if the barrier to rotation was sufficiently high to provide for slow exchange of the atropoisomers at any temperature. The 3-(2-methoxyphenyl) derivative 2 indicated no observed non-equivalence, even at reduced temperature in the NMR. This is in reasonable agreement with a calculated low barrier to rotation. The 3-(2-methoxy-naphthlyl) 8 isoxazole indicated broadening of several signals at room temperature.

Examination of the 3-(2-methylnaphthyl) analog 7 showed clear non-equivalence in both deuterochloroform and DMSO. Variable temperature NMR indicated gradual broadening of the signals, and coalescence at about $140^{\circ} \mathrm{C}$. Because the signals being examined were coupled, line shape analysis was used to ascertain the experimental rotational barrier, which was found to be approximately $18 \mathrm{kcal} /$ mole. This barrier amply demonstrates the plausibility of axial chirality in this system. The discrepancy between the experimental and theoretical barriers could be from an underestimation of the energy necessary for aromatic ring deformation or bond lengthening along the isoxazole-3-aryl axis at the saddle point, or overestimation of the energy gained from conjugation of the isoxazole and naphthalene ring, since the peri-proton of the latter provides an apparent encumbrance to full conjugation between these rings. Clearly, while further computational and experimental studies are warranted, atropoisomeric isoxazoles can indeed exist and potentially exist long enough allowing to isolate and analytical separation if the halflife of the interconversion is $\sim 1000 \mathrm{~s}(16.7 \mathrm{~min})$ or longer. ${ }^{2,7}$

8a. $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
8b. $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
8c. $\mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{H}$
8d. $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{Cl}$
8e. $\mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{H}$

8f. $\mathrm{R}_{1}=\mathrm{H}$
8g. $\mathrm{R}_{1}=\mathrm{CH}_{3}$
8h. $\mathrm{R}_{1}=\mathrm{OCH}_{3}$
8i. $\mathrm{R}_{1}=\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

9a. $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{H}$
9b. $\mathrm{R}_{1}=\mathrm{OCH}_{3}, \mathrm{R}_{2}=\mathrm{OCH}_{3}, \mathrm{R}_{3}=\mathrm{Cl}$
9c. $\mathrm{R}_{1}=\mathrm{Br}, \mathrm{R}_{2}=\mathrm{Br}, \mathrm{R}_{3}=\mathrm{H}$

Compound	$\mathrm{D} H^{\ddagger}($ Expt $)$	$\mathrm{D} S^{\ddagger}($ Expt $)$	$\mathrm{D} G^{\ddagger}($ Expt $)$	$\mathrm{D} H^{\ddagger}($ Calc $)$	$\mathrm{D} G^{\ddagger}($ Calc)
$\mathbf{8 a}$	submitted				
$\mathbf{8 b}$	-4.1		-6.16^{*}	-7.8	-9.7
$\mathbf{8 c}$	submitted				
$\mathbf{8 d}$	submitted		NMR-2 diast.		
$\mathbf{8 e}$	submitted				
$\mathbf{8 f}$	submitted			-14.2	-15.5
$\mathbf{8 g}$ doublet	-13.8 ± 0.1	-15.3 ± 0.1	-18.4 ± 0.2	-20.7	-24.6
$\mathbf{8 g}$ triplet	-12.5 ± 0.1	-18.5 ± 0.1	-18.0 ± 0.2		
$\mathbf{8 h}$	-10.9 ± 0.05	-8.9 ± 0.1	-13.6 ± 0.1	-22.3	-24.7
$\mathbf{8 i}$	-7.84 ± 0.02	-10.1 ± 0.2			
$\mathbf{9 a}$	submitted		~ 18		
$\mathbf{9 b}$	submitted		Locked $200^{\circ} \mathrm{C}$		
$\mathbf{9 c}$	submitted		Locked $85^{\circ} \mathrm{C}$		

Activation barriers in $\mathrm{cal} / \mathrm{mol}$

Table 4-1. Computational and /or experimental barriers at the 3-aryl-isoxazole junction.
As determined by variable temperature NMR.

Figure 4-2. Variable temperature NMR of compound $\mathbf{8 i}$.

4.5 Synthesis of desired Anthryl-isoxazole-secbutyl amides and doubletails

The synthesis for the phenyl and naphthyl series shown in Scheme 4-1 was carried based upon work done by the Natale group. ${ }^{8}$ From the ester, the synthesis was carried out in a similar manner to that of Scheme 4-2 with hydrolysis with potassium hydroxide and subsequent acid chloride reaction with thionyl chloride. The final step uses a modified Schotten-Baumann reaction with a one-phase organic solvent system with trimethylamine base.

Biehl and coworkers have described a facile route for the formation of unsymmetrical anthracenes using novel benzyne chemistry. ${ }^{9}$ The more modern of the techniques provides a considerably safer and more convenient pathway where the generation of hydrogen cyanide gas, on the molar scale, is not required. ${ }^{10}$ Using the Biehl aryne technique it was possible to generate the first potentially axially chiral anthracene isoxazole ester system (Scheme 4-2).

Scheme 4-2 depicts the route used to synthesize 15 using the Biehl aryne technique. As mentioned above, the important 2-acylphenylacetonitrile intermediate $\mathbf{1 0}$ was synthesized via a more facile route ${ }^{10}$. The Price method ${ }^{11}$ was given up as too dangerous in lieu of the recently published route proposed by Canepa and Bravo. ${ }^{10}$ The Canepa synthesis utilizes Ethyl o-toluate as a substrate for radical bromination of the ortho methyl group using N -Bromo succinamide (Scheme 4-2) in Carbon Tetrachloride $\left(\mathrm{CCl}_{4}\right)$. The expense of CCl_{4} is often prohibitive for large scale reactions but with careful collection, washing, and recycling this solvent can be reused many times over. This product $\mathbf{1 0}$ can thus be obtained in a safe manner and in higher yield ${ }^{21}$ than the Price method. Scheme 5-2 outlines the aryne synthesis combined with the method used by Natale and coworkers ${ }^{22}$ to generate unsymmetrical anthracene isoxazole ester $\mathbf{1 5}$ with a large degree of selectivity that contradicts the findings of Stevens. ${ }^{12}$ Again, with this benzyne reaction, there is a substantial learning curve where optimal yields of the nitrile $\mathbf{1 1}$ are only obtained when
the second addition, via cannula, of Lithium Diisopropyl Amine (LDA) is performed very slowly (ca. 20 min .). Subsequent methylation of the C-10 hydroxyl group was achieved with the addition of a three-fold excess of dimethylsulfate in refluxing THF until the color turns a deep yellow-green yielding 12. The structure of the 2,10-dimethoxy-1-cyano $\mathbf{1 2}$ was confirmed by single crystal x-ray diffractometry

Attempts were made to reduce the unsymmetrical anthracene nitrile using DIBAL-H in solutions of Hexanes (insoluble nitrile) and THF, but no aldehyde was obtained after hydrolysis using 10% aqueous sulfuric acid. Full reduction of the anthracene nitrile, in <5 hours at $0^{\circ} \mathrm{C}$, was obtained when DIBAL-H in toluene was employed. Hydrolysis, using 5\% aqueous sulfuric acid, gave the unsymmetrical anthracene aldehyde $\mathbf{1 3}$ in $\sim 70 \%$ yield. Reaction of $\mathbf{1 3}$ with hydroxyl amine hydrochloride in chloroform afforded the oxime 14 in ~95\% yield. Formation of the oximinoyl chloride intermediate was performed using recrystallized N -Chlorosuccinamide (from benzene) and dry ethanol at $0^{\circ} \mathrm{C}$ (yield not calculated). Finally, the intermediate was reacted with the ethyl acetoacetate and sodium alkoxide in absolute ethanol to give the final product $\mathbf{1 5}$ in 70\% yield (not optimized) after two steps.
$\mathrm{R}-\mathrm{Ar}$

$\begin{aligned} & \begin{array}{l}\text { 1. } \mathrm{KOH} \\ \text { 2. } \mathrm{H}_{3} \mathrm{O}+\end{array} \longrightarrow \text { 5. } \mathrm{R}=\mathrm{CO}_{2} \mathrm{Et} \\ & \mathrm{SOCl}_{2}\end{aligned} \longrightarrow$ 6. $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$

a. $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}$
f. $\mathrm{R}=\mathrm{H}$
c. $\mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{H}$
d. $\mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{CH}_{3}$
i. $\mathrm{R}=\mathrm{OCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$

Scheme 4-1. Synthesis of phenyl and naphthyl sec-butyl amides 8a, c-d, f, i.

11
12

15

15

16

17

$9 \mathrm{a}=10 \mathrm{a}, \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OMe}$ $8 \mathrm{~b}=10 \mathrm{~b}, \mathrm{R}_{1}=\mathrm{Cl}, \mathrm{R}_{2}=\mathrm{OMe}$

Scheme 4-2. Synthesis of anthryl-sec butyl amides 9a-b and anthryl-DT conjugate 10a-b.

4.6 Crystal Structure of 12

Within the unit cell, evidence of the 10-methoxy methyl hydrogens show van der Waals interactions to the 10 -methoxy oxygen in the molecule directly below. While the 2 -methoxy oxygen and $3-\mathrm{H}$ proton on the same molecule both have interactions with the 3-H and 2-methoxy oxygen, respectively, in the molecule directly parallel to it. Thus, the unit cell shows molecule flips both horizontally and vertically for each column structure. Full sc-xrd data and parameters are given in the Supplementary Data.

Figure 4-3. Single crystal x-ray structure of $\mathbf{1 2}$.

4.7 MTT Cell Viability Assay

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96 -well plates at a density of 10,000 cells $/ \mathrm{mL}$ and allowed to attach overnight ($16-18 \mathrm{~h}$). AAIM solutions were applied in medium for 24 h , removed, and replaced with fresh medium, and the plates were incubated at $37{ }^{\circ} \mathrm{C}$ under a humidified atmosphere containing 5\% CO ${ }_{2}$ for $3-5$ days. MTT (50 $\mu \mathrm{g}$) was added and the cells were incubated for another 4 h . Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO, and absorbance was determined on a plate reader at $560 \mathrm{~nm} . \mathrm{IC}_{50}$ values (concentration
at which cell survival equals 50% of control) were determined from semilog plots of percent of control versus concentration. Two compounds shown in Table 4-2 have low micromolar binding affinities, in which the addition of the methoxy group does correlate to better activity versus a single methoxy group shown in Chapter 3. ${ }^{13}$

Table 4-2. Cytotoxicity activity of 10a-b against human glioma SNB-19 cells.

4.8 Summary

Anthryl-10-alkoxy-isoxazole-pyrrole-doubletails can be readily made and easily substituted to enlarge the oxy-ether library series. Current studies are focused on whether the AAIMs may represent useful tools for the study of quadruplex DNA, and ultimately lead to clinically useful inhibitors. We have provided experimental verifcation of atropisomerism in 3aryl isoxazoles, which was suggested from computation. Our original motivation for this study sprang from the concept that anti-cancer activity of the related AIMs might exhibit a eudismic ratio, and hence increased efficacy. We shall report on our progress in this arena in due course.

References

(1) Han, X.; Li, C.; Mosher, M. D.; Rider, K. C.; Zhou, P.; Crawford, R. L.; Fusco, W.; Paszczynski, A.; Natale, N. R. Design, Synthesis and Biological Evaluation of a Novel Class of Anticancer Agents: Anthracenylisoxazole Lexitropsin Conjugates. Bioorg. Med. Chem. 2009, 17 (4), 1671-1680.
(2) Ernest L. Eliel; Samuel H. Wilen. Stereochemistry of Organic Compounds; Wiley: New York, 1994.
(3) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, , T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople. Gaussian 98 (Revision A.9). Gaussian, Inc., Pittsburgh, PA 1998.
(4) Williams, R. V.; Edwards, W. D.; Mitchell, R. H.; Robinson, S. G. A DFT Study of the Thermal, Orbital Symmetry Forbidden, Cyclophanediene to Dihydropyrene Electrocyclic Reaction. Predictions to Improve the Dimethyldihydropyrene Photoswitches. J. Am. Chem. Soc. 2005, 127 (46), 16207-16214.
(5) Casarini, D.; Lunazzi, L.; Mazzanti, A. Recent Advances in Stereodynamics and Conformational Analysis by Dynamic NMR and Theoretical Calculations. Eur. J. Org. Chem. 2010, 2010 (11), 2035-2056.
(6) Stewart, W. E.; Siddall, T. H. Nuclear Magnetic Resonance Studies of Amides. Chem. Rev. 1970, 70 (5), 517-551.
(7) LaPlante, S. R.; Edwards, P. J.; Fader, L. D.; Jakalian, A.; Hucke, O. Revealing Atropisomer Axial Chirality in Drug Discovery. ChemMedChem 2011, 6 (3), 505-513.
(8) Mirzaei, Y. R.; Weaver, M. J.; Steiger, S. A.; Kearns, A. K.; Gajewski, M. P.; Rider, K.
C.; Beall, H. D.; Natale, N. R. Improved Synthesis of 3-Aryl Isoxazoles Containing Fused Aromatic Rings. Tetrahedron 2012, 68 (50), 10360-10364.
(9) Bhawal, B. M.; Khanapure, S. P.; Zhang, H.; Biehl, E. R. Preparation of Anthraquinones from 10-Hydroxy-9-Anthracenecarbonitriles Obtained from a Novel Aryne Annulation Reaction. J. Org. Chem. 1991, 56 (8), 2846-2849.
(10) Cánepa, A. S.; Bravo, R. D. A Convenient Synthesis of 2-Acylphenylacetonitriles. Synth. Coтmии. 2004, 34 (4), 579-588.
(11) Price, C. C.; Lewis, F. M.; Meister, M. The Reaction of the Grignard Reagent with Homophthalic Anhydride. J. Am. Chem. Soc. 1939, 61 (10), 2760-2762.
(12) Stevens, R. V.; Bisacchi, G. S. An Efficient and Remarkably Regioselective Synthesis of Benzocyclobutenones from Benzynes and 1,1-Dimethoxyethylene. J. Org. Chem. 1982, 47 (12), 2393-2396.
(13) Weaver, M. J.; Kearns, A. K.; Stump, S.; Li, C.; Gajewski, M. P.; Rider, K. C.; Backos, D. S.; Reigan, P. R.; Beall, H. D.; Natale, N. R. AIMing towards Improved Antitumor Efficacy. Bioorg. Med. Chem. Lett.
(14) Zamponi, G. W.; Stotz, S. C.; Staples, R. J.; Andro, T. M.; Nelson, J. K.; Hulubei, V.;

Blumenfeld, A.; Natale, N. R. Unique Structure-Activity Relationship for 4-Isoxazolyl-1,4-
Dihydropyridines. J. Med. Chem. 2003, 46 (1), 87-96.
(15) Anzalone, L.; Hirsch, J. A. Substituent Effects on Hydrogenation of Aromatic Rings:

Hydrogenation vs. Hydrogenolysis in Cyclic Analogs of Benzyl Ethers. J. Org. Chem. 1985, 50
(12), 2128-2133.

Supplementary Material

General Experimental Section

All chemicals were purchased from commercial vendors and were used without any further purification unless otherwise indicated. Solvents were reagent grade and dried just prior to use by standard methods. All reactions were performed under inert atmosphere. Tetrahydrofuran (THF) was dried over sodium/benzophenone and distilled prior to use. Triethylamine (NEt3) was dried with calcium hydride (CaH2). Melting points were determined in open capillary tubes on a Melt-Temp apparatus and are uncorrected. High resolution mass spectra (HRMS) were obtained using a Micromass electrospray ionization (ES)/time-of-flight mass spectrometry (LCTOF). Mass spectrometer samples were introduced using a Waters model 2690 separations module HPLC fitted with a C-18 reversed phase column (2.1 mm i.d., 5 cm). Flash chromatography was performed using Sorbent Technologies standard silica gel (60 Å) with reagent grade solvents using in house compressed air.

Cell Viability Assay

Growth inhibition was determined by the MTT colorimetric assay. Cells were plated in 96-well plates at a density of 10000 cells $/ \mathrm{mL}$ and allowed to attach overnight (16 h). Anthryl-10-oxy-isoxazole-DT solutions were applied in medium for 2 h , removed, and replaced with fresh medium, and the plates were incubated at $37^{\circ} \mathrm{C}$ under a humidified atmosphere containing $5 \% \mathrm{CO} 2$ for $3-5$ days. MTT $(50 \mu \mathrm{~g})$ was added and the cells were incubated for another 4 h . Medium/MTT solutions were removed carefully by aspiration, the MTT formazan crystals were dissolved in $100 \mu \mathrm{~L}$ of DMSO, and absorbance was determined on a plate reader at 560 nm . IC50 values (concentration at which cell survival equals 50% of control) were determined from semilog plots of percent of control versus concentration.

NMR

The 1 H and 13 C NMR high-resolution spectra were obtained with a Bruker AC200 (UltraShield ${ }^{\text {TM }} 400 \mathrm{MHz}$) using X-Win NMR (3.1) at ambient temperature in CDCl3 unless otherwise specified. The signal iii assignments were performed on the basis of a series of 2 D experiments with z-gradient selection: $1 \mathrm{H}-1 \mathrm{H}$ DQF COSY (Correlation Spectroscopy), 1H-13C HMQC ((Heteronuclear Multiple Quantum Coherence) and $1 \mathrm{H}-13 \mathrm{C}$ HMBC (Heteronuclear Multiple Bond Correlation).

Preparation (S)-N-(sec-butyl)-5-methyl-3-(o-tolyl)isoxazole-4-carboxamide, 8a.

o-Tolualdehyde 1a (4.0247 g, 37.50 mmol), hydroxylamine hydrochloride (5.3847 g), and sodium acetate $\cdot 3 \mathrm{H}_{2} 0(20.4119 \mathrm{~g})$ was dissolved in THF/ethanol/water ($70 \mathrm{~mL}: 35 \mathrm{~mL}: 35$ $\mathrm{mL})$. After stirring at rt for 30 minutes, the mixture was concentrated then washed $2 \times 125 \mathrm{H}_{2} \mathrm{O}$, $2 \times 125 \mathrm{~mL}$ Brine and $2 \times 50 \mathrm{~mL}$ EtOAc, dried over anhydrous sodium sulfate, filtered, and concentrated to produce the oxime $\mathbf{2 a}, 4.386 \mathrm{~g}(97 \%)$. The oxime $\mathbf{2 a}(2.5444 \mathrm{~g}, 18.825 \mathrm{mmol})$ was treated with N -Chlorosuccinimide (3.1087 g), $10 \mathrm{~mol} \%$ pyridine (5 drops) in 200 mL chloroform and was heated to $40^{\circ} \mathrm{C}$ for 6 hours. The solution was washed with $4 \times 150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$, $2 \times 125 \mathrm{~mL}$ Brine, and $2 \times 25 \mathrm{~mL}$ chloroform, then dried over anhydrous sodium sulfate, filtered, and concentrated to produce the product 3a. To a solution of the nitrile oxide 3a in ethanol (30 $\mathrm{mL})$, was added ethyl acetoacetate $(5.8 \mathrm{~mL})$ and sodium $(0.8655 \mathrm{~g})$ in ethanol $(100 \mathrm{~mL})$, dropwise, and the reaction mixture allowed to stir at room temperature overnight. The solution was concentrated, washed with $2 \times 75 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ brine, then dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified on a flash column starting 10:1 Hex/EtOAc, 8:1 Hex/EtOAc, and 6:1 Hex/EtOAx until all product 5a was collected, 4.3526 $\mathrm{g}, 94 \%$. Ester $\mathbf{5 a}(0.3315 \mathrm{~g}, 1.352 \mathrm{mmol})$ in methanol/THF ($25 \mathrm{~mL}: 16.5 \mathrm{~mL}$) was refluxed in 2.1 M KOH for 2.5 h , acidified with 1 N aqueous HCl , to give the carboxylic acid $\mathbf{6 a}(0.2878 \mathrm{~g}$,
98%). The carboxylic acid $\mathbf{6 a}$ was stir in an ice bath and allowed to warm up overnight in neat $\mathrm{SOCl}_{2}(8 \mathrm{~mL})$, the mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. To acid chloride $\mathbf{7 a}$ in 7 mL of DCM was added (S)-sec-Butyl amine $(0.1192 \mathrm{~g})$ and 2 mL TEA, the mixture was stirrred at rt for 2.5 hours, after which time it was concentrated and purified by flash chromotagraphy (4:1:1 Hex/EtOAc) to give the product 8a ($0.1254 \mathrm{~g}, 34 \%$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm} 7.46(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~m}, 3 \mathrm{H}), 4.99(\mathrm{bd}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~s}$, $3 \mathrm{H}), 2.23(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~m}, 1 \mathrm{H}), 0.84(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 3 \mathrm{H}) ; 0.63(\mathrm{t}, \mathrm{J}=8,16 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm} 174.63,160.45,159.64,137.73,130.85,130.61,129.70$, 128.11, 126.57, 111.13, 45.97, 29.07, 19.72, 19.57, 13.20, 9.63. Accurate Mass Calculated for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}: 273.1603$, Found: 273.1594.

Preparation of (S)-N-(sec-butyl)-3-(2-chlorophenyl)-5-methylisoxazole-4-carboxamide, 8c. Ester 5c matched previously reported literature. ${ }^{14}$ Ester 5c ($\left.0.4789 \mathrm{~g}, 1.802 \mathrm{mmol}\right)$ in methanol/THF ($22 \mathrm{~mL}: 33 \mathrm{~mL}$) was refluxed in 2.1 M KOH for 48 h , acidified with 1 N aqueous HCl , to give the carboxylic acid $\mathbf{6 c}(0.4301 \mathrm{~g}, 96 \%)$. The carboxylic acid $\mathbf{6 c}$ was stir in an ice bath and allowed to warm up overnight in neat $\mathrm{SOCl}_{2}(10 \mathrm{~mL})$, the mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. The acid chloride 7c and (S)-sec-Butyl amine ($0.1581 \mathrm{~g}, 1.18 \mathrm{eq}$) were dissolved in 10 mL of dry dichloromethane (dried over CaCl_{2}) with 2 mL of triethyl amine (TEA), after stirring 2.5 hours at room temperature, the product was purified by silica column (4:1 Hex:EtOAc) to give the amide $\mathbf{8 c}(0.4797 \mathrm{~g}, 96 \%) .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d-\mathrm{CHCl}_{3}$) $\delta \mathrm{ppm}$ $7.49(\mathrm{~m}, 4 \mathrm{H}), 4.95(\mathrm{bd}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{~m}, 1 \mathrm{H}), 2.77(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $3 \mathrm{H}) ; 0.68(\mathrm{t}, \mathrm{J}=8,16 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.d-\mathrm{CHCl}_{3}\right) \square \mathrm{ppm} 174.08,160.33,158.11$,
$134.26,131.85,131.52,130.21,128.06,127.47,112.04,46.26,29.18,19.75,12.98,9.70$. Accurate Mass Calculated for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2}$: 293.1057, Found: 293.1059.

Preparation of N -((S)-sec-butyl)-3-(2-chloro-6-methylphenyl)-5-methylisoxazole-4carboxamide, 8d.

2-chloro-6-methylbenzaldehyde $1 \mathbf{1 d}(1.000 \mathrm{~g}, 6.469 \mathrm{mmol})$, hydroxylamine hydrochloride $(3.5212 \mathrm{~g})$, and sodium acetate $\cdot 3 \mathrm{H}_{2} 0(3.5212 \mathrm{~g})$ was dissolved in THF/ethanol/water ($12 \mathrm{~mL}: 6$ mL : 6 mL). After stirring at rt for 2.5 hours, the mixture was concentrated then washed 2×100 $\mathrm{H}_{2} \mathrm{O}, 2 \times 75 \mathrm{~mL}$ Brine and $2 \times 25 \mathrm{~mL}$ EtOAc, dried over anhydrous sodium sulfate, filtered, and concentrated to produce the oxime 2d, $1.0965 \mathrm{~g}(99 \%)$. The oxime $\mathbf{2 d}(1.0965 \mathrm{~g}, 6.465 \mathrm{mmol})$ was treated with N -Chlorosuccinimide (1.0679 g), $10 \mathrm{~mol} \%$ pyridine $(6.5 \mathrm{~mL}$ of 1 mM stock solution) in 100 mL chloroform was heated to $40^{\circ} \mathrm{C}$ for 5.5 hours. The solution was washed with $4 \times 150 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 125 \mathrm{~mL}$ Brine, and $2 \times 25 \mathrm{~mL}$ chloroform, then dried over anhydrous sodium sulfate, filtered, and concentrated to produce the product $\mathbf{3 d}$. To a solution of the nitrile oxide $\mathbf{3 d}$ in ethanol (120 mL), was added ethyl acetoacetate (2 mL) and sodium (0.2973 g) in ethanol $(45 \mathrm{~mL})$, dropwise, and the reaction mixture allowed to stir at room temperature overnight. The solution was concentrated, washed with $2 \times 75 \mathrm{~mL} \mathrm{H} \mathrm{H}_{2} \mathrm{O}, 2 \mathrm{x} 50 \mathrm{~mL}$ brine, then dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was purified on a flash column starting 10:1 Hex/EtOAc ($\sim 220 \mathrm{~mL}$), then 8:1 Hex/EtOAc until all product 5d was collected, $1.6472 \mathrm{~g}, 91 \%$. Ester $5 \mathbf{5 c}(0.4118 \mathrm{~g}, 1.472 \mathrm{mmol})$ in methanol/THF ($18 \mathrm{~mL}: 27 \mathrm{~mL}$) was refluxed in 2.08 M KOH for 1 h , acidified with 1 N aqueous HCl , to give the carboxylic acid $\mathbf{6 d}$ $(0.3322 \mathrm{~g}, 90 \%)$. The carboxylic acid $\mathbf{6 d}$ was stir in an ice bath and allowed to warm up overnight in neat $\mathrm{SOCl}_{2}(8 \mathrm{~mL})$, the mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. To acid
chloride 7 d in 7 mL of DCM was added (S)-sec-Butyl amine (0.1158 g) and 2 mL TEA, the mixture was stirrred at rt for 2.5 hours, after which time it was concentrated and purified by flash chromotagraphy (8:1:1 Hex/EtOAc/DCM, then $6: 1: 1)$ to give the product $\mathbf{8 d}(0.247 \mathrm{~g}, 61 \%) .{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm} 7.40(\mathrm{~m}, 4 \mathrm{H}), 7.29(\mathrm{~m}, 2 \mathrm{H}), 4.96(\mathrm{bt}, 1 \mathrm{H}), 3.87(\mathrm{~m}, 2 \mathrm{H}), 2.82$ $(\mathrm{d}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 1.24(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 3 \mathrm{H}), 0.83(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.70(\mathrm{t}, \mathrm{J}=8,16 \mathrm{~Hz}, 3 \mathrm{H}), 0.60(\mathrm{t}, \mathrm{J}=8,16 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d-\mathrm{CHCl}_{3}\right) \square \mathrm{ppm} 175.01$, $174.96,160.23,160.18,157.18,140.64,140.51,134.62,134.50,131.41,129.06,126.99,127.51$, $127.44,111.18,111.08,46.01,45.95,29.17,20.23,20.16,19.90,19.84,13.25,13.22,9.60,9.53$. Accurate Mass Calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Cl}_{1}: 307.1213$, Found: 307.1206.

Preparation of (S)-N-(sec-butyl)-5-methyl-3-(naphthalen-1-yl)isoxazole-4-carboxamide, 8f.

1-naphthaldehyde $1 \mathrm{f}(2.000 \mathrm{~g}, 12.8 \mathrm{mmol})$, hydroxylamine hydrochloride $(1.7789 \mathrm{~g})$, and sodium acetate $\cdot 3 \mathrm{H}_{2} 0(3.1499 \mathrm{~g})$ was dissolved in THF/ethanol/water ($64 \mathrm{~mL}: 32 \mathrm{~mL}: 32 \mathrm{~mL}$). After stirring at rt for overnight, the mixture was concentrated then washed $4 \times 50 \mathrm{H}_{2} \mathrm{O}, 2 \times 100 \mathrm{~mL}$ Brine and $2 \times 25 \mathrm{~mL}$ EtOAc, dried over anhydrous sodium sulfate, filtered, and concentrated to produce the oxime $2 \mathbf{2 f}, 1.979 \mathrm{~g}(99 \%)$. The oxime $2 \mathbf{f}(1.000 \mathrm{~g}, 12.8 \mathrm{mmol})$ was treated with N Chlorosuccinimide (1.8801 g), pyridine (2 drops) in 130 mL chloroform was stirred at $40^{\circ} \mathrm{C}$ for 4 hours. The solution was washed with $3 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ Brine, and $2 \times 25 \mathrm{~mL}$ chloroform, then dried over anhydrous sodium sulfate, filtered, and concentrated to produce the product $\mathbf{3 f}$. To a solution of the nitrile oxide $\mathbf{3 f}$ in ethanol $(100 \mathrm{~mL})$, was added ethyl acetoacetate $(2 \mathrm{~mL})$ and sodium $(0.2917 \mathrm{~g})$ in ethanol $(150 \mathrm{~mL})$, dropwise, and the reaction mixture allowed to stir at room temperature overnight. The solution was concentrated, washed with $2 \times 75 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ brine, then dried over anhydrous sodium sulfate, filtered, and concentrated. Product $\mathbf{5 f}$ was collected, $1.5678 \mathrm{~g}, 79 \%$. Ester $\mathbf{5 f}(1.5678 \mathrm{~g}, 5.5732 \mathrm{mmol})$ in methanol/THF ($22 \mathrm{~mL}: 22 \mathrm{~mL}$) was
refluxed in 2 M KOH for 3 h then allowed to cool to rt overnight, acidified with 1 N aqueous HCl , to give the carboxylic acid $\mathbf{6 f}(1.4604 \mathrm{~g}, 99 \%)$. The carboxylic acid $\mathbf{6 f}$ was stir in an ice bath and allowed to warm up overnight in neat $\mathrm{SOCl}_{2}(40 \mathrm{~mL})$, the mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. To acid chloride $7 \mathbf{f}$ in 3 mL of DCM was added (S)-sec-Butyl amine $(0.0695 \mathrm{~g})$ and 1 mL TEA, the mixture was stirrred at rt overnight, after which time it was concentrated and purified by flash chromotagraphy using $41 \mathrm{Hex} / \mathrm{EtOAc}$ to give the product $\mathbf{8 f}$ ($0.1366 \mathrm{~g}, 68 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d-\mathrm{CHCl}_{3}$) $\delta \mathrm{ppm} 8.05(\mathrm{dd}, \mathrm{J}=8,12 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=8$ Hz, 1H), $7.58(\mathrm{~m}, 5 \mathrm{H}), 4.79(\mathrm{bd}, \mathrm{J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~m}, 1 \mathrm{H}), 0.71(\mathrm{~m}$, $1 \mathrm{H}), 0.49(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 0.32(\mathrm{t}, \mathrm{J}=8,16 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm}$ 174.63. 160.25. 158.96. 133.50. 131.48. 130.85. 128.49. 128.32. 127.65. 126.98. 125.69. 125.32. 124.94. 112.29. 45.85, 28.75, 19.30, 13.19, 9.24. Accurate Mass Calculated for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$: 309.1603, Found: 309.1594.

Preparation of 3-(2-(benzyloxy)naphthalen-1-yl)-N-((S)-sec-butyl)-5-methylisoxazole-4carboxamide, 8 i.

2-(Benzyloxy)-1-naphthaldehyde $\mathbf{1 i}(1.000 \mathrm{~g}, 3.8124 \mathrm{mmol})$, hydroxylamine hydrochloride $(0.5298 \mathrm{~g})$, and sodium acetate $\cdot 3 \mathrm{H}_{2} 0(1.5564 \mathrm{~g})$ was dissolved in THF/ethanol/water (20 mL : 10 mL : 10 mL). After stirring at rt for overnight, the mixture was concentrated then washed 4 x $50 \mathrm{H}_{2} \mathrm{O}, 2 \times 75 \mathrm{~mL}$ Brine and $2 \times 25 \mathrm{~mL}$ EtOAc, dried over anhydrous sodium sulfate, filtered, and concentrated to produce the oxime $\mathbf{2 i}, 1.057 \mathrm{~g}(95 \%)$. The oxime $\mathbf{2 i}(1.0065 \mathrm{~g}, 3.6294 \mathrm{mmol})$ was treated with N -Chlorosuccinimide (0.5463 g), pyridine (3 drops) in 40 mL chloroform was stirred at room temperature for 5 hours. The solution was washed with $3 \times 50 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ Brine, and $2 \times 25 \mathrm{~mL}$ chloroform, then dried over anhydrous sodium sulfate, filtered, and
concentrated to produce the product $\mathbf{3 i}$. To a solution of the nitrile oxide $\mathbf{3 i}$ in ethanol (35 mL), was added ethyl acetoacetate (1 mL) and sodium $(0.150 \mathrm{~g})$ in ethanol $(100 \mathrm{~mL})$, dropwise, and the reaction mixture allowed to stir at room temperature overnight. The solution was concentrated, washed with $2 \times 75 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}, 2 \times 50 \mathrm{~mL}$ brine, then dried over anhydrous sodium sulfate, filtered, and concentrated. Product $5 \mathbf{i}$ was collected, $1.3959 \mathrm{~g}, 99 \%$. Ester $5 \mathbf{i}(1.0098 \mathrm{~g}, 3.629 \mathrm{mmol})$ in methanol/THF ($15 \mathrm{~mL}: 15 \mathrm{~mL}$) was refluxed in 2 M KOH for 3 h then allowed to cool to rt overnight, acidified with 1 N aqueous HCl , to give the carboxylic acid $\mathbf{6 i}(1.2781 \mathrm{~g}, 98 \%)$. The carboxylic acid $\mathbf{6 i}$ was stir in an ice bath and allowed to warm up overnight in neat SOCl_{2} $(25 \mathrm{~mL})$, the mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. To acid chloride $\mathbf{7 i} \mathbf{i n} 4 \mathrm{~mL}$ of DCM was added (S)-sec-Butyl amine (0.0660 g) and 2 mL TEA, the mixture was stirred at rt for 24 hours, after which time it was concentrated and purified by flash chromatography using DCM to give the product $\mathbf{8 i}(0.2478 \mathrm{~g}, 68 \%) .{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm} 7.92(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.78(\mathrm{~d}, \mathrm{~J}=8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~m}, 10 \mathrm{H}), 5.23(\mathrm{bs}, 1 \mathrm{H}), 5.19(\mathrm{~s}, 2 \mathrm{H}), 3.65(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{~d}$, $3 \mathrm{H}), 0.87(\mathrm{bs}, 2 \mathrm{H}), 0.66(\mathrm{bs}, 2 \mathrm{H}), 0.41(\mathrm{bs}, 3 \mathrm{H}), 0.13(\mathrm{bs}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d-\mathrm{CHCl}_{3}$) ppm 174.22, 160.45, 155.80, 154.54, 136.21, 133.06, 132.28, 128.87, 128.48, 127.98, 127.95, $127.91,126.83,124.69,123.91,114.63,112.64,111.56,71.39,45.64,28.78,19.71,19.21,13.03$, 9.22, 8.96. Accurate Mass Calculated for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{3}$: 415.2022, Found: 415.2010.

Preparation of Ethyl 3-(2,10-dimethoxy-9-anthracenyl)-5-methyl-4-isoxazole carboxylate,

 15.To 500 mL of CCl_{4} was added $25.41 \mathrm{~g}(151.65 \mathrm{mmol})$ of Ethyl o-toluate (Alfa Aesar). Next, 33.470 g (20% molar excess) of N-Bromosuccinamide (NBS, recrystalized from Benzene) was added to the ester solution. The solution was brought to reflux $\left(85^{\circ} \mathrm{C}\right)$, after five minutes the solution turned orange then changed back to clear with two layers noticeable. The solution stirred at refluxing temperature for 25 hours, cooled to room temperature and the solution was filtered off, washing with CCl_{4}.

The resulting pale yellow oil was column chromatographed using 20:1 Hex/EtOAc to yield the product 9 , Ethyl o-(bromomethyl)benzoate: b.p. $90-95^{\circ} \mathrm{C}$ spectra in agreement with literature values. ${ }^{15}$

The brominated phenyl ester 9 ($37.6172,154.7 \mathrm{mmol}$) was taken up in 200 mL of absolute ethanol at room temperature, to which solution was added an aqueous solution $\left(25 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right)$ of $\mathrm{KCN}(10.4938 \mathrm{~g}: 154.70 \mathrm{mmol})$ and the solution brought to reflux for 6 hours then cooled to room temperature. The ethanol was evaporated under vacuum then 200 mL of distilled $\mathrm{H}_{2} \mathrm{O}$ was added to the resulting solution. Chloroform (200mL) was used to extract the aqueous layer. The organic layer was then washed with $5 \% \mathrm{HNaCO}_{3}(200 \mathrm{~mL})$ and then with $\mathrm{H}_{2} \mathrm{O}(200 \mathrm{~mL})$. The organic phase was dried with anhydrous sodium sulfate, filtered, and the solvent removed under reduced pressure. A very clear oil Ethyl 2-(cyanomethyl)benzoate, 10, resulted, spectra in agreement with literature values. ${ }^{10}$

To a solution of freshly distilled THF (20 mL), containing $3.0196 \mathrm{~g}(15.856 \mathrm{mmol})$ of $\mathbf{1 0}$ and stirring at $-78^{\circ} \mathrm{C}$ under an argon atmosphere, was added 1eq. of LDA (generated at $-78^{\circ} \mathrm{C}$ in freshly distilled THF using a 1:1 equivalence of freshly distilled diisopropyl amine and n-BuLi).

The bright orange-red solution was allowed to reaction for 15 minutes whereupon 1.02 eq (2.02 mL) of 4-bromoanisole was added via syringe. A solution containing 2 eq. of lithium diisopropyl amine (LDA) was cannulated slowly, over 1 hour, into the lithiated ester solution now at a temperature of $-42^{\circ} \mathrm{C}$. The resulting dark purple-black solution was allowed to stir at $42^{\circ} \mathrm{C}$ for an additional 30 minutes. The reaction mixture was warmed to room temperature (c.a. 2 hr) and quenched with an excess of aqueous ammonium chloride and allowed to stir 10 min . The THF was removed via rotary evaporator and the dark orange solution taken up in 150 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. This was washed with 200 mL of 0.5 M HCl whereupon the solution turned bright yellow. The organic layers were washed with 500 mL of brine solution and then 500 mL of deionized water. The organic phase was dried using anhydrous sodium sulfate, filtered, and the solvent removed under reduced pressure to give a dark orange solid. The solid ($3.8791 \mathrm{~g}, 15.856$ mmol) was taken up in freshly distilled THF (150 mL) and placed under an argon atmosphere. To this solution was added ($2.341 \mathrm{~g}, 1.25 \mathrm{eq}$) of potassium tert-butoxide whereupon the solution turned orange. To this mixture was added, via syringe, $(\mathrm{Me})_{2} \mathrm{SO}_{4}(6.015 \mathrm{~mL}, 4 \mathrm{eq})$ and the solution brought to reflux $\left(95^{\circ} \mathrm{C}\right)$. This was allowed to stir refluxing until the solution color was dark yellow-green (ca. 3.5 hrs .) and TLC revealed all of the starting material was consumed.

The resulting dark orange solid was taken up in just enough $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ where it was completely soluble then $\sim 70 \mathrm{~g}$ of silica gel was added and solvent removed under vacuum. The resulting powder was placed on a wet (10:1 Hex/EtOAc) prepared column, covered in sea sand, and eluted with 8:1 Hexanes/Ethyl Acetate $\left(\mathrm{R}_{\mathrm{f}}=0.50\right)$. Once the front running 4-bromoanisole was eluted from the column the solvent polarity was increased using stepwise elution of $\sim 300 \mathrm{ml}$ each of $6: 1,4: 1$, and finally $2: 1 \mathrm{Hex} / E t O A c$ until the all of the product $\mathbf{1 2}$ was collected. 2,10-dimethoxy-9-anthracenecarbonitrile, 12. Yield 75%, ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 8.37(\mathrm{~d}, \mathrm{~J}=8.66 \mathrm{~Hz}, 1 \mathrm{H})$,
8.33 (d, J=8.66 Hz, 1H), 8.27 (d, J=9.41 Hz, 1H), 7.71 (m, 1H), 7.57 (m, 2H), 7.26 (dd, 1H), 4.19 (s, 3H), $4.06(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) $\delta \mathrm{ppm}$ $160.45,157.88,137.01,135.19,129.15,125.25,125.06,123.21,122.93,121.35,120.43,117.99$, $101.63,98.83,77.31,77.20,76.68,64.12,55.70 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 264(100, \mathrm{M}+1), 265\left(21, \mathrm{M}+1^{+}\right)$..

Under an argon atmosphere DIBAL-H (in toluene) was added via syringe (2 mL) to a solution of $12(0.400 \mathrm{~g}: 1.5192 \mathrm{mmol})$ in freshly distilled toluene $(20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ and allowed to stir for 2 hour. $\mathrm{H}_{2} \mathrm{SO}_{4}(5 \%)$ was added to the toluene solution and stirred vigorously for 1 hour. The bright yellow-green solution was separated and washed with $3 \times 100 \mathrm{~mL}$ portions of cold $\mathrm{H}_{2} \mathrm{O}$. The toluene was not dried but rather removed by rotary evaporation. The resulting solid was chromatographed on silica starting 12:1 Hex/EtOAc followed by increasing solvent polarity stepwise using $10: 1,8: 1,6: 1$ yielding $13(0.3964 \mathrm{~g}, 98 \%)$. The aldehyde $\mathbf{1 3}(0.2690 \mathrm{~g}, 1.01$ $\mathrm{mmol})$ was then taken up in THF: $\mathrm{EtOH}: \mathrm{H}_{2} \mathrm{O}(25: 25: 18 \mathrm{~mL})$ to which was added $\mathrm{NH}_{2} \mathrm{OH} \cdot \mathrm{HCl}$ (1.1671) and pyridine (10 mL) and the mixture stirred at room temperature for 1 hour. The solvent was removed by rotary evaporation and the solid taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ and washed with $2 \times 100 \mathrm{~mL}$ of $\mathrm{H}_{2} \mathrm{O}$ and 2×50 Brine. The $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried with anhydrous sodium sulfate, filtered, and the solvent removed under vacuum to yield a dark green solid of $\mathbf{1 4}(99 \%$, 0.2840 g).

2,10-dimethoxy-9-anthracenecarboxaldehyde, 13. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H} \mathrm{NMR}$ (400 MHz, CHLOROFORM- d) $\delta \operatorname{ppm} 11.41(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~d}, J=8.91 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=2.38 \mathrm{~Hz}, 1 \mathrm{H})$, 8.37 (d, $J=8.53 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=9.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~m}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.25$ (dd, $\mathrm{J}=2.38,9.41 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) δ ppm 191.37, 161.23, 159.75, 135.80, 135.61, 129.24, 124.81, 124.61, 123.45, 122.91, 122.46, $120.61,120.52,118.72,101.19,64.04,55.50 . \mathrm{MS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z} 267(100, \mathrm{M}+1), 268\left(20, \mathrm{M}+1^{+}\right)$

2,10-dimethoxy-9-anthracenecarboxaldehyde oxime, 14. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta{ }^{1} \mathrm{H}$ NMR (400 MHz, CHLOROFORM- d) $\delta \operatorname{ppm} 9.13(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=8.78 \mathrm{~Hz}, 1 \mathrm{H}), 8.30(\mathrm{~d}, J=8.53 \mathrm{~Hz}, 1$ H), $8.24(\mathrm{~d}, J=9.41 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{~d}, J=2.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 1 \mathrm{H}), 7.47(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{dd}$, $J=9.41,2.26 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 3.98(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) δ ppm 158.64, 154.59, 149.10, 132.59, 131.98, 127.10, 124.61, 124.38, 122.95, 122.81, 120.65, $120.21,117.37,101.52,63.55,55.32)$. MS (ESI) $m / z 282(100, \mathrm{M}+1), 283\left(21, \mathrm{M}+1^{+}\right)$.

The oxime 14 ($0.3400 \mathrm{~g}, 1.253 \mathrm{mmol}$) was taken up in chloroform which was added recrystallized N-Chlorosuccinamide (NCS) $(0.2084 \mathrm{~g})$ and $10 \mathrm{~mol} \%$ pyridine. The solution was allowed to stir at $40^{\circ} \mathrm{C}$ for 4.5 hours whereupon the solution was washed with $4 \times 50 \mathrm{~mL}$ of distilled $\mathrm{H}_{2} \mathrm{O}, 2 \times 100$ Brine and extracted with chloroform ($2 \times 25 \mathrm{~mL}$). The organic solvent was dried with anhydrous sodium sulfate, filtered, and removed via rotary evaporator. The intermediate was purified only through extractive isolation using water and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and taken on to the next reaction as is. To a solution of the intermediate in absolute ethanol (35 mL) was added ethylacetoacetate $(0.37 \mathrm{~mL})$ in 9 mL ethanol and 0.0341 g sodium and the mixture allowed to stir at room temperature for 2 hours until TLC in $4: 1 \mathrm{Hex} / \mathrm{EtOAc}$ revealed all intermediate had been consumed. Finally, the ethanol was removed via rotary evaporation and the solid chromatographed stepwise starting $12: 1 \mathrm{Hex} / E t O A c, 10: 1,8: 1,6: 1,4: 1$ to until all final product 15 was collected (4:1 Hex/EtOAc $\mathrm{R}_{\mathrm{f}}=0.29$, yield 64%).

Ethyl 3-(2,10-dimethoxy-9-anthracenyl)-5-methyl-4-isoxazole carboxylate, 15. ${ }^{1}$ H NMR (400 MHz, CHLOROFORM- d) $\delta \operatorname{ppm} 8.32$ (dd, $J=8.34,0.82 \mathrm{~Hz}, 1 \mathrm{H}$), 8.29 (d, $J=9.41 \mathrm{~Hz}, 1 \mathrm{H}$), 7.59 (m, 1 H), 7.43 (td, $J=8.63,1.32 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{dd}, J=9.41,2.26 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=2.26 \mathrm{~Hz}, 1$ H), $4.17(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~m}, 2 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 0.38(\mathrm{t}, J=7.09 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CHLOROFORM- d) $\delta \mathrm{ppm} 176.19,161.56,160.54,157.94,154.20,132.99,132.44$,
$126.48,125.20,124.28,124.15,122.67,122.40,120.44,119.96,116.43,111.08,101.65,63.49$, 59.98, 55.15, 13.41, 12.82. HRMS (ESI) accurate mass calcd. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{~N}(M)^{+1}$ requires 392.1498, found 391.1480.

Ester 15 ($0.1142 \mathrm{~g}, 0.292 \mathrm{mmol}$) was dissolved in THF (4.5 mL) then added methanol (3.5 mL). Solution was cooled down to $0^{\circ} \mathrm{C}$ and aqueous $\mathrm{KOH}\left(0.6079 \mathrm{~g}\right.$ in $3.8 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$) was added. The solution was then taken out of the bath allowed to stir at room temperature for 7 hours under argon until completion of the reaction as indicated by TLC. The organic solvents were removed under reduced pressure. The aqueous mixture was diluted with then diluted with water (50 mL) and 25 mL DCM and acidified to pH 2 with 1 N HCl . Washed $3 \times 20 \mathrm{~mL}$ DCM and dried over sodium sulfate, concentrated under reduced pressure to yield the carboxylic acid 16 (yield $0.1082 \mathrm{~g}, 100 \%$).

To the carboxylic acid $\mathbf{1 6}$ at $0^{\circ} \mathrm{C}$ was added cold excess neat thionyl chloride (6 mL). The solution was taken out of the ice bath and allowed to warm up and stir at room temperature for 2.75 hrs under a drying tube equipped with CaCl_{2} and NaOH . The reaction mixture was concentrated under reduced pressure. The mixture was then concentrated using hexanes, then dichloromethane three times and the residue was used without further purification in the next step. The mixture of $\mathbf{1 7}$ was divided in two separate round bottoms for the next step.

To half of the acid chloride $\mathbf{1 7}$ in 3 mL of DCM was added (S)-sec-Butyl amine (0.0128 g) and 1 mL TEA, the mixture was stirred at rt for 21 hr , after which time it was concentrated and purified by flash chromatography starting $8: 1 \mathrm{Hex} / E t O A c$ then $6: 1,4: 1,2: 1,1: 1$ until all product was collected $\mathbf{8 f}(0.0178 \mathrm{~g}, 58 \%)$ and $\mathbf{8 g}(0.0092 \mathrm{~g}, 29 \%)$

To the other half of acid chloride 17 in 5 mL of DCM was added $7(0.07250 \mathrm{~g})$ and 1 mL TEA, the mixture was stirrred at rt for 19 hr , after which time it was concentrated and purified by
prep-plate using 10:10:3 DCM:DCM/NH4OH:MeOH until all product was collected 9 (0.0209 $\mathrm{g}, 55 \%)$ and $9 \mathrm{~g}(0.0145 \mathrm{~g}, 29 \%)$.

N -((S)-sec-butyl)-3-(2,10-dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 9a.

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, d-\mathrm{CHCl}_{3}$) $\delta \mathrm{ppm}{ }^{1} \mathrm{H}$ NMR (400 MHz , CHLOROFORM- d) $\delta \mathrm{ppm} 8.34$ (m, 1 H), $8.30(\mathrm{dd}, J=9.54,3.01 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50(\mathrm{~m}, 2 \mathrm{H}), 7.23(\mathrm{dt}, J=9.44,2.49 \mathrm{~Hz}, 1$ H), 6.80 (dd, $J=4.58,2.32 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.59 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.53$ (m, 1 H$), 2.96(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~m}, 1 \mathrm{H}), 0.42(\mathrm{~m}, 1 \mathrm{H}), 0.30(\mathrm{dd}, J=18.70,6.53 \mathrm{~Hz}, 3 \mathrm{H}), 0.05(\mathrm{dt}$, $J=19.10,7.45 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, d-\mathrm{CHCl}_{3}$) $\delta \mathrm{ppm} 175.40,160.11,158.99,158.00$, $155.39,133.43,133.29,132.59,132.46,127.84,124.93,124.90,124.84,124.74,124.60,124.56$, $122.97,122.89,122.70,122.67,120.92,120.87,120.65,120.55,114.28,112.69,100.99,100.90$, $63.75,55.40,55.37,45.45,28.59,28.53,19.30,19.24,13.49,8.76,8.70$. Accurate Mass Calculated for $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{O}_{4}$: 419.1971, Found: 417.1959

N -((S)-sec-butyl)-3-(1-chloro-2,10-dimethoxyanthracen-9-yl)-5-methylisoxazole-4carboxamide, 9 b .
${ }^{1} \mathrm{H}$ NMR (400 MHz, Acetone) $\delta \mathrm{ppm} 8.56(\mathrm{~d}, J=9.54 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~m}, 1 \mathrm{H}), 7.74$ (dd, $J=9.66$, $1.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (m, 3 H), 5.02 (m, 1 H), 4.22 (s, 3 H$), 4.10(\mathrm{~d}, ~ J=3.01 \mathrm{~Hz}, 3 \mathrm{H}), 3.54(\mathrm{~m}, 1$ H), $2.84(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{dt}, J=4.39,2.20 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~m}, 1 \mathrm{H}), 0.51(\mathrm{~m}, 1 \mathrm{H}), 0.34(\mathrm{~d}, J=6.53$ $\mathrm{Hz}, 1 \mathrm{H}), 0.23(\mathrm{t}, J=7.47 \mathrm{~Hz}, 1 \mathrm{H}), 0.01(\mathrm{t}, J=7.47 \mathrm{~Hz}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, d-\mathrm{CHCl}_{3}\right) \delta$ ppm 173.66, 161.01, 160.98, 160.84, 160.80, 157.12, 157.09, 156.25, 156.23, 135.42, 135.32, $130.72,130.67,129.30,126.55,126.18,126.11,125.09,123.77,123.70,123.51,122.93,122.89$, $116.29,116.26,115.91,115.05,114.98,64.67,57.62,46.27,46.21,20.18,20.01,13.12,9.51$, 9.30. Accurate Mass Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}_{1}: 453.1581$, Found: 453.1561.

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-3-(2,10-

dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 10a., ${ }^{1} \mathrm{H}$ NMR (400 MHz, Acetone) $\delta \operatorname{ppm} 8.56$ (d, $J=9.54 \mathrm{~Hz}, 1 \mathrm{H}), 8.39(\mathrm{~m}, 1 \mathrm{H}), 7.74$ (dd, $J=9.66,1.88 \mathrm{~Hz}, 1 \mathrm{H}), 7.56$ (m, 3 H), 5.02 (m, 1 H), 4.23 (s, 3 H), 4.10 (d, J=3.01 Hz, 3 H), 3.54 (m, 1 H), 2.84 ($\mathrm{s}, 3 \mathrm{H}$), 0.87 (m, 2 H), 0.41 (dd, J=6.53, 61.36 Hz, 3H), $0.12(\mathrm{dt}, \mathrm{J}=7.47,14.93 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.d-\mathrm{CHCl}_{3}\right) \delta \mathrm{ppm} 173.66,161.01,160.98,160.84,160.80,157.12,157.10,156.25,156.23$, $135.43,135.32,130.72,130.67,129.30,126.55,126.18,126.11,125.10,123.77,123.52,122.93$, $122.89,116.29,15.93,115.05,64.67,57.62,46.27,46.21,20.18,20.01,13.12,9.51,9.30$. Accurate Mass Calculated for $\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Cl}_{1}$: 453.1581, Found: 453.1561.

N-(5-(bis(3-(dimethylamino)propyl)carbamoyl)-1-methyl-1H-pyrrol-3-yl)-3-(1-chloro-2,10-dimethoxyanthracen-9-yl)-5-methylisoxazole-4-carboxamide, 10b.
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetone) $\delta \mathrm{ppm} 8.55$ (d, $J=9.66 \mathrm{~Hz}, 1 \mathrm{H}$), 8.37 (d, $J=7.78 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71 (d, $J=9.66 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=1.63 \mathrm{~Hz}, 1 \mathrm{H}), 5.61(\mathrm{~d}, J=1.51 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 3 \mathrm{H})$, 4.07 (s, 3 H), 3.48 (s, 3 H), 3.34 (m, 4 H), 2.89 (s, 3 H), 2.15 (t, $J=6.65 \mathrm{~Hz}, 4 \mathrm{H}$), 2.08 (s, 10 H).
${ }^{13} \mathrm{C}$ NMR (100 MHz , Acetone) $\delta \mathrm{ppm} 172.43,164.16,161.74,158.39,156.84,156.00,135.51$, $130.94,128.98,126.42,126.39,125.31,125.00,123.71,123.52,122.95,122.04,121.95,116.86$, $116.16,115.78,115.32,115.25,102.36,102.28,64.57,57.55,45.57,35.31,27.05,13.25$.

Accurate Mass Calculated for $\mathrm{C}_{37} \mathrm{H}_{46} \mathrm{~N}_{6} \mathrm{O}_{5} \mathrm{C}_{1}: 689.3218$, Found: 689.3226.

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 16-16 $\quad \mathrm{H}: 21-21 \quad \mathrm{~N}: 2-2 \quad \mathrm{O}: 2-2$
3ND156 HRMS

Elemental Composition Report Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 15-15 $\quad \mathrm{H}: 18-18 \quad \mathrm{~N}: 2-2 \quad \mathrm{O}: 2-2 \quad \mathrm{Cl}: 1-1$
3ND145

Minimum:				-1.5					
Maximum:		5.0	10.0	50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
293.1060	293.1057	0.3	1.0	7.5	456.5	0.0	C15 H18	N2	02

Elemental Composition Report
Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 16-16 $\quad \mathrm{H}: 20-20 \quad \mathrm{~N}: 2-2 \quad \mathrm{O}: 2-2 \quad \mathrm{Cl}: 1-1$
3ND154 HRMS 2
3ND154 HRMS $2105(1.055) \quad 1:$ TOF MS ES+

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} /$ DBE: $\min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{llll}\text { C: 19-19 } & \text { H: 21-21 } & \text { N: 2-2 } & \text { O: 2-2 }\end{array}$
LC33
LC33 771 (7.739) 1:TOF MS ES+

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 26-26 H: 27-27 \quad N: 2-2 \quad O: 3-3
3ND103
3ND103 838 (8.420)
100

Elemental Composition Report
 Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
C: 25-25 $\quad \mathrm{H}: 27-27 \quad \mathrm{~N}: 2-2 \quad \mathrm{O}: 4-4$
3ND164 \#3-4 hrms
3ND164 \#3-4 hrms 109 (1.098) 1: TOF MS ES+

Elemental Composition Report

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron lons
1 formula(e) evaluated with 1 results within limits (up to 50 closest results for each mass)
Elements Used:
$\begin{array}{lllll}\mathrm{C}: ~ 25-25 & \mathrm{H}: 26-26 & \mathrm{~N}: 2-2 & \mathrm{O}: 4-4 & \mathrm{Cl}: 1-1\end{array}$
3ND164 \#7-8 hrms

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 37-37 \quad H: 47-47 \quad N: 6-6 \quad O: 5-5
3ND165 top hrms
3ND165 top hrms 28 (0.278)

Minimum:
Maximum:

| Mass | Calc. Mass | mDa | PPM | DBE | i-FIT | i-FIT (Norm) Formula | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 655.3608 | 655.3608 | 0.0 | 0.0 | 17.5 | 174.8 | 0.0 | C37 | H47 | N6 | 05 |

Elemental Composition Report

Page 1

Single Mass Analysis

Tolerance $=5.0 \mathrm{mDa} / \mathrm{DBE}: \min =-1.5, \max =50.0$
Element prediction: Off
Number of isotope peaks used for i-FIT $=3$
Monoisotopic Mass, Even Electron Ions
1 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 37-37 $\quad \mathrm{H}: 46-46 \quad \mathrm{~N}: 6-6 \quad \mathrm{O}: 5-5 \quad \mathrm{Cl}: 1-1$
3ND165 bottom hrms
3ND165 bottom hrms $38(0.381) \quad 1:$ TOF MS ES+

NMR assignments of 2,10-dimethoxy-9-anthracenecarboxaldehyde, 13
NMR assignments of the regiochemsitry of our system was establish using ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, DEPT, ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSEY, HSQC (H-C 1-bond), and HMBC (H-C 2,3-bonds) experiments on the aldehyde 1d. The aldehyde proton (Figure $3, \mathrm{H}_{1}$), being the easiest to assign due to its large downfield shift, carbon coupling was first established using HSQC. HMBC was used to determine the relationship between C_{2} and H_{4} (Figure 4). Heteronuclear Multiple Bond Coherence (HMBC) showed the coupling between C_{5} and H_{4}, in addition, HMBC showed a crosspeak for C_{5} and H_{17}. Were the anthracene substituted at C_{6} no $\mathrm{C}_{5}-\mathrm{H}_{17}$ crosspeak would be observed.

Supplementary Material Figure 3. Numbering for Carbon/Proton for NMR assignments.

16

Supplementary Material Figure 4. HMBC (2,3 carbon couplings) full spectrum

X-ray diffraction data for $\mathbf{1 2}$ were collected at 150 K on a Bruker D8 Venture using $\mathrm{CuK} \alpha(\lambda=$ $1.54178)$ radiation. Data have been corrected for absorption using SADABS 1 area detector absorption correction program. Using Olex 2^{2}, the structure was solved with the ShelXT structure solution program using Direct Methods and refined with the ShelXL refinement package using least squares minimization. All non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms were refined in calculated positions in a ridged group model with isotropic thermal parameters $U(H)=1.2$ Ueq (C) for $C(H)$ groups and $U(H)=1.5 \mathrm{Ueq}(C)$ for all $\mathrm{C}(\mathrm{H}, \mathrm{H}, \mathrm{H})$ groups. Calculations and refinement of structures were carried out using APEX ${ }^{3}$, SHELXTL ${ }^{4}$, Olex2.

Crystallographic Data for 3ND-77: C17H13NO2, M $=263.28$, monoclinic, space group P21/c, a $=4.0681(3), b=34.841(3), c=8.9400(6), \beta=93.317(4), V=1265.02(16), Z=4, T=150 K$,
$\mu(\mathrm{CuK} \alpha)=0.733 \mathrm{~mm}^{-1}, \rho_{\text {calcd }}=1.382 \mathrm{~g} \mathrm{ml}^{-1}, 2 \Theta_{\max }=114.108,25793$ reflections collected, 1713 unique $\left(\mathrm{R}_{\text {int }}=0.1007, \mathrm{R}_{\text {sigma }}=0.0536\right) \mathrm{R} 1=0.0532(\mathrm{I}>2 \sigma(\mathrm{I}))$, wR2 $=0.1357$ (all data).

Acknowledge

Daniel Decato and Orion Berryman, University of Montana
National Science Foundation (NSF)-MRI (CHE - 1337908)

1) G. M. Sheldrick, SADABS: Area Detector Absorption Correction; University of Göttingen:

Göttingen, Germany, 2001.
2) Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H., OLEX2: A complete structure solution, refinement and analysis program (2009). J. Appl. Cryst., 42, 339341.
3) Bruker (2007). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
4) Sheldrick, G. M. A short history of SHELX (2008). Acta Cryst. A64, 112-122.

Table 1 Crystal data and structure refinement for 3ND-77.

Identification code	$3 \mathrm{ND}-77$
Empirical formula	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{NO}_{2}$
Formula weight	263.28
Temperature/K	150
Crystal system	monoclinic
Space group	$\mathrm{P}_{1} / \mathrm{c}$
a / \AA	$4.0681(3)$

b/Å	34.841(3)
c/Å	8.9400(6)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	93.317(4)
γ°	90
Volume/Å ${ }^{3}$	1265.02(16)
Z	4
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.382
μ / mm^{-1}	0.733
$\mathrm{F}(000)$	552.0
Crystal size/ mm^{3}	$0.3 \times 0.05 \times 0.05$
Radiation	$\operatorname{CuK} \alpha(\lambda=1.54178)$
2Θ range for data collection/ ${ }^{\circ}$	5.072 to 114.108
Index ranges	$-4 \leq \mathrm{h} \leq 4,-37 \leq \mathrm{k} \leq 37,-9 \leq 1 \leq 9$
Reflections collected	25793
Independent reflections	$1713\left[\mathrm{R}_{\text {int }}=0.1007, \mathrm{R}_{\text {sigma }}=0.0536\right]$
Data/restraints/parameters	1713/0/183
Goodness-of-fit on F^{2}	1.060
Final R indexes [$\mathrm{I}>=2 \sigma$ (I]	$\mathrm{R}_{1}=0.0532, \mathrm{wR}_{2}=0.1196$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0964, \mathrm{wR}_{2}=0.1356$
Largest diff. peak/hole / e \AA^{-3}	0.23/-0.20

Table 2 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $3 N D-77 . U_{e q}$ is defined as $1 / 3$ of of the trace of the orthogonalised U_{IJ} tensor.

Atom	\boldsymbol{x}	y	z		$\mathbf{U}(\mathrm{eq})$
O1	7123(5)	4965.0(6)		3316(2)	34.9(6)
O2	4858(5)	3288.7(6)		5818(2)	33.9(6)
N1	-910(7)	4076.4(8)		-726(3)	42.0(8)
C1	4217(7)	4390.6(9)		2480(3)	28.6(8)
C2	6155(7)	4595.4(9)		3487(3)	28.9(8)
C3	7318(8) 4	4429.4(10)		4874(3)	32.6(9)
C4	6538(7)	4064.6(9)		5202(3)	30.5(8)
C5	874(7)	2848.3(9)		3799(3)	31.8(9)
C6	-999(8)	2636.9(9)		2794(4)	36.4(9)
C7	-2177(8) 2	2800.5(10)		1421(4)	36.1(9)
C8	-1425(7) 3	3168.1(10)		1081(3)	32.7(9)
C9	1378(7)	3782.5(9)		1786(3)	27.7(8)
C10	3665(7)	3459.3(9)		4490(3)	26.7(8)
C11	3372(7)	4006.3(9)		2791(3)	26.5(8)
C12	4514(7)	3835.8(9)		4189(3)	27.9(8)
C13	1713(7)	3232.5(9)		3487(3)	28.6(8)
C14	551(7)	3399.3(9)		2085(3)	26.3(8)
C15	6051(9) 5	5156.4(10)		1963(4)	43.5(10)

C16

C17
144(8) 3947.1(9)
2082(3) 41.3(10)

387(4) 31.6(9)

Table 3 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3ND-77. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a * b * U_{12}+\ldots\right]$.

Atom	U_{11}	\mathbf{U}_{22}	\mathbf{U}_{33}	\mathbf{U}_{23}	U_{13}	\mathbf{U}_{12}
O1	40.8(14)	36.6(15)	26.2(13)	2.2(11)	-6.3(11)	-3.4(11)
O2	36.0(13)	41.9(14)	23.1(13)	5.1(11)	-4.6(11)	4.2(11)
N1	44.3(18)	52(2)	28.5(18)	1.3(16)	-5.3(15)	-0.6(15)
C1	31.8(19)	35(2)	19.4(18)	0.5(16)	1.6(15)	3.6(16)
C2	30.1(19)	29(2)	27(2)	-3.7(17)	2.3(16)	-1.4(16)
C3	35(2)	42(2)	21(2)	-5.6(16)	-6.4(16)	0.5(17)
C4	29.3(19)	39(2)	22.2(18)	1.0(17)	-3.7(15)	3.6(17)
C5	31(2)	37(2)	27.4(19)	0.8(17)	2.2(16)	4.6(17)
C6	37(2)	34(2)	39(2)	-1.2(18)	7.2(18)	1.3(17)
C7	34(2)	42(2)	32(2)	-9.3(18)	1.6(17)	-3.3(17)
C8	30.5(19)	43(2)	23.9(19)	-3.3(17)	-1.6(16)	1.1(17)
C9	32.7(19)	35(2)	15.6(18)	2.1(15)	0.0(15)	2.3(17)
C10	26.2(18)	35(2)	18.4(19)	2.4(16)	0.8(15)	8.5(16)
C11	21.8(17)	34(2)	23.9(19)	-3.2(16)	-0.1(15)	$2.9(15)$
C12	25.1(18)	34(2)	23.6(19)	$-2.4(16)$	-2.6(15)	5.6(16)

C13	$28.2(18)$	$32(2)$	$25(2)$	$-3.3(16)$	$2.7(16)$
C14	$19.8(17)$	$38(2)$	$21.0(19)$	$-2.3(16)$	$1.3(15)$
C15	$50(2)$	$44(2)$	$36(2)$	$8.7(18)$	$-9.2(18)$
C16	$40(2)$	$65(3)$	$19.2(19)$	$6.3(18)$	$0.7(17)$
C17	$33(2)$	$37(2)$	$24(2)$	$-4.1(17)$	$0.9(17)$

Table 4 Bond Lengths for 3ND-77.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
O1	C2	1.358(4)	C5	C13	1.413(4)
O1	C15	1.428(4)	C6	C7	1.411(4)
O2	C10	1.390(3)	C7	C8	1.355(4)
O2	C16	1.439(4)	C8	C14	1.420(4)
N1	C17	1.153(4)	C9	C11	1.410(4)
C1	C2	1.363(4)	C9	C14	1.406(4)
C1	C11	1.414(4)	C9	C17	1.440 (5)
C2	C3	1.424(4)	C10	C12	1.387(4)
C3	C4	1.346(4)	C10	C13	1.405(4)
C4	C12	1.431(4)	C11	C12	1.436(4)
C5	C6	1.361(4)	C13	C14	1.437(4)

Table 5 Bond Angles for 3ND-77.
Atom
Atom Atom Angle $/^{\circ}$
Atom Atom Atom \quad Angle $/{ }^{\circ}$

C2	O1	C15	$117.5(2)$	C12	C10	O2	$119.4(3)$
C10	O2	C16	$114.3(2)$	C12	C10	C13	$123.1(3)$
C2	C1	C11	$120.3(3)$	C1	C111	C12	$119.5(3)$
O1	C2	C1	$125.6(3)$	C9	C11	C1	$122.4(3)$
O1	C2	C3	$113.5(3)$	C9	C11	C12	$118.1(3)$
C1	C2	C3	$120.8(3)$	C4	C12	C11	$117.7(3)$
C4	C3	C2	$120.1(3)$	C10	C12	C4	$123.0(3)$
C3	C4	C12	$121.5(3)$	C10	C12	C11	$119.2(3)$
C6	C5	C13	$121.0(3)$	C5	C13	C14	$118.9(3)$
C5	C6	C7	$120.3(3)$	C10	C13	C5	$122.7(3)$
C8	C7	C6	$120.5(3)$	C10	C13	C14	$118.3(3)$
C7	C8	C14	$121.4(3)$	C8	C14	C13	$117.9(3)$
C11	C9	C17	$119.5(3)$	C9	C14	C8	$123.5(3)$
C14	C9	C11	$122.6(3)$	C9	C14	C13	$118.6(3)$
C14	C9	C17	$117.9(3)$	N1	C17	C9	$178.6(4)$
O2	C10	C13	$117.4(3)$				

Table 6 Hydrogen Atom Coordinates ($\left({ }^{\circ} \times 10^{4}\right.$) and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $3 N D-77$.

H3	8648	4576	5570	39
H4	7350	3957	6126	37
H5	1630	2736	4724	38
H6	-1517	2378	3017	44
H7	-3506	2652	731	43
H8	-2238	3273	152	39
H15A	6910	5022	1106	65
H15B	6867	5158	1865	65
H15C	3639	3303	6819	62
H16A	609	3637	7354	62
H16B	3114	3720		6932

Chapter 5

Future Direction

5.1 ADME-Tox Considerations

With the initial SAR (Chapter 3) and conformational dynamics (Chapter 4) established for the AIM system, future focus could then be made on the biological issues that are important when designing a medicine: Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADME-Tox). Accurately predicting the fate of a drug and its metabolites is currently becoming mandatory when a potential drug is under development. It has been a challenge to recognize all the factors that contribute to pharmacokinetic and pharmacodynamic unpredictability within and between individuals. This issue will continue to remain a challenge of particular importance for drugs and a particular interest for many years to come. That is why it is a good idea to look for an early understanding of the key metabolites for a new chemical entity in drug development and discovery. In contrast, far fewer drugs fail in clinical development due to pharmacokinetic problems in humans in comparison to the situation ~ 25 years ago.

There are several pathways by which a small molecule can be metabolized in the body with the most common being enzymatic. ${ }^{1,2}$ There are four main fractions that are involved in metabolic reactions of drugs and chemicals: cytochrome P-450 (CYP-450) plays the dominating role of metabolism at $\sim 75 \%$, uridine diphosphate glucuronyl transferase (UGT) around $\sim 12 \%$, esterases at $\sim 8 \%$, while the oxidoreductase enzymes flavin-containing monooxygenase (FMO), aldo-keto reductase (AKR), and monoamine oxidase (MAO) collectively participate in the metabolism of all chemicals to the extent of $\sim 5 \% .^{1-3}$ It has been shown that the most common metabolism pathways for drugs containing secondary and tertiary amines is N -dealkylation, while, oxygenation of compounds constitutes the second most common process. ${ }^{4}$ The isoxazole
was incorporated because of the known metabolic pathway by CYP-450 3A4 as is well described and documented with the antibiotic oxacillin ${ }^{5,6}$ and valdecoxib ${ }^{6-8}$.

Natale and coworkers have developed a lateral metalation technique useful for a wide variety of isoxazole systems that can place a hydroxyl group at the C5-methyl of the isoxazole on the alpha, beta, and gamma positions that should mimic potential CYP- 450 metabolites. ${ }^{9-12}$ The synthesis of compounds that mimic potential CYP-450 metabolites should be undertaken with a dual purpose; 1) Future studies in CYP-450 assays to prepare authentic materials to determine the primary metabolites of a series of 3-(9-anthracenyl)-5-methyl 4-isoxazolecarboxylic esters; 2) Addition of a point of chirality to study the structure to activity relationship (SAR) of anthracene isoxazole amides in quadruplex binding studies. Additionally, absorption, distribution, and excretion of a C5-hydroxylated isoxazole should be more favorable as the hydrophobicity of the system, because of the highly lipophilic anthracene, should be reduced allowing for better blood solubility and providing a handle by which transport enzymes can grab onto the molecule and distribute it to cells. Though the P450 family is large, only a handful (Figure 5-1) are involved in the majority of drug metabolism. ${ }^{1,2,13}$

Figure 5-1. Fraction of clinically used drugs metabolized by P450 isoforms. Reprinted with permission from Rendic, Slobodan and Guengerich, F. Peter. Chem. Res. Toxicol. 2015, 28, 38-42. Copyright 2015 American Chemical Society ${ }^{2}$.

5.2 Lipinaki's Rule

Lipinski has established a "rule of 5 " that helps to predict a compound's absorption and distribution properties based on four criteria: calculated $\log -\mathrm{P}$ (cLogP (octanol water partition coefficient)), number of hydrogen bond donors, number of hydrogen bond acceptors, and molecular weight. ${ }^{14}$ The "rule of five" comes from the factor's values being five or multiples of five for optimal absorptivity and distribution. Table 5-1 shows how to assess a molecule's properties to obtain a prediction. Lipinski's guidelines apply to passive transport for the purposes of oral bioavailability.

Property	All parameters are:	Any parameter is:
LogP	≤ 5	>5
H-Bond Donors	≤ 5	>5
H-Bond Acceptors	≤ 10	>10
Molecular Weight	≤ 500	>500
Lipinski Prediction	Good absorption and/or permeation	Poor absorption and/or permeation

Table 5-1. Lipinski Values for absorption/permeation prediction.
To help assess the 'drug likeness' of the AIM series, ChemAxon Marvin Calculator Plugin Demo ${ }^{15}$ was used (Table 5-2). This free-to-use tool can help researchers to calculate both the octanol-water partition coefficients for single protonation state $(\log \mathrm{P})$ of a compound and the pH -dependent $\log \mathrm{D}$ values. Both calculated $\log \mathrm{P}$ and $\log \mathrm{D}(\mathrm{c} \log \mathrm{P}$ and $\operatorname{cog} \mathrm{D})$ predictions are based on a modified version of the method of Viswanadhan ${ }^{16}$, where the predicted partition coefficients are composed of the molecules' atomic values and physicochemical properties. The calculator applies modifications that include the redefinition of some atom types (sulfur, carbon, nitrogen and metal ions) to include electron delocalization and contributions of ionic forms. Within the parameters, three constant calculations are present: first, since $\log \mathrm{D}$ vales are $\mathrm{pH}-$ dependent, the $\log \mathrm{D}$ calculation relies on pKa prediction; second, the $\log \mathrm{P}$ value of zwitterions is
calculated from the logD at the isoelectric point; and third, the effect of hydrogen bonds on $\log P$ is considered if the formation of a six membered ring between the suitable donor and acceptor atoms can take place. The AIM series compounds (Table 5-2) is the best fit of the AIM series with a cLogD ranging from $0.38-3.68$, one hydrogen bond donors, ten hydrogen bond acceptors, and the molecular weights being high from 624.77 to $762.94 \mathrm{~g} / \mathrm{mole}$.

Compound	R1	R2	R3	cLogD @ $\mathrm{pH}=7.4$	Molecular weight
$\mathbf{8 a}$	H	H	Methoxy	0.38	624.77
$\mathbf{8 b}$	H	H	Phenoxy	2.04	686.84
$\mathbf{8 c}$	H	H	Biphenyloxy	3.68	762.94
$\mathbf{8 d}$	H	H	1-naphthyloxy	3.03	736.90
$\mathbf{8 e}$	H	H	2-naphthyloxy	3.03	736.90
$\mathbf{8 f}$	H	Methoxy	Methoxy	0.22	654.35
$\mathbf{8 g}$	Cl	Methoxy	Methoxy	0.82	689.24

Table 5-2. Lipinski values for the AIM compounds.

5.3 Anthracene and Isoxazole Metabolism

The primary in vivo metabolite of anthracene is 1,2 dihydrodiol (Figure 5-2) and its glucoronide conjugates. ${ }^{17}$ An AIM molecule where the symmetry of the anthracene moiety was disrupted by the substitution at the C 2 position similar to the main anthracene metabolite. With the addition of a planar C4-ethyl ester C5-methyl functionalized isoxazole ring in the anthraceneC9 position the system now possesses a chiral axis so long as there is not free rotation about the
anthracene-C9 isoxazole-C3 bond* (Figure 5-4). Furthermore, the C2-anthracene substitution can potentially mimic the primary metabolite and change the properties of the electron rich anthracene which could aid electrostatic interactions with the electron-deficient nucleotides of a G-quadruplex structure. The anthracene-C10 group is a product of the synthesis and should also play a potential role in changing the electronic properties of the anthracene much like the C 2 substitution.

Figure 5-2. Anthracene metabolism
It is clear from the above that we would prefer to avoid the anthracene metabolism. Here its worthwhile introducing the role of the isoxazole, which is Sollbruchstellen, which translates in English roughly to predetermined breaking point that is built to break on demand. This
concept was popularized by Schollkopf in his asymmetric amino acid synthesis via diketopiperazides. ${ }^{18}$ In the present study, the isoxazole is the Trojan horse for a safer metabolic route. For a select few medicines containing an isoxazole ring system CYP-450 metabolism is well known and characterized. ${ }^{619-22}$ The most common pathway for CYP-450 metabolism of isoxazoles is hydroxylation at the C 5 position of the ring when an aliphatic carbon is present, such as a methyl or methylene, the earliest example being the oxacillins, including cloxacillin (discussed in Chapter 1). ${ }^{5,6,21,23}$ In the oxacillin series the C-5 hydroxymethylene metabolites retain biological activity. This event is frequently followed by the addition of glucose and then

Figure 5-3. Reported fates of isoxazole CYP-450 metabolism
subsequent excretion (Figure 5-3 A and B), an early example being oxacillin. ${ }^{5,6}$ Other pathways, such as isoxazole ring-opening of the $\mathrm{O}-\mathrm{N}$ (Figure 5-3 C, D) bond (Figure 5-3 C and D), ${ }^{19,22}$ are also know and characterized.

Collaborations are just in the beginning stages with our colleague Mike Wempe at the University of Colorado Anshutz Medical campus. With his knowledge and expertise in Drug Metabolism and Pharmacokinetics (DMPK) studies, we are confident and excited to start our journey to better understand PK parameters of our AIM compounds. Mike will begin pre-clinical studies by examining Cyp3A4 metabolism of isoxazoles. Initial studies would be evaluated in rat liver microsomes (RLM) using an LC-MS-MS technique, which has been shown to be very sensitive with detection limits as low as $1 \mathrm{ng} .{ }^{24,25}$ Authentic C-5 hydroxyl products have been prepared previously by our group. ${ }^{12,26}$

5.4 Computational Modeling

Computational and comparative molecular modeling studies were performed on all seven compounds in Table 5-2 and three of the drugs shown in Figure 5-3 (Oxacillin, Leflunomide and Rupintrivir). For docking purposes, the crystallographic coordinates of the crystal structure of human cytochrome P4503A4 bound to an inhibitor ritonavir ${ }^{27}$ were obtained from the Brookhaven Database (PDB code 3NXU and resolution $2.00 \AA$). The protein complex was then loaded within AutoDock Tools 1.5.6 (The Scripps Research Institute) and the ligand was then removed to leave the binding site unoccupied, which was used for the subsequent docking studies without any further modification. For preparation of ligand structures, fragments from ChemBioDraw Ultra 2010 were used to construct the compounds and loaded each in AutoDock Tools to confirm number of rotatable bonds, charge, and hybridization, and then the ligands were subject to iterations of MM2 energy minimization within ChemBio3D Draw 2010 (v.12.0). For
computational docking, AutoDock Vina 1.1.2 software was used in combination with the built-in scoring function. ${ }^{28}$ The active site was defined as being any volume within center_x $=36.834$, center_y $=-15.442$, center_z $=28.77$, size__ $^{x}=34$, size_y $=60$, size_ $_{-} z=40$. AutoDock Vina defaults a number of up to 10 runs per ligand, each of which starts from a different orientation. Each AutoDock Vina run was saved and the strongest scoring binding pose of each ligand (subject to a rmsd default distance threshold of $2.0 \AA$) was compared to that of the reference ligand position observed in the crystal structure. The best pose(s) were visualized with PyMOL Molecular Graphics System version 1.3.

The computational studies were consistent with reported metabolism studies showing C-5 methyl hydroxylation being predominant for Oxacillin ${ }^{5}$ (Figure 5-5) and Rupintrivir ${ }^{21}$ (Figure 56) and isoxazole ring opening between the nitrogen and oxygen in Leflunomide ${ }^{19}$ (Figure 5-7). All seven compounds did show anthracene ring oxidation as the primary mechanism of oxidation rather than C-5 methyl oxidation as previously thought. An example showing the ring oxidation is shown in Figure 5-8 in the phenoxy example. Furthermore, both the unsymmetrical derivatives ($\mathbf{8 f} \mathbf{- g}$) only showed possible anthracene ring hydroxylation on either the 3 or 4 position for the 2,10-dimethoxy compound $\mathbf{8 f}$ (Figure 5-9) or the $7 / 8$ position for the 1-Chloro-2,10-methoxy compound $\mathbf{8 g}$ (Figure 5-10). Comparisons can be made between the ligands from the AutoDock Vina ${ }^{28}$ docking knowing that a hydrogen bond can vary in strength depending on the temperature, pressure, bond angle and the environment (dielectric constant), but a common rule of thumb is $1-2 \mathrm{kcal} / \mathrm{mol}$. Leflunomide (Figure 5-7) scored the lowest at $-8.6 \mathrm{kcal} / \mathrm{mol}$, followed by Rupintrivir (Figure 5-6) at $-10.0 \mathrm{kcal} / \mathrm{mol}$ and Oxacillin (Figure 5-5) at $-10.3 \mathrm{kcal} / \mathrm{mol}$. While not surprising as both Rupintrivir and Oxacillin both have C-5 hydroxylation metabolism, this requires more of a stronger bond to the CYP for hydroxylation to occur, as for Leflunomide
doesn't require as much energy for the one-electron transfer ring opening to occur. On the other side, the 1-Chloro-2,10-dimethoxy AIM DT 8g (Figure 5-10) only scored at $-8.5 \mathrm{kcal} / \mathrm{mol}$ and the 2,10-dimethoxy AIM DT $8 f$ (Figure 5-9) scored in at $-8.8 \mathrm{kcal} / \mathrm{mol}$ with the phenoxy AIM DT 8b (Figure 5-8) scored way above the rest at $-11.6 \mathrm{kcal} / \mathrm{mol}$. The excessively high scoring of 8b could be attributed to how well it fits into the CYP pocket above the heme. Comparing the phenoxy group versus the dimethoxy, the extra lipophilic ring helps gets added interactions with the residues without twisting too many residues outside of the pocket.

Figure 5-4. Predicted axial chiral AIM 8c anthracene major metabolite mimic
While not shown, all seven compounds also had poses with the dimethylamine doubletails over the heme group. Thus, the predicted metabolism for the axial chiral compounds and oxy series compounds are not consistent with our previous idea (Figure 5-4). Since anthracene metabolism and its resulting toxicity is a concern, our initial metabolism studies can (1) assess whether the computational model is valid and then either (2) future work should
determine if substitution at the C-5, and/or anthracene 2,3 , or 10 positions populate the conformation of conformers docking at CYP 3A4 with the isoxazole C-5 proximal to the heme, or (3) blocking the putative anthracenyl ring metabolism sites with halogens. The question to be determined in the future is whether selectivity will be observed for the safer isoxazole metabolism routes.

Figure 5-5. Oxacillin, magenta, docked in CYP450 3A4 active site, green; HEME, orange.

Figure 5-6. Rupintrivir, cyan, docked in CYP450 3A4 active site, green; HEME, orange.

Figure 5-7. Leflunomide, white, docked in CYP450 3A4 active site, green; HEME, orange.

Figure 5-8. Compound $\mathbf{8 b}$, yellow, docked in CYP450 3A4 active site, green; HEME, orange.

Figure 5-9. Compound 8f, red, docked in CYP450 3A4 active site, green; HEME, orange.

Figure 5-10. Compound $\mathbf{8 g}$, pink, docked in CYP450 3A4 active site, green; HEME, orange.

References

(1) Guengerich, F. P. Cytochrome P450 and Chemical Toxicology. Chem. Res. Toxicol. 2008, 21 (1), 70-83.
(2) Rendic, S.; Guengerich, F. P. Survey of Human Oxidoreductases and Cytochrome P450 Enzymes Involved in the Metabolism of Xenobiotic and Natural Chemicals. Chem. Res. Toxicol. 2015, 28 (1), 38-42.
(3) Wienkers, L. C.; Heath, T. G. Predicting in Vivo Drug Interactions from in Vitro Drug Discovery Data. Nat. Rev. Drug Discov. 2005, 4 (10), 825-833.
(4) Loi, C.-M.; Smith, D. A.; Dalvie, D. Which Metabolites Circulate? Drug Metab. Dispos. 2013, 41 (5), 933-951.
(5) Murai, Y.; Nakagawa, T.; Yamaoka, K.; Uno, T. High Performance Liquid Chromatographic Analysis and Pharmacokinetic Investigation of Oxacillin and Its Metabolites in Man. Chem. Pharm. Bull. (Tokyo) 1981, 29 (11), 3290-3297.
(6) Bylund, J.; Macsari, I.; Besidski, Y.; Olofsson, S.; Petersson, C.; Arvidsson, P. I.; Bueters, T. Novel Bioactivation Mechanism of Reactive Metabolite Formation from Phenyl MethylIsoxazoles. Drug Metab. Dispos. 2012, 40 (11), 2185-2191.
(7) Zhang, J. Y.; Fast, D. M.; Breau, A. P. Determination of Valdecoxib and Its Metabolites in Human Urine by Automated Solid-Phase Extraction-liquid Chromatography-tandem Mass Spectrometry. J. Chromatogr. B 2003, 785 (1), 123-134.
(8) Yuan, J. J.; Yang, D.; Zhang, J. Y.; Bible, R.; Karim, A.; Findlay, J. W. A. Disposition of a pecific Cyclooxygenase-2 Inhibitor, Valdecoxib, in Human. Drug Metab. Dispos. 2002, 30 (9), 1013-1021.
(9) Zhou, P.; Natale, N. R. Lateral Lithiation of Ethyl 4-Acetyl-5-Methyl-3-Isoxazolyl Carboxylate with 5,5-Dimethyl-1,3-Dioxanyl as a Directing Group. Tetrahedron Lett. 1998, 39 (45), 8249-8252.
(10) Burkhart, D. J.; Zhou, P.; Blumenfeld, A.; Twamley, B.; Natale, N. R. An Improved Procedure for the Lateral Lithiation of Ethyl 4-Acetyl-5-Methyl-3-Isoxazolyl Carboxylate. Tetrahedron 2001, 57 (38), 8039-8046.
(11) Han, X.; Li, C.; Rider, K. C.; Blumenfeld, A.; Twamley, B.; Natale, N. R. The Isoxazole as a Linchpin for Molecules That Target Folded DNA Conformations: Selective Lateral Lithiation and Palladation. Tetrahedron Lett. 2002, 43 (43), 7673-7677.
(12) Rider, Kevin C.; Burkhart, David J.; Li, Chun; McKenzie, Andrew R.; Nelson, Jared K.;

Natale, Nicholas R. Preparation of Chiral Isoxazole Carbinols via Catalytic Asymmetric Corey-Bakshi-Shibata Reduction. ARKIVOC 2010, viii, 97-107.
(13) Zanger, U. M.; Schwab, M. Cytochrome P450 Enzymes in Drug Metabolism: Regulation of Gene Expression, Enzyme Activities, and Impact of Genetic Variation. Pharmacol. Ther. 2013, 138 (1), 103-141.
(14) Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeney, P. J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2012, 64, Supplement, 4-17.
(15) Calculator Plugins Were Used for Structure Property Prediction and Calculation; ChemAxon, 2015.
(16) Viswanadhan, V. N.; Ghose, A. K.; Revankar, G. R.; Robins, R. K. Atomic

Physicochemical Parameters for Three Dimensional Structure Directed Quantitative
Structure-Activity Relationships. 4. Additional Parameters for Hydrophobic and Dispersive

Interactions and Their Application for an Automated Superposition of Certain Naturally Occurring Nucleoside Antibiotics. J. Chem. Inf. Comput. Sci. 1989, 29 (3), 163-172.
(17) Boyland, E.; Kimura, M.; Sims, P. Metabolism of Polycyclic Compounds. 26. The Hydroxylation of Some Aromatic Hydrocarbons by the Ascorbic Acid Model Hydroxylating System and by Rat-Liver Microsomes. Biochem. J. 1964, 92 (3), 631-638. Schöllkopf, U.; Groth, U.; Deng, C. Enantioselective Syntheses of (R)-Amino

Acids Using L-Valine as Chiral Agent. Angew. Chem. Int. Ed. Engl. 1981, 20 (9), 798-799.
(19) Kalgutkar, A. S.; Nguyen, H. T.; Vaz, A. D. N.; Doan, A.; Dalvie, D. K.; McLeod, D. G.;

Murray, J. C. In Vitro Metabolism Studies on the Isoxazole Ring Scission in the antiinflammatory agent Leflunomide to its Active α-cyanoenol Metabolite A771726:

Mechanistic Similarities with the Cytochrome P450-Catalyzed Dehydration of aldoximes.
Drug Metab. Dispos. 2003, 31 (10), 1240-1250.
(20) Macsari, I.; Sandberg, L.; Besidski, Y.; Gravenfors, Y.; Ginman, T.; Bylund, J.; Bueters, T.; Eriksson, A. B.; Lund, P.-E.; Venyike, E.; Arvidsson, P. I. Phenyl Isoxazole Voltage-Gated Sodium Channel Blockers: Structure and Activity Relationship. Bioorg. Med. Chem. Lett. 2011, 21 (13), 3871-3876.
(21) Zhang, K. E.; Hee, B.; Lee, C. A.; Liang, B.; Potts, B. C. M. Liquid Chromatography-Mass Spectrometry and Liquid Chromatography-NMR Characterization of in Vitro Metabolites of a Potent and Irreversible Peptidomimetic Inhibitor of Rhinovirus 3C Protease. Drug Metab. Dispos. 2001, 29 (5), 729-734.
(22) Shirota, K.; Kaneko, M.; Sasaki, M.; Minato, K.; Fujikata, A.; Ohta, S.; Hisaka, A.; Suzuki, H. Analysis of the Disposition of a Novel p38 MAPK Inhibitor, AKP-001, and Its

Metabolites in Rats with a Simple Physiologically Based Pharmacokinetic Model. Drug Metab. Dispos. 2015, 43 (2), 217-226.
(23) Zhang, J. Y.; Yuan, J. J.; Wang, Y.-F.; Bible, R. H.; Breau, A. P. Pharmacokinetics and Metabolism of a COX-2 Inhibitor, Valdecoxib, in Mice. Drug Metab. Dispos. 2003, 31 (4), 491-501.
(24) Wempe, M. F.; Anderson, P. L. Atazanavir Metabolism According to CYP3A5 Status: An In Vitro-In Vivo Assessment. Drug Metab. Dispos. 2011, 39 (3), 522-527.
(25) Wempe, M. F.; Rice, P. J.; Lightner, J. W.; Jutabha, P.; Hayashi, M.; Anzai, N.; Wakui, S.; Kusuhara, H.; Sugiyama, Y.; Endou, H. Metabolism and Pharmacokinetic Studies of JPH203, an L-Amino Acid Transporter 1 (LAT1) Selective Compound. Drug Metab. Pharmacokinet. 2012, 27 (1), 155-161.
(26) Li, C.; Twamley, B.; Natale, N. R. Preparation and Crystal Structures of Two 3Anthracenyl Isoxazolyl Sulfonamides. J. Heterocycl. Chem. 2008, 45 (1), 259-264.
(27) Sevrioukova, I. F.; Poulos, T. L. Structure and Mechanism of the Complex between Cytochrome P4503A4 and Ritonavir. Proc. Natl. Acad. Sci. 2010, 107 (43), 18422-18427.
(28) Trott, O.; Olson, A. J. AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading. J. Comput. Chem. 2010, 31 (2), 455-461.

[^0]: Akwabi-Ameyaw, 2009

