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Spotted knapweed (Centaura maculosa Lam.) was introduction to 
western Montana in the mid 1920s. It has spread across the state 
in an epidemic fashion and now infests every county in the state. 
Many control methods are being tried (biological, chemical, and 
cultural) with mixed results but more knowledge about the plant is 
needed to better combat this noxious weed. 

Knapweed contains a phytotoxic sesquiterpene lactone, cnicin, in 
its glandular trichomes. This compound was quantified by high 
pressure liquid chromatography (HPLC) through plant tissue 
extracts. Cnicin concentrations for the 1983 and 1984 seasonal 
samples, dissected plant samples, samples from plants of different 
ages, and 1984 soil samples were determined. Highest 
concentrations were found in leaves which correlates with gland 
density. 

In 1983, cnicin concentrations were low in the spring (0.58%) 
and increased to maximum levels (1.03%) in July. This quantity 
was maintained in the rosette leaves throughout the rest of the 
growing season but decreased to 0.48 percent in stems with leaves 
because of dry matter dilution by the stems. In 1984, rosette 
leaves maintained a relatively stable cnicin concentration (0.52 
to 0.73%) from March to August, peaking in September (1.02%), and 
decreasing to 0.64 percent in November. Stem and branch leaves 
contained approximately 2.00 percent cnicin in the summer, 
increased to 2.76 percent in October, and dropped to 0.96 percent 
in November. Cnicin content decreased with plant age which 
correlated with greater quantities of stem tissue in older plants. 
Soils collected through the 1984 growing season contained no 
cnicin except for trace amounts during the summer. 

Since cnicin remains intact on dead standing tissue, possibly 
through a combination of its limited water solubility, non 
volatility, and storage inside a hydrophobic cuticular sac, its 
allelopathic potential is diminished unless large quantities of 
spotted knapweed are deposited to the soil through cutting or 
trampling. This is not to say that knapweed does not contain a 
compound other than cnicin that is more directly allelopathic. 
Furthermore, evidence suggests that cnicin may function as a 
herbivore or disease deterrent. This plus its prolific seed 
production, competitive ability, and lack of natural enemies all 
contribute to knapweed's invasion of Montana. 

i  i 



To 

Carl, Bonnie 

Lisa, Lee, and Lynn 

i  i i 



Acknowledgments 

I would l ike to thank the McKnight Foundation for supporting my 

research, Robert Mihalovich for his TLC work, and Dr. Rick G. Kelsey for 

his great knowledge, supervision, and drive. Without them this work 

would not have been possible. 

i  v  



Table of Contents 

Abstract i i 

Acknowledgments iv 

List of Tables and Figures vii 

Chapter 

I. The Knapweed Problem 1 

II. Knapweed Biology .8 

III. Knapweed Allelopathy and Chemistry 11 

IV. Materials and Methods 19 

A. Study Site .19 

B. 1983 Seasonal (Monthly) Samples 19 

C. Dissected Plant Samples 20 

D. Samples From Plants of Different Ages 21 

E. 1984 Seasonal (Monthly) Samples .21 

F. 1984 Soil Samples 22 

G. HPLC Analysis .22 

H. Quantitative Thin Layer Chromatography 23 

I. Observations of Glandular Trichomes 24 

J. Qualitative TLC of Glandular Trichomes and Gland 

Bearing Tissue .24 

K. Statistical Analysis 25 

V. Results 27 

A. Cnicin Concentrations on a Seasonal Basis in 1983 . . .27 

B. Cnicin Concentrations in Different Plant Tissues. . . .29 

C. Cnicin Concentrations in Plants of Different Ages . . .33 

D. Cnicin Concentrations on a Seasonal Basis in 1984 . . .34 



E. Cnicin Concentrations in the Soils 39 

F. Glandular Trichomes 43 

G. Cnicin in Glandular Trichomes and Gland Bearing Tissues45 

VI. Discussion 46 

VII. Summary and Conclusions 59 

References 

Bib! iography 62 

Appendix 70 

v i  



List of Tables and Figures 

TABLE 1. Cnicin concentrations in plants of different ages 33 

TABLE 2. Interplant variation in leaf cnicin concentrations 

during 1984 37 

FIGURE 1. Proposed cnicin structures 15 

FIGURE 2. Standard cnicin curve 23 

FIGURE 3. Cnicin concentration of composite knapweed samples on a 

seasonal basis for 1983 28 

FIGURE 4. Cnicin concentrations of different plant tissues .30 

FIGURE 5. TLC patterns of samples developed in a 5:4:1 

solvent system 32 

FIGURE 6. Mean cnicin concentration in the leaf tissue of spotted 

knapweed on a seasonal basis for 1984-1985 35 

FIGURE 7. Daily precipitation at the Missoula county airport from 

April 1 to October 30, 1983 and 1984 38 

FIGURE 8. TLC patterns of the 1984 soil samples from March to November 

developed in a 2:2:1 solvent system 40 

vi i  



Chapter One 

The Knapweed Problem 

"Weed - a plant whose virtues have not yet been discovered" 

-Ralph Waldo Emerson-(1803-1882) (Peter 1977) 

Spotted knapweed (Centaurea maculosa Lam.) was first collected in 

North America at Victoria, British Columbia in 1893. It is common 

thoughout Europe and western Asia and is suspected to have been 

introduced to the New World as a contaminant of alfalfa seed, either 

from Asia Minor, or with hybrid alfalfa seed from Germany (Maddox 1982). 

In Canada spotted knapweed is plentiful in British Columbia, and is 

common in the eastern provinces of Ontario, Quebec, Nova Scotia, and New 

Brunswick (Moore 1972, Watson and Renney 1974). It has recently moved 

into southern Alberta (Ali 1984). There are 1.1 million ha of rangeland 

in western Canada that have the potential for knapweed infestation with 

optimum soil and climate conditions (Harris and Cranston 1979). In the 

United States spotted knapweed can be found coast to coast in the 

northern states (Reed and Hughes 1970, Moore 1972), but has become a 

major weed problem in the Pacific Northwest infesting 875,000 ha in 

Montana, Idaho, and Washington (Maddox 1979). Most of this infestation 

(810,000 ha) occurs on the rangelands of western Montana (Maddox 1979). 

Knapweed was first observed in western Montana in the mid 1920s and 

at present inhabits every county in the state (French and Lacey 1983, 

Chicoine 1984). Knapweed is a pioneer species that initially invaded 

only disturbed sites along roads and railways but then moved into low 
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value native rangelands. With larger population sizes providing an 

abundant seed source, knapweed in recent years has moved onto higher 

value ranges and pastures. It has even penetrated the forests of 

western Montana. Knapweed can be found at popular recreation sites, 

along trails, and in areas where forest canopy has been removed by 

timber harvesting to create an optimum environment for its establishment 

(Strang et al. 1979, Spoon et al. 1983). 

Knapweed is spreading across Montana at a rate of 27.4 percent 

annually (Lacey 1983). There are several factors contributing to its 

success. One of the most important is believed to be the lack of 

natural herbivores and diseases that were left behind in the Old World 

when the seeds migrated to North America. Environmental conditions in 

the Pacific Northwest are quite similar to the forest steppe zone in 

Europe where knapweed is adapted and most aggressive (Harris and 

Cranston 1979). The plants were well suited for their new habitats and 

have proven to be strong competitors for nutrients (Belles et al. 1980) 

and moisture. Knapweed is also known for its prolific seed production 

(Watson and Renney 1974) and is readily spread by man and his vehicles 

(Strang et al. 1979). Allelopathy may also contribute to knapweed's 

ecological success since the leaves are known to contain an inhibitory 

substance(s) (Fletcher and Renney 1963). This will be discussed in 

Chapter 3. 

As the knapweed density increases, the production of desirable 

forage decreases. Grass productivity can decline 40 to 80 percent or 

greater (Watson and Renney 1974, Harris and Cranston 1979, Maddox 1979). 

This is not to say that animals do not util ize knapweed. Sheep are 
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known to select knapweed over other desirable forages (Cox 1983), and 

goats will graze plants right along with other species. Cattle utilize 

actively growing plants in the spring, but their use seems to be 

variable and dependent on the availability of other forage and the 

stocking rates, among other things. Horses generally avoid knapweed 

(Spoon et al. 1983). Wildlife utilization is probably minimal, although 

l ittle information is available. 

Even though there is some livestock use of knapweed, i t is not 

sufficient to compensate for the losses in grass. Consequently, the 

carrying capacities of infested sites decrease. Costs of the current 

infestion in Montana are estimated at $4.5 million annually (French and 

Lacey 1983). Montana has 13.7 million ha of grazable woodlands and 

rangeland vulnerable to knapweed invasion, and if completely occupied, 

could result in $155.7 million in lost livestock forage each year 

(Bucher 1984). It is also predicted that wildlife populations would be 

affected, decreasing the elk herd by 220 head annually by 1998 (Spoon et 

al. 1983), and ultimately affecting hunter success and outfitter 

incomes. 

Property values decline when infested with knapweed. In Oregon 

rangeland valued at $99 to $148 per ha decreased to $10 to $15 per ha 

after knapweed invasion (Maddox 1979). Not only do market values 

decrease but knapweed depletes aesthetic quality and recreational 

appeal. In the forests, it is beginning to compete with shrubs and 

young trees for nutrients and moisture which affects seedling growth and 

survival to the point of slowing timber production (Spoon et al. 1983). 

Not only are farmers and ranchers experiencing economic losses, but the 
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state as a whole is also losing. 

Many control methods and combinations of control methods are being 

tried and experimented with to help combat the spread of this noxious 

weed. Chemical control with Tordon 22K (picloram) has been most widely 

used with best results at 282 to 561 g ai/ha (Renney and Hughes 1969, 

Belles et al. 1980, Chicoine 1984). It has the advantages of having a 

flexible application time, it lasts for more than a year (with a 

residual control of at least two years, and usually longer), and does 

not affect other grasses. It also has a relatively low toxicity and is 

rapidly excreted from animals (Renney and Hughes 1969). Tordon does 

have the disadvantages of being very costly, $37/ha ($15/acre) and 

periodic retreatment would be necessary. Since it is extremely stable, 

it has the potential of being dangerous to cultivated crops and could 

not be used around waterways (Maddox 1979). Other herbicides such as 

2,4-D, asulam, bentazon, buthidazole, dicamba, and glyphosate have been 

tried with varied results, but reapplication would be necessary because 

of their short residual activity (Renney and Hughes 1969, Belles et al. 

1980, Chicoine 1984). Even though these other chemicals have a lower 

initial cost they are not cost efficient because of their need for 

frequent reapplication. 

Biological control is the introduction of natural herbivores 

(usually insects) or diseases, to a weed in order to decrease plant 

density. In Montana biological control of knapweed was started by 

introducing the seed head fly, Urophora affinis in 1973 (Story and 

Anderson 1978). Urophora quadrifasciata is a close relative that was 

released in Canada in 1970 (Harris 1980). It has migrated to western 
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Montana and is now more widely distributed and better established than 

U. affinis (Story and Nowierski 1984). Both species lay eggs in the 

knapweed flower bud and the larvae feed on the head while the plant 

works to form a gall around the larva instead of producing seed (Story 

and Anderson 1978). The procedure to find the proper agent(s) for 

biological control is a very slow and gradual process, but after this 

initial cost it is very inexpensive to maintain. Two root mining moths 

(Agapeta zoeqana and Pelochri sta medullana) were released in western 

Montana in 1984 and their overwintering success will be studied in 1985. 

The larvae of these moths attack and damage the roots of the small 

knapweed rosettes. A three year screening project was started in 1984 

on two or four more of these natural enemies (Knapweed update 1984). 

Before the plant is reduced below its economic threshold at least four 

biological agents will have to be established and this means a cost of 

$1.8 million and 28 scientist years. Before biological control becomes 

fully effective 10-20 years will pass. During this time other control 

methods need to be used and experimented with, along with good pasture 

management, since biological control may not be uniformily successful at 

all sites or in all years (Harris and Cranston 1979). 

Grazing by sheep is a hybrid form of cultural/biological control. 

Dr. Cox of the University of Montana has seen effective control of 

knapweed by sheep on his 80 acres in the Clark Fork River bottom west of 

Missoula and hopes, one day, to rid his entire place of knapweed with 

sheep alone (Cox 1983). Heavy grazing in the spring keeps the knapweed 

in a state of perpetual regrowth reducing flower formation and seed 

production to near zero. Sheep could be useful for control on sites 
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where the animals can be adequately managed. Further research is needed 

on the open range to determine stocking levels necessary to impact the 

knapweed, and to quantitatively measure the responses of native 

vegetation. 

Burning is a management tool with limited application for 

eliminating knapweed. In order to kill roots and residual seeds in the 

soil, surface temperatures would probably have to exceed 260 to 316°C. 

With herbaceous, weedy fuels, like knapweed, surface temperatures would 

only reach 204°C and only for a brief period (Spoon et al. 1983). Other 

disadvantages of burning include uncontrollable fire and patchiness. 

Unburned areas provide seed for rapid reinfestation. Reseeding after 

the burn would improve the results, but also add to the costs (Renney 

and Hughes 1969). 

Mowing decreases the number of plants that produce seed and it also 

decreases seed viability (Watson and Renney 1974). The knapweed 

cuttings might also be used as livestock feed. Spotted knapweed has a 

protein content of 9-18 percent in the spring which decreases by about 

50 percent after flowering (Kelsey, personal communication). This 

compares favorably to sun cured alfalfa that has 18 percent protein 

(Ensminger and Olentine 1978). In preliminary feeding trials, sheep, 

goats, cattle, and horses ate knapweed hay. Silage was prepared by 

sealing chopped tissue in plastic bags. After a three day introductory 

period cattle acquired a taste for the silage and began eating it freely 

on the fourth day. Sheep ate silage immediately the first day it was 

offered (Kelsey, personal communication). Further research to determine 

the effects of knapweed hay and silage on livestock health and 
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reproduction should be conducted before it is recommmended as a reliable 

winter feed. 

Other cultural methods that can help to slow knapweed's invasion 

include good range management practices, seeding disturbed areas with 

quick establishing and competitive plants, limiting the transport of 

weed infested hay, and keeping vehicles free of weedy parts, 

particulari ly after seeds have formed. Strong public awareness and 

extension programs to educate the general public and keep them informed 

about the problem will also aid in the control of this noxious plant 

(French 1984, Lacey and Fay 1984). 



Chapter Two 

Knapweed Biology 

Spotted knapweed does well on soils with a wide range of chemical 

and physical properties but does best on disturbed sites. It flourishes 

in areas where the soil pH(H20) is from 6.4 to 7.4 and the sulfur, 

carbon, organic matter, and nitrogen percentages range from 0.014-0.047, 

1.34-3.64, 2.27-6.19, and 0.102-0.329, respectively. It is associated 

with soils having a C/N ratio of 11.5 to 16.5, a phosphorus content from 

2.20 to 3.03 ppm, and a total exchange capacity (meq/100 g) from 15.34 

to 28.32 (Watson and Renney 1974). Douglas fir, ponderosa pine, and the 

foothills prairie habitats are most susceptible to knapweed invasion 

(Chicoine 1984) at elevations of 30 to 1200 meters. Knapweed is not 

common on cultivated land, or irrigated pastures, and it prefers open 

habitats (Watson and Renney 1974), although it is successful at invading 

small canopy openings in the forest. 

Spotted knapweed produces anywhere from 436 seeds per plant on 

natural rangelands to 25,263 seeds per plant grown on irrigated plots 

(Watson and Renney 1974). In northern Idaho it averaged 22,000 seeds/m^ 

from 1973 to 1976 (Schirman 1981). If seed production were cut to below 

0.1 percent and plant density declined, spotted knapweed would stil l 

spread to adjoining land (Roze et al. 1984). Seeds are dispersed by a 

fl icking action of the head which can project the seeds up to a meter 

from the parental plant. This dispersal usually occurs 2-3 weeks after 

maturity of the flower (Watson and Renney 1974). 

Eighty percent or more of the seeds are viable and will remain 

viable underground for 12.5 months (Chicoine 1984). It has been 

8  
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estimated that after completely removing knapweed from an infested site, 

it would take 60 to 75 months, without any further seed production, 

before the natural seed reserves in the soils were exhausted (Chicoine 

1984). Germination will occur over a temperature range of 7-34°C and 

soil moisture should be from 55 to 70 percent for optimum results 

(Watson and Renney 1974, Spears et al. 1980). Seeds can germinated in 

fall or spring depending on environmental conditions and seedling 

mortality rate is only 12 percent (Watson and Renney 1974). Canopy 

cover has no effect on germination. Since knapweed is uncommon in 

shaded areas, other factors besides low-light intensity must be 

affecting germination and emergence, or seedling survival after 

emergence (Spears et al. 1980). 

In the first year, plants normally produce only basal rosette 

leaves and no stems. Growth and development of the root system is 

probably significant during this first growing season. The second year, 

in late May or early June, plants bolt usually producing only one stem. 

Rosette leaves are transformed into stem leaves as elongation takes 

place, and no rosette leaves remain when stem growth is completed. 

Stems are erect or ascending, branched, and can reach a height of 

approximately 120 cm. Each branch is terminated by a single head that 

develops into a purple flower. Heads start to appear in June and 

flowering begins in mid-July, continuing into August and September. 

Individual flowers bloom for 2 to 6 days (Chicoine 1984) and then 

reclose while the seeds mature. Two or three weeks later the heads 

dehydrate and begin to open (Watson and Renney 1974) for seed dispersal. 

As the heads dry they turn a yellow color. Gradually the other aerial 



tissues dehydrate and become yellow, dying back to ground level. 

In the fall, as the stems dehydrate, vegetative reproduction occurs 

with the formation of new rosettes at the base of the stems. These 

remain attached to the parental root stock (Watson and Renney 1974). 

The following spring (May/June), some, or all of the vegetative rosettes 

can bolt, forming multiple stems. In the older plants not all rosettes 

will bolt, maintaining separate clusters of rosette leaves throughout 

the summer months. Addition of new vegetative rosettes at the end of 

each growing season results in a continually expanding root crown just 

below the soil surface, allowing older plant to produce over 15 stems 

(Watson and Renney 1974). Thus, spotted knapweed is most often a short 

l ived perennial rather than a true biennial. 



Chapter Three 

Knapweed Allelopathy and Chemistry 

Allelopathy is "any direct or indirect harmful effect by one plant 

on another through the production of chemical compounds that escape into 

the environment" (Rice 1974). Some compounds are autotoxic effecting 

both the producer of the chemical and the species in the surrounding 

vegetation, whereas other toxins only inhibit the growth of the 

surrounding plants. Fletcher and Renney (1963) found that soils 

naturally infested with Russian knapweed (£. repens Lam.), or 

artificially infested with powdered Russian knapweed tissue inhibited 

tomato and barley growth. Extracts from spotted knapweed, diffuse 

knapweed (C. diffusa Lam.), and Russian knapweed all retarded the 

germination and growth of lettuce and barley. Roots were most severely 

inhibited. Russian knapweed contained the strongest inhibitor and 

spotted knapweed the weakest. Of the various plant parts tested, leaves 

contained the greatest quantities of inhibitor. The active compounds 

were isolated by paper chromatography but never indentified (Fletcher 

and Renney 1963). 

Duplicating some of these early experiments, Kelsey and Locken 

(submitted for publication) have isolated and identified a phytotoxin in 

the aerial tissues of spotted knapweed. A ten percent water extract 

from fresh rosette leaf tissue showed no effect on lettuce germination, 

but decreased root growth to 68 percent of control. Water, ether, and 

chloroform extracts were prepared from five grams of air-dried rosette 

leaves and bioassayed with lettuce. Germination was only slightly 

affected and seedling growth, especially in the roots, was severely 

1 1  
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retarded by all three extracts. Levels of inhibition were similar to 

those reported by Fletcher and Renney (1963). An active chloroform 

extract was concentrated by removing hexane soluble cuticular waxes and 

then fractionated by column chromatography. Nearly all fractions 

inhibited lettuce growth, but only a few affected germination. A 

compound in the most inhibitory column fraction was isolated and 

identified as cnicin, a sesquiterpene lactone, by TLC, NMR, and direct 

IR comparison with an authentic sample. 

Bioassays of 0.0, 1.0, 2.0, 4.0, 6.0, 8.0, and 10.0 mg cnicin per 5 

mL water were first tested on lettuce. Germination was not affected at 

1.0 mg cnicin, but it gradually decreased as the cnicin concentration 

increased, and was only 20 to 30 percent of the control at 10.0 mg. 

Seedling growth was affected more severely, reaching less than 20 

percent of the control at only 1.0 mg. Three grass species, rough 

fescue (Festuca scabrel1 a Torr.), crested wheatgrass (Aqropyron 

cristatum (L.) Gaertn. ), and bluebunch wheatgrass (Aqropyron spicatum 

(Pursh) Scribn. & Smith) were bioassayed with the same concentrations of 

cnicin. Germination was reduced to varying degrees at 4.0 and 6.0 mg. 

Their root growth was sensitive with significant inhibition beginning at 

the 4.0 mg level. Two tree species, western larch (Larix occidentalis 

Nutt.) and lodgepole pine (Pinus contorta Dougl. ex Loud.) were tested. 

Germination of the latter was not retarded. Growth of both species was 

inhibited at all concentrations, with significant differences from 

controls at 4.0 to 6.0 mg of cnicin. 

Spotted knapweed was also bioassayed with no effect on germination, 

but significant retardation of seedling growth at all concentrations. 
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This indicates that unless knapweed has some mechanism for eliminating, 

avoiding, or minimizing cnicin's inhibitory effects under natural 

conditions it would provide the plants with a minimal competitive 

advantage over the associated vegetation. Autotoxicity could have some 

value as a mechanism for self regulating population density. It was 

concluded that cnicin could be allelopathic under the appropriate 

environmental and biotic conditions, possibly adding to the ecological 

success of spotted knapweed (Kelsey and Locken, submitted for 

publication). 

Muir and Majak (1983) recently completed a similar study with 

diffuse knapweed. Aerial tissues contained both a polar and nonpolar 

inhibitor and root extracts were inhibitory. Ryegrass (Lolium 

multiflorum L.) bioassays, and column chromatography of a solvent 

extract from combined leaves and stems led to the isolation of cnicin. 

A column fraction, and impure cnicin isolated from it, both inhibited 

ryegrass seedling growth at 0.4 mg/mL, but purified cnicin, at the same 

concentration, did not affect germination or growth, and was rejected as 

a major inhibitor by itself. The polar inhibitor was not identified. 

Politis (1946 a,b) reported the isolation of bitter tasting cnicin 

from the glandular trichomes of holy thistle (Cnicus benedictus L.). It 

was again isolated from this taxa over a decade later (Korte and 

Bechmann 1958). Two alternative structures were assigned the following 

year (Suchy et al. 1959). This was reduced to a single probable 

structure in 1962 (Suchy and Herout 1962, Suchy et al. 1962), that was 

not correct, and required revision three years later (Suchy et al. 

1965). The final, currently accepted structure was published in 1969 
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(Figure 1) (Samek et al. 1969). 

Cavallito and Bailey (1949) in the United States were probably the 

first to isolate crystalline cnicin from Centaurea maculosa, but did not 

provide a structure. They did conduct extensive chemical analysis and 

the data are sufficient to confirm that it was cnicin. Suchy and Herout 

(1962) isolated it from European C. stoebe (L.) Sch. et Thell, a 

comprehensive species that included C. maculosa. It has been reported 

in numerous other species in this genus, C. aspera L., C. bruqueriana 

DC., C. calcitrapa L., C. eriophora L., C. iberica Trev., C. micranthus 

I.F. Gmel., C. ovina Pal., C. rocheliana (Heuffel) Dostal, C. 

sphaerocephala L., and C. sulphurea Willd. (Gonzalez et al. 1978, 

Rustaiyan et al. 1982, Seaman 1982, Geppert et al. 1983). 

In addition to having phytotoxic properties cnicin also disrupts 

metabolic activities in other biological systems. Cavallito and Bailey 

(1949) tested it with numerous bacteria and found it to be 

bacteriostatic toward both gram positive and gram negative organisms. 

Bactericidal activity was observed at higher concentrations. Similar 

experiments were repeated recently with comparable results 

(Vanhaelen-Fastre 1972, Vanhaelen-Fastre and Vanhaelen 1976). Cnicin is 

cytotoxic toward human carcinoma cells in vitro with an ED50 of 3.4 

yg/mL for KB cells (Vanhalen-Fastre and Vanhaelen 1976) and an ID50 of 

0.1 yg/mL for HeLa cells (Gonzalez et al. 1978). In vivo it is active 

against L—1210 leukemia (Vanhaelen-Fastre and Vanhaelen 1976). These 

types of activity are not unusual for sesquiterpene lactones (Rodriguez 

et al. 1976). 

Sesquiterpene lactones can cause various responses from plant 
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FIGURE 1. Proposed cnicin structures. (A)&(B) Two alternative 
structures proposed by Suchy et al. in 1959. (C) 
Single probable structure of cnicin (Suchy and 
Herout 1962, Suchy et al. 1962). (D) Revised 
s t r u c t u r e  a s  p r o p o s e d  b y  S u c h y  e t  a l .  ( 1 9 6 5 ) .  ( E )  
Currently accepted structure of cnicin (Samek et 
al. 1969). 
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systems. Root initiation from the hypocotyls of mungbean (Phaseolus 

aureus Roxb.) is stimulated by various compounds with an 

a,3~unsaturated lactone (Kalsi et al. 1977, Kalsi 1979). The isomeric 

form of the exomethylene double bond had a strong influence on the root 

growth (Kalsi et al. 1981). Amo and Anaya (1978) bioassayed seven 

sesquiterpene lactones with five native plants species from the ruderal 

vegetation of a tropical zone in Mexico. Germination and growth was 

stimulated, or inhibited depending on the lactone, its concentration, 

and the plant species being tested. Several other studies have reported 

sesquiterpene lactone inhibition of germination and/or growth of the 

bioassay species (Dalvi et al. 1971, McCahon et al. 1973, Asakawa and 

Takemoto 1979, Spencer et al. 1984). 

Parthenin is a phytotoxic sesquiterpene lactone that contributes to 

the allelopathic and autotoxic effects of Parthenium h.ysterophorus, an 

aggressive tropical weed. This plant has spread to all parts of India 

over a period of 20 years, infesting five million hectares. Pure stands 

are often several hectares in size and nearly devoid of any other 

vegetation. Phytotoxins are released to the soil through leaching, 

decomposition of plant tissue, and root exudation (Kanchan and 

Jayachandra 1979 a,b). The inhibitors remained active in the soil for 

about 30 days. Dried leaves mixed into the soil inhibited growth and 

yield of beans (Phaseolus vulgaris L.), cowpea (Viqna sinensis L.), 

tomatoes (Lycopersicum esculentum L.), and ragi (Eleusine coracana 

Gaertn.). Surprisingly, leaf mixed soil stimulated growth and 

productivity of bajra (Pennisetum typhoideum Rich). 

Chemical analysis has revealed high concentrations of parthenin in 
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the leaves (0.30% dry weight), inflorescence (0.30%), and cypsela 

(0.15%) with lower concentrations in the stems (0.02%) and roots (0.01%) 

(Kanchan 1975, Kanchan and Jayachandra 1980). Phenolic acids were also 

abundant in these tissues. Trichomes from the epidermal surface 

contained parthenin and vanillic acid. Parthenin, caffeic acid, ferulic 

acid, and vanillic acid were present in leaf washings. Root exudates 

and rhizosphere soils contained parthenin, anisic acid, vanillic acid, 

ferulic acid and fumaric acid. All of these compounds are phytotoxic 

except fumaric acid and possibly anisic acid (Kanchan 1975, Kanchan and 

Jayachandra 1980). Parthenin at 50 ppm on fi lter paper inhibited 

radicle and hypocotyl growth of beans (Garciduenas et al. 1972). In 

Hoagland's solution with 100 or 200 ppm parthenin, young bean plants 

grew very l ittle compared to the control. When 0.1 ml of 100 or 200 ppm 

solutions of this compound was applied to bean cotyledon leaves, 

trifoliate leaf growth was arrested. Parthenin and coronopilin, also a 

sesqiterpene lactone in P. hysterophorus, in solution were toxic to P. 

hysterophorus seedlings and plants. These sesquiterpene lactones in 

combination with the phenolic acids inhibit the germination of P. 

hysterophorus achenes. From this evidence Pieman and Pieman (1984a) 

concluded that these compounds are not only allelopathic, but also 

autotoxic, and may help regulate the timing of germination and 

population density. 

Fuerst and Putnam (1983) recently proposed a set of criteria that 

should be address in order to prove competitive or allelopathic 

interference between plants. For allelopathy these criteria were (1) 

identification of the symptoms of interference; (2) isolation, assay, 



characterization, and synthesis of the toxin; (3) simulation of the 

interference by supplying the toxin as it was supplied in nature; and 

(4) quantification of the release, movement, and uptake of the toxin. 

It is desired but not essential "to show that the selectivity of the 

toxin to various species corresponds to the range of species affected by 

the allelopathic agent". 

Because of knapweeds ecological characteristics suggesting that 

allelopathy may be functioning, and cnicin's phytotoxic properties 

toward native grasses and trees (Kelsey and Locken, submitted for 

publication), this study was initiated to determine the concentration of 

cnicin in knapweed tissues and surrounding soils. This information 

could then be used to evaluate the role that cnicin plays in knapweed's 

ecology and successful invasion of western Montana rangelands. It might 

also find use for improving, or developing new methods of control for 

these unwanted plants. 



Chapter Four 

Materials and Methods 

A. Study Site 

A study site was selected in the Rattlesnake Creek drainage (T13N, 

R19W, sec 11) about 3 miles north of the University of Montana campus. 

The area is a large field (roughly 325 by 650 m) with nearly no slope, 

at an elevation of 1067 m. Soil is a Typic Haploboroll formed on an 

alluvial terrace and climatic conditions are about the same as the 

Missoula valley with mean annual temperature of 6.2°C and 32.6 cm 

precipitation (Cordell 1971). Spotted knapweed was the dominant plant 

species intermixed with four grasses, cheatgrass (Bromus tectorum L.), 

Japanese brome (B. japonicus Thumb.), Canadian bluegrass (Poa compressa 

L.), and Poa bulbosa L. There were a few scattered herbs; one of the 

most obvious in late June being cinquefoil (Potentilla qlandulosa 

Li ndl. ). 

A local rancher who leases the property from the Montana Power 

Company thought the field had been seeded to grain in the 50s or early 

60s. His personal knowledge dated back to 1964 and knapweed was already 

quite dense. Residual grasses were heavily grazed by horses for three 

years, from 1969 through 1971. In 1978 the field was plowed for 

reseeding, but never seeded. There were no further disturbances between 

1978 and 1984. 

B. 1983 Seasonal (Monthly) Samples 

In 1983 monthly composite plant samples (from several randomly 
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selected plants) were collected from April to October. Only plants with 

a previous year's stem attached were sampled in an attempt to minimize 

any age variation between plants bolting for the first time, and the 

older ones that had bolted before. Plants were removed from the soil 

with approximately 15 cm of root attached. Dead stems and leaves were 

discarded and the roots were separated from the aerial tissue in April, 

May, and June. Starting in July three tissue types were collected; 

stems with leaves attached, rosette leaves, and roots. Plants had begun 

to bolt at the May sampling date. In September, the heads, portions of 

the branches, and the larger leaves at the base of the stem were yellow 

and dehydrated. Older rosette leaves were also dead. By October stems 

were in the final stages of drying and there was new rosette leaf growth 

among the dead leaves attached to the root crown. Dead leaf samples 

were collected in these last two months. After air drying, the plant 

tissues were ground with a Wiley mill to pass a 20 mesh screen, sealed 

in double plastic bags, and stored in the dark. 

C. Dissected Plant Samples 

On August 16, 1983 two complete plants were collected and dissected 

into the following eleven distinct tissue types: l ive stems, l ive leaves 

on stems, dead leaves on l ive stems (leaves on the lower portion of the 

stem), flower heads, l ive rosette leaves, dead rosette leaves, branches, 

branch leaves, dead stems (one year old from previous growing season), 

dead leaves (one year old) on dead stems, and roots. These tissues were 

further treated as above. 
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D. Samples From Plants of Different Ages 

On August 16, 1983 individual plants from three different age 

groups (less than one year old, two years old, and older than two years) 

where clipped. These plants were sampled at a study site (T13N, R19W, 

sec 31) near Fort Missoula where the relative ages of the plants were 

known. In October of 1981, a small area had been scraped free of 

vegetation and then rototilled. On this treated area in 1983, most 

plants with rosette leaves only, should have been less than one year 

old. Those that produced a single stem were in their second growing 

season. Adjacent to the treated area, plants older than two years were 

collected. They were identified by having old dead stems from the 

previous year, plus multiple stems from the present year. These were 

air-dried, sealed in plastic bags, and stored in the dark. The entire 

aerial portion of each plant was ground, excluding the dead stems from 

the ones older than two years. 

E. 1984 Seasonal (Monthly) Samples 

In 1984 three individual plants with a previous years stem attached 

were collected each month from March 1984 until March 1985. These were 

treated as in 1983, but only leave tissue (stem leaves including those 

from the branches, rosette leaves, and dead rosette leaves) was 

analyzed. Because of limited tissue on individual plants composite 

samples (from several plants) were gathered in March 1984, and January 

1985, with no collections in December 1984 or February 1985. Plants 

were beginning to bolt on the May sampling date, but most stems were 

stil l small and considered rosette leaf tissue. In July rosette leaves 
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were combined with stem leaves from the same plant. During July and 

August there was l ittle precipitation, and one of the plants sampled in 

August had a yellow dehydrated stem. New rosette growth was beginning 

to appear at the base of the dehydrated stems in September. 

F. 1984 Soil Samples 

Soil samples where also collected monthly simultaneously with the 

knapweed tissue from March 1984 to March 1985. On each collection day 

five random soil samples were collected at depths of 0-2 cm, 2-6 cm, and 

6-15 cm. These were sealed in plastic containers, placed on ice, and 

returned to the lab were they were sifted fresh through a number 10 

(2 mm) and a number 20 (20 mesh) sieve to remove plant tissues that 

might contain cnicin. Sieving also made the soil uniform and easy to 

work with. They were air-dried, placed in plastic bags, and stored in 

the dark. 

G. HPLC Analysis 

Prior to analysis the tissue was oven dried at 40°C for 24 hours 

and a one gram sample of each was extracted for 30 minutes with methanol 

(15 mL) and constant stirring. This lower oven temperature was used to 

decrease the possibility of cnicin structural rearrangements. Two 

milli l iters of the extract was fi ltered through a millipore filter 

(0.5 y) before injection (2 uL) into the Perkin Elmer Series 3 high 

pressure liquid chromatograph (HPLC) equipped with a reverse phase 12.5 

cm Alltech Lichrosorb column (5y particle size). A solvent gradient of 

10%—25% acetonitrile in water the first 20 minutes, 25% the next three 
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minutes, 25%-40% for three more minutes, and 40% for the last three 

minutes was used with a flow of one milli l iter/minute (Marchand et al. 

1983). Cnicin was quantified with an ultraviolet detector set at 215 nm 

and recorded on a Hewlett Packard 3380A integrator/recorder. A standard 

cnicin curve (Figure 2 was prepared at the start of the analysis and a 

reference standard was run daily before the extracts. Each plant sample 

was analyzed in duplicate and if these were not within three percent of 

one another a third one was run. 

0.600 

s 0.400 
C" 

0.200 — 

120,0.00 180,000 240,000 300,000 

Integration 

FIGURE 2. Standard cnicin curve 

H. Quantitative Thin-Layer Chromatography 

Quantitative thin-layer chromatography (TLC) was used to examine 
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the chemical components in each 1983 plant sample. One gram of tissue 

was extracted for thirty minutes with constant stirring in fifteen 

milli l iters of methanol. When tissue was limited, smaller quantities 

were extracted with the same ratio of solvent. After setting aside for 

a few minutes to allow the particles to settle the solvent was decanted 

into a vial and sealed. These extracts were spotted quantitatively 

(50 PL) on a silica gel G plate with a 0.5 mg/mL cnicin standard (50 PL) 

and developed in a 5:4:1 (chloroform:petroleum ether:ethanol) solvent 

system. Soils collected in 1984 were also analyzed by quantitative TLC. 

Twenty grams of soil was extracted with methanol, fi ltered, and 

roto-evaporated to dryness at room temperature. This was resuspended in 

methanol (0.5 mL), quantitatively (50 yL) spotted on two silica gel G 

TLC plates. One was developed in a 5:4:1 (chloroform:petroleum 

ether:ethanol) and the other in a 2:2:1 (chloroform:petroleum 

ether:ethyl acetate) solvent system. Each plate was photographed under 

ultraviolet light to visualize fluorescent compounds. It was then 

sprayed with concentrated H2SO4, charred at 100°C overnight, and 

rephotographed. 

I. Observations of Glandular Trichomes 

Glandular trichomes were examined on the epidermal surface of plant 

tissues collected in July 1985 using a 45X dissecting microscope. 

J. Qualitative TLC of Glandular Trichomes and Gland Bearing Tissues 

Glandular trichomes were collected from epidermal stem tissue that 

had been oven dried overnight at 65°C. Stem glands were more accessible 
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than the leaf glands in pits. They were sucked into a capillary tube 

with vacuum supplied from an aspirator. Glands were trapped on a cotton 

plug in a larger piece of glass tubing (2-4 cm section of Pasteur pipet) 

attached on the end of the capillary with a small rubber stopper. The 

larger pipet was connected to the aspirator with rubber tubing. 

Capillary and pipet trap with glands were extracted in approximately 10 

mL chloroform for five minutes, then removed from the solvent and rinsed 

with 3 mL of methanol. The combined solvents were evaporated under 

vacuum at room temperature. The entire extract was applied to a TLC 

plate with a few drops of chloroform. Fresh samples of leaves, stems, 

branches, phyllaries, and flowers were prepared in triplicate. 

Replicates of each tissue was taken from separate plants. These were 

extracted with 20 mL of chloroform for five minutes (except the leaves 

which were extracted only one minute), fi ltered through paper, and the 

solvent removed under vacuum at room temperature. The entire extract 

(except for leaves that required only a portion of the extract) was 

applied to a TLC plate, along with a cnicin reference. Plates were 

developed in the 5:4:1 solvent system and the cnicin visualized by acid 

spray and charring as described previously. 

K. Statistical Analysis 

Analysis of variance was used to test for differences in means at 

the 0.05 level of probability. If the analysis of variance tests showed 

a significant effect, means were separated using Duncan's new multiple 

range test (Steel and Torrie 1960). All statistical analyses were 

performed using SPSSX (SPSSX 1983). Monthly comparisons of the 



1984-1985 data were made for each individual tissue type over a season 

and the three tissue types were compared for specific months. The 

results are summarized in the Appendix. 



Results 

Chapter Five 

A. Cnicin Concentrations on a Seasonal Basis in 1983 

Composite plant samples were collected monthly from April to 

October 1983 and cnicin concentrations were analyzed by HPLC. The 

tissue was separated into distinct parts (stems with leaves attached, 

rosette leaves, dead rosette leaves, and roots) when possible. Figure 3 

shows the percent cnicin through the growing season by plant parts. The 

cnicin concentration in rosette leaves increased from 0.58 percent in 

April to 1.01 percent in June and then stayed fairly constant until 

October. In stems with leaves, cnicin decreased from a high of 1.05 

percent in July to a low of 0.38 percent in September with a slight 

increase in October. Dead leaves contained 0.80 percent cnicin in 

September and October; 0.1 to 0.2 percent lower than in the live rosette 

leaves from the same date. Roots contained no detectable cnicin by 

HPLC. The detection limit for the HPLC was calculated as 0.85 ppm for a 

2 uL injection. Quantitative thin layer chromatography of extracts from 

these tissues confirmed the HPLC results. Size and intensity of the 

cnicin spot correlated closely with the measured concentration. When 

cnicin was undetectable in a sample by HPLC, either no spot, or a faint 

spot appeared on the TLC plate at the appropriate Rf position for 

cnicin. 

27 
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^Data point for both stems with leaves and rosette leaves.  

FIGURE 3.  Cnicin concentration of composite knapweed samples 
on a seasonal basis for 1983. 
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B. Cnicin Concentrations in Different Plant Tissues 

Two plants collected in August 1983 were dissected into eleven 

distinct tissues and each analyzed for their cnicin concentrations 

(Figure 4). Branch leaves contained the highest quantities (0.70%) 

whereas l ive stems, dead stems (from the previous year), flower heads, 

and roots had none (see Section G of Results). In live leaf tissue, the 

cnicin content increased moving up the plant; rosette leaves at ground 

level contained (0.33%), stem leaves (0.55%), and the branch leaves 

(0.70%). All dead leaves, including those in rosettes, those on l ive 

stems and even the ones on stems from the previous growing season 

contained detectable quantities of cnicin. Again, the TLC analysis 

confirmed the HPLC data. There was no cnicin spot from the flower heads 

or roots. There was a trace amount of cnicin detected in live stems, 

but apparently it was lower than the detection limit for the sensitivity 

setting used on the HPLC. Compounds other than cnicin were detected by 

TLC. In plant tissues containing cnicin (branch leaves, l ive leaves on 

l ive stems, rosette leaves, dead rosette leaves, dead leaves on live 

stems, dead leaves on dead stems, and branches) there were nine distinct 

spots (Figure 5). Dead and l ive stem tissues had the same spots as the 

tissues above, but less concentrated; the cnicin (Rf 0.20) was just 

barely visible in the latter. In the roots, six spots were missing (Rf 

0.06, 0.20, 0.50, 0.60, 0.85, 1.00) and one new spot (Rf 0.45) appeared. 

Heads, had no cnicin and one additional large spot at Rf 0.43. 
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Means followed by different letters are siqnificantly 
different at a 0.05 level of probability.  

FIGURE 4.  Cnicin concentration of different plant t issues.  
Each value is  an average from two plants.  
(Diagram reproduced from Selected Weeds of the 
United States 1970).  
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C. Cnicin Concentrations in Plants of Different Ages 

Knapweed plants from different age groups were collected in August 

of 1983 and their cnicin content determined by HPLC. The highest 

percentage of cnicin (0.40%) was found in the plants less than one year 

old, or those that had only rosette leaves and no stems (Table 1). Two 

year old plants, with a single stem, had the next highest quantity 

(0.12%) and the lowest concentrations (0.07%) occurred in plants over 

two years old with multiple live stems. Whole plants, including leaves, 

stems, and heads, were ground and extracted. Since stem tissue 

contained no detectable cnicin, increasing the proportion of stem in the 

sample would dilute the cnicin in the leaves. Consequently, the older 

plants having more stem tissue, would have a lower cnicin concentration. 

TABLE 1. Cnicin concentrations in plants of different ages. 

Aqe of Plant Plant no. % Cnicin on a Dry Weiqht Basis 

Less Than One Year Old 1 0.36 
2 0.43 
3 0.41 

X 0.40a1 

Two Years Old 1 0.20 
2 0.06 
3 0.11 

X 0.12b 

Older Than Two Years 1 0.11 
2 0.07 
3 0.03 

X 0.07c 

Means followed by different 
).05 level of probability. 

letters are significantly different at the 
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D. Cnicin Concentrations on a Seasonal Basis in 1984 

Three individual plants were collected each month from March 1984 

to March 1985 with no samples gathered in December or February. Based 

on the results from 1983, only leaf tissues (stem leaves including those 

from the branches, rosette leaves, and dead rosette leaves) were 

analyzed by HPLC. Figure 6 shows the mean concentration of cnicin on a 

dry weight basis over the season. Stem leaves had the highest cnicin 

content ranging form 0.96 percent to 2.76 percent. In the spring, prior 

to bolting, some of these leaves were part of a basal rosette with a 

cnicin concentration around 0.5 percent. In May-June when the stems 

elongated they were transformed into stem leaves widely spaced along the 

lower stem. New stem and branch leaves were formed as the stems grew. 

In June the cnicin concentration in stem leaves (1.85%) was more than 

double the quantity in rosette leaves (0.73%). Whether or not there was 

an actual increase in the leaves that had been part of the spring 

rosette, was not determined. Cnicin levels remained stable in stem 

leaves through the summer but then increased as the tissue began to 

dehydrate and die. The concentration reached a peak in October at 2.76 

percent. This was followed by a large unexplained decrease in November 

to a low of 0.96 percent. By winter the concentration had risen again 

to the level of the previous summer (1.70%), and it was stil l near this 

level in late March 1985. There were only two months with significantly 

different cnicin concentrations, November (0.96%) and October (2.76%). 

The greatest interplant variation was observed in these leaves (Table 

2), with a two percent difference between the maximum (3.92%) and 

minimum (1.83%) concentrations in October. 
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FIGURE 6.  Mean cnicin concentration in the leaf t issue of spotted 
knapweed on a seasonal basis for 1984-1985 (each date is  
an average from three plants except those that are circled).  GJ 

cn 



36 

Live rosette leaves had a lower, but more stable, cnicin content 

(varying from 0.51 to 1.02 percent) throughout the 1984 growing season 

(Figure 6), and there was also less interplant variation (Table 2). The 

high occurred in September about the time that new rosette leaves began 

to appear at the base of the dehydrated stems. This then decreased to 

near summer levels as winter approached. September's 1.02 percent was 

significantly greater than the spring and summer levels (see Appendix). 

Dead rosette leaves also contained cnicin, but at much lower 

concentrations than in the live rosette leaves sampled on the same day. 

In September there was 0.60 percent in the dead leaves compared to 1.02 

percent in live leaves. By October dead leaves contained only 0.34 

percent cnicin and it was nearly gone from this tissue by the following 

March (0.05%). 

When comparing the 1983 and 1984-1985 seasonal data no direct 

correlation can be made between the stem leave tissues because the 1983 

samples contained stem tissue and the 1984-1985 samples did not. 

Generally, the rosette leaves, which can be compared, had a lower cnicin 

concentration in 1984 than in 1983. This could possibly be explanined 

by the difference in the amount of rainfall for the two years as shown 

in Figure 7 with 1984 being drier than 1983 from June through September. 

When soil moisture is limited, plant growth is usually inhibited before 

photosynthesis and this can result in a build up of carbohydrates in the 

tissue (Trlica 1977, Trlica and Singh 1979). Since cnicin 

concentrations were calculated on a dry weight basis, a higher 

carbohydrate level in the 1984 plants would increase the dry matter 

content causing a decrease in the percentage of cnicin. 



Table 2.  Interplant variation in leaf cnicin concentrations during 1984. 

1984 1985 

Leaf type Plant no. Mar. Apr. May June July Auq. Sept.  Oct.  Nov. Jan. Mar. 

Stem 1 1.62 1.291  2.59 2.47 3.92 0.88 1.70 1.53 
2 1.27 1.24 2.43 1.83 1.26 1.61 
3 — — — 2.07 1.40 1.45 1.57 2.54 0.75 - - 2.34 

X — — — 1.85 1.32 1.76 2.16 2.76 0.96 1.70 1.83 

Live 1 0.52 0.49 0.56 --  2 0.35 1.19 0.93 0.88 0.53 0.56 
Rosette 2 — 0.36 0.47 0.73 _ _  0.69 1.06 0.91 0.46 0.20 

3 - - 0.69 0.64 — — - - 0.82 0.68 0.57 0.30 
X 0.52 0.51 0.56 0.73 — 0.52 1.02 0.84 0.64 0.53 0.35 

Dead 1 1.21 0.47 0.25 0.15-
Rosette 2 0.43 0.27 0.26 — 0.00? 

3 - - 0.16 0.29 0.29 — 0.00 
X — — 0.60 0.34 0.27 — 0.05 

^Stem and l ive rosette leaf t issue was not differentiated here.  
2 

This plant did not bolt .  
3 
0.00 is  equivalent to undetectable by HPLC. 

CO 
^1 
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E. Cnicin Concentrations in the Soils 

Since there was a good correlation between HPLC and TLC data for 

the 1983 seasonal tissue samples, the soils collected monthly in 1984-85 

were examined by TLC prior to HPLC to see if there was any cnicin 

present. Figures 8 and 5 summarize the soil's TLC analysis in the 2:2:1 

solvent system and the 5:4:1 solvent system, respectively. Samples 

collected from June to September (0-2 cm depth) were the only soils 

showing even a trace of cnicin by TLC, with June and August having what 

appeared to be the greatest quantities. Subsequently, the 0-2 cm 

samples for June and August were analyzed by HPLC. The August soil 

sample had the highest concentration of cnicin at 0.7 ppm. Since this 

was so low, and all the other soils appeared to have an equal or lower 

concentration by TLC, no further HPLC was considered necessary. Cnicin 

was not present in significant quantities, at any time of the year, at 

this study site. 

Soil TLC plates developed in the 2:2:1 solvent system and viewed 

under UV l ight were the same throughout the entire season with the 

exception of one spot at Rf 0.34 that appeared in July (Figure 8). The 

lower spots between Rf 0.00 and 0.30 were hard to distinguish from one 

another because they were so close together. There was a fluorescent 

blue spot under ultraviolet light (Rf 0.64) that charred with acid and 

heating. This charred spot was present through May but then 

disappeared. There were not many changes through the season in the 

compounds visualized by charring. The top spot at Rf 0.93 was not 

present from March to May, but appeared in June and remained the rest of 

the year. Another new spot appeared in June at Rf 0.53, this spot's 
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intensity increased as the depth of the soil increased, whereas the 

intensities of all other spots either stayed the same or decreased as 

soil depth increased. Cnicin does not move from the application spot in 

the 2:2:1 solvent system. 

In the 5:4:1 solvent system the UV visible spots were the same for 

all months with the lowest spot at Rf 0.15 being present only through 

May. Changes were observed each month when the plates were charred 

except between August and September and between October and November 

(Figure 5). Spots at Rf 1.00, 0.85, 0.78, 0.53, 0.40, and 0.13, were 

present in all months with a trace of cnicin showing up only from June 

to September (Rf 0.20). The intensity (relative concentration) of all 

spots either stayed the same or decreased as soil depth increased. 

Standard rosette leave and root extracts were run by TLC along with 

the soils to see if any compounds were present in both plant tissue and 

soils. In the 2:2:1 solvent system (Figure 8) there were four UV 

visible spots at Rf 0.80, 0.64, 0.40, and 0.20 for the rosette leave 

extract. The top spot was distinct whereas the other three were less 

defined. Compounds at 0.80 and 0.40 appeared to be the same as in the 

soil. Spots visualized with acid and charring were present in the plant 

tissue and the soils (Rf 0.44 and 0.59) with the tissue spot at Rf 0.83 

overlapping with a couple of spots in the soils. One UV visible spot 

from roots at Rf 0.07 in the 2:2:1 solvent system was among the hard to 

distinguish UV soil spots. The blue fluorescent spot in roots Rf 0.70 

was not in the soil, there was a red spot instead. Charred spots at Rf 

0.43 and 0.80 were present in both roots and soils. 

In the 5:4:1 solvent system there were three UV spots in the TLC 
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patterns of plant tissue that appeared to be present in the soils. One 

from roots at Rf 0.90 and two from the aerial tissues, Rf 0.95 and 0.15, 

but the latter was only present in the soil through May. All compounds 

in plant tissues that charred on plates developed in the 5:4:1 solvent 

system were present in all soils, except for four. Those absent from 

the soil were the root compound at Rf 0.43 and the aerial tissue spot at 

Rf 0.48. There were two spots in aerial tissues that appeared in some 

soils, the one at Rf 0.06 occurred only in March and April and the one 

at Rf 0.60 showed up in June. 
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F. Glandular Trichomes 

Observations of knapweed tissues with a 45X dissecting microscope 

revealed the presence of conical shaped (bristle like) nonglandular 

trichomes (Ormrod and Renney 1968) and glandular trichomes. Glandular 

hairs were located in depressions, or pits, on both the adaxial and 

abaxial leaf surfaces. Their external appearance was similar to glands 

reported in other genera of the Compositae family (Rodriquez et al. 

1976, Blakeman and Atkinson 1979, Vermeer and Peterson 1979 (a&b), 

Kelsey and Shafizadeh 1980). They have a bulbous head, containing a 

clear liquid that looked like a water droplet in the pit. 

New leaves developing from the center of rosette clusters were 

covered with a wooly tomentum making it difficult to view the glands. 

Glands were present in high density on these young leaves indicating 

that they were formed early in the leafs development. Gland density 

seemed to decrease with leaf age and size. Blakeman and Atkinson (1979) 

found the young leaves of Chrysanthemum parthenium Bernh. to have a 

higher gland density than the mature leaves. They suggested that glands 

developed early on the young leaves and then spread apart as the leaves 

expanded without any new glands forming. This may also occur in 

knapweed. Summer rosette leaves have a long fiberous rachis. Gland 

density on this portion of the leaf was lower than on the leaflets. 

There were glands along the length of the main stem, but the 

density decreased significantly going from the tip to the base. Gland 

numbers at the stem base were very low compared to the leaves. Branches 

were covered with glands at a density equal to or greater than on the 

upper portion of the main stem. Glands were also present on the 
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phyllaries and the corollas. Deep pits like those associated with leaf 

glands were not common on any of the other tissues. Seeds collected at 

the study site in September of 1983 had a smooth seed coat free of 

glandular trichomes. 

Standing dead stems from the previous growing season stil l had 

intact glands attached on all tissues (main stems, branches, leaves, 

phyllaries) just as they were when alive. In some glands the contents 

were no longer clear, having turned opaque or white. Recently dead 

rosette leaves, from the 1985 growing season, also retained their glands 

with contents intact. Most of the tomentum was gone from the dead 

tissue making the glands easier to see than on the live material. 



G. Cnicin in Glandular Trichomes and Gland Bearing Tissues 

Cnicin was detected by qualitative TLC in the extracts from glands 

removed from the stems and all the extracts from gland bearing tissues; 

leaves, branches, main stem, phyllaries, and flowers. This differs from 

the quantitative TLC and HPLC results that found only trace quantities 

in the stem and none in the heads (phyllaries and flowers combined). 

Apparently cnicin is not very concentrated on stems or heads and was 

diluted below detectable levels in the extraction procedure used for 

quantitative TLC and HPLC. In the qualitative TLC procedure the entire 

extracts were applied to the plates allowing the detection of less 

concentrated compounds. 



Di scussion 

Chapter Six 

Cnicin was present in glandular trichomes collected from knapweed 

stems and i t was detected by TLC in all tissues bearing glands on their 

epidermis. There is l itt le doubt that cnicin is a glandular component. 

Most terpenoids, particularly the monoterpenes and sesquiterpenes, are 

associated with specialized anantomical structures in plants: secretory 

cells, cavities, ducts, or trichomes (Loomis and Croteau 1973, Schnepf 

1974, Fahn 1979). Various sesquiterpene lactones have been located 

within glands (Rodriguez et al. 1976, Blakeman and Atkinson 1979, Kelsey 

and Shafizadeh 1980, Kelsey et al. 1984) and cnicin has been reported in 

glandular trichomes on the epidermis of Cnicus benedictus (Politis 1946 

a,b). Many of these glandular products are biologically active and may 

provide the plant with an epidermal chemical defense against herbivores 

and disease (Levin 1973, Kelsey et al. 1984) 

In spotted knapweed, gland density and cnicin concentrations were 

both highest in the leaves. Leaves attached to the branches contained 

the most cnicin (0.70%) followed by leaves on the main stem (0.55%) and 

then rosette leaves (0.33%). These differences can probably be 

explained by leaf structure which differ somewhat between the three 

types. Leaves are pinnatifid. The largest ones occur in the rosette 

and at the stem base, decreasing in size as you progress toward the stem 

and branch tips. In summer rosette leaves, the leaflets are attached at 

the end of a long and fiberous rachis, which have a much lower gland 

density than the leaflets. Leaves on the stem have a shorter, wider 

rachis that is more leaflet l ike and less fiberous. Leaflets may be 
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attached along its length. On branch leaves the rachis is quite reduced 

and is not present when the leaf is entire. Rachis dry matter would 

dilute the cnicin in the leaflets of the larger leaves from the rosette 

and main stem. Also, branch leaves, and leaflets were smaller and 

seemed to have a greater gland density. These two factors contributed 

to the lower cnicin levels in rosette leaves compared to the branch 

leaves. 

The main stems had glands present along their length with a marked 

difference in density between the tip and the base. There were very few 

glands at the stem base, and they were widely spaced. Greatest numbers 

were observed near the tip. Trace levels of cnicin observed by 

quantitative TLC, and undetected by HPLC, were caused by dilution from 

the large quantity of internal biomass per unit area of epidermal 

surface. Plants used for the dissection analysis were collected in 

mid-August when the stems had become tough and fiberous. Whole plants 

(green aerial tissue) are approximately 25 percent neutral detergent 

fiber (cell wall) in mid-June, increasing to near 50 percent by the 

f irst week in August (Mihalovich and Kelsey, unpublished data). Most of 

this change was probably due to cell wall thickening in the main stem 

and branches. Stem dry matter diluted the cnicin concentrations in the 

aerial tissues of plants two years and older (Table 1). It was also 

responsible for the decreasing cnicin concentrations in the samples of 

stems with leaves analyzed in 1983 (Figure 3). 

Branches had glands at a density that was equal to, or greater than 

that on the stem tip. Branch size or internal biomass will influence 

the concentration of cnicin measured. The 0.05 percent in Figure 4 was 



an average of 0.00 percent in one plant and 0.10 percent in the other. 

So cnicin concentrations expressed as percent of dry weight will 

probably vary considerabley from one branch to another. 

Glandular trichomes were observed on the phyllaries between 

vascular strands, but there were no deep pits l ike on the leaves. 

Glands were also present on the corollas. Their cnicin concentrations 

were considerably lower than in the leaves. Roots normally produce no 

external glands, so the absence of cnicin in this tissue was not 

unusual. 

When the tissues of knapweed dehydrate and turn yellow in late 

summer, glandular trichomes persist on the dried epidermis. Dead stems 

which remain standing with their leaves attached sti l l had intact glands 

nearly one year after they had died. In 1984, the cnicin concentration 

of the stem leaves increased as they died and dehydrated going from 1.76 

percent in August to 2.76 percent in October. This was most l ikely 

caused by losses in leaf dry matter relative to the cnicin. November 

leaves had a much lower quanitiy of cnicin (0.96%) compared to October 

and this large decrease in a one month period is difficult to explain. 

Variation between the three November plants was not excessive and they 

were analyzed on different days with the HPLC. Dry matter could not 

have increased to dilute cnicin because the leaves were dead. By late 

January the concentration was back up to 1.70 percent with a slight 

increase to 1.83 percent in March, 1985. Dead leaves on standing dead 

stems, collected in August 1983, had been dead for nearly a year but 

sti l l contained 0.24 percent cnicin. 

The persistence of glandular trichomes and the gradual loss of 
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cnicin from dead standing knapweed is strong evidence that cnicin is not 

readily leached from the tissue. In crystall ine form cnicin has l imited 

water solubility (Cavill ito and Baily 1949). Within the glands, cnicin 

is very l ikely mixed with other organic compounds in a l iquid, 

surrounded by a cuticular sac (Potitis 1946 (a,b), Fahn 1979, Slone and 

Kelsey 1983). Cuticle is hydrophobic and protects the gland contents 

from water extraction. When air-dried, leaves and stems (collected in 

mid-June) were soaked overnight in water and then redried, the cnicin 

concentration in the extracted residue was greater than in the 

unextracted tissue (Mihalovich and Kelsey, unpublished data). 

Apparently, water removed the soluble carbohydrates and other cellular 

components more readily than cnicin. Compounds present in the glands of 

Chrysanthemum parthenium, including the sesquiterpene lactone 

parthenolide, could not be extracted by washing mature leaves in water 

(Blakeman and Atkinson 1979). If cnicin is not readily leached by rain 

fron? the dead standing tissue it is very unlikely that i t is leached 

from the epidermis of l ive tissue during the spring and summer. 

Rosette leaves die and dehydrate during the summer, and the glands 

remain intact on their epidermis. Unlike the stem and branch leaves, 

their cnicin concentration is lower in the dead tissue than in the l ive. 

When rosette leaves dehydrate the leaflets shrivel, becoming britt le and 

easily broken and dislodged from the rachis. The fiberous rachis, 

however, is very sturdy and persistent, but this part of the leaf has 

fewer glands and less cnicin. When leaflets are lost, the remaining 

dead material will not contain as much cnicin. This may be part of the 

reason for decreasing concentrations in dead rosette leaves from 



September 1984 through March 1985. Also, during the winter, rosette 

leaves are covered with snow flattening them into a loosely packed 

l itter layer around the plant, with some of the lower tissues in direct 

contact with the soil. As the snow melts in the spring this l itter is 

constantly saturated with water. Rain will resoak i t after the snow is 

gone. Both of these provide the opportunity for slow leaching to take 

place. This could be more effective at removing cnicin than the 

occassional washings that standing dead stem leaves receive from rain 

and snow. Wet t issues could be subjected to more rapid decay from 

bacteria and fungi, especially the l itter in direct contact with the 

soil. Loss of high cnicin containing leaflets, and the possibil ity of 

extended leaching, reduce the cnicin concentration in the overwintered 

remnants of rosette leaves to near zero (Figure 6). 

Under laboratory conditions cnicin was phytotoxic to all plant 

species bioassayed including lettuce, crested wheatgrass, rough fescue, 

bluebunch wheatgrass, western larch, lodgepole pine and spotted 

knapweed. Although i t did inhibit the germination of all species except 

lodgepole pine and spotted knapweed i t was not a strong germination 

inhibitor. It was most effective at retarding growth particularly in 

the roots. The growth of lettuce, bluebunch wheatgrass and spotted 

knapweed was inhibited significantly at all concentrations of cnicin 

tested (Kelsey and Locken, submitted for publication). In order for 

cnicin to function as an allelopathic compound i t must be able to enter 

the environment in sufficient concentrations to be toxic. Cnicin is a 

crystall ine solid and can not escape from the tissue by volatil ization. 

As indicated in the above discussion, storage of cnicin within glandular 



trichomes on the epidermis may actually protect and prevent leaching 

from rain. Very l i tt le cnicin is probably lost from l ive green tissue 

by leaching. Extended soaking of dead rosette leaves and l i tter by snow 

melt and rain could remove cnicin from these tissues in the spring. 

Dead stem leaves might also lose some of their cnicin very gradually by 

leaching. 

Tissue breakdown and decomposition is another mechanism for 

releasing chemicals from plants (Rice 1974). At the end of the summer 

when tissues die and dehydrate most cnicin appears to remain in 

glandular trichomes on the dead plant material. Therefore, when this 

tissue decomposes the cnicin might be released. Dry matter productivity 

of spotted knapweed is variable, depending on numerous factors, but 

quantities of 400 g/m^, or less, are probably common (Belles et al. 

1980, Chicoine 1984, Kelsey in press). A population that produced 100 

to 400 g/m^ dry matter in July, would contain one to four grams of 
fje ,-tUVi V>W. 

cnicin per m^, i f the concentration were one percent as in 1983 (Figure 

3). This quantity added to the soil each year could build up 

significant concentrations. However, TLC analysis of the knapweed 

infested soils did not show high concentrations of cnicin at any 

particular time of year. Highest quantities appeared at the 0-2 cm soil 

depth during the summer months, but at less than 1.0 ppm. This would be 

too low to inhibit germination, or root growth, as observed in the 

laboratory (Kelsey and Locken submitted for publication). 

The absence of cnicin in the soil may be the result of several 

factors. Dead tissues containing cnicin do not drop to the l itter or 

soil surface all at once. Instead there is a gradual deposition over a 
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one year period, or longer. Dead stems may sti l l be standing upright 

with some leaves attached, a year after they die. Dead rosette leaves 

and new l itter will be covered with snow during the winter. This can 

compress the tissue into a loosely packed layer, especially around the 

plant crown. Patches of l i tter free soil may occur between plants. 

Snow melt and spring rains soak the l itter and may gradually leach some 

of the cnicin to the soil. Wetting and drying between spring rains 

causes the l itter tissues to expand and shrivel. Small pieces may break 

off and drop to the soil surface. During the spring wet period bacteria 

and fungi may decompose some of the l itter. Cnicin is antibacterial 

(Cavallito and Bailey 1949, Vanhaelen-Fastre 1972, Vanhaelen-Fastre and 

Vanhaelen 1976) but its activity varies depending on the species of 

microorganism. Some decomposers might be able to use i t as an energy 

source, or possibly cause i t to breakdown to other products. Breakdown 

or rearrangement in the l itter, or soil, is very probable because cnicin 

belongs to the germacranolide structural class of sesquiterpene lactones 

with a cyclodecadiene ring structure, which tends to be reactive, 

unstable, and easily rearranged (Fischer et al. 1979). Cnicin has an 

ester side chain that can be readily hydrolyzed under mild conditions 

(Fischer et al. 1979) to give salonitenolide, a derivative that has less 

bacteriostatic activity than cnicin (Vanhaelen-Fastre and Vanhaelen 

1976). In the lab, cnicin was observed to be unstable in ethanol or 

other weak acid solutions, particularly i f heated. The antimicrobial 

activity has been associated with the presence of an a-methylene-y 

-lactone that can be deactivated by a Michael-type addition with the 

thiol group in cysteine (Vanhaelen-Fastre 1972). Although this 
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functionality is not always necessary for biological activity (Lee et 

al. 1977, Pieman and Towers 1983, Harmatha and Nawrot 1984), i t is an 

active site in many instances (Szabuniewicz et al. 1974, Calzada et al. 

1980, Pieman et al. 1981, Spring et al. 1982, Elissalde et al. 1983) and 

can be deactivated by reactions with certain amino acids and proteins. 

If Michael-type addition reactions can occur in the l itter, or soil, 

cnicin's phytotoxicity would probably be eliminated. In the l itter and 

soil, exposure to high temperature, UV l ight, H+, OH", and oxygen could 

cause structural changes to take place. Any intact cnicin that does 

become incorporated into the soil could be diluted to concentrations 

below the level of toxicity. Some combination of these factors were 

probably responsible for the absence of cnicin in the soil. 

These data strongly suggest, that within the environmental and 

biological parameters of this study site, cnicin was probably not 

functioning as an allelopathic compoCind. This, however, does not 

eliminate the possibil ity that other compounds in the plant are 

allelopathic. TLC analysis of the soils revealed the presence of 

several knapweed compounds at much higher concentrations than cnicin was 

ever observed. Toxicity of these substances should be tested. The most 

efficient method would be to bioassay the soil for toxicity first and 

then try to isolate the active compounds i f the results are positive. 

Also, the study site was fenced with minimal disturbance from man 

or animals. Retention of cnicin in the trichomes on dead standing 

tissue is probably significant in preventing high concentrations in the 

soil. Under other circumstances where the plants are subjected to 

disturances that accelerate the physical breakdown and incorporation of 
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dead tissue into the l itter and soil, toxic concentratons of cnicin, at 

least at the soil surface, might result. Dead stem leaves, collected 

from upright stems in the spring, inhibited the germination and growth 

of lettuce seedlings (Kelsey unpublished results). If all the standing 

dead tissue, or even the l ive tissue, in a population was knocked down 

at once and compacted on the soil surface, or mixed into the upper layer 

of soil, cnicin could possibly reach sufficient concentrations to be 

toxic. Consequently, i f knapweed is mowed to reduce seed production and 

plant vigor, then i t would be best to remove the cuttings from the site 

to avoid the addition of any cnicin and other possible phytotoxins to 

the soil. If this were repeated yearly i t could drastically curtail any 

allelopathic effects from the aerial tissues. 

This raises an interesting question. If cnicin and other chemicals 

in knapweed leaves and stems had evolved through natural selection for 

their allelopathic activity why isn't there a more rapid or simple 

method for release into the soil? Cnicin occurs in rather high 

concentrations on the leaves, i t is not volatile or very water soluble. 

Furthermore, i t is sequestered within glandular trichomes beneath a 

cuticular layer that protects i t from leaching. Leaves and stems do not 

die and immediately drop to the ground so they can release their 

chemical contents. Stems remain standing and the leaves gradually fall 

off over an extended period. These are all characters that would have 

evolved to retain high cnicin concentrations in the tissues, not 

eleminate them. Maintaining significant chemical components on the 

epidermal surface would be desirable i f they provided protection against 

diseases or herbivores (Levin 1973, Kelsey et al. 1984). Cnicin is 



antimicrobial and could defend against bacterial attack, but this 

application is limited with the cnicin located in the glands. Epidermal 

surfaces between glands would not be protected unless the cnicin could 

be released to spread over the surface. In Chrysanthemum morifolium 

Ramat gland contents are viscous on mature leaves and not readily 

released to the epidermal surface (Blakeman and Atkinson 1979). In 

young tissue the oils are more f luid and may provide antimicrobial 

protection for the early stage of growth and development. 

The failure of North American herbivores, both insects and 

ungulates, to consume spotted knapweed, has been considered one of the 

major factors contributing to its success in Canada and the United 

States. Not having coevolved with knapweed, the North American 

herbivores might not recognize i t as an acceptable food source and/or 

the glandular chemicals could be feeding deterrents that decrease plant 

palatabi1ity. Like many sesquiterpene lactones, cnicin has a very 

bitter taste (Politis 1946 a,b, Wagner 1977). In the genus Vernonia, 

most species contain the bitter tasting sesquiterpene lactone, 

glaucolide-A. The exception is V. f laccidifolia Small that produces no 

sesquiterpene lactones. Wild rabbits and whitetail deer avoid eating 

Vernonia plants that naturally synthesize, or have been artif ically 

coated with glaucolide-A (Burnett et al. 1977, Mabry and Gill 1979). 

Cows avoid ingestion of al1 Vernonia species regardless of their 

sesquiterpene lactone contents, possibly learned by trial and error 

since most of the plants are bitter (Mabry et al. 1977). Cnicin could 

provide similar protection for knapweed. If i t has evolved for this 

purpose, then the maintenance of high concentrations on the epidermal 



surface until after seed dispersal would be advantageous. Since seed 

dispersal continues after the stems dehydrate, leaf retention with its 

bitter components could provide some protection through this period of 

the four basic taste sensations, sweet, salty, sour, and bitter, bitter 

was most effective at stimulating responses in domestic ruminants. 

Cattle responded to lower concentrations of bitter substances than did 

goats or sheep (Goatcher and Church 1970). 

Glaucolide-A has also been extensively tested with insect 

herbivores. It deters the feeding of various lepidopterous larvae, 

particularly the southern armyworm, Spodoptera eridania and the fall 

armyworm, S. frugiperda (Burnett et al. 1974). Their growth and 

survival is reduced significantly when reared on diets containing this 

lactone (Jones et al. 1979). Adult fall armyworms avoid ovipositing 

eggs on any plants containing natural or artif ically applied 

glaucolide-A (Burnett et al. 1978a). Laboratory feeding tests suggested 

that V. qiqantea and V. qlauca were protected from insect herbivory by 

glaucolide-A relative to V. f laccidifolia which synthesizes no lactones. 

However, f ield insect feeding trials indicated just the opposite. 

Vernonia flaccidifolia was fed upon significantly less than the lactone 

synthesizing species (Burnett et al. 1977). I t was concluded that 

glaucolide-A was most effective as a mammalian feeding deterrent 

(Burnett et al. 1978b), than an insect deterrent, or V. f laccidifol ia 

has evolved some other defense mechanism against insects (Burnett et al. 

1977). 

Many other sesquiterpene lactones have been tested with various 

insects and most of them cause some degree of feeding deterrence (Pieman 
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et al. 1978, Nawrot et al. 1983, Smith et al. 1983, Streibl et al. 1983, 

Harmatha and Nawrot 1984), growth inhibition (Pieman et al. 1978, 

Nakajima and Kawazu 1980, Smith et al. 1983) and/or reduced survival in 

the laboratory (Pieman et al. 1978, Nakajima and Kawazu 1980, Smith et 

al. 1983, Pieman and Pieman 1984b). In contrast, Wisdom et al. (1983) 

reported almost no effect from five sesquiterpene lactones on the 

feeding or growth of corn earworms. Further research, particularly in 

the field, must be conducted before the insect repellent and toxic 

properties of sesquiterpene lactones can be fully evaluated. 

It is interesting to note that the insects that have been 

introduced to North America from Eurasia for biocontrol of spotted 

knapweed include no leaf defoliators. They all attack plant tissues 

with low cnicin concentrations. Urophora affinis and U. quadrifasciata 

form galls in the heads, Metzneria paucipunctel1 a feed on florettes and 

seed, and Aqapeta zoeqana and Pelochri sta medul 1 ana are root miners of 

small rosettes (Story and Nowierski 1984). 

Localization of cnicin on the epidermal surface has important 

implication for the plants. Assuming that most terpenoid biosynthesis 

takes place within the glands, a reasonable assumption (Fahn 1979, 

Croteau 1981), plants could synthesize and maintain high concentrations 

of toxic compounds without interferring significantly with normal 

growth. Only the specialized gland cells would be required to 

synthesize toxins and this is problably more energy efficient than 

having all cells produce the compounds. Also i t allows the build up of 

effective concentrations at a site (the epidermis) that assures 

immediate and maximum contact with the sensory receptors of herbivors, 
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and possibly disease organisms. A one percent concentration of cnicin 

on the surface of knapweed tissue might be perceived quite differently 

than one percent distributed evenly throughout the tissue. Biological 

and chemical data more strongly support cnicin's evolutionary 

development as a protectant against herbivores and disease, rather than 

a phytotoxin. Allelopathic properties may be a secondary benefit 

derived as a consequence from the synthesis and accumulation of 

antimicrobial and/or antiherbivory compounds. 



Chapter Seven 

Summary and Conclusions 

Cnicin is a phytotoxic sesquiterpene lactone present in epidermal 

glandular trichomes on the aerial tissues of spotted knapweed. Highest 

quantities were measured in the leaves where glands were most dense. 

Stem tissue did have glandular trichomes but the cnicin concentrations 

were diluted to low levels by the fiberous dry matter. In the 1983 

seasonal sampling of combined aerial tissue, cnicin concentrations were 

low in the spring (0.58%), increased with the development of stems, and 

were at maximum levels (1.03%) through flowering in July. This quantity 

was maintained the rest of the growing season in the rosette leaves, but 

decreased in the stems with leaves to 0.48 percent. The latter change 

was caused by dry matter dilution from the stems. Cnicin concentrations 

in aerial tissues decreased with plant age, which also correlated with 

the amount of stem tissue. In 1984, rosette leaves maintained a 

relatively stable quanitity of cnicin (between 0.52 and 0.73%) from 

March through August, i t peaked in September (1.02%) decreasing to near 

summer levels by November (0.64%). In combined stem and branch leaves 

cnicin levels were close to 2.00 percent during the summer, then 

increased as the leaves dehydrated reaching a maximum of 2.76 percent in 

October. This was followed by a large unexplained drop in November 

(0.96%). By January and March of 1985 the concentrations had risen back 

to the previous summer levels. The combined stem and branch leaves 

exhibited the most interplant variation. 

Glandular trichomes and cnicin remained on the dead tissues. 
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Cnicin was probably not very Teachable since relatively high 

concentrations were sti l l present in the stem leaves six months after 

they had died. During this same six month period cnicin levels 

decreased in the dead rosette leaves because the leaflets with higher 

quantities of cnicin were dislodged from the fiberous and more 

persistent rachis. Leaching from rain and snow may have also eliminated 

some of the compound. 

There appears to be no ready mechanism for releasing this 

sesquiterpene lactone from the plant to the soil. It is not volatile, 

and has l imited water solubility. Furthermore, i t is stored inside a 

hydrophobic cuticular sac that restricts its 1eachabi1ity. When the 

tissues die they dehydrate and remain standing in place. Rosette 

leaflets shrivel and may gradually drop to the soil, snow helps to press 

the dead rosettes and other dead tissue into a loosely stacked l itter 

layer around each plant. This gradually breaks up and decomposes. 

Stems can remain standing for up to a year, or longer, after they die. 

Leaves gradually drop to the l itter and soil during this time. Cnicin 

has a reactive and unstable structure that is susceptible to 

rearrangements and decomposition. As a consequence, at the study site, 

cnicin was detected in only trace quantities in the soil. Under other 

conditions, such as mowing or trampling, large quantities of l ive or 

dead knapweed tissues could be rapidly deposited to the soil surface, or 

into the soil. In this situation cnicin concentrations might reach 

toxic levels. Available evidence suggests that cnicin may function 

primarily as a chemical defense against herbivors and disease rather 

than an allelopathic agent. 



In conclusion, the high cnicin concentrations in the leaves of 

spotted knapweed make an important contribution to the ecology of these 

plants. It is very l ikely part of a chemical defense against disease 

and herbivory. Its function as an allelopathic compound is probably 

variable depending on the biotic and abiotic conditions at a given 

sites. Under the proper set of conditions i t could reach toxic levels 

in the soil. Compared to other knapweed characters that have 

contributed to its success in western Montana, cnicin's allelopathy 

should not be considered any more important than any of the others. In 

fact i t may be less so. This does not diminish cnicin's possible role 

as an herbivore deterrent and the potential contribution i t has made to 

knapweed's competitive ability. Since cnicin is restricted to the 

aerial tissues, its allelopathic effects could by avoided by removing 

the tissue every year. This could be achieved by burning, sheep 

grazing, or mowing. If conducted properly the latter two would provide 

additional benefits such as reduced seed production, reduced seed 

viability, and smaller less competitve knapweed plants. 
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Appendix 

A. Statistical Summary for the 1984-1985 Seasonal Data (Dates not 
underscored with the same l ine are significantly different at a p<0.05. 
Rosette has been abbreviated to rose.) 

(1) Spring rosette and stem leaf tissue 
Oct Sept Mar Aug June July Nov May April 

1984 1984 1985 1984 1984 1984 1984 1984 1984 
stem stem stem stem rose rose stem rose rose 
(2.76%) (2.16%) (1.83%) (1.76%)&stem &stem (0.96%) (0.56%) (0.51%) 

(1.47%) (1.32%) 

(2) Rosette leaf tissue including June and July 
June July Sept Oct Nov May Aug April March 
1984 1984 1984 1984 1984 1984 1984 1984 1985 
rose rose rose rose rose rose rose rose rose 
Sstem &stem(1.02%) (0.84%) (0.64%) (0.56%) (0.52%) (0.51%) (0.35%) 
(1.47%) (1.32%) 

(3) Rosette leaf tissue excluding June and July 
Sept Oct Nov May Aug April March 
1984 1984 1984 1984 1984 1984 1985 
rose rose rose rose rose rose rose 
(1.02%) (0.84%) (0.64%) (0.56%) (0.52%) (0.51%) (0.35%) 



(4) Stem leaf tissue 
Oct Sept June March Aug Nov 
1984 1984 1984 1985 1984 1984 
stem stem stem stem stem stem 
(2.76%) (2.16%) (1.85%) (1.83%) (1.76%) (0.96%) 

(5) Dead rosette leaf tissue 
Sept Oct Nov March 
1984 1984 1984 1985 
dead dead dead dead 
rose rose rose rose 
(0.60%) (0.34%) (0.27%) (0.05%) 

(6) September 1984 
stem rose dead rose 
(2.16%) (1.02%) (0.60%) 

(7) October 1984 
stem rose dead rose 
(2.76%) (0.84%) (0.34%) 

(8) November 1984 
stem rose dead rose 
(0.96%) (0.64%) (0.27%) 

(9) March 1985 
stem rose dead rose 
(1.83%) (0.35%) (0.05%) 
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