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ABSTRACT 

Corsi, Matthew P., Ph. D., Fall 2011   Fish and Wildlife Biology 

 

 

Management and life history consequences of hybridization between westslope cutthroat 

trout (Oncorhynchus clarkii lewisi) and rainbow trout (Oncorhynchus mykiss) 

 

Chairperson: Dr. Lisa Eby 

 

  The role of introductions of nonnative fishes in the decline of native fishes cannot be 

overstated.  Westslope cutthroat trout (Oncorhynchus clarkii lewisi, WCT) are a salmonid 

native to the northern Rocky Mountains.  These trout hybridize with rainbow trout (O. 

mykiss, RBT) where they are sympatric; however, in portions of the WCT range where 

RBT have been introduced, hybridization appears to spread rapidly and threatens 

continued existence of WCT.  The conservation value of these hybridized populations is 

equivocal, and a better knowledge of the ecological, demographic, behavioral, and 

genetic consequences of hybridization is needed to better inform conservation strategies.  

I investigated three related questions: specifically, what landscape factors are associated 

with estimates of introgression; what are life history differences between WCT and 

hybrids; and what are tradeoffs in restoring migratory life history in populations 

threatened by hybridization? 

 

  The riverscape context plays a substantial role in the distribution of hybrids, as estimates 

of introgression declined with increases in stream slope, elevation, and distance from a 

primary source of RBT, three correlated landscape variables.  Spatial variation in patterns 

of hybridization suggests clarifying objectives for sampling and careful designs are 

necessary to adequately understand the status of populations.  Variation in location may 

relate to some of the ecological differences, such as growth, among fish with different 

levels of introgression.  In the Jocko River, hybrids with ancestry > 20% RBT 

demonstrated higher growth, earlier migration, increased egg size, and lower fecundity 

versus WCT.  These lines of evidence demonstrate the importance of limiting further 

hybridization even in populations that already have low levels of hybridization.  Given 

that many unaltered populations currently reside in isolated habitat fragments, I evaluated 

several demographic tradeoffs of restoring a migratory life history weighed against the 

risks of increased potential for hybridization from removing barriers or selectively 

passing migratory fish above the barriers using both matrix and genetic population 

models.  Restoration of migratory life history substantially increases population viability; 

however, hybridization in above-barrier population increases predictably relative to 

hybridization status of below-barrier population, which may reduce viability if vital rates 

are reduced in hybrids.  Hybridization creates a challenging set of management problems, 

but this research adds several important pieces to the puzzles to help develop and 

evaluate conservation strategies. 
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CHAPTER 1 

INTRODUCTION AND OVERVIEW 

 

Anthropogenic activities have influenced nearly every ecosystem worldwide 

(Vitousek et al. 1997).  Freshwaters and the species they support are among the most 

imperiled of Earth’s ecosystems because of their vulnerability to pollutants, demands for 

water, hydroelectric development, habitat alteration, and a suite of other factors 

(Ricciardi and Rasmussen 1999; Revenga et al. 2005).  One important way humans have 

forever altered freshwater ecosystems is through the intentional and accidental 

introductions of nonnative fishes.  Nonnative fish introductions have been implicated in 

the declines of native fishes, alteration of fish assemblages, and modification to aquatic 

food webs through several avenues, including competition, predation, and hybridization 

(Rahel 2000; Kolar and Lodge 2002; Perry et al. 2002; Eby et al. 2006).  Hybridization 

between native and nonnative fishes represents a major challenge to conservation efforts 

because the results of hybridization are often irreversible (Rhymer and Simberloff 1996).  

When hybridization results in fertile offspring that mate with parental types 

(introgression
1
), it represents not only an invasion of habitat by the nonnative species, but 

also an invasion of locally adapted genomes by nonnative genes (Allendorf et al. 2001).   

Westslope cutthroat trout (WCT, Oncorhynchus clarkii lewisi) are native to the 

interior of northwestern North America and are considered a species of concern by states 

and other entities throughout their range (UDWR 2000; Behnke 2002).  They were 

                                                 

 
1
 Refer to the Glossary for definitions of terms related to hybridization that are used throughout this 

dissertation. 
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petitioned for listing under the Endangered Species Act (ESA) in 1997.  The cutthroat 

trout subspecies was precluded from listing on the basis that populations that were 

morphologically similar to the accepted taxonomic description for WCT existed in a large 

portion of their historic range (USFWS 2003).  Hybridization with introduced rainbow 

trout (RBT, O. mykiss) is considered the primary threat to the conservation of WCT 

(Rubidge et al. 2001; Allendorf et al. 2004; Muhlfeld et al. 2009a and others).  RBT are 

native to the western portion of North America; however, their range does naturally 

overlap with WCT in several large drainage basins.  Hybridization between WCT and 

nonnative RBT is an interesting example of introgressive hybridization between fishes 

because both taxa have high socioeconomic value, resulting in a burgeoning body of 

scientific work that endeavors to better understand the processes and consequences of 

hybridization.  Limited evidence suggests that where they are naturally sympatric, WCT 

and RBT have evolved isolating mechanisms that maintain species identity (e.g. Leary et 

al. 1995; Kozfkay et al. 2007), but where they evolved in allopatry, RBT introductions 

have lead to introgressive hybridization and hybrid swarms (Leary et al. 1984; Allendorf 

and Leary 1988; Leary et al. 1995).  Current estimates suggest that non-hybridized 

populations of WCT occupy only 21% of their native range (Shepard et al. 2005).  In 

addition, evidence is accumulating that hybridization is spreading rapidly through many 

drainages in the West (Rubidge et al. 2001; Hitt et al. 2003; Boyer et al. 2008).  

There has been substantial debate regarding the conservation and evolutionary 

value of populations of WCT that have hybridized with populations of RBT (Allendorf et 

al. 2001; Allendorf et al. 2004; Allendorf et al. 2005; Campton and Kaeding 2005; 

Shepard et al. 2005).  Natural hybridization is an essential component of the evolutionary 
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process (Taylor 2004), but anthropogenic introgressive hybridization can result in the 

genomic extinction (Rhymer and Simberloff 1996) of the native taxon in as few as five 

generations (Epifanio & Philipp 2000).  Allendorf et al. (2001) suggest the conservation 

value of hybridized populations increase as the number of remaining pure populations 

decrease.  Peacock and Kirchoff (2004) made a similar conclusion when they 

recommended conservation of populations of Lahontan cutthroat trout (O. c. henshawi) 

with limited introgression because there were few remaining pure populations in an 

isolated basin.  The states of Colorado, Idaho, Montana, Nevada, New Mexico, Utah and 

Wyoming classify cutthroat trout populations with no detectable RBT introgression as 

core conservation populations and populations with < 10% RBT introgression as 

conservation populations (UDWR 2000). 

Much of the debate over the conservation value of hybridized WCT populations 

has been the result of various interpretations of the statement in Allendorf et al. (2001), 

“An argument can be made that any admixture should preclude a population from being 

protected [when introgression is facilitated by anthropogenic activities].”  Campton and 

Kaeding (2005) defend the policy of the U.S. Fish and Wildlife Service (USFWS) that 

hybrid individuals are to be considered as WCT if they are (1) morphologically 

indistinguishable and (2) < 20% of their genes are derived from another taxon (USFWS 

2003).  Their rationale is that individuals with morphological characteristics of WCT are 

likely to be ecologically and behaviorally similar to WCT.  Likewise, USFWS assumes 

some degree of genetic similarity confers a high degree of ecological and behavioral 

similarity.  Allendorf et al. (2004) assert these USFWS criteria will protect populations 

that do not belong to the evolutionary lineage of WCT.  They argue that hybridized 
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populations meeting USFWS criteria will subsequently become source populations for 

further hybridization that will disrupt local adaptation and lead to outbreeding depression. 

Clarification of this debate depends on knowledge of the ecological, demographic, 

behavioral, and genetic consequences of hybridization (Figure 1.1).  Continued 

introgression and spreading hybrid swarms may lead to the loss of native genotypes 

(genomic extinction).  It is unknown if hybridization leads to the formation of 

evolutionarily novel (Ellstrand and Schierenbeck 2000) hybrid trout that do not function 

in a manner ecologically equivalent to the native WCT (ecological extinction), but 

swimming stamina and competitive differences in Yellowstone cutthroat trout (O. c. 

bouvieri) X RBT hybrids (Seiler and Keeley 2007, 2009) and potential dispersal 

differences in WCT X RBT hybrids versus WCT (Hitt et al. 2003; Boyer et al. 2008) 

have been documented.  In addition, hybrid swarms may not be viable (demographic 

extinction) during periods of environmental stress (Allendorf et al. 2004), but no 

empirical evidence directly relating WCT population decline to hybridization exists. 

The following three chapters describe research I conducted to further our 

understanding of the patterns and consequences of hybridization between WCT and RBT 

from a fishery management and conservation perspective
2
.  Management options for 

reducing or eliminating introgression from nonnative species generally involve fairly 

drastic actions, such as use of barriers, eradications of nonnative fish and hybrids, and 

reintroduction of fish from nearby populations or conservation hatchery stock (Leary et 

al. 1995).  We are beginning to develop an understanding of how hybrids are distributed 

                                                 

 
2
 Each chapter is written as a stand-alone paper to facilitate future publication.  I use a first person plural 

writing style throughout the dissertation to reflect the fact that the research described in each chapter had 

multiple contributors who will serve as coauthors when these chapters are submitted for publication 
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across landscapes (e.g. Rubidge et al. 2001; Boyer et al. 2008) and how the structure of 

hybrid zones may vary with biotic and abiotic features of those landscapes (e.g. Rubidge 

and Taylor 2005; Muhlfeld et al. 2009c).  There has, however, been little discourse about 

the consistency of those patterns across landscapes and the implications of that variation 

for how we sample for conservation planning and monitoring.  At the same time, we are 

developing conservation strategies for WCT based on assumptions of morphological, life 

history, and behavioral differences between WCT and hybrid trout, but with little 

empirical evidence of whether or not those differences occur (but see Boyer et al. 2008; 

Muhlfeld et al. 2009a; Muhlfeld et al. 2009b).  Additionally, many conservation 

strategies being considered for conservation populations of WCT, especially barrier 

placement, may result in the reduction or loss of population connectivity and migratory 

life history types (Fausch et al. 2006).  The scientific literature is currently lacking an 

empirical examination of the tradeoffs of loss of fluvial migratory life history types 

versus increased introgression.  Such an examination may become important, not just to 

inform WCT conservation, but also to inform management of other hybridizing 

freshwater taxa (see Perry et al. 2002). 

This dissertation has three primary objectives.  The first objective (Chapter 2) was 

to describe the distribution of hybridization between WCT and RBT in the Jocko River, 

MT, and determine which landscape factors correlated with patterns of introgression 

observed.  In addition, we described how spatial variation in estimated rates of 

introgression has implications for sampling.  The second objective (Chapter 3) was to test 

for equivalency in migratory behavior (life history) and demographic metrics related to 

fitness (such as growth and fecundity) between WCT and hybrid trout.  The final 
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objective (Chapter 4) of this study was to use models to examine the tradeoffs associated 

with selective or complete passage of migratory WCT when hybridized trout populations 

are present below the barrier. We used a demographic model to test the importance of 

migratory life history to population viability and a population genetic model to test the 

hybridization consequences of passing hybrid trout above a barrier. 

Chapter 2 results suggested there are strong associations between estimated rates 

of RBT introgression (pRBT) and stream slope, the number of barriers, elevation, and 

distance from the primary RBT source (three strongly correlated variables on the 

landscape) in the Jocko River system.  These results are consistent with other landscape 

studies of hybridization between cutthroat trout subspecies and RBT (e.g. Rubidge and 

Taylor 2004; Boyer et al. 2008; Rasmussen et al. 2010), suggesting RBT and WCT 

actually form broad hybrid zones that may be structured by environmental resistance.  

Even though RBT have been established in the Jocko River for at least 70 years, parental-

type RBT and WCT still occurred in high densities at low and high elevations, 

respectively.  While distributions of RBT alleles across individuals within samples 

suggested hybrid swarms were common, we only detected one hybrid swarm with pRBT 

> 0.05.  This is further evidence indicating that at the landscape scale, while there is 

introgression, the two parental types are maintaining some reproductive isolation (Jiggins 

and Mallet 2000).  While there was an overarching landscape pattern, at small spatial 

scales (1-20km) within a single tributary there was site to site variation in pRBT and the 

number of highly hybridized individuals detected.  That variation may have important 

ramifications for sampling.  We wanted to simulate different sampling approaches in 

tributaries to examine the potential for missing important information due to that 
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variation.  Resampling a spatially extensive dataset from the South Fork Jocko River 

suggested current sampling norms of collecting 25-30 fish at a single sample site are 

sufficient for estimation of pRBT for a stream, but these samples were inadequate for 

detecting individuals with high RBT ancestry.  These individuals, while potentially rare 

in WCT conservation populations, represent vectors of continued introgression between 

RBT and WCT and could be vectors for broader dispersal of RBT genes (Boyer et al. 

2008).  Fewer samples statistically conformed to a hybrid swarm when the number of 

individuals sampled was increased; this is a result of the likelihood that capturing rare 

individuals with relatively high RBT admixture increases with sample size.  Increasing 

the length of the sampling frame by resampling from more sites also improved detection 

of rare high admixture individuals, because they were patchy (concentrated at middle 

elevation sites) in the South Fork Jocko River and a longer sampling frame increased the 

likelihood of sampling a site with these individuals.  Understanding that introgression is 

consistently associated with landscape variables, such as elevation, will help managers 

prioritize steams and reaches for conservation actions.  Developing sampling schemes 

that are not only effective at quantifying pRBT, but also detecting rare, highly hybridized 

individuals will help managers better classify priority areas as core or conservation 

populations prior to deciding upon the appropriate management action.  

In addition to understanding what might be influencing introgression on the 

landscape, understanding how individuals with varying ancestry may differ is critical for 

testing assumptions underlying policy as well as predicting the production and 

persistence of introgressed populations (even those managed for sport fishing).  We 

compared life history metrics among classes of migratory individuals estimated to have 
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WCT parental genotypes, individuals estimated to have less than 20% of their ancestry 

from RBT, and individuals estimated to have greater than 20% of their ancestry from 

RBT.  Individual levels of RBT ancestry were classified by using a hybrid index score 

(HI), which is the number of RBT alleles amplified from an individual divided by the 

total number of alleles amplified across all loci for that individual. Hybrid index scores of 

zero indicate a WCT genotype, and scores of 1 indicate an RBT genotype.  Individuals 

collected for Chapter 3 were sampled in upstream migration traps at irrigation diversion 

dams during spring spawning timeframes and generally exhibited a fluvial migratory life 

history type. 

We compared hybrid classes using length at age, fecundity and egg size 

relationships, and migration timing.  Individuals with more than 20% RBT ancestry had 

significantly higher growth, lower fecundity, and larger egg size.  Additionally, they 

migrated earlier, at lower stream discharges, and at lower stream temperatures than 

individuals with less than 20% RBT ancestry.  Interestingly, the first major jump in the 

hydrograph associated with the spring freshet signaled the end of nearly all migration of 

individuals with more than 20% RBT ancestry.  Individuals with low levels of RBT 

alleles likely come from populations that are spawning at higher elevations relative to 

those individuals that are more highly hybridized (Chapter 2).  These environmental 

differences in rearing habitat may explain life history differences related to growth.  

However, it is reasonable to expect these differences are also a function of local 

adaptation, and further introgression from the high hybrid category into the zero and low 

hybrid categories may result in outbreeding depression.  Furthermore, following 
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outmigration of fluvial cutthroat trout phenotype juveniles, it is likely there is greater 

overlap in rearing habitat use by high, low, and zero hybrid category fish. 

Many WCT core and conservation populations are upstream of complete and 

incomplete barriers in relatively little habitat (median stream length occupied = 8.6km; 

Shepard et al. 2005), and many managers are debating removing or reinforcing these 

barriers to protect fish from introgression.  At the same time, researchers are 

demonstrating the importance of maintaining a diverse ecological and life history 

portfolio for the sustainability of stocks and persistence of native fishes (Schindler et al. 

2010; Piccolo 2011).  Having a formal framework to begin to assess these tradeoffs is 

timely and critical as decisions are constantly being made.  In Chapter 4, using two model 

frameworks, we assessed the tradeoffs associated with restoring migratory life histories 

above two complete barriers to movement.  On one hand, allowing escapement of 

migratory individuals (either by selective passage or complete removal of the barrier) has 

potential to increase population productivity and viability.  On the other hand, mistakenly 

passing migratory hybrid individuals above the barriers may increase introgression and 

have subsequent consequences on the viability of upstream populations.   

We used a stochastic, multiple life history matrix population model to test 

scenarios with various levels of escapement by migratory fish into an otherwise resident 

population.  Restoration of migratory fish into the resident population dramatically 

improved population viability and potential productivity.  However, when juvenile 

survival was reduced according to recent estimations by Muhlfeld et al. (2009a) or 

fecundity was decreased according to Chapter 3 for populations comprised of highly 

hybridized individuals, we observed substantial declines in viability and population 
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productivity.  That said, there have been no reports of rapid population crashes in 

hybridized populations with RBT introgression.  Reduced fecundity (egg number) 

displayed by trout with greater than 20% RBT ancestry may be a life history tradeoff for 

larger egg size (which was demonstrated in Chapter 3), rather than evidence for 

reductions in fitness.  Further, in Chapter 3 we observed a lower (but not statistically 

significant) age at migration in the high hybrid category relative to the low and zero 

categories.  If this is equivalent to an earlier age at maturity for high category hybrids, the 

resultant increased survival to maturity may outweigh the effects of reduced fecundity.  

The results of an elasticity analysis demonstrated that changes in survival of subadults to 

adulthood can have an equal or greater influence on population growth compared to 

reductions in fecundity.  Achieving a better understanding of how tradeoffs in life history 

may mitigate apparent reductions in vital rates such as fecundity is an important avenue 

for future research to better understand the true demographic consequences of 

hybridization between WCT and RBT. 

Results of the genetic model indicate that with barrier removal and random 

mating, estimates of pRBT in the above barrier population approach, but do not achieve, 

the pRBT of the below barrier population after 4-10 generations.  The results of this 

chapter indicate above barrier populations are substantially more demographically viable 

with migrants, but selective passage and barrier removal are not viable strategies for 

maintaining unhybridized core conservation populations, unless the downstream 

population is also a core population, or WCT can be identified and selectively passed 

without error, which is unlikely.  On the other hand, if the management situation deems 

population connectivity and life history diversity to be of greater importance than genetic 



11 
 

purity, there is potential to maintain conservation population status (pRBT < 0.10) using 

selective passage with reasonable error.  Because this model assumed random mating and 

no reproductive isolation between WCT and hybrids, it represents a worst-case 

introgression scenario.  Further examination of selection against hybrid fish and mating 

systems in hybridized populations, as well as better understanding of overlap in spawning 

habitat for WCT and hybrids are needed before we can more accurately predict increases 

in introgression caused by restoration of migratory life histories and connectivity. 

The results of this dissertation provide further evidence that WCT are at risk from 

genomic extinction (Figure 1.1), as we did observe hybrid swarms, though WCT 

genotypes are dominant in the Jocko River system and only 12 of 61 population samples 

had pRBT > 0.10 (see Chapter 2).  Thus, in this case, the term “genomic extinction” 

describes a situation where the local genome is forever altered, but much of the native 

genetic variation may be conserved.  The results of Chapter 3 indicate there may be some 

important life history differences between WCT and hybrids with RBT ancestry greater 

than 20%.  We observed differences in mean and median migration conditions among 

hybrid categories, but the overlap we observed certainly sets the stage for further 

introgression.  Our sample sizes were limited, so it is still uncertain whether or not there 

are ecological differences between WCT and individuals with 10-20% RBT ancestry.  

We found no evidence that individuals with RBT ancestry less than 10% had different 

life history from individuals with a WCT genotype.  There may be some potential for 

ecological differences of hybridized WCT populations but likely only at relatively high 

(pRBT > 0.20) rates of admixture.  Other studies have documented ecological differences 

in cutthroat trout and hybrids at varying degrees of RBT admixture including significant 
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results for hybrids with as little as 10% RBT ancestry at different measures of behavior, 

performance, and vital rates (e.g. Muhlfeld et al. 2009a; Muhlfeld et al. 2009b; Seiler and 

Keeley 2007, 2009).  More studies in a variety of habitats are needed before we fully 

understand life history and ecological and fitness differences between WCT and hybrids.   

In populations where putative fitness consequences of hybridization, such as those 

described by Muhlfeld et al. (2009a), are modeled as decreases in population vital rates, 

there is the potential for demographic extinction due to hybridization (see Chapter 4).  It 

is important to note, however, there have been no descriptions of such occurrences in 

nature.  Studies measuring vital rates in populations in varying habitats and times since 

invasion by RBT would be highly beneficial to our understanding of true consequences 

of hybridization over short and long time scales.  The elasticities of the matrix model in 

Chapter 4 suggest young of year survival and the transition of subadult residents to adult 

residents (probability of maturity) are the vital rates that have the most influence on 

population growth, and should therefore receive the first in-depth investigations by 

researchers. 

  



13 
 

 

Figure 1.1. Hypothetical consequences of introgressive hybridization leading to the 

formation of a hybrid swarm.  For the purposes of this study, ecological equivalence is 

defined as equivalence in behavior and life history, but it could also represent community 

or food web interactions.  λhybrids represents the population growth rate.  λhybrids = 1 

implies a stable population. 
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CHAPTER 2 

DISTRIBUTION OF HYBRIDIZATION IN A MONTANA RIVER WITH 

IMPLICATIONS FOR CONSERVATION AND SAMPLING DESIGN TRADEOFFS 

 

Abstract 

 

Westslope cutthroat trout (Oncorhynchus clarkii lewisi, WCT) populations are 

classified for conservation according to extent of introgression with rainbow trout (O. 

mykiss, RBT).  Understanding the patterns of introgression across the landscape and how 

that pattern may influence sampling considerations is becoming increasingly important 

for cutthroat conservation and management.  We collected 61 samples (median sample 

size = 29 individuals), which includes every fish-bearing stream in the Jocko River 

watershed, MT.  We detected RBT alleles in all but 10 population samples; however, 

only 12 samples had a proportion of rainbow trout alleles (pRBT) greater than 0.10, and 

WCT genotypes were dominant in the system.  We evaluated the relative ability of a 

series of linear regression models with independent variables including distance from 

source population, elevation, slope, number of barriers to fish movement, and road 

densities to describe patterns in introgression.  Because trout with the highest levels of 

introgression were found in the lowest Jocko River sites, distance from source, elevation, 

and slope were all strongly correlated, but the model with slope and barriers had the best 

fit.  We subsampled 334 individuals from 11 sites in the South Fork Jocko River in 

different combinations to examine how sampling tradeoffs in number of sites versus 

individuals per site influenced common hybridization metrics given our landscape 
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patterns in introgression.  There was no difference in detection of hybrids (presence) 

across the simulated designs with different tradeoffs.  Detection of individuals with 

hybrid index scores greater than 0.20 improved with number of individuals and number 

of sites (lengthening the sampling frame).  Subsampling commonly resulted in a slight 

overestimation of pRBT (typically < 0.02).  Samples statistically conformed to a hybrid 

swarm in 28-46% of simulated samples with 30 fish and in 1-22% of simulated samples 

with 60 or 90 fish.  Thus, the appropriate field sampling design depends on the 

hybridization metric of greatest interest to practitioners. 
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Introduction 

 

Hybridization with introduced salmonids is considered a primary threat to the 

conservation of native salmonids throughout the world (Rhymer and Simberloff 1996; 

Allendorf et al. 2004).  This has particularly been the case when considering 

hybridization between cutthroat trout (Oncorhynchus clarkii spp.) and introduced 

rainbow trout (O. mykiss, RBT).  There are multiple management approaches to reducing 

or eliminating hybridization between salmonids.  These include placement (or 

maintenance) of barriers to invasion, eradication of hybrid and non-native individuals 

followed by reintroduction of unhybridized fish, and adjustments to angling regulations 

to promote harvest of hybrid and non-native individuals (Novinger and Rahel 2003; 

Allendorf et al. 2005; Meyer et al. 2006; Fausch et al. 2009). 

Due to conflicting management and conservation values, these approaches can be 

politically, ecologically, and financially risky and as a result, determining the status and 

distribution of hybridized fish populations has become increasingly important for 

conservation and management (see Clarkson et al. 2005; Pister 2010).  For example, 

efforts to restore greenback cutthroat trout O. c. stomias populations in Colorado have 

been stymied by inadequate description of hybrid zones between greenback cutthroat 

trout and Colorado cutthroat trout O. c. pleuriticus.  Poor understanding of hybrid 

distributions has resulted in misidentification of putatively pure greenback cutthroat 

populations and accidental use of hybridized populations as conservation broodstock 

(Metcalf et al. 2007).  Installation of artificial barriers to protect native salmonids is an 

expensive endeavor with potential negative long-term consequences of isolation for the 
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local populations (Kruse et al. 2001; Fausch et al. 2009).  Thus, ensuring the best possible 

understanding of the distribution of hybrids prior to barrier installation is important. 

 Current management plans in Colorado, Idaho, Montana, Nevada, New Mexico, 

Utah, and Wyoming categorize populations of westslope cutthroat trout (O. c. lewisi, 

WCT), Yellowstone cutthroat trout (O. c. bouvieri)  and other cutthroat trout subspecies 

into core, conservation, and sports fishing populations depending primarily upon the 

extent of introgression within and among local populations (UDWR 2000; MTFWP 

2007).  For management purposes, extent of introgression is typically quantified as a 

proportion estimated by the total number of nonnative alleles in a population sample 

divided by the total alleles amplified across all individuals in the sample (pRBT, UDWR 

2000).  A population with pRBT ≤ 0.10 is defined as a conservation population, and any 

population with no detectable RBT introgression is a core conservation population 

(UDWR 2000).  Thus, managers use the presence (P/A) of hybrids as well as extent of 

introgression to determine the conservation status of populations when making 

management recommendations.  Additionally, the presence of first generation hybrids or 

relatively recent backcrosses to WCT is also useful information because it may indicate 

recent introgression events in populations where levels of introgression are very low or 

not previously detected (Boyer et al. 2008; Neville et al. 2009).  Linking landscape 

factors that may drive the distribution of hybrids and influence these metrics across the 

landscape can help us understand potential natural limits to hybridization and design 

effective sampling programs. 

Several studies have examined the influences of landscape factors on the 

distribution of hybrids and extent of introgression within a population.  Distance from 
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established RBT source populations or stocking locations has been the most consistently 

described factor explaining extent of introgression (Rubidge et al. 2001; Hitt et al. 2003; 

Rubidge and Taylor 2005; Boyer et al. 2008; Muhlfeld et al. 2009c).  Elevation, which is 

correlated with stream temperature and other habitat gradients, has also been described as 

a potentially important factor driving rates of RBT introgression in cutthroat trout 

populations (Weigel et al. 2003; Boyer et al. 2008; Rasmussen et al. 2010).  Muhlfeld 

(2009c) found that anthropogenic disturbance, as measured by the number of stream road 

crossings, was positively associated with presence of hybridization in a stream system.  

Additionally, life history factors, such as migration timing, spawning timing, and 

spawning habitat preferences are influenced by temperature, hydrology, and other 

gradients related to the landscape, and could influence the degree of reproductive 

isolation between RBT and cutthroat trout (Henderson et al. 2000; Muhlfeld et al. 2009b; 

Rasmussen et al. 2010).  Testing the relationships between hybridization and landscape 

factors across multiple basins is needed to determine the generality of patterns. 

In some systems where WCT and RBT are naturally sympatric, or where RBT 

have been stocked, substantial reproductive isolation has been maintained between 

species (Ostberg et al. 2004; Young et al. 2004; Gunnell et al. 2007; Kozfkay et al. 2007; 

Ostberg and Rodriguez 2006; DeRito et al. 2010).  In other systems, there appears to be a 

complete breakdown of reproductive isolation with the formation of hybrid swarms 

(Leary et al. 1995; Bettles et al. 2005).  Researchers speculate that the formation of 

hybrid swarms could disrupt local adaptations and coadapted gene complexes when 

nonnative alleles are randomly distributed throughout the genome (Rhymer and 

Simberloff 1996; Allendorf et al. 2001).  To improve our understanding of the 



19 
 

consequences of hybridization, we need to understand where populations are maintaining 

some reproductively isolated sources, forming hybrid swarms, or some combination of 

the two.  Frequency distributions of a hybrid index, where minimum and maximum 

values represent unhybridized parental types have been used to examine this issue 

(Jiggins and Mallet 2000; Rubidge and Taylor 2004).  Generally, bimodal distributions 

are indicative of two species with partial reproductive isolation.  Unimodal distributions 

are typically dominated by hybrid genotypes (or distributions that conform to a binomial 

distribution) and are representative of a complete breakdown of reproductive isolation 

(Jiggins and Mallet 2000; Allendorf et al. 2001; Boyer et al. 2008). 

Given the multitude of landscape factors that could influence the distribution of 

hybrids, the extent of introgression, and potential formation of hybrid swarms, 

researchers and managers need to be cognizant of the spatial patterns of hybridization and 

potential implications of the sampling design.  Genetic analyses are expensive, and 

management actions that affect the native population could be irreversible, so evaluation 

of the influence of a sampling scheme on the description of hybrid populations is vital.  

In typical sampling efforts, samples are often collected from sites most readily accessible 

because of financial and logistical constraints.  There are always tradeoffs in the number 

of individuals sampled per site and the number of sites (spatial extent) sampled.  It is 

common for biologists to use a sample, composed of approximately 30 individuals, from 

a single stream reach, to classify a stream according to its hybridization status.  As 

biologists design both field sampling plans and management strategies, it is important to 

determine how tradeoffs in sampling could affect hybridization metrics. 
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Confederated Salish and Kootenai Tribe (CSKT) biologists in the Jocko River 

basin in northwestern Montana have been monitoring WCT populations since the early 

1980s.  The montane reaches of the upper Jocko River had long been thought to be a 

stronghold of native WCT, despite the fact that major RBT populations existed in the 

basin.  We completed a genetic survey to describe the distribution of hybrids in the Jocko 

River from 2005-2009.  This study had two primary objectives.  First, we determined if 

distribution of hybrids in the Jocko River basin was associated with the same landscape 

factors (distance from source, elevation, average stream slope, barriers, and road density) 

that had been observed in other studies to establish whether those patterns are generally 

consistent among landscapes.  Second, we examined how sample design tradeoffs in the 

number of individuals per site versus the number of sample sites influenced hybridization 

metrics in a major tributary. 

 

Study Site 

 

This study was conducted in the Jocko River system, a 979 km
2
 basin that is a 

tributary of the Flathead River in northwestern Montana.  The entirety of the basin lies 

within the boundaries of the Flathead Indian Reservation.  Natural resources, including 

fisheries, are managed by the Confederated Salish and Kootenai Tribes (CSKT).  The 

North, Middle, and South Forks of the Jocko River comprise the upper reaches of the 

Jocko River (Figure 2.1).  The Finley Creek and Valley Creek drainages comprise the 

remainder of the large tributary systems to the main-stem Jocko River.  In general, the 
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streams in the Jocko River system are high gradient, confined channels at high elevations 

transitioning to lower gradient reaches at low elevations. 

There are several natural and artificial barriers to fish movement distributed 

throughout the Jocko River system (Figure 2.1).  The basin has a large irrigation project 

that was developed in the early 20
th

 century.  This irrigation system has likely played a 

substantial role in structuring WCT populations since its implementation.  Diversions and 

the associated canal network on the upper Jocko River created partial and full barriers to 

fish movement in most cases and may have artificially connected some streams in others.  

For example, there is an irrigation diversion that moves water and entrains fish from the 

Middle Fork Jocko River into the North Fork Jocko River (CSKT unpublished data).  

Two major diversions (K-Canal and S-Canal, Figure 2.1) in the upper main-stem Jocko 

River were fitted with ladders for selective passage of bull trout (Salvelinus confluentus).  

However, since construction of the ladders in 1996 (K-Canal) and 2002 (S-Canal), CSKT 

fisheries managers have not passed Oncorhynchus spp. at these diversions in order to 

reduce the potential for introgression of upstream westslope cutthroat trout.  Some fish, 

however, may occasionally pass the K-Canal diversion when irrigation managers remove 

check boards when the river is at bank-full flows or higher. 

The salmonid assemblage of the Jocko River basin is comprised of a mix of native 

and introduced fishes.  Non-native species including brown trout (Salmo trutta) and trout 

with RBT phenotypes are abundant in the main-stem Jocko River below K-Canal 

diversion.  Putative RBT and brook trout (Salvelinus fontinalus) are present in several 

tributaries throughout the system.  Native trout with WCT phenotypes and mountain 

whitefish (Prosopium williamsoni) are also abundant in the main-stem Jocko River, and 
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WCT phenotypes are present at various abundances in nearly all fish-bearing tributaries.  

The three forks of the upper Jocko River support the largest populations of native WCT 

and bull trout in the drainage.   

 

Methods 

 

Fish Sampling and Tissue Collection 

To examine hybridization and associated landscape factors, we sampled at least 

one site from every salmonid bearing stream in the basin over a period from 2005 to 

2009, including multiple samples distributed longitudinally in Valley Creek, Finley 

Creek, and the three forks of the upper Jocko River (Table 2.1).  Samples in the upper 

Jocko River were collected as part of a systematic survey and used to examine fine-scale 

distribution of hybrid trout above the K-Canal diversion.  In the upper Jocko River, 

CSKT personnel established sampling sites at 1 km intervals beginning at the mouth of 

each of the North, Middle, and South Forks.  In 2009, we included a sample from a 

fluvial RBT population that spawns in the lower main-stem Jocko River.   

At all sampling sites, we set up a block net on the downstream end of the site and 

then determined the upper boundary of the sample section by using a hip-chain to 

measure a 152 m reach.  We then sampled by making a downstream pass with one 

backpack electrofisher in small streams or with two backpack electrofishers operated in 

tandem on larger streams (e.g. Jocko River and its major forks); after finishing the 

electrofishing pass, we carefully examined the block net and captured any fish present.  

We sampled most locations at or near base flows.  We measured total length (TL) of each 
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fish to the nearest mm, and a small section of paired or caudal fin was collected and 

stored in 95% ethanol.  At all sampling sites, we attempted to collect at least 30 

individuals.  Due to low fish abundances in the lower North Fork Jocko River, we 

extended the sampling site by 200 m and/or aggregated adjacent samples in an effort to 

collect tissues from 30 individuals.   

 

DNA Extraction and Hybrid Analyses 

We extracted and amplified DNA in 10 ul reactions following the standard 

QIAGEN Microsatellite protocol.  We used two different PCR profiles.  Multiplex 1 

consisted of Ogo8 (Olsen et al. 1998), Omm1019, Omm1050, Omm1060 (Rexroad III et 

al. 2002),  and Omy 0004 (Holm and Brusgaard 1999).  Multiplex 2 consisted of 

Omy1001 (Spies et al. 2005), and Sfo8 (Small et al. 1998).  All markers are diagnostic 

for WCT and RBT for most watersheds tested in Montana (Sally Painter, Montana 

Conservation Genetics Laboratory, personal communication).  We used a touchdown 

profile for Multiplex 1 with an initial annealing temperature of 58°C stepping down to 

48°C, and we used a typical profile for  multiplex 2 with an annealing temperature of 

59°C.  We used an ABI3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, 

CA) to visualize PCR products.  We used the ABI GS600LIZ ladder (Applied 

Biosystems Inc., Foster City, CA) to determine allele sizes, and we viewed and analyzed 

chromatogram output using GeneMapper version 3.7 (Applied Biosystems Inc., Foster 

City, CA). 

 For each sample, we measured introgression by calculating pRBT (the number of 

RBT alleles detected divided by the total number of alleles amplified in a sample).  We 
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estimated individual levels of hybridization by calculating a hybrid index score (HI), 

which we reported as the total number of RBT alleles observed in an individual divided 

by the total number of alleles amplified for each individual across all diagnostic loci.  We 

summarized the hybridization status of each sample by reporting the pRBT, the number 

of individuals in the sample with at least one RBT allele, and the maximum individual HI 

in the sample.  Similar to Boyer et al. (2008), we tested each population sample to 

determine if it was a hybrid swarm by comparing the observed distributions of individual 

HI to those expected from a binomial distribution with a probability of success equal to 

the observed pRBT.  Significance was determined using a 
2
 test and  = 0.05.  

Significant results indicate RBT alleles are non-randomly distributed across individuals. 

Non-significant results indicate a completely admixed hybrid swarm where there is 

random mating among parental types and there has been sufficient time for decay of 

linkage disequilibrium.  Finally, we determined whether or not each sample was in 

Hardy-Weinberg proportions using exact tests in GENEPOP 4.0 (Raymond and Rousset 

1995, Appendix A) 

 

Landscape Factors Influencing Introgression 

We used a stream layer from the National Hydrography Dataset and a digital 

elevation model (from nris.mt.gov) to derive landscape factors using ArcGIS 9.3.1 

(Environmental Systems Research Institute, Inc., Redlands, CA).  We assumed the RBT 

source was the main-stem population and measured fluvial distances to each site from the 

main-stem.  Thus, the distance from RBT source was measured from the most 

downstream point sampled in the main-stem Jocko River to the downstream point of all 
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other sampling locations.  We obtained elevations for each sampling location from the 

digital elevation model.  We calculated a slope variable as the change in elevation from 

the RBT source to a sample site divided by the distance between the RBT source and a 

sample site.  The slope variable accounts for average gradient over the whole distance 

between a sample site and the source.  We counted the number of barriers between a 

sample site and the RBT source (Figure 2.1).   We did not have quantitative fish passage 

information for each barrier, so all putative barriers were treated equally in this study as 

providing equivalent resistance to potential RBT introgression.  We included road density 

in the watershed above a sample site to address the influence of land use on pRBT, as we 

expected it to be associated with access for RBT stocking (Weigel et al. 2003) and 

anthropogenic disturbance that may promote conditions for hybridization (Hitt et al. 

2003, Rasmussen et al. 2010).  Road densities were calculated for the watershed above a 

pour point defined by the bottom of each sample site. 

We developed a series of linear models to describe patterns in pRBT using slope, 

elevation, or distance from a putative RBT source, along with the number of barriers 

below a sample site, and road density upstream of a sample site.  We expected slope, 

distance, elevation, and barriers to be negatively associated with pRBT and road density 

to be positively associated with pRBT.  Elevation, distance, and slope were never used in 

the same model because we wanted to compare the relative fit of models that included 

these variables.  Because we only used two additional explanatory variables for this 

modeling exercise, a priori candidate models included all possible combinations of road 

density and barrier variables in models with distance, elevation, or slope.  We log (base 

10) transformed distance and elevation for analyses, as preliminary data analyses 
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suggested non-linear relationships with pRBT.  We logit transformed pRBT in order to 

overcome violations of normality.  Logit transformations were performed using the 

“logit” function in R (R Core Development Team 2010), which remaps the pRBT dataset 

to a minimum of 0.025 and maximum of 0.975 to overcome inability to logit transform 

zeros and ones.  We used an information theoretic approach to weigh the relative fit of 

the candidate models to the data and used corrected AIC values (AICc) for small sample 

sizes (Burnham and Anderson 1998).  Models were determined to be equally plausible if 

they were within 2.0 ΔAICc of the top model (Burnham and Anderson 1998). 

 

Influence of Sampling Design Tradeoffs on Hybridization Metrics 

In order to examine the relationship of spatially structured hybridization patterns 

and field sampling designs at the tributary scale, we examined the robustness of 

hybridization metrics (pRBT, P/A hybrids, P/A high-HI hybrids, hybrid swarm test) to 

variations in sampling design by resampling the South Fork Jocko River dataset.  Sample 

design variations included tradeoff of number of individuals per site as well as number 

and spatial extent of sites within a tributary.  We resampled the dataset from the South 

Fork Jocko River (11 sample sites, 334 individuals) to complete this analysis because it 

represented the drainage with the longest sampling frame, the most sites, and the most 

individuals from which we could subsample. 

We simulated alternative field sampling scenarios in R by resampling our South 

Fork spatially-explicit dataset under various scenarios.  We resampled the South Fork 

dataset with sample sizes of 30, 60, and 90 individuals (Nind) across either 1, 3, and 6 

sites (Nsites) (median distance between sites = 1.6km).  We sampled without replacement 
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within a field sample (there was replacement between resampling events), so none of the 

1 sample site scenarios had greater than 30 fish (number collected in field) in a 

subsample.  For each sample, a site from the dataset was randomly chosen.  If the sample 

included more than one site, individuals were collected from the neighboring upstream 

sites to simulate datasets obtained by a field crew collecting individuals systematically 

from sites upstream until the targeted sample size was complete.  We divided the number 

of individuals (30, 60, or 90) to be randomly sampled by the number of sites (1, 3, or 6) 

to be sampled (Nind/Nsites) to determine the number of individuals sampled at each site.  

To compare scenarios with a random sample of all fish from the South Fork, we 

completed another set of simulations by randomly sampling 30, 60, and 90 individuals 

from the entire South Fork dataset.  We replicated 500 samples for each sampling 

scenario. 

For each sample, we calculated pRBT, determined P/A hybrids, and P/A high-HI 

hybrids (HI  0.20).  We also determined if RBT alleles were randomly distributed across 

individuals by examining the frequency distribution of HI.  Often researchers examine 

the frequency distribution of HIs from a sample when the sample does not conform to a 

hybrid swarm to assess whether there is evidence for an underlying hybrid swarm with 

recent immigrants with HIs that fall outside of expectations under a binomial distribution 

(Robb Leary, Montana Fish, Wildlife, and Parks, personal communication).  For the 

purposes of this exercise, we did not differentiate these situations, and simply reported 

whether or not a sample conformed to binomial expectations under a hybrid swarm.  We 

used HI ≥ 0.20 to categorize high-HI hybrids because the U.S. Fish and Wildlife Service 

determined populations with ≤ 0.20 pRBT would be morphologically indistinguishable 
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from WCT, and therefore would qualify as WCT populations (USFWS 2003).  To 

summarize our findings, we calculated the proportions of samples under each scenario 

that detected hybrids, high-HI hybrids, and hybrid swarms.  We also calculated the mean 

pRBT across the 500 samples under each scenario. 

We do not address tradeoffs involving number of loci amplified.  Increasing the 

number of loci tested per individual will increase power to detect hybridization at the 

individual level, and it will reduce the number of individuals that need to be tested for 

detection of hybridization and pRBT.  Increasing the number of diagnostic loci does not 

eliminate the need to examine the interaction between hybrid metrics, sampling design, 

and spatially structured populations with different levels of introgression. 

 

Results 

 

We collected samples at 63 sites, 24 of which were part of the systematic 

sampling effort in the North, Middle, and South Forks of the Jocko River.  The remaining 

39 samples were collected in the main-stem Jocko River and in tributaries throughout the 

basin.  Due to small sample sizes in the lower North Fork Jocko River, we combined 

tissue samples from 4 sampling sites into two samples, resulting in 61 total genetic 

samples (Table 2.1).  Individuals were kept in the sample unless they amplified at less 

than two loci.  Proportion of missing alleles in a sample ranged from 0 to 0.29 (only one 

sample failed to amplify at two microsatellite loci), and median proportion missing 

alleles was 0.04, as missing alleles were rare in most samples (see Appendix A for 
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details).  Sampled fish ranged from 31 mm to 508 mm in length TL, and the mean TL 

was 145.5 mm (SD = 65.8). 

 

Distribution of Hybrids and Patterns of Introgression 

We detected RBT alleles at all but 10 sites; however, only 12 sites had pRBT > 

0.10, and WCT genotypes were dominant in the system (Figure 2.2).  The lower main-

stem Jocko River sample (site 1) and nearby sample sites in Spring Creek (site 2) and 

Valley Creek (site 3) had the highest pRBTs (0.92, 0.97, and 0.98, respectively) (Table 

2.1, Figure 2.2, also see Appendix A), which supports our assumption that downstream 

populations in that area represent the source of RBT alleles in the Jocko River basin.  The 

main-stem or lowest site in most sampled tributaries was commonly the sample site with 

the highest pRBT.  Liberty Creek (site 60, pRBT = 0.88), a tributary to the South Fork 

Jocko River, and Pistol Creek (site 27, pRBT = 0.42) were the only samples where we 

detected pRBT > 0.10 at greater than average distance from the putative main-stem 

source (hereafter referred to as distance).   Thirty-one of the 61 population samples had 

unimodal distributions of HIs that conformed to a binomial distribution (hybrid swarms), 

but only one of these samples had a pRBT of > 0.05 (site 15, see Appendix A for details).  

Estimates of pRBT were strongly correlated with other signals of introgression, including 

proportion of individuals with HI > 0.2 in a sample.  Furthermore, sample sites that had a 

bimodal distribution of hybrid index scores always had other evidence of introgression.  

For example in the upper main-stem Jocko River (site 28), we detected (with one 

exception) intermediate or high HI individuals along with low, non-zero HIs (≤ 0.14).  



30 
 

Thus, presence of individuals with high HI values had very little influence on the 

magnitude of pRBT measured in a sample.  

With the exception of Pistol Creek and Liberty Creek, RBT and high-HI 

individuals were found primarily at lower elevation sites and in relatively close proximity 

to the lower main-stem Jocko River populations (Figure 2.3).  Of the twelve samples with 

pRBT > 0.10, only Pistol Creek and Liberty Creek occurred higher than the average 

sample site elevation (1248m) for this study (Figure 2.3).  Even though these sites 

initially appeared to be potential high elevation sources of RBT alleles (Figure 2.3), these 

samples were located above barrier falls and appeared to have limited influence on local 

introgression.  Therefore, these sites were removed from further landscape-scale 

analyses. 

 

Landscape Factors Influencing Introgression 

We used pRBT as the response variable in the landscape models as it was 

correlated with other indicators of introgression (see above) and would allow us to 

compare these results with published studies.  We observed a strong linear relationships 

with significant negative slopes between logit transformed pRBT and log transformed 

distance (R
2
=0.44, F1,56=43.1, p<0.001), log transformed elevation (R

2
=0.43, F1,56=43.2, 

p<0.001), and slope (R
2
=0.47, F1,56=49.8, p<0.001) (Figure 2.4).  The best fitting 

multivariate regression model included slope and the number of barriers (Akaike w = 

0.74, Table 2.2).  The second best fitting model (ΔAICc = 2.1) was the model with slope, 

number of barriers, and road densities (w = 0.26).  Even though this model including both 

barriers and road densities was near 2.0 ΔAICc of the top model, the coefficient for road 
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density was not significant in any model.  In the top model, the coefficients for both 

variables were significant and negative (Slope coeff = -0.36, S.E. = 0.06, t = -6.3, p < 

0.001; Barr coeff = -0.52, S.E. = 0.13, t = -3.9, p < 0.001).  There were few differences 

among models with log(distance) and log(elevation) (Table 2.2). 

 

Influence of Sample Design Tradeoffs on Hybridization Metrics 

When all samples sites from the South Fork Jocko River were treated as if they 

were a single random sample, pRBT was 0.014 and we determined it was not a hybrid 

swarm.  Five of the 11 sample sites in the South Fork Jocko River statistically conformed 

to a hybrid swarm when those samples were examined individually.  In the resampling 

effort, the presence of hybridization was similar across all scenarios, but the likelihood of 

detecting a highly hybridized fish increased with sample size and spatial extent (number 

of sites).  Hybridization (P/A hybrids) was detected in >89% of subsamples across all 

sampling scenarios (Table 2.3).  More than 99% of the samples with 60 or 90 fish 

detected the presence of hybrids (Table 2.3).  Detecting high-RBT hybrids in >80% of 

samples required at least 60 fish samples, and high-RBT hybrids were detected in at least 

95% of samples with 90 fish (Table 2.3).  Increasing the number of sites sampled 

improved detection rates for high-HI hybrids relative to the one sample site scenarios.   

Resampling the dataset often resulted in a slight over-estimation of pRBT relative 

to the baseline value created by treating the entire South Fork Jocko River dataset as a 

single random sample (pRBT = 0.014 using entire dataset, mean pRBTs range from 

0.013 to 0.020, see Figure 2.6 for distributions of pRBT from resampling).  The 

overestimation of pRBT was exacerbated by sampling across more sites.   
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The sample size influenced whether one would conclude the sample is a hybrid 

swarm.  Samples statistically conformed to a hybrid swarm in 28-46% of subsamples 

with 30 fish, and in 1-22% of subsamples with 60 or 90 fish.  We observed a substantial 

increase in the percentage of simulations (8-13%) conforming to hybrid swarms in the 

subsamples where all samples were pooled relative to all other scenarios with 60 or 90 

fish (Table 4).  Samples did not conform to a hybrid swarm due to either the presence of 

high-HI hybrids in the sample, or the complete absence of hybrids in the sample. 

 

Discussion 

 

At a landscape scale, we observed strong patterns of RBT introgression in the 

Jocko River basin that were significantly and negatively associated with elevation, 

distance from source and a composite variable of slope (Δ elevation/distance from 

source).  All of these explanatory variables are highly correlated and the effects of each 

cannot be separated.  Populations of parental-type RBT occurred at low elevation sites 

and parental-type WCT occur at high elevation sites.  Separation of these parental types 

has been influenced by the presence of barriers that provide resistance to hybrid and RBT 

dispersal.  However, WCT parental types were found in some streams where there were 

no barriers, such as in Hewolf Creek (sites 7, 8) and South Fork Valley Creek (site 10).  

Liberty Creek and Pistol Creek were outliers to these generalizations.  Although a 

few high-HI hybrid individuals were found in other South Fork Jocko River sample sites 

(eight individuals in the main-stem South Fork, two individuals in tributaries), maximum 

pRBT in the remainder of that system was low (0.071).  Of the eight high-HI hybrids 



33 
 

detected in the main-stem South Fork Jocko River, five were detected within 1.5km of 

Liberty Creek, indicating that any introgression influence from Liberty Creek fish was 

highly localized relative to the influence of the main-stem Jocko River and had a minor 

influence on the broader landscape patterns.  There are steep cascades and falls that are 

likely migration barriers near the mouths of Liberty Creek, as well as at Pistol Creek, 

which also had high pRBT.  There are no official records for RBT stocking in these 

populations, and anecdotal evidence suggests these systems may have been fishless prior 

to unauthorized RBT introductions upstream of barrier falls as many as 70 years ago 

(Craig Barfoot, personal communication).  Pistol Creek appeared to be a very small 

population, as only five individuals could be captured after extensive sampling. 

The observed patterns of introgression indicate sampling design is important 

when attempting to fully understand distributions of hybrids and status of conservation 

populations.  When sampling in putative conservation populations, researchers will need 

to complete sampling with large sample sizes collected in a spatially extensive manner in 

order to have a high probability of detecting high HI hybrids where introgression is 

spatially structured.  For example, in subsamples, we observed 100% detection with 90 

fish collected at 3 sites (separated by 1-2km).  Overall, tradeoffs in sample design depend 

on the question being asked.  In this study, sample sizes of 30 individuals, collected 

across all site number scenarios, were adequate for detecting hybridization, and obtaining 

a reasonable estimate of pRBT.  Kanda et al. (2002) developed hybrid detection 

probabilities that suggested 30 fish was a sufficient sample size to have a 0.95 probability 

of detecting at least 0.01 pRBT when ≥ 5 diagnostic markers are used and sample sizes of 

25-30 fish are commonly reported in the literature.  Detection of high-HI hybrids as 
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evidence of long-distance dispersal or recent introgression depended strongly on sample 

size.  Detection of hybrid swarms also depended strongly on sample size and is 

associated with detection of rare, high-HI individuals; detection of a hybrid swarm 

became less likely with an increase in sample size, and an increase in the length of the 

sampling frame.  So, while a sample size of 30 individuals is adequate for detecting 

hybridization, more samples are required to accurately describe the presence of high-HI 

hybrids, which are important evidence of continued introgression into low pRBT hybrid 

swarms. 

 Following the criteria outlined by UDWR (2000), introgressed WCT populations 

in tributaries in the Jocko River system would generally be considered “conservation 

populations” (<10% pRBT, WCT phenotypes) but not “core populations” (no detectable 

introgression), with a few exceptions.  Although evidence of introgression in our study 

was ubiquitous, levels were generally low and resulted from a few individuals in a 

sample having only one or two rainbow trout alleles.  While this finding was slightly 

biased by increased sampling effort in the upper Jocko River, the general conclusion that 

most samples had a low pRBT would hold even if we collapsed multiple samples in the 

North Fork Jocko River above site 35, and in the Middle and South Forks.  Samples with 

no detectable introgression were collected in 10 locations throughout the Jocko River 

Basin, primarily in the highest elevation sites in a watershed (Figure 2.2; Table 2.1).  

However, three of these samples were collected at sites where hybrids were detected at 

adjacent sites upstream and downstream.  Rainbow trout alleles were very rare in those 

adjacent sites, suggesting that we did not detect hybridization at the sites in question 

simply by chance.  Likely exceptions to this include Agency Creek (sample 20) and 
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South Fork Jocko River (sample 55), where putative barriers separate these sites from 

other sites having RBT alleles (Figures 2.1 and 2.2) 

Landscape Patterns in Introgression 

In this study, average stream slope, which is a composite variable of distance and 

change in elevation from source, was the best fit model for explaining patterns of 

introgression (Figure 2.4).  The analysis of these landscape variables do not tell us what 

the mechanism is that is driving “resistance” of introgression; however, given the 

consistencies observed among this and other studies, it clear that these variables should 

give important clues.  Gradient is believed to provide some resistance to invasion of non-

native species, especially brook trout (Fausch et al. 2007, Peterson et al. 2008).  Muhlfeld 

et al. (2009c) did not find that gradient was associated with RBT introgression, but they 

measured gradient at the reach scale, rather than the total gradient between the RBT 

source and sample sites.  Slope and elevation are likely important variables because they 

incorporate distance and other effects, such as change in temperature and stream size that 

have been demonstrated to be associated with RBT naturalization (Paul and Post 2001) 

and introgression (Rasmussen et al. 2010).  Those same gradients have also been linked 

to distribution patterns of RBT, hybrids, and WCT (Weigel et al. 2003).  Rasmussen et al. 

(2010) provided evidence that elevation was also related to life history differences 

between WCT and RBT.  In a telemetry study, Muhlfeld et al. (2009b) found RBT 

preferentially spawned in low elevation reaches, WCT in headwater reaches, and hybrids 

in reaches intermediate to both.  Boyer et al. (2008) demonstrated RBT and highly 

hybridized populations occurred in low elevation stream systems.  In a related study, 

Muhlfeld et al. (2009c) established that logistic models, which included variables related 
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to stream temperature, disturbance measures, and distance to source of RBT (all of which 

co-vary with elevation), best approximated the presence of hybridization in the North 

Fork Flathead River, MT.  Similar patterns have been observed in a Yellowstone 

cutthroat trout and RBT system in the South Fork Snake River, where cutthroat trout 

spawned in high elevation reaches, RBT in low elevation reaches, and hybrids at 

intermediate elevations (Henderson et al. 2000).  Genotypes in these streams suggest that 

introgression is related to elevation and distance to source (Gunnell et al. 2007).   

In addition to elevation, distance from source of RBT has been a commonly 

described driver of introgression patterns by authors, and we observed a strong 

relationship between these variables in the Jocko River.  Boyer (2008) described a strong 

negative correlation between proportion admixture and distance from the most likely 

source population of RBT.  Spatial analysis of WCT x RBT hybrid zones in the upper 

Kootenay basin in British Columbia indicated decreasing hybridization with increasing 

distance from Koocanusa Reservoir, the most likely source of RBT (Rubidge and Taylor 

2004).  In addition, Weigel et al. (2003) and Gunnell et al. (2007) found evidence that 

distance from nearest stocking location influenced hybridization, but logistic regression 

models in Weigel et al. (2003) including this metric had relatively little support compared 

to models that incorporated elevation and stream width.  This may indicate that historical 

stocking locations may not be the most appropriate choice when determining a RBT 

source.  RBT were found in relatively low elevation sites in mountain streams in Alberta, 

despite stocking locations often occurring at higher elevations (Paul and Post 2001), 

indicating there is potential for habitat preferences drive establishment. 
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At first glance, it may seem counter-intuitive that distance would be strongly 

negatively correlated with pRBT, and simultaneously, slope is also strongly negatively 

correlated with pRBT, because when calculating slope, distance is in the denominator.  In 

the Jocko River system, sites with relatively high pRBT were often found at relatively 

longer distances from the lower mainstem source of RBT when those sites were still in 

the low elevation, low gradient, valley bottom reaches of the stream network (e.g. sites 

11, 28, 32), where we would expect a greater influence of RBT (Paul and Post 2001).  

Using slope as a variable to explain the major patterns of introgression better accounts for 

these sites relative to use of distance alone.  As the stream network extends in to the more 

montane reaches, slope and distance have a stronger positive correlation due to the 

associated increase in elevation. 

Certainly, barriers have played a role in maintaining some separation between 

species in the Jocko River Basin, as the K-Canal and S-Canal diversions have reduced or 

eliminated passage for 90-100 years into the upper Jocko River (with the exception of 

introduction of RBT in Liberty Creek).  Still, some reproductive isolation has been 

maintained in South Fork Valley and Hewolf Creeks where there are no barriers.  This 

finding indicates barriers are not required for maintaining reproductive isolation, because 

even locations with no barriers are demonstrating similar patterns of reproductive 

isolation and decreasing pRBT with increasing elevation or distance.  Reproductive 

isolation has been observed in several other systems, particularly when RBT and 

cutthroat trout are naturally sympatric (Kozfkay et al. 2007; Ostberg et al. 2004), but also 

in cases where RBT are introduced (Ostberg and Rodriguez 2006). 
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Sample Design Tradeoffs 

Results of the landscape scale analyses in this and other studies suggest that, in 

general, the spatial scale examined will have major influences on interpretation of 

patterns of hybridization.  Parental type WCT and RBT still co-occur in systems that are 

resistant, but not completely closed to invasion.  However, when analyzed at reach or 

even large tributary (such as the South Fork Jocko River) scale, many samples will 

appear to be hybrid swarms.  Many population genetics studies on cutthroat trout suggest 

substantial population subdivision at relatively small spatial scales (e.g. Nielsen and Sage 

2002; Taylor et al. 2003; Wofford et al. 2005) indicating reach or tributary scales may be 

more appropriate for understanding “population-level” hybridization dynamics.  Often, 

strong patterns of differentiation described in such studies are driven by including 

isolated and resident populations in analyses.   However, connectivity and dispersal due 

to increased migratory life histories often reduce genetic variation among populations and 

result in population genetic structures consistent with an isolation-by-distance pattern, 

where population boundaries become less clear (Taylor et al. 2003; Neville et al. 2006).  

Thus, in systems such as the Jocko River, with connectivity and migratory life histories, 

it is prudent to consider patterns of introgression at multiple scales. 

 At the scale of a large tributary, such as the South Fork Jocko, the tradeoff in 

individuals and sites sampled depended on the metric of primary interest.  A typical 30-

fish sample from a single site is suitable for detecting hybridization and provides a 

reasonable estimate of pRBT for a stream, so long as it is reasonable to consider the 

whole stream a single population.  Estimates of admixture (such as pRBT) assume a 

population is a hybrid swarm (Kanda et al. 2002).  Given the sensitivity of detection of a 
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hybrid swarm to sampling approach (Table 2.3, but also see below), managers should be 

cautious in using pRBT and hybrid swarm status to apply conservation value to 

populations without a rigorous examination of the distribution of hybrid alleles in the 

population sample to determine the relative number of hybrid genotypes and the degree 

to which backcrossing has occurred. 

Samples with 30 fish detected high-RBT hybrids at relatively low rates (47-68% 

of samples) because these individuals were relatively rare.  Samples with 60 or 90 fish 

performed substantially better at detecting high-RBT hybrids.  While they are rare, high-

RBT hybrids may be important individuals because they represent more recent 

introgression or potential introgression between parental types in a system where the 

sample distribution of HIs indicates introgression is old and/or primarily facilitated by 

hybrids backcrossing to WCT (Rubidge and Taylor 2004).  Often, managers are 

interested in maintenance of current (usually low) levels of admixture.  These high-RBT 

hybrids pose an important threat to conservation populations and have been shown to 

have potentially long dispersal distances relative to WCT (Boyer et al. 2008).  

Researchers and managers that compile a basin-wide dataset, such as the one described in 

this paper, with samples from all fish bearing streams, have the opportunity to determine 

the most likely sources of these high-HI hybrids.  In this case, the rare high-HI hybrids in 

the South Fork Jocko River dataset are most likely the result of introgression from fish 

falling over the barrier at the mouth of Liberty Creek, or from long distance dispersers 

from the mainstem Jocko River.  

Many more subsamples were hybrid swarms based on the binomial test when 

sample sizes were set at 30 versus 60 or 90 fish.  This suggests that, in stream systems 
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with low levels of hybridization, whether or not a population is called a hybrid swarm 

strictly based on a statistical test may be an artifact of low sample sizes and non-detection 

of rare high-RBT individuals (if they are present).  In reality, these samples may 

represent underlying hybrid swarms with very low pRBT and high-HI individuals are 

evidence of recent movement from another population.   Populations with low pRBT are 

likely very common across the range of WCT.  Shepard et al. (2005) reported that ~41% 

of WCT populations (totaling 22,388 km of stream) are measured as unhybridized, are 

suspected to be unhybridized, or have ≤ 0.10 pRBT.  In addition to detection issues 

related to rare high-HI individuals, we have demonstrated that spatial structuring of 

hybridization is a consistent pattern in multiple river systems, where hybridization is 

negatively correlated with both distance from the source of RBT and elevation.  This 

indicates establishing a signal of random mating in a sample will be largely dependent on 

the spatial scale at which fish are collected, where the broader the sampling frame the less 

likely the samples will be collected from genetically similar individuals. In the Jocko 

River, hybrid swarms were detected at some of the sample sites, but only with low rates 

of introgression and many generations of backcrossing to WCT.  Detailed understanding 

of the population genetic structure in a system would be useful for determining the scale 

at which individuals or population samples would be genetically similar, but typically 

this information is unavailable prior to hybrid distribution studies.  In general, the number 

of samples that conformed to a hybrid swarm decreased with increases in the length of 

the sampling frame.   

These results suggest researchers should be cautious when interpreting the results 

of a hybridization study using a single frequency distribution of hybrid individuals, as 
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this model does not incorporate spatial structuring that seems to be common across 

hybridized systems.  Hybrid zones, defined as areas where two distinct taxonomic 

groupings overlap and interbreed to produce hybrid offspring of mixed ancestry, 

commonly occur in many taxa (Arnold 1997), including fishes (Epifanio and Nielsen 

2000; Perry et al. 2002).  Stable hybrid zones generally rely on selection acting on 

hybrids, and selection may either be environmentally dependent (mosaic hybrid zone, 

bounded hybrid superiority zone) or environmentally independent (tension hybrid zone) 

(Taylor 2004).  While authors have described expansion of hybridization between 

cutthroat trout and RBT as a function of time (Hitt et al. 2003), or simply as a function of 

space (Rubidge and Taylor 2005; Boyer et al. 2008), other authors (e.g. Weigel et al. 

2003; Gunnell et al. 2007; Rasmussen et al. 2010) have suggested there may be important 

environmental limitations to introgression.  Additionally, some authors have suggested 

there may be strong fitness consequences to hybridization between WCT and RBT 

(Allendorf et al. 2001; Muhlfeld et al. 2009a).  A better understanding of the hybrid zone, 

its stability over time, and potential environmental and fitness limits to introgression are 

necessary as we design optimal sampling protocols and evaluate conservation efforts. 

 

Study Limitations and Suggestions for Future Research 

While we believe the results and conclusions of this study to be sound, there are 

some important limitations to this work that should be addressed.  The most important of 

these limitations may be our inability to guarantee that every individual fish collected as 

part of a sample is a member of a local “population.” However, given the goal of this 

study was to evaluate the change in magnitude of hybridization along landscape 
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gradients, rather than develop a population-level point estimate of admixture, and pRBT 

was highly correlated with other hybridization metrics (see results above), we determined 

it to be an effective and appropriate metric.  We recommend that researchers strongly 

consider the implications of sampling multiple populations at a single site to determine if 

sampling can be focused in reaches and during time periods that minimize this issue.  In 

this study, we focused sampling efforts where a) resident life history individuals 

dominated the adult portion of the samples, or b) we could sample during spring 

spawning while adult fish were on redds.  We clearly sampled individuals at some sample 

sites that could have been from distant populations given the exceptional size of these 

individuals or as evidenced by an exceptional HI relative to the rest of the sample.    

However, rather than assuming these individuals were not members of the local 

population and simply removing them from analysis, we made the assumption that these 

fish represented current or future hybridization potential for the local population and were 

therefore reflective of the patterns we were attempting to describe.  It is important to note 

that in most samples hybrid individuals generally had a size distribution similar to other 

fish captured in the sample (see Appendix A for details). 

 The patterns of introgression we described in this study were well correlated with 

important master variables such as elevation, which should be highly correlated with 

habitat variables, such as stream temperature and size, reach-scale gradients, etc.  

However, the conclusions of this study are limited by the coarse scale of the data 

collected and by the fact that we use surrogate variables to describe habitat gradients, 

rather than using site-specific estimates of elevation, stream width, stream habitat types, 

etc.  Furthermore, this study was not designed to establish the true mechanisms 
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underlying the introgression patterns we observed.  For example, we conclude in this 

study that patterns of introgression observed in this and other studies are concordant with 

hybrid zone models.  As described above, the fitness of hybrids relative to parental types 

is likely to vary with habitat in mosaic or bounded hybrid superiority hybrid zones, thus 

driving landscape-scale introgression patterns.  We recommend that future research 

efforts should attempt to relate fitness surrogates, such as survival, age at maturity, and 

reproductive success, to habitat factors that are likely to influence habitat choice, such as 

stream temperatures, physical habitat structure, and productivity. 

.
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Table 2.1.  Site code, along with landscape variables measured for this study, sample 

sizes, number of individuals with RBT alleles detected, maximum individual hybrid 

index score detected (Max HI), and sample proportion RBT alleles (pRBT).  Sites 

correspond to labels in Figure 2.1. 
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Table 2.1 Continued. 
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Table 2.2.  Akaike Information Criterion (AIC) results for each of the candidate models 

in this study.  Models were ranked by their ΔAICc values, likelihood of being the best 

model given the data (Lik.), and Akaike weights (wi) (k is the number of parameters in 

the model).  Model variable abbreviations included Elev (elevation), Barr (barriers), Dist 

(distance from source), and RdDens (road densities). 

 

Model k AIC AICc ΔAICc Lik. wi 

Slope+Barr 3 170.69 171.1 0.0 1.0 0.74 
Slope+Barr+RdDens 4 172.48 173.2 2.1 0.4 0.26 
Slope 2 183.14 183.3 12.2 0.0 0.00 
Slope+RdDens 3 183.98 184.4 13.3 0.0 0.00 
log(Elev)+Barr 3 185.23 185.7 14.5 0.0 0.00 

log(Dist)+Barr 3 186.33 186.8 15.6 0.0 0.00 
log(Elev) 2 186.89 187.1 16.0 0.0 0.00 

log(Dist) 2 186.93 187.1 16.0 0.0 0.00 
log(Elev)+Barr+RdDens 4 186.48 187.2 16.1 0.0 0.00 
log(Dist)+RdDens 3 187.61 188.0 16.9 0.0 0.00 
log(Dist)+Barr+RdDens 4 187.39 188.1 17.0 0.0 0.00 

log(Elev)+RdDens 3 187.73 188.2 17.0 0.0 0.00 
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Table 2.3.  The number of subsamples out of 500 simulations detecting hybridization, a 

high RBT hybrid (HI ≥ 0.20), or a hybrid swarm.  Under # sites, ASP represents the “all 

samples pooled” scenario. 
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Figure 2.1.  Sample locations and distribution of barriers in the Jocko River watershed, 

Montana.  Map includes all fish bearing streams in the system. 
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Figure 2.2.  Distribution of sites where no hybridization was detected (yellow markers) 

and sites where at least one RBT marker in one individual was detected (purple markers).  

The size of the markers represents the pRBT estimated for each sample.  The histogram 

inset describes the frequency distribution of pRBT in the Jocko River basin.  The sizes of 

the markers positioned above the histogram bins correspond to the size of the makers on 

the map. 
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Figure 2.3.  Relationship between elevation and pRBT.  Liberty Creek and Pistol Creek 

were removed from subsequent analyses because they were both located above barrier 

waterfalls, and they did not appear to be contributing to introgression at neighboring 

sites. 
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Figure 2.4.  Relationships between pRBT and distance (a), elevation (b), and slope (c). 
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Figure 2.5.  Spatial distribution and pRBT of 11 sample locations in the main-stem South 

Fork Jocko River that comprise the dataset used for sub-sampling simulations.  The x-

axis represents the distance from the confluence of the South and Middle Forks. 
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Figure 2.6.  Distribution of estimated pRBT for each sub-sampling scenario.  

Abbreviations for scenarios indicate the number of fish (30F = 30 fish) and the number of 

sites sampled (1S = 1 site, ASP = all samples pooled).  The reference line is the estimated 

pRBT (0.014) of the South Fork Jocko River, if every individual were included in a 

single sample. 
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CHAPTER 3 

DIFFERENCES IN GROWTH, FECUNDITY, AND MIGRATION TIMING 

BETWEEN WESTSLOPE CUTTHROAT TROUT, AND WESTSLOPE CUTTHROAT 

TROUT X RAINBOW TROUT HYBRIDS 

 

Abstract 

 

Hybridization with rainbow trout (O. mykiss, RBT) has been described as a 

primary threat to the conservation of westslope cutthroat trout (Oncorhynchus clarkii 

lewisi, WCT).  Conservation of WCT often hinges on the degree to which the populations 

are hybridized, yet little is known about differences in life history of individuals with 

varying degrees of rainbow trout ancestry.  The primary goal of this project was to test 

for equivalency in growth, fecundity, and migratory behavior between WCT and hybrid 

trout in the migratory components of trout populations in the Jocko River, MT.  We 

sampled trout at two fish ladders making upstream spawning migrations from 2006-2009.  

We estimated RBT ancestry for each individual using seven diagnostic microsatellite 

markers.  We categorized individuals into three hybrid categories: zero (no RBT 

markers), low (< 20% RBT ancestry), and high (≥ 20% RBT ancestry).  We fit growth 

models to back-calculated length at age data for each hybrid category.  Von Bertanlanffy 

parameters were significantly different (p ≤ 0.001), with high category hybrids exhibiting 

substantially higher growth than zero or low hybrids.  Results of analyses of covariance 

suggest that, for a given length, high hybrids have significantly lower fecundity (p < 

0.001), yet larger egg sizes (p = 0.003) than the zero category, but the low hybrid 
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category was not significantly different than the zero category.  Similarly, hybrids with 

>20% RBT ancestry migrated earlier, at lower stream temperatures, and lower discharges 

than both the zero and low categories.  We did not observe significant differences 

between individuals in the zero category and individuals in the low category in migration 

conditions.  While there was overlap in migration timing among all hybrid categories, 

nearly all high hybrids had finished moving into the migration trap by when the first 

major increase related to spring runoff was observed.  We conclude that, while there is 

substantial evidence indicating important life history differences between WCT and 

hybrids with more than 20% RBT ancestry, there is still enough uncertainty regarding 

differences of WCT and hybrids with less than 20% RBT ancestry to warrant further 

study. 
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Introduction 

 

Introgressive hybridization with introduced species has been described as the 

greatest conservation threat to many native salmonid species worldwide (Rhymer and 

Simberloff 1996; Allendorf et al. 2004).  Rainbow trout (RBT, Oncorhychus mykiss) 

have been introduced in nearly every suitable habitat worldwide (Lowe et al. 2000; 

Fausch et al. 2001).  They interbreed and produce fertile offspring with cutthroat trout (O. 

clarkii spp.) in areas where they are naturally and anthropogenically sympatric (Leary et 

al. 1995; Behnke 2002; Kozfkay et al. 2007; Metcalf et al. 2007).  Westslope cutthroat 

trout (WCT, O. clarkii lewisi) and RBT are naturally sympatric in certain portions of their 

range, and while hybridization and introgression does occur, the two species primarily 

remain reproductively isolated (Kozfkay et al. 2007).  However, in areas where they 

evolved in allopatry, but are currently sympatric, little is known about the consequences 

of anthropogenic hybridization on phenotypic characteristics important to population 

productivity and/or persistence. 

Due to uncertainty about the ecological and evolutionary consequences of 

anthropogenic hybridization between RBT and WCT, there has been controversy 

regarding the role of hybridized populations in conservation policies for native WCT in 

areas where RBT have been introduced.  States with native cutthroat trout have adopted a 

conservation policy, where populations with <10% RBT introgression are protected as 

“conservation populations” and populations with <1% introgression receive special 

protection as “core populations” (UDWR 2000).  The subspecies was precluded from 

listing under the Endangered Species Act (ESA) on the basis that populations that were 
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morphologically similar to the accepted taxonomic description for WCT existed in a large 

portion of their historic range (USFWS 2003).  The United States Fish and Wildlife 

Service (USFWS) established populations within the scientifically accepted 

morphological norms for the subspecies would be included as WCT populations, even if 

detectable hybridization was present.  The USFWS further established that, based on the 

best available science, populations with as much as 20% RBT admixture should be 

morphologically indistinguishable from unhybridized WCT populations, and these 

hybridized populations would be included as WCT for ESA consideration (USFWS 

2003).  These policies are designed, in part, to preserve both the “historic genome,” as 

well as “unique genetic, ecological, and behavioral characteristics” (USFWS 2003).  

These policies have received substantial criticism for many reasons, among them is the 

sparse evidence regarding either behavioral differences or similarities between hybrids 

and WCT other than potential increased straying rates of hybrids (see Allendorf et al. 

2005).  Thus, understanding potential differences between individuals with varying 

ancestry is needed to provide guidance for refinement of current hybridization policies 

for WCT. 

Few studies have attempted to test for differences in performance or fitness in 

hybridized and unhybridized populations of cutthroat trout.  In laboratory studies, F1 

hybrids performed better as coastal cutthroat trout (O. c. clarki) X RBT F1 hybrids and 

Yellowstone cutthroat trout (O. c. bouveri) X RBT F1 hybrids achieved higher swimming 

speeds than either parental form (Hawkins and Quinn 1996; Seiler and Keeley 2009).  

Additionally, F1 Yellowstone cutthroat trout X RBT hybrids has been shown to decrease 

growth in Yellowstone cutthroat trout (Seiler and Keeley 2009).  In contrast, Leary et al. 
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(1985) described developmental instability and high fluctuating asymmetry in lab-crosses 

of RBT with WCT, Yellowstone cutthroat trout, and coastal cutthroat trout.  Field studies 

that have attempted to measure selection in wild populations of cutthroat trout have been 

largely inconclusive (Rubidge and Taylor 2004; Ostberg and Rodriguez 2006), with three 

notable exceptions.  Muhlfeld et al. (2009a) demonstrated declines in reproductive 

success by as much as 50% with as little as 20% RBT admixture estimated at the 

individual level of WCT.  In addition, possible selection against hybrid coastal cutthroat 

trout was suggested from a reduction in the frequency of hybrids in two populations on 

Vancouver Island over time, but no such pattern was observed in 11 others (Bettles et al. 

2005).  Finally, maintenance of high levels of gametic disequilibrium over time was 

described as evidence of weak selection acting against hybrids in several tributaries in the 

Strait of Juan de Fuca (Ostberg and Rodriguez 2004). 

There have also been relatively few studies addressing differences in behavior 

between cutthroat trout and hybrids.  In the Flathead River, MT, Boyer et al. (2008) 

estimated substantially lower straying rates of WCT using genetic distances among WCT 

populations compared with estimated straying from highly hybridized individuals 

observed in otherwise unhybridized WCT populations.  In two river systems, separation 

in migration and spawning times and places have been observed with RBT migrating 

and/or spawning earlier and at low elevations than YCT and WCT, with hybrids having 

spatial and temporal overlap facilitating introgressive hybridization between parental 

types (Henderson et al. 2000; Muhlfeld et al. 2009b).  Specifically, RBT and RBT 

backcrosses migrated before increases in peak flow, at lower flows, and cooler 

temperatures than WCT (Muhlfeld et al. 2009b).  DeRito et al. (2010) established that 
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radio-tagged Yellowstone cutthroat trout had moderate spatial overlap in spawning 

distributions, but very low temporal overlap in spawn timing with RBT. 

Given published studies have shown differences in selection and behavior in some 

systems but not in others, there is a clear need to further identify whether there are facets 

of life history and behavior that are consistently different between different cutthroat 

subspecies, RBT, and their hybrids.  Behavior related to life history and vital rates related 

to growth (such as fecundity) are among the most important factors influencing survival, 

reproduction, and fitness of individuals, and consequently, productivity, persistence, and 

evolution of populations (Hendry and Stearns 2004; Schaffer 2004). 

The primary goal of this project was to evaluate the life history differences 

associated with introgressive hybridization in the Jocko River, MT. This study had three 

objectives: (1) To test for differences in growth between WCT and hybrids with varying 

RBT ancestry, (2) to determine if there were subsequent differences in fecundity and egg 

size relationships between WCT and hybrids, and finally (3) to describe differences in 

migratory behavior between WCT and hybrids.  Our general approach was to contrast 

characteristics of fish with a range of RBT ancestries.  We expected higher growth rates 

in individuals with high RBT ancestry, because RBT are typically the dominant species 

in low elevation, potentially warmer, more productive habitats (Paul and Post 2001; 

Rasmussen et al 2010; Chapter 2), and RBT have a higher growth capacity in these 

warmer habitats (Bear et al. 2007).  Consequently, these fish may be expected to have 

more resources to allocate to reproduction and have greater fecundity and egg size.  

Similar to previous studies, we expected fish with higher RBT ancestry to migrate earlier 

than those with WCT ancestry. 
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Study Site 

 

This study was conducted in the Jocko River, a 979 km
2
 basin managed by the 

Confederated Salish and Kootenai Tribes (CSKT).  There are several major tributaries to 

the Jocko River, including the North, Middle, and South Forks of the Jocko River, as well 

as the Finley and Valley Creek Drainages (Figure 3.1).  In general, the streams in the 

Jocko River system are high gradient, confined channels at higher elevations transitioning 

to lower gradient reaches at lower elevations. 

There is an extensive irrigation system throughout the drainage that influences 

fish movement by creating both barriers and artificial connections.  K-Canal and S-Canal 

diversions are irrigation structures on the Jocko River that are complete barriers to 

movement and migration; although, fish can occasionally pass K-Canal diversion during 

bank-full or higher flow events when checks are removed from the diversion (Craig 

Barfoot, CSKT, personal communication).  Both of these diversions have had fish ladders 

installed with a trap and a holding pen at the top of each ladder to pass bull trout 

(Salvelinus confluentus).  Traps are checked regularly by CSKT personnel. 

The salmonid assemblage of the Jocko River basin is comprised of native and 

introduced fishes.  Introduced brown trout (Salmo trutta) and RBT phenotypes are 

abundant in the main-stem Jocko River below K-Canal diversion, and RBT phenotypes 

are present in several tributaries throughout the system.  Native WCT and mountain 

whitefish (P. williamsoni) are present in the main-stem Jocko River, and WCT are 

present at various abundances in nearly all fish-bearing tributaries.  The three forks of the 
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upper Jocko River have been thought to be strongholds of native fishes including 

unhybridized WCT and bull trout.  Fluvial life history forms of RBT, WCT, hybrids, 

brown trout, and bull trout utilize the main-stem Jocko River and Flathead River as 

foraging and overwintering habitat.  

 

Methods 

 

Fish Sampling and Tissue Collection 

We sampled all fish entering the K-Canal and S-Canal ladder traps from 2006-

2009.  Fish were anesthetized, total length (L, mm) was measured for each fish in the 

field, and they were palpated and checked for secondary sexual characteristics to assess 

maturity and sex.  Nonlethal fin clips were collected for genetic analyses from all fish.  

We began lethal sampling to collect gonads for fecundity estimates and otoliths for age 

and growth analyses during a subset of the migration in 2007 (4/24 – 5/18), and 

throughout the migration period in 2008-2009. 

 

DNA Extraction and Hybrid Analyses 

We used a subset of loci (7 diagnostic microsatellites) and extraction protocols as 

described in Muhlfeld et al. (2009a).  Ogo8 (Olsen et al. 1998), Omm1019, Omm1050, 

Omm1060 (Rexroad III et al. 2002), Omy 0004 (Holm and Brusgaard 1999), Omy1001 

(Spies et al. 2005), and Sfo8 (Small et al. 1998) are diagnostic markers for WCT and 

RBT in most tested Montana watersheds (Sally Painter, Montana Conservation Genetics 

Laboratory, personal communication).  We amplified 4 additional microsatellite markers 
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in an unsuccessful effort to assign individuals in this study to a population of origin (see 

Appendix B for details).  We extracted and amplified DNA in 10 ul reactions following 

the standard QIAGEN Microsatellite protocol.  We used two different PCR profiles.  

Multiplex 1 consisted of Ogo8, Omm1019, Omm1050, Omm1060, and Omy0004.  

Multiplex 2 consisted of Omy 1001 and Sfo8.  We visualized PCR products on an 

ABI3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA).  We 

determined allele sizes using an ABI GS600LIZ ladder (Applied Biosystems Inc., Foster 

City, CA).  We viewed and analyzed chromatograms using GeneMapper version 3.7 

(Applied Biosystems Inc., Foster City, CA).  We estimated individual levels of 

hybridization by calculating a hybrid index score (HI).  HI is the proportion of the total 

number of RBT alleles observed divided by the total number of alleles amplified for each 

individual across all diagnostic loci.  We categorized individuals with a HI = 0 as “zero,” 

individuals with 0 < HI < 0.20 as “low,” and individuals with HI ≥ 0.20 as “high.”  We 

selected these categories to specifically evaluate the 0.20 admixture cutoff suggested by 

the USFWS to establish populations that are morphologically indistinguishable from 

WCT (an average HI in a population with 0.20 admixture hybrid swarm would be 0.20). 

 

Age and Growth Analyses 

We cleared otoliths by soaking them in clove oil for 10 days to examine annular 

rings.  We took a digital image of the distal surface of each otolith at 20x magnification 

in a dissecting microscope under reflected light with a micrometer in the image for 

conversion of pixels to mm using SPOT Advanced version 4.7 (Diagnostic Instruments 

Inc., Sterling, MI).  We aged fish using the digital images of otoliths examined by at least 
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two independent readers, and a consensus age was determined for any individual for 

which there was disagreement.  Periods of slow growth appear dark or clear under 

reflected light (Schill et al. 2010), and we assumed these regions corresponded to winter 

growth.  We used the program Image J version 1.44c (National Institutes of Health, 

Bethesda, MD) to establish the otolith origin and an axis from the most distal point on the 

anterior end of the otolith through the origin.  We established an increment measurement 

axis at a 45
o
 angle toward the ventral side of the otolith from the anterior-posterior axis.  

This measurement axis provided the most consistent readability across all otoliths.  We 

marked annular increments and measured increment width.   

 We back-calculated total length at age for each aged individual using the direct 

proportion (Dahl-Lea) method because the otolith is present at hatching, and no 

adjustment for intercept is required (Klumb et al. 2001; Kruse et al. 1997).  Length at age 

is given by,  

   
  

  
   where 

    back-calculated total length of the fish,  

    total length of the fish at capture, 

    radius of the otolith at capture, and 

    radius of the otolith to the ith increment (Devries and Frie 1996). 

 We used a von Bertalanffy growth model (as described in Isely and Grabowski 

2007) fit to back-calculated lengths at ages for each of the hybrid categories.  The model 

is of the form, 

                   where 

   is total length at time t, 
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   is the asymptotic length, 

K is a growth curvature coefficient,  

t is the time step (age in years in this case), and 

t0  is a time coefficient at which length would theoretically be 0 (Gross et al. 2002). 

Parameters for growth models were estimated from a curve fit using the non-linear 

regression function in R (R Core Development Team 2009).  We examined the residuals 

of the growth model fit to the entire dataset versus HI to determine changes in growth 

with HI.  Then we segregated the data into hybrid categories and used likelihood ratio 

tests (Cerrato 1990; Kimura 1980) to make statistical comparisons of model parameters 

(and thus different growth trajectories) among the categories using the vblrt function in 

the R package fishmethods (Nelson 2010).  Likelihood ratio tests were completed in a 

pairwise fashion among the three hybrid categories.  Determination of differences in von 

Bertalanffy parameters was made using a test that simultaneously compares all 

parameters for each growth model ( = 0.05). 

 

Fecundity Analyses 

In the laboratory, we assessed maturity and sex of the individual and removed all 

eggs and ovarian tissue from females to estimate fecundity.  For each female, a 

subsample of approximately 100 eggs was counted and placed in a 50ml graduate 

cylinder, pulverized, and the volume of the subsample was recorded.  Then all eggs and 

ovarian tissue were placed in a 1000ml graduated cylinder with 200ml of water to 

measure the volume of water displaced by the ovaries.  Estimated fecundity is given by 

  
  

  
    where 
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F is the estimated fecundity of the individual, 

Es is the number of eggs in the subsample, 

Vs is the volume of the subsample in ml, and 

Vo is the displaced volume of all ovarian tissue, including the subsample.   

The estimation of egg volume for comparisons of egg size is given by 

      
  

  
     where 

E100 is the standardized volume of 100 eggs, and 

Vs and Es are as above. 

 We used analysis of covariance (ANCOVA) to test for differences in fecundity 

and egg size among hybrid categories, after accounting for length.  We log transformed 

fecundity and egg volume estimates, as well as total length measures to normalize the 

data.  We used log(F) or log(E100) as the response variables with hybrid category as a 

factor and log(length) as the covariate.  We tested for significance of the interaction terms 

in saturated models to ensure models had equal slopes prior to making comparisons of 

fecundity relative to length for each hybrid category.  All statistical analyses were 

completed in R (R Core Development Team 2010).  To further examine differences 

between fecundity egg size and hybrid status, we developed regression equations for log 

fecundity (and log egg size) versus log length using data from all fish and plotted 

residuals versus HI. 

 

Migration Timing 

Potential cues for migration timing include Julian date (photoperiod), stream 

temperature, and discharge.  We calculated mean daily water temperatures from hourly 
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stream temperature data collected with HOBO data loggers (Onset Corporation, Pocasset, 

Massachusetts).  Stream discharge data were collected at continuously recording 

measurement stations following overall procedures detailed in Rantz et al. (1982).  

Hydrographers from the CSKT measured discharge using methods in Nolan and Shields 

(2000).  Rating curves and tables that defined the relationship between stream stage and 

measured discharge were developed and maintained following standard methods 

(Kennedy 1983).  We tested whether HI, age, or sex best predicted conditions at the time 

of migration.  Response variables (date, temperature, discharge) were correlated, so we 

tested for differences in hybrid category, age, and sex on all response variables 

simultaneously using multivariate analysis of variance (MANOVA).   

We used individuals sampled at the K-Canal ladder for migration timing analyses, 

because we suspected lack of attracting flows to the S-Canal ladder might have caused 

biases in date of arrival in that trap.  While we had data for date of arrival in trap and a HI 

for every individual sampled at the K-Canal trap from 2006-2007, only the 2008-2009 

datasets were complete for hybrid category, sex, and age, because we did not start 

lethally sampling individuals throughout the migration period until 2008.  Therefore, we 

used the 2008-2009 dataset to determine whether hybrid category, age, and sex explained 

a significant amount of the variance in the response variables.  Additionally, we 

completed analyses of variance (ANOVA) to examine the differences in each response 

variable separately with respect to hybrid category, age, and sex.  We also used the entire 

dataset to complete single factor ANOVA to test for differences in Julian date, discharge, 

and temperature at migration as a function of hybrid category.  We used Tukey’s post-

hoc Honestly Significant Differences tests (Tukey’s HSD) to detect significant 
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differences among hybrid categories for each of the response variables.  All analyses 

were completed in R (R Core Development Team 2010). 

 

Results 

 

We sampled and successfully amplified diagnostic microsatellite markers for 294 

fish at the K-Canal and S-Canal ladders averaging 343mm in length and ranging in size 

from 93mm to 582mm.  We collected otoliths for age and growth analyses from all 

individuals that were lethally sampled.  Occasionally, we sampled fish that had already 

spawned, or were immature.  Spent or immature fish were captured after or near the end 

of the spawning migration.  These fish were eliminated from further analyses involving 

fecundity or migration timing because we only wanted to make comparisons using 

individuals actively migrating for spawning purposes.  HI for sampled individuals ranged 

from 0 to 1, but WCT genotypes (HI = 0) dominated our samples, comprising 68% of all 

individuals sampled for this study.  Individuals in the low hybrid category comprised 

14%, and individuals in the high hybrid category comprised 18% of all individuals 

sampled (Figure 3.2). 

 

Ages and Growth 

We back-calculated length at age for 151 individuals collected in the K-Canal and 

S-Canal ladder traps that ranged from 93mm to 504mm in length, and from 1 to 7 years 

old in age.  We classified 96 individuals into the zero category, 19 individuals into the 

low category, and 36 individuals into the high category.  There was overlap in sizes 
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among hybrid categories for all age classes, but von Bertalanffy curves demonstrated that 

high hybrids grow faster and generally achieved greater lengths at any given age (Figure 

3.3).  Tests of the equivalence of all von Bertalanffy parameters (Table 3.1) indicated 

significantly different growth between the zero and the high categories (χ
2
 = 15.6, d.f. = 

3, p = 0.001), the low and the high categories (χ
2
 = 25.3, d.f. = 3, p < 0.001), but not the 

zero and the low category (χ
2
 = 6.93, d.f. = 3, p = 0.074).  Asymptotic length (L ) was 

greater for the zero than the high category; however, caution should be taken when 

interpreting this result, as sample sizes at the oldest age classes were low, so estimates of 

L  are suspect.  Examination of the regression of residuals from the full von Bertanffy 

model versus HI indicated a significant, positive slope (y = 19.98x - 0.1285), substantial 

variation (R
2
=0.014), but no apparent thresholds to indicate an HI at which growth 

changed substantially. 

 

Fecundity and Egg Size 

We estimated fecundity and egg size from 98 females collected at both the K-

Canal and S-Canal Ladders in 2007-2009.  Mature females ranged in length from 282 to 

499mm.  Estimated fecundities ranged from 221 to 3456 eggs per individual.  E100 ranged 

from 3.96ml to 12.4ml.  Of these females, 66 were classified as zero, 8 were classified as 

low, and 17 were classified as high.  Interaction terms between hybrid category and 

log(length) in the saturated models were not significant, suggesting equal slopes models 

were adequate for determining the effect of hybrid category on F and E100 after 

accounting for the effects of log(length).  The effect of hybrid category was significant 

for tests of differences in fecundity (p = 0.016, Table 3.2, Figure 3.4) and for egg size (p 



69 
 

< 0.001, Table 3.3).  Results of the ANCOVA for fecundity revealed the high hybrid 

category had significantly lower log(F) than the zero category, but the low category and 

zero categories did not significantly differ (Table 3.4).  On the other hand, results of the 

ANCOVA for egg size indicate a small, but significant increase in log(E100) for high 

hybrids relative to the zero category (Table 3.3).  Similar to fecundity analyses, the zero 

category and the low category showed no differences in log(E100).  To further explore 

these differences with hybridization, we examined the residuals of the log fecundity (and 

log egg size) regression with log length with hybrid index.  The slope of the fecundity 

residuals versus HI was significant and negative (-0.46, P<0.001), while the slope of the 

egg volume residuals versus HI regression was significant (P=0.002) and positive (0.12).  

In both cases, there were no apparent break-points to indicate an HI at which major shifts 

in residuals occurred. 

 

Migration Timing 

We sampled 192 individuals (147 to 582 total length, mm) at the K-canal ladder 

that were making spawning migrations (mature individuals with developed gonads).     

The earliest migration date of these fish in any year was March 26, 2008 (Julian day 85).  

Two 2 year-old ripe males made the latest migrations of any fish in any year, also in 

2008, on June 26 (Julian day 178) and June 30 (Julian day 181).  Those individuals 

arrived in the trap 25 days after the remainder of the 2008 migrants and were removed 

from further analyses as they were highly influential outliers as the youngest, and by far, 

latest migrating individuals.  Median ages of the zero, low, and high migrating fish in 

2008-2009 were 5, 5, and 4, respectively.  While there were no significant differences 
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among the groups for age at migration, 14% of fish analyzed in the high category were 3 

year old fish, versus 4% and 13% for the zero and low categories, respectively.  In the 

2008-2009 dataset, 71 individuals were classified as zero, 9 were classified as low, and 

29 were classified as high.  In the full dataset, 127 individuals were classified as zero, 26 

individuals were classified as low, and 39 individuals were classified as high.  Graphical 

analyses of the distribution of individuals across migration conditions (day, discharge, 

temperature) suggest that while there is substantial overlap between hybrid categories, 

there were only two individuals in the four-year data set in the high hybrid category that 

migrated after the first major increase in the hydrograph caused by spring runoff (Figure 

3.5). 

MANOVA results of the 2008-2009 data set suggested there were significant 

effects of hybrid category (Wilks’ λ = 0.632, F6,164 = 7.05 , P < 0.001) on the response 

variables (day, log[discharge], temperature).  Age and sex were not significant in the 

MANOVA, but sex did explain a significant amount of variation in the responses Julian 

date (ANOVA, P = 0.006) and log[discharge] (ANOVA, P = 0.030), as males tend to 

migrate earlier than females, but with overlap.  Hybrid category was significant across all 

response variables used in the MANOVA.  These results were based on a model with no 

interaction between factors as the model with all two-way interactions suggested none of 

the interactions were significant. 

 Results from the MANOVA of the entire 2006-2009 data set also demonstrated 

significant differences (Wilks’ λ = 0.698, F6, 374 = 12.3, P < 0.001) in the conditions under 

which fish from different hybrid categories migrate.  One-factor ANOVAs followed by 

Tukey’s HSD tests indicated significant differences between the zero and the high 
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category for Julian date (P < 0.001), log(discharge) (P < 0.001), and temperature (P < 

0.001).  The low and the high category were also significantly different for Julian date (P 

< 0.001), log(discharge) (P = 0.005), and temperature (P = 0.001).  There were no 

significant differences across all the response variables for the zero versus low hybrid 

categories (Figure 3.6). 

 

Discussion 

 

Are WCT and Hybrids Equivalent? 

This study demonstrated differences in important life history characteristics 

related to growth, fecundity, and migratory behavior between WCT with no evidence of 

RBT ancestry and RBT x WCT hybrids HIs > 0.20.  Fish in the high hybrid category 

grew faster and had fewer, but larger eggs at a given length than fish in the low or the 

zero categories.  While our sampling of upstream migrating fish could not resolve 

differences in actual spawn timing or location, there were differences in the 

environmental conditions during which fish migrate that could lead to separation in time 

and/or space in spawning.  Individuals in the high hybrid category abruptly stopped 

arriving in the K-Canal trap as soon as the hydrograph began the most rapid increase of 

its rising limb (Figure 3.5).  There did not appear to be as strong a threshold related to 

day or temperature conditions as that for a rapid increase in discharge (Figure 3.5).  The 

differences observed in this study provide compelling evidence that WCT and hybrid 

individuals with HI > 0.20 are not equivalent in migratory behavior, growth, or fecundity. 
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This study did not provide any evidence that hybrids in the low category differed 

from individuals identified as unhybridized WCT.  We may have observed this for 

several reasons.  First, there may be few functional differences between WCT and low 

category hybrids.  Second, it is likely several individuals classified in the zero category 

were actually hybrids.  Genetic identification of an individual’s HI was based on 7 

codominant (14 total alleles per individual) diagnostic microsatellite markers.  The 

probability of not detecting a hybrid marker in an individual with 10% RBT ancestry is 

(pWCT)
14

 = (0.90)
14

 = 0.23, where pWCT is the proportion of the individual’s ancestry 

that is WCT (Kanda et al. 2002).  Therefore, we likely overestimated the number of 

unhybridized individuals and underestimated the number of individuals in the low 

category.  Given introgression is widespread in the Jocko River, but occurs at low rates 

(pRBT < 0.05) in most locations (Chapter 2), it is possible that many individuals 

genotyped as WCT had some very low level of RBT ancestry.  Finally, we may not have 

observed differences between the zero and low categories because of the relatively small 

sample sizes in the low category.  This small sample size in the low category made it 

impossible to evaluate differences between the <20% HI of the USFWS versus the <10% 

pRBT of many state policies (UDWR 2000). 

 

Growth, Fecundity, and the Role of Growth Environments 

We observed increased growth rates for individuals in the high hybrid category; 

however, given that the juvenile growth environments are likely disparate, there is no 

way to separate an effect of RBT ancestry from an effect of increased juvenile growth in 

a more productive environment.  In the Jocko River system, individuals with HI ≥ 0.20 
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are most likely to have been born in low elevation habitats, while individuals with WCT 

genotypes are most likely to be from high elevations (Chapter 2).  Temperature and food 

availability are primary drivers of trout growth (e.g. Railsback and Rose 1999) that are 

highly correlated with elevation (Sloat et al. 2005; Rasmussen et al. 2010).  Bear et al. 

(2007) demonstrated there was no significant difference in growth at the optimal growth 

temperature for WCT and RBT in laboratory studies.  This may suggest the growth 

differences observed in this study are due to the differences in growth environments 

during juvenile life stages.  Conversely, Seiler and Keeley (2009) suggests growth of 

juvenile Yellowstone cutthroat trout is impaired by competition with F1 Yellowstone 

cutthroat trout x RBT hybrids.  It is uncertain how competitive interactions may influence 

growth of subadult individuals in the zero and low hybrid categories when they are 

present in the same habitats. 

 Muhlfeld et al. (2009a) found the median age of outmigration for fluvial WCT 

and hybrids was 2, suggesting that the beginning of the third year of life may mark the 

beginning of similar growth environments for WCT and high hybrid groups in the Jocko 

River.  Modeled growth trajectories for zero and low hybrid categories remain below 

those for high hybrids across all age classes even when they are likely sharing similar low 

elevation habitats (Figure 3.3). 

Fecundity, egg size, and growth are all positively related, and all are at least 

partially dependent on available resources and growth conditions (Einum et al. 2004).  

Both egg size and number have been shown to be strongly related to fitness, and often 

represent an important life history tradeoff, as females must allocate limited resources, 

and it is energetically expensive to produce many eggs and large eggs.  There was 
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evidence of egg size – fecundity tradeoffs between zero and high hybrids, as the zero 

category fish have higher fecundities at a given length (Figure 3.4, Table 3.2), but high 

category fish have larger egg sizes at a given length (Table 3.3).  Along with larger eggs 

at a given length, an earlier age at maturity could also mitigate for reduced fecundity in 

high category hybrids.  While we did not observe significant differences among 

categories for age at migration, high category hybrids did have a younger median age at 

migration (4 years old) relative to zero category fish (5 year old), and substantially more 

high category hybrids were classified as age 3 (14%) relative to zero category fish (4%). 

 

Migration Timing and Reproductive Separation 

The primary difference we observed among groups in migration timing was that 

high hybrids appeared to have a consistent and abrupt end to their migration with the first 

major jump in discharge caused by spring runoff (Figure 3.5).  Fish in the zero and low 

hybrid categories in this study often arrived in the K-Canal trap during the rising limb of 

the hydrograph.  This is concordant with Schmetterling (2001) in the Blackfoot River 

drainage, MT, where WCT migrated to the mouths of spawning tributaries on the rising 

limb of the hydrograph before spawning in those tributaries on the descending limb.  

Muhlfeld et al. (2009b) found RBT and RBT backcrossed hybrids tended to migrate 

earlier at lower discharges and spawn on the rising limb of the hydrograph, and WCT and 

WCT backcrossed hybrids tended to spawn on the descending limb of the hydrograph.  

These authors observed substantial overlap in spawning time between the hybrid 

categories and the parental categories, surmising that hybrids are likely facilitating further 

introgression between parental types.  Spatial and temporal separation in spawning is 
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likely to be a primary factor limiting introgression (DeRito et al. 2010), but if hybrids 

express intermediate phenotypes and continue to introgress, reproductive isolation 

between the species may continue to erode.   

 

Hybrid Policy and Levels of RBT Introgression in WCT Populations 

Critics of the current USFWS policy to include hybridized populations with < 

20% RBT introgression have contended that this genetic invasion has the potential to 

disrupt local adaptations, leading to lower fitness of hybridized populations (Allendorf et 

al. 2004; Allendorf et al. 2001).  While we did not measure the relative fitness of the 

hybrid categories in this study, differences observed in growth, fecundity, and egg size 

are likely related to the survival and reproductive success of WCT and high hybrids in 

their respective habitats (Kinnison et al. 2001; Schaffer 2004).  Depending on the links 

between migration timing, spawn timing, and emergence timing relative to flood pulses, 

even life history differences related to migration time could influence the reproductive 

success of individuals and, consequently, population success (Fausch et al. 2001).  The 

scale that the traits addressed in this study are locally adapted is unknown, but given the 

strong selection on factors related to fecundity and egg size, local and environmentally-

dependent adaptations are likely (Hendry and Day 2003; Lobon-Cervia et al. 1997).  For 

example, clutches comprised of larger egg sizes exhibited by the high hybrids may have 

lower total metabolic demand than a larger clutch of smaller eggs, thus creating an 

offspring survival advantage in lower elevation habitats where fine sediments and 

temperatures are elevated, leading to lower dissolved oxygen content (Hendry and Day 

2003).  Continued introgression of high hybrids into habitats dominated by WCT 
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phenotypes may result in intermediate phenotypes or may otherwise erode local 

adaptations. 

 Despite these important differences between the high and zero categories, the low 

and zero categories were similar in all tests in this study.  While this study had many 

limitations inhibiting our ability to detect differences in these groups (see above), this 

study does provide empirical evidence in support of the USFWS policy that low category 

hybrids are morphologically and behaviorally indistinguishable from WCT.  However, 

other studies have provided evidence to the contrary.  Muhlfeld et al. (2009a) described a 

25% reduction in reproductive success (as measured by number of out-migrating 

juveniles per parent) with 10% RBT admixture.  It is unclear from this study what 

proportion of these measured differences is a result of true vital rate reductions versus 

alternative life history strategies (such as higher survival from larger egg sizes, increased 

growth, or increased rates of residency in hybrids).  Other studies have demonstrated 

important differences in growth (Allendorf and Leary 1988; Seiler and Keeley 2009), 

developmental stability (Leary et al. 1985), morphology (Hawkins and Quinn 1996), and 

survival (Leary et al. 1995) as a result of F1 crosses of RBT and cutthroat trout, but none 

of these studies addressed differences between WCT-backcrosses and WCT in wild 

populations.  The linear relationship of the residuals (versus a step-function) and high 

variance in this study implies that a biologically-derived threshold from field studies is 

not promising. 

 Given the small number of studies and degree of uncertainty regarding whether 

there are appreciable morphological, behavioral, life history, and, ultimately, fitness 

differences between WCT and hybrids with low RBT ancestry, further study of these 
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issues is important.  Furthermore, we have no knowledge of the role of low levels of 

hybridization in disease resistance, nor whether the increased genetic diversity caused by 

hybridization leads to increased evolutionary potential in rapidly changing habitats (see 

Ellstrand and Schierenbeck 2000).  A diversity of studies addressing life history, fitness-

related metrics, population viability, and ecosystem dynamics in a broader diversity of 

habitats is required before we can better understand the ecological and evolutionary 

consequences of introgressive hybridization in cutthroat trout populations. 

 

Study Limitations and Suggestions for Future Research 

The primary limitations of this study – the inability to control for early life stage 

growth environment, and issues related to the limited sample sizes of low category 

hybrids – have been addressed above.  However, there are some additional issues that 

limit this study and provide important avenues for future research.  First, it is important to 

remind the reader that this study was conducted only on comparisons among migratory 

fish.  Life history differences between WCT and hybrids may also occur for resident 

populations, and this may be a very important future research topic.  We have no reason 

to think that resident fish would show differences from their migratory counterparts 

analyzed in this study, but a study that examined these life history characteristics in an 

array of habitats with an array of pRBT levels would be a highly beneficial contribution 

as it may be able to explicitly deal with some of these confounding issues. 

Another major limitation is the fact that we had no ability to directly link growth 

and age of maturity.  There was no evidence from our analysis of the otoliths that we 

could document the age of previous spawning events in an older, potentially repeat 
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spawning fish.  Certainly, many or most of the fish captured during spawning migrations 

may have reached their first year of maturity, especially since the majority of fish were 

aged 3-5.  If increased growth rate observed in high category hybrid trout relative to low 

and zero category trout could lead to earlier average age at maturity, thus reducing the 

generation time, it could give high category hybrids a substantial mediation for the 

reduced fecundity rates we observed.  A better understanding of the growth maturity 

relationship would be an important contribution to our understanding of the consequences 

of hybridization. 

 Another important limitation of this study is the inability to directly link migration 

timing to spawn timing.  Since overlap in space and timing of spawning is what leads to 

hybridization between RBT, hybrids, and WCT, it would be very helpful for research and 

management to understand the conditions of spawn timing, rather than migration timing.  

Muhlfeld et al. (2009b) indirectly measured spawn timing using radio telemetry, but this 

may be the best kind of data available for spring spawning salmonids, where we usually 

cannot observe the timing of redd construction.  We should point out that while 

enumerating eggs for this study, we noticed that females with more RBT characteristics 

tended to also have loser eggs indicative of ripeness and imminence of spawning.  While 

we have no quantitative measure of ripeness, this anecdotal evidence indicates there may 

be even greater evidence of separation for spawn timing that we observed for migration 

timing. 
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Table 3.1.  Parameter estimates of the von Bertalanffy curves fit to back-calculated size at 

age data for each hybrid category. 

 
a,b 

Categories with different letter superscripts were significantly different in pairwise 

likelihood ratio tests for differences in all parameters. 
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Table 3.2.  Parameter estimates and ANOVA results for ANCOVA testing for different 

intercepts of each hybrid category for the length – fecundity relationship.  The model 

used was:  log(F) = a + b(high) + c(low) + d(log(length)). 
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Table 3.3.  Parameter estimates and ANOVA results for ANCOVA testing for different 

intercepts of each hybrid category for the length – E100 relationship (E100 is the volume of 

100 eggs).  The model used was: log(E100 ) = a + b(high) + c(low) + d(log(length)) 
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Figure 3.1.  Map of study watershed.  K-Canal and S-Canal are irrigation diversion 

structures on the main-stem Jocko River, MT.  These structures have fish ladders and 

migration traps and are complete barriers to upstream movement at most flows. 

  



83 
 

 
Figure 3.2.  Frequency distribution of hybrid index scores of individuals collected at K 

and S canal ladders that were used to address life history questions in this study.  Each 

analysis used a subset of these individuals, depending on study question.  The bin labels 

here are the HI thresholds we evaluated using 7 diagnostic microsatellites (14 alleles).  It 

should be noted that not every individual HI exactly matches one of the bin labels in this 

figure, because not all individuals amplified at all loci.  
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Figure 3.3.  Von Bertalanffy (VB) curves fit to back-calculated size at age data for fish in 

each of the hybrid categories.  Data points for hybrid categories are offset to highlight 

differences of length distributions of each category at each age.  
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Figure 3.4.  Relationship of log transformed fecundity (F) to log transformed total length 

(L,mm).  Separate lines are fit to the data for each of the hybrid categories: zero (R
2
 = 

0.31), low (R
2
 = 0.80), and high (R

2
 = 0.21). 
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Figure 3.5 pt 1.  Distributions of arrivals in K-Canal trap for each of the hybrid categories 

across Julian date, discharge, and temperature for 2006 (a), 2007 (b), 2008 (c), and 2009 

(d).  Triangles represent median arrival date, and the lines represent the entire range of 

days of arrival in the trap. 
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Figure 3.5 pt. 2.  
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Figure 3.6.  Box plots of the distributions of conditions (Julian day, discharge, and 

temperature) at which fish migrated into K-Canal ladder 2006-2009.  Letters above the 

distributions indicate significant differences (Tukey HSD, P < 0.05). 
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CHAPTER 4 

RESTORATION OF A MIGRATORY LIFE HISTORY TO A CUTTHROAT TROUT 

POPULATION: A POPULATION VIABILITY ANALYSIS TO ASSESS TRADEOFFS 

IN BARRIER MANAGMENT 

 

Abstract 

 

Cutthroat trout are declining throughout their range due to habitat degradation, 

isolation, and invasive species.  Negative consequences of invasion, such as 

hybridization, often force fishery managers to make difficult decisions about the use of 

barriers as a management tool.  Barriers can be effective for limiting the spread of 

invasive species, but they have negative side-effects of restricting success of migratory 

life histories.  We used a multiple life history, stochastic, stage-structured population 

model to assess the relative viability of a cutthroat trout population in the Jocko River, 

MT, with and without a migratory life history.  In the population model, young of year 

survival, the transition of subadults to adult1 stage, and reproductive contribution of the 

adult1 stage had the highest elasticities by an order of magnitude over all other matrix 

elements.  Restoration of passage above barriers had strongly positive effects on the long-

term viability of the population.  Allowing limited escapement of migratory fish 

decreased the cumulative proportion of populations extinct at the end of 200 years from 

0.83 to 0.54.  Reducing young-of-year survival and fecundity rates to reflect the influence 

of hybridization estimated in recent studies led to dramatic declines in viability where 

100% of population trajectories went extinct before 125 years.  Results of a population 
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genetic model indicate that restoration of a migratory life history could result in 

substantial introgression in above barrier populations after 4-10 generations of passage.  

Selective passage could effectively mitigate that threat.  This study illustrates the benefits 

of restoring migratory life histories, but elucidates the risk for increased introgression.  

Finally, analysis of model elasticity values highlights the need to better address vital rate 

variation due to hybridization of poorly understood early life stages from young of year 

through subadult. 
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Introduction 

 

The introduction of non-native species is a well-established cause in the 

imperilment of native freshwater fish populations (Rahel 2000; Ricciardi and Rasmussen 

1999).  Declines in native salmonids due to interactions with non-native fishes occur for a 

variety of reasons, including predation (Stapp and Hayward 2002), competition (Peterson 

et al. 2004), and hybridization (Leary et al. 1995).  One of the primary factors restricting 

invasion of non-native fishes is the presence of barriers to movements (Fausch et al. 

2009).  Unfortunately, fragmentation of habitats and populations is another important 

factor leading to the decline of native salmonids (Harig and Fausch 2002; Morita and 

Yokota 2002; Letcher et al. 2007).  This conundrum presents an important challenge for 

salmonid conservation efforts (Peterson et al. 2008; Fausch et al. 2009) that will only be 

exacerbated by climate change and other anthropogenic alterations to salmonid habitats 

(Williams et al. 2009). 

Rainbow trout (RBT, Oncorhychus mykiss) have been introduced in nearly every 

suitable habitat worldwide (Lowe et al. 2000; Fausch et al. 2001), and they interbreed and 

produce fertile hybrids with cutthroat trout (O. clarkii spp.) in areas where they are 

naturally and anthropogenically sympatric (Leary et al. 1995; Behnke 2002; Kozfkay et 

al. 2007; Metcalf et al. 2007).  Westslope cutthroat trout (WCT, O. c. lewisi) are listed by 

states as a species of concern, and they have been considered for listing as threatened 

under the Endangered Species Act (USFWS 2003).  Hybridization with RBT is generally 

considered to be a primary conservation threat to native populations of WCT (Rubidge et 

al. 2001; Allendorf et al. 2004; Muhlfeld et al. 2009a).  Even though existing and future 
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barriers may protect WCT population from hybridization, they may decrease the 

conservation value of these populations through limiting the diversity of life history types 

(UDWR 2000; Peacock and Kirchoff 2004; Shepard et al. 2005; Williams et al. 2007).   

Many salmonids exhibit partial migration, where a component of the population 

carries out their entire life cycle in or near natal habitats, and another component of the 

population leaves natal habitats for more productive rearing habitats (Trotter 1989; 

Behnke 2002).  Relative to the resident life history strategy, migratory life histories 

generally gain a reproductive benefit through increased fecundity due to larger body size 

(Hendry et al. 2004).  Migratory life histories may increase population viability through 

increased reproductive potential, mobility (to seek refugia during times of stress), and 

expression of phenotypic plasticity (Hutchings 2004).  Habitat connectivity and 

migratory life histories are crucial for rapid recolonization of habitats following 

catastrophic events, such as wildfire and debris flows (Dunham et al. 2003; Gresswell 

1999).  Migratory fish also help maintain genetic and demographic connectivity between 

populations (Neville et al. 2006; Shepard et al. 2005).  The presence of nonnative species 

often forces fishery managers to make difficult decisions regarding the tradeoffs of 

managing for river connectivity to support migratory life histories versus maintaining or 

placing barriers to limit the upstream movement of invasive species (Fausch et al. 2009). 

There are approximately 75,000 dams at least 2m high in the contiguous United 

States and innumerable barriers to fish movement resulting from small dams, road 

culverts, irrigation diversions, and other hydrologic alterations (Graf 1999; Warren and 

Pardew 1998).  Given the ubiquity of non-native fish invasions (Rahel 2000), managers 

will have to contend with the tradeoffs of fragmented populations versus increased 
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interactions with non-native species in nearly all fishery management jurisdictions.  

Where feasible, selective fish passage at barrier structures can promote connectivity of 

native fish populations to habitats for a full expression of life history.  For example, 

selective fish passage is currently used as a tool to return migratory bull trout and 

Yellowstone cutthroat trout (O.c. bouveri) to spawning habitats above major dams and 

permanent weirs (Henderson et al. 2000, USFWS 2002).  Where selective passage of 

native fishes at barriers is not feasible, managers will need to weigh the relative merits of 

removal versus maintenance of the barrier (Peterson et al. 2008; Fausch et al. 2009). 

An understanding of both the demographic benefits of restoration of migratory 

life histories and the genetic risks to upstream conservation populations need to be 

weighed as managers make decisions regarding barriers.  Previous work has indicated 

that habitat diversity and volume, carrying capacity, dispersal among populations, and 

synchrony all play important roles in population viability (Harig and Fausch 2002; 

Hilderbrand 2003; Morita and Yokota 2002; Novinger and Rahel 2003; Young et al. 

2005), but there is limited quantification of the importance of migratory life history types 

on viability for inland trout (but see Letcher et al. 2007; Peterson et al. 2008).  

Demographic population models in concert with population genetic simulation models 

are useful tools to evaluate relative hybridization risks of complete or selective passage of 

migratory individuals at a barrier.  Because both demographic and genetic viability are 

time dependent (e.g. Epifanio and Philipp 2000), conservation decision making could 

benefit from linking the dynamics of genetic introgression and population persistence to 

evaluate these tradeoffs directly. 
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The goal of this project is to assess demographic and genetic tradeoffs of 

restoration of migratory life history versus isolation in a WCT conservation population.  

We used two simulation frameworks to make this assessment.  First, we used a stochastic 

matrix population model to address the relative benefits of different passage scenarios for 

migratory WCT and to test demographic consequences of the potential observed 

reductions in juvenile survival (Muhlfeld et al. 2009a) and fecundity (Chapter 3) due to 

hybridization.  Second, we used an individual-based population genetic simulation model 

to address the hybridization consequences of allowing potentially hybridized individuals 

to return to an unhybridized population.  Using these models, we evaluated no passage, 

selective passage (using phenotypic characteristics – visual calls), and complete passage.  

We applied this approach to a case study in the Jocko River basin where two large 

irrigation diversion structures restrict fish passage, both fluvial migratory WCT and non-

native RBT and hybrids, to populations above the barriers. 

 

Study Area 

 

The Jocko River system is a 979 km
2
 tributary basin of the Flathead River in 

northwestern Montana (Figure 4.1).  The basin lies within the boundaries of the Flathead 

Indian Reservation, and the basin’s fisheries are managed by the Confederated Salish and 

Kootenai Tribes (CSKT).  We detected evidence of RBT introgression throughout the 

Jocko River system, but frequencies of RBT alleles remain below 0.05 in nearly all 

regions of the upper main-stem Jocko River and the North, Middle, and South Forks of 

the Jocko River (Chapter 2).  The two large irrigation diversions, the K-Canal and S-
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Canal ladders on the upper Jocko River, have limited the upstream spread of nonnative 

salmonids including RBT and brown trout Salmo trutta. Brook trout Salvelinus fontinalis 

are present in many locations throughout the system.  Both diversions are barriers to 

movement and migration, although fish can occasionally pass the K-Canal diversion 

when the Jocko River is at bank-full or higher flows and irrigation managers uncheck the 

diversion (Craig Barfoot, CSKT, personal communication).  These barriers have been 

modified with fish ladders leading into traps so that biologists could selectively pass 

native species if appropriate.  Currently, only bull trout Salvelinus confluentus are passed. 

The Oncorhynchus sp. samples collected in the K-Canal and S-Canal ladders are 

dominated by individuals with WCT genotypes, but RBT and hybrids are collected in the 

migration traps at K-Canal and S-Canal ladders during spring spawning migrations.  

From 2006-2009 we obtained genotypes for individuals captured in the migration traps at 

7 microsatellite loci diagnostic for RBT and WCT ancestry (see Chapter 2 for methods).  

To quantify their ancestry, each individual was assigned a hybrid index score (HI) based 

on the number of RBT alleles amplified from seven diagnostic microsatellite loci divided 

by the number of total alleles amplified per individual.  Individuals with HIs of zero have 

a WCT genotype, and individuals with HIs of 1 have a RBT genotype.  Individuals with 

HIs of zero dominate the migratory component (comprising 74% of all individuals in the 

migration traps; Figure 4.2).  Individuals with relatively high RBT ancestry (HI > 0.2) 

comprise 20% of the individuals captured in the trap (Figure 4.2). 
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Methods 

 

Demographic Model 

We designed a multiple life history, stochastic, stage structured population model 

using the Matlab program VitalSim (Morris and Doak 2002).  The deterministic 

projection model was a stage-based model, with young of year in the first stage and three 

length-based stages that represented either resident or migratory individuals (Figure 4.3).  

Length-based stages are appropriate for use in a salmonid population model because 

survival, maturity, and fecundity are strongly dependent on length (Downs et al. 1997; 

Einum et al. 2004; Hilderbrand 2003).  The transition to either migratory or resident life 

histories occurred as a transition in the subadult stage as Muhlfeld et al. (2009a) found 

out-migrating juvenile trout had a median age of 2 and rarely out-migrated as fry 

(<75mm). 

Survivorship and transition values came from the literature and were corroborated 

with data from the Jocko River system when possible.  Survivorship for the resident life 

history was representative of moderate to high survivorship reported by Shepard et al. 

(1997) and similar to Hildebrand (2003).  Survivorship for the migratory life history was 

based on ranges in Shepard et al. (1997) (see Appendix C for all vital rate values and 

variances).  We assumed a 50% transition probability for each stage to be consistent with 

empirically derived growth rates from this system (Chapter 2), as well as previously 

reported length frequency and size at maturity data reported by Downs et al. (1997) for 

residents and Thurow et al. (1988) for migratory Yellowstone cutthroat trout. 
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Fecundity values are based on the values reported by Downs (1997) for resident 

WCT and Shepard et al (1997) and this system (Chapter 2) for migratory fish.  Migratory 

fish are usually alternate year spawners, but about 15% of migratory Yellowstone 

cutthroat trout spawn annually (Thurow et al. 1988).  Propensity to breed was therefore 

calculated as 1.0 for resident fish and 0.65 (0.5+0.15) for migratory fish.  This model 

assumed a 1:1 sex ratio, and only females were modeled.   

We calculated elasticity values for the matrix elements following Morris and 

Doak (2002) to evaluate the relative influences of each element on population growth.  

Some elements are made up of multiple vital rates (e.g., fertility and young of year 

survival which includes incubation success and fry survival).  We also calculated the 

elasticity of individual vital rates.  All elasticities were calculated using the MATLAB 

program Limitsens (Morris and Doak 2002). 

We modeled environmental stochasticity by randomly varying every vital rate 

around a predetermined mean value.  Vital rates were drawn from a beta distribution 

(survivorship and breeding probabilities) or stretched beta values (fecundity values).  To 

estimate the standard deviation required to compute a beta distribution in VitalSim, we 

obtained ranges of values for vital rates reported in the literature, then divided the 

reported range by four to have an estimate of standard deviation.  The shape of the 

distribution was visually examined for each vital rate by randomly simulating 500 values 

from the distribution in the Matlab program BetaDemo (Morris and Doak 2002).  We 

simulated 1000 population trajectories over 200 years where random projection matrices 

were calculated for each population trajectory at each time step.  We set a quasi-

extinction threshold of 25 adult female individuals of all age classes (equal to 50 total 
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adults).  Starting population sizes were 40,000 individuals at stable age distribution, 

which approximates densities of subadult and adult WCT in 3 to 6 km of habitat in the 

upper Jocko River system (CSKT, unpublished data). 

Passage Scenarios 

The goal was to establish the demographic effect of passing migratory native 

WCT above a migration barrier.  The base scenario represents current management in the 

Jocko River where no fish of the genus Oncorhynchus are passed above the irrigation 

diversion dams to avoid further introgression in the upper Jocko River.  To model a 

population dominated by resident life history where migratory individuals are lost to lack 

of connectivity, we made the migratory sub-adult survival approximately zero (0.001).  

We simulated two additional scenarios (Table 4.1): (1) where there is selective passage so 

migrants have moderate total subadult survival (0.32) and (2) complete passage where 

migrants have high total subadult survival (0.50), effectively recruiting more migratory 

individuals into adulthood. 

For all scenarios, we estimated population viability as the cumulative proportion 

of population trajectories that had reached quasi-extinction by the end of the 200-year 

scenarios (i.e. probability of extinction).  If 100% of the population trajectories were 

extinct after 200 years, we reported the year by which all trajectories had gone extinct.  

Population growth rate across all trajectories within a scenario was recorded as the mean 

of log of stochastic lambda (logλs), which is the arithmetic mean of the log ratios of 

population sizes in adjacent years (Morris and Doak 2002).  The log of the stochastic 

lambda is analogous to log(λ) recorded for a single deterministic matrix.  We recorded 
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the mean values of logλs for each population trajectory in order to examine the 

distribution of logλs across all trajectories for each scenario. 

Consequences of Hybridization 

We examined demographic consequences due to hybridization by decreasing 

mean vital rates in the stochastic matrix model described above in the complete passage 

scenario according to reduced reproductive output of hybrids compared to WCT 

described in recent studies.  Muhlfeld et al. (2009a) described an approximate 50% lower 

reproductive output of individuals with HIs of 0.20 and an approximate 25% lower 

reproductive output of individuals with HIs of 0.10 relative to unhybridized fish.  It is 

unclear from that study whether differences in reproductive output were due to life 

history differences, lower fecundity, lower mating success, lower egg through young of 

year survival, or some other factor.  Results of relative survival studies for F1 WCT X 

RBT hybrids versus parental types reported in Leary et al. (1995) suggest reduced 

survival in hybrids occurs primarily post-hatching.  Therefore, we modeled the reduced 

reproductive output of hybrids described in Muhlfeld et al. (2009a) as a reduction in 

young of year survival.  In addition, our research suggested that average size dependent 

fecundity of hybrids with HI > 0.20 was approximately 50% of that for individuals with 

HIs of 0 – 0.20 (Chapter 2).  We ran three additional scenarios in the stochastic matrix 

model where (1) we reduced fecundity of all adult age classes by 50%, (2) we reduced 

young of year survival by 25%, and (3) we reduced young of year survival by 50%.  We 

analyzed the output of these scenarios as described above for migration scenarios. 
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Introgression Model 

We modeled the potential for introgression for the selective and complete passage 

scenarios using PEDAGOG (Coombs et al. 2010).  PEDAGOG is an individual-based 

population genetics simulation framework where each individual has a multi-locus 

genotype, in this case, for the 7 diagnostic microsatellite markers used to genotype 

individuals in Chapters 1 and 2. Under selective passage management, it is important to 

acknowledge that passage of hybrid individuals can still occur because phenotypic 

characteristics are a notoriously inaccurate basis for identification of backcrosses to WCT 

(Weigel et al. 2002).  Under the complete passage scenario, individuals of all possible 

HIs passed the K-Canal and S-Canal diversions into the upstream population.  We 

modeled two populations, Trap and upper Jocko River.  We generated allele frequencies 

for each locus and population using raw individual genotypes entered for individuals 

collected in the K-Canal and S-Canal traps (Trap, below barrier), as well as upstream 

population genetic samples collected in the upper Jocko River and the lower South and 

Middle Forks of the Jocko River (JR, above barrier).  While population samples from the 

South Fork and Middle Fork Jocko River used to create the JR simulated population were 

mildly introgressed (pRBT < 0.02), we removed individuals with RBT alleles in order to 

test the direct influence of the hybridized trap population on the total change in pRBT in 

the above-barrier JR population as if it were unhybridized.  This also effectively modeled 

another generalized scenario, where managers must make a decision to maintain or 

remove barriers below an isolated, unaltered cutthroat population. 

We modeled individual WCT during their subadult and adult life stages (and used 

identical survival rates to those in the matrix model).  Individual growth was modeled 
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using modifications of the von Bertalanffy growth model developed for individuals with 

WCT genotypes in Chapter 3, where the migratory Trap population had a maximum 

length (  ) of 550mm and the resident JR population had    of 380mm.  Individual 

fecundity was modeled using the length-fecundity relationship estimated for individuals 

with WCT genotypes in Chapter 3.  Maturity was modeled to be age based (individual 

must be at least two years old), as well as size based (individual must be at least 150mm).  

Movement of individuals from the trap to the upstream population required an individual 

to be >300mm (and mature).  At each reproductive time step, parents were randomly 

chosen from the mature individuals, and matings were carried out randomly until annual 

cohorts of 10,000 1-year-olds were created.  Cohorts were allowed to overlap (e.g. a 

mature 3 year-old could mate with a mature 5 year-old).  To model sneaker male mating, 

the number of potential mates for females was set at 2, and the number of potential mates 

for males was set at 3.  See Appendix C for a complete list of specific parameters. 

Each scenario was run for 6 generations to approach a stable age distribution.  

Frequencies of RBT alleles in the trap population were similar before and after the initial 

period, but no individuals with HI > 0.3 remained after (Figure 4.4).  We modeled 

movement of individuals from a hybrid swarm (trap population) into the upstream JR 

population.  Five output generations were modeled to examine changes in introgression 

in JR over a reasonable management time-frame (10-20 years), with movement from trap 

to JR allowed after the first generation (4 generations with movement).  PEDAGOG 

sampled the population at each time step.  We estimated the pRBT in each sample as the 

number of RBT alleles an individual had divided by 14 (total alleles possible per 

individual for 7 diagnostic microsatellites). 
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Passage Scenarios 

A review by Allendorf et al (2004) suggests populations with pRBT < 0.20 are 

morphologically indistinguishable from WCT populations based on meristics (from 

Leary et al. 1984), and populations had to have pRBT > 0.50 to be reliably identified 

from morphological characteristics (from Weigel et al. 2002).  To establish a range for 

identification errors, we downscaled these population-level admixture cutoffs to 

individual admixtures (i.e. an individual with HI = 0.20 should often be morphologically 

distinguishable from WCT, and an individual with HI = 0.50 should be reliably 

distinguishable from WCT).  We simulated selective passage with two different levels of 

identification error and then a complete passage (barrier removal) scenario.  In the first 

scenario (Selective/HI ≤ 0.2), individuals collected in the migration traps with HI ≤ 0.20 

were used as starting genotypes for the simulated Trap population.  In the second 

scenario (Selective/HI ≤ 0.5), individuals collected in the migration traps with HI ≤ 0.50 

were used as starting genotypes for the simulated trap population.  As a final scenario 

(barrier removed) for the trap population, we established a starting population for Trap 

that included all individuals collected in migration trap samples with hybrid and RBT 

genotypes to mimic a management strategy where all migratory fish were passed, or the 

barriers were removed completely (see Figure 4.4 for frequency distributions of HI 

before and after burn-in). 
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Results 

 

Passage and Population Viability 

The λ of the deterministic matrix for the base (no passage scenario) model was 

1.0.  Young of year survival, the transition of subadults to adult1 stage, and reproductive 

contribution of the adult1 stage had the highest elasticities by an order of magnitude over 

all other matrix elements (Table 4.2).  The elasticities of all vital rates for the selective 

passage scenario were low relative to those of the base scenario.  The resident subadult to 

migratory subadult transition and migratory subadults to migratory adult 1 transition had 

equal elasticities (0.02) that were the highest of migratory vital rates. 

Despite low elasticity values for migratory life history vital rates (Table 4.2, also 

see Appendix C, Table C.3.), population viability was substantially increased by allowing 

migration, regardless of whether passage was selective (moderate migrant survival) or 

complete (high migrant survival).  In the stable age distribution used to start all 

simulations, there were 0 adult migrants in the scenario with no passage, 12 in the 

scenario with selective passage, and 16 in the scenario with complete passage.  The no 

passage scenario had a logλs of -0.027 with a SD of 0.0138 (Figure 4.6).  There was an 

increase in mean logλs of 0.013 (48%) under the scenario with selective passage (mean 

logλs = -0.008, S.D. = 0.0136).  Further increasing the migrant survival under the 

complete passage scenario resulted in an increase mean logλs of 0.027, a nearly 100% 

increase relative to the no passage scenario (mean logλs = -0.0004, S.D. = 0.0131).  At the 

end of the 200-year time period, the cumulative proportion extinction was 0.35 with 

complete passage, 0.83 for no passage, and 0.54 for selective passage. 
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Consequences of Hybridization 

After 200 years, 100% of simulated population trajectories were extinct for the 

scenarios with a 50% reduction in fecundity (40 years to 100% extinction) and a 50% 

reduction in young of year survival (38 years to 100% extinction) (Figure 4.7).    Both of 

these scenarios had substantially negative logλs (-0.173 and -0.174, respectively), 

indicative of rapidly declining populations (deterministic λ ~ 0.86) (Figure 4.8).  Time to 

100%  extinction (124 years) and logλs (-0.074) were substantially higher for the scenario 

with a 25% decrease in young of year survival, but all scenarios had dramatically lower 

viability than the base scenario with high migrant survival (Figure 4.7). 

 

Passage and Introgression 

At the end of 6 burn-in generations, pRBT in the Trap population averaged 0.013 

(S.D. = 0.0023) for the selective/HI ≤ 0.2 scenario, 0.04 (S.D. = 0.0048) for the 

selective/HI ≤ 0.5 scenario, and 0.10 (S.D. = 0.01) for the barrier removed scenario (also 

see Figure 4.4).  Introgression was detectable in the upstream JR population in the first 

sample following the start of movement from the Trap population.  The trajectory of 

pRBT was asymptotic in both selective passage scenarios after 4 generations of migration 

approaching the starting pRBT of the Trap population (Figure 4.9).  After 4 generations, 

pRBT was 0.007 (S.D. = 0.002), 0.023 (S.D. = 0.004), and 0.058 (S.D. = 0.01) for the 

selective/HI ≤ 0.2, selective/HI ≤ 0.5 scenario, and barrier removed scenarios, 

respectively.  After 10 generations, the JR population pRBT (0.086) had still not 

increased to the Trap population pRBT (0.108) in the high admixture scenario (also see 
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Figure 4.9).  Migratory adults from Trap averaged 7% of the total mature adults in the JR 

population, which was slightly higher than the percentage of adults that were migratory at 

stable age distribution in the demographic models (3-4%). 

 

Discussion 

 

Westslope cutthroat populations in the Jocko River are threatened both by 

hybridization and barriers to movement that limit hybridization and migratory life 

histories.  The demographic model results indicate that restoration of even a few 

migratory individuals in an otherwise resident WCT population could substantially 

increase population growth rate and viability.  If reestablishing a migratory life history, 

however, also increases hybridization and decreases juvenile recruitment through 

reductions in fecundity (Chapter 3) or early survival (e.g., Muhlfeld et al. 2009a), the 

demographic costs associated with hybridization could outweigh the benefits of 

reconnection.  Selective passage may offer the best alternative to this apparent 

conundrum.  Results of the genetic introgression model indicate that an upstream 

population would be sufficiently hybridized to reduce viability only with a full passage 

from a moderate or highly hybridized downstream population. Selective passage could 

essentially limit the migrants to pRBT less than 0.03 and negligible declines in fitness 

associated with further hybridization.   
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Passage and Population Viability 

This study quantifies the potential role of migratory multiple life histories in 

population viability of WCT.  The improved viability in the scenarios with selective and 

complete passage relative to the viability of the scenario with no passage suggest that 

even very few surviving migrants with high individual fecundity rates impart much 

improved population growth rates.  We observed this improvement in viability, despite 

the fact that migrants have lower survival to adulthood than resident forms (Shepard et al. 

1997). 

We assumed no density dependence in our model, which could have altered the 

results.  We ignored density dependence because habitats above the K-Canal and S-Canal 

diversions support low trout densities despite the presence of widely suitable habitat 

(Craig Barfoot, CSKT, unpublished data).  Whether or not increasing density would 

constrain viability with restoration of migratory life histories would depend on the 

carrying capacity, the strength of density dependence, and the life stages it influences.  

Hilderbrand (2003) explored density dependence in cutthroat trout populations and 

demonstrated that carrying capacity can be positively correlated with population viability.  

Strong density dependence acting on young of year and juvenile fish could limit the 

viability gains if highly fecund migratory adults flood early life history rearing habitats 

with offspring.  However, because partial migration in salmonid populations is a 

conditional strategy that may be influenced by density-related factors (Jonsson and 

Jonsson 1993), it is reasonable to assume increased juvenile densities are likely to result 

in compensating shifts in proportions of migratory type fish in the population.  Rather 

than decreased population viability through exceeded carrying capacity, the system 
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would likely settle in to a new equilibrium, but with the compensatory reserve to grow if 

survival declined for other reasons.  While the magnitude of the increase of population 

viability is likely to change with some limits to population size, we would generally 

expect an increase in viability with passage. 

In addition to their benefits to population viability, migratory life histories in 

WCT are highly valued by anglers and managers.  Aside from their value as sportfish 

because of larger body size, migratory trout fill important ecological roles (e.g. Koel et al. 

2005), are crucial for dispersal and recolonization following catastrophic events (Dunham 

et al. 2003; Gresswell 1999), and are considered crucial for maintaining genetic and 

demographic connectivity between populations (Neville et al. 2006; Shepard et al. 2005).  

Efficacy of restoration of migratory life histories into any river system may depend on 

several factors.  Barrier removal or selective passage projects should be assessed from a 

cost-benefit standpoint.  Projects should be feasible from the perspective of human and 

financial capital, and there should be adequate habitat and a high likelihood of achieving 

population goals (Kemp and O'Hanley 2010). 

The degree to which migratory versus resident life history is expressed seems to 

be due to interplay of genetic and environmental effects, and the relative importance of 

those effects is highly context-specific in trout and charr (Northcote 2010).  Resident 

populations can evolve, or re-express migratory life histories in relatively short time 

frames (e.g. Pascual et al. 2001).  Bohlin et al. (2001) provided evidence that the density 

of migratory populations of anadromous brown trout Salmo trutta increased with 

decreases in migration cost due to elevation, suggesting restoration of migratory life 

histories may be most successful where migratory costs are otherwise low.  Likewise, 
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Morinville and Rasmussen (2003) demonstrated that migratory forms of brook trout 

Salvelinus fontinalus have higher metabolic costs and higher consumption rates than 

resident forms.  These studies indicate the magnitude to which migratory life history 

forms flourish may depend on the biotic constraints and distance to suitable habitats.  In 

the case of the Jocko River, low-elevation, main-stem habitats are still suitable for growth 

of migratory fish and are close proximity from spawning habitats, making this a good 

candidate system for restoring connectivity before migratory components of basin 

populations are lost. 

 

Introgression and Restoration of Migratory Life Histories 

While it has been demonstrated that introgressive hybridization can rapidly lead 

to the formation of a hybrid swarm, even when there is strong selection against hybrids 

(Epifanio and Philipp 2000), we are not aware of any research demonstrating large-scale 

declines in population sizes of WCT with the onset of RBT hybridization that are 

implicated by the simulations in this study.  We found declines in the numbers of 

juveniles produced could have dramatic consequences for population viability in highly 

hybridized populations (Figure 4.7).  This is consistent with the high elasticities for 

young of year survival and fertility of resident adults. Modeling population viability 

consequences of reduced individual fecundity in isolation of other factors may be overly 

simplistic.  While highly hybridized individuals had lower fecundities, they also had 

significantly higher egg size (Chapter 3), which may improve embryo or subsequent 

juvenile survival (Einum et al. 2004; Hendry and Day 2003).  Similarly, high RBT 

ancestry individuals also demonstrated significantly higher growth rates and earlier (but 



109 
 

not significant) median age at spawning migrations (Chapter 3).  However, increases in 

survival of young of year (or later life stages) attributable to hybrid ancestry are unknown 

and Leary et al. (1985) described developmental instability and high fluctuating 

asymmetry in F1 hybrids.  Thus, evaluating the differences in how fish of different 

ancestry express these key life history tradeoffs is needed to better understand the 

demographic consequences of hybridization.   

The demographic simulations support the importance of limiting further 

introgression and the value of migratory life histories.  Even though there is still 

uncertainty about the full consequences of introgression on persistence, caution is 

important.  The results of the introgression simulations suggest that we might solve both 

problems with selective passage that could be used to limit upstream introgression.  Even 

in a scenario where hybrids with HI of 0.5 were misidentified as WCT, the pRBT of the 

JR population was only 0.023 after 4 generations (10-15 years) of passage.  Although 

introgression is detectable at most sites (Actual estimates of pRBT in the Jocko River 

above S-Canal range from 0 to 0.07,  Chapter 2), selective passage of migratory fish at 

the K-Canal and S-Canal Ladders would not likely result in meaningful increases in 

measured pRBT.  It is also important to point out that this model assumes random mating 

and a complete overlap in spawn timing and location, thus the modeled scenarios are 

essentially worst-case.  We know that high HI hybrids have different migration and 

spawning patterns than WCT (Chapter 3, Muhlfeld et al. 2009b).  Additionally, in natural 

systems, such as the Jocko River, where above barrier populations have very low rates of 

RBT hybridization, most migratory individuals produced by these populations would 

have WCT genotypes (HI = 0, Figure 4.2), and most individuals with HIs > 0.20 would 
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likely be potential strays from populations well downstream of the traps.  Finally rates of 

misidentification from field morphology, and thus increased introgression risk, could be 

drastically reduced with implementation of rapid genotyping to select migrants for 

passage. 

 

Limitations and Utility of Models 

 There are important limitations to the models described in this study.  First and 

foremost, the vital rates used to parameterize these models were not derived from 

demographic studies conducted on Jocko River WCT populations.  Rather, we used mean 

vital rate estimates from the literature and demographic model structure in a similar 

fashion to Hilderbrand (2002) and Hilderbrand (2003).  Several authors (e.g. Beissinger 

and Westphal 1998; Reed et al. 2002) have described the pitfalls of parameter estimates 

based on closely related species or populations, expert opinion, or range-wide 

approximations in predictions about specific populations.  Our approach of making 

relative comparisons, to consider the nature of the tradeoffs is generally considered a 

robust application of viability analyses (Reed et al. 2002).  While we place little certainty 

on the accuracy of the point estimates, the magnitude of the differences among scenarios 

has utility for evaluating the potential implications for management (Beissinger and 

Westphal 1998).   

 Another common criticism of viability analysis is the omission of factors in 

population models that have important influences on real populations (density 

dependence, inbreeding depression, catastrophes, correlation of vital rates, etc., Morris 

and Doak 2002).  In structuring these models we made the decision not to incorporate 
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density dependence, because we had little or no information to develop parameters. This 

is a common problem, however, and while density dependence could undoubtedly be 

important, growth rates at small population sizes critical to persistence probably are not 

strongly density dependent (Boyce 1992).  Although we may not capture the full 

dynamics of the range of population sizes possible in the system, we believe our 

simulations are useful for considering the most pertinent comparisons involving passage 

and introgression consequences. 

 Perhaps one of the biggest uncertainties was the implication of the growth and 

egg size differences between high-RBT hybrids and WCT observed in Chapter 3.  To 

model the effects of these differences on viability, we would need to know the link 

between growth and survival and between egg size and subsequent embryo or emergent 

fry survival, but these are links for which information was not readily available.  Given 

the high elasticity of young of year survival in the demographic model, increases in 

survival at this life stage due to increased growth or increased egg size certainly have the 

potential to balance the apparent reductions in viability due to lower fecundity rates 

described in this study.  This illustrates the importance of focusing future research efforts 

on measuring vital rates across the spectrums of life stages, admixture, and habitats. 

 The primary limitation of the PEDAGOG model was that below barrier 

populations were required to randomly mate during the initial simulations to achieve 

stable age distribution.  Random mating created a hybrid swarm in the below-barrier 

population and eliminated any individuals with exceptional HIs.  This leads to a 

somewhat artificial modeling scenario relative to what occurs in the Jocko River system, 

where the below-barrier mixture is made up primarily of individuals with no RBT 
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ancestry and a few individuals with very high HIs.  We predict reduction in the variation 

of below-barrier HIs likely leads to reduction in the variation of pRBTs in the above-

barrier population following the onset of movement above the barrier. However, the 

general conclusions about the relative changes in pRBT in the above-barrier population 

should be robust to this limitation. 

Even with the limitations, this study makes three important steps for cutthroat 

trout management and research: (1) the development of a multiple life history cutthroat 

trout matrix model to consider tradeoffs among demographic connectivity scenarios, (2) 

an elasticity analysis of that matrix, which allows us to identify priorities for viability 

research in multiple life-history trout populations and (3) the application of a population 

genetic model to consider hybrid identification errors and tradeoffs between no passage, 

selective passage, and complete passage scenarios.  In short, despite its limitations, this 

study was effective in answering the primary research goal: to assess the demographic 

and genetic tradeoffs of restoration of connectivity for fish with migratory life histories.  

 

Management and Research Recommendations 

Barrier Management and Selective Passage 

The demographic benefits of restoration of migratory life history forms are clear and can 

be substantial.  Improved production of large migratory fish have the associated benefits 

of fulfilling important ecological roles as prey for larger vertebrates (Koel et al. 2005) 

and important socio-economic roles as sportfishes.  Use of barriers as a management tool 

has the undesired effect of isolating populations and fragmenting habitats, which can, in 

turn decrease the viability of local populations (Harig and Fausch 2002; Morita and 
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Yamamoto 2002; Hilderbrand 2003).  On the other hand, depending on the environmental 

context and the threat of non-native fishes in addition to hybridizing species (such as 

brook trout), removing barriers can also lead to reductions in viability (Peterson et al. 

2008).  Based on the results of this study, the decision whether or not to restore a 

migratory life history, or restore connectivity to an artificially isolated fish population, 

should be largely dependent on the magnitude of the hybridization threat downstream and 

the magnitude of previous introgression upstream.  The potential for invasion of other 

detrimental non-native species, the degree of population isolation, and whether or not 

there is sufficient habitat volume above the barrier are also important factors (Harig and 

Fausch 2002, Fausch et al. 2009). 

Selective passage to restore migratory life histories, where feasible, offers an 

attractive alternative to complete barrier removal that could allow a multitude of invaders 

into upstream habitats.  If non-native introgression is already present in populations 

upstream of barriers, and introgression occurs at acceptable rates below barriers, or 

selective passage can be conducted with acceptable error rates, the results of this study 

suggest there is considerable opportunity to improve system connectivity and long-term 

population viability while maintaining conservation populations under current 

management policy (UDWR 2000).  If there is no detectable introgression above a 

barrier, managers may be prudent to maintain isolation for that population to conserve an 

unaltered genome, but they must realize that if habitat is limited, the population will 

likely need to be occasionally supplemented by other core conservation stocks to 

maintain long-term viability. 

 



114 
 

Critical Areas for Future Research 

The declines in modeled viability demonstrated in this study when young of year 

survival and fecundity are reduced suggest knowledge of vital rates in hybridized 

populations is important.  The approach taken to model reductions in vital rates was 

simplistic because data are limited and mechanisms are still unclear.  We modeled vital 

rate reductions under the assumption that they would affect migratory and resident life 

history types equally, even though both Muhlfeld et al. (2009a) and Chapter 3 were 

studies conducted exclusively on migratory life histories.  We also did not account for 

any influence of egg size on young of year survival given the lack of data. 

Elasticity values of matrix elements (Table 4.2) and individual vital rates 

(Appendix C, Table C.3.) suggest that the vital rates that have the greatest influence on 

population growth rate are total young of year survival, the transition probability of 

resident subadults to adulthood, and the fertility of small adult residents.  We recommend 

increased research effort be placed on these previously poorly understood life stages.  

Unfortunately young of year survival is notoriously difficult to measure in wild 

populations, but it would be possible to estimate growth, fecundity, and survival rates of 

individuals with various RBT ancestries in a variety of habitats at juvenile through adult 

life stages. 

Understanding the links between habitat variation and hybrid fitness may be one 

of the most crucial avenues for future research.  The results of Chapter 2 suggest 

landscape resistance plays an important role in structuring of WCT x RBT hybrid zones.  

Measuring fitness surrogates in resident populations with various times since the start of 

RBT introgressions may help us better understand the interplay of natural selection and 



115 
 

introgression over time (Taylor 2004).  The results of Chapter 3 suggest there are genetic 

and/or environmental influences on differential growth rates between WCT and high 

RBT ancestry hybrids.  Increased growth observed in high RBT ancestry hybrids may 

reduce the age at maturity, or increase juvenile survival, both of which may counteract 

potential reductions in young of year survival or fecundity (Hutchings 1993).  As 

described above, earlier age at maturity, in particular, can dramatically increase viability 

of salmonid populations (Letcher et al. 2007; Morita et al. 2009).  Further research 

addressing the influences of environment versus hybrid ancestry on variation in vital rates 

across hybrid zones would make a fundamental contribution to our understanding of the 

conservation needs of cutthroat trout.   In summary, while the results of the reduced vital 

rate scenarios in this study suggest there may be some high costs to removing barriers 

and allowing introgression, we have much to learn about the contexts in which such 

actions would be so costly. 
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Table 4.1.  Demographic scenarios to demonstrate the improvement in population 

viability from allowing escapement of adult migratory fish.  Base scenario with migrant 

subadult survival near zero allows no escapement of migratory fish (no passage).  

selective and complete passage scenarios model various levels of escapement of adult 

migratory fish back to the resident (above trap) population.  Total stage survival can be 

obtained by adding survival and transition probabilities within a stage.  For example, total 

migratory subadult survival is 0.25 + 0.25 = 0.50 under the complete passage scenario.  

 

  

No Passage 
Selective 
Passage 

Complete 
Passage Survival Parameter 

Resident Subadult Survive/ Stay Subadult 0.14 0.14 0.14 

Resident Subadult Survive/ Become Migrant Subadult 0.02 0.02 0.02 

Resident Subadult Survive/ Become Resident Adult 1 0.14 0.14 0.14 

Migrant Subadult Survive/ Stay Subadult 0.001 0.16 0.25 

Migrant Subadult Survive/ Become Migrant Adult 1 0.001 0.16 0.25 
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Table 4.2.  Elasticities of matrix elements for matrix models with base (no passage; 

“Res”) selective passage (“Mig”) scenarios..  (For elasticities of individual vital rates see 

Appendix C, Table C.3.).  Elasticities are estimated using mean vital rates under the 

selective passage scenario. 

 

  YOY Res SA Mig SA Res Ad1 Mig Ad1 Res Ad2 Mig Ad2 

YOY 0 0 0 0.182 0.016 0.054 0.005 

Res SA 0.256 0.041 0 0 0 0 0 

Mig SA 0 0.021 0.007 0 0 0 0 

Res Ad1 0 0.236 0 0.068 0 0 0 

Mig Ad1 0 0 0.021 0 0.006 0 0 

Res Ad2 0 0 0 0.054 0 0.028 0 

Mig Ad2 0 0 0 0 0.005 0 0.002 
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Figure 4.1.  Map of the Jocko River drainage, Montana.  The selective passage 

management actions tested with this population viability analysis would be implemented 

at the K- and S-Canal ladders. 

  



119 
 

 
Figure 4.2.  Distribution of hybrid index scores for individuals collected in the Jocko 

River above S-Canal (black bars) and for all individuals captured at the K-Canal and S-

Canal ladder traps (trap population, grey bars).  Histogram bin labels are the upper 

boundary of that bin. 
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Figure 4.3.  A stage-structured population model including stream resident (Res) life 

history types and fluvial, or migratory (Mig), life history types.  The values associated 

with the arrows are the mean vital rates used to develop the base model for this study.  

The two life history types are subject to the same young of year (YOY) survival, which 

includes estimates of fry survival and incubation success from Shepard (1997).  Migrant 

individuals must pass through an additional subadult (SA) life stage before reaching 

adulthood (Ad) to reflect later ages at maturity and decreased survival of migrants 

relative to residents.  Life stages are length based, except young of year. 
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Figure 4.4.  Distribution of hybrid index scores for initial trap population (black bars) and 

for the trap population (grey bars) following a 6 generation burn-in of random mating for 

(a) selective/HI ≤ 0.2, (b) selective/HI ≤ 0.5, and (c) complete passage PEDAGOG 

scenarios. 
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Figure 4.5.  Cumulative probability of quasi-extinction of the 1000 random population 

trajectories.   
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Figure 4.6.  Mean stochastic log λ (logλs) values for the migrant passage scenarios used 

in this study.  No passage is the base model, representing current, pre-management 

population growth.  Under the selective passage scenario, total migrant subadult survival 

was increased to 0.32.  Under the complete passage scenario, total migrant subadult 

survival was increased to 0.50.  Negative logλs are indicative of a declining population, 

positive of a growing population, and logλs of zero are indicative of a stable population. 
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Figure 4.7.  Cumulative probabilities of quasi-extinction for simulations where young of 

year (YOY) survival and fecundity were reduced to model the potential demographic 

impacts to populations with pRBT of zero (Complete Passage), pRBT  = 0.10 (Reduce 

YOY 25%), and pRBT = 0.20 (Reduce YOY 50% and Reduce Fecundity 50%) in 

concordance with results from Muhlfeld et al. (2009a) and fecundity results from Chapter 

3. 
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Figure 4.8.  Mean stochastic log λ (logλs) value distributions for the reduced vital rate 

scenarios.  For these scenarios, the complete passage scenario is the base model.   Results 

are for scenarios with pRBT of zero (complete passage), pRBT  = 0.10 (Reduce YOY 

25%), and pRBT = 0.20 (Reduce YOY 50% and Reduce Fecundity 50%) in concordance 

with results from Muhlfeld et al. (2009a) and fecundity results from Chapter 3. 
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Figure 4.9.  Results of PEDAGOG simulations of increased RBT admixture (pRBT) 

following the start of migration from Trap to Jocko River (JR).  The top panel (a) 

demonstrates the increase in mean pRBT for 10 replications in the JR population for each 

of the passage scenarios.  The bottom panel (b) is the mean pRBT for 10 replications for 

the Trap population and the JR population under the barrier removed scenario from 5 to 

10 generations following start of migration.  In both panels error bars are 95% confidence 

intervals estimated from 10 replications of each scenario.  
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GLOSSARY OF HYBRIDIZATION TERMS 

 

Admixture: Development of novel genetic combinations due to introgressive 

hybridization between genetically distinct taxa (Allendorf et al. 2001). 

 

Genomic Extinction: A situation where parental genomes no longer exist due to 

admixture and the production of hybrid swarms (Allendorf and Luikart 2007). 

 

Hybrid Index (HI):  An estimate of individual levels of hybridization.  HI is the 

proportion of the total number of RBT alleles observed divided by the total number of 

alleles amplified for each individual across all diagnostic loci (Muhlfeld et al. 2010a). 

 

Hybridization: Interbreeding between individuals from genetically distinct populations 

(Allendorf et al. 2001) 

 

Hybrid Swarm: A population where all individuals are hybrids that have varying levels of 

parental ancestry due introgressive hybridization (Allendorf et al. 2001) 

 

Hybrid Zone: A geographic region where two taxa are sympatric and hybridize 

(Allendorf et al. 2001) 

 

Introgression: Gene flow between hybridizing taxa (Allendorf et al. 2001) 

 

Introgressive Hybridization: Hybridization between genetically distinct taxa that results 

in fertile hybrid offspring that subsequently mate among themselves and with parental 

types. 

 

pRBT: Proportion of rainbow trout alleles in a sample of individuals.  It is calculated by 

dividing the number of rainbow trout alleles detected across all loci by the total number 

of alleles amplified (UDWR 2000). 
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APPENDIX A 

CHAPTER 2 SUMMARY INFORMATION 

 

Table A.1.  Results of Hardy-Weinberg (HW) tests for equilibrium (HWE), binomial 

(Binom) tests for hybrid swarms, and summary information of the samples collected.  
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Table A.1 pt. 2 
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APPENDIX B 

RESULTS OF ASSIGNMENT TESTS TO CONTROL FOR POPULATION OF 

ORIGIN OF MIGRATORY FISH 

 

Methods 

 

In an attempt to control for natal growth habitat and population of origin for fish 

analyzed as part of Chapter 3 life history investigations, I completed assignment tests 

using the program ONCOR (Kalinowski et al. 2007). ONCOR is specifically designed to 

handle population assignment of individuals collected in a mixed stock fishery (such as 

what are collected at K- and S-Canal ladders).  In addition to the seven diagnostic 

microsatellite loci used in Chapters 2 and 3, I used four additional variable 

microsatellites, which were a subset of those used in Muhlfeld et al. (2009a) (Table B.1).  

Using GenAlEx (Peakall and Smouse 2006), I computed pairwise linearized Fst values 

for each sample site from Chapter 2.  To create reporting groups for use in ONCOR, I 

grouped geographically proximate samples with relatively low pairwise Fst values.  I 

used the PCA function in GenAlEx (which completes a PCA using distances in a 

triangular Fst matrix) as a means to plot groups of sample sites with low Fst values and 

determine which geographically proximate samples should be included in the same 

reporting group.  I used the Leave-One-Out Test (Kalinowski et al. 2007) to determine 

how well individuals collected at the K- and S-Canal traps would assign to the baseline.  

This test sequentially removes each individual in the baseline and assigns it back to a 

sample site in the baseline.  ONCOR records the proportion of individuals successfully 
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assigned to both the correct sample site and the correct reporting group.  When using 

reporting groups, ONCOR assigns individuals to sample sites (the genetic baseline), and 

sample sites are combined into reporting groups of genetically similar sites. 

 

Results and Discussion 

 

The results of the PCA of linearized Fst values suggest that, overall, populations 

grouped primarily by similarity of pRBT (see Chapter 2).  This finding was not 

surprising, as most of the diagnostic markers were nearly fixed in populations that had 

primarily WCT genotypes.  Reporting groups had low within-group pairwise Fsts.  For 

example, pairwise Fsts for the lower South Fork Jocko River reporting group were 0.002-

0.01.  Occasionally higher pairwise Fsts were observed within reporting groups (up to 

0.08 in the MFJ), but it was important to group these sample sites into reporting groups 

due to similarity of environment.   

Results of the Leave-One-Out test indicated there were acceptable rates of 

assignment, but only for some of the populations likely to produce migratory fish, 

especially those with high pRBT.  Baseline individuals assigned correctly to their sample 

sites at rates greater than 90% for sites with high pRBT.  Baseline individuals correctly 

assigned to their sample sites at rates greater than 90% for only a fraction of populations 

with low pRBT likely to produce migratory trout.  Individuals from upper mainstem 

Jocko River sites (those most likely to produce migratory fish) assigned very well to one 

population (94% correct), but very poorly to adjacent sites downstream (11% correct, 

41%).  Poor assignments were likely an artifact of upper mainstem sites consisting of a 
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mixture of populations when sampling was feasible, but spawning does occur near those 

locations.  Individuals from baselines with low pRBT often assigned into populations in 

other major drainages (e.g. fish from upper Jocko River assign to upper Finley sites 

above barriers or to South Fork Valley Creek) making it impossible to assign to an 

ecologically relevant scale. 

I attempted to assign fish collected in S- and K-Canal traps used in growth and 

migration analyses (Chapter 3) to sample sites in the baseline.  We used an a priori 

determined assignment probability cutoff of 0.90 to establish acceptable assignments.  

Only 37% of these samples assigned to a population or reporting group above the 0.90 

probability cutoff, and given the results the Leave-One-Out tests, it is reasonably likely 

they were assigning to populations unlikely to have produced migratory fish (high 

elevation, above barriers). 

 

  



143 
 

Table B.1. Loci used to complete assignment analysis.  Loci marked with asterisks were 

diagnostic markers used to detect hybridization in Chapters 2 and 3.  Table is adapted 

from Muhlfeld 2009a. 

 

Locus 

 

Primer Dilution 

(uM) 

Initial annealing 

temperature (°C) 

 

Reference 

 

Multiplex 1 

  

Ogo8* 0.12 58 (Olsen et al. 1998) 

Omm1019* 0.20 58 (Rexroad et al. 2002) 

Omm1050* 0.20 58 (Rexroad et al. 2002) 

Omm1060* 0.12 58 (Rexroad et al. 2002) 

Omm1037-1 0.20 58 (Rexroad et al. 2002) 

Omm1037-2 0.20 58 (Rexroad et al. 2002) 

Omy0004* 0.20 58 (Holm et al. 1998) 

Multiplex 2    

Omy1001* 0.10 59 (Spies et al. 2005) 

Ogo4 0.10 59 (Olsen et al. 1998) 

Ssa456 0.10 59 (Angers et al. 1995) 

Sfo8* 0.30 59 (Small et al. 1998) 
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APPENDIX C 

FUNCTIONS AND PARAMETERS USED IN VITALSIM AND PEDAGOG MODELS 

Table C.1.  Parameter and variance estimates used in VitalsSim (Chapter 4). 
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Table C.2. Parameter estimates or functions used in PEDAGOG (Chapter 4) 
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Table C.3.  Elasticity metrics calculated using LimitSens (Morris and Doak 2002) for 

individual vital rates used in VitalSim models used in Chapter 3.  Max. λ is the maximum 

λ that can be achieved if all other vital rates are held constant.   

 

  Max. λ 
Max. prop. 
change in λ 

Corr. (r2) λ and 
vital rate 

Elasticity 
From 

Mean Vital 
Rates 

Resident Subadult Survival 1.01 0.04 0.00 0.04 

Resident Subadult to Migrant 1.09 0.12 0.03 0.01 

Resident SubAd to Adult1 1.17 0.21 0.08 0.24 
Migrant SubAd Survival 1.08 0.11 0.06 0.00 

Migrant SubAd to Adult1 0.98 0.01 0.03 0.01 

Resident Adult1 Survival 1.08 0.12 0.01 0.15 

Resident Adult1 to Adult2 1.07 0.10 0.03 0.16 

Migrant Adult1 Survival 0.98 0.01 0.00 0.01 

Migrant Adult1 to Adult2 0.98 0.01 0.01 0.01 

Resident Adult2 Survival 1.14 0.17 0.03 0.09 

Migrant Adult2 Survival 0.99 0.02 0.02 0.01 

Incubation Success 1.03 0.06 0.24 0.26 

Fry Survival 1.00 0.04 0.08 0.26 

YOY Survival 1.06 0.10 0.16 0.26 

Eggs per Resident Adult1 1.01 0.04 0.00 0.08 

Eggs per Resident Adult2 1.03 0.06 0.03 0.16 

Eggs per Migrant Adult1 0.97 0.00 0.00 0.00 

Eggs per Migrant Adult2 0.98 0.01 0.01 0.01 

Prob. Breed Migrant Adult1 0.97 0.00 0.00 0.00 

Prob. Breed Migrant Adult2 0.97 0.00 0.00 0.01 
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APPENDIX D 

GROW BIG OR STAY HOME: MODELING LIFE HISTORY AS A ROLL OF THE 

DICE 

 

Introduction 

 

Some of the fondest memories of many children involve an outing to their local 

waters for an afternoon of fishing with their best buddy or a day out in a boat with a 

grandparent.  When kids venture outside, they are exposed to, and even acutely aware of, 

the life cycles of organisms in their surroundings.  On a day at a pond, a child may pick a 

flower that has just bloomed, catch a tadpole with developing frog legs, and squeeze a 

puffball mushroom to make it poof out its spores.  A child may have even noticed the 

difference of size in trout that she caught in a small mountain stream versus the trophy 

she caught in a lake in the valley below the mountains.  In each of these activities, a child 

would be observing stages in the life histories of these organisms.  Life histories are the 

series of behavioral changes and life stages that define the life of an organism.  Scientists 

and science textbooks often depict the life history of an organism with a life cycle 

diagram (example: fig. 1).  While these illustrations often give students understanding of 

the life history of a species, much of what happens to an individual organism depicted in 

a life cycle diagram is by luck of the draw.  The fortunes of whole populations of 

individuals are what determine the successes of the species depicted in a life cycle 

diagram.  To explore life histories, we developed a game of chance as an inquiry driven 

exercise and implemented it in a fifth grade classroom designed to investigate the 
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question “why do some trout migrate to large rivers or lakes and some stay in their home 

streams?” 

 This game, Grow Big or Stay Home, is an ideal way to link mathematics, 

probability, and science.  As a biologists and Ecologists in Residence at a local 

elementary school, we look for ways to foster student knowledge of local organisms and 

ecosystems.  The game is a model designed to teach all of these concepts at the same time 

as students explore changes in populations and the ecology of wild organisms. 

Cutting edge ecology often involves creating models based on scientific and 

mathematical principles that are appropriate for upper elementary students.  Grow Big or 

Stay Home allows students to explore the advantages and disadvantages of two life cycle 

strategies of trout mathematically with rolls of the dice.  Random events often influence 

when an organism dies, how many successful offspring it has, and whether it migrates to 

feeding grounds or stays at home.  Through this investigation, students develop an 

understanding of the role of random events in shaping the structure of wild populations.  

This game also provided an outstanding way for students to test hypotheses about the 

ecology of popular local fishes, such as trout. 

 

Why are the life cycles of trout like rolling the dice? 

Every organism is faced with “tradeoffs” that determine how likely they are to 

survive to a certain age and how many offspring they are likely to have.  For example, 

most elementary students have learned about the life cycle of salmon that migrate to the 

ocean, and then return to the stream where they were born to reproduce.  This is only one 

life history strategy that salmonids (trout and salmon family) exhibit.  Students may not 
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know that some trout actually stay in the stream where they were born for their entire 

lives.  One result of staying in their home stream is they are safer there from predators 

and fisherman and are more likely to survive to adulthood when they can breed and pass 

on their genetic lineage (genes).  For the other trout, that leave their home stream and 

migrate to a large river, lake, or ocean, there are great rewards in the form of abundant 

food and these migrant fish can grow quite large.  Usually, a trout that migrates can grow 

to a much larger size than a trout that stays in the home stream.   

 

How do these life history “choices” affect how many trout there are?   

Very large trout are capable of producing many more eggs (offspring) than small 

trout.  On the other hand, it is more likely that a migrant trout will die before it makes the 

long migration home to reproduce.  Thus, there is a “tradeoff” between migrating and 

staying in a home stream.  Both strategies have their advantages and disadvantages, and 

there may be periods of time when one strategy is better than another.  For example, 

imagine a dam of logs and debris that forms after a landslide and blocks the trout 

migration pathway for a few years.  None of the migratory fish will be able to return 

home to complete their life cycle.  In contrast, imagine what happens if a stream freezes 

solid two winters out of every three and all of the resident fish die.  Clearly fishes born in 

that stream would have a huge advantage if they migrated before winter.  Because there is 

natural variation, and a fair amount of luck, involved with how well a trout can compete 

for resources and survive to a breeding age, scientists create mathematical models where 

random chance (probability) plays a role to better understand complexities of nature.   
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What about assumptions? 

It is important to remember that models are not exact replicates of nature.  

Instead, they are close representations, so scientists make several assumptions to simplify 

reality in these models.  In Grow Big or Stay Home, we simplify nature in several ways to 

make a mathematical representation of natural reality.  For example, we assume a 

migrant fish is as likely to survive to its next birthday as any other migrant fish, 

regardless of how old each of the fish are.  As fisheries and wildlife biologists, we know 

this is rarely true, but making this assumption keeps the model (game) simple and easier 

to use.  There is another reason for exploring the assumptions of Grow Big or Stay Home: 

having students explore the assumptions of a model and how violations of those 

assumptions could change their results will help them better understand the ecological 

system they are modeling.  Students can be challenged to look for assumptions of the 

model by comparing the life cycle of a trout to the game instructions. 

 

Playing Grow Big or Stay Home 

 

Grow Big or Stay Home begins by presenting the importance of modeling to 

students.  It is very difficult for scientists to study wild organisms for long periods of 

time.  In order to overcome this difficulty, scientists develop models that try to closely 

represent what we see in nature.  There are many types of models.  Some students may 

have made a model train, volcano, or played with model dinosaurs.  Those models are 

called physical models.  Scientists often make physical models, but they also build 

numerical models.  Models are easier to control, study, and are simpler than populations 
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in nature.  For example, to better understand why an organism such as a trout would have 

different life history types, we can develop a mathematical model to represent what is 

actually occurring in nature.  As scientists we can use dice to decide whether an 

imaginary fish will live or die and when it will stay in its home stream or migrate to a 

large river or lake.  Some percentage of fish (a random number or probability) will 

migrate and some percentage will stay in the stream in which they were born.  As a fish 

matures, it has a certain probability of dying of predation, a flood, or a drought.  A fish 

also has a certain probability that it will survive to breed once, twice, three times, or even 

more.  In the game, dice are used to make all decisions about life or death of a fish at 

random, without controlling what happens on our own.  In other words, we can get a 

glimpse of how a population will change in nature by playing a game with dice in the 

classroom. 

 

How it went in a Fifth Grade Class 

 

Before getting into the game, students learned about the idea of tradeoffs.  Some 

trout leave their stream to grow large and have greater success when they reproduce, but 

they must take a gamble of lower survival.  Other fish will stay at home, and enjoy high 

survival, but the number of eggs they lay if they survived will be much lower.   

To begin the game, students formed small groups and pretended to be trout.  

Students formed hypotheses about which life history type, migrants or residents, was 

likely to have the greatest offspring production at the end of the game, therefore 

contributing the most baby fish to the next generation.   Then each student rolled the dice 
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to determine if they were going to be a migrant trout (odd numbers) or stay at home as a 

resident trout (even numbers).  Then students rolled the dice and matched the number 

rolled to their instruction sheet to their fate in the first year (Table B.1).  For example, 

resident fish were killed by a flood with a roll of eleven and eaten by a predator with a 

roll of twelve.  If the fish successfully survived three full years, it then breeds and 

produces offspring.  The number of offspring produced was also determined by a roll of 

the dice.  If a fish was a resident, the student rolled the dice and added the value of the 

two die to determine the number of offspring that fish contributed to the next generation.  

If a fish was a migrant, the values of the two die were multiplied by each other to 

determine the contribution to the next generation.  The game ends, either when all fish 

die, or when all surviving fish have successfully bred in their fifth year. 

Students playing Grow Big or Stay Home were definitely caught up in the 

competition of who survived and who produced more offspring.  They were surprised by 

how fast good fortune can change and how the “slow and steady” resident fish can often 

produce the most offspring over their life span.  The game stimulated lively discussion 

about other natural and human-caused factors that could change the survival probabilities 

of both resident and migrant fish.  Students also asked many questions about how migrant 

fish and resident fish interacted with their environments differently.  By the end of the 

game, students were thinking critically about aquatic ecosystems and talking about the 

nuances of what made each strategy viable in wild populations.   

 Our fifth grade class was surprised by their results.  This was particularly true 

when we compared the results of all students in the class.  Each group posted the number 

of offspring for resident and migratory fish on the chalkboard at the end of the game.    
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Because everything that happened to each fish at each step of the game was subject to 

random chance, results often varied widely between groups.  To explore this, students 

were asked to explain in writing why their results varied so much.  As an extension, 

students also wrote about why they thought trout have two different life history strategies.  

With some leading questions, they were able to determine that the reason for two 

strategies was that, in some years, one strategy does better than the other – just by 

chance, so both strategies are stable, depending on the environmental conditions for that 

year. 

Conclusions 

 

In Grow Big or Stay Home, mathematics and probability are integrated with 

science.  In fact, mathematics is a critical tool for scientists.  While playing Grow Big or 

Stay Home, students forgot they were getting a math lesson during the heat of the game.  

As the students began to use the math to explore ecology, they raised excellent questions 

about trout life history and causes of trout mortality.  Application of the math component 

also lends itself well to extensions involving computer applications such as Excel, which 

can be programmed with random number generating functions, then easily manipulated 

so students can test hypotheses about the relative success of each life history strategy if 

survival or breeding parameters are altered.  An Excel based model is available upon 

request from the author. 

Students that played Grow Big or Stay Home will have a greater appreciation for 

life histories of trout, but hopefully they will also start thinking about the gambles and 

tradeoffs that any organism makes during different stages of its life.  Perhaps the next 



154 
 

time a student chases a firefly, she will think about the probability that the firefly will 

escape the mason jar, find a mate, and contribute its genes to the next generation. 
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National Science Education Content Standards Addressed with this Investigation 

 

Grades 5-8 

Unifying Concepts and Processes: Evidence, Models, and Explanation 

Life Science: Reproduction and Heredity  

Life Science: Regulation and Behavior  

Life Science: Populations and Ecosystems  

Life Science: Diversity and Adaptations of Organisms  

 

Resources: 

 

National Research Council (NRC). 1996. National science education standards. 

Washington DC: National Academy Press. 
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Table D.1. Grow Big or Stay Home instruction sheet. 

 

Grow Big or Stay Home? 

Simulation Instruction Sheet 
 

1) Roll dice to determine which life history the fish will have: Odd numbers are 

migrant life history; even numbers are resident life history. 

 

2) Roll the dice each “year” to determine whether the fish survives to the next  year 

or not: 

 

 
 

 Whenever a fish dies, draw a line through the box. 

 

3) If a fish survives to breeding age, roll the dice to determine the number of 

offspring they will produce during that year.  Resident fish roll both dice and add 

the two numbers, while migrant fish roll two dice then multiply the two numbers.  

Write the number of offspring in the box for that year. 

 

4) After the fish breeds, roll again to see if it survives to the next year. 

 

 

5) Add the number of offspring for each fish and put the total in the offspring 

column.  

 

6) The simulation ends when the table is full for one life history type. 

 

7) Discuss and compare the outcome of the simulation for each life history strategy. 

 

 

  

 

Dice Value Resident Migrant

1 Survive Survive

2 Survive Survive

3 Survive Survive

4 Survive Survive

5 Survive Survive

6 Survive Survive

7 Survive Survive

8 Survive Survive

9 Survive Eaten by Predator

10 Survive Killed by Flood

11 Eaten by Predator Drought - You are Dried Up!

12 Killed by Flood Caught and Eaten by Fisherman
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Table D.2. Results of Grow Big or Stay Home for 16 fish.  Data presented here 

correspond to figure B.2. 

103
Resident 

Total:

134
Migrant 

Total:

6036204YesYesMigrant16

13328YesYesResident15

6836824YesYesMigrant14

0---YesYesResident13

0---NoNoMigrant12

0---NoNoMigrant11

6-24YesYesMigrant10

0---NoYesMigrant9

2810126YesYesResident8

0---NoNoResident7

0---YesYesResident6

0---YesYesResident5

251096YesYesResident4

16943YesYesResident3

211056YesYesResident2

0---NoNoMigrant1

Total Offspring

Year 5           

(# Offspring)

Year 4         

(# Offspring)

Year 3         

(# Offspring)

Year 2 

(Survive?)

Year 1 

(Survive?)

Migrant or 

Resident?Fish

Grow Big or Stay Home Score Sheet
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Total:
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0---NoNoMigrant11
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0---NoYesMigrant9
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0---NoNoResident7

0---YesYesResident6

0---YesYesResident5

251096YesYesResident4
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(# Offspring)

Year 2 
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Year 1 
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Grow Big or Stay Home Score Sheet
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Side Bar: Vocabulary 

Fitness – The ability of an organism to survive and reproduce offspring.  For example, a 

trout that survives for three breeding seasons and produces 10 surviving offspring has a 

higher fitness than a trout that only survives for one breeding season and can only 

produce 2 surviving offspring. 

 

Life History – The series of behavioral shifts, maturation processes, and life stages that 

shape and define the life of an organism. 

 

Mathematical Model – A close representation of nature that uses mathematics to describe 

the behavior of a system. 

 

Migrant – For the purposes of this inquiry, a trout that leaves its natal stream to go to a 

habitat (large river, lake, or ocean) where it can grow larger than if it stayed. 

 

Model – A simplified representation of nature. 

 

Mortality – For the purposes of this inquiry, the probability that an organism will die 

during any given year. 

 

Physical Model – A physical representation of an object, organism, or system. 

 

Resident – For the purposes of this inquiry, a trout that lives in its natal (home) stream its 

entire life. 

 

Survival – The probability that an organism will survive a given length of time. 
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Figure D.1.  Life cycle diagrams of resident trout (a) and migrant trout (b). 

a) 

 

b) 
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Figure D.2.  Demonstration of the influence of using a small number of fish for a 

simulation.  This example is one simulation with 250 fish.  Figure B.2a is the results of 

all 250 fish in the simulation depicted as the proportion of individuals contributed to the 

next generation by each life history type.  Figure B.2b is a similar bar chart showing the 

results of 16 fish that were simply the first 16 fish of the simulation.   

a)
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b) 
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