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Analysis of a Mathematical Model for Mitotic Regulation in the Early Oocyte Cells of Xenopus 
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The initiation of mitosis is controlled by a complex called M-phase promoting factor (MPF) 
made of one subunit each of a protein called cyclin B and a gene product known as cdc2. In the 
early oocyte stage of frog cells, the MPF system (the MPF dimer together with its enzymes) 
produces spontaneous cell divisions which are cyclic in time. A previously published paper 
(Novak and Tyson, 1993a) develops and analyzes a mathematical model which mimics the 
oscillatory behavior of the frog cells. This model is explored further here; I compare two- and 
three-dimensional versions and provide evidence for previously undiscovered oscillatory 
behavior in the form of homoclinic orbits and limit cycles. Recent research provides additional 
information for the biological process; this paper incorporates the new knowledge and suggests a 
revised model for analysis.
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I. Introduction

Mitosis, the process that cleaves a single mother cell into two identical daughter cells, is 

one of several cellular activities that have received much research attention in the past two 

decades. Of particular interest is the reaction that initiates cell division. In the early 1970s, 

scientists discovered that the concentration of an intracellular protein rose and fell in 

synchronicity with the cell cycle, peaking immediately prior to each cell division and reaching 

its lowest levels at the moment o f division (Masui and Markert, 1971; Wasserman and Smith, 

1978). Calling attention to the protein's cyclic concentration levels, they named it cyclin and 

surmised its participation in the mechanism (called M-phase promoting factor, or MPF) that 

initiates cell division (Gerhart et al., 1984; Dunphy et al., 1988; Luca and Ruderman, 1989). 

Several studies in the 1980s concluded that MPF is actually a dimer (a complex with two parts) 

made of cyclin and another protein called cdc2 (Dunphy et al., 1988; Labbe et al., 1988). The 

MPF complex exists in both active and inactive forms; mitosis begins when enough active MPF 

accumulates inside the cell (Dunphy and Newport, 1988). The interaction of several enzymes 

activates MPF and will be discussed in detail in this paper. Figure 1 below presents a simplified 

view of the process.

Many aspects of the MPF reaction seem to be conserved in an evolutionary sense. The
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Figure 1: The MP F Cycle
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structure of the dimer, for example, has been confirmed at least partially for some species of 

frogs, yeasts, starfish, and sea urchins (Simanis and Nurse, 1986; Dunphy et a l,  1988; Labbe et 

al., 1988; Murray and Kirschner, 1989; Jessus and Beach, 1992). Gould et al. (1990) discovered 

a human homologue to cdc25, one of the enzymes in the reaction. In different 3pceies, however, 

the cell cycle is tied to particular aspects of cell life so that a general model must be adjusted 

slightly to accommodate these differences. In yeast cells, for example, the initiation of mitosis is 

tied to DNA replication and cell size, whereas cell division in early frog oocytes proceeds almost 

entirely without connection to DNA replication and is spontaneously periodic (Wasserman and 

Smith, 1978).

A more detailed explanation of the cyclin-cdc2 system, with all of its enzymes, is given 

in the next section. Understanding the MPF reaction becomes quite difficult when we attempt to 

examine all the details at once; we need to know which parts o f the system actually drive the 

reaction. Approaching this process from a mathematical perspective gives us tools which help 

determine the vital parts of the system. The goal o f a mathematical approach is to build a system 

of equations whose behavior mimics that of the biological system. In 1993 Novak and Tyson 

produced, and analyzed several aspects of, a model which replicates the spontaneous oscillations 

observed in early frog oocytes (Novak and Tyson, 1993a, 1993b). Although their model was not 

the first (see Goldbetter, 1991; Norel and Agur, 1991; Tyson 1991; Obeyesekere et a l,  1992), it 

was the most comprehensive.

Part II of this paper details the biological information currently known about the MPF 

reaction. Part III describes the construction of a mathematical model built by Novak and Tyson 

in 1993 and outlines the method by which the 11 equation system they developed can be reduced 

down to a two dimensional system. This section also contains an analysis of aspects of the two 

variable system which Novak and Tyson did not examine. Part IV of this paper examines a 

three-dimensional mathematical model for the MPF reaction, and compares it to the two variable 

system. Part V collects the biological data as it pertains to the frog species Xenopus laevis and
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presents it in a new system o f 11 differential and 4 algebraic equations. Finally, Part VI provides 

a discussion of this paper's results.

II. The MPF Reaction

The mitotic cell cycle of Xenopus laevis (a species of frog) oocytes has been studied for 

several decades in an attempt to decipher the mechanism that induces embryonic cells into 

division. We now know that a complex called M-phase promoting factor (MPF) initiates a string 

of events which culminates in nuclear and cellular division by phosphorylating histones, lamins, 

and other substrates (Lewin, 1990; Nurse, 1990). MPF is a dimer composed of two proteins; 

cyclin B, whose concentration level changes throughout the cell cycle, and cdc2 (Masui and 

Markert, 1971; Cyert and Kirschner, 1988). At various stages of the cell cycle, the separate 

pieces of the dimer come together, cleave apart, or are modified by enzymatic activity (see 

Figure 2a). While the cdc2 subunit provides the location for the protein kinase activity o f the 

dimer, cyclin B functions as a targeting facilitator for the site specific phosphorylation of cdc2 

(Simanis and Nurse, 1986; Solomon et al., 1990; Meijer et al., 1991). The total level o f cdc2 is 

constant throughout the cell cycle, and therefore it is the synthesis o f cyclin B which drives the 

early embryonic cycle (Simanis and Nurse, 1986; Gould and Nurse, 1989; Murray and 

Kirschner, 1989).

Cyclin exists in at least two forms, the more prominent of which are called A and B.

They appear to serve different purposes during the cell cycle. Cyclin B is the more active of the 

two and is vital to the M-phase of the cell cycle. Thus, we will only consider the action of cyclin 

B, and for notational simplicity we will omit the "B". A second clarification is that MPF is 

actually defined as that which induces M-phase, or mitosis. In truth mitosis can be initiated by 

many different processes, o f which the cyclin-cdc2 dimer is only one. Therefore, as Novak and 

Tyson note (1993a), claiming that MPF is the same as the cyclin-cdc2 dimer is erroneous.
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Figure 2. The cdc2-cyclin Mitotic Regulator. This figure depicts all current biological data as 
pertaining to the early oocyte stage of Xenopus laevis. Arrows indicate direction of enzyme 
activity; labels correspond to rate constant terms in the equations of section V. A). MPF 
complex with the activating and inhibiting enzymes; B) Feedback loops; C) Destruction o f the 
MPF dimer through the ubiquitin pathway'. Species M in this diagram is the only active from of 
MPF; species N is "pre-MPF". .
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Upon noting the distinction, however, we will use "MPF" to mean the dimer for the sake of 

convenience.

The activity level of MPF is determined by phosphorylation of the cdc2 subunit, which 

occurs at two sites; threonine-167 (thr-167) and tyrosine-15 (tyr-15). In Figure 2 tyr-15, 

denoted by Y, is on the left o f the cdc2 box and thr-167, denoted by T, is on the right. 

Phosphorylation at thr-167 is activatory, while phosphorylation at tyr-15 is inhibitory (Gould and 

Nurse, 1989; Solomon et aL, 1990; Gould et al., 1991; K rekandNigg, 1991; Simanis and 

Nurse, 1986). Two separate sets of enzymes control the modification of each site. 

Phosphorylation at thr-167 is controlled by CAK (Cdk activating kinase), which facilitates the 

reaction, and INH, a type 2A protein phosphatase, which inhibits it (Cyert and Kirschner, 1988; 

Felix et al., 1990a; Kinoshita et al., 1990; Lee et al., 1991). The modification at the thr-167 site 

happens at a very rapid rate which does not seem to be regulated during the cell cycle (Gould et 

al., 1991). Phosphorylation at tyr-15 is controlled by weel, a tyrosine kinase, and cdc25, a 

phosphatase (Featherstone and Russell, 1991; Russell and Nurse, 1986, 1987; Gould et al., 1990; 

Dunphy and Kumagai, 1991; Gautier et al., 1991; Millar et al., 1991; Jessus and Beach, 1992). 

We also know that MPF activation is an autocatalytic process. There are two positive feedback 

loops: one through the activation o f cdc25 and one through the inhibition of weel. Active MPF 

phosphorylates both enzymes, which makes cdc25 more effective at activating MPF and weel 

less effective at inhibiting MPF, as shown in Figure 2b (Cyert and Kirschner, 1988; Kumagai 

and Dunphy, 1991; Smythe and Newport, 1992; Gerhart et al., 1984; Murray, 1993). Since 

cdc25 and weel oppose each other, the feedback controls ensure that mitotic initiation is 

irreversible. Two other loops might exist, one through activation o f CAK and one through 

inhibition of INH, but at present there is no evidence for these .

In both frog and yeast cells the MPF dimer accumulates in its inactive forms, primarily 

in the doubly phosphorylated version called pre-MPF (Devault et al., 1992). Immediately prior 

to mitosis, the accumulated doubly phosphorylated dimers are then dephosphorylated at tyr-15 

(Gould and Nurse, 1989; Gould et al., 1990). To complete mitosis and move on to cell division,
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Table 1. Biological and Mathematical Abbreviations

Abbreviation________________ Description

cdc2 gene product
thr-167 threonine 167; specifies a location on a unit of cdc2
tyr-15 tyrosine 15; another location on a unit of cdc2
INH an essentially unidentified phosphatase
CAK Cdk activating kinase
Cdk Cyclin dependent kinase
weel specific tyrosine kinase
cdc25 specific phosphatase
Ube ubiquitinating enzyme
AA amino acid
M, N, R, S specify different species of the MPF dimer
Y cyclin B monomer
C cdc2 monomer
kj mass action rate constant for step i in the figures
Kj Michaelis-Mentens rate constant for step i
P phosphate
T as a subscript, represents total
IE intermediate enzyme on the ubiquitin pathway
Y tyrosine when inside the cdc2 box in figures 2 and 3.1
T threonine when inside the cdc2 box in figures 2 and 3.1

MPF must be destroyed. Destruction requires the proteolytic cleavage of the cyclin subunit, and 

MPF prompts this cleavage (Murray et al., 1989; Felix et a l , 1990b). The actual proteolysis 

occurs indirectly, through the ubiquitin pathway as shown in Figure 2c (Felix et al., 1990b; 

Glotzer et al., 1991). Active MPF stimulates an intermediate enzyme which catalyzes the 

ubiquitin pathway's degradation of cyclin (Hunt, 1991; Hershko, 1988). This intermediate 

enzyme is thought to somehow label the cyclin subunits, making it possible for the ubiquitin 

pathway to detect them. The newly liberated cdc2 subunits are then dephosphorylated so fast 

that any existing intermediates are undetectable (Luca and Ruderman, 1989; Lorca et a l, 1992).

There are alternate cdc2 phosphorylation sites at thr-161 and tyr-14 which may function 

as part of a backup system. These sites, however, are dominated by thr-167 and tyr-15
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respectively and therefore will not be included in our discussion (Lorca et al., 1992). A second 

tyrosine kinase (m ikl) and a second tyrosine phosphatase (Pyp3) have also been found, but since 

the only known role for mikl is related to the influence of unreplicated DNA (which is not a 

factor in Xenopus egg extracts and oocytes) and Pyp3 has been found only in yeast cells, they 

will not be included either (Lundgren et al., 1991; Millar et al., 1992). Finally, there is evidence 

for subcellular compartmentalization of the reactions between MPF and its kinases and 

phosphatases (Alfa et al., 1991; Booher et al., 1989), but at present so little is known about the 

transport of MPF and the enzymes involved that attempting to include it would be premature.

Several additional discoveries have been made by studying fission yeast cell cycles. 

Most of these advances have no known homologues in the cellular behavior of frog oocytes, and 

they are not included in either of the mathematical models we will examine. The consequences 

of these advances, however, may still provide us with insight, so I have included them here. In 

fission yeast, the effects of cdc25 and weel reveal themselves as changes in cell length at 

division. Excess weel translates into increased cell size, while excess cdc25 expresses itself as 

decreased cell size (Russell and Nurse, 1986, 1987). Cell size and the enzyme weel are related 

through nim l. The kinase niml phosphorylates weel on sites which are different from those 

weel uses in its activity with MPF: weel phosphorylated in this manner is approximately 25 

times less effective in inhibiting mitosis (Enoch and Nurse, 1990; Coleman et al., 1993; Parker et 

al., 1993; Tang et al., 1993; Wu and Russell, 1993). In other words, niml induces mitosis by 

inhibiting w eel. On the other hand, the yeast cell cycle can be stopped if the DNA is not 

completely replicated. Unreplicated DNA activates phosphatases that shift cdc25 to its less 

active, dephosphorylated form, and weel to its more active, dephosphorylated form. The net 

result here is that MPF is rapidly phosphorylated at tyr-15, and is thus inactivated (Smythe and 

Newport, 1992).
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III. Development of a Mathematical Model

In a 1993 paper Novak and Tyson (1993a) collected the information outlined in Sections 

I and II into a system of 11 differential and 4 algebraic equations, reproduced in Figure 3.2. In 

developing these equations, Novak and Tyson assumed that mass action kinetics were reasonable 

in all but two of the reactions. For the reactions describing the activation of cdc25 and UbE the 

authors used Michaelis-Menten kinetics instead. Mass action kinetics are appropriate for 

reactions in which the amount o f each reactant is very high, so that encounters or collisions occur 

randomly. Thus, an increase in the amount of reactants would always translate into an increase 

in the reaction itself. The processes that activate cdc25 and UbE, however, are self limiting in 

that at some point in the mitotic cycle, an increase of either enzyme forces the cell to divide, 

which indirectly destroys the enzymes and the reaction stops. This self limiting, or saturation, 

behavior can be modelled in several ways; Michaelis-Menten kinetics is the preferred method in 

microbiological and chemical problems (Edelstein-Keshet, 1988). The resulting unwieldy 

system reduces down to a two variable model under the following assumptions:

(i) the cdc2 subunits liberated after cyclin proteolysis are rapidly dephosphorylated. This

assumption has since been substantiated by Lorca et al. (1992).

(ii) the exact functions for k2(u) and k25(u) can be accurately approximated by quadratic

functions in u. This assumption is actually based upon another, namely that the 

activation of UbE and cdc25 occurs rapidly and exhibits "switch-like" behavior.

(iii) MPF dimers phosphorylated at thr-167 are always close to equilibrium. This means that

W S ]  ~ W N ]  and kCAK[R] « k ^ fM ] .

(iv) cyclin and cdc2 subunits associate rapidly so that the level of free cyclin (species Y) is so

low that we can ignore it.
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Figure 3.1. Novak and Tyson's 1993 Model. There are several differences between this model 
and the model in Figure 2, occurring in parts B and C. A). The MPF complex with its 
accompanying enzymes. B). The feedback loops. Notice.that the loop inhibiting weel is 
missing; its existence was not discovered until after publication of the Novak/Tyson model. C). 
Cyclin Degradation and the Destruction of the MPF Dimer. Much more is now known about this 
part o f the reaction than in 1993, thus there are several differences between this figure and Figure 
2c.
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Figure 3.2. Novak and Tyson's System of Equations

with

^  = k ,(A A )-k 2Y - k 3YC (3.1)
at
HR
—  = - k 2R + k3Y C - k CAKR + k INH M -k weeR+k25S (3.2)

-^■ = -S (k 2 + k CAK+ k 25) + k INHN + kweeR (3.3)

= -M (k 2 + k INH + k wee) + kCAKR + k25N
dt 

dN = -N (k 2 + k INH + k 25) + kCAKS + k weeM

^ 2 1  _ k2M + k 5C + k6(PCP)-(CPXk4 + k7) (3.6)
dt

^  = k2R - k 3YC + k4(CP) + k6(PC )-C (k5 + k7) (3.7)
dt

^ £ 2  = k2S + k4(PCP) + k7C -(PC X kj + k6) 
dt

^ ■ ^ 1 =  k2N + k5(P C )+ k7(CP)-(PCP)(k4 + k 6)
dt

(3.4)

(3.5)

(3.8)

(3.9)

d(cdc25P) k a(cdc25) kb(cdc25P)
dt _ ~ K a + ( c d ^ 5 ) M " ^ d c 2 5 P ) ^  (3*10)

d(UbE*) _  k c(UbE) kd(UbE*)
dt Kc + (UbE) Kd + (UbE*) V ;

k 25 = V25' (cdc25) + V25'' (cdc25P) (3.12)

k2 = V2'(UbE) + V2M(UbE*) (3.13)

(cdc25) + (cdc25P) = cdc25TOTAL = cdc25T (3.14)

(UbE) + (UbE*) = UbE Total = UbET (3.15)

The first assumption allowed Novak and Tyson to ignore equations 3.6, 3.8, and 3.9, 

since species CP, PC, and PCP are thus assumed to have constant, near zero concentrations. By
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introducing new variables e = Ube*/UbeTotaj and u = M/(R+S+M+N+C) the authors 

nondimensionalized 3.11, which gives

d e _ kc,u ( l - e )  kd'e 
dt “  Kc'+ l - e  K d'+e

(3.16)

Setting 3.16 equal to 0 gives the steady state value for e(t). Novak and Tyson then plot e(t) and

an appropriate quadratic function 

k2*(u)=k2’+k2"(u2) (3.17)

on the same set of axes, showing that, for 0 < u < 0.2, the actual function 3.13 can be 

approximated by the simple quadratic 3.17. The same trick is then applied to 3.10, 3.12, and 

3.14. These approximations are justified by assumption (ii) and they cut the number of 

differential equations down to six. Due to the fact that total cdc2 concentration in the cell is 

constant, equation 3.7 is simply a linear combination of equations 3.2, 3.3, 3.4, and 3.5 so 

we may ignore it as well. This leaves us with differential equations for species Y, R, S, M, and 

N. At this point, Novak and Tyson introduce dimensionless variables. These new variables in 

conjunction with assumption (iii) reduce the number o f remaining differential equations down to 

three (Part IV contains an analysis o f these three equations). Finally, assumption (iv) 

allowed the authors to combine two equations from the three dimensional model into a single 

differential equation. The resulting two variable system, which describes the action o f active 

MPF and total cyclin concentration is given by

^  l^2^ )  + k wee]u + k25(u )(^— u)

^  = k 1*-k2(u)v (3.19)

(3.18)

where
_ [active MPF] _ [M]

U_ [totalcdc2] “ [R + S + M + N +C ]
(3.20)

_ [total cyclin] [Y + R + S  + M + N] 
[total cdc2] [R+S + M + N + C ]

(3.21)
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k 2(u) -  k 2r+ k 2" (u ^ )  (3.17)

k 2 5 ( u )  =  k 2 5 ' + k 2 5 ' ' ( u ^ )  ( 3 . 2 2 )

k ‘ = k ‘ [R + S + M + N  + C] 3̂ '23')

G = i+Jiffifii. (3.24)
k CAK

Novak and Tyson then applied phaseplane analysis techniques to determine both the 

location and stability of the equilibrium points, given certain parameter values. For each point in 

the (u,v) phaseplane, equations 3.18 and 3.19 describe the direction field under which the u and v 

coordinates change instantaneously. Any particular solution to the system 3 .18-3.19 is a curve 

in the phaseplane, beginning at some given initial condition, whose path is dictated by the 

direction field.

The places in the phaseplane where the solution path is either vertical or horizontal, 

called nullclines, are typically easy to find. The intersection points of vertical and horizontal 

nullclines must be stationary in time and are appropriately called steady states or equilibrium 

points. If  we place u on the horizontal axis and v on the vertical axis, the solution path will be 

vertical wherever u’ = 0 and horizontal wherever v' = 0. For us this yields the following 

equations:

(the vertical nullcline (u1 = 0)): v = -9-4(11.£ 'yee„f  k? (u)) _  k t
k25(u) k25(u)

k '(the horizontal nullcline (v'= 0)): v = -—-— (3-26)
k2(u)

Novak and Tyson’s analysis of this two-dimensional model focused on phaseplane 

portraits in which the nullclines of the above system intersected at a single point. Examples are 

included in Figures 3.3a, 3.3b, and 3.3c. This single steady state is either stable or unstable, 

depending on minor variations in the parameters. For different parameter values, this system
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m
(.M0

i

Figure 3.3. Log-linear Phase Portraits. These are plots of the four phase portraits Novak and 
Tyson presented (1993a). For all portraits, k25,=.04, k25"=100, k l'=.01. A) A stable node at a 
low level of active MPF concentration; k2-.01, k2"=10, ^,.,.=3.5. B) An unstable focus; 
k2*=.01, k2,#=10, kv/ee=1.5. The trajectory is a stable limit cycle. C) A stable node at a high 
concentration of active MPF; k2-.01, k2' -.50, k ^ ^ .O .  D) From left to right; stable node, 
saddle, stable node. Parameter values are k2-.015, k2"=.10, ^ ^ = 3 .5 .

exhibits two distinct stable equilibrium points. One of these represents a stable state of low MPF 

activity (see Figure 3.3a), which Novak and Tyson associate with cells arrested in G2, and the 

other represents a stable state of high MPF activity (Figure 3.3c), which they associate with cells 

arrested in metaphase. When the equilibrium point is an unstable focus, the system passes
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through a Hopf bifurcation, spinning off stable limit cycles which are the oscillations Novak and 

Tyson were looking for (see Figure 3.3b). The fourth possible interaction of the nullclines, one 

which simultaneously produces three steady states (Figure 3.3d), was not analyzed. I will 

concentrate on this situation here.

To produce phase portraits which resemble Novak and Tyson's I substitute w = log10u 

and use PhasePlane (Ermentrout, 1988) to plot w' = 0 and v' = 0. See Figure 3.3 for a list of the 

parameter values used. The values used in Figure 3.4 all produce portraits with three equilibrium 

points as in Figures 3.4a and 3.4b. The left most equilibrium point is always stable, though for a 

small range of parameters it switches from its usual role of a stable node to that of a stable focus. 

The more central steady state is always a saddle, and therefore has separatrices approaching and 

leaving the point. On the right is the primary point o f interest. For certain parameter values (for 

this paper I varied k2") this point can be an unstable node, unstable focus, stable focus, or stable 

node. It is the switch from unstable focus to stable focus which is most vital, since this switch 

indicates the presence of a Hopf bifurcation, which may indicate the initiation or termination of 

oscillatory behavior. Figure 3.4c is a detail of a trajectory beginning very near the unstable 

focus. The path winds around and away from the steady state in a tight orbit until it reaches and 

(due to numerical inaccuracy) crosses the separatrix flowing into the saddle point. The path then 

quickly moves toward the left most steady state, a stable node.

When the equilibrium point is an unstable focus the separatrices of the saddle may wrap 

around it to produce a homoclinic orbit, which would also mimic the behavior of the cellular 

system we are attempting to model. Although I have been unable to determine the homoclinic 

orbit numerically, Figure 3.5 presents evidence for its existence. Since PhasePlane is a 

numerical approximation program and is consequently limited in its precision, the separatrix is 

apparent in forward time only by surrounding it on either side with trajectories as in Figure 3.4d. 

The direction field shows that orbits beginning just to the right of the separatrix move in toward 

the unstable focus, while those trajectories beginning just to the left o f the separatrix move to the 

stable node. This fact combined with the oscillations which occur in a small neighborhood of the
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Figure 3.4. The Hopf Bifurcation. Parts (a) and (b) are log-linear plots of the nullclines using 
w'=0 and v -0 . In (a) the steady states are a stable node, a saddle, and a stable focus, reading 
from left to right. In (b) they are a stable node, a saddle, and an unstable focus. Each plot 
includes sample trajectories and arrows indicating the direction of flow. For both (a) and (b) 
k1,=0.01, k25-0.04, k25"=T00. Additional parameter values for (a) are k2-0.01, k2',=0.30, 
kwee=4.0; for (b) the only change is k2"=0.40. The small boxes in (b) outline the areas magnified 
in (c) and (d). Part (c) depicts the oscillations in a small neighborhood of the unstable focus.
The trajectory moving out o f the box continues into the stable node in (b). Part (d) is a detail of 
the trajectories near the separatrix entering the saddle point in (b). In forward time PhasePlane is 
unable to draw the separatrix directly, but we can get a good idea of its location by examining 
these near-by paths. The solid line is the nullcline, the dashes represent the approximate location 
o f the separatrix.
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Figure 3.5. Evidence for a Homoclinic Orbit. Parts (a) and (c) are composites of forward and 
reverse time results (see text for explanation). The steady states in (a) and (c) are as in Figures 
3.4a and 3.4c respectively. In (a) the separatrix moving up into the saddle passes just under the 
equilibrium point, while the trajectory moving into the stable focus from the right meets the 
point exactly (see part (b)). In (c) the separatrix flowing into the saddle point begins at the 
unstable focus while the trajectory from the right passes just under the equilibrium point (see 
(d)). The small boxes within (a) and (c) outline the areas magnified in (b) and (d).

unstable focus provide support for the existence of a homoclinic orbit through the saddle point, 

along the u' = 0 nullcline, back up the separatrix into the saddle point. Such an orbit (indicated 

by the dashed trajectory in Figure 3.4b) would provide the model with the periodic oscillations it 

needs to successfully mimic the cell cycle of Xenopus oocytes.

Finding this path in forward time, however, requires more precision than PhasePlane is 

capable of. I suspect that as the trajectory winds out of the unstable focus and approaches the
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separatrix, the step size (I used dt = .001) causes the trajectory to jump over both the separatrix 

and the nullcline (since they lie so close together), out o f the saddle point’s basin of attraction. 

The trajectory must then travel toward the stable node on the left of the diagram. As a second 

attempt at locating the separatrix, I substitute s = -t in equations 3.18 and 3.19. Reversing time 

in this manner switches the stability of all the equilibrium points, so that a path moving from the 

unstable focus to the saddle point in forward time becomes a path moving from the saddle to the 

stable focus in reverse time. Figure 3.5 depicts portraits which are composits o f the forward and 

reverse time models. The path from the lower right equilibrium point up to the saddle was 

obtained using the reverse time model, while the path beginning at the saddle and moving 

clockwise to the unstable focus was obtained using the forward time model. For Figures 3.5a 

and 3.5b, I set k2" = 0.30 which forces the separatrix to pass just under the equilibrium point and 

the trajectory from the right to exactly meet the steady state. For Figures 3.5c and 3.5d, I set 

k2" = 0.40 which forces the two paths to switch positions (compare 3.5b and 3.5d). Therefore, by 

continuity, there exists some value o f k2" between 0.30 and 0.40 such that these two paths 

intersect, creating the homoclinic orbit we seek.

IV. A Three-Dimensional Mathematical Model

While a two dimensional model is relatively easy to analyze and at least partially 

understand, we run a tremendous risk of losing crucial behavior when we reduce a large system 

of equations like Novak and Tyson's initial group of 11 down to just two variables. The 

possibility exists that vital system dynamics are lost when we combine several initial variables 

into just one. Thus, we should also examine larger models of the same system, looking for 

dynamics which do not occur in the smaller versions of the problem. Since a system of four or 

more equations does not allow for graphical representation and is consequently difficult to
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understand, I will instead analyze a three-dimensional mathematical model o f the cell division 

regulator.

If  we include the level of free cyclin (species Y) by ignoring assumption (iv), the 

Novak/Tyson three-dimensional model is

■^ = k3'( v - x X l - x ) - k 2(u)x (4.1)

^  = -y0<2 (u) + k25 (U)J + k wee (x - Y) (4-2)

^ •  = k ,'-k j(u )v  (4.3)

where

k'3 = k3[total cdc2] (4.4)

[S+N] /A
y = .T . (4-5)[R+S + M + N + C ]

[R+S + M +N ] „
[R+S + M + N + C ] v ' ’

and k2(u), k25(u), kj', and v are given by 3.17, 3.22, 3.23, and 3.21 respectively. As in the two- 

dimensional model from Section III, v represents the ratio of total cyclin concentration to total

cdc2 concentration. The y variable represents the percentage o f MPF dimers that are

phosphorylated at tyr-15. The final variable, x, represents the proportion o f cdc2 that is bound to 

cyclin.

Notice that if the concentration of unbound cyclin (species Y in Figure 2a) is very small 

we have
[R + S + M + N] c A 1 fAv s  . 1 .— ■■ J = x for 0 <; v £  1 (4.7)

[R + S + M + N + C]
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This relation is equivalent to assuming the association between free cyclin (Y) and unbound 

cdc2 (C) happens very fast compared to the other reactions in the system (that is, k3 is relatively 

large). I f  v > 1, however, then from 3.21 we must have Y > C and since Y is already assumed 

small, C must be small as well and thus we define

x = [R + S + M + N] ,
[R + S + M + N  + Csmall] ~ V • }

Note that 4.6 forces x <, 1. Next, recall from the two dimensional model that

u = _ M ------------
[R + S + M + N +C ] 

Multiplying numerator and denominator by

yields

G = l+ J iM i-  = u  (4.10)
k CAK

M(i+JSnflL)
u = ------------------------ — --------  (4.11a)

[R+S + M + N +  C](1 + -^ ® -)
k CAK

which, by assumption (iii), is

[M + R]

[R+S + M + N  + C ](l+ -^ H -)
k CAK

JM + R + Y]

[R +S + M + N  + C ](l+ -^ H -)
k CAK

(4.11b)

(4.11c)

[M + R + Y + S  + N - S - N ]= - ^ ------------------------------------------------------------------------------ (4.1 Id)
[R + S + M + N + C ](1+ -^H -)

k CAK
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= - ^ ~  (4. H e)
1 , k in h

lCAK

V —V

=TT (412>
We have now defined the relationship between the two and three dimensional variables.

Next, since each variable (x, y, v) represents a ratio o f concentrations, we must be sure 

the model is both well-posed and bounded. I f  the model is not well-posed then a variable may be 

negative, while if the model is not bounded, then some variable is growing without limit.

Neither situation makes sense biologically; the mathematical model must reflect this reality. For 

the model to be well-posed, each differential equation must point into the purely positive octant 

in each of the x - y ,  y - v ,  x - v  planes. Setting the differentiated variable equal to zero and 

examining the sign of the resulting equation, we have

k3,v > 0 f o r v > 0  (4.13)
dt J

.— : kweex > 0 for x > 0 (4.14)

— k 1’> 0 for all x, y, v (4.15)

and therefore the trajectories must all stay in the positive octant. Next we discuss boundedness. 

To begin, we know (from 4.11 and 4.12) that 0 < x ^  1. Substituting this maximum value for 

x into 4.2 and 4.3 and setting the results equal to zero yields

-y[k2(u) + k25(u)] + kwee( 1 - y) = 0 (4.16)

or

y  = u ,  < 1 since k ^ u)’ k * (u>> 0 ( 4 1 7 )k2(u) + k25(u) + kwee
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and kL’ - k2(u)v = 0 (4.18)

or k rv _  i _ .01 .01;—j— = ----- = ------:------ =r< 1 for k2'>.01 and k2"> 0 (4.19)
k2(u) k2(u) k2'+k2"u

Thus the system is both well-posed and bounded; all trajectories must stay inside the first octant 

with x, y, and v all bounded above by 1.

Next I used PhasePlane to determine the location of the steady states of this three- 

dimensional model and compared the stability of each point with its analog from the two- 

dimensional model. Figure 4 places corresponding two-dimensional and three-dimensional plots 

side-by-side for comparison. Of importance here is the fact that the equilibrium points maintain 

their stability in the transfer from two- to three-dimensions (see Table 2). Perhaps most 

importantly, the parameters that produce a stable limit cycle in two dimensions also appear to 

produce an oscillatory path in three dimensions (Figure 4c: The closed loops in both plots are 

the limit cycles). Thus the three-dimensional model, for the proper parameter values, also 

mimics the oscillatory behavior of early frog oocytes. In addition, the three-dimensional model 

produces several steady states that do not appear in the two-dimensional model. Most o f these 

"extras" do not have biological significance since their coordinates are either negative or out of 

bounds. These extra steady states do, however, affect the behavior of the trajectories near them 

and are therefore mathematically significant; they may indicate dynamics which are lost when 

the model is reduced to just two variables.

Certain values of the parameters produce steady states in the three-dimensional model 

having two complex eigenvalues whose real parts are positive, and one real eigenvalue that is 

negative (see Figure 4c and Table 2, line c). This combination of eigenvalues indicates that the 

system may be chaotic for these parameter values, a result which is not possible in a two- 

dimensional autonomous system like Novak and Tyson's. Chaos in this problem means that the 

period between cell divisions is erratic and unpredictable. Thus some cell divisions will happen
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Figure 4. Comparison of Two- and Three-Dimensional Results. Plots of trajectories and steady 
states for both the two- and three-dimensional versions of the model sit side-by-side, one pair for 
each set of parameter values. Steady states labeled with the same number exhibit the same 
behavior. In 4d, for example, the equilibrium point labeled 3 is a stable node in both the two- 
and three-dimensional cases. Several of the three-dimensional cases produce more steady states 
than their two-dimensional counterparts. Since these extra steady states influence the behavior 
of nearby trajectories, they may be indicators of dynamics lost when the mathematical model is 
reduced to just two variables. Parameter values are as follows: For all cases k25\  k25", k^ as in 
Figure 3.3, k3'=1000; A) k2’=0.01, k2"=10, ^ = 3 . 5 ;  B) k2’=0.01, k2"=0.50, ^ = 2 . 0 ;  C) 
k2'=0.0l, k2"=10, lw - 1 .5 ;  D) k2’=0.015, k2"=0.10, ^ = 3 . 5 ;  E) k2'=0.01, k2"=0.3, ^ = 4 . 0 ;  F) 
k2 -0.01, k2"=0.40, ^ = 4 . 0 .
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Figure 4. Continued '

too soon (the period is shorter than optimal) and others will happen too late (the period is longer 

than optimal). Cell cycles outside the optimal time range thus produce daughter cells which are 

either abnormally small or large. The daughter cells in both cases are unable to support 

themselves and die. Therefore, for certain parameter values, cell division is lethal, a
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Table 2. Steady States of Figure 4: Location and Type

Figure (u, v) Type (x, y, v) Type 
Part coordinates coordinates

Comments

a (.0157, .8016) r - = 2 (.8005, .7832, .8006) 
(1.0009, .9865, .9901)

r - = 3
r + = 1, r - = 2 Extra

b (.2019, .3292) r - = 2 (.3292, .1071, .3292) 
(1.0005, .9555, .9786)

r - = 3
r + = 3 Extra

c (.0463, .3183) c + = 2 (.3182, .2673, .3182) c + = 2, r - = 1

d (.2761, .4420) 
(.0116, .6661) 
(.0548, .6536)

r - = 2 
r - = 2
r + = l , r - = l

(.4411, .1383, .4420) 
(.6660, .6532, .6661) 
(.6536, .5934, .6536) 
(1.0000, .7377, .6177)

r - = 3 
r - = 3
r + = 1, r - = 2 
r + = l , r -  = 2 Extra

e (.0189, .9894) 
(.2072, .4372) 
(.0301, .9736)

r - = 2
c -  = 2
r + -  1, r - = 1

(.9835, .9585, .9841) 
(.4372, .2093, .4372) 
(.9775, .9477, .9779) 
(1.0022, .9880, .9977)

r - = 3
c -  = 2, r - = l  
r + = 1, r -  = 2 
r + = l , r -  = 2 Extra

f (.0197, .9847) 
(.0302, .9648) 
(.1792, .4376)

r -  = 2
r + = l , r -  = 1 
c + = 2

(.9815, .9585, .9820) 
(.9649, .9322, .9652) 
(.4379, .2409, .4379) 
(1.0021, .9880, .9972)

r - = 3
r + = 1, r - = 2 
c + = 2, r - = 1 
r + = 1, r - = 2 Extra

consequence o f the mathematical model which may prove to have important medical 

repercussions.

V. A New Model

Several discoveries have been made since Novak and Tyson published their paper in 

1993. These new advances were incorporated into a current model for the MPF reaction in 

fission yeast (Novak and Tyson, 1995). The yeast model, however, is not directly applicable to 

Xenopus due to variations in their respective cell cycles. Thus, the Xenopus model in Figure 3.1
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needs renovation. There are three major alterations to be made. First, the feedback loop through 

weel was unknown originally and must now be included. Second, we have a better 

understanding of the destruction of MPF through the ubiquitin pathway. We now know that 

active MPF stimulates an intermediate enzyme (IE) which then activates the ubiquitin enzyme 

(UbE), which in turn initiates the proteoly3i3 of cyclin B, turning the cyclin back into amino 

acids. Finally, we have the fact that the cdc2 subunits released after the cleavage of cyclin B 

dephosphorylate so fast that intermediates are undetectable.

Figure 2 represents the updated system in three parts: the dimer, the feedback loops, and 

the ubiquitin action. Using these pictures as a guide, we develop the system of equations in 

Figure 5, Given the current information about the cell cycle, mass action kinetics are appropriate 

for most of the steps in the reaction. This aspect of the model may need revision as more 

knowledge accumulates, but for now mass action constants are considerably easier to work with 

and the literature does not provide conclusive support for another option. The steps of the 

reaction which involve the activation of weel, cdc25, IE and UbE all display saturation behavior 

and are better modeled with Michaelis-Menten rate terms. We begin the new Xenopus model 

with a system of 11 differential equations; the task now is to reduce the system down to a 

number of variables we can analyze concurrently. The following assumptions held for the 

Xenopus model analyzed in Part III and are still valid:

i) Total cdc2 concentration is constant; total cdc2 = R+S+M+N+C = constant; so 

equation 5.6 is a combination of equations 5.2, 5.3, 5.4, 5.5 and we may ignore it.

ii) The dimers phosphorylated at thr-167 are always near equilibrium so that

^cak^ 25 ^inhN and k c ^ R  ~ kM M.

These two assumptions, however, leave us with 10 differential equations, nearly all o f which are 

nonlinear. Due to the non-linearities, this new model is quite difficult to reduce further, and I 

leave the task as an open question.



26

Figure 5. Equations for New Model

^  = k ,(A A )-k 2Y - k 3YC 
at

^  = k iNHM + kCAK+k2)R+k25S+k3YC

^  = T T T  "  ̂ 5  + kcAK + k2 )S + k
dt K + R

^  = kCAKR + k25N -(knffl + k2

— (kiNH + k2s + k2)N + kCAKS

—  = k2(R + S + M + N ) - k 3YC 
dt

d(cdc25P) _ ka(cdc25T -cdc25P) k b(cdc25T -cdc25P) 
dt ~ K a +(cdc25x -cdc25P) ”  K b +(cdc25T -cdc25P)

= kd(w e e lP )-k c(weel)M 

= k c (wee 1 )M -  kd (wee 1P)
dt

d(IEP) = ke(IET-IE P ) k f (IEP) 
dt Ke + (IEX — IEP) K f + aEP)

d(UbE) _ kg(UbEx -  UbE) kh(UbE)
dt Kg + (UbET -  UbE) ; Kh + (UbE)

with

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

(5.11)

k2 =V 2,(UbET -U bE ) + V2,,(UbE)
k 25 = V25'(cdc25x — cdc25P) + V25'' (cdc25P)
k wee = Vwee' (wee lx -  wee 1) + Vwee' ' (wee 1)

(5.12)
(5.13)
(5.14)
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VI. Discussion

Several criticisms can be leveled at the new model I propose. First, the model does not 

incorporate the evidence for subcellular localization of the MPF system. As we discover more 

about the methods cells use to transport the separate pieces of the dimer and the necessary 

enzymes to the appropriate places, we will need to develop a model that includes this 

information. For now, however, so little is known about the transport mechanism that including 

it in the model would require making tremendous and unsubstantiated guesswork. Second, 

Michaelis-Menten kinetics is only one way to deal with the self-limiting activation of two key 

enzymes, cdc25 and weel. The use of some other saturation type rate term might significantly 

alter the behavior o f the mathematical system and could conceivably lead to a more accurate 

modeling of the biological system.

The mathematical models I have analyzed successfully mimic the behavior of early frog 

cells by allowing oscillatory trajectories (the limit cycles in Figures 3.3b and 4.1c and the 

homoclinic orbit in Figure 3.4b). This suggests that the more important parts of the biological 

reaction are those involving the active form of MPF and cyclin, which we intuitively expect. In 

the two-dimensional model, these variables are expressed as ratios of concentrations; active MPF 

and total cyclin to total cdc2. In the three-dimensional model the variables are again expressed 

as ratios; total cyclin, total tyr-15 inhibited dimers, and total dimers to total cdc2. Thus we have 

evidence that what drives the mitotic regulator, at least for frog cells, is the relationship between 

cyclin and potentially active MPF.

A thorough understanding of the ceil division cycle may allow us to artificially regulate 

mitosis in both directions. The ability to inhibit mitosis could potentially give the medical field a 

new method for treating cancerous tumors. As described in Part IV, inducing chaotic periods 

between cell divisions may also prove to be beneficial as a treatment option. On the other hand, 

new treatments for arthritis and cartilage damage in joints use grafts of the patient's own tissue. 

Currently these grafts take weeks or months to cultivate, whereas the ability to artificially induce
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healthy cell division may cut the required growth time down dramatically. Once perfected and 

available, the ability to rapidly produce grafts may be an effective way to treat bum victims: 

Skin grafts could be grown, possibly in a matter of hours, using just a few of the victim's 

surviving cells as starters for the culture, thereby reducing the risk of transplant rejection. For 

the above reasons, and probably several more, a thorough grasp on the mechanics of mitotic 

initiation is quite valuable, and mathematical modelling of the process is a vital tool for 

understanding the biological information.
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