
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2004

Breeder algorithm for stellarator optimization Breeder algorithm for stellarator optimization

Shengping Wang
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Wang, Shengping, "Breeder algorithm for stellarator optimization" (2004). Graduate Student Theses,
Dissertations, & Professional Papers. 5127.
https://scholarworks.umt.edu/etd/5127

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267579794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5127&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5127?utm_source=scholarworks.umt.edu%2Fetd%2F5127&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited
in published works and reports.

Please check "Yes" or "No" and provide signature

Yes, I grant permission _____

No, I do not grant permission ___________

Author’s Signature:

Date: ^ ^

Any copying for commercial purposes or financial gain may be undertaken
only with the author's explicit consent.

8/98

A Breeder Algorithm for Stellarator Optimization

By

Shengping Wang

B.S. in Mathematic Science, Hunan Normal University, China, 1988

Presented in partial fulfillment of the requirements

For the degree of

Master of Science

The University of Montana

December 2004

Directed by

Dr. Andrew S. Ware

Department of Physics and Astronomy

Approved by:

iirman

ean, Graduate School

Date
0 4

UMI Number: EP40591

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Dissertation F b'i h rig

UMI EP40591

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Wang, Shengping, M.S., December 2004 Computer Science

A Breeder Algorithm for Stellarator Optimization

Committee Chair: Dr. Joel Henry

A comparison of Levenberg-Marquardt and Genetic optimization algorithms is
presented and a hybrid optimization algorithm which combines these two is developed.
A number o f different optimization algorithms have been applied to optimization in
various physical areas including both steepest descent and evolutionary optimization
algorithms. Each algorithm has both advantages and disadvantages. This paper provides a
comparison of optimization between the Levenberg-Marquardt routine, a steepest descent
optimization method, and the Genetic Algorithm, a global evolutionary optimization
algorithm, in an applied plasma physics area. To take the advantages o f both steepest
descent optimization and evolutionary optimization, the Breeder Algorithm which
combines the Genetic Algorithm with the Levenberg-Marquardt algorithm is introduced.
A description of the design and structure of the Breeder Algorithm is presented, as well
as the code reviews which present the strategy and challenges o f the implementation.

Contents

1. Introduction...1
2. The Existing Search Algorithms.. 3

2.1. The Levenberg-Marquardt Algorithm.. 3

2.1.1. A brief introduction to the Levenberg-Marquardt algorithm...................... 3

2.1.2. A typical LM search exam ple...4

2.1.3. Advantages and disadvantages of the LM search algorithm..........................8

2.2. The Genetic Algorithm...8

2.2.1. A brief introduction to the Genetic Algorithm..8

2.2.2. A typical GA search example.. 10

2.2.3. Advantages and disadvantages of the GA search algorithm11

3. The Breeder Algorithm.. 12
3.1. Design Description and Diagrams... 12

3.1.1. Existing Structure:...13

3.1.2. Modified Structure:...14

3.1.3. BA modifies GA structure..15

3.2. Coding strategy for the B A ... 16

3.3. Coding challenges for BA...18

3.4.1. Review 1: To handle BA temp filename properly.. 20

3.4.2. Review 2: The core functionality of BA, to insert inner loop, LM routine,

into existed GA routine.. 21

4. Comments to B A ... 25
4.1. Initial results of BA... 25

4.2. Advantages and disadvantages of BA search...26

4.3. Existing issue and future w ork.. 27

5. References...28
6. Appendix: Source Code... 29

6.1 runoptim izer.f.. 29

6.2 galm driver.f... 32

6.3 galm sp.f...34

6.4 ga evalout.f.. 36

in

List of Illustrations

Figure 1. A schematic of the toroidal and cylindrical coordinates......................................5

Figure 2. The outer plasma surface of the QPS15 test case... 6

Figure 3. The evolution of the total £ during an LM optimization.................................... 7

Figure 4. The evolution of the total during a GA optimization................................... 10

Figure 5. Existing structure of ORNL code..13

Figure 6. Modified structure to ORNL code..14

Figure 7. Comparison of GA and BA structures... 15

Figure 8. Initial results of BA (1) ...25

Figure 9. Initial results of BA (2) ...26

IV

1. Introduction

A number of different optimization algorithms have been applied to stellarator

optimization including both steepest descent and evolutionary optimization algorithms. A

stellarator is a device used to confine a high-temperature plasma with magnetic fields

with the long-term goal of sustaining a controlled nuclear fusion reaction. In a stellarator,

the magnetic field necessary to confine the plasma is completely generated by external

coils. The first such devices were built at the Princeton Plasma Physics Laboratory in

1951. In recent years, the design of stellarator experiments has been aided by extensive

use of computational algorithms used to optimize confinement and stability properties of

the magnetic configuration. In this paper, we present two major works: (1) a comparison

of two different algorithms applied to the optimization of three-dimensional equilibria: a

Levenberg-Marquardt routine (LM), and a Genetic Algorithm (GA); and (2) the

development of a new optimization algorithm, the Breeder Algorithm (BA), which

combines the methods of GA and LM.

The speed and efficiency of numerical codes used to calculate equilibrium,

stability, and transport properties of three-dimensional plasmas has been sufficiently

enhanced so that global (in parameter space) optimization methods are now feasible. In

principle, the primary advantage of evolutionary algorithms such as GA is that they

perform a global parameter space search. This is in contrast to steepest descent methods

which perform a local parameter space search for the optimal configuration. LM, for

example is prone to finding local extremum. The primary disadvantage of evolutionary

algorithms is that they can be inefficient when compared to steepest descent algorithms.

In the first part of this work, we present a comparison of the GA and LM methods when

applied to stellarator optimization.

1

The Breeder Algorithm combines a global Genetic Algorithm with a local

Levenberg-Marquardt optimizer used to refine each generation. The goal of the BA

algorithm is to take advantage of the global parameter space search o f the evolutionary

algorithm while maintaining the efficiency of the LM method. Here, we present a

description of the Breeder Algorithm and the first results from the application of the BA

to stellarator optimization.

2

2. The Existing Search Algorithms

In this section we give brief descriptions of the two optimization algorithms most

commonly used for stellarator optimization. An example stellarator optimization case is

presented and the optimization results for both algorithms on this case are discussed.

2.1. The Levenberg-Marquardt Algorithm

2.1.1. A brief introduction to the Levenberg-Marquardt algorithm

The problem for which the LM was developed is called nonlinear least squares

— 1 m —
minimization. Suppose that we have a function: f (x) = — ry2 (x) , where

2 y'=l

x = (jc1,jc2,...x>i)is a vector, and each x 1 is a function from R n to R . The x 1 are referred

to as a residual and it is assumed that m > n . A lso,/ can be represented as a residual

vector r: R n to R m defined by r(x) = (r1(x),r2(x),...,rm(x)) . Therefore,/can be written as

1 2
f (x) = — \\r(x)\\ . The derivatives o f f can be written using the Jacobian matrix J of r

dr.
with respect to x defined as J v = —- , 1 < j < m, 1 < z < n .

dx{

The LM is a blend of gradient decent and Gauss-Newton iteration. Vanilla

gradient descent is the simplest technique to find minima in a function. Parameter

updating is performed by adding the negative of the scaled gradient at each step,

x/+1 = x|. +TV / . There are some disadvantages using pure gradient descent updating. One

well known is when the given function is not differentialable, pure gradient descent won’t

work properly.

3

Using a Tayler series, there is an update rule: x!+l = xi.- (V 2/ (x 1.) r 1V/(x,.). Based

on that, and Levenberg’s update rule: xM = x(. - (H + A i y x V /(xf.) , Marquardt introduced

an improved updating formula in 1963: xM = x: - (H + ld ia g [H]y1V f(x i) . Where H is

•j o2 2
the Hessian Matrix, H n = [1].

2 d a p a }

To summarize, LM is an iterative method to minimize the sum of

squares x 1 (“Chi-Square”) of M functions in N variables. LM requires the finite-

difference approximation of the Jacobian matrix in each iteration. LM uses the Jacobian

to minimize x 1 in a local region of parameter space.

2.1.2. A typical LM search example

In this section we discuss a typical stellarator optimization case and the results of

an LM optimization on the case. This plasma equilibrium has a three-dimensional fixed

boundary determined by the Fourier coefficients, RbC(m,n) and ZftC(/?i,«), where m and n

represent the poloidal and toroidal mode numbers, respectively. A schematic of the

cylindrical coordinates (R,</>,Z) and the toroidal coordinates (p,0,Qis shown in Figure 1.

4

Figure 1. A schematic of cylindrical (R,(f>,Z) and the toroidal (p,0,Q coordinates.

The outer boundary is given by

R(0,£)= £ i ^ c (m,7?)cos(m<9-/2^)
m , n

Z (6 ^ Z j j C(m, n) s m{ mO—n ^
m , n

where a symmetry called stellarator symmetry has been assumed. These boundary

coefficients are some of the independent variables, m and n, which LM can vary to

improve the plasma properties as discussed below. The strength of the magnetic field

varies throughout the plasma including on the outer surface. Figure 2 shows the outer

plasma boundary for one of the test cases we used which is called QPS15. The color on

the surface indicates the strength of the magnetic field at that point. Some of the basic

plasma parameters of QPS15 are as follows. The average magnetic field strength is 1.0 T.

The average plasma pressure is measured relative to the magnetic field strength squared

5

and is called the plasma beta, J3=(^p/B2j and for the QPS15 plasma, J3= 15%. This is a

very-high plasma beta relative to existing stellarator plasma experiments. The aspect

ratio, A, is the ratio of the average major radius, R, to the average minor radius, a. For

QPS15, A = 3.7. This is low relative to most three-dimensional confinement devices.

This configuration has an electrical current running through the loop of plasma with a

total current of 176 kA. This is in contrasting to most stellarators which have zero net

plasma current.

1 .7 5 1

CO 1 .5 0 1
<D 1

S3 1 ,25

CO
1.00

0.75

Figure 2. The outer plasma surface of the QPS15 test case.

The initial j? was 1.20 x 106 and this was primarily due to the plasma being

unstable to certain types of perturbations. A number of stability checks are part of the

calculation for each case and a stable plasma is one of the targets. There were N = 8

independent variables which included the plasma boundary coefficients and coefficients

describing the pressure and current profiles. The final ^ was 1.213 x 105 and this

reduction was primarily due to improvement in the stability of the plasma.

6

Levenberg-Marquarde Algorithm
1.4 106

1.2 106

1 106

8 105

X2
6 105

4 105

2 105

0
0 500 1000 1500 2000

Number of Iterations

Figure 3. The evolution of the total during an LM optimization.

Figure 3 shows the total £ vs. the number of iterations in the optimization. In the

first 100 iterations as the Jacobian was being determined, the average remained around

the initial value, then between 100 to 105 iterations, the value of £ drops significantly

as the algorithm moves down the gradient in parameter space. The Jacobian is

recalculated at the new position in parameter space during iterations 105-200 and then the

algorithm again makes significant progress in reducing £ as it moves down the new

gradient. This process is repeated several times. After 400 iterations, £ remains

relatively constant as the optimizer ceases making any significant progress. This indicates

-------- r \ >-------- ---------1---------1---------r - " i --------- ---------1---------1---------1---------1---------

-

t -

_

-

-

-

.

• 1
. , * *

i i . . _ j---------1 _____ i_____ I______i_____ i______ 1 , 1 I 1.........

7

a local minimum in the £ function has been obtained. This is typical for an LM

optimization.

2.1.3. Advantages and disadvantages of the LM search algorithm

Since LM is a single-shot method which attempts to find the local fit-statistic

minimum nearest to the starting point. Its principal advantage is that it uses information

about the first derivative of the fit-statistic as a function of the parameter values to guess

the location of the fit-statistic minimum. Thus this method works well (and fast) if the

statistic surface is well-behaved. For the testing case shown above and other cases tested,

initial results show that the LM algorithm is most effective in minimizing % after -500

iterations

The principal disadvantages o f LM are that it will not work as well with

pathological statistic surfaces, the first or second derivatives of the function of the

surfaces do not exist, and there is no guarantee it will find the global fit-statistic

minimum.

2.2. The Genetic Algorithm

2.2.1. A brief introduction to the Genetic Algorithm

Genetic algorithms (GA) were formally introduced in the 1970s by John Holland

[2], The continuing performance improvements of computational systems have made

them attractive for some types of optimization. In particular, genetic algorithms work

very well on mixed (continuous and discrete), combinatorial problems. The three most

important aspects of using genetic algorithms are: (1) definition of the objective function,

(2) definition and implementation of the genetic representation, and (3) definition and

implementation of the genetic operators. Once these three have been defined, the generic

genetic algorithm often works well. Beyond that you can try many different variations to

improve performance, find multiple optima or parallelize the algorithms.

Genetic algorithms are inspired by the theory of evolution. The solution method

used by genetic algorithms is an evolutionary process. The GA begins with a set of

randomly selected solutions (represented by chromosomes) called a population. Solutions

from one population are taken and used to form a new population. These are generated by

genetically-inspired operators, of which the most well known are crossover and mutation.

Crossover is performed with probability p cross (the “crossover probability”) between two

selected individuals, called parents, by exchanging parts of their genomes to form two

new individuals, called offspring; in its simplest form, substrings are exchanged after a

randomly selected crossover point. This operator tends to enable the evolutionary process

to move toward “promising” regions o f the search space. The mutation operator is

introduced to prevent premature convergence to local optima by randomly sampling new

points in the search space. It is carried out by flipping bits at random, with some (small)

probability p mut [3] This is motivated by a hope that members of the offspring will be

better (i.e., have a lower y?) than the old one. A new population is formed from the

parents and offspring with the lowest values (also called their fitness) - the more

suitable the cases are the more chances they have to reproduce.

This is repeated until some condition (for example number of generations or

improvement of the best solution) is satisfied.

9

2.2.2. A typical GA search example

2.8 10s

2.4 10s

2 10s

1.6 10s

x2
1.2 10s

8 105

4 105

0 500 1000 1500 2000 2500 3000 3500 4000
Number of Iterations

Figure 4. The evolution of the total £ during an GA optimization.

In order to compare GA with LM, we used the same configuration of testing files

as we used for LM algorithm, namely the QPS15 case. In order to make the parallel

computation more efficient, we chose 48 as the population size because we use 3 nodes

and each node contains 16 processors in IBM-SP environment. The generations are 12 to

15 because after 15th generation, the £ won’t have significant improvement from our

experiment. The total £ is shown as a function of the number of iterations in Figure 4. In

the first thousand iteration £ is scatted around the initial value with a wide range of

values and the density o f £ points is relatively low. After this initial period, more and

more points are clustered in a high density area near a minimum £ value. The number

Genitic Algorithm

I*&**r
..r.Y4

• • *

10

of excursions far from the optimal value decreases. This behavior of ^ is typical for a

GA search.

2.2.3. Advantages and disadvantages of the GA search algorithm

Since GA is a based on a set of randomly selected solutions, its principal

advantages are: (1) GA is less susceptible to getting 'stuck’ at local optima than gradient

search methods; (2) It’s faster than the simulation evaluation; (3) It’s more deterministic

in terms of the evaluation provided for a given candidate.

The principal disadvantages of GA are: (1) There are few jobs that GA can do

better than a heuristic-based search (i.e., if you have some ideas of how to solve your

problem, you’re probably better off implementing those ideas than you are turning your

problem over to a GA, which relies on randomness); (2) The Genetic Algorithm was

effective only on certain cases. We have been tested 4 different cases for this project, GA

can not work for one of them at all; and (3) global algorithms such as GA tend to be

computationally expensive relative to steepest descent methods since the number of

iterations for GA is relatively greater than that for LM.

11

3. The Breeder Algorithm

The Breeder Algorithm combines a global Genetic Algorithm with a local

Levenberg-Marquardt optimizer used to refine each generation. For each individual in

GA, BA applies LM to refine it for producing the next generation. The goal of the BA

algorithm is to take advantage o f the global parameter space search of the evolutionary

algorithm while maintaining the efficiency of the LM method.

3.1. Design Description and Diagrams

The BA combines the global coverage of the GA with intermediate optimization

steps using the LM routine. The primary structure of BA is:

(1) Initial generation production by the genetic algorithm (outer loop)

(2) Refinement of the members of this generation using a Levenberg-Marquardt

step (inner loop)

(3) Evolving to future generations back in the genetic algorithm.

The Figures 5-7 show the primary structure of BA. Figure 5 indicates the existing

structure of the Stellarator Optimization code. It takes an input file, runs through one of

three existing optimizations, Levenberg-Marquardt, GA or DE (Differential Evolution

algorithm, similar to GA but not discussed here), and produces a number of output files.

Figure 6 illustrates the highest level BA structure which is a modification of the Figure 5.

Generally, we add a new optional optimization, BA, to the existing ORNL structure

(ORNL is the existing stellarator optimization code developed by scientists from Oak

Ridge National Laboratory). The major BA structure is shown in Figure 7, as well a

comparison to the GA structure. GALM DRIVER is modified from GA DRIVER. A

12

subroutine called SUBOPTIM IZE which implements LM is inserted into

GAEVALOUT subroutine. This is the core part of BA.

3.1.1. Existing Structure:

Output f i leInput f i le

Call *3
dedriver

call *1
Inriifljnrp

optimize(irputfile)

st^ larator_cptJini2er

*1 l̂ ^nberg-i\/bnquardt hMhod
*2 Genetic Evolution flgorithm
*3 Differential Evdution Algorithm

Figure 5. Existing structure of ORNL code

13

3.1.2. Modified Structure:

Input f i l e

,r !
s t e l la r a t c xr o p tim iz er ,

f

optimize (input file) ,

 ^ ________

runopt imi zer

Call *2
gadriver

Call *3
dedriver

call *1
lndifl_itp

*1 Levenberg-Marquardt Method
*2 Genetic Evolution Algorithm
*3 Differential Evolution Algorithm
*4 Breeding Algorithm

Figure 6. Modified structure to ORNL code

14

3.1.3. BA modifies GA structure

ga_driver galm_driver

11 L 1
1 ga-_sp i-------- :

:
galm_sp

ga_initial

ga_evalout
ga_selectn

gacrossaver
gamutate
ga_micro

ga_initial

gen e ra t io n

ga_evalout

sub_optim i ze

F'or each
I n d lv id u a l o f

population
II I

ga_selectn
ga_crossover
gajnutate
ga_micro

WhiTO «.ub_opt i r o i z « (in p u t_ n Ic) using fhu .input i'i ic s produced by <nch popul/ it i<
i s s i m i l a r a s o p t i i ni / o h u i o n l y r u n s t h r o u g h Le ve nhur g- Ma nj i i a r \ i t r o u t i n e

Figure 7. Comparison of GA and BA structures

15

3.2. Coding strategy for the BA

The original code of Stellarator Optimization was developed by Oak Ridge

National Laboratory (ORNL). The Stellarator Optimization code consists o f multiple

packages to achieve various purposes including the calculation of magnetic fields

produced by a set of coils, determination of a three-dimensional plasma equilibrium,

assessment of the stability of the equilibrium, estimation of the transport properties of the

plasma, and an overall optimization structure that modifies the input plasma properties to

approach a user-defined goal of a stable, high-pressure plasma. The Breeder Algorithm

is a modification to the structure of two of these packages called LIBSTELL and

STELLOPT. The LIBSTELL library consists of subroutines used by many of the

packages and includes the optimization algorithms. The STELLOPT code (this is short

for Stellarator Optimizer) is the primary code which makes calls to the optimization

subroutines contained in LIBSTELL and also makes system calls to execute other

packages that calculate plasma properties such as equilibrium and stability.

In the STELLOPT package, we added a BA optimization option to the

RUN OPTIMIZER subroutine which implements the different optimizations using

various approaches selected by the user, as well as adding a routine called

RUN SUB OPTIMIZER which implements the LM routine when called by the

GAEVALOUT subroutine in the LIBSTELL package.

In the LIBSTELL package, we created a routine called GALM DRIVER which

performs the role of entry to BA. The most significant part of BA is the modification to

the GA EVALOUT subroutine. The primary purpose of the GA EVALOUT subroutine

is for GA to evaluate the population, assign fitness, establish the best individual, and

16

output essential information. The modification we made here is to insert an LM search

for each individual of each population. The most challenging task in this portion of the

project was making the “inner” LM work properly in parallel computation environment

handling the working space including temporary working files, and correctly cleaning up

memory space after each LM routine. Since both GA and LM share the same extensions

of temporary files when those optimizations were implemented independently, once those

two were combined together, it was necessary to develop a new system of shared

extensions. An obvious example of a potential problem here is that after completing each

LM step, the program will operate a cleanup process which removes most of the

temporary files. In our modification, we must consider which temp files can be cleaned

up and which ones must be kept since they hold the information for the future

computations. To approach this goal, in addition to the existing temp filename extension

for optimization, _opt extension, we introduced a new temp filename extension called

_oga extension using for BA only. Therefore, after completing each LM routine for an

individual, all reusable information will be copied to files with _oga extension from files

with opt extension, and those files with opt extension will be removed in the clean up

process. After an LM step for all individuals in a generation have been completed, all

those files with either opt extension or _oga extension will be cleaned up. The files with

a _min extension that contain the minimum optimal case are saved.

17

3.3. Coding challenges for BA

The implementation environment of the Stellarator Optimization is an IBM SP.

The language is Fortran90 using MPI libraries. In an average case, we use 3 nodes with

16 processors in each node.

As in most parallel programs, file operation is a big issue. In the entire

optimization process, the program has to deal with hundreds of operations to input,

output, and temporary files. When BA is added, the number of file operations increases

rapidly. In the implementation of a parallel program, usually one processor performs the

role or master while others perform the workers. Who, when, and how to perform file

operations becomes very important. In the ORNL code, the primary coders designed a

routine called SATE OPEN to deal with file open operation in the parallel environment

which is the critical portion to the file operation. However, in some places, ORNL code

still uses regular “open” system call for opening a file. It has been challenging to study

code written by a physicist without professional commenting.

Memory allocation and re-allocation is another big issue. Since we merged

existing LM and GA algorithms to make BA, many variables, especially global array

variables, with the same name are used in both the outer loop GA and inner loop LM had

to be taken care of carefully with allocation and re-allocation handled properly. One of

the direct results with improperly memory allocation is the program crashes.

Another big issue in parallel programming is debugging. There is essentially no

good parallel debugger forcing us to use the debugger TotalView with limited success.

Due to the properties o f parallel implementation, the error we located by using print/write

statement is not the actual location where the error occurs. The debugging issue we are

18

still facing originally was considered to be an MPI call issue. After a considerable

amount of effort, we determined it is a filename extension handling issue.

19

3.4. Code Review

3.4.1. Review 1: To handle BA temp filename properly.

Code Segment 1

Line Code

0 do 20 i=istart,maxgen+istart-l

1 I added by S. W ang --------------------------------

2 I— Using f i x e d s e q e x t to store s e q e x t at the firs t place--------------

3 !— Since it is to be changed when calling L M in ga evalout------------

4 i f (i .eq. 1) then

5 fixed seq ext = seq ext

6 end i f

I other code

55 ! added by S. Wang------------------------

56 !—getting original s e q e x t back from f ix e d s e q e x t at end o f

56 I— each generation---

58 s e q e x t = f i x e d s e q e x t

59 i --

The code segment 1 shown above which is selected from the subroutine

GALM_GRIVER illustrates the strategy that handles the BA temp filename properly.

20

Line 0 shows that i is the do-loop variable which represents the z'th generation of

population in the outer GA loop. Here we create a variable called fixed_seq_ext to store

the initial filename extension (shown in line 5). Otherwise, LM and the inner loop of BA

using the same variable seq_ext results in corruption of the value of seq_ext. This

strategy avoids that error. Line 58 indicates that at the end of each generation, the

program will send the initial filename extension value back to seq_ext from

fixed_seq_ext.

3.4.2. Review 2: The core functionality of BA, to insert inner loop, LM routine, into

existed GA routine.

Code Segment 2

Line Code

0 IF (NOPT ALG .eq. 3)TH EN

1 !— M aking a temp directory to store opt files as _oga files-

2 i f (myid .eq. master) then

3 temp = 'mkdir tem pdirlf

4 call system(temp)

5 end i f

6 DO k=lynpopsiz

7 write (char npopsiz, f(i5)) k

8 myoga_ ext = trim (fixed_ seq_ ex t)//f_ oga ’/ /

9 1 trim(adjustl(char_npopsiz))

10 my opt ext = trim (jixedseq ext)//'_ opt V/

21

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

1 trim(adjustl(char_npopsiz))

inpu tJ ile = 'input. V/myopt ext

!---------cp opt file to oga and tempdirl/oga

i f (myid .eq. master) then

tempd = 'temp dir 1'

t --Copy input.myopt ext into input.m yogaext-

temp = 'cp '//input J i le / / ' '//'input.'//m yo g a ex t

call system(temp)

t--------- Copy input.myopt_ext into tempdirl/input.myoga ext

temp = 'cp '//inputJile//' '//trim(tempd)//

1 '/input, '//myoga ext

call system(temp)

end i f

o g a e x t = m yo g a ex t

I run sub optimize-------------------------

call sub optimize(myoga ext)

i f (myid .eq. master) then

open(3333)

read(3333, iostat=istat) fu n cval_ breed

close(3333)

22

34 fitness(k) = fu n cva lb reed

35 end i f

36 1 Copy input.oga..min files produced by LM into super directory

37 !— replace inputm yopt ext

38 temp = "cp " //"stellopt_ "//trim (seqjext)//"/"//

39 1 "input. "//trim(seq ext)//'.m in'//

40 2 " ”/ / ”input."//trim(myopt_ext)

41 print *, temp

42 call system (temp)

43 f--

44 I— need to do before continue GA routine:

45 ! 1. replace input._optk by input...ogak.min

46 END DO

4 7 END IF I end of(nopt_alg = 3)

The code segment 2 shown above is selected from the subroutine GA_EVALOUT.

The initial purpose of this subroutine is to evaluate the population, assign fitness,

establish the best individual, and output information for the GA routine.

Per GA’s structure, it creates a temporary input files for each individual for each

generation. The GAEVALOUT subroutine then evaluates the population, assigns fitness,

creates the best member, and outputs the information for the following calculation of next

generation.

BA then chooses to insert the inner routine, LM, into GA by adding code segment

2 into GA EVALOUT routine.

23

In line 0, nopt alg = 3 indicates the BA algorithm.

In line 2 to line 5, program creates a temporary directory called tempdirl which

stores those temporary input files with opt extension generated by GA. Also, the

duplicated of those _opt-extended files are also created as _oga-extended files.

Line 6 is the do-loop entry for each individual to implement LM routine.

The purpose of line 8 to line 11 is to avoid the name extension problem in a future

computation. Therefore, program creates two temporary variables, m yoptex t and

m yogaext.

After all files and directory are setup, line 28 calls the LM routine. Instead of

calling LM driver directly, we built a routine, SUBOPTIMIZE, in the STELLOPT

package. SUBOPTIMIZE provides similar functionality to the optimize routine but is

simpler because it only needs to direct the program to the LM routine. Since

SUB OPTIMIZE is in STELLOPT package, we define it as an external function.

One purpose of the GA EVALOUT routine to GA is to store fitness values to the

fitness array. Since in BA we insert LM in GA EVALOUT, the program needs to replace

those old values in the fitness array with those new values generated by LM. Line 30 to

35 performs this function. There are two steps here. In the LM routine, the program

writes those values into a temporary file called fort.3333, after returning from LM, the

fitness array is populated with values from that file.

The last important feature of code segment 2 is to implement the replacement of

those temporary input files with opt extension with the input files generated by LM

routine with .min extension. Line 38 to line 40 performs this functionality.

24

4. Comments to BA

4.1. Initial results of BA

Though there is a bug existing for the BA, we still observe the improvement of

BA when implementing LM routine that refines each individual in GA. Figure 8 and 9

indicate this improvement to a test case called SIMPLE. This case, we only use few

generations, as well as a small population size. It is obvious that each time the x2 is

getting improved for each individual.

9105

9100

9095

9090

9085

9080

9075

9070
0 5 10 15 20 25

Iterations

Figure 8. initial results of BA (1)

refinement using LM for the first individual

o

) o o o o <) o <
o

0
0

0
c

/*> <
) o o o o 0

)

o

o

25

refinement using LM for the second individual
9165

9160

9155

9150

9145

9140
-5 0 5 10 15 20 25

Iterations

Figure 9. initial results of BA (2)

4.2. Advantages and disadvantages of BA search

Since BA combines GA with LM, the major advantages of BA are: (1) BA refines

each individual in GA using LM ’s steepest descent search strategy which produces better

offspring than only using pure GA. (2) BA avoids the local extremum to be considered as

global extremum when LM encounters the surface of variables is not differentiable in

first or/and second derivatives at some points (inflection points) because the evolutionary

0
(

0

1 0
0 0 0 0 0

c) 0 0 0 O 0

26

optimization GA will produce some child points out of those inflection points which

guarantees that BA can clime out of those local extremum points.

The major disadvantage of BA is that the implementation is more expensive at the

computing time consuming point of view. When implementing BA under a parallel

computation environment, it takes twice time as implementing LM or GA alone, roughly.

4.3. Existing issue and future work

The challenges remaining in the development of BA are to deal with the memory

allocation and file 10 in a parallel environment. When using Totalview as the debugging

tool, the existing unmatched array dimensions in the ORNL code cause unpredictable

termination because unmatched array dimensions will cause memory allocation issues

when assigned values between two unmatched arrays. Also, there is still a bug existing

related to the file 10. We have been working to debug this issue for months.

In this work, we use MPI libraries as implementing LM, GA, and BA. As the

future work, we may consider using Open MP libraries as the inner loop, LM, and MPI as

the outer loop, GA for BA algorithm. This may reduce the complication and confliction

when using MPI for both inner and outer loop for BA.

27

5. References

[1] Levenberg-Marquardt Algorithm, by Ananth Ranganathan, College of Computing,
Georgia Institute of Technology, Atlanta, GA
http ://www. cc. gatech.edu/people/home/ ananth/lmtut.pdf

z

[2] Introduction to Genetic Algorithms, by Matthew Wall Matthew, MIT Mechanical
Engineering Department, MA

[3] A brief introduction to Genetic Algorithm, by Nikos Drakos, Computer Based
Learning Unit, University of Leeds, Italy http://www.cs.bgu.ac.il/~sipper/ga.html

[4] “High-Beta Equilibria o f Drift-Optimized Compact Stellarators”. A. S. Ware, S. P.
Hirshman, D. A. Spong, L. A. Berry, A. J. Deisher, R. Sanchez, and G. Y. Fu. Phys.
Rev. Lett. 89, 125003 (2002)

[5] “Stellarator Optimization: A Comparison of Genetic, Differential Evolution, and
Levenberg-Marquadt Optimization Algorithms” 2003 International Sherwood
Fusion Theory Conference, April 28-30, 2003, Corpus Christi, Texas. S. Wang, A.S.
Ware, S.P. Hirshman & D.A. Spong

[6] “A Breeder Algorithm for Stellarator Optimization” 45th Annual Meeting of the
APS (American Physical Society) Division of Plasma Physics, October 27-31, 2003,
Albuquerque, New Mexico. S. Wang, A.S. Ware, S.P. Hirshman & D.A. Spong

[7] Hybridization o f Differential Evolution for Aerodynamic Design, by T. Rogalsky
[Department o f Mathematics, University of Manitoba] and R. W. Derksen
[Department of Mechanical and Industrial Engineering, University of Manitoba]

[8] Genetic Algorithm and Optimizing Chemical Oxygen-Iodine Lasers, by David L.
Carroll, Research Scientist, University of Illinois, Urbana, Illinois

[9] Levenberg-Marquardt Method, by Carleton DeTar, Physics Department, University
of Utah, Salt Lake City, UT

28

http://www.cs.bgu.ac.il/~sipper/ga.html

uuu
uuu

u
u

u

6. Appendix: Source Code

6.1 runoptim izer.f

SUBROUTINE run_optimizer(xc_opt, var_descript,
1 nopt, nvar, lwa, info)
USE stel_kinds
USE optim, ONLY: home_dir, lone_step, lrestart
USE optim_params, ONLY: epsfcn, niter_opt, seq_ext,
1 num_processors, num_levmar_params, nopt_alg
USE vparams, ONLY: zero
USE mpi_params ! MPI
IMPLICIT NONE

D u m m y A r g u m e n t s

INTEGER :: nopt, nvar, lwa
REAL(rprec), DIMENSION(nvar) :: xc_opt
CHARACTER(len=*), DIMENSION(nvar) :: vardescript

L o c a l V a r i a b l e s

INTEGER, PARAMETER :: info_size = 33
CHARACTER(Ien=*), PARAMETER :: describe string =
1 "DESCRIPTION OF INDEPENDENT VARIABLES",
2 stop_string = 'Allocation error in STELLOPT run-optimizer!'
INTEGER :: info, niter
INTEGER :: mode
REAL(rprec), DIMENSION(:), ALLOCATABLE :: fvec, diag
REAL(rprec):: tol
CHARACTER*! 20, DIM ENSION(l :info_size) :: info_array

E x t e r n a l F u n c t i o n s

EXTERNAL lsfunl
C--------------------------------------

data info_array/
1 'error in read_wout_opt opening wout file’,

2 'error in load_physics_codes in system call',

3 'error opening indata file in write_indata',

4 'error opening output file in lsfun',

5 'error writing new input file in load_params',

6 'vmec2000 executable file not found',

7 'i/o error in clean_up routine',

8 'error reading wout file in call to read_wout_opt',

9 'allocation error in load target’,

a 'boozer array dimension mismatch in load_target',

b 'nvar and nopt do not match in load target',

c 'i/o error opening cobra file in chisq_ballooning',

d 'i/o error opening bootstrap file in chisq_bootsj',

e 'i/o error in open_comm_files',

f 'error in chk_rzmnb’,

g 'boozer transform module - xbooz_xform - not found',

description o f independent variables

29

h 'could not locate executable in load_physics_codes’,

i ’error reading output file in ch isqjinvar subroutine’,

j ’error in external kink computation’,

k ’error running xdkes code in chisq_dkes subroutine’,

1 ’error in vacuum vessel matching subroutine’,

m ’system call to xcoilgeom failed in generate_mgrid’,

n ’coils data file was not produced by xcoilgeom ’,

o ’error opening extcur file in generate_mgrid’,

p ’error opening coil targets file in chisq coilgeom ’,

q ’error reading boozmn file in call to read boozer file’,

r ’error opening neo code input file neo_in’,

s ’trouble running eq3d in chisq_orbit’,

t ’trouble running mkjmc in chisq_orbif,

u ’trouble running orbit in chisq_orbit’,

v ’error opening orbsum in chisq_orbit’,
w ’error opening ft79jmc in chisq_dsubr’,

x ’error in chisq_vac_island’
z /

ALLOCATE (fvec(nopt), diag(nvar), stat = info)
IF (info .ne. 0) STOP stop_string

tol = 1 .e-6_dp
mode = 1
niter = niter_opt
IF (lone step) niter = 1

! print description o f independent variables at top o f screen
i

IF (myid .eq. master) THEN
WRITE (6, ’(60("=")y,ay,60("="),/,a)’) describe string,

1 ’ VAR # TYPE'
DO info = 1, nvar

WRITE(6, ’(i5,2x,a)’) info, var descript(info)
END DO
WRITE (6, *)

END IF

IF(NOPT_ALG .eq. 0) THEN
CALL lm difl_m p (lsfunl, nopt, nvar, xc_opt, fvec, tol, epsfcn,

1 niter, diag, mode, info, lwa)
ELSE IF(NOPT_ALG .eq. 1) THEN

CALL ga_driver (lsfunl, nopt, nvar, xc_opt, fvec, tol, epsfcn,
1 niter, num_processors, seq_ext, info, lwa, lrestart)

ELSE IF(NOPT_ALG .eq. 2) THEN
CALL d ed river (lsfunl, nopt, nvar, xc_opt, fvec, tol, epsfcn,

1 niter, num_processors, seq_ext, info, lwa, lrestart)

ELSE IF(NOPT_ALG .eq. 3) THEN !! BREED: A new option
CALL galm_driver (lsfunl, nopt, nvar, xc_opt, fvec, tol, !! BREED: A new option

1 epsfcn, niter, num_processors, seq_ext, info, lwa, lrestart) !! BREED: A new option
!! BREED: A new option

30

ELSE
IF (myid .eq. master)

1 WRITE(6,*) "NO PTALG = ”, N O P T A L G , unable to proceed"
STOP

ENDIF
DEALLOCATE (fvec, diag)

IF (myid.eq.master .and. info.lt.O) WRITE (*, '(/>lx >a,a)')
1 'Stellopt status: ',TRIM(info_array(-info))

END SUBROUTINE run_optimizer

31

6.2 galm driver.f

SUBROUTINE GALM_driver(fcn, n_opt, n_var, x, fvec, tol, eps, !! BREED: This is the Breed driver
1 num_iter_opt, max_processors, filename, info, lwa, lrestart)
USE ga_mod
USE system_mod
USE safe_open_mod
USE mpi_params, ONLY: master, myid
IMPLICIT NONE
include 'mpif.h' !mpi stuff
INTEGER :: lerr
INTEGER :: n opt, n_var, info, lwa, num_iter_opt, max_processors
REAL(rprec), DIMENSION(n_opt), TARGET :: fvec
REAL(rprec), DIMENSION(n_var) :: x
REAL(rprec), DIMENSION(n_var) :: partemp
REAL(rprec) :: tol, eps, chi sq, tmp !ga_evaluate
EXTERNAL fen
CH ARACTER^*) :: filename
LOGICAL :: lrestart

INTEGER :: num_iter_max
INTEGER :: i, iflag, nfev

 ̂**

c entries for the ’ga’ NAMELIST
c
c npopsiz - population size
c idum - if < 0, then |idum| is used as seed for random-number gen.
c pmutate - probability for random jump mutation
c pcross - crossover probability
c ielite - /=0 make sure best parent is preserved into decendent populations
c icreep - creep mutation flag: only do creep mutations i f .ne. 0
c pcreep - probability for random creep mutation
c iunifrm - =0 single point crossover at random chromosome point
c /=0 uniform crossover
c iniche - /=0 turn on niching
c nichflg - array o f flags for the free-parameters,
c each non-zero entry enables niching for that free-parameter
c iskip
c iend
c nchild - default= l; if =2, then each crossover creates 2 children,
c the second child having the second parents genes
c parmin - array specifying minimum value for each free-parameter,
c parmax - array specifying maximum value for each free-parameter,
c ibound - -1 then interpret parmin and parmax as scale-factors to be
c multiplied by the initial guess values for each parameter
c nposibl
c nowrite - =0 then write output during optimization
c microga - =0 perform random mutations
c /=0 perform micro-GA
c un iqueind
c itoumy
c
c IMPORTANT: MPI_PARAMS MODULE M UST BE LOADED BY EXTERNAL CALLS
c TO MPI_COMM_RANK PRIOR TO THIS SUBROUTINE CALL
**

info = 0
n u m ite r m a x = n u m ite r o p t

itoum y=l
maxgen=ngen
kountmx=maxgen
nparam=n_var
num_obj = n o p t

IF(ibound .eq. 1) THEN
par max(:n_var) = x(:n_var)*parmax(:n_var)
par_min(:n_var) = x(:n_var)*parmin(:n_var)

32

WHERE (par_max(:n_var) < par_min(:n_var))
parterrrp(:n_var) = par_max(:n_var)
par max(:n_var) = par_min(:n_var)
par_min(:n_var) = partemp(:n_var)

END WHERE

ELSE
par_max = parmax
par_min = parmin

END IF

IF (ALL(nposibl .eq. 0)) nposibl=15

nfev= 1
f obj => fvec

! IF (myid .eq. master) WRITE(6, nml = ga de)

irestrt = 0
IF(lrestart) irestrt = 1

c
c store initial parameter values as a unique individual

parent = 0
child = 0
iparent = 0
ichild = 0
IF(unique_ind .gt. 0) THEN

unique_ind=MIN(unique_ind, npopsiz)
parent(l :nparam,unique_ind) = x(l :nparam)

END IF

CALL galm_sp(fcn, n opt, fvec, chi sq, filename, nfev, !! BREED: Calling galm_sp
> iflag, max_processors, myid) !! BREED: Calling galm_sp

IF (myid .eq. master) THEN
WRITE(6,*) "final solution: "
WRITE(6,*) "best individual : ", jbest
WRITE(6,*) "x ", (parent(i,jbest),i=l ,nparam)

c WRITE(6,*) "fvec ",(fvec(i),i=l,n_opt)
WRITE(6,*) " y ", chi_sq

END IF

x(l :n_var) = parent(l :n_var,jbest)

iflag=-100
CALL fcn(n_opt, npopsiz, parent(l,jbest), fVec, iflag, nfev)

END SUBROUTINE GALM driver !! BREED: End o f Breed driver

33

6.3 galm sp.f

SUBROUTINE galm_sp(fcn, nopt, fvec, best, filename, nfev, iflag, !! BREED: Start o f galm_sp
1 max_num_processors, myid)
USE ga_mod
USE safe_open_mod
USE mpi_params, ONLY: master
USE optim params, ONLY: fixed seq ext, seq ext !! BREED: *DANGER* Using optim param s in library
IMPLICIT NONE
include 'mpif.h' !mpi stuff
EXTERNAL fen

INTEGER :: nopt
REAL(rprec), DIMENSION(nopt) :: fvec

INTEGER :: kount, npossum,ig2sum, istart, istore
INTEGER :: ncross, ipick, m atel, mate2, istat
INTEGER :: i, j, nfev, iflag, max_num_processors, myid
REAL(rprec) :: fbar, best, evals
CHARACTER^*) :: filename
CHARACTER*(len_trim(filename)+10):: temp
SAVE

c
c CALL input
c
c Perform necessary initialization and read the ga.restart file.

CALL ga_initial(istart,npossum,ig2sum,filename,myid)
c
c $$$$$ Main generational processing loop. $$$$$

kount=0
nfit_eval=nfev
istore=0
iu n itg a o u t = 24
IF (myid .eq. master) THEN

temp = "ga_out." // filename
CALL safe_open(iunit_ga_out, istat, TRIM(temp),

1 'unknown', 'formatted')
END IF

DO 20 i=istart,maxgen+istart-1
IF (i .eq. 1) THEN !! BREED: Using fixed_seq_ext to store seq_ext

fixed_seq_ext = seq_ext !! BREED: since seq_ext will be changed when
END IF !! BREED: calling LM in gaeva lou t
if!ag=-l
IF (myid .eq. master) THEN

WRITE (6,1 111) i
WRITE (iunit_ga_out,l 111) i

c
c Evaluate the population, assign fitness, establish the best
c individual, and write output information.

WRITE(6,*) 'pre ga_evalout', max_num_processors
WRITE(6,*) fbar,best,nopt,nfev,max_num_processors,iflag

END IF
CALL ga_evalout(fbar, best, fen, nopt, fvec, nfev, !! BREED: Added filename

> max_num_processors, iflag, myid, filename) !! BREED: to ga evalout call
istore=istore+l
geni(istore) = REAL(i, kind=rprec)
genavg(istore)=fbar
gen max(i store)=best
IF (npopsiz.eq.l .or. iskip.ne.O) THEN

IF (myid .eq. master) CLOSE(iunit ga out)
CALL ga_restart(i,istart,kount,filename, myid)
RETURN

END IF
c
c niching

IF (iniche.ne.O) CALL ganiche(m yid)

34

c selection, crossover and mutation
ncross=0
ipick=npopsiz
DO 45 j=l,npopsiz,nchild

c
c Perform selection.

CALL ga_selectn(ipick,j,matel ,mate2)
c
c Now perform crossover between the randomly selected pair.

CALL crosovr(ncross,j,mateI ,mate2)
45 CONTINUE

IF (myid .eq. master) THEN
WRITE(6,1225) ncross
WRITE(iunit_ga_out,1225) ncross

END IF
c
c Now perform random mutations. If running micro-GA, skip mutation.

IF (microga.eq.O) CALL ga_mutate (myid)
c
c Write child array back into parent array for new generation. Check
c to see IF the best parent was replicated.

CALL ga_newgen(npossum,ig2sum,myid)
c
c Implement micro-GA IF enabled.

IF (microga.ne.O) CALL ga_micro(i,npossum,ig2sum,myid)
c
c Write to restart file.

CALL ga_restart(i,istart,kount,filename,myid)
seq_ext = fixed_seq_ext !! BREED: Setting seq_ext back to the original value

20 CONTINUE

c $$$$$ End o f main generational processing loop. $$$$$

IF (myid .eq. master) THEN
WRITE(iunit_ga_out,3000)
DO 100 i= l ,maxgen

evals = npopsiz*geni(i)
WRlTE(iunit_ga_out,3100) geni(i),evals,genavg(i),genmax(i)

100 CONTINUE
CLOSE (iunit ga out)

END IF

1050 FORM AT(lx,' Binary Code',16x,'Parameter Values and Fitness')
1111 FORMAT(//,’################# Generation',i5,

1 ’ #################’)
1225 FORMAT(/’ Number o f Crossovers =',i5)
3000 FORMAT(2x//'Summary of Output'/

+ 2x,'Generation Evaluations Avg.Fitness Best Fitness')
3100 FOR M AT(2x,3(el0.4,4x),el 1.5)

END SUBROUTINE galm sp !! BREED: End o f ga lm sp

35

6.4 ga_evalout.f

SUBROUTINE ga_evalout(fbar, best, fen, nopt, fvec, nfev, !! BREED: filename added to
> num_processors, iflag, myid, filename) !! BREED: argument list o f ga evalout

c ###
c
c this subroutine evaluates the population, assigns fitness,
c establishes the best individual, and outputs information.

USE optim_params, ONLY: opt_ext, oga_ext, seq_ext, n o p ta lg , !! BREED: *DANGER* Using optim_params
1 fixed_seq_ext, funcval breed !! BREED: *DANGER* in ga_evalout
USE ga_mod
USE system_mod !! BREED: ga_evalout now uses system calls
USE mpi_params, ONLY: master
IMPLICIT NONE
EXTERNAL fen, suboptim ize !! BREED: New external sub_optimize
INTEGER :: nopt, n, j, k, kk, iflag, myid
REAL(rprec), DIMENSION(nopt) :: fvec
REAL(rprec), DIMENSION(nparmax) :: paramsm,paramav
INTEGER :: nfev, num_processors
REAL(rprec):: fitsum, funcval, fbar, best
INTEGER :: jstart, jend, istat, jstat
LOGICAL :: ldiag opt
CHARACTERS) :: char npopsiz !! BREED: Added character variable char_npopsiz
CH ARACTERS0) :: tempd !! BREED: Added character variable tempd
CHARACTER(60):: temp_seq_ext, temp_oga_ext, temp_opt_ext !! BREED: Added temp character variables
C H A R A C T E R ^*):: filename !! BREED: Added character variable filename
CHARACTER*(len_trirn(filename)+12) :: input_file !! BREED: Added character variable input file
CHARACTER^ 100) :: temp !! BREED: Added character variable temp
CHARACTER^ 100) :: myopt_ext, myoga ext !! BREED: Added character variables m yop tex t, myoga ext

SAVE
c
c

fitsum = 0
best=-1.0e30_dp

ldiag_opt = .false.

IF (myid .eq. master) WRITE(6,*) 'in ga_evalout’,num_processors
IF (myid .eq. master) WRITE(6,*) fbar,best,nopt,nfev,iflag

DO 29 n=l ,nparam
paramsm(n)=0

29 CONTINUE
jstart=l
jend=npopsiz
IF(iskip.ne.O) jstart=iskip
IF(iend.ne.O) jend=iend

c
DO j=jstart,jend

CALL ga_decode(j,parent,iparent)

lF(LDIAG_OPT .and. myid.eq.master) THEN
IF(nchrome .le. 120) THEN

WRITE(iunit_ga_out,1075) j,(iparent(k,j),k=l,nchrome)
ELSE

WRITE(iunit ga out,1075) j,(iparent(k,j),k=l ,120)
WRITE(iunit_ga_out,1077) (iparent(k,j),k=I21,nchrome)

END IF
WRITE(iunit_ga_out,1076) (parent(kk,j),kk=l,nparam)

END IF
END DO
CALL ga_fitness_mpi (jend-jstart+1, f obj, n u m ob j,
1 fen, nfev, fitness)
nfev=nfev+jend-jstart+l
nfit eval=nfev

36

IF (NOPT ALG .eq. 3) THEN !! BREED: File manipulation in Breed
IF (myid .eq. master) THEN !! BREED: Only the master makes directories

temp = 'mkdir tempdirl' !! BREED: Stores _opt files as _oga files
CALL system(temp) !! BREED: Making the directory here

END IF !! BREED: The master loop is done
DO k = l ,npopsiz !! BREED: Starting loop over the population members

write (char_npopsiz,'(i5)') k !! BREED: Writing the population member # to an integer
myoga ext = trim(fixed_seq_ext)//'_oga7/ !! BREED: Set up local variable myoga_ext

1 trim(adjustl(char_npopsiz)) !! BREED: using fixed_seq_ext and member #
myopt ext = trim(fixed_seq_ext)//'_opt'// !! BREED: Set up local variable myopt_ext

1 trim(adjustl(char_npopsiz)) !! BREED: using fixed_seq_ext and m ember#
input file = 'input.'//myopt_ext !! BREED: Avoiding using global variable opt_ext

!! BREED
IF (myid .eq. master) THEN !! BREED: Only the master copies files

tempd = 'tempdirl' !! BREED: Define the temp directory name
temp = 'cp '//input_file//' '//'input.'//myoga_ext !! BREED: Storing the input_file in the file input.myoga ext
CALL system(temp) !! BREED: Make it so
temp = 'cp 7/input_file//' '//trim(tempd)// !! BREED: Make a copy in the temp

I 7input.'//myoga_ext !! BREED: directory as well. Why?
CALL system(temp) !! BREED: MAke it so

END IF !! BREED: Done with the master loop
oga_ext = myoga ext !! BREED: TESTING---------- 08302004
CALL sub_optimize(myoga_ext) !! BREED: *DANGER* library calling sub_optimize

! ! BREED
IF (myid .eq. master) THEN !! BREED: Only the master stores the funcval

open(3333) !! BREED: from file 3333 (written in sub_optimize)
read(3333,iostat=istat) funcvalbreed !! BREED: Read in the value
close(3333) !! BREED: Close the fort.3333 file
fitness(k) = funcval breed !! BREED: Store this value in the fitness array

END IF !! BREED: Done with the master loop
temp = "cp " //"stellopt_"//trim(seq_ext)//"/"// !! BREED: Copy the .min oga files back to the main directory

1 "input.7/trim(seq_ext)//,.min7/ !! BREED: the main directory but with a different
2 " "//"input."//trim(myopt_ext) !! BREED: extensiuon, the myopt ext

CALL system(temp) !! BREED: Make it so
!! BREED
!! BREED: need to do before continue GA routine:
!! BREED: 1. replace input._optk by input...ogak.min
!! BREED: 2. clean tempdir
!! BREED

END DO !! BREED: End o f the loop over the population
! BREED
! BREED: A couple o f questions here:
! BREED: 1. only consider these input._opt files?
! BREED: 2. for using each LM routine, when doing clean up operation
! BREED: whether it impact other input. opt(oga) files or not?
! BREED

END IF !! BREED: End o f Breed file loop

! Clean up...
iflag=-100
CALL fcn(nopt, npopsiz, parent(I jbest), fvec, iflag, nfev)
IF (NOPT ALG .eq. 3) THEN !! BREED: Clean up for Breed

IF (myid .eq. master) THEN !! BREED: Only the master removes the temp directory
temp = 'rm -rf'//trim(tempd) !! BREED: Remove the temp directory
CALL system(temp) !! BREED: Make it so

END IF !! BREED: Done with the master loop
END IF !! BREED: Done with clean up for Breed
DO j = j start, j end

fitsum=fitsum+fitness(j)
DO n=l,nparam

paramsm(n)=paramsm(n)+parent(n,j)
END DO

c
c Check to see IF fitness o f individual j is the best fitness.

IF (fitness(j).gt.best) THEN
best=fitness(j)
jbest=j
DO k= 1 ,nchrome

ibest(k)=iparent(k,j)
END DO

37

END IF
END DO

c compute parameter and fitness averages.
fbar=fitsum/npopsiz
DO n=l ,nparam

paramav(n)=paramsm(n)/npopsiz
END DO

c
c write output information

IF (myid.eq.master) THEN
IF (ldiag opt) THEN

IF (npopsiz.eq.l) THEN
IF(nchrome .le. 120) THEN

WRITE(iunit_ga_out,1075) l,(iparent(k,l),k=l,nchrom e)
ELSE

WRITEfiunit ga out, 107 5) 1 ,(iparent(k,l),k=l ,120)
WRITE(iunit_ga_out,1077) (iparent(k,j),k=121 ,nchrome)

END IF
WRITE(iunit_ga_out,1076) (parent(k,l),k=l ,nparam)
WRITE(iunit_ga_out,1078) fitness(l)
WRITEfiunit ga out,*) ' Average Values:'
WRITE(iunit_ga_out,l 275) (parent(k,l),k=l ,nparam)
WRITE(iunit_ga_out,1276) fbar

ELSE
WRJTE(iunit_ga_out,1275) (paramav(k),k=l ,nparam)
WRITE(iunit_ga_out,1276) (fitness(j),j= l ,npopsiz)

END IF
END IF
WRITE(6,1100) fbar
WRITE(iunit_ga_out,l 100) fbar
WRITE(6,1200) best
WRITE(iunit_ga_out,l 200) best

END IF

1075 FO R M A T (i3,lx,(120il))
1077 FO R M A T (3x,lx,(120il))
1076 FORMAT(3x, 1 x, 10(1 x,e 10.4))
1078 FORMAT(1 Ox,el 2.5)
1100 FORMAT(lx,'Average Function Value o f Generation=',el2.5)
1200 FORMAT(lx,'Maximum Function Value = ',el2 .5 /)
1275 FORMAT(/' Average Values:', 18x, 10(1 x ,e l0 .4))
1276 FOR M AT(10x,10el2.5)

END SUBROUTINE ga_evalout

38

	Breeder algorithm for stellarator optimization
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.DKavU

