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Yen, Tsair-Bor, Ph. D., November, 2003 Forestry

Assessment of the Mechanical Properties of Lodgepole Pine in the Incipient Stage of 
Decay by a White-Rot Fungus (11"' — '

This study quantified the effects of volume and stage of a wood decay fungus (Phellinus 
pini (Thore Lloyd) on the mechanical strength of lodgepole pine and its impact on the 
current standard of visual stress grading. To improve detection and identification of decay 
fungi at the species level during the incipient decay stage, a fungal ribosomal DNA assay 
was designed. An effective extraction method for isolating fungal DNA from wood also 
was developed by integrating the glass bead system, organic solvents and an extraction 
buffer.

A Basidiomycete, Phellinus pini and an Ascomycete, Byssochlamys nivea were 
successfully identified from fungal cultures by directly sequencing with ITS-IF (specific 
for higher fungi) and ITS-4 (universal primer) primers. This study also demonstrated that 
direct sequencing can correctly identify these decay fungi, avoiding incorrect identification 
due to morphological variation within and between these species.

The average percentage reduction in modulus of elasticity (MOE) and modulus of 
rupture (MOR) were significantly affected by decay volume and discoloration, but the 
interaction of decay volume and discoloration had little effect on these properties. The 
average percentage reduction of specific gravity was affected by only discoloration, while 
the average reduction percentage of compression parallel to the grain increased 
significantly with increased decay volume. The reduction of MOR increased more rapidly 
than did the reduction in MOE. MOR showed an average maximum reduction of 34% at 
the combination of high discoloration and 67-100% decay volume while MOE exhibited a 
20% average maximum reduction. Compression parallel to the grain displayed a 15% 
average maximum reduction at 67-100% decay volume.

The results indicate that the maximum 34% reduction of MOR corresponds to the 
maximum allowable reduction of MOR of No 1. structural grade for beam-stringers in the 
Western Wood Products Association (WWPA) grading rules. The strength reduction of 
MOR is large enough to be of serious concern. While, the reductions in MOE and 
compression parallel to grain do not impact the current visual stress grading rules, the 
reduction in MOR calls for further investigation into potential impact on grading rules.

Director: Dr. Edwin J. Burke

ABSTRACT
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1
INTRODUCTION

Wood is economically vital throughout the world as construction materials, 

furniture, manufacture, home furnishings, energy production, pulps and paper making as 

well as other biochemical products. In the United States, wood accounts for nearly 25% 

of industrial materials use (National Research Council, 1990). The consumption of wood 

as timber products in the United States has increased more than 5 billion cubic feet from 

1950 to 1980 (Ulrich, 1983) and is still increasing annually. Unlike petroleum products, 

wood can be naturally and consistently produced from forests around the world. This 

renewable ability means that with proper forest management, world economies, their 

industries and consumers can be assured of a continuous supply of raw materials and 

products.

Wood provides high mechanical strength with relatively low weight and can be 

easily reshaped, glued, and mechanically fastened for many purposes. Its flexibility and 

strength makes wood the major structural material of houses for more than 70% of 

American families. Although wood has many advantages, it also has some disadvantages 

that can limit the usefulness for some purposes. These disadvantages are its 

biodegradability, dimensional instability, combustibility, and its inherent variability in its 

physical and mechanical properties. Among these disadvantages, biodegradation, caused 

by fungi, bacteria, insects and other biological agents, is the most important factor that 

adversely affects the strength of wood.

Compared with other biological causes of wood damage, discoloration and decay 

caused by fungi account for the largest volume loss of both standing timber and wood in 

use. Fifteen to twenty five percentage of the nation’s marketable wood volume in
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2
standing timber and 10 to 15% of wood products in production and storage are degraded 

each year. It is estimated that over 10 % of the timber products consumed in the United 

States are replaced because they have been rendered unserviceable by fungal decay 

(Zabel and Morrell, 1992). The cost of insect damage and decay in wood approaches 

$400 million per year in California alone (Brier et al., 1988), and much more can be 

expected in the future. Decay damage not only causes large monetary losses but it is also 

results in indirect losses that have a heavy impact on the national economy. The cost 

associated with the replacement process is quite often higher than the cost of the 

replacement material and several times higher than the initial material and labor costs of 

the original placement. Until wood is more purposefully protected against decay damage, 

direct and indirect losses will continue to be economically burdensome.

Decay occurs in living trees, dead standing trees, merchandized logs, lumber or 

wood in service when the proper growth conditions required by the decaying fungi are 

reached. Most fungal decay occurs only within a narrow range of temperature and wood 

moisture content. While the range of temperature favorable to decay includes that found 

both inside and outside habitable structures for at least a portion of the year, the relatively 

high moisture content required for decay growth must, in most instances, be introduced 

from the environment. For wood in service, this can be in the form of ground-contact 

moisture, atmospheric precipitation, condensation, plumbing leaks, landscaping irrigation 

or other external sources.

Fungal spores enter living and dead trees in a forest stand via wounds or insect 

attacks. Some pathogenic fungi infect living trees through root contact from tree to tree.
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3
Wood’s mechanical strength can be reduced by as much as 75 percent with less 

than a 5 percent weight loss during the incipient stage of decay without a significant 

change in outward appearance of the wood. A quantified relationship between the 

amount of red heart and the reduction in structural and mechanical properties of 

lodgepole pine has yet to be adequately defined. In addition, grade rules offer no 

methods for rating the amount or degree of infection through visual assessment of the 

affected area(s). Currently, the two extreme solutions, one of not allowing material with 

visual signs of incipient decay and the other of not limiting its use, can either 

considerable waste of a valuable resource or use of material with unknown mechanical 

properties. Therefore, grading agencies, wood microbiologists, wood engineers and end 

users really like to know the effects of fungal incipient decay on wood strength 

properties.

In order to prevent the incipient decay from causing more damage on the wood in 

service, wood engineers, microbiologists and tree pathologists need to effectively detect 

and identify incipient decay. It is important, therefore, to develop a method to detect the 

incipient decay stage and identify the fungal species responsible for the decay.

Several methods for detecting fungi exist, including the direct culturing of fungi, 

chemical staining, and the use of electrical resistance, magnetic resonance, 

Immunobloting and Enzyme-linked Immunosorbent Assay (ELISA). These methods have 

all been used to detect incipient decay, but their accuracy can be reduced by wood 

extractives, fungal species and environmental conditions. For the identification of fungi 

during the incipient stage, the traditional method is to isolate and grown fungi in 

different media, and to compare these cultures to a culture of known species, using
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4
general appearance, reaction to different growth media, growth rate and morphological 

structures of the fungi. These procedures require at least 8-12 weeks to be completed and 

an experienced mycologist to accomplish the identification. In addition, the complexity 

of fungal life cycles also makes the identification even more difficult. The polymerase 

chain reaction (PCR) techniques and the availability of fungal DNA sequence database 

have made identification more feasible and accurate. This makes it possible to integrate 

culture and PCR as an effective procedure to identify unknown fungi. Unlike the 

Restriction Fragment Length Polymorphism (RFLP) method that uses enzymes to cleave 

the DNA sequence amplified by the PCR into smaller fragments and compares this 

unidentified DNA fragment profile to an identified fragment profile (White et al., 1990; 

Jasalavich et al., 2000; Schmidt and Moreth, 2000; Germain et al., 2002), using direct 

sequencing for fungal identification does not require DNA samples from known fungi.

The purpose of this research was, first, to quantify the effects of fungal decay 

stage, as determined by discoloration, and volume of decay, on the mechanical properties 

of lodgepole pine. The second goal was to compare the results of bending and 

compression strength tests to other strength reduction factors as related to visual stress 

grading standards. Third, this study also evaluated the impact of these strength 

reductions on the current visual grading rules of western conifer species. Furthermore, in 

order to improve the detection and identification of decay fungi during the incipient 

decay stage, protocols need to be developed for fungal DNA isolation, purification, 

Polymerase Chain Reaction (PCR) with specific primers, and direct sequencing for the 

ribosomal DNA of internal transcribed spacer (ITS) regions.
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The results of this research will provide grading agencies and wood 

microbiologists with usable guides for the identification and evaluation of firm red heart 

and the engineering community with design values for a range of decay severities. In 

addition, new methods of test-material collection were developed, and improvements to 

current grading rules benefiting lumber producers and users alike are suggested. To 

paraphrase an official of a western United States lumber-grading agency, ”We really do 

not know what its (firm red heart) effects on strength are”. The improved fungal 

identification procedure also will offer the tree pathologist, mycologist and wood 

engineer another useful tool for the investigation of the biology of wood-decaying fungi.
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CHAPTER ONE

Identification and Detection of Decay Fungi from Lodgepole Pine (Pinus 

contorta Dougl. ex Loud.) by DNA Assay

LITERATURE REVIEW

The reliable and effective identification and detection of incipient and early decay 

in wood is a primary concern for many lumber graders, wood engineers and 

microbiologists (Zabel and Morrell, 1992). Culturing fungi from wood samples and 

microscopic examination of fungal structures has been the traditional method for 

detection and identification of the wood decay species during the incipient and early 

decay stages. (Nobles, 1948; Nobles, 1965; Gilberson, 1974; Stalpers, 1978; Wang and 

Zabel, 1990). The morphological variation of fungal structures within a particular 

species, however, can cause difficulty in accurate identification (Davidson et al., 1942; 

Nobles, 1948).

The techniques of molecular investigation have been developed and continuously 

improved since 1990 and can be used in many applications such as medicine, plant 

pathology, microbiology and forensic science. During this period, these molecular-based 

identification tools have been receiving significant attention as means for identification of 

wood decay fungi. (Jellison and Goodell, 1988; Gardes and Bruns, 1993; Benello et al., 

1998; Jasalavich et al., 2000; Schmidt and Moreth, 2000).

Several molecular-based identification techniques, including Restriction Fragment 

Length Polymorphism (RFLP), Enzyme-linked Immunosorbent Assay (ELISA) and 

Immunoblotting have all been used to detect or identify incipient decay, but the accuracy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7
of these methods are reduced by wood extractives, environmental conditions or fungal 

species. Polymerase Chain Reaction (PCR) is the technique used to replicate a fragment 

of DNA to produce many copies of a particular DNA sequence for post-PCR analysis 

such as Restriction Fragment Length Polymorphism (RFLP) analysis or direct DNA 

sequencing. During the PCR, two strands of the DNA are separated by heating and short 

sequences of a single DNA strand (primers) are added, together with a supply of free 

nucleotides and DNA polymerase obtained from an extreme heat-resistant bacterium. In a 

serious of heating and cooling cycles, the DNA sequence is rapidly amplified and 

doubled with each cycle.

Restriction Fragment Length Polymorphism (RFLP) applies several DNA 

digesting enzymes to cleave the DNA sequence amplified by the Polymerase Chain 

Reaction (PCR) into several small DNA fragments, which can then be used to produce a 

DNA fingerprint for comparing similarities and differences between fungal species or 

other organisms (McPherson and Mailer, 2000). However, the RFLP analysis does not 

determine the DNA code for each DNA fragment.

DNA sequencing is the determination of the precise sequence of nucleotides in a 

sample of DNA that is synthesized from four deoxynucleotide triphosphates (dATP, 

dCTP, dGTP, and dTTP). The DNA sequence is then defined by the four bases (Adenine 

(A), Guanine (G), Cytosine (C) and Thymine (T)) of deoxynucleotide triphosphates. In 

general, DNA sequencing provides more information than RFLP analysis (McPherson 

and Mailer, 2000).

Although Restriction Fragment Length Polymorphism (RFLP) analysis is useful 

for studying the diversity of fungal communities (Johsson et al., 1999) and confirming
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the identity of organisms among species, this technique requires known DNA sequences 

or a database of RFLP profiles to be able to identify unknown fungal species. In 

addition, the resolution of RFLP can decrease with short DNA fragments.

Since the rapid development of commercial automated sequencing systems and 

the availability of internet-based fungal gene databases such as the one offered by the 

National Center for Biotechnology Information (NCBI) (Altschul et al., 1997), 

sequencing PCR products is now more effective than using RFLP for fungal 

identification, especially when identified RFLP profiles are not available.

An efficient method for DNA extraction and purification is another requirement 

for a successful PCR and post PCR analysis. Several studies have described extraction 

and purification procedures for fungal DNA (Wilson, 1987; Chow and Kafer, 1993; 

Wieland, 1997). The cetyltrimethylammonium bromide (CTAB) method and the method 

using organic solvents such as phenol-chloroform have become two principal procedures 

(Wieland, 1997). However, most CTAB methods for extracting fungal DNA were 

modified from the original CTAB method developed for plant tissues (Taylor et al., 

1993). Weiland (1997) reported that the CTAB method was considered superior at 

removing unwanted carbohydrates compared the method with employing organic 

solvents such as phenol and chloroform, but the method using pheno-cholorform is often 

faster than the CTAB method. Additionally, most methods used to process fungal 

nucleic acid are relatively tedious and can handle only a small number of samples at a 

time. More recently, Weiland (1997) developed a rapid procedure using liquid nitrogen 

and grounding mortar and pestle with quartz sand followed by extraction using organic 

solvents and alcohol precipitation. Although this method is relatively expeditious, it still
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requires grinding of mycelium in frozen or lyophilized form and use of toxic organic 

solvents during the extraction process. In order to increase efficiency and to process 

many samples at once, a method for isolation of total nucleic acid from the fungus, 

Aspergillus nidulans, was developed by Chow and Kafer (1993). Compared with the 

methods of Weiland (1997) and Jasalavich et al.{2000), this older method uses an 

integrated glass bead grinding system, organic solvents and an extraction buffer, and 

includes the use of a beating tube that reduces the hazard of exposure to toxic organic 

solvents. It also replaces the step involving grinding and is able to process many samples 

simultaneously. Very recently, Cassago et al. (2002) has also used Chow and Kafer’s 

method to extract DNA from the filamentous fungus, Trichoderma reesei. Their results 

also showed that this method extracted DNA more quickly than CTAB method and was 

able to produce many high quality DNA samples at the same time.

The internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) have 

been used to analyze the phylogenetic relationships for different microorganisms (Wose 

and Olsen, 1986; Medlin et al., 1988; Jorgensen and Cluster, 1989; White et al., 1990). 

The ITS regions of fungal rDNA contain two non-coding regions (ITS1 and ITS2) that 

are within the three highly conserved rDNA repeat units (18S, 5.8S and 26S) (White et 

al., 1990; Gardes and Bruns, 1993). Compared with the slowly evolving nuclear small- 

subunit rDNA sequences, the ITS regions vary highly among fungal species within a 

genus (Gardes et al., 1991; Lee and Taylor, 1992; Gardes and Bruns, 1993). Therefore, 

this highly variable ITS region is the most-widely sequenced fungal DNA and is suitable 

as a systematic study at species level or even within species. In addition, Gardes and 

Bruns (1993) also found that the ITS regions provide two advantages for PCR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
amplification. The advantages are: 1.) the ITS regions are about 600-800 base pairs long 

and are ready to be amplified by universal primers that are complementary to sequences 

within the rRNA genes and 2.) the nature of the multi-copy makes very dilute 

concentrations of the ITS regions easily amplified.

In order to effectively amplify the ITS region for sequencing, the selection of the 

primer pair is important because the primers determine the location and length of 

sequence to be amplified from DNA (McPherson and Moller, 2000). Several ITS 

specific primers have been used to amplify the fungal ITS region of rDNA (Grades et al. 

1991; Lee and Taylor, 1992, Grades and Bruns, 1993; Jasalavich et al., 2000; Germain et 

al., 2002; Paulin-Mahady et al., 2002). Among those primers, the universal primers 

(ITS1, ITS4), combined with the fungal specific primers (ITS1-F, ITS4-B), are the most 

frequently used primers for decay fungi. Gardes and Bruns (1993) indicated that using 

the Basidiomycetes specific primer (ITS4-B) with either the universal primer (ITS1) or 

higher fungal specific primer (ITS1-F) can amplify rDNA from all basidiomycetes but 

offers no amplification of Ascomycetes. Another combination that used the fungal 

specific primer (ITS1-F) with the universal primer (ITS4) showed this primer pair to be 

able to effectively amplify ITS regions from both Ascomycetes and Basidiomycetes. 

Lately, Jasalavich et al. (2000) conducted a Restriction Fragment Length Polymorphism 

(RFLP) analysis for fourteen decay fungi and twenty-five wood-inhabiting fungi 

inoculated into spruce wood. The results were similar to those of Gardes and Bruns 

(1993). Their study also indicated that the PCR with these ITS primers could detect 

incipient decay before any measurable weight loss of the wood block.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

OBJECTIVES

• Develop an effectively DNA assay to identify and detect decay fungi during 

incipient decay stage

•  Compare the reliability of identification methods (Morphology VS. DNA Assay)

MATERIALS AND METHODS

Raw Material Selection

Lodgepole pine (Pinus contorta Dougl. ex Loud.) is a species native to western 

North America. Its geographic range extends from New Mexico to north of the Arctic 

circle and from the eastern foothills of the Rocky Mountains to the Pacific Ocean (Koch, 

1996).

Ten states process large volumes of lodgepole pine (Koch, 1996). In total, 26,697 

million cubic feet (756 million m3) of growing stock can be found in forests of these ten 

states, including 76,280 million board feet (300 million m3) of saw timber. The Rocky 

Mountain region (six states) provides about 80 percent of the growing stock and 73 

percent of the saw timber. The Pacific Northwest region has the second largest growing 

stock volume (3.2%), while the Pacific Southwest produces only 1.9 percent of the 

growing volume. In the Rocky Mountain region, Montana has the highest net volume of 

growing stock (9,141 million cubic feet) and net saw timber volume (20,033 million 

cubic feet).

Lodgepole pine (Pinus contorta) is known for growing in dense fire and insect

generated stands, which pose significant management problems for forest managers. In 

the lodgepole pine forests, stem decays by wood-rotting fungi are common in trees
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wounded by fire or insects. For example, red ring rot, caused by the fungus Phellinus 

(Fomes) pini, is one of the most widespread stem decays of lodgepole pine forest in 

Northwest U.S. and Canada. Therefore, the common utilization of fire-wounded and 

fungus-attacked lodgepole pine is of considerable concern.

Lodgepole pine is one of the major timber resources for structural lumber, log 

homes, rustic furniture and secondary wood products throughout its range. Recently, the 

secondary product industry has also begun increased utilization of this tight-grained 

wood with characteristically small knots for interior and exposed parts in furniture, 

cabinets and solid lumber panels.

Because lodgepole pine is subject to catastrophic fires and is often utilized after it 

has died from insect attack and disease such as Phellinus pini, this species was chosen as 

the subject for this study.

Media Preparations

The wood samples were placed onto malt extract agar (MEA) to culture fungi 

(Davidson et ah, 1938; Nobles, 1948; Wang and Zabel, 1990), because malt extract agar 

(MEA) provides good recovery of wood decay fungi. Gallic acid agar (GAA) was used 

to differentiate the white-rot and brown-rot fungi (Davidson et al., 1938; Nobles, 1948; 

Wang and Zabel, 1990). The white-rot fungi produce dark brown discoloration on gallic 

acid agar while the brown-rot fungi do not affect the color of gallic acid agar. The 

preparations o f MEA and GAA are list in Appendix 1.1.

Fungal Isolation Procedure

Four wood samples (1.0 x 1.0 x 1.0 inches / 2.54 x 2.54 x 2.54 cm) were 

randomly obtained from clear wood and each discoloration class (low, medium and high)
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of each log, with a total sample size of isolation was three hundred and twenty wood 

blocks (4 x 4 x 20 = 320). Samples were trimmed and labeled (Table 1.1) in a sterilized

petri dish with a sterilized knife down to 0.6 x 0.6 x 0.6 inches (1.52 x 1.52 x 1.52 cm),

and surface sterilized by the following procedure before being placed into MEA in petri 

dishes for incubation:

• 10% bleach solution (5 ml bleach / 45 ml sterilized water) for 1 min.

• Sterile water rinse for 1 min.

• Sterile water rinse for 1 min.

• Absorb extra water on surface with a small piece of sterilized filter paper.

Each 60 mm MEA dish contained only one wood block (Figure 1.1). Based on

the methods of Nobles (1948), all the MEA plates were sealed with paraffin film and 

incubated in a growth chamber at 25 °C in darkness for 10 days. Once the cultures were 

actively growing, a three mm cube was transferred to a fresh 100 mm MEA plate. These 

MEA plates were sealed with paraffin film and incubated in the dark at 25 °C for six 

weeks. Plates were examined every week for growth rate by counting the number of 

weeks for fungal mycelium to cover the MEA plate.

Identification by Morphology

Fungal identification procedures were based on the wood decay fungi 

identification manual (Nobles, 1948). Culture growth rate, appearance of culture, color 

reaction in GAA and fungal morphology were used as the identification keys. Fungal 

cultures growing in MEA were examined at the end of six weeks. Safrain-0 was used to 

stain fungi for viewing of microscopic characters. The staining solution is list in 

Appendix 1.2. The staining procedure is as follows (Johansen, 1940):

1. Deliver 1 droplet of stain solution on the slide.

2. Place about 0.5 mm square of fungal hyphae or spores on the slide.
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3. Spread the hyphae or spores with a needle.

4. Let the sample totally immerse in the stain solution for 30 seconds

5. Deliver one droplet of 2.5% alcohol/water solution to dilute the extra stain 

solution.

6. Place a cover glass over the sample, gently press the cover glass, and remove 

excessive stain solution from the slide before examining under light 

microscope.

7. Use a 3500 K blue color filter on the light resource of light microscope for 

better contrast.

The GAA (Nobles, 1948) was used to differentiate white-rot fungi from brown-rot 

fungi. Fungal cultures from MEA plates were transferred to the GAA plates and 

incubated in the dark for two weeks prior to examine.

Table 1.1. The log label abbreviation and its general descriptions.

Log Label Description

CAB CAB = CABCO; a local log sorting yard dealing primarily in pulpwood 
for the Smurfit-Stone Corporation's Frenchtown, MT Kraft pulp mill. 
The logs primarily come from private landowners within 100 miles of 
Missoula.

RLH Northwest Manufacturing Inc: a local log home construction company. 
It is the Montana manufacturing operation of Real Log Homes, Inc., 
headquartered in Vermont. This company produces pre-cut log home 
packages and obtains its raw material from locations throughout the 
Rocky Mountains of the U.S. and Canada.

STIM Stimson Lumber Company: a private forest products and natural 
resource company based in Portland, Oregon. With its roots dating back 
to the 1850s, the company is one of the oldest, continuously operating 
forest products companies in the United States. Its has assets and 
operations in four Western States: Idaho, Montana, Oregon, and 
Washington. Its raw material for the small log sawmill comes primarily 
from private industrial forest lands in Idaho and Montana
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Wood

MEA Culture cube from MEA 
original MEA plate | T 1

Culture cube norr 
2th MEA plate

GAA GAA GAA GAA
phenol Oxtdase Test) (Phenol Oxidase Test) phenol Oxidase Test) (Phenol Oxidase Test)

Figure 1.1. The flow chart and diagram of the placements of wood samples and culture 
cubes in MEA and GAA plates during the fungal isolation and phenol oxidase test.

DNA Extraction and Purification

The DNA extraction was modified from the methods of Smalla et a/.(1993) and 

Chow and Kafer (1993). One-tenth of a gram of mycelium was collected and 

resuspended in a 2.0 ml bead beating tube with 0.3 ml of an extraction buffer (50mM 

NaP04  (pH=8), 5mM EDTA, 3% SDS),0.4 gm of sterilized acid washed glass beads (0.3- 

0.4 micron), and 0.3 ml of phenolxhloroform (1:1 volume/volume) was added into the 

mycelial suspension. The mixture was then vortexed at top speed for 5 minutes. The tube 

was beaten on a bead beater for 2 minutes at 4 °C and was cooled on ice for 1 min after 

beating. The process was then repeated. An additional 0.2 ml of extraction buffer 

solution and 0.2 ml phenol: chloroform (1:1) were added to the vortexed mixture. The
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solution was mixed by vortexing for 20 seconds and then centrifuged at 14,000 rpm and 4 

°C for 30 sec to separate the phases. The aqueous phase was removed and re-extracted in 

a new 2.0 ml Eppendorf tube with 0.3 ml of phenol: chloroform. This mixture was 

centrifuged at 14,000 rpm and 4 °C for another 30 sec, and the aqueous phase was 

removed and placed into a new 1.5 ml Eppendorf tube.

The precipitation of nucleic acid was performed by adding one volume of ice-cold 

95% ethanol and letting the tube set at -20°C for 45 minutes. The nucleic acid was 

pelleted by centrifugation at 14,000 rpm and 4 °C for 30 minutes. The supernatant was 

decanted, leaving the pellet of nucleic acid at the bottom of the tube. The pellet was 

washed with 400 pi of ice-cold 70% ethanol, and resuspended by gently shaking the tube. 

The tube was centrifuged at 14,000 rpm and 4 °C for 20 minutes, and the supernatant was 

decanted. The nucleic acid was then pelleted in the same tube by centrifugation at 14,000 

rpm and 4 °C for 5 minutes. Any excessive supernatant was removed by a pipet. The 

tube was dried in a vacuum-centrifuge at 3,500 rpm and 25 °C for 20 minutes. The dried 

nucleic acid pellet was dissolved in 300 pi of sterilized double distilled water.

In order to remove the RNA from the extraction solution, 15 pi RNase (1 mg/ml 

solution) was added to the 300pl nucleic acid solution and placed in a 37 °C water bath 

for 30 minutes. After the removal of RNA, a volume of 300pl phenol:chloroform (1:1) 

was added to the tube, and the tube was vortexed for 45 seconds before centrifuged at 

14,000 rpm and 4 °C for 60 seconds. The aqueous phase was transferred and re-extracted 

in a new tube with 300 pi of phenol:chloroform (1:1). This mixture was centrifuged for 

another 30 sec and the aqueous phase was removed and placed into a new tube. The DNA
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was precipitated by adding 0.1 volumes of 3 M NaAcetate (pH=5.2) and 2.5 volumes of 

ice-cold 95% ethanol and storing at -20 °C for at least 45 minutes.

Following the precipitation, DNA was then pelleted by centrifugation at 14,000 

RPM and 4 °C for 30 minutes. The pellet was washed with ice-cold 70% ethanol and 

dried in a vacuum-centrifuge at 3,500 rpm and 25 °C for 20 minutes. The dried DNA 

pellet was dissolved in 100 pi of sterilized double distilled water or storage buffer (6 mM 

Tris HCL, 0.1 mM EDTA, pH=8.0).

Polymerase Chain Reaction (PCR) Amplification

The two internal transcribed spacer (ITS) primers, ITS IF and ITS4 were used 

(White et al., 1990; Gardes et al., 1991; Gardes and Bruns, 1993). The PCR positive 

controls used the eukaryotic 18S universal primers (536F and 907R) for DNA from 

CAB9 or RLH4 (Holben et al., 2002). Amplifications were performed in 50 pi reactions 

tubes containing 5.0 pi PCR buffer [Roche] (100 mM Tris/HCl, 15 mM MaCfe, 500mM 

KC1, pH = 8.3), 2.0 pi dNTP [Roche] (10 mM of each deoxyribonucleotide: dATP, 

dCTP, dGTP and dTTP), 5.0 pi of each ITS primer (50 pmole/pl), 0.5 pi DNA Tag 

polymerase [Roche] (5 units/pl), 30.5 pi double distilled water and 2.0 pi diluted DNA 

template (10_1X). A PCR reaction without DNA templates was included in all the PCR 

processes as a negative control for monitoring contaminations. The temperature cycles 

were carried out using a Thermocycler (MJ Research Model PTC-100), with the settings 

shown in Table 1.2.

PCR products were examined by running electrophoresis for 30 minutes, and 4 pi 

of each unpurified product was analyzed in 2% (weight/volume) agarose gels in IX TBE 

(89 mM tris-borate, 89 mM boric acid, 2mM EDTA) with ethidium bromide (EtBr) at
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100 ng/ml in both running buffer and gel. 4 p.1 low mass marker and 4|il negative control 

product were served as the references for quality control and to quantify purpose. DNA 

bands were visualized under ultra violet (UV) light and photographed with a digital 

camera.

DNA Sequencing

PCR products were purified using a commercial DNA purification kit (Qiagen 

Company) and were sequenced using an Applied Biosystems model 373 DNA sequencer 

with a Big Dye Filter wheel and the Big Dye Terminator v.30 sequencing chemistry at 

the Murdock molecular biology facility-The University of Montana. The sequencing 

results were then compared to the existing databases of fungal nucleotide acid by BLAST 

(Altschul et al., 1997), a network program for DNA analysis and annotation from the 

National Center for Biotechnology Information (NCBI).

Table 1.2. The settings of temperature cycles for PCR.

Step 1 
Step 2 
Step 3 
Step 4 
Step 5 
Step 6 
Step 7 
Step 8 
Step 9 
Step 10 
Step 11

94 °C for 95 seconds
95 °C for 45 seconds 
55 °C for 55 seconds 
72 °C for 45 seconds
Go To Step 2 for 12 times
95 °C for 45 seconds 
53 °C for 55 seconds 
72 °C for 90 seconds
Go To Step 6 for 21 times
72 °C for 10 minutes 
4 °C for infinite time
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RESULTS

Culture Grouping and Preliminary Fungal Identification

Fungal cultures were successfully isolated from 18 of 20 lodgepole pine logs 

containing firm red heart. The samples from the discolored wood produced cultures 

whereas the samples from clear wood did not. The samples from log CAB2 with high 

discoloration yielded two different species, while the other logs only produced one type 

of fungal species. These cultures were grouped into six morphological groups (Table 

1.3) by their cultural and hyphae characteristics as described in the identification manual 

of wood decay fungi (Nobles, 1948). Four groups (A, B, C, D, E) produced bsidiospores 

except group F. Three groups (A, B, C) that presented swelling on hyphae and showed 

only little variation in culture appearance were keyed to Phellinus pini (red ring rot or 

white pocket rot). Two groups (D, E) did not present swellings on hyphae, and keyed to 

Fomes nigrolimitatus Egel. However, the lack of swellings on hyphae sometime can 

occur with Phellinus pini growing in agar media (Nobles, 1948). Group F, on the other 

hand, its culture only produced simple septa hyphae without any types of spores. 

Therefore, the information from the culture was not enough to key the fungi to any 

species described in identification manual. A unique feature of group F was an 

enlargement on the apex of hyphae. No fungi were isolated from samples of clear wood 

and fungal hyphae were not found in microscopic examination of clear wood samples.
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Table 1.3. The lists of logs and identification of fungi from each group. (*Two different 
cultures were isolated from the log: CAB2).

Group Log Label Species

A 

B 

C 

D 

E 

F

Culture and hyphae characters

For the groups A, B, C, D, and E, growth was slow to very slow (5-8 cm in six 

weeks). Advancing zones for fungi in these groups were even and the mycelia were white 

to milky white in color. The mycelia both penetrated the agar and grew aerially. The 

center area of the mycelium changed color from white to yellow or dark brown with a 

wooly to cottony texture with the mycelium raised much higher than the advancing zone 

after five weeks of growth (Figure 1.2 and 1.3). MEA colorized by these fungi showed 

only slight brown discoloration or no color change at the end of six weeks. The color of 

GAA turned dark brown (positive reaction) after these fungi were grown on it for one 

week (Figure 1.4). Thin-walled hairline hyphae and thick-walled contextual hyphae were 

found and both hyphal types possessed simple septae (Figure 1.5 and 1.6). Clamp 

connections were not found in cultures from these five groups. However, Nobles (1948) 

also failed to find clamp connections. Chlamydospores, setate, conidia and oidia were 

not found in these groups. Abundant oval spores (6-8 pi long and 4-7 pi wide) developed 

after seven to eight weeks of growth in both MEA and GAA plates in these five groups

CAB1,2*, 3,4, 8,10 

CAB9; RLH10, 11, 13 

STIM2,5, 7; RLH17 

RLH4, 5 

STIM14, RLH15 

CAB2*

Phellinus pini 

Phellinus pini 

Phellinus pini 

Fomes nigrolimitatus 

Fomes nigrolimitatus 

Unknown
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(Figure 1.7). Group A, B and C showed swelling on the hyphae (Figure 1.8), but group D 

and E did not present any swelling on hyphae.

For group F, growth rate was very slow, and mycelium only covered about 50- 

60% of the plate surface after six weeks. The advanced zone was even and mycelium 

remained white even after eight weeks of growth (Figure 1.9). The aerial mycelium did 

not rise as high as for the other five groups and showed a much finer and smoother 

cottony texture. The mycelium submerged into the agar. MEA showed no color change 

after six weeks of incubation. No color change occurred on GAA. Thin walled hyphae 

(2-5p in diameter) and aerial hyphae (4-8 p. in diameter) contained simple septa structure, 

but no clam connections were found (Figure 1.10). No chlamydospores, conidia, or oidia 

were produced. An enlargement (ascus-like structure) was found on the apex of hyphae 

(Figure 1.11). However, the morphology was insufficient to identify this culture.
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Figure 1.2. MEA plate containing wood sample from lodgepole pine log (CAB9) and 
mature mycelium of Phellinus pini after 7 weeks of growth.
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Figure 1.3. MEA plate containing two Phellinus pini cultures isolated from the lodgepole 
pine log (RLH4) with the two cultures merged after 2 weeks of growth. Center of each 
culture turned yellow to brown color. MEA showed almost no discoloration.
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Figure 1.4. GAA plate containing fungal cultures from the lodgepole pine log (RLH4) 
after one week of growth with the dark brown discoloration of agar caused by the phenol 
oxidase reaction from Phellinus pini.
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Figure 1.5. Fungal hypha with a simple septum and thin wall structure (culture of 
Phellinus pini isolated from the lodgepole pine log: CAB9).
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Figure 1.6. The hairline hyphae structure of Phellinus pini isolated from the lodgepole 
pine log (CAB9).
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Figure 1.7. Thick walled hypha (arrow A) and basidiospore (arrow B) of Phellinus pini 
isolated from the lodgepole pine log (RLH4).
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Figure 1.8. A swelling structure on the small diameter hyphae of Phellinus pini isolated 
from the lodgepole pine log (CAB9).
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Figure 1.9. Mycelia of unknown species (group F) isolated from CAB2 after 8 weeks of 
growth on the MEA plate.
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Figure 1.10. Thin wall hyphae with simple septa structure (arrow B) and smaller 
diameter hyphae (arrow A) of unknown species (group F) was isolated from CAB2 log.
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Figure 1.11. An enlargement (ascus-like structure) on the apex of smaller diameter 
hyphae of unknown species (group F) was isolated from CAB2 log.
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DNA Extraction, Purification and PCR

DNA extraction and purification-This modified method for DNA extraction and 

purification was able to successfully extract DNA and RNA from each representative 

fungal culture of all six groups. The integration of phenol-chloroform with an extraction 

buffer yielded an adequate quantity of total DNA from pure fungal cultures. Due to the 

RNA present in all the DNA extractions, the extra purification using RNase, followed by 

phenol-chloroform extraction to eliminate RNA and remaining RNase, was required for 

the amplification by PCR. This study found that the fresh mycelium from advance zone 

of a fungal culture is preferred for DNA isolation rather than mycelium from the very old 

growth zone that did not consistently yield enough DNA.

DNA precipitated by adding 0.1 volumes of 3 M NaAcetate (pH 5.2) and 2.5 

volumes of ice-cold 95% ethanol and storing at -20 °C for at least 45 minutes was 

necessary to recover enough DNA for PCR. Overnight ethanol precipitation at a lower 

temperature (-70°C) did not outperform the method using incubation at -20 °C for 45 

minutes.

PCR results and optimization-The PCR results showed that the primers ITS1-F 

(specific primer for higher fungi) and ITS4 (universal primer) amplified only one band 

from each DNA template (Figure 1.12). The PCR products amplified from groups A, B, 

C, D and E were about 720-780 base pairs (bp) long, while the PCR product from the 

group F was approximately 920-990 bp. The positive control used the DNA templates 

from group D, and it was amplified by the 18S universal primers (536F and 907S). The 

negative control was performed without DNA template in the reaction solution. The 

positive control showed one amplification band (about 560-580 bp) on the agarose gel.
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A series o f annealing temperatures of different time lengths were tested. It was 

determined that the combination of two annealing temperatures (55 °C for 55 seconds and 

53 °C for 55 seconds) generated the cleanest and most reliable results. The performance 

of PCR amplification diminished when the annealing temperature was above 56 °C or 

below 52 °C. Meanwhile, extending the time beyond 55 seconds for annealing yielded no 

advantage.
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LM A B C D  E F G-  G+

Figure 1.12. Purified PCR products having run in electrophoresis for 30 minutes. 4 pi of 
each product was analyzed in 2% (weight/volume) agarose gels in IX TBE (89 mM tris- 
borate, 89 mM boric acid, 2mM EDTA) with ethidium bromide (EtBr) at 100 ng/ml in 
both running buffer and gel. From left to right o f the gel: LM. 4 pi low mass marker; A. 
Group A: CAB4 (ITS1F-ITS4); B.  Group B: CAB9 (ITS1F-ITS4); C. Group C: STIM2 
(ITS1F-ITS4); D.  Group D: RLH4 (ITS1F-ITS4); E. Group E: RLH15 (ITS1F-ITS4); F. 
Group F: CAB2 (ITS1F-ITS4); G-. Negative control: No DNA template (ITS1F-ITS4); 
G+. Positive control: RLH4 (536F-907R).
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DNA Sequencing and Fungal Identification

The raw sequence codes for the fungi sequenced in this study are presented in 

Appendix 1.3. Pair sequences (forward and reverse) from six groups were compared to 

the fungal DNA databases from NCBI. The results indicated that cultures from group A, 

B, C, D and E had the 98-99% similarity to the Basidiomycetes fungus, Phellinus pini 

(Table 1.4). The sequencing identification results were different from the identification 

by fungal culture and hyphal characteristics. Group D and E were Phellinus pini and not 

Fomes nigrolimitatus (Table 1.4). Group F, which could not be identified using 

morphology had a DNA sequence with a 94.1% similarity to be the Ascomycetes fungus, 

Byssochlamys nivea (Table 1.4). The sequences were submitted to GenBank of NCBI and 

published with the following access numbers presented in table 1.4.

Table 1.4. The fungal identification results by DNA sequences and the sequence 
similarity percentages to the database from the National Center for Biotechnology 
Information (NCBI).

Group Identified species Similarity GenBank 
access number

A Phellinus pini {Porodaedalea pini) 98.7 % AY265221

B Phellinus pini {Porodaedalea pini) 99.2 % AY265221

C Phellinus pini (Porodaedalea pini) 99.1 % AY265221

D Phellinus pini (Porodaedalea pini) 98.4 % AY265221

E Phellinus pini {Porodaedalea pini) 98.3 % AY265221

F Byssochlamys nivea 94.1 % AY265223
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DISCUSSION AND CONCLUSION

Although the DNA assay developed in this study requiring phenol-chloroform 

extraction, the capability and efficiency of this DNA method for accurately processing 

large numbers of samples from fungal cultures make it superior to other methods. In 

addition to use in the identification of wood decay fungi, this method’s ability to produce 

consistently high quality PCR product is of great value for many fungal research 

applications. This study demonstrates that comparing the sequences from the fungal ITS 

regions can correctly identify decay fungi, while fungal identification relying on the 

culture and hyphae features has difficulty in distinguishing different samples o f the same 

species showing morphological variation.

The ITS1-F and ITS4 primers were used in this study because they showed a 

reliable PCR amplification with the temperature cycles described in this study. On the 

other hand, the quality of the PCR products amplified by ITS1-F and ITS4-B 

(basidiomycetes specific) was too low for sequencing and required reamplification before 

any post PCR analysis. Also, the ITS1-F and ITS4-B primers could miss wood- 

inhabiting Ascomycetes fungi that sometimes also cause the discoloration of wood.

A final concentration lpM (10 pmole/|nl) of primers did not work for all samples, 

even with different DNA template concentrations. The relative concentration of MgCl to 

other components in the PCR reaction solution also plays an important role for a 

successful PCR optimization. Several concentrations of MgCl had been tried in this 

study, and the concentration of 15 mM produced the best results at annealing 

temperatures of 55°C and 53°C. This method can be best described as a scaled down 

version of touchdown PCR thermal cycles (McPherson and Mailer, 2000). This two-step
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annealing process provided a wider annealing window for the primers and DNA 

templates, and it also produced more dependable outcomes than those using a single 

annealing temperature.

In conclusion, this modified DNA extraction method effectively yielded sufficient 

DNA for PCR amplification with ITS primers. Meanwhile, direct sequencing the ITS 

region of fungal ribosomal DNA demonstrated a more reliable and effective approach for 

identifying decay fungi than did the culture assay. Although this method worked in this 

study, the DNA assay for the identification of wood decay fungi still has many areas that 

needs improvement and refinement. Jasalavich et al. (2000) presented results of 

extracting fungal DNA directly from inoculated wood blocks, but their study was not 

focused on field samples containing an incipient stage of decay. A study of rapid PCR 

detection of stained fungi (Kim et al., 1999c) and a study of molecular diagnosis in 

Inonotus spp. (Germain et al., 2002) showed the potential of species-specific primers and 

DNA extraction by microwave, but their DNA samples were either isolated from fungi 

with fruiting bodies, which is unlikely to be found in wood during the incipient decay 

stage. Based on this and previous studies (Kim et al., 1999a; Kim et al., 1999b; Kim et 

al., 1999c; Jasalavich et al., 2000; Germain et al., 2002), three major improvements for 

the PCR identification of fungi are needed. First, in order to eliminate the step of 

culturing fungi from a wood sample before DNA extraction, a method of isolating the 

fungal DNA directly from the field wood with incipient decay still needs to be developed 

and incorporated with a more effective DNA extraction method. Second, in order to 

detect and identify a certain species of fungus from a sample containing mixed species 

without sequencing or post PCR analysis such as RFLP, it is crucial to develop species-
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specific primers. Third, the effects of PCR inhibitors from treated wood and wood 

products are still not fully understood and require further study.

The DNA extraction method in this study showed good DNA recovery for the 

samples from pure cultures, but the effectiveness is still not fully understood when 

processing directly from naturally decayed wood, treated wood and other solid and 

composite wood products. The inhibitors from decayed wood, or chemical compounds in 

preservative-treated wood could present problems during the PCR reaction by decreasing 

the concentration of DNA below that required for PCR reaction. While studies have been 

conducted on isolating fungal DNA from inoculated wood blocks in the laboratory 

(Jasalavich et al., 2000; Kim et al., 1999c), no studies using direct DNA isolation from 

wood with natural incipient decay have been conducted. The technique used in this 

research has the potential of opening new lines of research and development.
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CHAPTER TWO

The Mechanical Properties of Clear Specimens of Lodgepole Pine with 

Incipient Decay Caused by Phellinus Pini (Thore) Lloyd

LITERATURE REVIEW 

Decay Fungi- Wood decay fungi deteriorate wood by producing enzymes that 

dissolve the cell components as their energy sources. Fungi penetrate cell wall structures 

such as pits or through bore holes in the cell wall (Zable and Morrell, 1992). The primary 

components of wood that decay fungi utilize, are lignin (20-35%), cellulose (40-50%) 

and hemicellulose (25-40%) (Haygreen and Bowyer, 1989). Lignin, a major structural 

element of wood, is a natural plastic with high molecular weight and serves as a binding 

agent in cell wall structures and is brown in color. Cellulose and hemicellulose are low 

weight polysaccharides (Haygreen and Bowyer, 1989), are light colored and provide a 

crystalline framework and inherent tension strength for the cell wall. Decay fungi can be 

categorized into three groups based on the cell wall component utilized and the 

characteristics of the decayed wood (Zable and Morrell, 1992). These categories include 

the white-rot fungi, the brown-rot fungi and the soft-rot fungi.

White-rot fungi- The common white-rot fungi consist of include Phellinus 

(Fomes) pini, Phellinus pseudo-pini, Traemetes versicolor, Stereume sanguinolentum, 

Inonotus (Polyporous) tomentosus, Dichomitus squalens (Polyporous anceps) and 

Armillaria spp. (Koch 1996), and primarily attack decay-free heartwood. White-rot fungi 

break down lignin and some hemicellulose, but leave most cellulose and hemicellulose, 

giving the light-colored decayed wood its name. This simultaneous decomposition
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causes wood to become progressively more fragile over time. Although white-rot is 

caused by a variety of fungi, most white-rot fungi are members of the Basidiomycetes. 

The Basidiomycotina is a large class of fungi that bear spores resulting from sexual 

reproduction exterior to a basidum and produce visible reproductive structures such as 

mushrooms and shelf conks (Manion, 1991).

Brown-rot fungi- The common brown-rot fungi include Coniophora puteana, 

Phaeolus (Polyporous) scheinitzii and Phellinus weirii (Koch, 1996). Like the white-rot 

fungi, the brown-rot fungi are capable of degrading cellulose and hemicellulose, but are 

unable to digest the lignin component of wood. In the case of brown-rot, in the advanced 

stage of decay, the lignin remains intact and appears as a brown, crumbly matrix. Unlike 

the soft-rots and white-rots, the brown-rot fungi are relatively few in number, comprising 

less than 6% of all wood-decay fungi (Zable and Morrell, 1992). The brown-rots are 

most prevalent in coniferous woods of the northern hemisphere (Manion, 1991).

Soft-rotting fungi- This group contains species that are capable of degrading 

cellulose and hemicellulose and may partially digest lignin (Worrall et a l ,  1997; 

Anagnost, 1998). The soft-rots are particularly prevalent during the early stages of wood 

decay and in conditions of high moisture and increased nitrogen content. They, therefore, 

play an important role in the decomposition of fence posts, building timbers, window 

frames, and other structural components of homes (Wang and Zable, 1990). Wood 

affected by soft rot may appear wet, spongy, or pitted. There are over 300 known species 

of soft-rot fungi. These include many filamentous micro fungi (the molds) from the 

Deuteromycetes, and some belong to the Ascomycetes (Wang and Zable, 1990). Unlike 

the brown-rot or white-rot fungi, the soft-rot fungi attack only the surface of the wood
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and break down the cellulose or hemicellulose in the cell walls. They do much less 

damage to the heartwood of decay resistant species (Koch, 1996).

Decay Processes

Decay processes consist of both enzymatic and physical attack during the fungal 

hyphal penetration of the cell wall. White-rot and brown-rot fungi use different 

enzymatic mechanisms to decompose cell wall. Most previous studies dealing with 

enzymatic processes of decay fungi only focused on either the cellulose decomposition or 

lignin decomposition. To date no study has completely described the interrelated 

enzymatic processes of cellulose, hemicellulose and lignin degradation. Most studies 

used (Green and Highley, 1997) only cotton cellulose, pure hemicellulose or lignin 

medium to examine the activities of enzymes, and most of them were not able to 

duplicate the enzymatic processes taking place in wood tissues. Further, the mechanisms 

of hemicellulose degradation are not fully understood (Highley and Dashek, 1998).

Cellulose decomposition by white-rot fungi- Studies conducted by Eriksson et 

al. (1990) suggested that at least three enzymes are involved in the primary hydrolytic 

process that reduce cellulose to glucose. However, this research raised some questions 

related to cellulose decomposition in wood, because most studies were based only on 

cotton cellulose. The white-rot fungus, Phanerochaete chrysosporium, has been 

intensively studied for the decomposition of cellulose in the laboratory. The enzyme 

reacting sites on cellulose are mainly (3-1,4 glucosidic linkages between two adjacent 

glucose units (Figure 2.1). Eriksson (1978 and 1990) reported that the mechanisms of 

cellulose decomposition include three primary and two secondary enzymes. The primary 

enzymes are endo (3-1, 4 glucanase, exo (3-1,4 glucanase and (3-1,4 glycosidases, while
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the secondary enzymes (oxidative enzymes) are oxidoredutase (cellobiose 

dehydrogenase) and cellobiose oxidase (cellobiose to cellobiose acid). The attacking sites 

on the cellulose polymer unit were described by Alder (1997) as seen in Figure 2.1 and 

the pathways of enzyme mechanisms were shown in Figure 2.2.

OH OH

OH OH
OH OH

Figure 2.1. The attacking sites (arrows) of cellulose decomposition by enzymes (Alder, 
1977).

Glucose
actone

Further
Metabolism

Cellulose

Cellobiose Cellobiono-
Lactone

Gluconic
acid

Cellobionic
acid

Glucose

Oligosaccharide

Figure 2.2. The Enzyme mechanism for cellulose degradation by Phanerochaete 
chrysosporium. 1: Endo-glucanase, 2: Exo-glucanase, 3: P-glucosidase, 4: Glucose 
oxidase, 5: Cellobiose oxidase (Zabel and Morrell, 1992).
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Cellulose decomposition by brown-rot fungi- Brown-rot fungi are unique 

among the wood decay fungi due to their ability to degrade wood cellulose and 

hemicellulose without significant chemical or physical alteration of the lignin 

surrounding the cellulose. These fungi only partially modify lignin, leaving a brown 

residue (altered lignin). Brown-rot fungi utilize cellulose in a different way than do the 

white-rot fungi. During the incipient decay stage, brown-rot fungi degrade cellulose 

more rapidly than those of white-rot fungi, and cause a large strength reduction when 

weight loss is quite small. While the outcome is well documented, the mechanisms of the 

brown-rot fungi attacking crystalline cellulose is still unknown (Highley and Dashek, 

1998). Since the smallest-sized, cellulose-degrading enzyme is still too large to pass the 

barrier of lignin into crystalline cellulose, smaller molecular agents are suspected for the 

depolymerization of crystalline cellulose (Cowling and Brown, 1969). Koenings (1974) 

suggested that the oxidation process by H2 O2/ Fe might serve as a non-enzymatic agent 

of the cellulose depolymerization. Flournoy et al. (1994), however, found that the 

previous studies conducted by Highley (1977) and Kirk et al. (1991) did not establish a 

correlation between the different oxidation processes of cellulose depolymerization. A 

more recent study by Green and Highley (1997) suggested that only three uncertain 

nonenzymatic processes might be involved in the early breakdown of crystalline cellulose 

(Figure 2.3).

Additionally, brown-rot fungi do not have exo-glucanase as do the white-rot 

fungi, but utilize two different enzymes, endo-p-1,4-glucanase and P-1,4-glucosidase, to 

depolymerize the amorphous cellulose and those cellulose chains separated from the 

crystalline zone by separate nonenzymatic agents (Highley, 1977). The endo-p-1,4-
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glucanase randomly cleaves the cellulose chains, including normally occurring 

amorphous cellulose and those cellulose chains cleaved by nonenzymatic agents from the 

crystalline zone. The p-l,4-glucocidase then attacks the ends of the cellobioses or shorter 

cellulose chains, and converts those to glucose units.

Enzymatic Nonenzymatic

Unknown

Fibrillar hyphal sheath

Gly copeptides 
(H2Q2)

Siderophores
(Fe++)

Fenton (H20 2) Oxallic acid Small
molecules

Crystalline cellulose Amorphous cellulose

Figure 2.3. Proposed mechanisms of Brown-rot Enzymatic Pathways. Enzyme 1: endo- 
p-l,4-glucanase, Enzyme 2: p-l,4-glucosidase (Modified from: Green and Highley, 
1997).
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Hemicellulose decomposition by white-rot and brown-rot fungi- Since 

hemicellulose is more complex in structure than cellulose (it is a mixture of several 

sugars in addition to glucose), the enzymes involved in its decomposition are more 

complex as well. Very few studies have been conducted on the enzymatic processes and 

molecular genetics of hemicelluloses, especially the enzymes involved in removing the 

side-chain groups (arabinose, uronic acid and acetyl groups).

Regulation of hemicellulase synthesis is the most significant difference between 

the enzymatic processes of white-rot and brown-rot fungi. Eriksson (1978) determined 

that many white-rot fungi do not exhibit effective hemicellulase and cellulase activities 

during growth on simple sugar mediums, while brown-rot fungi clearly displayed 

activities of both cellulase and hemicellulase. These enzymes are hydrolytic in nature 

and the hemicellulose degradation processes are analogous to enzymatic activity during 

cellulose decomposition. Since few studies of hemicellulose deterioration have been 

conducted, no direct comparison between white-rot and brown-rot fungi have been made.

Lignin decomposition by white-rot fungi- Lignin is difficult for most 

microorganisms to degrade, but it is efficiently degraded in nature by white-rot fungi. 

Because lignin is a large, three-dimensional polymer, and is composed of inter-unit 

carbon-to-carbon and ether bonds, ligninolytic systems must be oxidative rather than 

hydrolytic (Kirk and Cullen, 1998). Additionally, because the structure is so complex, 

with many different side chains, the ligninolytic agents must be less specific than 

cellulose degradation agents. Most studies have suggested that four major enzymes are 

involved in the lignin decomposition (Figure 2.4).
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(1) Lignin Peroxidase (LiP): This enzyme appears to be one of the key enzymes 

of lignin degradation of Phanerochaete chrysosporium. Lignin peroxidase requires H2 O2 

in the catalytic reactions, and it cleaves the C-C bond between phenyl propane units. The 

lignin peroxidase also oxidizes the phenolic units to aryl cation radicals (Kirk and Cullen, 

1998)

(2) Manganese Peroxidase (MnP): Manganese peroxidase is another major 

enzyme that has been isolated from some white-rot fungi and may provide low weight 

molecular oxidants (Kirk and Cullen, 1998). The reactive requirement of H2O2 for 

manganese peroxidase is similar to lignin peroxidase. Glenn (1985) indicated that the role 

of MnP is to oxidize Mn2+ to Mn3+ which then oxidizes the various phenolic structures to 

other simple products.

(3) Laccase: Most white-rot fungi can produce laccases which are blue copper 

oxidases and oxidize electron-rich structures (Hammel, 1997). Laccase oxidizes the 

phenolic units of lignin to phenoxy radicals which can lead to other products.

(4) Peroxide-producing Enzymes: In order to support the reactions of lignin 

peroxidase and manganese peroxidase, H2O2 needs to be produced at the same time. 

Glyoxal oxidase (GLOX) is one of the most common peroxide-producing enzymes 

isolated from many white-rot fungi (Kersten et al., 1990), and utilizes 1-3 carbon 

aldehydes and oxygen to form H2O2. Aryl alcohol oxidase is another peroxide-producing 

enzyme found in some white-rot fungi, and instead of utilizing aldehydes, it uses 

alkoxybenzyl alcohols and oxygen to produce H2O2.
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Figure 2.4. Schematic illustrating the enzymatic system of white-rot fungi. Four 
enzymes can be involved: lignin peroxidase, manganese peroxidase, laccase and glyoxal 
oxidase (Kirk and Cullen, 1998).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



52
Lignin decomposition by brown-rot fungi- Compared with white-rot fungi, 

brown-rot fungi only partially alter lignin. Kirk et al. (1991) found that the changes in 

lignin structure caused by brown-rot fungi were primarily the demethylation and 

oxidation of the a-carbon or cleavage of side chains between the a  and p carbon of 

phenyl propane units, while white-rot fungi utilize four major enzymes to completely 

digest lignin (Figure 2.5). Although studies (Wilcox, 1968) showed some lignin loss in 

wood specimens after the inoculation of brown-rot fungi, that evidence cannot 

completely explain the role of brown-rot fungi on lignin degradation since brown-rot 

fungi do not utilize lignin as their carbon or energy sources as do the white-rot fungi. 

Other enzymes involved in this modification of lignin by brown-rot fungi are unknown so 

far, and more studies are needed to gain further understanding of lignin midification by 

these fungi (Highley et al., 1994; Hammel, 1997).

I. Demethylation

2. Oxidation of a-carbon atoms

3. C leavage o f  th e  side chains betw een  th e  a  an d  fi curbons o f  th e  phenyl p ro
pane units.

i  a  on
I Vw

Figure 2.5. The three basic reactions of modification of lignin: 1. demethylation, 2. 
oxidation of a-carbon, 3. cleavage of side chains between a  and P carbon of phenyl 
propane units (Zabel and Morrell, 1992).
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Physical process of decay- Wood decay processes caused by fungi involve both 

enzymatic and physical processes, especially during the penetration of cell wall 

structures. The enzymatic processes are based on the diffusion of extracellular enzymes 

from the fimgal hyphae, while the physical/mechanical decay processes are associated 

with specific mechanisms of fungal hyphae growth (Zabel and Morrell, 1992) involving 

two major processes. First is the extension of an elastic tip region of hyphae and second 

is the progressive rigidification of hyphal walls behind the tip. This rigidification 

provides the physical force for the hyphae tip.

The combination of the enzyme system and growth of hyphal tip provides a 

logical explanation of the entire process. The hyphae penetrate the cell wall by softening 

and pushing through the cell wall. The apical growth region of hyphae releases enzymes 

to soften and degrade wood tissues and forms a small hypha peg on the contact point of 

the cell wall. The rigidification behind the apical region supports the extension of the 

hypha peg, and eventually this hypha peg penetrates the cell wall. During the 

penetration, hyphae release more enzymes that diffuse into the cell wall and cause the 

enlargement of the bore holes (Figure 2.6) (Matthius, 2000).

Diffused enzyme zorn 

Rigidification region.

Fungal hyphae

Hyphae growth apex'

Cell wall

Figure 2.6. Schematic of fungal hyphae penetrating cell wall.
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Effects of Decay on the Structural Properties of Wood

The fungal decay processes utilize the chemical components from cell walls and 

cause changes in wood structures. This change in chemical and structural properties 

leads to strength loss in wood. In general, the effects of decay processes can be grouped 

into three categories as follows: (Crowing, 1961; Wilcox, 1968,1970, 1993a, 1993b)

1. Channels for cell-to-cell hyphal migration

• White-rot fimgi: Hyphae advance mainly through numerous bore holes 

and pits. Later, the bore hole is enlarged in diameter four to eight 

times. The bore holes and enlarged pits are no longer differentiable.

• Brown-rot fungi: Few bore holes and no significant changes in hole 

size are observed; the hyphae advance mainly through pits which are 

damaged by this penetration.

2. Thinning of cell wall

• White-rot fimgi: The S3 layer is attacked first and cell-wall lamellae 

separation increases during this early stage. As decay progresses, the 

decay process extends to the S2 and Si layers as well as the primary 

wall and middle lamella. Cell wall lamellae separate and disappear.

• Brown-rot fungi: Cell wall thickness decreases slightly in the early 

stage. S2 and S3 layers are attacked at the same time, but later the S2 

layer is degraded more rapidly than the S3 layer. During advanced 

stages, the attack extends to the Si layer, the primary wall and the 

middle lamella. The cell wall finally collapses.
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3. Ray tracheids or vessel elements

• White-rot fimgi: Secondary walls tend to become thin and nearly 

disappear in advanced stages.

• Brown-rot fimgi: Few effects are noted in the tracheids or vessel 

elements, but the cell wall thickness decreases very slowly.

Mode of Entry and Invasion Processes

Most disease cycles of heart-rot fungi start from spores that are randomly 

disseminated by the wind and make contact with wounds or broken branches caused by 

fire, wind, animals or insects. Some of the wood decay fungi are distributed from tree-to- 

tree by root contact as well (Manion, 1991). After tree scars become infected by decay 

fungi, hyphae will start to invade the host tissues. The specific decay processes exhibited 

by two decay fungi, Phellinus pini, a white-rot fungus, and Phaeolus schweinitzii, a 

brown-rot fungus, have been selected to describe the modes of entry and tissue invasion 

processes. Brown cubical rot caused by Phaeolus schweinitzii is commonly found in old- 

growth trees, especially those with fire scars (Koch, 1996). The white-rot fungus, 

Phellinus pini, is one of the most common decay diseases for conifers in the northern 

temperate zone. Phellinus pini is often referred to as white-pocket rot, red-ring rot or 

red-heart rot, because of the small white lenticular pockets or red-heart stain in the 

decayed wood (Koch, 1996). Phellinus pini is primarily spread by wind-carried spores 

that germinate on wounds or branch stubs of trees. In addition, other vectors, such as 

insects or animals, carry the spores from tree to tree. In contrast, brown cubical rot 

depends on wind-born spores to infect new hosts through fire scars and wounded roots. It

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



also spreads by root contact between trees. This fungus can survive in dead roots or cut 

trees for a long time (Morrell, 2000).

During the tissue invasion processes, the hyphae of the white-rot fungi such as 

Phellinus pini, often develop initially in the vessels and wood rays of hardwoods, while 

the wood rays and longitudinal parenchyma are first invaded in softwoods (conifers). As 

decay pogresses, the hyphae will be present in the lumen of most fibers and vessels of 

angiosperms, while hyphae also become numerous in both tracheids and ray cells 

(Wilcox, 1968, 1970). In contrast, the hyphae of brown-cubical rot fimgi distribute more 

evenly throughout many different types of cells of both angiosperms and gymnosperms 

(Crowing, 1961; Wilcox, 1970). A major difference in tissue invasion sequencing 

between a white-rot fungus, Phellinus pini and the brown-cubical rot, Phaeolus 

schweinitzii, is the sequence of removal of the cell wall. Decomposition sequences of 

different layers of the cell wall are listed in Table 2.1.

Table 2.1. Invasion order of cell wall structures (Figure 2.7) by white-rot and brown-rot 
fungi (Wilcox, 1968, 1970).

White-rot Brown-rot
S3 layer 
S2 layer 
Si layer

52 layer 
Si layer
53 layer

Primary wall 
Middle lamella layer 
Ray and vessel cell walls

Primary wall 
Middle lamella layer 
Ray cell wall
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Figure 2.7. Basic cell wall structure of secondary xylem. P: Primary wall, Si: First layer 
of secondary wall, S2: Second layer of secondary wall, S3: Third layer of secondary wall, 
W: The surface layer of lumen, ML: Compound middle lamella Layer (Haygreen and 
Bowyer, 1989).
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Environmental Conditions for Vegetative Growth and Reproduction

Under wet and warm environmental conditions, decay fungi can easily infect 

untreated and/or non-resistant wood species. Ammer (1964) found that five different 

decay fungi showed no development in wood’s hydroscopic range (0 to approximately 

25% dry-basis moisture content), but failed to specify the ambient relative humidity in his 

study. Later, Morton and French (1996) found that the spore germination could occur in 

relatively dry wood when the relative humidity was 94% or higher. Griffen (1977) also 

indicated that enzymes can function in condensed water in the large pit pores and also 

found that most fungi can remain alive, but inactive, below 97% relative humidity and 

below the wood fiber saturation point. More recently, Viitanen and Ritschkoff (1991) 

found that brown-rot fungi in the vegetative stage could decay wood in the range of 94- 

97% relative humidity and ideal temperatures, but they did not describe the moisture 

content in the decayed wood. However, Zabel and Morrell (1992) indicated that the 

minimum moisture content for decay fungi growth are in the range around the fiber 

saturation point, commonly reported between 25 and 30% dry-basis moisture content for 

most species. The temperatures generally cited for decay fungus development are 

between 15 °C-40 °C, while the optimal temperatures are 21 °C-32 °C (Humphrey and 

Siggers, 1933; Carll and Highley, 1999). The optimal growth temperature for decay 

fimgi might vary between species and their hosts but the difference is not significant. A 

relative humidity of 95% and 20-35 °C will provide good growth conditions for most 

decay fungi, while the moisture content in wood lower than the fiber saturation point is a 

distinct limit to the development of decay fungi (Zabel and Morrell, 1992; Carll and 

Highley, 1999).
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Most decay fungi are obligate aerobic microorganisms, and lack of oxygen will 

cause a reduction or cessation of fungal growth (Zable and Morrell, 1992). Highley et al. 

(1983) reported that oxygen levels lower then 7.6mm Hg substantially reduced fungal 

decay. Scheffer (1986) indicated that no fimgi grew at an oxygen level lower than 0.2% 

volume, while fungal growth increased dramatically in atmospheres ranging from 2mm 

Hg to 11mm Hg, and reached an optimal growth rate at 32mm Hg of oxygen content. A 

recent study of the influence of oxygen concentration on fungal growth rate, biomass 

production and wood decay showed that a 5% oxygen concentration was very favorable 

for both white-rot and brown-rot fungi, while oxygen levels from 1% to 0 .01% caused a 

decrease of fungal growth rate and biomass (Kazemi et al., 1998).

Visual Signs of Decay

The most common sign indicating the presence and type of decay is the visual 

evidence that includes discoloration and decay patterns. In the very early (incipient) 

stage of decay, the wood might not show a significant discoloration or decay pattern. At 

this stage, the wood is still intact and damage is quite limited (Zabel and Morrell, 1992). 

As decay develops further, wood starts to show slight changes in texture and color such 

as light reddish, light yellow, red brown, light gray or gray white. The wood will often 

show a rougher texture or a higher-than-normal fiber brashness, and the damage to the 

wood’s mechanical and physical properties is more severe than that seen previously in 

the early stages of incipient decay. During the intermediate and advanced decay stages, 

the visual signs are significant and variable as wood strength is dramatically reduced.

The wood may be spongy, soft, very fibrous or show heavy shrinkage, and the color may 

be white, gray, dark brown, reddish brown, black-lined or white pocket rot (Manion,
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1991; Zabel and Morrell, 1992). For example, the brown cubical butt rot caused by the 

Phaeolus schweinitzii, shows a yellow to reddish-brown discoloration or a dry, crumbly, 

brown cubical wood residue in the heartwood (Figure 2.8 and 2.9). White pocket rot, a 

white elliptical and sunken area, could be an advanced stage of Inonotus tomentosus or 

Phellinis pini decay. Red ring rot, caused by the fungus Phellinus (Fomes) pini or 

Stereume pini might show a red or reddish-purple discoloration in the heartwood during 

the early stage of decay, while advanced decay appears as small gray-white pockets 

containing white mycelium (Figure 2.10 and 2.11).
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Figure 2.8. The typical brown cubical rot (Phaeolus schweinitzix) on Douglas-fir 
(Psuedotsuga menziesii Mirb. Franco) heartwood showing dark brown cubical residue 
(Foster and Wallis, 2002).

Figure 2.9. A closer look of the brown cubical residue from Douglas-fir heartwood 
having an advanced decay stage of brown cubical rot (Phaeolus schweinitzix) (Foster and 
Wallis, 2002).
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Figure 2.10. The early decay stage of red ring rot {Phellinus pini) on Douglas-fir 
heartwood showing reddish brown to dark brown discoloration at the center area (Foster 
and Wallis, 2002).

Figure 2.11. The advance decay stage of red ring rot (Phellinus pini) on lodgepole pine 
heartwood showing small white pockets with fungal mycelia (Foster and Wallis, 2002).
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Weight Loss by Decay Fungi

Decay fungi live and thrive by attacking and metabolizing structural components 

of the woody cell wall. The loss of wood weight, a result of the breakdown of the cell 

wall components, is commonly recognized as a prime indicator of significant change in 

mechanical properties. Wilcox (1968 and 1978) defined “early stage decay” as a weight 

loss below 10%, but the term incipient decay was not defined in his studies. Later, Zabel 

and Morrell (1992) defined the incipient decay stage as the period in the decay process 

when weight loss was less than 10%, while a 95-97% weight loss was defined as the 

advanced decay stage. They did not precisely define other decay stages by the percentage 

of weight loss. However, these previous studies used small specimens inoculated with 

decay fungi grown under laboratory conditions that showed a near linear relationship 

between weight loss and time-since-inoculation.

Mechanical Strength Loss by Decay Fungi

Toughness (the ability to withstand an impact load) was considered by Wilcox 

(1978) to be the mechanical property most sensitive to the incipient stage of decay, with 

bending strength being the second. More recent studies used bending strength as the 

principal criterion to evaluate the effects of fungal decay on different wood materials 

(Smith et al., 1992; Winandy and Morrell, 1993). Scheffer et al. (1941) studied the 

effects of certain heart-rot fungi on Sitka spruce (Picea sitchensis Bong. Carr.) and 

Douglas-fir (Psuedotsuga menziesii Mirb. Franco) and showed that the white-rot fungus, 

Phellinus pini, caused bending strength reduction in Sitka spruce, while almost no 

strength reduction was found on Douglas-fir samples. Their specimens, however, 

contained knots and other defects, which may have influenced the results. Kennedy
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(1958) conducted a study on 12 different kinds of wood decayed by two different fungi 

(white-rot and brown-rot) and examined the effects of weight loss on static bending 

strength. He found that the average strength loss of white-rotted woods was about 4.3 % 

at a weight loss of only one percent. At equivalent weight loss, specimens attacked by 

white-rot fungus generally suffered less strength loss than those exposed to the brown-rot 

fungus.

The only study regarding the strength reduction of lodgepole pine with red-ring 

rot caused by Phellinus pini was conducted by Rofif and Whittaker in 1963. They found 

that lodgepole pine with up to 80 percent red stain was expected to have a reduction in 

static bending and in toughness of not more than 15 percent. Since their comparisons 

between the control group and the red stained specimens were not based on an individual 

tree, the results could be biased due to the strength variation between and among trees. 

Additionally, the lack of statistical analysis also greatly reduced the reliability of their 

results. Wilcox (1978) concluded that the toughness loss of gymnosperms was at least 

60-80% and the bending strength loss of 50-70% occurred at the incipient stage with 5- 

10% weight loss. Also of importance, the Modulus of Elasticity (MOE) and Modulus of 

Rupture (MOR) could both be reduced to 60-70% of normal in the incipient stage of 

decay before the decay could be reliably identified. In a study of the effects of time- 

since-infection on compression strength parallel to the grain, Smith, Morrell and Sexton 

(1992) inoculated small, clear specimens of Douglas-fir wood with decay fungi and 

observed results over a twelve-month period. The results indicated that strength loss was 

apparent and significant three months following inoculation, and after twelve months, the 

MOR had been reduced by 29%, while work to maximum load had declined by 50%.
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More recently, Winandy and Morrell (1993) reported that bending strength of Douglas-fir 

heartwood exposed to brown-rot fungus had been decreased by 5-70% at a rate linearly 

related to a weight loss from 1-18%. These studies all showed that even in the early stage 

of decay, where the only visible or tactile sign is a red to reddish-brown discoloration, 

Douglas-fir wood can lose nearly 70% of its toughness and bending strength. Curling et 

al. (2002) also reported a ratio of bending strength to weight loss of approximately 4:1 

for the sapwood of southern pines {Pinus spp.) exposed to brown-rot fungus.

Although lodgepole pine is of economic importance in western North America, 

most researches in identifying incipient decay or understanding its impact on mechanical 

properties have been conducted on Douglas-fir and brown-rot fungi. Significantly, 

relatively few researches have been done with lodgepole pine.

Visual Stress Grading

Visual examination by lumber graders is the most common method currently 

employed for stress grading dimension lumber throughout the world. Although machine- 

stress-rated grading systems are available on the market, most commercial lumber 

companies still rely primarily on a grading system that is based on a visual examination 

of lumber by a certified grader. Macroscopic signs such as discoloration, ripped or tom 

grain, crumbling or stringy appearance or surface softness are the primary visual cues 

used to determine the presence and extent of fungal decay. Lumber grading mles-writing 

agencies have codified mles limiting the amount and type of defects in lumber, including 

decay, and instruct certified graders on the methods to be used to determine the presence 

and extent of decay.
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Current grading rules, however, (Western Wood Products Association 1995; West 

Coast Lumber Inspection Bureau 1998,2000; Southern Pine Inspection Bureau 1994) of 

conifer lumber allow up to 50% firm-red-heart, the term to describe the discoloration 

used as a sign of the presence of the early stage of decay, in even the higher grades of 

structural lumber. Firm red heart is a condition common in northern lodgepole pine and 

is caused by stem decay fungi that infect heartwood causing a reddish brown color.

Many research papers indicate that incipient decay causes strength loss o f20-40% and 

early stage decay causes a loss o f45-80% (Mizumoto, 1966; Wilcox, 1968; Toole, 1971; 

Smith, Morrell and Sexton 1992; Winandy and Morrell 1993; Carll and Highley, 1999). 

This is a serious problem in the grading rules of western conifer woods, because the “firm 

red heart” is already beyond the incipient decay stage.

Communication with several grading agency officials (Davis, 2000; Dean, 2000; 

Loy, 2000; Rominger, 2000) has revealed an inability to justify the inclusion of lumber 

with up to 50% of its surface area and volume containing decay beyond the incipient 

stage, even though this lumber was reported to show greatly reduced mechanical 

properties. While confirming the general observation of reduced bending and 

compression strength properties for wood with firm red heart, none of the grading agency 

officials was able to provide historical information for the reasons firm red heart is 

allowed in visually-graded, structural lumber grades.
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OBJECTIVES

1. Describe different failure types that occur in static bending and compression 

parallel to grain (CPG).

2. Compare the modulus of elasticity (MOE), modulus of rupture (MOR), 

compression parallel to grain (CPG) and specific gravity (SG) of lodgepole pine 

test specimens exhibiting various stages of wood decay as characterized by 

unique combination of discoloration and decay volume classes.

3. Compare the percent deviation in MOE, MOR, CPG and SG of lodgepole pine 

test specimens exhibiting various stages of wood decay as characterized by 

unique combination of discoloration and decay volume classes.

4. Make recommendations regarding visual stress grading of lumber having various 

stages of wood decay.

HYPOTHESIS

Ho: The population’s mean percent deviations of specific gravity (SG), modulus 

of elasticity (MOE), modulus of rupture (MOR) and compression parallel to 

the grain (CPG) are equal due to the decay volume, discoloration and the 

interactions between these factors at the 0.05 alpha level.

Hi: Not Ho
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Substrate Preparation

Lodgepole pine was selected for this study, because of its economic and 

ecological importance to western North America and areas of Europe and Asia where it is 

also grown. This species was described earlier in the materials and methods of Chapter 

one. Twenty lodgepole pine logs that ranged from 12 to 24 inches (30.4 to 60.9 cm) in 

diameter and 8 to 12 feet (243.8 to 365.7 cm) long were randomly selected from green 

logs with visible firm red heart (Figure 2.12 and 2.13) located at different saw mills and 

log processing yards in the vicinity of Missoula, Montana during the winter of year 2001. 

The trees in these log yards were obtained from timber sales on private and public lands, 

most likely in the states of Montana and Idaho. Each log was labeled and cut into bolts 

24.0 inches (71.14 cm) long.

In order to have parallel grain for the specimens, the logs were split and then 

sawed into specimens (2.5 x 2.5 x 24.0 inches / 6.35 x 6.35 x 71.14 cm). Only the 

heartwood was selected for the test and the growth rate of the specimens was limited to a 

range of 20 to 35 rings per inch (2.54 cm) (Figure 2.14). In addition, the portion of the 

stem within 20 rings of the pith was not used in order to limit the amount of juvenile 

wood in the test specimens. Compression wood, shake, checks, blue stain and sapwood 

decay were also excluded from any of test specimens. A jointer, band saw and planer 

were used to further process the wood pieces into test specimens with the nominal 

dimensions (1.0 xl.O x 22.0 inches / 2.54 x 2.54 x 66.04 cm) (Figure 2.15).

Mechanical testing generally followed the standard procedure for testing small 

clear specimens of timber, Standard D143-94 (ASTM, 2002d). The test specimens from
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each log were labeled and sorted into four classes (clear, low, medium, high) based on the 

intensity of discoloration of firm red heart as seen in Figure 2.16. Since the decay often 

extended along the grain of the heartwood from end to end of the test specimen, decay 

volume (Table 2.2) was estimated by averaging the proportion of area containing the 

strongest discoloration at both ends of test specimen. When the contour lines of decay at 

both ends were not distinct, four faces of the test specimens were examined to compute 

the proportion of the area exhibiting discoloration.

The total number of static bending specimens was 264 consisting of 52 clear, 61 

low discoloration, 61 medium discoloration and 90 high discoloration. Meanwhile, all 

clear test specimens were screened by examining their wood sections under a light 

microscope and incubating wood samples in MEA plates to ensure that they were decay 

free. The examined clear wood specimens from each log served as the paired control 

group against which the specimens with firm red heart from the same log were compared 

to eliminate variation between trees. After the fungal isolation, all wood specimens were 

stored in a chamber at constant 65 percent relative humidity and 70 °F (21 °C) for more 

than 30 days so as to reach 10-12% equilibrium moisture content for further mechanical 

strength tests.
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Figure 2.12. Cross section of lodgepole pine log (CAB4) with firm red heart.

Figure 2.13. Cross section of lodgepole pine log (Stim2) with firm red heart.
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Figure 2.14. Cross section o f lodgepole pine log without firm red heart.

2D" (508 mm)

Figure 2.15. The dimensional diagram of a wood testing specimen.
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Figure 2.16. The samples of three discoloration classes and control group (high, medium, 
low and control from left to right).

Table 2.2. The classifications of decay volume percentage and discoloration.

Discoloration Q ear (control) Low Medium High
classes

Decay volume 0% (control) 1-33% 34-66% 67-100%
classes
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Static Bending Test

In order to examine the effects of an uneven distribution of decay in the test 

specimen, a third-point loading described in static tests document D198-99, ASTM 

(2002b) was used in this study. The span for this test was 14 inches (426.7 cm) and the 

testing heads were 1/3 span, 4.66 inches (11.83 cm) apart. The test specimens were 

oriented so that the load was applied to the tangential surface with the worst decay zone 

on the lower (tension) side of the specimen, while the clear wood specimens had the load 

through the tangential face nearest the pith. A 60,000 Lb. Tinius-Olson universal testing 

machine was employed for load application and used a crosshead speed of 0.1 inch (2.5 

mm) per minute at room temperature (68±6 °F). The test configuration was as Figure 

2.17. The width and depth of each test specimens were measured before each test. The 

equations used to determine the mechanical properties, MOR and MOE, were based on 

D198-99 (ASTM, 2002b) and are as follows:

MOE = P ’LS /  4.7bh2

where: P ’ -  the load on beam at proportional limit (pound)

L = the distance of span (inches) 

b = the width of beam (inches) 

h = the depth of beam (inches)

MOR = PmaxL /b h 2

where: Pmax—the maximum load (pounds)

(Rest of symbols as defined above)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



74

Loading Force Direction

Force Loading Head

Wood Specimen 
(1 x 1 x 20 inches / 2 5 4 x 2 5 4 x 4 5 7 2  cm)

1/3 Span: (4.67 In /11M  cm)1/3 Span: (4.67 in/11.86 cm)1/3 Span: (4.67 in /11.86 cm)

Bearing

Test Machine

Figure 2.17. The diagram of third-point static bending test and specimen dimension.
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Compression Parallel to the Grain

The test for compression parallel to the grain was conducted on 1 by 1 by 4 inches 

(2.54 by 2.54 by 10.16 cm) specimens that were cut from the non-damaged portion of 20 

inches (45.72 cm) specimens right after the static bending test. Both ends of the specimen 

were trimmed by a calibrated high-speed radial saw to ensure that the force loading 

surfaces were perpendicular to the force loading axial. A crosshead speed o f0.003 inch 

(0.076 mm) per minute at room temperature (68±6°F) was used in this test. The test 

procedure and configuration (Figure 2.18) was followed the ASTM D-143-94 (2002d). 

Both width and depth of specimen were measured before each test to reduce the variation 

due to the size difference between test specimens. The maximum compression parallel to 

grain (CPG) was calculated as follows:

CPG = P c / b h

where: Pc = maximum load force (pound).

(Remaining symbols as previous by defined)

(MOE, MOR and CPG were recorded in pound/inches2)
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Force loading direction

Ball bearing

4 inches 

(10.1 cm)

Testing head

Ball bearing

Testing head

Testing head

Testing head

Figure 2.18. The diagram of apparatus used in the test of compression parallel to grain 
(CPG).
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Specific Gravity (SG)

The specimen ( l x l x l  inches, 2.54 x 2.54 x 2.54 cm) was cut from each stick

after the bending test. Measurements of volume and weight were based on the Standard

Test Methods for Specific Gravity of Wood and Wood-Based Materials, ASTM D2395-

02 (2002a). Once the volumes were measured, the specimens were oven-dried for 24

hours in a fan-circulated, hot-air oven set to 105 degrees C for 24 horns. Volume of the

moisture content specimen at least was taken prior to oven drying by immersion.

Specific gravity (SG) was calculated as follows:

SG = (Wod/ V ) / D w

where: Wod ~ oven dry weight (pound)

V= volume at test moisture content (ft3)

Dw = density o f water (62.4 lb/ft3).

Dry Basis Moisture Content (MC)

The actual moisture content of each specimen at the time of testing was measured

immediately following the strength test. The details of the oven drying method are

described in the Standard Test Methods for Direct Moisture Content Measurement of

Wood and Wood-Base Materials, ASTM D 4442-92 (2002c). One-inch (2.54 cm) wood

cubes were cut from each specimen after the bending testing. The dry-basis moisture

content (MC) was calculated as follows:

M.C. % = [(Wg! WodH ]  x 100 
where: Wg = original weight (gms.)

Wqd — ovendry weight (gms.)
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Data Analysis

The statistical analysis package, SYSTAT 10.0, was used to conduct various data 

analyses. The four dependent variables are:

1. Mean percent deviation of specific gravity (SG)

2. Mean percent deviation of modulus of elasticity (MOE)

3. Mean percent deviation of modulus of rupture (MOR)

4. Mean percent deviation of compression parallel to the grain (CPG)

The two independent factors are:

1. Decay volume: 3 classes (1-33%, 34-66% and 67-100%)

2. Discoloration: 3 classes (low, medium and high)

The General Linear Model (GLM) Univariate procedure (2-way ANOVA) was 

used to analyze main factors and their interaction for each dependent variable. Levene's 

test was conducted to check for the equality of error variances and to ensure the validity 

of a 2-way ANOVA. If any of the null hypotheses associated with main effects are 

rejected, a multiple-comparison procedure (Tukey’s Multiple Comparison) will be used 

to investigate the nature of differences between the values of mean reduction percentages 

and to determine which means were different and by how much.
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RESULTS

Moisture Content

The average moisture content for all 264 specimens was 9.68%. However, the 

group 3 (1-33% decay volume and medium discoloration) specimens showed the highest 

average moisture content (10.29%), while group 8 (67-100% decay volume and medium 

discoloration) had the lowest average moisture content (9.32%) and the clear wood had 

an average 9.49% moisture content (Table 2.3). The difference between the highest and 

lowest average moisture contents was only 0.97%.

Table 2.3. Means deviation percentages of moisture content (MC) percentages by decay 
volume and discoloration classes (SE: standard error).

Group Decay volume Discoloration N Mean of MC %± SE (%)
0 0% clear 52 9.49±0.17
1 1-33% low 25 9.40±0.16
2 medium 17 9.67±0.17
3 high 18 10.29±0.12
4 34-66% low 16 9.55±0.33
5 medium 20 9.64±0.29
6 high 22 10.26±0.14
7 67-100% low 20 9.68±0.31
8 medium 24 9.32±0.24
9 high 50 9.79±0.19

Total 264 9.68±0.07
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Failure Modes

Failures modes in static bending- Most bending failures occurred on the tension 

face (the downward face) between the two loading heads and resulted in four specific 

failure types as follows:

1. Simple tension: The specimen showed separations and longitudinal splitting in 

the tension zone. Some specimens also exhibited, in addition to the tension 

failures, a compression parallel-to-grain failure on the upper (compression) 

face between or under the load heads (Figure 2.19).

2. Cross grain tension: The failure occurred at the bottom face, splitting at an 

angle along the boundary of decayed wood into the non-decayed area (Figure

2.19).

3. Splintering tension: The tension face failed with numerous splinters (Figure

2.19).

4. Brash tension: The specimen separated into two pieces with a fine tooth 

margin on the failure faces. This type of failure is often associated with wood 

that is in the advanced stages of decay (Figure 2.19)

Simple tension failure was the predominant type of failure, averaging 84% with 

the range from 80% (group 9) to 90% (group 6). By comparison, clear wood had an 

average simple tension rate of 87%. Table 2.5 shows the type and percentage of the 

different types of bending failure for the different decay and discoloration classes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



81
Failure types of compression parallel to grain- Most compression failures 

occurred near either end of specimen, with a folding rupture set approximately horizontal 

or at a slight angle to the top of the specimen. However, no brooming, splitting and 

shearing parallel to grain was observed in any compression tests. Three failure types 

(Figures 2.20) of compression parallel to grain can be identified in terms of the failure 

location and form and are classified as follows:

1. Crushing: the failure is located in an approximately horizontal plane near the 

top or bottom of the specimen.

2. Shearing: the failure is located near the top or bottom ends of the specimen 

and rupture makes an angle of more than 45 degree with the top of specimen.

3. Wedge split: The rupture occurs in a Y-shape and combines with short split. 

The primary failure type in compression testing was crushing. Table 2.4

summarizes the types and percentages of the different failure types.

Table 2.4. Percentages of failure types in static bending and compression parallel to grain 
(CPG) by decay volumes and discoloration classes.

Compression
Decay Discolor- parallel to grain Static bending

tuup volume ation
Crushing Shearing Wedge

split
Simple
tension

Cross-grain
tension

Splintering
tension

Brash
tension

0 0% clear 89% 10% 1% 87% 12% 2% 0%
1 1-33% low 85% 15% 0% 87% 13% 2% 1%
2 medium 77% 23% 0% 82% 18% 0% 0%
3 high 80% 20% 0% 89% 11% 0% 0%
4 34-66% low 92% 8% 0% 82% 18% 0% 0%
5 . medium 93% 7% 0% 82% 18% 0% 0%
6 high 82% 18% 0% 90% 6% 4% 0%
7 67-100% low 79% 20% 1% 82% 14% 5% 0%
8 medium 83% 16% 1% 83% 13% 4% 0%
9 high 94% 6% 0% 80% 9% 3% 8%
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Spintering tension

Simple tension

Figure 2.19. Photograph of the four static bending failure types.
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Figure 2.20. Photograph of three failure types in compression parallel to the grain.
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Specific Gravity

Specific gravity has a nearly linear relationship with several of wood’s 

fundamental strength properties (Forest Products Laboratory, 1999). In general, higher 

specific gravity provides greater wood strengths, such as static bending and compression 

strength. Because of the dramatic effect that specific gravity has on mechanical 

properties, a change in specific gravity due to discoloration and decay volumes computed 

in this study. The results revealed that the decay specimens showed the range of average 

specific gravity from the lowest 0.436 (group 9) to the highest 0.475 (group 2) (Table 

2.5). The group 9 (67-100% decay volume and high discoloration) showed the highest 

negative value of mean percent deviation percentage (-5.35%) of specific gravity. On the 

other hand, groups 2, 3,4, 5, 7 and 8 only show of less than 3% reduction in specific 

gravity (Table 2.5).

For the low discoloration classes, the mean percent deviation of specific gravity 

changed from negative to positive from decay volume class 1-33% to 34-66% and the 

positive percentage slightly decreased near zero from decay volume 34-66% to 67-100% 

(Figure 2.21; Table 2.5). For the medium discoloration class, all three decay volumes 

exhibited positive values of mean percent deviation and showed little change as decay 

volume increased. For the high discoloration class, the specific gravity gradually 

decreased in a near-linear trend as the decay volume increased (Figure 2.21; Table 2.5).
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Table 2.5. Means and mean percent deviations for specific gravity (SG) by decay volume
and discoloration classes (SE: standard error).

Group ^  Discoloration N -------------------Specific gravity (SG)------------------
volume MeaittSE Mean % deviationiSE (%)

1 1-33% low 25 0.460±0.007 -0.52±1.16
2 medium 17 0.475±0.008 2.33±1.67
3 high 18 0.464±0.007 0.40±1.68
4 34-66% low 16 0.458±0.009 3.05±1.89
5 medium 20 0.460±0.007 0.92±1.39
6 high 22 0.454±0.009 -1.67±1.83
7 67-100% low 20 0.447±0.008 0.30±1.58
8 medium 24 0.463±0.009 1.25±2.07
9 high 50 0.436±0.005 -5.35±1.07

20.0

15.0.

10.0 .

Discoloration
5.0.

0.0 A clear

-5.0 .
O low

UJ -10.0.

medium
-15.0

2  - 20.0 □ high
o% 1-33% 34-66% 67-100%

Decay volume classes

Figure 2.21. Standard error bars of mean percent deviations for specific gravity (SG) by 
decay volume and discoloration classes.
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Modulus of Elasticity (MOE)

The average modulus of elasticity (MOE) for the decayed specimens ranged from 

1,321,580 to 1,620,481 (psi). At the same time, among the decayed specimens, group 9 

(67-100% decay volume and high discoloration) showed the lowest average MOE 

(1,321,580 psi) and had the highest average reduction percentage (20%) while group 1 

had the lowest average reduction (3.59%) (Table 2.6).

All eight groups with firm red heart showed strength reductions in MOE. Apart 

from the medium discoloration class, average of MOE reduction increased in a nearly 

linear relationship with increased in decay volume and discoloration. For the low 

discoloration class, the average percentage of MOE reduction did not significantly 

change from a decay volume of 1-33% to one of 67-100%. Meanwhile, in the high 

discoloration class, the strength reduced dramatically as decay volume increased, while 

the mean percent deviations in medium discoloration class did not noticeably changed as 

decay volume increased until the decay volume reached 67-100% (Figure 2.22; Table 

2.6).
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Table 2.6. Means and mean percent deviations for modulus o f elasticity (MOE) by decay
volume and discoloration classes (SE: standard error).

_ Decay . . XT Modulus of elasticity (MOE)Group , Discoloration N ------------------------------------- —------ -------------
volume Mean±SE (psi) Mean % deviation±SE (%)

1 1-33% low 25 1613393±6067 -3.59±1.56
2 medium 17 1620481±11072 -5.06±2.19
3 high 18 1582710±12481 -5.42±3.03
4 34-66% low 16 1503284±11415 -4.97±2.15
5 medium 20 1574651±12089 -5.72±2.47
6 high 22 1415424±8494 -15.38±2.18
7 67-100% low 20 1452322±9197 -7.47±2.64
8 medium 24 1404799±10611 -15.11±2.35
9 high 50 1321580±4605 -20.00±1.69

10.0

5.0.

o.o
Ui

Discoloration
c  -10.0.

>  -15.0, a>-a
c  -20.0.

A clear

O low® -25.0

w  -30.0,
V medium

c  -35.0

^  -40.0 □ high
o% 1-33% 34-66% 67-100%

Decay volume classes

Figure 2.22. Standard error bars o f mean percent deviations for modulus of elasticity 
(MOE) by decay volume and discoloration classes.
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Modulus of Rupture (MOR)

For modulus of rupture (MOR), the MOR means ranged from the highest 11,568 

psi of group 1 (1-33% decay volume and low discoloration) to the lowest 8,513 psi of 

group 9 (67-100% decay volume and high discoloration) (Table 2.7). All groups with 

firm red heart showed a strength reduction in MOR (negative deviation percentage). The 

values of average percent deviation of MOR ranged from -36.2% for group 9 specimens 

(67-100% decay volume and high discoloration) to -8.82% for group 1 specimens (1-33% 

decay volume and low discoloration) (Table 2.7). The mean reduction percentages of 

MOR changed as decay volume and discoloration increased (Figure 2.23). Among the 

three discoloration classes, the MOR for high discoloration had the most dramatically 

decreased in a near-linear trend as the decay volume increased. The groups with low 

discoloration had similar reduction trend to the groups of medium discoloration as the 

decay volume increased from 1-33% to 34-66%, but the reduction percentage of low 

discoloration only slightly increased as decay volume reached 67-100% (Figure 2.23; 

Table 2.7).
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Table 2.7. Means and mean percent deviations o f modulus o f rupture (MOR) by decay
volume and discoloration classes (SE: standard error).

„ Decay . . XT Modulus of rupture (MOR)Group , Discoloration N ------------------------------- ------ ----------------------
volume Mean±SE (psi) Mean % deviation±SE (%)

1 1-33% low 25 11568±356 -8.82±2.06
2 medium 17 11366±410 -10.92±3.18
3 high 18 10653±459 -15.34±3.27
4 34-66% low 16 10327±514 -13.45±2.92
5 medium 20 10612±554 -14.47±3.23
6 high 22 9650±444 -24.34±3.17
7 67-100% low 20 9985±395 -14.48±3.22
8 medium 24 9618±500 -23.20±3.34
9 high 50 8513±283 -33.80±2.14

10.0

o.o

-5.0 .
Discoloration

-10.0 .

-15.0 , A clear

-20.0 .

O low-25.0 ,

-30.0 ,
V medium

-35.0 ,

S  ~40-0 □ high
o% 1-33% 34-66% 67-100%

Decay volume classes

Figure 2.23. Standard error of mean percent deviations for modulus of rupture (MOR) by 
decay volume and discoloration classes.
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Compression Parallel to the Grain

The average compression parallel to grain ranged from 6518 psi for group 1 

specimens (1-33% decay volume and low discoloration) to 5685 psi for group 9 

specimens (67-100% decay volume and high discoloration) (Table 2.8). All the groups 

with firm red heart showed negative mean percent deviations for compression parallel to 

grain. Group 9 (67-100% decay volume and high discoloration) had the highest negative 

value of mean percent deviation (-14.27%) for compression parallel to the grain, while 

Group 1 had the lowest negative value of mean percent deviation (-4.28%) (Table 2.8). 

The values for mean percent deviations of compression parallel to the grain for the three 

discoloration classes did not exhibited significant change as the decay volume increased 

from 1-33% to 67-100%. However, the tendency of strength reduction in the high 

discoloration class increased more rapidly than did the low and medium discoloration 

classes for decay volume 1-33% to 67-100% (Figure 2.24; Table 2.8).
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Table 2.8. Means and mean percent deviations o f compression parallel to grain (CPG) by
decay volume and discoloration classes (SE: standard error).

Group ^  Discoloration N  Compression parallel to grain (CPG)-------
volume Mean±SE (psi) Mean % deviation±SE (%)

1 1-33% low 25 6518±123 -4.28±1.89
2 medium 17 6391±153 -6.70±2.13
3 high 18 6379±158 -4.96±2.80
4 34-66% low 16 5917±226 -7.03±2.72
5 medium 20 6093±186 -8.62±2.49
6 high 22 6011±194 -11.07±2.58
7 67-100% low 20 5793±175 -9.17±2.33
8 medium 24 5810±139 -11.37±1.93
9 high 50 5685±126 -14.27±1.87

10.0

5.0.

0.0

-5.0
Discoloration

c  -10.0

>  -15.0, 
0)

TJ
c  -20.0 .

A clear

O low© -25.0

CO .30.0
V medium

c  -35.0

^  -40.0 □ high
67-100%o% 1-33% 34-66%

Decay volum e c la sses

Figure 2.24. Standard error of mean percent deviations for compression parallel to grain 
(CPG) by decay volume and discoloration classes.
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Two-way ANOVA- This analysis (alpha level = 0.05) indicated that the means of 

deviation percentage of specific gravity were significantly different due to discoloration, 

but it showed no significant difference due to the decay volume and their interaction 

(Table 2.9). For the mean percent deviation of MOE and MOR, the results of 2-way 

ANOVA (alpha level = 0.05) also indicated that the means of deviation percentages of 

MOE and MOR were significantly different due to the individual effects of decay volume 

and discoloration and showed no significant interaction effect by these two factors (Table 

2.9). Meanwhile, the mean percent deviation of compression parallel to the grain was 

significantly different due to the decay volume only. The discoloration class and the 

interaction with decay volume did not significantly affect the mean percent deviation of 

compression parallel to the grain (Table 2.9).

Table 2.9. The F-ratio values and significance probabilities (P) o f 2-way ANOVA (alpha 
level = 0.05) for the mean percent deviations of SG, MOE, MOR and CPG due to decay 
volume, discoloration and their interaction (full 2-way ANOVA tables are listed in 
Appendix 2.1, 2.2, 2.3 and 2.4).

SG MOE MOR CPG
Factors ----------------------------------------------------------------------------------

F-ratio P F-ratio P F-ratio P F-ratio P

11.489 0.000 5.280 0.006

11.980 0.000 1.402 0.248

1.082 0.366 0.347 0.846

Decay volume (A) 1.807 0.167 13.363 0.000

Discoloration (B) 4.741 0.010 9.829 0.000

A * B 1.727 0.145 2.019 0.093
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Multiple Comparison Procedure- The Tukey test (alpha level = 0.05) for the 

mean percent deviation of specific gravity (SG) showed 4 pairwise significant differences 

between the groups due to their configurations of decay volumes and discoloration 

classes, and indicated that group 9 was significantly different to other groups except 

group 6,1 and 7 (Appendix 2.5).

For the mean percent deviation of MOE, the Tukey’s Multiple Comparison 

procedure showed 8 pairwise significant differences between all groups due to their 

decay volumes and discoloration classes, and it also indicated that groups 9 was 

significantly different from all the other groups except groups 6 and 8 (Appendix 2.6).

The results also showed total 8 pairwise significant differences between the mean 

percent deviations of MOR. Group 9 was significantly different from the rest of groups 

except groups 6 and 8. Group 1 was also significantly different from groups 9,6 and 8 

(Appendix 2.7).

Finally, the mean percent deviations of compression parallel to grain (CPG) only 

had 1 pairwise significant differences. Group 9 was the only group significantly different 

to group 1, and all other groups were not significantly different between each group 

(Appendix 2.8).

Each pairwise comparison of mean percent deviation for SG, MOE, MOR and 

CPG was made between the combination of decay volume and discoloration classes. 

Values grouped by a shade bar indicate those means that were not significantly different 

from each other at the 0.05 alpha level (Table 2.10).

For the mean percent deviation of SG, the comparison of homogeneity indicated 

that mean percent deviation of groups 9 , 6, 1,7 and 3 were not significantly different
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(Table 2.10), while the rest of groups showed no significant difference between each 

other. For the mean percent deviation of MOE, groups 9,6 and 8 were not significantly 

different. Groups 7, 5 ,3 ,2 ,4 and lshowed no significant differences (Table 2.10).

The comparison results of mean percent deviation of MOR also indicated that 

groups 9, 6 and 8 were not significantly different, while all other groups showed no 

significant difference. Meanwhile, the CPG had 2 homogeneous subsets with a total 7 

overlap groups between two subsets. However, group 1 had the lowest mean reduction 

percentage of CPG, and group 9 had the highest strength reduction (Table 2.10).
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Comparison to Visual Stress Grading

In order to be used more practically for the lumber grader and engineer, the 

strength ratios of MOE, MOR and CPG due to the firm red heart were simplified by 

combining groups with no significant differences into the group having the lowest 

strength ratio (Table 2.11). The data were also compared to the strength ratios from the 

current visual stress grading standard (Western Wood Products Association, 1995;

ASTM 2002e) such as knot size on different faces of dimension lumber and the slope of 

grain in bending and compression. The corresponding lumber grades for beam-stringers, 

post-timber, structural joist-planks and structural light framing as defined by the standard 

grading rules for western coast lumber were also listed in this table. The comparisons 

results indicated that 66% maximum bending strength ratio of MOR for the subset 

(groups 6, 8 and 9) was equal to the strength ratio of No.l grade for beams-stringers but 

was higher than those strength rations of No. 1 grades for post-timbers, structural joist- 

planks and structural light framing. All select structural grades of beam-stringers, post

timbers, structural joist-planks, and structural light framing were not affected due to that 

firm red heart was limited to 10% of the lumber. Strength ratios of No. 2 and 3 in these 

four categories were much lower than the maximum strength ratio of groups 6, 8 and 9. 

Maximum strength ratio of CPG was also higher than those of all grades (Table 2.11).
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Table 2.11. Comparison of strength ratios of four lumber grading categories, MOR,
MOE and CPG with firm red heart for lodgepole pine.

Limitations of firm red heart for grades of four grading categories, and 
classification for MOR, MOE and CPG with firm red heart Strength ratio

MOR (firm red heart): at middle 1A  o f length
• Groups 1, 2, 3 ,4 , 5 and 7 (low discoloration no limited; medium 

discoloration below % volume; high discoloration below % volume)
85%

• Groups 6, 8 and 9 (medium discoloration above % volume; high 
discoloration above Vs volume) 66%

MOE (firm red heart): at middle Ys o f length
• Groups 1, 2, 3 ,4 , 5 and 7 (low discoloration no limited; medium 

discoloration below %  volume; high discoloration below Vz volume) 92%

• Groups 6, 8 and 9 (medium discoloration above % volume; high 
discoloration above % volume)

80%

CPG (firm red heart): at middle V3 o f  length
• Groups 1 , 2 , 3 , 4 ,  5, 6, 7 and 8 (No volume limit on low and medium 

discoloration; high discoloration below % volume) 85%

• Group 9 (high discoloration above % volume) 88%
Beams & Stringers

• Select structural: firm red heart limited to 10% 76%
• No.1: firm red heart no limit 66%
• No.2: firm red heart and whit specks no limit 40%
• No.3: firm red heat and white specks no limit below 40%

Posts & Timbers
• Select structural: firm red heart limited to 10% 69%
• No.1: firm red heart no limit 61%
• No.2: firm red heart and whit specks no limit; 40%
• No.3: firm red heat and white specks no limit below 40%

Structural Joist and Planks
• Select structural: firm red heart limited to 10% 69%
• No.1: firm red heart no limit 61%
• No.2: firm red heart no limit 53%
• No.3: firm red heat and white specks no limit below 40%

Structural light farming
• Select structural: firm red heart limited to 10% 69%
• No.1: firm red heart no limit 61%
• No.2: firm red heart no limit 53%
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DISCUSSION AND CONCLUSION

Discussion

The lodgepole pine specimens used in this study were one inch (2.54 cm) in 

cross-section. Therefore the results would not be the same as those expected from actual 

sized lumber. In general, the average reduction percentages increased as the decay 

volume and discoloration intensity increased individually in a near linear relationship 

except for the average reduction percentages of specific gravity.

Decayed wood becomes brash as decay severity increases and the outward signs 

of brash splitter breakage can be used as an indicator of wood decay (Zabel and Morrell, 

1992). Compared with the percentages of failure types of clear wood specimens, the 

specimens with firm red heart had similar percentages for the four failure types except 

group 9 (67-100% decay volume and high discoloration), which had 8% brash tension 

failure. The high percentage of brash failure in group 9 was caused by the higher degree 

of decay. Simple tension failure occurred most often of the four types of failures and 

indicated that the wood with firm red heart tended to response to the bending force 

similar to the clear wood specimen. For the compression failure types, the specimen with 

firm red heart often failed initially on the face with decay and exhibited more shearing 

rupture at an angle to the face containing both decay and non-decay wood. The higher 

average percentage of shearing for these specimens than for those of clear wood also 

indicated decay.

Differences of less than 1% dry-basis moisture content at wood with moisture 

contents less than 12% moisture content are considered to have much smaller effects on

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



99
wood strength than does specific gravity (Haygreen and Bowyer, 1989; Forest Products 

Laboratory, 1999).

The results show groups 2, 3,4, 5, 7 and 8 had higher average specific gravities 

than those of the control group. Lodgepole pine wood infected by Phellinus pini had a 

higher average specific gravity than uninfected wood (Roff and Whittaker, 1963). The 

factors causing an increase in specific gravity of specimens containing firm red heart are 

still unclear. Zabel and Morrell (1992) reported that wood infected by decay fungi had 

higher water permeability than non-decay wood. In theory, the increase of water 

permeability could cause under-measurement of the wood block volume during the 

specific gravity measurement. The results from this study showed that the increases in 

average specific gravity of decayed wood was not found consistently in all groups and 

data analysis revealed that discoloration affected specific gravity more than decay 

volume. However, the average reduction percentage of specific gravity on high 

discoloration groups increased as the decay volume increased in a near linear 

relationship.

The average reduction percentages of MOE and MOR increased as the decay 

volume and discoloration intensity increased, but the reduction percentage of MOR 

increased more rapidly than those of MOE. Curling et al. (2002) conducted a study on 

the strength reduction of southern pine by brown-rot fungi and showed that the strength 

reduction of MOE was not as rapid as the MOR. Although Roff and Whittaker (1963) 

reported that lodgepole pine beams made from completely red-stained material had 

MOR’s only 15% lower than unstained beams, their study did not classify their test
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beams by discoloration intensity as was shown to have a significant effect on the 

percentage reduction of MOR in this study.

Unlike the mean percent deviation of MOE and MOR, the mean percent deviation 

of compression parallel to grain was significantly affected only by decay volume. Data 

also indicated that the average loss of compression strength parallel to grain was much 

less than that for either MOE or MOR.

The location of decay is another factor affecting the bending strength of the static 

bending member. This study did not include the scenario where the decay occurred 

inside larger sized lumber with no sign of decay on the surface. Although the effect of 

decay inside the lumber might not be severe as on the edge of lumber, the actual strength 

reduction still needs further study. Another concern is that the strength ratio cited for 

full-scale lumber with firm red heart should be limited to the center 1/3 of the lumber 

because the bending test applies a force on the center 1/3 of the length.

Regarding the corresponding lumber grade, the visual stress grading characters 

and limiting provisions in the lumber grades for beam-stringers, post-timbers, structural 

joist-planks and structural light framing defined by the standard grading rules for west 

coast lumber were compared with the strength ratio of firm red heart (Western Wood 

Product Association, 1995). The results showed the maximum strength ratio of groups 6, 

8 and 9 was equal to the strength ratio of No. 1 structural grade of beam-stringers, but 

was higher than the strength ratio of No. 1 structural grades for post-timbers, structural 

joist-planks and structural light framing. No. 1 structural grade of beam-stringers was 

the only grade affected by firm red heart. The results did not affect any other current 

lumber grades, since the higher grades simply do not allow firm red heart for more than
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10%, and the grades lower than No. 1 allow the slope of grain and knot size with much 

lower strength ratios than 66%. However, the 85% strength ratio of MOR with lA decay 

volume and high discoloration was much higher than the strength ratio of select structural 

grades for these four grading categories. The volume limitation of firm red heart can be 

increased to 20% without affecting the desired strength ratio.

In addition, lodgepole pine grows in a very large natural range and its common 

fungal decay, firm red heart (white pocket rot in advance decay stage), may be attributed 

to several different decay fungi (Roff and Whittaker, 1963). This study only tested 

lodgepole pine specimens containing firm red heart caused by Phellinus pini at its 

incipient and early decay stage, while other fungi might have different effects on strength 

reduction.

This study only examined the effect of firm red heart on lodgepole pine. The 

effect of firm red heat on other tree species are still unknown. Brown-rot fungi reduce 

wood strength even more than the white-rot fungi examined in this study and most of the 

studies dealing with their effect on strength reduction were conducted in the laboratory 

by inoculating fungi into specimens. The actual effects on the strength reductions of 

natural decay lumber are still unknown. Meanwhile, the relationships between different 

tree species and decay fungi have also not been completely studied, and the interaction of 

firm red heart with knot, slope of grain, nailing, screwing and long-term severability are 

unclear as well and require further study.
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Conclusion

1. In general, the average percentage of reduction in MOE and MOR increased 

significantly in a nearly linear relationship with both decay volume and 

discoloration.

2. The average percent deviation of specific gravity was significantly effected only 

by discoloration, while the average percent deviation of compression parallel to 

the grain increased significantly as decay volume increased.

3. The average percent deviation of MOR and MOE changed more rapidly with 

changes in decay volume and discoloration than did the average percent deviation 

for MOE..

4. MOR had a maximum 34% average strength reduction, and MOE had a 

maximum 20% average reduction percentage, while the compression parallel to 

the grain had the lowest maximum 15% average strength reduction.

5. The maximum 34% average strength reduction of MOR is equal to the effects of 

either 1:11 in slope of grain or a 1 % inch-diameter centerline knot on a 4 inch- 

wide face.

6. The maximum 20% average strength reduction of MOE is equal to the effects of 

either 1:15.5 in slope of grain or a 1 3/4-inch-diameter centerline knot on an 8- 

inch-wide face, or a % inch-diameter edge knot on a 4 inch-wide face.

7. The maximum 15% average strength reduction of compression parallel to grain is 

equal to the effect of 1:13 slope of grain in compression parallel to grain.

8. Groups 6, 8 and 9 showed no significant differences in average percent deviations 

for MOE and MOR.
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9. The results indicated that the maximum 34% reduction of MOR corresponds to 

the knot size and slope of grain limitations of No. 1 structural grade for beam- 

stringers in the grading rules of Western Wood Products Association (WWPA) 

(1995).

10. A 20% volume limitation of firm red heart for select structural grades of beam- 

stringers, post-timber, structural joist-planks and structural light framing in the 

grading rules o f WWPA is recommended.

This study provides the first step in the process of quantifying the strength 

reduction of lodgepole pine due to the present of natural firm red heart by volume and 

discoloration intensity. The results also provide the engineer a more accurate strength 

ratio of lodgepole pine containing firm red heart caused by Phellinus pini. Meanwhile, 

the criteria for estimating decay volume and discoloration can be incorporated into the 

current visual stress grading to improve their accuracy.

In conclusion, firm red heart caused by Phellinus pini during the incipient and 

early decay stages revealed more effects on strength reduction than the results from 

previous studies, and the magnitude of its effects on the structural grades of the current 

visual stress grading rules are large enough to be of serious concern.
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APPENDIX

Appendix 1.1. Malt extract agar (MEA) and gallic acid agar formulas.

Malt Extract Agar (MEA1

• Difco Bacto malt extract---------------— 15.0 g

• Difco Bacto-agar 20.0 g

• Distilled water-------------------------------1000.0 ml

The agar was dissolved in hot distilled water and the malt extract was added into 

agar. The mixture was sterilized at the pressure of 15 psi for 20 minutes. The malt extract 

agar was then cooled down to 50 °C before poured into 100 mm 60 mm diameter 

sterilized Petri dishes at approximately 30-40 ml per dish.

Gallic Acid Agar tGAA)

• Difco Bacto malt extract—  --------------- 15.0 g

• Difco Bacto-agar----------------------------- 20.0 g

• Distilled water-------------------------------- 1000.0 ml

• Gallic acid (crystals), analytical grade— 5.0 g

Malt extract and agar were dissolved in 850 ml distilled water in a 2 liter 

Erlenmeyer flask. 150 ml of distilled water was placed in a separate Erlenmeyer flask. 

Both flasks were sterilized for 20 min at the pressure of 15 psi in an autoclave machine. 

5.0 g gallic acid was added to the 150 ml sterilized water after removal from the 

autoclave. The gallic acid solution was thoroughly mixed with sterilized malt extract
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agar, when the agar was about 56 °C. The gallic acid agar was then cooled down to 50 

°C before poured into 100 mm sterilized Petri dishes at approximately 30-40 ml per dish.

Appendix 1.2. Safranin-0 solution preparation.

• Staining Solution (Safranin-O):

1. Solution stock: 0.5 gm Safranin-0 in 100 ml 50% alcohol/distil water.

2. Stain solution: add 1 ml stock into 20 ml distil water (about 0.025% Safranin- 

O in 100 ml 2.5% alcohol/water)
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Appendix 1.3. DNA codes of sequencing results.

Group A:

CAB4 (ITS1-R

AAGCGTACAGGTTCCGGAGGTGAACCTGCGGAAGGATCATTATCGAGTTTTTAAAATCGAGGGCTTGATGCTGGCGT 
GG AAACACGCACT GT GCTCGGCCTT CGTGCTTNAT CCACT CAACACCT GT GCACCTT AT CGAAGTT AGT AGT CTTT CC 
TCCTTAGTT GGAGCCGCCGGGGTT GACTTT GTT AGT AGT GTTT CGACGCGAAACT AT GGTCGGCCTT GGCT GGGATC 
GGCGAGCACTTTGACTTCATCATACACACTTTAATTGTCTTGTAGAATGTAATGCTCCTTGTGGGCGAAATGAAATACA 
ACTTTCAACAACGGATCTCTTGGCTCTCGCATCNATGAAGAACGCANCGAAATGCGATAAGTAATGTGNATTGCAGAA 
TT CAGT G AAT CAT CG AAT CTTTG AACGCACCTT GCGCCCCTT GGTATT CCGAGGGGCAT GCCT GTTT GAGT GT CAT GT 
T AAC AT C AAACCCCNT GCTTGT AAAGGCT CGGGGCTT GG ATTT GGAGGTTT AT GCCGGCCT GCTT CATT GT CAGTT GT 
CGGCTCCTCTTAAATGGATTAGCTGGACTTTGGTCTGCGTGTCGGTGTGATAGNTTATTCACCAATCGCTTTCCTAAT 
GGGTCTGCTT CT AATGGT CTT CGGACAAGGT CTT AACAGCCTT CTT GACTCTTTGACCT CAAAT CAGGT AGGACT ACC 
CGCT GAACTT AAGCAT AT C

CAB4 (ITS41

CGNGAAGTCCT ACCT GATTT GAGGT CAAAGAGT CAAGAAGGCTTGTT AAGACCTT GT CCGAAGACCATT AGAAGCAG 
ACCCATTAGG AAAGCGATT GGT GAATAAACTAT CACACCGACACGCAGACCAAAGT CCAGCTAAT CCATTT AAGAGG A 
GCCGACAACTGACAATGAAGCAGGCCGGCATAAACCTCCAAATCCAAGCCCCGAGCCTTTACAAGCAAGGGGTTTG 
ATGTTAACATGANACTCAAACAGGCATGCCCCTCGGAATNCCAAGGGGCGCAAGGTGCGTTCAAAGATTCGATGATT 
CACTGAATTCTGCAATTCACATTACTTATCGCATTTCGCTGCGTTCTTCATCGATGCGAGAGCCAAGAGATCCGTTGTT 
GAAAGTTGTATTTCATTTCGCCNACAAGGAGCATTACATTCTACAAGACAATTAAAGTNTGTATGATGAAGTCAAAGTG 
CTCGCCGATCCNAGCCAAGGCCGACCATAGTTTCGCGTCGAAACACTACTAACAAAGTCAACCCCGGCGGCTCCAA 
CTAAGG AG G AAAGACT ACT AACTT CGAT AAGGTGCACAGGT GTT G AGTGGATTAAGCNCCGAAGGCCG AGCACAGT 
GCGT GTTT CCACGCCAGCATCAAGCCCT CGATTTT AAAAACTCGAT AAT GAT CCTTCCGCAGGTT CACCT ACGGAAAC 
CTT GTT ACG ACTTTT ACTT CCT CCNACAAAAGAN AG AANAA

Group B:

CAB9 (ITS1-R

AAGCGTACAGGTTCCGGAGGTGAACCTGCGGAAGGATCATTATCGAGTTTTTAAAATCGAGGGCTTGATGCTGGCGT
GGAAACACGCACTGTGCTCGGCCTTCGTGCTTAATCCACTCAACACCTGTGCACCTTATCGAAGTTAGTAGTCTTTCC
TCCTTAGTTGGAGCCGCCGGGGTTGACTTTGTTAGTAGTGTTTCGACGCGAAACTATGGTCGGCCTTGGCTGGGATC
GGCGAGCACTTTGACTTCATCATACACACTTTAATTGTCTTGTAGAATGTAATGCTCCTTGTGGGCGAAATGAAATACA
ACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA
TTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCATGT
TAACATCAAACCCCTTGCTTGTAAAGGCTCGGGGCTTGGATTTGGAGGTTTATGCCGGCCTGCTTCATTGTCAGTTGT
CGGCTCCTCTTAAATGGATTAGCTGGACTTTGGTCTGCGTGTCGGTGTGATAGTTTATTCACCAATCGCTTTCCTAAT
GGGTCTGCTTCTAATGGTCTTCGGACAAGGTCTTAACAGCCTTCTTGACTCTTTGACCTCAAATCAGGTAGGACTACC
CGCTGAACTTAAGCATATCNATNANANNGGGGAA

CAB9(ITS41

GNCNCGNGAAGTCCTACCTGATTTGAGGTCAAAGAGTCAAGAAGGCTTGTTAAGACCTTGTCCGAAGACCATTAGAA 
GCAGACCCATT AGG AAAGCGATT GGT GAAT AAACT AT CACACCGACACGCAGACCAAAGTCCAGCT AAT CCATTT AA 
GAGGAGCCGACAACTGACAATGAAG6AGGCCGGCATAAACCTCCAAATCCAAGCCCCGAGCCTTTACAAGCAAGGG 
GTTTGATGTTAACATGACACTCAAACAGGCATGCCCCTCGGAATACCAAGGGGCGCAAGGTGCGTTCAAAGATTCGA 
TGATT CACT GAATT CT GCAATT CACATTACTTAT CGCATTT CGCTGCGTT CTT CATCGAT GCGAGAGCCAAGAGAT CC 
GTTGTTGAAAGTTGTATTTCATTTCGCCCACAAGGAGCATTACATTCTACAAGACAATTAAAGTGTGTATGATGAAGTC 
AAAGT GCTCGCCGAT CCCAGCCAAGGCCGACCAT AGTTT CGCGT CGAAACACT ACTAACAAAGT CAACCCCGGCGG 
CT CCAACT AAGGAGGAAAGACT ACT AACTT CGAT AAGGT GCACAGGTGTT GAGT GGATT AAGCACCGAAGGCCGAGC 
ACAGTGCGTGTTTCCACGCCAGCATCAAGCCCTCGATTTTAAAAACTCGATAATGATCCTTCCGCAGGTTCACCTACG 
GAAACCTTGTTACGACTTTTACTTCCTCCNACAAAAGANAGAAAAANNNC
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Group C:

STIM2 MTS1-R

AAANGTNGACNGTGTCCANCNNGNGNGAGCGGAAGGATCATTATCGAGTTTTTAAAATCGAGGGCTTGATTGCTGGC
GTGGAAACACGCACT GT GCT CGGCCTTCGT GCTT AATCCACT CAACACCT GT GCACCTT ATCGAAGTT AGT AGTCTTT
CCTCCTTAGTTGGAGCCGCCGGGGTTGACTTTGTTAGTAGTGmCGACGCGAAACTATGGTCGGCCTTGGCTGGGA
TCGGCGAGCACTTT GACTT CAT CAT ACACACTTT AATT GT CTT GT AGAATT GT AAT GCT CCTTGT GGGCGAAAT G AAAT
ACAACTTT CAACAACGGAT CT CTT GGCT CTCGCAT CGAT GAAGAACGCAGCGAAAT GCGAT AAGT AAT GT GAATT GCA
GAATTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCA
TGTTAACATCAAACCCCTTGCTTGTAAAGGCTCGGGGCTTGGATTTGGAGGTTTATGCCGGCCTGCTTCATTGTCAGT
TGTCGGCTCCTCTTAAATGNATTAGCTGGACTTTGGTCTGCGTGTCGGTGTGATAGTTTATTCACCAATCGCTTTCCTA
ATGGGTCTGCTTCTAATGGNCTTCGGACAAGGTCTTAACAGCCTTCTTGACTCTTTGACCTCAAATCAGGTAGGACTA
CCCCGCTGAACTTTAAGCATATCAATAAGCGGAGGAAAAGAAACTAACCAANGATTCCCCCNANTAACTGCGAGTGA
AGCGGGAAAAGCTCAAATTTAAAATCTNGCGGGNCTTATGGGCGNCCCGAGTTGTAATCTTGGAGAA

S2(ITS4f

AGANANANAGGACGGCCATAAGACCGCCAGATTTTAAATTTGAGCTTTTCCCGCTTCACTCGCAGTTACTAGGGGAAT 
CCTTGTrAGTTTCTTTTCCTCCGCTTATTGATATGCTTAAGTTCAGCGGGTAGTCCTACCTGATTrGAGGTCAAAGAGT 
C AAG AAGGCT GTT AAG ACCTT GT CCGAAGACCATT AG AAGCAGACCC ATTAGG AAAGCGATT GGT GAAT AAACT AT CA 
CACCG ACACGCAGACCAAAGTCCAGCT AAT GCATTT AAGAGGAGCCGACAACNGACAAT GAAGCAGGCCGGCAT AA 
ACCT CCAAATCCAAGCCCCGAGCCTTT ACAAGCAAGGGGTTT GATT GTT AACAT GACACTCAAACAGGCAT GCCCCT 
CGGAATACCAAGGGGCGCAAGGTGCGTTCAAAGATTCGATGATTCACTGAATTCTGCAATTCACATTACTTATCGCAT 
TTCGCCTGCGNTCTTCATCGATGCGAGAGCCAAGAGATCCGTTGTTGAAAGTTGTATTTCATTTCGCCCACAAGGAGC 
ATT ACNTT CT ACAAGACAATT AAAGTGT GT AT GAT GAANT CAAAGT GCT CGCCNGATCCCAGCCAAGGCCGACCAT AG 
TTTCGCCGCCGAAACACT ACCT AACAAANT CNACCCCNNCNGCT CCCAACT AAGGAGGAAAGACT ACT AANTTCCGA 
T AAAGTGCACAGGT GNTT GAGT GGGATT AAGCCCG AAGGGCCNAGCACAGT GCGTT GTTT CCACGCCAGCAT CCAA 
GCCCCTCGATTTT AAAAAACCCAAT AAT GATCCTTT CCGCAGGTCCACCT ACCGGAAAACCTGGTACGA

Group D:

RLH4(ITS1-F)

AAGCGACAGGTTCCGTAGGTGAACCTGCGGAAGGATCATTATCGAGTTTTTAAAATCGAGGGCTTGATGCTGGCGTG 
GAAACACGCACTGTGCTCGGCCTTCGTGCTTAATCCACTCAACACCTGTGCACCTTATCGAAGTTAGTAGTCTTTCCT 
CCTT AGTT GGAGCCGNCGGGGTT GACTTT GTTAGT AGT GTTT CGACGCGAAACT ATGGTCGGCCTT GGCT GGGATCG 
GCGAGCACTTTGNCTTCATCATACACACTTTAATTGTCTTGTAGAATGTAATTGCTCCTTGTGGGCGAAATGAAATACA 
ACTTTCAACAACGGATCTCTTGGCTCTCGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATGTGAATTGCAGAA 
TTCAGTGAATCATCGAATCTTTGAACGCACCTTGCGCCCCTTGGTATTCCGAGGGGCATGCCTGTTTGAGTGTCATGT 
T AACAT CAAACCCCTTGCTT GT AAAGGCTCGGGGCTT GGATTT GG AGGTTT AT GCCGGCCT GCTT CATT GTCGGTT GT 
CGGCT CCT CTT AAAT GCATT AGCT GG ACTTT GGT CT GCGT GTCGGT GTGAT AGTTT ATT CACCAATCGCTTT CCT AAT 
GGGTCTGCTT CT AAT GGT CTT CGG ACAAGGT GTTACAACCTT CTT GANT CCTT G ACT CCAAT C ANGGAAG ACTNCCCN 
CNGAACTTTAGCNTATC

RLH4F(ITS4)

GTCAGCGNGTAGTCCTACCTGATTTGAGGTCAAAGAGTCAAGAAGGCTTGTAACANCTTGNCCGAAGANCATTANAA
GCAGANCCATT ANGAAAGCGATT GGNGAATAAACTAT CACACCGACACNCAGANCAAAGT CCANCTAAT GCATTT AA
GANGNNCCNACNACCGACAATGAANCAGGGCGGNATNAACCTCCAAATCCAAGCCCCNANCCTTTACNANCAAGGG
GGTTGATGGTAACATGANACTCCAACAGGGATGCCCCNCNGAATACCAAGGGGGGCNAGGGGNGTTCAAANANTCC
ATGATTCACTGNATTCTGCNATTCNCATTACTTATCNCATTTCNCTGNGNTCTTCNTCNATGNNANANCCNANANANCC
NNTGGTGAAANNTGGATTTCNTTTCGCCCNCNANGNNCATTNCNTTCTACNANANAATTAAAGNGGGGATNANNAAA
CCNAANTGNTCNCCNANCCCNNCCNANGGCGANCATAATTTCNCGTCNAAACACTACTNACNAAGNCAACCCCNNC
GGGTCCCACTNAGGNGGNAANANTACTAACTTCCANAANGGGNNNNNGNGNTNAGTGGATTNANCACCAANGGCNA
NCCNNTGNGTGNTTCCACGCCANCATNNAGCCCNCNANTTTAAAAACTCCATAATGATNCTTCCNCAAGGTCNCCTN
CCGAAACCTT GTT ACNANNTTT ACNT CCCCCAAANNAAANCANAAANAA
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Group E:

RLH15HTS1-F1

AGCGGAAGGATCATTATCGAGTTTTTAAAATCGAGGGCTTGATTGCTGGCGTGGAAACACGCACTGTGCTCGGCCTT 
CGTGCTTAATCNACTCAACACCTGTGCACCTTATCGAAGTTAGTAGTCTTTCCTCCTTAGTTGGAGCCGCCGGGGTTG 
ACTTT GTT AGT AGT GTTT CGACGCGAAACT AT GGTCGGCCTT GGCT GGGATCGGCGAGCACTTT GACTT CATCAT ACA 
CACTTTAATTGTCTTGTAGAATTGTAATGCTCCTTGTGGGCGAAATGAAATACAACTTTCNACAACGGATCTCTTGGCT 
CTCGCATCGATG AAGAACGCAGCGAAAT GCGAT AAGT AAT GT GAATT GCAGAATTCAGTNAATCATCGAATCTTT G AA 
CGCACCTTGCGCCCCTT GGT ATT CCGAGGGGCAT GCCT GTTT GAGT GT CAT GTT AACAT CAAACCCCTT GCTT GT AAA 
GGCTCGGGGCTTGGATTTGGAGGTTTATGCCGGCCTGCTTCATTGTCAGTTGTCGGCTCCTCTTAAATGNATTAGCT
g g a c t t t g g t c t g c g t g t c g g t g t g a t a g t t t a t t c a c c a a t c g c t t t c c t a a t g g g t c t g c t t c t Aa t g g n c t t c g g
ACAAGGT CTT AACAGCCTT CTT G ACT CTTT GACCT CAAAT CAGGTAGGACTACCCCGCT GAACTTT AAGCAT AT CAAT A
AGCGGAGGAAAAGAAACTAACCAANGATTCCCCCNANTAACTGCGAGTGAAGCGGGAAAAGCTCAAATTTAAAATCT
NGCGGGNCTTATGGGCGNCCCGAGTTG

RLH15flTS4l

G AGCTTTT CCCGCTT CACTCGCAGTTACTAGGGGAAT CCTT GTTAGTTT CTTTT CCT CCGCTT ATT GAT AT GCTT AAGT 
TCAGCGGGT AGTCCT ACCTGATTTGAGGTCAAAGAGT CAAGAAGGCT GTT AAGACCTT GTCCGAAGACCATT ANAAG 
CAGACCCATT AGGAAAGCGATTGGTNAAT AAACT ATCACACCGACACGCAGACCAAAGT CCAGCT AATGNATTT AAGA 
GGAGCCGACAACNGACAAT GAAGCAGGCCGGCATAAACCT CCAAAT CCAAGCCCCGAGCCTTT ACAAGCAAGGGGT 
TTGATTGTT AACAT GACACT CAAACAGGCAT GCCCCTCGGAAT ACCAAGGGGCGCAAGGT GCGTT CAAAG ATT CGAT 
GATTCACTGAATTCTGCAATTCACATTACTTATCGCATTTCGCCTGCGNTCTTCATCGATGCGAGAGCCAAGAGATCC 
GTTGTTGAAAGTTGTATTTCATTTCGCCCACAAGGAGCATTACNTTCTACAAGACAATTAAAGTGTGTATGATGAANTC 
AAAGT GCT CGCCNGAT CCCAGCCAAGGCCG ACCAT AGTTT CGCCGCCGAAACACT ACCT AACAAANTCNACCCCNN 
CNGCT CCCAACT AAGGAGGAAAGACT ACT AANTTCCGAT AAAGTGCACAGGT GNTTGAGT GGGATT AAGCCCGAAGG 
GCCNAGCACAGTGCGTTGTTT CCACGCCAGCAT CCAAGCCCCTCGATTTTAAAAAACCCAATAAT GAT CCTTT CCGCA 
GGT CCACCT ACCGGAAAACCTGGT ACGA

Group F:

CAB2(ITS1F1

TGCNGGNATTNGGTANCNNGAGGCGGATNTGNGCGTTGGAACAATGATTCCTTCCGCAGTGTACACTTATCGAAGCC
TTT GCAT GCCACGCAAGT GGT AGACCCAAGCGACTT GAGAAAACAATTT GGCGTCGTT ATGCAAGTCAGCGCTCCGC
T GGCG ACACTTT CG AATT GACGGGG ACACCCT AAAGCCGGT CGCACCAACCTT GT CCGGGG AAACCT GGCGGGGG
GCCTGTGGTAATGACACAGGGGATGGTAACAGACGACCTGGATAGTTCTTGCACCCGCAGAGAGCATGGGCAATCC
GCAGCGAAGCCCCT ACGTCCCT CCCCCGGT CCCCCGGGGGAGAAGGAT ACGGGGAACGTTCACAGACT AAGT GGA
AGTGGGTGGGATCGGACGATCCTGCTTAAGATATAGTCGGGCCCCCGGGGAAACCCGGGGGGGCGAGTACACTGC
T AT GACCGCCCGCAAT CACCGTTCCGT AGGT GAACCT GCGGAAGGATCATT ACCGAGT GCGGGT CCTCGT GGCCCA
ACCTCCCACCCGTGTTGACCGTTACCTGTTGCTTCGGCGGGCCCGCCGTTACCCCGGCCGCCGGGGGGTCCTCCT
GCCCCCGGGCCCGCTCCCCGCCGAAGACCCCTCGAACGCTGCCTGAAGGTTGCCCGTCTTGAGTATGATTATCAAA
TCATTAAAAACTTTCNACAACGGATCTCTTGGTTCCGGCATCGATGAAAGAAACNCANCGAAATGCGATAAGTNATGT
GAATTGCANAATTNCGTGAATCNTCNAATCTTTGAAACCACATTGCGCCCCCTGGCATTCCGGGGGGGCATGCCTTT
CCCANCGTCATTT GCT ACCCNCCACCCCGGCTT GT GT GTTNGGCCCCCNT CCCCCCCGNNGGACTNGCCCCNAAAG
NCANCGCCGCANCCGCGTCCCGTCCCCCAACNTATTGGGGCTTTGNCCCCNCCTCTTTNNGGCCCGCCGGGTTCTG
G

CAB2flTS4f

TT CTTNGCT ATCCCT ACCT GAT CCAG AGGT CAACCTAG AG AAAAAT AANGT GACCGT G AGGT CGT CGGCCAGCAGCC
GGCCGGGCCT ACAAGAGCGCGT GACAAAGCCCCAT ACGCT CGAGGACCGGACGCGGTGCCGCCGCT GCCTTTCGG
GCCCGTCCCCCGGGGGGGACGGGGGCCCAACACACCAGCCGGGCTGGAGGGTAGCAATGACGCTCGGACAGGCA
TGCCCCCCGGAATGCCAGGGGGCGCAATGTGCGTTCAAAGATTCGATGATTCACGGAATTCTGCAATTCACATTACT
TATCGCAnTCGCTGCGTTCTTCATCGATGCCGGAACCAAGAGATCCGTrGTTGAAAGmTAATGATTGATAATCATA
CTCAGACGGNAACCTTCAGGCAGCGTTCGAGGGGTCTTCGGCGGGCGCGGGCCCGGGGGCACGAGGGCCCCCCG
GCGGCCGGGGTAACGGCGGGCCCGCCNAAGCAACAGGTAACGGTCAACACGGGTGGGAGGTTGGGCCACCAGGA
CCCGCACTCGGTAATGATCCTTCCGCAGGTTCACCTACGGAACGGTGATTGCGGGCGGTCATAACAGTGTACTCGC
CCCCCGGGTTTCCCCGGGGGCCCGACTATATCTTAAGCAGGATCGTCCGATCCCACCCACTTCCACTTAGTCTGTGA
ACGTTTCCCGTATCCTTCTCCCCCCNGGGGAACCGGGGGAAGGACGTAAGGGCTTTCCTTCCGGATTGCCCATTGC
TCTCTGCGGGTGCANAACTATCCAGNCGCCTGGTNCCATCCCCTGTGTCNNTTACCACANGCCCCCCCCCAGNTTTC
CCCGGACAAAGGTTGNTGCGAACCCGGTTTTANNGTGTCCCNTCAAATTCAAAGTTGTCGCCNANCGNACCCTTGAC
TTGCATANCNNCCCCAAANTGTTTTCNCCAANTCCCNTTGGGGCTNCACTTGCTTGGCTGAAAANGTTTCNANNNN
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Appendix 2 .1 .2-way ANOVA for mean percent deviation o f specific gravity (SG) due to
decay volume and discoloration and interaction.

Categorical values encountered during processing are: 
VCLASS3 (3 levels)

1, 2, 3
COLOR (3 levels)

1, 2, 3

Dep Var: SG AVE PERCENT DEV. N: 212
Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P

VCLASS3 204.649 2 102.325 1.807 0.167
COLOR 536.789 2 268.394 4.741 0.010
VCLASS3*COLOR 391.110 4 97.777 1.727 0.145

Error 11492.270 203 56.612

Appendix 2.2.2-way ANOVA for mean percent deviation of modulus of elasticity 
(MOE) due to decay volume and discoloration and interaction in static bending.

Categorical values encountered during processing are: 
VCLASS3 (3 levels)

1, 2, 3
COLOR (3 levels)

1 , 2, 3
Dep Var: MOE AVE PERCENT DEV. N: 212

Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
VCLASS3 3146.536 2 1573.268 13.363 0.000
COLOR 2314.489 2 1157.245 9.829 0.000
VCLASS3*COLOR 950.917 4 237.729 2.019 0.093
Error 23900.201 203 117.735
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Appendix 2 .3 .2-way ANOVA for mean percent deviation o f modulus o f  rupture (MOR)
due to decay volume and discoloration and interaction in static bending.

Categorical values encountered during processing are: 
VCLASS3 (3 levels)

1, 2, 3
COLOR (3 levels)

1, 2, 3
Dep Var: MOR AVE PERCENT DEV. N: 212

Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P

VCLASS3 4590.184 2 2295.092 11.489 0 . 0 0 0
COLOR 4786.718 2 2393.359 11.980 0 . 0 0 0
VCLASS3*C0L0R 864.729 4 216.182 1.082 0.366

Error 40553.625 203 199.772

Appendix 2.4.2-way ANOVA for mean percent deviations of compression parallel to 
grain (CPG) due to decay volume and discoloration and interaction in static bending.

Categorical values encountered during processing are: 
VCLASS3 (3 levels)

1, 2, 3
COLOR (3 levels)

1, 2, 3
Dep Var: CPG AVE PERCENT DEV. N: 212

Analysis of Variance
Source Sum-of-Squares df Mean-Square F-ratio P
VCLASS3 1338.752 2 669.376 5.280 0.006
COLOR 355.461 2 177.730 1.402 0.248
VCLASS3*COLOR 175.828 4 43.957 0.347 0.846
Error 25734.795 203 126.772

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116
Appendix 2.5. Tukey’s Multiple Comparisons for mean percent deviation o f specific
gravity (SG) by decay volume and discoloration classes.

Test with significance level .05
(*) Indicates significant differences which are shown in the lower triangle

G G G G G G G G G
r r r r r r r r r
o o o 0 o o o o o
u u u u u u u u u
P P P P P P P P P
9 6 1 7 3 5 8 2 4

Mean % Group #
-5.3508 Group 9
-1.6700 Group 6
-.5212 Group 1
.3000 Group 7
.4017 Group 3
.9210 Group 5 *

1.2504 Group 8 *
2.3341 Group 2 ★
3.0531 Group 4 it

Appendix 2.6. Tukey’s Multiple Comparisons for mean percent deviation of modulus of 
elasticity (MOE) under static bending by decay volume and discoloration classes.

Test with significance level .05
(*) Indicates significant differences which are shown in the lower triangle

G G G G G G G G G
r r r r r r r r r
o o o o o o o o o
u u u u u u u u u
P P P P P P P P p
9 6 8 7 5 3 2 4 1

Mean % Group #
-20.0000 Group 9
-15.3800 Group 6
- 1 5 .1 1 0 0 Group 8
-7.4725 Group 7 it

-5.7225 Group 5 it

-5.4228 Group 3 it

-5.0606 Group 2 ■k

-4.9700 Group 4 *
-3.5900 Group 1 ★
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Appendix 2.7. Tukey’s Multiple Comparisons for mean percent deviation o f  modulus o f
rupture (MOR) under static bending by decay volume and discoloration classes.

Test with significance level .05
(*) Indicates significant differences which are shown in the lower triangle

G G G G G G G G G
r r r r r r r r r
o o o o o o o o o
u u u u u u u u u
P P P P P P P P P
9 6 8 3 7 5 4 2 1

Mean % Group #
-33.8000 Group 9
-24.3441 Group 6
-23.2021 Group 8
-15.3400 Group 3 *
-14.4800 Group 7 ★
-14.4715 Group 5 *
-13.4544 Group 4 *
-10.9224 Group 2 *
-8.8220 Group 1 *

Appendix 2.8. Tukey’s Multiple Comparisons for mean percent deviation of 
compression parallel to grain (CPG) by decay volume and discoloration classes.

Test with significance level .05
(*) Indicates significant differences which are shown in the lower triangle

G G G G G G G G G
r r r r r r r r r
o o o o o o o o o
u u u u u u u u u
P P p P p P P P P
9 8 6 7 5 4 2 3 1

Mean % Group #
-14.2736 Group 9
-11.3700 Group 8
-11.0714 Group 6
-9.1700 Group 7
-8.6210 Group 5
-7.0325 Group 4
-6.7041 Group 2
-4.9600 Group 3
-4.2800 Group 1
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