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ABSTRACT

Physiological and leaf structural characteristics were investigated in even-aged and 
multiaged stand structures o f ponderosa pine (Pinns ponderosa Dougl. ex. Laws.) in 
western Montana and central Oregon. No differences in net photosynthesis (Anct)- 
stomata! conductance (gs), transpiration (E), instantaneous water use efficiency (WUE) or 
I'lcar were observed in June in Oregon. As a whole, even-aged plots appeared to be more 
water-stressed than multiaged plots that were able to maintain higher rates o f E in July in 
Montana.

In a seasonal comparison of one plot-pair in Montana in June, A ncl was positively 
related to PAR. Tajr. VPD and Ti^f. In July and August, Anetand gs decreased linearly 
with increasing Tajr, VPD, and 4W . The strongest correlation between Anct and these 
environmental variables occurred in August when water stress was greatest. In July, 
average daily transpiration (E) was significantly greater for multiaged trees. Multiaged 
trees also maintained higher rates of Anei, gs, and E for a longer period of the day in July, 
suggesting less of a water limitation than in the even-aged stand structure.

Both Aarca and Amass were relatively constant with canopy depth in both stand 
structures. Narca and Nmass decreased with increasing canopy depth in the even-aged but 
not in the multiaged stand structures. SLA tended to increase with increasing canopy 
depth, although this relationship was significant only in the multiaged stand structures. 
Nari;a was highly correlated to SLA in both even-aged and multiaged stand structures. 
These data suggest that leaf structure and nitrogen investment are adjusted in ponderosa 
pine such that photosynthesis is maximized in comparable ways throughout the canopies 
of both types of stand structure.

It is concluded that water-limiting conditions found later in the growing season in 
both Montana and Oregon may influence diumal gas exchange patterns in a way that 
could result in lower productivity in even-aged stand structures. These findings support 
the notion that multiaged stand structures o f ponderosa pine have the physiological 
potential to produce similar amounts of wood volume as even-aged stand structures.

u
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CHAPTER ONE

Diurnal fluctuations o f gas exchange and water potential in 

different stand structures of Pinus ponderosa Dougl. ex Laws.

ABSTRACT

Leaf-level gas exchange and leaf water potential CFieaf) measurements were made over a 
diumal time-course in multiaged and even-aged stand structures of ponderosa pine {Pinus 
ponderosa Dougl. ex Laws.) in central Oregon (June) and western Montana (July) to test 
for differences in physiological performance due to stand structure. Total site occupancy 
was similar between the geographical regions as measured by basal area, leaf area index, 
and stand density index. No differences in net photosynthesis (Anet), stomatal 
conductance (gs), transpiration (E), instantaneous water use efficiency (WUE) or T/ieaf 
were observed in June in Oregon. As a whole, even-aged plots appeared to be more 
water-stressed than multiaged plots that were able to maintain higher rates of E in July in 
Montana. There were no differences in WUE between multiaged and even-aged stand 
structures in Montana, but because both Anet and E tended to be less in even-aged trees, 
overall productivity and efficiency of foliage may be less than in multiaged stand 
structures. It is concluded that under environmental conditions that are not limited by 
water, patterns in gas exchange and water use are unaffected by stand structure. Water- 
limiting conditions found later in the growing season in both Montana and Oregon may 
influence diumal gas exchange patterns in a way that could result in lower productivity in 
even-aged stand structures.

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



INTRODUCTION

Ponderosa pine {Pinus ponderosa Dougl. ex Laws.) is a widely distributed western 

North American conifer that has occurred historically in both even-aged and multiaged 

stand structures (Cooper 1960, White 1985, Habeck 1990, Amo et al. 1995, Harrod et al.

1999). Even-aged forest structures are usually considered to produce more volume than 

multiaged stand structures (Helms and Lotan 1988), but this depends on what type of 

merchantable product is desired (Guldin and Baker 1988, Guldin and Fitzpatrick 1991). 

Greater volume production could result if even-aged stands have higher site occupancy 

than multiaged stands (Baker et al. 1996). This is not necessarily the case in ponderosa 

pine if leaf area index (LAI) of overstory vegetation is assumed to represent site 

occupancy (O'Hara 1996, Valappil 1997).

Multiaged stand structures of ponderosa pine in Oregon have been shown to produce 

more volume per unit leaf area than even-aged stand structures (O'Hara 1996). O'Hara 

(1996) found that growth efficiency, defined as biomass or volume production per unit 

leaf area, also increased as the number of cohorts present in the stand increased (O'Hara 

1996). This has been attributed to greater efficiency of the crowns of trees in multiaged 

stand structures, suggesting that foliage arrangement in different stand structures affects 

physiological performance and/or efficiency o f foliage in individual tree crowns. Canopy 

position as dictated by stand structure becomes an important factor that influences 

resource allocation and competition within and between even-aged and multiaged stand 

structures and is an attribute that can be controlled through silvicultural intervention.
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3
Growth efficiency o f individual tree crowns tends to decline with increasing stand 

age (Long and Smith 1990, Long and Smith 1992, Yoder et al. 1994, Shi and Cao 1997), 

but these trends have been observed primarily in even-aged stand structures. Increasing 

sapwood respiration in larger trees has been hypothesized as an explanation for decreased 

growth efficiency, but this has recently been disputed (Ryan and Waring 1992, Ryan et 

al. 1997). Increased stand density may cause a decline in growth efficiency of individual 

trees if an optimum stand leaf area is exceeded (Waring et al. 1981, Oren et al. 1987, 

Roberts et al. 1993). There also appears to be an interaction between size, density, and 

canopy characteristics where growth efficiency of lodgepole pine (Pinus contorta Dougl.) 

declined with increasing canopy depth of even-aged stands (Smith and Long 1989).

The complexity of a forest structure, whether it consists of a single stratum as in an 

even-aged stand or multiple strata in a mulitaged stand, may affect biophysical properties 

such as precipitation, radiation, wind speed, temperature, and humidity (Parker 1995). 

Photosynthesis is regulated by many factors that work simultaneously, including direct 

and indirect effects of environmental factors (light, water, temperature, and CO2 

concentration), and structural characteristics of leaves and canopies (Stenberg et al. 1994, 

Stenberg et al. 1995, Teskey et al. 1995). The way leaves of trees in different stand 

structures respond to their environment influences the overall productivity of a stand.

The functional relationship between stand structure and physiological performance of a 

given species with similar site occupancy in different stand structures is largely unknown.

The objectives of this study were: (1) to identify diumal gas exchange and leaf water 

potential patterns in even-aged and multiaged stand structures of ponderosa pine; (2) to 

assess the influence of stand structure on limitations to gas exchange, including possible
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4
water limitations in older trees of multiaged stand structures; and (3) to identify trends 

between the physiological parameters measured. By understanding the relationships 

between physiological performance in relation to structural variations in resources (light, 

water, and nutrients) we may better understand why similar production in terms o f  woody 

biomass is obtained from different stand structures.

MATERIALS AND METHODS

Study sites - This experiment was implemented in stands of ponderosa pine in two 

different geographic locations: western Montana and central Oregon. Study sites in 

Montana were located on the Bitterroot and Lolo National Forests, and on Lubrecht 

Experimental Forest. Sites in Oregon were located south of Bend, OR on the Deschutes 

National Forest. Pure stands of ponderosa pine (>95% ponderosa pine conifer 

composition) were selected, with individual plot pairs o f even-aged and multiaged stand 

structures placed in areas that were close in proximity and deemed to be o f the same or 

similar site quality based on slope, aspect and vegetation characteristics. Circular plots 

0.1 ha in size were implemented in fully stocked stands, trying to avoid any differences in 

density both within plot pairs and between plot pairs within each geographical region. 

Habitat types (Pfister et al.1977) in Montana and plant associations in Oregon (Volland 

1988) were identified for each plot, and were similar within each geographic region 

(Tables 1.1 and 1.2). Plot numbers followed by an E refer to even-aged plots; plot 

numbers followed by an M refer to multiaged plots (Tables 1.1 and 1.2)
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Tree measurements - Each tree breast height (1.37 m) and taller was counted and 

measured. Total tree height and height to the base of the live crown were measured with 

a clinometer or a height pole, and diameter was measured at breast height. Two 

increment cores at right angles were taken from each tree 12.7 cm (5 in) and greater in 

breast height diameter to obtain age at breast height. The age range for the even-aged 

plots in Oregon was 37 to 85 years old (breast height age, Table 1.1). Average age of 

even-aged plots in Montana was 82 years, with the exception of plot 18 that was 11 years 

(breast height age, Table 1.2). Trees from the multiaged plots ranged from 5 to 211 years 

in Oregon, and 10 to 152 years in Montana. Bark thickness was measured with a bark- 

gauge to the nearest mm directly below the location of each core on each tree. Sapwood 

length was measured on the increment cores in the field, and later used to compute 

sapwood basal area. Leaf area per tree was computed using equations that relate 

sapwood basal area with leaf area of individual trees (O'Hara and Valappil 1995) in these 

two geographical areas. This concept is based on the pipe model theory to predict canopy 

leaf area presented by Waring et al. (1982). Sapwood basal area o f trees less than 12.7 

cm in diameter was assumed to be basal area minus the bark. Leaf area o f  each tree was 

computed, summed, and divided by the area of the plot to get leaf area index (LAI).

Stand density index (SDI) was computed for each plot, using the formula:

SDI =  I(D BH i/10)16

where DBHi is the diameter of the z'th tree in the stand (Long and Daniel 1990). For this 

study, there were four even-aged and three multiaged plots identified in Montana, and 

three even-aged and three multiaged plots in Oregon. Plots 14E and 18E at the Lubrecht 

site in Montana are two even-aged plots at different stages of stand development that are
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6
compared to multiaged plot 13M for physiological measurements described below 

(Table 1.2).

Sample tree selection - For each even-aged plot, three trees were sampled at mid

canopy. Crown classification of individual trees was made following the definitions o f 

Oliver and Larson (1996). Even-aged stands of ponderosa pine typically maintain one 

uniform canopy layer. All trees in the even-aged stand structures were classified as the 

B-stratum (upper continuous canopy layer) in this study. For each multiaged plot, four to 

five trees were sampled, encompassing the range o f ages and sizes to represent the 

number of cohorts. Emergent trees belonging to the oldest cohort were classified as the 

A-stratum. Trees belonging to the middle cohort were considered the B-stratum, and 

because of their age and size, are the most comparable to those found in the even-aged 

plots. Two trees belonging to the B-stratum were typically sampled from the multiaged 

plots. Trees belonging to the youngest cohort were classified as the C-stratum (lower 

stratum beneath the B-stratum), and ranged from seedlings to saplings. All trees sampled 

were co-dominant within their respective strata.

Predawn xylem water potential - Predawn xylem leaf water potential CPprcdawn) was 

measured during the growing season of 1998 in both Oregon (June) and Montana (July). 

Previous studies have shown no difference in measured 'Tpredawn throughout tree canopies 

(Valappil and O'Hara 2000), so mid-canopies were chosen for consistent sampling and 

comparisons. One branch was excised from each sample tree, placed in a plastic ziplock 

bag, and put on ice until all samples were obtained. After all samples were gathered,

'Tpredawn was measured using a pressure chamber. Two fascicles of each branch were 

measured, in the order that the samples were obtained. These two measurements were
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averaged to obtain an average Tpredawn for that branch. If the two fascicles measured 

were not within 0.2 MPa, a third fascicle was measured, and the two closest values were 

averaged to get the 'Ppredawn for that branch. As a check, the first branch measured was 

kept on ice and re-measured after all other samples to ensure that there was no effect of 

time since cutting on the measured vFieaf-

Gas exchange - A field portable closed gas exchange system (LI-6200, Li-Cor Inc., 

Lincoln, NE) was used to measure net photosynthesis (Anet) and stomatal conductance 

(gs) with a 1/4-1 cuvette. Two one-year-old fascicles were excised from each branch and 

measured by placing the mid-portion of the fascicles inside the cuvette. Measurements 

were made every hour from 0800 to 1600 in Montana, and from 0900 to 1600 in Oregon. 

Early-morning temperatures in June in Oregon made calibrating the LI-6200 difficult, so 

measurements commenced at 0900. Samples were obtained with a 4-m tall platform and 

a pole pruner, or with a 12-gauge shotgun for larger trees. One sample from mid-canopy 

of each of the previously identified sample trees was obtained and measured at each hour. 

Measurements were completed within three minutes of detachment from the tree. 

Preliminary measurements found no difference in gas exchange when detached branches 

were measured within three minutes. Due to intermittent clouds in June in Oregon, a 

QED light source (Quantum Devices, Inc., Bameveld, WI) with a peak wavelength of 

670 nm was used to supply additional light (at a rate of 800 pmol m'2 s’1) to ensure that 

photosynthesis was not light-limited. All measurements were made on either sunny or 

mostly sunny days in both Montana and Oregon. Gas exchange measurements were 

taken on the same day for plots 3M and 4E, 11M and 12E, 14E and 18E, and 301M and 

302E. Other combinations of plot pairs (13M, 14E and 18E, 303M and 304E, and 307M

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8
and 308E) were measured on consecutive days because the proximity of the plots to 

each other made it impossible to measure each pair on the same day.

Computations o f  transpiration (E) and WUE - Transpiration (E) and water use 

efficiency (WUE) were computed using stomatal conductance and photosynthesis values 

obtained with the LI-6200. Immediately before each pair of fascicles was placed in the 

cuvette, the temperature of the air, Tair, (simulated by using the chamber temperature 

measured by the LI-6200) and relative humidity were recorded. Vapor pressure 

difference (VPD) was computed as:

VPD = (esat (Tair) - eair)/pressure (mb), where 

esat = 6.1078*exp((17.269*Tair)/237.3+Tair), and 

eair = esat * (RH/100) 

following Campbell and Norman (1998). Transpiration was then computed as:

E = VPD*gs*1000 

WUE was computed as photosynthesis/transpiration (A/E).

Ponderosa pine has three-needled fascicles with stomata on all surfaces. All 

physiological data are expressed on an all-sided leaf area basis. After gas exchange 

measurements, the width of the fascicles was measured to the nearest 0.1 mm, and 

multiplied by the width of the cuvette to obtain projected leaf area. Since the middle 

portion of the fascicles were measured, the area of ponderosa pine needles was assumed 

to be a right cylinder divided into thirds. It follows that the conversion factor from 

projected leaf area to all-sided leaf area is 2.36 (Rundel and Yoder 1998).

Data analysis -  Diumal patterns of photosynthesis (Anet), stomatal conductance (gs), 

transpiration (E), WUE, and xylem leaf water potential (vP|eaf) are expressed as actual
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values, even though mean values represent measurements taken on different days. It is 

likely that there were daily variations in temperature and VPD that influenced gas 

exchange. However, light was saturating to gas exchange for all measurements taken in 

Oregon and Montana. For the multiaged plots in Montana, diumal values of Anet, gs, E, 

WUE, and 'fVaf for each strata were weighted for the proportion of leaf area each strata 

represented in each plot. The proportions for the multiaged plots in Montana were as 

follows: Plot 3M: A = 0.42, B = 0.55, C = 0.03; Plot 11M: A = 0.22, B = 0.77, C = 0.01; 

Plot 13M: A = 0.26, B = 0.51, C = 0.23. Diumal patterns of Anet, gs, E, WUE, and P̂ieaf 

are presented as structural means (even-aged and multiaged) with associated standard 

errors. An additional line is present representing the data weighted in the fashion just 

described for the multiaged plots (this is labeled as “multiaged weighted”)- The diumal 

data in Oregon could not be weighted because the A-stratum was not measured 

consistently on all plots, which resulted in an incomplete dataset. All even-aged trees 

were grouped together separately for Oregon and Montana regardless of measurement 

day or plot.

Mean daily values reported and tested are unweighted for both Oregon and Montana. 

Two-sample t-tests were used to compare differences between even-aged and multiaged 

means. One-way ANOVA was used to determine differences in stand structure where 

strata A, B, and C were tested against each other and the even-aged trees, and for tests 

between plots 13M, 14E, and 18E. Fischer’s LSD pair-wise comparison was used where 

ANOVA produced a significant effect. All differences were tested at the a  = 0.05 level. 

Linear regression was conducted on E and vF|eaf values separately for even-aged and
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multiaged samples for both Oregon and Montana. All analyses were conducted with 

SYSTAT (SPSS Inc.).

RESULTS

Basal area, sapwood basal area, and LAI were greater for two of the three multiaged 

plots when compared to their even-aged counterparts in Oregon (Table 1.1). The reverse 

was generally true for the Montana plots (Table 1.2). Stand density index (SDI) was 

greater for all the even-aged plots in Montana as compared to the multiaged plots (Table 

1.2), while two of the three multiaged plots in Oregon had greater SDI than the even-aged 

(Table 1.1).

Predawn leaf water potential 0Fpredawn) measurements were lower in even-aged stand 

structures than their multiaged counterparts in July 1998 in Montana (Figure 1.1). Plot- 

level mean predawn 4 / p re d a w n  ranged from -0.86 to -0.97 MPa in Montana and from -0.60 

to -0.87 MPa in Oregon. There were no significant differences in Oregon between stand 

structures for p̂redawn measured in June, 1998.

Oregon physiology - Multiaged and even-aged stand structures followed a similar 

diumal pattern for all physiological measurements (Figure 1.2a — 1.2d). Maximum 

photosynthetic rates (displayed as An« in Figure 1.2a) appear to have been reached in 

mid-morning, and persisted into the afternoon. Average An« never dropped below 50% 

of its maximum through the measurement period for either stand structure, suggesting 

few limitations to photosynthesis. Stomatal conductance (gs) followed a similar pattern 

as Anct (Figure 1.2b), with no significant differences in average Anet, Amax, g s» or g s-max 

between stand structures (Table 1.3).
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Transpiration (E) reached its maximum at 1200 for even-aged trees, and 1400 for 

multiaged trees (Figure 1.2c), and did not decrease markedly through the measurement 

period. Water use efficiency (WUE = A/E) appeared higher for multiaged trees than 

even-aged trees for the middle portion o f the diumal time-course measured, with WUE 

decreasing throughout the day in both stand structures (Figure 1.2d). In general, vFieafwas 

lower for even-aged trees throughout the measurement period, with average lowest values 

(-1.76 MPa) reached at 1100 (Figure 1.3). Lowest ^leaf for multiaged trees (-1.70 MPa) 

was reached at 1300. There were no significant differences between daily means for any 

of the physiological measurements between stand structures in Oregon (Table 1.3).

Montana physiology -  Net photosynthesis (Anet) in July on the Montana sites 

followed a similar trajectory for both stand structures in the early part the day (Figure 

1,4a). After a peak around 1000-1100, the even-aged stand structures tended to decrease 

photosynthetic activity, while multiaged trees decreased at a lesser rate, forming a plateau 

of activity throughout the day. Integration under the diumal curves from 0800 to 1600 

showed that Anet was an average 22 and 25% less for even-aged trees as compared to 

weighted and unweighted mean diumal values for multiaged trees. Stomatal conductance 

(gs) peaked in the early morning for both stand structures, and followed a similar pattern 

as Anet, but decreased more steadily for both stand structures through the course o f the 

day (Figure 1.4b). Overall mean Anet, gs» and gs-max were significantly greater for 

multiaged trees as compared to even-aged trees (P < 0.05, Table 1.4).

Transpiration (E) remained low in the early part o f the day for both even-aged and 

multiaged stand structures, reached a plateau during the mid-portion of the day, and 

dropped off steadily during the late afternoon hours (Figure 1.4c). Integration under the
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curves showed E to be an average 25 and 29% less for even-aged trees as compared to 

weighted and unweighted mean values for multiaged trees for the diurnal course. 

Maximum transpiration rates (Emax) and average daily E were significantly lower for 

even-aged trees than multiaged trees {P < 0.01, Table 1.4). WUE followed the same 

pattern for both stand structures diumally (Figure 1.4d). WUE was highest during the 

early part of the day when An« was high but E was low due to low vapor pressure 

difference (VPD). WUE remained fairly constant during the mid-portion of the day when 

Anet, gs- and E decreased steadily. This diumal pattern mirrors that of the Oregon 

measurements (Figure 1.3d).

Leaf water potential OFieaf) started out more negative for even-aged trees, and 

remained lower than multiaged trees throughout the day with the exception of the last 

measurement period (Figure 1.5). Overall mean vFieaf and lowest (minimum) Tieaf was 

more negative for even-aged trees than multiaged trees (P < 0.01, Table 1.4). Multiaged 

trees in the middle (B) and lowest strata (C) had significantly higher mean T^af than 

even-aged trees (P < 0.05 and P < 0.01 respectively, Table 1.4).

There were no significant differences in gas exchange between even-aged and 

multiaged trees at the Larry Creek site (plots 11M and 12E, Table 1.5), which was the 

first site measured in July in Montana. E was significantly higher on the multiaged plot 

at the Tarkio site (plots 3M and 4E, Table 1.5), but there was no significant difference 

between any other physiological variables. There were significant differences between 

both even-aged plots (14E and 18E) and the multiaged plot (13M) at the Lubrecht site for 

all physiological measurements (Table 1.5). The multiaged trees measured at Lubrecht
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had greater gas exchange (Anct, Ama.x, gs, gs-max, E, and Emax) as well as overall higher

T ie a f -

E  and 'Funf - The relationship between 'Ticaf reached at different transpiration rates 

was significant for both even-aged and multiaged stand structures in both Oregon and 

Montana (Figure 1.6). (Note that only plots 301M and 302E are shown in Oregon 

because those are the only two plots where Ticaf was measured, and plots 3M and 4E in 

Montana because that is the only plot-pair where T W  was measured on the same day). E 

was greater and T'leaf less negative in Oregon for both stand structures as compared to 

Montana (Tables 1.3 and 1.4). In both Montana and Oregon, multiaged trees showed 

overall higher E than the even-aged trees, while the even-aged trees showed more 

negative TVaf than the multiaged trees (Tables 1.3 and 1.4, and Figure 1.6).

DISCUSSION

Plants have evolved various means for avoiding or tolerating water stress. The fastest 

way for plants to avoid excessive water loss is through stomatal control (Cowan 1982). 

Plants essentially exchange H2 O for CO2 , and stomatal conductance plays a  role in 

regulating photosynthesis and transpiration (Cowan 1982). Ponderosa pine is generally 

thought to be a water use efficient conifer (Franklin and Dymess 1988, Anthoni et al.

1999), and its physiology appears to be influenced by stand age and forest structure 

(Yoder et al. 1994, Valappil 1997). In the present study, greater photosynthetic rates in 

multiaged trees in Montana suggest foliage of these trees is performing better than foliage 

of trees in even-aged stand structures. Water appears to be less limiting in these 

multiaged stand structures as shown by higher water potentials throughout the day
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combined with greater transpiration rates. Maximum rates of photosynthesis and 

stomatal conductance (shown as Anet and gs in Figures 1.4a and 1.4b) were similar in 

magnitude and peaked at the same time for both stand structures in Montana. As the day 

progressed, differences in the rate of decline could lead to considerable differences in 

overall productivity of these stands, with even-aged trees showing a greater decline in gas 

exchange. Overall, multiaged trees achieved higher levels of gs and E, with these higher 

levels being maintained for a longer period in the day.

It is difficult to quantify and compare densities o f even-aged and multiaged stands to 

determine whether they are occupying a site to an equal degree. SDI allows comparison 

of stand density between stand structures by giving each tree on the plot a value that 

represents the degree of site occupancy it would have as compared to a tree 25.4 cm (10 

in) in diameter (Long and Daniel 1990). Comparisons of SDI gave more distinct 

differences between even-aged and multiaged stand structures than other measures o f site 

occupancy used in this study (LAI and basal area) in both Oregon and Montana (Tables 

1.1 and 1.2). SDI differed by 11-31% in Oregon and by 9-23% in Montana between 

even-aged and multiaged plots. Therefore, it is difficult to conclude that density did not 

influence physiological performance between different stand structures of ponderosa pine 

in this study. LAI was greater for the multiaged plot at Tarkio (3M), as well as the 

multiaged plot at Lubrecht (13M) as compared to the younger even-aged plot (Table 1.2). 

Leaf-level gas exchange tended to be higher in both o f  these multiaged plots as compared 

to their even-aged counterparts (Table 1.5), despite the greater LAI, further suggesting an 

influence of stand structure on leaf physiology.
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A number of studies have investigated physiology of various sized trees and in 

forest stands o f varying growing stock levels, including some in ponderosa pine. Water 

potential is assumed to be a measure o f plant moisture stress, representing an integration 

of soil and internal plant water status (Running 1976). Water potential might be expected 

to be higher (less negative) in stands o f lower density, as there would be more water 

available to each tree. Higher predawn water potentials have been observed with 

decreasing density (37 to 78% reduction in initial density) in lodgepole pine (Donner and 

Running 1986) and ponderosa pine (Stone et al. 1999). Schmid et al. (1991) found 

decreases in predawn and midday Tieaf with increasing density in ponderosa pine in the 

Black Hills (density ranged from 13.8 to 40 m2 ha'1), but the influence of seasonal 

variation was also present and significant. Kolb et al. (1998) showed a consistent 

decrease in predawn and midday Ticaf with increasing basal area (ranging between 6.9 to 

78.2 m2 ha '1). Basal area in the present study was comparable to the intermediate stand 

density reported by Kolb et al. (1998). The range in stand density in the present study is 

also relatively small (21.8 to 25.62 m2 ha'1 in Montana with the exception of plot 18E, 

and 17.2 to 17.8 m2 ha’1 in Oregon). Therefore, the range in stand density found in this 

study should not be a significant factor between plots when considering water relations, 

although stand density was not tested.

Small differences in 'Rprcdawn suggests trees of both stand structures were equally able 

to replenish water storage at night, resulting in the same water status at the beginning of 

each day. Water potential variation diumally suggests a different pattern in water usage 

and may influence subsequent physiological functions. Average midday and lowest vF|eaf 

reached differed significantly between multiaged and even-aged trees on the Montana
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sites (Table 1.4), suggesting some influence of water status on physiologic function 

between stand structures. There were no differences in 'Fieaf between stand structures in 

Oregon, but T'leaf was measured on only two plots. Running (1976) identified two major 

influences of water potential on gs; the first is the assumption that T/predawn controls the 

maximum gs obtainable, and the second is the notion o f a threshold 'Fieaf- Others have 

identified a threshold T'leaf with which major declines in gas exchange are observed. For 

ponderosa pine, this is typically assumed to be between -1.3 and -1.8 MPa (Cleary 1971, 

Lopushinsky 1969, Bunce 1979). Lopushinsky and Klock (1974) claimed ponderosa 

pine operates at only 12% of its maximum E when soil water potentials reach -1.0 MPa 

(under controlled experimental conditions). In a growth chamber study, ponderosa pine 

exhibited an exponential decrease in gs and a linear decrease in An« as 4/ieaf decreased 

under water-stressed and well-watered conditions (Zhang et al. 1997). In this study, there 

was a significant relationship between E and vF|eaf for both even-aged and multiaged stand 

structures in Oregon and Montana (Figure 1.6). This relationship, combined with the 

diurnal differences in ^kaf, E, and gs between trees o f varying canopy positions (Tables 

1.3 and 1.4) suggest trees in the C and B strata in the multiaged stand structures are the 

optimum size and in the best canopy position for maintaining high levels of gas exchange 

for longer periods of the day. This implies that trees in a multiaged stand structure may 

be growing under more favorable conditions that may result in higher levels o f overall 

productivity as compared to trees in a single canopy stratum in an even-aged stand 

structure. It is important to note that the trees that were sampled in this study were
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codominant within their representative strata, meaning that they were not overtopped 

or suppressed by neighboring trees within the same stratum.

The above assertion contradicts the notion that the top strata in a multiaged forest 

canopy will have the fastest growth rate, and presumably the highest rates of gas 

exchange due to its superior position where resources such as light would not be limiting 

(O'Hara 1996). Recently, it has been argued that foliage from older trees operates at 

lower levels o f gas exchange due to increasing hydraulic resistance with increasing height 

(Yoder et al. 1994, Mencuccini and Grace 1996, Hubbard et al. 1999). Lower predawn 

and midday Ticaf in tall trees has also been observed in large trees (Yoder et al. 1994, 

Bauerle et al. 1999). Although the sample size for the oldest cohort of trees measured in 

the present study was small, no differences were observed in midday 'Pieaf, or any other 

physiological parameter measured when compared to other canopy locations or even- 

aged trees. This neither supports nor disproves the hydraulic limitation theory of Ryan 

and Yoder (1997), but it would appear that foliage from tall trees (although sampled only 

at mid-canopy in this study) was not limited in any way differently than foliage from 

other strata in the canopy.

Pinus species tend to have high WUE when compared to other sympatric coniferous 

or deciduous species (Marshall and Zhang 1994, Rundel and Yoder 1998). High WUE 

results from either high photosynthesis, low transpiration or both (Zhang et al. 1997), and 

is often associated with lower carbon assimilation due to the greater resistance of CO2 in 

comparison to H2O (Cowan 1982). Previous research comparing long-term WUE in 

even-aged and multiaged stand structures of ponderosa pine based on stable-carbon 

isotope discrimination suggests that trees in even-aged stand structures tire more water
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use efficient than in multiaged, further implying lower overall productivity o f foliage 

in even-aged stands (Valappil and O'Hara 2000). Zhang et al. (1997) concluded that a 

drought avoidance strategy is more important for growth than high (instantaneous) WUE. 

In the case of populations of ponderosa pine that differed in drought tolerance, having 

plasticity to photosynthesize at higher rates when conditions were favorable with the 

ability to close stomates to reduce water loss under water-stressed conditions resulted in 

die best drought avoidance strategy (Zhang et al. 1997). Instantaneous WUE, as 

computed in this study, did not differ between stand structures or with crown position. 

Since WUE is a ratio o f carbon fixed to water lost, and given that even-aged trees showed 

both lower An« and E overall, then the ratios o f A/E may be the same for both stand 

structures. Collectively, even-aged stands may be less productive because o f overall 

lower rates of photosynthesis, explaining why integrated WUE may be higher in even- 

aged stands, as shown in previous work (Valappil and O'Hara 2000). It is concluded that 

trees in certain crown positions in multiaged stand structures may be more productive 

because of greater rates of gas exchange and not necessarily because of differences in 

instantaneous WUE.

This study looked at physiological performance of pure ponderosa pine stands in two 

ecologically different geographic areas at two different points in time during the growing 

season. The measurements in Oregon were done in late June when soil moisture is still 

generally available. Therefore, the trees were measured when water was less limiting 

than later in the growing season. In Montana, July can be quite dry, presenting more 

severe water limitations than earlier in the growing season. Daily maximum 

temperatures may also contribute to limitations in gas exchange by increasing the VPD
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between leaves and the air. Therefore, measurements taken in July under growing 

conditions that involved a limitation due to water stress may be elucidating differences in 

stand structure that are not present under non-limiting conditions. The Larry Creek site 

was sampled earliest in July, and although the density o f these plots was comparable to 

other plots, maximum rates o f photosynthesis (Amax, Table 1.5) were the highest when 

compared to all other plots in Montana. Transpiration rates were highest on the 

multiaged plot in Lubrecht (plot 13M) even though that plot was measured latest in July. 

The most significant differences in physiology between plots occurred at the Lubrecht 

site, where the multiaged plot had greater Anet, gs, E and higher T W  as compared to both 

even-aged plots at Lubrecht. The even-aged plots (plots 14E and 18E) had similar 

densities with no differences in these physiological variables, while the multiaged plot 

(plot 13M) had lower stand density and significantly greater gas exchange. These results 

must be interpreted with some caution, as gas exchange and 4/ieaf at the multiaged plot 

was measured two days after the even-aged plots at the Lubrecht site. There was a total 

of 18 mm of precipitation recorded at Lubrecht Experimental Forest for the month of 

July, but none of that occurred between measurement days from this study (precipitation 

was recorded on July 1,4, 16, 17, and 24). Still, there appears to be a difference in water 

status between plots in July as the average T'leaf measured at hour 0800 on the multiaged 

plot was -0.95 MPa while the even-aged were -1.40 and —1.25 MPa for plots 14E and 

18E respectively. Even though these values do not necessarily reflect T prcdawn, they 

probably provide a fair representation of plant water status. Air temperature and vapor 

pressure difference (VPD) followed a very similar trajectory throughout each 

measurement period (data not shown). Differences in physiology between the multiaged
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and even-aged plots at Lubrecht are therefore possibly the result of differences in site 

occupancy, plant water status as influenced by soil water availability, or due to 

physiological differences as influenced by stand structure.

The fact that no differences were detected between stand structures in Oregon, while 

significant differences were found in Montana could be explained by various reasons 

other than increasing water stress associated with the growing season. The first could be 

a difference in stand structure and ecophysiology o f ponderosa pine between Oregon and 

Montana, although it is the same variety in both areas (Pinus ponderosa var. ponderosa, 

Read 1980). The second reason could be an overall difference in climate between the 

two regions, and differences in site related to soil characteristics. It is also possible that 

pairs of even-aged and multiaged plots were not matched up in the same way (due to 

density, site characteristics (habitat type, plant association, soil, or microclimate 

differences) or some other factor). Since multiple comparisons were not done in each 

area, it is impossible to attribute the difference in findings to any particular reason. 

Differences in time of measurement (growing season) certainly played a major role in the 

water dynamics of each stand structure, and probably greatly influenced physiological 

performance.

As mentioned previously, density between even-aged and multiaged plots was 

measured in terms of basal area, SDI, and LAI. LAI can be viewed as the amount of 

photosynthetic machinery present in a stand. Greater LAI may contribute to greater gross 

production potential because of greater photosynthetic material on the site, but may also 

suggest that the machinery present may be less efficient due to limitations posed to 

individual trees by greater site occupancy leading to greater competition for limited
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resources or increased respiration. Thus, productivity o f a stand could be viewed as a 

function of the amount of photosynthesizing material (LAI) and the rate of carbon 

assimilation (Anet). There were no clear trends in LAI or basal area between even-aged 

and multiaged plots in this study (Tables 1.1 and 1.2), but if a stand has a lower Anet with 

greater LAI than a stand with less LAI but higher A„et, net productivity of the stands 

might be similar. Therefore, in order to draw clear conclusions from the research 

presented, one would need to take into account both rates o f productivity and some 

measure of site occupancy. Higher growth efficiency in multiaged stands (O'Hara 1996) 

combined with greater rates of gas exchange observed in this study add to the evidence 

that multiaged stand structures have the ability to out-perform even-aged stand structures 

physiologically when both stand structures have comparable LAI.

In conclusion, the present study conducted in a small number of stands gives evidence 

toward differential rates of carbon assimilation that appear to be related to site water 

balance and perhaps canopy position within different stand structures. Under 

environmental conditions that are not limited by water, patterns in gas exchange and 

water use appear unaffected by stand structure. Water-limiting conditions influence 

diurnal gas exchange patterns in a way that could result in lower productivity of even- 

aged stand structures. Because this study was not conducted throughout an entire 

growing season, it is impossible to speculate on the contributions of other parts of the 

growing season to overall productivity in different stand structures. A combination o f 

site occupancy, previous growth, and physiological performance will best represent the 

functional differences between stand structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



22
LITERATURE CITED

Anthoni, P.M., B.E. Law and M.H. Unsworth. 1999. Carbon and water vapor exchange 
of an open-canopied ponderosa pine ecosystem. Agricultural and Forest Meteorology 
95:151-168.

Amo, S.F., J.H. Scott and M.G. Hartwell. 1995. Age-class structure o f  old growth
ponderosa pine/Douglas-fir stands and its relationship to fire history. USDAINT-RP- 
481.

Baker, J.B., M.D. Cain, J.M. Guldin, P.A. Murphy and M.G. Shelton. 1996. Uneven-aged 
silviculture for the loblolly and shortleaf pine forest cover types. USDA For. Serv. 
Gen. Tech. Rep. SO-118. 65 p.

Bauerle, W.L., T.M. Hinckley, J. Cermak, J. Kucera and K. Bible. 1999. The canopy 
water relations o f old-growth Douglas-fir trees. Trees 13:211-217.

Bunce, J.A., B.F. Chabot and L.N. Miller. 1979. Role of annual leaf carbon balance in the 
distribution o f  plant species along an elevational gradient. Botanical Gazette 140:288-
294.

Campbell, G.S. and J.M. Norman. 1998. An Introduction to Environmental Biophysics. 
Springer-Verlag, New York. 286 p.

Cleary, B.D. 1971. The effect of plant moisture stress on the physiology and 
establishment o f planted Douglas-fir and ponderosa pine seedlings. Ph.D.
Dissertation, Oregon State University, Corvallis, OR, USA.

Cooper, C.F. 1960. Changes in vegetation, structure, and growth of southwestern pine 
forests since white settlement. Ecological Monographs 30:129-164.

Cowan, I.R. 1982. Regulation of water use in relation to carbon gain in higher plants. In 
Water relations and carbon assimilation. Encyclopedia of Plant Physiology, new 
series, Vol. 12b. Eds. O.L. Lange, P.S. Nobel, C.B. Osmond and H. Ziegler. Springer- 
Verlag, New York, pp 589-613.

Donner, B.L. and S.W. Running. 1986. Water stress response after thinning Pinus 
contorta stands in Montana. Forest Science 32:614-625.

Franklin, J.F. and C.T. Dymess. 1988. Natural Vegetation of Oregon and Washington. 
Oregon State University Press, Corvallis, OR.

Guldin, J.M. and J.B. Baker. 1988. Yield comparisons from even-aged and uneven-aged 
loblolly-shortleaf pine stands. Southern Journal of Applied Forestry 12:107-114.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23
Guldin, J.M. and M.W. Fitzpatrick. 1991. Comparison of log quality from even-aged 

and uneven-aged loblolly pine stands in south Arkansas. Southern Journal o f Applied 
Forestry 15:10-17.

Habeck, J.R. 1990. Old-growth ponderosa pine-westem larch forests in western Montana: 
ecology and management. The Northwest Environmental Journal 6:271-292.

Harrod, R.J., B.H. McRae and W.E. Hartl. 1999. Historical stand reconstruction in 
ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and 
Management 114:433-446.

Helms, J.A. and J.E. Lotan. 1988. Selecting silvicultural systems for timber. In Ponderosa 
pine: The species and its management. Eds. D.M. Baumgartner and J.E. Lotan. Coop. 
Extension, Washington State University, Pullman, WA, USA, pp 221-226.

Hubbard, R.M., B.J. Bond and M.G. Ryan. 1999. Evidence that hydraulic conductance 
limits photosynthesis in old Pinus ponderosa trees. Tree Physiology 19:165-172.

Kolb, T.E., K.M. Holmberg, M.R. Wagner and J.E. Stone. 1998. Regulation of ponderosa 
pine foliar physiology and insect resistance mechanisms by basal area treatments.
Tree Physiology 18:375-381.

Long, J.N. and T.W. Daniel. 1990. Assessment of growing stock in uneven-aged stands. 
Western Journal of Applied Forestry 5:93-96.

Long, J.N. and F.W. Smith. 1990. Determinants of stemwood production in Pinus
contorta var. latifolia forests: the influence of site quality and stand structure. Journal 
of Applied Ecology 27:847-856.

Long, J.N. and F.W. Smith. 1992. Volume increment in Pinus contorta var. latifolia-. the 
influence of stand development and crown dynamics. Forest Ecology and 
Management 53:53-64.

Lopushinsky, W. 1969. Stomatal closure in conifer seedlings in response to leaf moisture 
stress. Botanical Gazette 130:258-263.

Lopushinsky, W. and G.O. Klock. 1974. Transpiration of conifer seedlings in relation to 
soil water potential. Forest Science 29:181-186.

Marshall, J.D. and J. Zhang. 1994. Carbon isotope discrimination and water-use 
efficiency in native plants o f the North-Central Rockies. Ecology 75:1887-1895.

Mencuccini, M. and J. Grace. 1996. Hydraulic conductance, light interception and needle 
nutrient concentration in Scots pine stands and their relations with net primary 
productivity. Tree Physiology 16:459-468.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

O'Hara. K.L. 1996. Dynamics and stocking-level relationships of multi-aged ponderosa 
pine stands. Forest Science Monograph 33:1-34.

O'Hara, K.L. and N.I. Valappil. 1995. Sapwood-leaf area prediction equations for multi
aged ponderosa pine stands in western Montana and central Oregon. Canadian 
Journal of Forest Science 25:1553-1557.

Oliver, C.D. and B.C. Larson. 1996. Forest Stand Dynamics, Update Edition. John Wiley 
and Sons, New York, 520 p.

Oren, R., R.H. Waring, S.G. Stafford and J.W. Barrett. 1987. Twenty-four years of 
ponderosa pine growth in relation to canopy leaf area and understory competition. 
Forest Science 33:538-547.

Parker, G.G. 1995. Structure and Microclimate of Forest Canopies. In Forest Canopies, 
Eds. M.D. Lowman and N.M. Madkami. Academic Press Inc., San Diego, pp 73-106.

Pfister, R.D., B.L. Kovalchik, S.F. Amo and R.C. Presby. 1977. Forest habitat types of 
Montana. USDA For. Serv. Gen. Tech. Rep. INT-34, 177 p.

Read, R.A. 1980. Genetic variation in seedling progeny of ponderosa pine provenances. 
Forest Science Monograph 23:1-59.

Roberts, S.D., J.N. Long and F.W. Smith. 1993. Canopy stratification and leaf area 
efficiency: a conceptualization. Forest Ecology and Management 60:143-156.

Rundel, P.W. and B.J. Yoder. 1998. Ecophysiology of Pinus. In Ecology and
Biogeography of Pinus. Ed. D.M. Richardson. Cambridge University Press, New 
York, pp 296-323.

Running, S.W. 1976. Environmental control of leaf water conductance in conifers. 
Canadian Journal of Forest Research 6:104-112.

Ryan, M.G. and R.H. Waring. 1992. Maintenance respiration and stand development in a 
subalpine lodgepole pine forest. Ecology 73:2100-2108.

Ryan, M.G., D. Binkley and J.H. Fownes. 1997. Age-related decline in forest
productivity: pattern and process. Advances in Ecological Research 27:213-262.

Ryan, M.G. and B.J. Yoder. 1997. Hydraulic limits to tree height and tree growth. 
Bioscience 47:235-242.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25
Schmid, J.M., S.A. Mata, R.K. Watkins and M.R. Kaufinann. 1991. Water potential in 

ponderosa pine stands of different growing-stock levels. Canadian Journal o f Forest 
Research 21:750-755.

Shi, K. and Q.V. Cao. 1997. Predicted leaf area growth and foliage efficiency of loblolly 
pine plantations. Forest Ecology and Management 95:109-115.

Smith, F.W. and J.N. Long. 1989. The influence o f canopy architecture on stemwood 
production and growth efficiency o f  Pinus contorta var. latifolia. Journal of Applied 
Ecology 26:681 -691.

Stenberg, P., T. Kuuluvainen, S. Kellomaki, J.C. Grace, E.J. Jokela and H.L. Gholz.
1994. Crown structure, light interception and productivity o f pine trees and stands. 
Ecological Bulletins 43:20-34.

Stenberg, P., E.H. DeLucia, A.W. Schoettle and H. Smolander. 1995. Photosynthetic 
light capture and processing from cell to canopy. In Resource Physiology of Conifers, 
Eds. W.K. Smith and T.M. Hinckley. Academic Press, San Diego, pp 3-38.

Stone, J.E., T.E. Kolb and W.W. Covington. 1999. Effects o f restoration thinning on 
presettlement Pinus ponderosa in northern Arizona. Restoration Ecology 7:172-182.

SYSTAT 6.0 for Windows: Statistics. 1996. SPSS Inc.

Teskey, R.O., D.W. Sheriff, D.Y. Hollinger and R.B. Thomas. 1995. External and 
internal factors regulating photosynthsis. In Resource Physiology of Conifers, Eds. 
W.K. Smith and T.M. Hinckley. Academic Press, San Diego, pp 105-140.

Valappil, N.I. 1997. A Physiologically-based comparison of even- and multi-aged 
ponderosa pine stand productivity. Ph.D. Dissertation, University of Montana, 
Missoula, MT, USA.

Valappil, N.I. and K.L. O'Hara. 2000. Water stress and carbon isotope discrimination in 
even-aged and multiaged ponderosa pine stand structures (in prep).

Volland, L.A. 1988. Plant association o f  the central Oregon pumice zone. USDA For. 
Serv. R6-ECOL-104-1985.

Waring, R.H., K. Newman and J. Bell. 1981. Efficiency of tree crowns and stemwood 
production at different canopy leaf densities. Forestry 54:129-137.

Waring, R.H., P.E. Schroeder and R. Oren. 1982. Application of the pipe model theory to 
predict canopy leaf area. Canadian Journal of Forest Research 12:556-560.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



White, A.S. 1985. Presettlement regeneration patterns in a southwestern ponderosa 
pine stand. Ecology 66:589-594.

Yoder, B.J., M.G. Ryan, R.H. Waring, A.W. Schoettle and M.R. Kaufmann. 1994. 
Evidence of reduced photosynthetic rates in old trees. Forest Science 40:513-527.

Zhang, J.W., Z. Feng, B.M. Cregg and C.M. Schumann. 1997. Carbon isotopic 
composition, gas exchange, and growth o f three populations of ponderosa pine 
differing in drought tolerance. Tree Physiology 17:461-466.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bl

e 
1.

1.
 P

lo
t 

at
tri

bu
te

s 
fo

r O
re

go
n 

pl
ot

s.
 P

lo
ts

 w
er

e 
ci

rc
ul

ar
 a

nd
 0

.1 
ha

 in
 s

iz
e.

 P
la

nt
 a

ss
oc

ia
tio

ns
 fo

llo
w

 th
os

e 
id

en
tif

ie
d 

by
 V

ol
la

nd
 (1

98
8)

. 
A

bb
re

vi
at

io
ns

: P
1P

O
 =

 P
in

us
 p

on
de

ro
sa

 D
ou

gl
. e

x 
La

w
s.,

 P
U

TR
 =

 P
ur

sh
ia

 tr
id

en
ta

ta
 

(P
ur

sh
) 

D
C

., 
A

R
TR

 =
 A

rl
em

es
ia

 tr
id

en
ta

ta
 N

ut
t.,

 F
EI

D
 =

 F
es

tu
ca

 id
ah

oe
ns

is
 E

lm
er

, A
R

PA
 =

 A
rc

to
st

ap
hy

lo
s p

at
ul

a 
G

re
en

e,
 C

EV
E 

= 
C

ea
no

th
us

 v
el

ut
in

us
 D

ou
gl

.

Pl
ot

N
o.

Pl
ot

T
yp

e
L

oc
at

io
n

LA
I

(a
ll-

si
de

d)
A

ve
ra

ge
 A

ge
 

or
 A

ge

R
an

ge
 a

t B
H

T
re

es
pe

r

H
ec

ta
re

B
as

al
 

A
re

a 

(m
2 h

a'
1)

Sa
pw

oo
d 

B
as

al
 A

re
a 

(m
2 h

a 
')

SD
I

Pl
an

t
A

ss
oc

ia
tio

n

30
IM

m
ul

tia
ge

d
La

Pi
ne

4.
94

51
-2

11
24

0
22

.7
7

15
.5

2
37

7
PI

PO
/P

UT
R/

FE
1D

30
2E

ev
en

-a
ge

d
La

Pi
ne

5.
30

85
35

0
24

.9
9

16
.6

5
45

3
P1

PO
/P

UT
R-

AR
TR

/F
EI

D

30
3M

m
ul

tia
ge

d
B

en
d

4.
43

5-
11

0
66

0
19

.5
5

13
.9

2
34

7
PI

PO
/P

UT
R-

AR
PA

/F
EI

D

30
4E

ev
en

-a
ge

d
B

en
d

4.
32

58
22

0
17

.8
0

13
.5

9
31

0
I’I

PO
/P

UT
R-

AR
PA

/F
EI

D

30
7M

m
ul

tia
ge

d
W

ic
ki

up
5.

06
18

-1
46

47
0

25
.2

6
15

.9
1

43
4

PI
PO

/P
UT

R-
CE

VF
VF

EI
D

30
8E

ev
en

-a
ge

d
W

ic
ki

up
3.

81
37

33
0

17
.2

1
11

.9
6

32
6

PI
PP

/P
UT

R-
CE

VE
/F

EI
O

K)



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bl

e 
1.2

. 
Pl

ot
 a

ttr
ib

ut
es

 f
or

 M
on

ta
na

 p
lo

ts
. 

Pl
ot

s 
w

er
e 

ci
rc

ul
ar

 a
nd

 0
.1

 h
a 

in
 s

iz
e,

 e
xc

ep
t p

lo
t 

18
E 

w
hi

ch
 w

as
 0

.0
1 

ha
. 

H
ab

ita
t t

yp
es

 f
ol

lo
w

 th
os

e 
id

en
tif

ie
d 

by
 P

fis
te

r e
t a

l. 
(1

97
7)

. 
A

bb
re

vi
at

io
ns

: P
SM

E 
= 

Ps
eu

do
ts

ug
a 

m
en

zi
es

ii 
(M

irb
el

) 
Fr

an
co

., 
PI

PO
 =

 P
in

us
 p

on
de

ro
sa

 D
ou

gl
. e

x 
La

w
s.

, C
A

R
U

 =
 C

al
am

ag
ro

st
is

 ru
be

sc
en

s 
B

uc
k!

., 
C

A
G

E 
= 

C
ar

ex
 g

ey
er

i B
oo

tt,
 A

R
U

V
 =

 A
rc

to
st

ap
hy

lo
s 

uv
a-

ur
si

 (
L.

) 
Sp

re
ng

., 
A

G
SP

 =
 A

gr
op

yr
on

 s
pi

ca
tu

m
 (

Pu
rs

h)
 S

cr
ib

n.
 &

 
Sm

ith
.

Pl
ot

N
o.

Pl
ot

Ty
pe

Lo
ca

tio
n

LA
I

(a
ll-

sid
ed

)
A

ve
ra

ge
 A

ge
 

or
 A

ge
 

R
an

ge
 a

t B
II

Tr
ee

s
pe

r
H

ec
ta

re

Ba
sa

l 
A

re
a 

(m
2 h

a'
1)

Sa
pw

oo
d 

Ba
sa

l A
re

a 
(m

z h
a1

)
SD

I
H

ab
ita

t
Ty

pe

3M
m

ul
tia

ge
d 

Ta
rk

io
 R

oa
d

5.
63

20
-1

32
35

0
21

.7
6

14
.3

8
38

4
PS

M
E/

CA
GE

4E
ev

en
-a

ge
d 

T
ar

ki
o 

R
oa

d
5.

53
81

41
0

24
.2

2
14

.1
3

47
0

PS
M

E/
CA

GE

11
M

m
ul

tia
ge

d 
La

rr
y 

C
re

ek
5.

42
10

-1
26

62
0

23
.7

6
13

.7
6

44
1

PS
M

E/
CA

GE

12
E

ev
en

-a
ge

d
La

rr
y 

C
re

ek
5.

49
86

72
0

23
.2

8
13

.9
0

49
1

PS
M

E/
CA

GE

13
M

m
ul

tia
ge

d
Lu

br
ec

ht
5.

53
34

-1
52

45
0

21
.9

0
14

.1
0

39
8

PS
M

E/
CA

RU
/A

RU
V

14
E

ev
en

-a
ge

d
Lu

br
ec

ht
6.

29
79

62
0

25
.6

2
16

.0
1

51
8

PS
M

E/
CA

RU
/A

RU
V

18
E

ev
en

-a
ge

d
Lu

br
ec

ht
5.

38
11

27
00

15
.1

1
12

.9
7

43
6

PS
M

E/
CA

RU
/A

RU
V

N) 00



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bi

c 
1.3

. 
D

ai
ly

 m
ea

ns
 fo

r p
hy

si
ol

og
ic

al
 m

ea
su

re
m

en
ts

 in
 O

re
go

n.
 T

he
re

 w
er

e 
no

 s
ig

ni
fic

an
t d

iff
er

en
ce

s.
 S

ta
nd

ar
d 

er
ro

rs
 

ar
e 

gi
ve

n 
in

 p
ar

en
th

es
es

. 
W

at
er

 p
ot

en
tia

l (
T

|Ca
f) 

w
as

 m
ea

su
re

d 
on

 p
lo

ts
 3

01
M

 a
nd

 3
02

E 
on

ly
 (N

 =
 5

 a
nd

 N
 =

 4
, r

es
pe

ct
iv

el
y)

. 
U

nd
er

 s
tru

ct
ur

e 
ty

pe
, A

, B
, a

nd
 C

 re
fe

r t
o 

ca
no

py
 s

tra
ta

. 
D

at
a 

ar
e 

un
w

ei
gh

te
d.

St
ru

ct
ur

e 
N 

A
nft

 
A

*„
 

g,
 

g-
„.

, 
E 

E„
al 

W
U

E

Ty
pe

 
(p

m
ol

 m
'2 

s'1
) 

1 m
'1 

s'1
) 

(m
ol

 m
'2 

s'1
) 

(m
ol

 m
'2 

s'1
) 

(m
m

ol
 m

'1 
s''

)(
m

m
ol

 m
'2 

s'1
) 

|(m
m

ol
 C

02
)/

(m
ol

 H
zO

)|

M
ul

ti-
A

 
2 

3.
88

(0
.4

4)
 

6.
28

(0
.2

6)

M
ul

ti-
B

 
8 

4.
89

(0
.2

9)
 

6.
35

(0
.3

0)

M
ul

ti-
C

 
4 

5.
32

(0
.2

2)
 

7.
04

(0
.1

0)

Ev
en

-B
 

12
 

4.
89

(0
.3

2)
 

6.
57

(0
.2

3)

0.
06

1(
0.

00
5)

 
0.

08
5 

; 
, 

0.
92

(0
.3

6)
 

1.
48

(0
.5

4)
 

5.
33

(2
.4

1)

0
.0

7
2

;:
.:

::
, 

0.
09

3(
0.

00
7)

 
1.

32
 (

0.
13

) 
2.

11
 (

0.
18

) 
5.

12
(0

.8
5)

0.
07

4(
0.

00
4)

 
0.

10
1 

(0
.0

09
) 

1.
35

(0
.1

9)
 

1.
90

(0
.2

3)
 

4.
96

(1
.2

6)

0.
06

8(
0.

00
4)

 
0.

08
8(

0.
00

4)
 

1.
17

(0
.0

8)
 

1.
71

(0
.1

1)
 

5.
01

(0
.5

1)

(M
Pa

)

m
in

 *
P,

„( 

(M
Pa

)

M
ul

ti 
14

 
4.

87
(0

.2
2)

 
6.

54
(0

.1
9)

Ev
en

 
12

 
4.

89
(0

.3
2)

 
6.

57
(0

.2
3)

0.
07

1(
0.

00
3)

 
0.

09
4(

0.
00

5)
 

1.
27

(0
.1

0)
 

1.
96

(0
.1

4)
 

5.
10

(0
.6

3)

0.
06

8(
0.

00
4)

 
0.

08
8(

0.
00

4)
 

1.
17

(0
.0

8)
 

1.
71

(0
.1

1)
 

5.
01

(0
.5

1)

-1
.5

8(
0.

01
) 

-1
.7

8(
0.

01
) 

-1
.6

6(
0.

04
) 

-1
.8

1(
0.

05
) to V

O

08

75

71



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
ab

le
 1

.4
. 

D
ai

ly
 m

ea
ns

 f
or

 p
hy

si
ol

og
ic

al
 m

ea
su

re
m

en
ts

 in
 M

on
ta

na
. 

Si
gn

ifi
ca

nt
 d

iff
er

en
ce

s 
(a

 =
 0

.0
5)

 a
re

 d
en

ot
ed

 b
y 

le
tte

rs
 

th
at

 a
re

 n
ot

 th
e 

sa
m

e.
 S

ta
nd

ar
d 

er
ro

rs
 a

re
 g

iv
en

 in
 p

ar
en

th
es

es
. 

N
 f

or
 w

at
er

 p
ot

en
tia

l v
al

ue
s 

(4
'|C

at)
 a

re
 a

s 
fo

llo
w

s:
 A

 =
 2

, B
 =

 3
, 

C
 =

 3
, M

ul
ti 

= 
8,

 E
ve

n 
= 

8.
 U

nd
er

 s
tru

ct
ur

e 
ty

pe
, A

, D
, a

nd
 C

 re
fe

r t
o 

ca
no

py
 s

tra
ta

. 
D

at
a 

ar
c 

un
w

ei
gh

te
d.

S
tr

uc
tu

re
N

A
m»

«
g.

 
gi

-n
ui

 
F

W
U

E
 

4'
,„

, 
m

in
 T

,„
f

T
yp

e
(n

m
ol

 m
'2 

s’
1) 

(n
m

ol
 m

'2 
s'

1)
(m

ol
 m

'2 
s 

') 
(m

ol
 m

'2 
s'

1) 
(m

m
ol

 m
'2 

s'
) 

(m
m

ol
 m

2 s
')

 
|(

m
m

ol
C

02
)/

 
(M

Pa
) 

(M
Pa

)

(m
ol

 H
20

)|

M
ui

ti-
A

3
3.

83
 (

0.
78

) 
*

5.
50

(1
.1

3)
*

0.
04

5 
(0

.0
10

) 
* 

0.
06

8 
(0

.0
15

)' 
1.

02
 (

0.
13

) 
*

1.
60

(0
.0

6)
*

4.
34

 (
0.

22
) 

* 
-1

.5
6 

(0
.0

2)
 *

b 
-1

.8
1 

(0
.0

6)
 *

M
ul

ti-
B

5
4.

37
 (0

.4
8)

 *
5.

89
 (

0.
59

) 
*

0.
05

2 
(0

.0
08

) 
* 

0.
06

1 
(0

.0
08

)' 
1.

14
 (

0.
12

) 
*

1.
71

 (
0.

16
)'

4.
73

(0
.1

7)
* 

-1
.5

5(
0.

09
)*

 
-1

.8
5(

0.
08

)*

M
ul

ti-
C

5
5.

14
(0

.4
5)

*
6.

57
 (

0.
29

) 
*

0.
06

3(
0.

00
8)

* 
0.

07
7(

00
04

)' 
1.

43
 (

0.
19

) 
*b

2.
16

(0
.3

1)
 *

b
4.

40
(0

.1
8)

* 
-1

.4
4(

0.
03

)*
 

-1
.8

3(
0.

04
)*

Ev
en

-B
12

3.
45

 (
0.

33
) 

*
5.

57
 (

0.
34

) *
0.

03
7 

(0
.0

05
) 

* 
0.

05
5 

(0
.0

04
)' 

0.
82

 (
0.

08
) 

“
1.

23
 (

0.
11

) *
c

4.
57

(0
.1

2)
* 

-1
.7

3 
(0

.0
4)

b 
-1

.9
8(

0.
06

)*

M
ul

ti
13

4.
54

 (
0.

32
) 

*
6.

06
(0

.3
5)

* 
0.

05
4 

(0
.0

05
) 

* 
0.

06
9 

(0
.0

05
) 

* 
1.

22
(0

.1
0)

*
1.

86
 (0

.1
4)

*
4.

51
(0

.1
1)

* 
-1

.5
1(

0.
04

)*
 

-1
.8

3(
0.

03
)*

Ev
en

12
3.

45
 (

0.
33

)b
5.

57
 (

0.
34

) 
*

0.
03

7 
(0

.0
05

)b
 0

.0
55

 (
0.

00
4)

 b
 

0.
82

 (
0.

08
)b

1.
23

 (
0.

1 
l)

b
4.

57
(0

.1
2)

* 
-1

.7
3 

(0
.0

4)
b 

-1
.9

8 
(0

.0
6)

b U> O



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T
ab

le
 1

.5
. 

M
ea

n 
va

lu
es

 f
ro

m
 p

hy
si

ol
og

ic
al

 m
ea

su
re

m
en

ts
 f

or
 in

di
vi

du
al

 tr
ee

s 
on

 p
lo

ts
 in

 M
on

ta
na

. 
D

at
a 

ar
e 

un
w

ei
gh

te
d.

 

St
an

da
rd

 e
rr

or
s 

ar
e 

gi
ve

n 
in

 p
ar

en
th

es
es

. 
Si

gn
ifi

ca
nt

 d
iff

er
en

ce
s 

(a
 =

 0
.0

5)
 w

ith
in

 e
ac

h 
pl

ot
 p

ai
r a

re
 d

en
ot

ed
 b

y 
le

tte
rs

 th
at

 a
re

 
di

ff
er

en
t. 

N
 f

or
 w

at
er

 p
ot

en
tia

l v
al

ue
s 

0l
'|c

af)
 a

re
 a

s 
fo

llo
w

s:
 P

lo
t 3

M
 -

 3
, P

lo
t 4

E 
= 

2,
 P

lo
t 

13
M

 =
 5

, P
lo

t 
14

E 
= 

3,
 P

lo
t 

18
E 

= 
3.

T
ar

ki
o

L
ar

ry
 C

re
ek

Lu
br

ec
ht

Pl
ot

 N
um

be
r

3M
4E

II
M

12
E

13
M

I4
E

I8
E

Pl
ot

 ty
pe

m
ul

tia
ge

d
ev

en
-a

ge
d

m
ul

tia
ge

d
ev

en
-a

ge
d

m
ul

tia
ge

d
ev

en
-a

ge
d

ev
en

-a
ge

d

D
at

e
7/

14
/9

9
7/

14
/9

9
7/

8/
99

7/
8/

99
7/

22
/9

9
7/

20
/9

9
7/

20
/9

9

N
4

3
4

3
5

3
3

A
nc

, (
nm

ol
 m

'2 
s-1

)
3.

06
(0

.2
7)

*
2.

31
 (

0.
43

)'
5.

27
(0

.2
3)

'
5.

13
(0

.0
7)

'
5.

13
(0

.2
9)

*
3.

05
 (

0.
18

)b
3.

31
 (

0.
27

)b

A
m„

 (n
m

ol
 m

'2 
s 

')
4.

23
 (

0.
57

) 
*

4.
76

 (
0.

70
)1

6.
97

 (
0.

08
)1

6.
99

 (0
.1

6)
*

6.
64

 (
0.

10
)*

5.
20

 (
0.

54
)b

5.
43

 (
0.

42
) 

b

g,
 (m

ol
 m

'2 
s'

1)
0.

03
1 

(0
.0

03
)*

0.
02

2 
(0

.0
03

) *
0.

06
2 

(0
.0

02
) 

*
0.

06
2 

(0
,0

02
) 

*
0.

06
7 

(0
.0

06
) 

*
0.

02
9 

(0
.0

02
) 

b
0.

03
5 

(0
.0

03
)b

Si
-m

K 
(m

ol
 m

'2 
s'

)
0.

04
7 

(0
.0

06
) 

*
0.

04
0 

(0
.0

04
) 

*
0.

08
 (0

.0
04

) 
*

0.
07

5 
(0

.0
00

) 
*

0.
07

7 
(0

.0
05

)'
0.

04
5 

(0
.0

06
)b

0.
06

0 
(0

.0
03

) 
b

E 
(m

m
ol

 m
'2 

s'
1)

0.
88

 (
0.

06
)'

0.
56

 (
0.

08
)b

1.
24

(0
.0

5)
*

1.
22

 (
0.

04
)*

1.
48

(0
.1

7)
'

0.
66

 (
0.

03
)b

0.
84

 (
0.

17
)b

Em
„ 

(m
m

ol
 m

'2 
s'

)
1.

49
(0

.1
0)

*
0.

80
 (

0.
13

)b
1.

73
 (

0.
02

)*
1.

59
(0

.0
4)

*
2.

25
 (

0.
29

)'
1.

14
 (

0.
09

)b
1.

40
 (0

.2
9)

 *b

W
U

E 
[(

m
m

ol
 C

O
2)

l 

(m
ol

 H
20

)]

4.
26

(0
.1

7)
'

4.
54

 (
0.

30
) 

*
4.

52
 (0

.0
3)

 *
4.

35
 (

0.
28

)'
4.

70
 (

0.
24

) 
*b

5.
04

 (
0.

09
) 

*
4.

34
 (

0.
04

)b

n
.f

(M
Pa

)
-1

.5
8 

(0
.0

7)
*

-1
.8

9(
0.

08
)*

--
-

-1
.4

7 
(0

.0
3)

'
-1

.7
3 

(0
.0

3)
b

-1
.6

5 
(0

.0
4)

b

m
in

 4
V

,f
(M

Pa
)

-1
.8

8 
(0

.0
7)

*
-2

.2
0 

(0
.1

0)
*

-
-

-1
.8

0(
0.

03
)*

-1
.9

3 
(0

.0
3)

b
-1

.8
7 

(0
.0

2)
 *

b

m
ax

 *
F|e

,r(
M

Pa
) 

(0
80

0 
hr

)

-1
.2

1 
(0

.0
8)

*
-1

.3
0(

0.
10

)*
--

—
-0

.9
5 

(0
.0

8)
 *

-1
.4

0 
(0

.0
6)

b
-1

.2
5 

(0
.0

9)
b



301M &
302E

0 i—■

303M &
304E

307M &
308E

Multi & 
Even 
(OR) 3 M & 4 E

Multi & 
11M & 13M& Even

12E 14E (MT)

- 0.2

-0.4 ■

- 0.6

- 0.8

-1

• 1.2

T V

■  even-aged 
El multiaged

Figure 1.1. Predawn leaf water potential (vPpredawn) values measured in 
Oregon (June 1998) and Montana (July 1998). Error bars represent +/- one 
standard error. N = 3 for each even-aged bar, N = 5 for each multiaged bar. 
Letters that are different within each pair denote significant differences at 
the a  = 0.05 level. Data me unweighted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 6 5 4

ev
en

-a
ge

d

m
ul

tia
ge

d

o 
!—

07
00

17
00

13
00

15
00

11
00

09
00

0.
1

0.
08

0.
06

E 
0.

04
ev

en
-a

ge
d

m
ul

tia
ge

d
0.

02 0
17

00
07

00
09

00
11

00
13

00
15

00

IN

E o

ev
en

-a
ge

d

m
ul

tia
ge

d

W
0.

5

17
00

09
00

11
00

13
00

15
00

07
00

pa
ci

fic
 s

ta
nd

ar
d 

tim
e

14
 

12
 

10
 

W 
8 

^ 
6 4 2 0 

—
 

07
00

ev
en

-a
ge

d

m
ul

tia
ge

d

09
00

 
11

00
 

13
00

pa
ci

fi
c 

st
an

da
rd

 ti
m

e
15

00
17

00

Fi
gu

re
 1

.2
. 

D
iu

rn
al

 p
at

te
rn

s 
of

 g
as

 e
xc

ha
ng

e 
m

ea
su

re
d 

in
 J

un
e 

19
99

 in
 O

re
go

n:
 (

a)
 p

ho
to

sy
nt

he
si

s 
(A

lie
l),

 (b
) s

to
m

at
al

 
co

nd
uc

ta
nc

e 
(g

s),
 (c

) t
ra

ns
pi

ra
tio

n 
(E

), 
an

d 
(d

) w
at

er
 u

se
 e

ff
ic

ie
nc

y 
(W

U
E)

. 
Er

ro
r b

ar
s 

re
pr

es
en

t +
/- 

on
e 

st
an

da
rd

 e
rr

or
. 

D
at

a 
ar

e 
un

w
ei

gh
te

d.
u> u>



4V
,„ 

(M
P

a)
pacific standard time

1300 170090 0 1100 1500700

0

■0.2

0.4

0.6
even-aged
multiaged0.8

1.2

1.4

1.6

1.8

-2

Figure 1.3. Diurnal pattern of leaf water potential ('J'ieac) in June (1999) for 
plots 301M and 302E in Oregon. Data are unweighted.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.
12

ev
en

-a
ge

d 

m
ul

tia
ge

d 

m
ul

tia
ge

d 
w

ei
gh

te
d

S
' 

0.
08

(/) I I
 

0.
06

c3
 

0.
04

0.
02

09
00

11
00

13
00

17
00

07
00

15
00

6 5 4 3

ev
en

-a
ge

d 

m
ul

tia
ge

d 

m
ul

tia
ge

d 
w

ei
gh

te
d

2 0 
\—

 
07

00
15

00
17

00
13

00
11

00
09

00

12

ev
en

-a
ge

d 

m
ul

tia
ge

d 

m
ul

tia
ge

d 
w

ei
gh

te
d

10 8 6 4 2 o 
!—

07
00

09
00

11
00

13
00

15
00

17
00

e 0 
I

1 
08

w 
0.

6 
0.

4 

0.
2

ev
en

-a
ge

d 

m
ul

tia
ge

d 

m
ul

tia
ge

d 
w

ei
gh

te
d 15

00
17

00
07

00
09

00
11

00
13

00
m

ou
nt

ai
n 

st
an

da
rd

 ti
m

e 
m

ou
nt

ai
n 

st
an

da
rd

 ti
m

e

Fi
gu

re
 1

.4
. 

D
iu

rn
al

 p
at

te
rn

s 
of

 g
as

 e
xc

ha
ng

e 
m

ea
su

re
d 

in
 J

ul
y 

19
99

 in
 M

on
ta

na
: (

a)
 p

ho
to

sy
nt

he
si

s 
(A

ne
t) 

(b
) s

to
m

at
al

 
co

nd
uc

ta
nc

e 
(g

s),
 (c

) t
ra

ns
pi

ra
tio

n 
(E

), 
an

d 
(d

) w
at

er
 u

se
 e

ff
ic

ie
nc

y 
(W

U
E)

. 
Er

ro
r b

ar
s 

re
pr

es
en

t +
/- 

on
e 

st
an

da
rd

 e
rr

or
. 

M
ul

tia
ge

d 
w

ei
gh

te
d 

re
fe

rs
 to

 th
e 

da
ta

 b
ei

ng
 w

ei
gh

te
d 

fo
r t

he
 a

m
ou

nt
 o

f l
ea

f a
re

a 
pr

es
en

t w
ith

in
 e

ac
h 

st
ra

ta
.



36

mountain standard tim e

13000900 1100 1500 17000700  

0 r—

even-aged 
m ultiaged 
m ultiaged weighted

0.5

1.5

-2.5

Figure 1.5. Diurnal pattern of leaf water potential (4'|eaf) in July (1999) for plots 
3M, 4E, 13M, 14E, and 18E in Montana. Multiaged weighted refers to the data 
being weighted for the amount of leaf area present within each strata.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



T
|C1,

i (
M

Pa
) 

Tie
ni 

(M
P

a)

Oregon

•  • •  •A *  ml--- —
•  •  —

_ j  *
°  %m •

r  ~ ^  '  ll"O o o

•  even-aged o multiaged
y = -0 .1978x- 1.3842 y = -0 .1982x- 1.2521

R2 = 0.25 R2 = 0.36

0 0.5 1 1.5 2 2.5 3

•2.5

Montana

1.5

o multiaged 
y = -0.4273x - 1.2238 

R2 = 0.29

•  even-aged 
y = -0.9612x - 1.3045 

R2 = 0.43
- 0.5

0
0 0.5 I 1.5 2 2.5 3

E (m m o l m'2 s'1)

Figure 1.6. Relationship between water potential (T|eaf) and transpiration (E) for 
plots 301M and 302E in Oregon and plots 3M and 4E in Montana.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER TWO

Seasonal variation in physiological function of even-aged and multiaged 

Pin us ponderosa Dougl. ex Laws, stand structures

A B S T R A C T

Diumal gas exchange and leaf water potential (Pieaf) of an even-aged and multiaged stand 
structure of ponderosa pine (Pinus ponderosa Dougl. ex Laws.) were measured in June, 
July and August in Montana. Photosynthetically active radiation (PAR), air temperature 
(Tair), and vapor pressure difference (VPD) were measured simultaneously to test for the 
effect o f each environmental variable seasonally. In June, net photosynthesis (A„«) was 
positively related to PAR, T a ir ,  VPD and T'leaf- In July and August, An« and gs decreased 
linearly with increasing Tajr, VPD, and Pieaf- The strongest correlation between Anet and 
these environmental variables occurred in August when water stress was greatest. In 
July, average daily transpiration (E) was significantly greater for multiaged trees. 
Multiaged trees also maintained higher rates of Anet, g s ,  and E for a longer period of the 
day in July, suggesting less of a water limitation than in the even-aged stand structure. 
Maximum rates of Anet, gs, and E were reached in June, while WUE (A/E) increased from 
June to August. Environmental variables exhibited varying levels of control over gas 
exchange throughout the season, with possible implications for carbon gain in different 
forest structures.

38
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I N T R O D U C T I O N

Gas exchange varies seasonally, spatially and temporally in forest canopies. Net 

photosynthesis is determined primarily by the water balance of the leaf and by 

environmental factors (Campbell and Norman 1998). The driving force for water 

transport through the soil-plant-atmosphere continuum is evaporation, and is described by 

available radiant energy, the humidity deficit, air temperature and wind speed in the 

Penman-Monteith equation (Passioura 1980). Seasonal photosynthetic rates are 

influenced by developmental stage and environmental conditions that influence stomatal 

aperture (Holbrook and Lund 1995). Light, CO2  concentration, evaporative demand of 

the air and soil water content are important factors that influence stomatal control (Jarvis 

1980, Dang etal. 1997).

Environmental conditions, including incident radiation, moisture availability, and 

temperature, vary throughout the growing season, and exert a varying degree of control 

over gas exchange depending on season. The Intermountain West is characterized by 

moderate annual precipitation and a dry growing season. Moisture is often limiting to 

gas exchange as the growing season progresses. A shift in the environmental factors that 

control stomatal conductance at different times during the growing season have been 

observed in conifers (Helms 1972, Maier and Teskey 1992) and appear to be related to 

the degree o f water stress present.

Ponderosa pine (Pinus ponderosa Dougl. ex Laws.) is a widely distributed conifer in 

North America, and often forms a transition between grasslands and mixed coniferous 

forests (Franklin and Dymess 1988). Ponderosa pine is characterized by high water use 

efficiency (WUE, photosynthesis/transpiration), and often has higher WUE than other
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sympatric conifers (Marshall and Zhang 1994). Pure stands of ponderosa pine grow in 

even-aged and multiaged stand structures as the result of natural and human-caused 

disturbance. Forest structure affects biophysical properties such as precipitation, 

radiation, wind speed, temperature, and humidity (Parker 1995). Even-aged and 

multiaged stand structures of ponderosa pine may exhibit differences in gas exchange and 

water relations as a result of the influence of structure on biophysical properties and 

physiological functions.

This study was designed to investigate some of the environmental variables that 

control physiological functions at different times of the growing season and to investigate 

the effect o f stand structure on gas exchange diumally. The specific objectives for this 

study were as follows: (1) to identify the diurnal course of environmental variables, gas 

exchange, and leaf xylem water potential in June, July and August in even-aged and 

multiaged stand structures of ponderosa pine; and (2) to identify the influence of 

environmental controls on gas exchange for each seasonal measurement.

M A T E R I A L S  A N D  M E T H O D S

Study sites - This experiment was implemented in pure stands o f ponderosa pine on 

the Lolo National Forest in Montana that contained both multiaged and even-aged stand 

structures. One circular plot 0.1 ha in size was installed in a fully stocked stand of each 

structure, trying to avoid any differences in density between the two plots. Habitat type 

was characterized as Pseudotsuga menziesii (Mirbel) Franco JCalamagrostis rubescens 

Buckl. (Pfister et al. 1977). Each tree breast height (1.37 m) and taller was counted and 

measured. Total tree height and height to the base of the live crown were measured with
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a clinometer or a height pole, and diameter was measured at breast height. Two 

increment cores at right angles were taken from each tree 12.7 cm (5 in) and greater in 

breast height diameter to obtain age at breast height. Bark thickness was measured with a 

bark-gauge to the nearest mm directly below the location o f each core on each tree. 

Sapwood length was measured on the increment cores in the field, and later used to 

compute sapwood basal area. Leaf area per tree was computed using equations that relate 

sapwood basal area with leaf area of individual trees (O'Hara and Valappil 1995). 

Sapwood basal area o f trees less than 12.7 cm in diameter was assumed to be basal area 

minus the bark. Leaf area of each tree was computed, summed, and divided by the area 

of the plot to get leaf area index (LAI). Stand density index was computed for each plot, 

using the formula:

SDI = Z(DBHj/10)1'6

where D B H j is the diameter of the rth tree in the stand (Long and Daniel 1990). The plots 

had similar basal area, sapwood basal area, and LAI (Table 2.1). Trees per hectare and 

S D I  were slightly greater for the even-aged plot (Table 2.1).

Sample tree selection -  Even-aged stands of ponderosa pine typically have bell

shaped diameter distributions, while multiaged stands have more irregular distributions. 

Multiaged stands can typically be divided into cohorts o f trees that have arisen after a 

common disturbance (O'Hara 1996, see Figure 2.1 for the diameter distributions o f the 

even-aged and multiaged plots for this study). All diameter classes (5 cm) were 

represented in the multiaged stand, with a maximum dbh of 51 cm. The multiaged plot 

has a heterogeneous canopy layer with numerous strata and with leaf area present from 

the top of the canopy to the forest floor (Figure 2.2b). Three cohorts were recognized in
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this stand based on both ages and sizes of trees: cohort one is comprised o f the 

diameter class 2.5 cm, cohort two encompassed the diameter classes 7.5-37.5 cm 

(resembling the bell-shaped curve in the even-aged stand), and cohort three consisted of 

diameter classes 42.5-52.5 cm (Figure 2.1). The mean diameter of the even-aged plot 

was 27 cm (10.6 in), and all trees were considered to be one cohort. Even-aged stands of 

ponderosa pine typically maintain a continuous, uniform canopy layer.

Crown classification of individual trees was made following the definitions of Oliver 

and Larson (1996). All trees in the even-aged plot were considered to be the B-stratum. 

Three trees in the even-aged plot were sampled at mid-canopy, and are denoted in Figure 

2.2a with an asterisk. For the multiaged plot, four representative trees were sampled: one 

from cohort one, two from cohort two, and one from cohort three. Emergent trees 

belonging to the oldest cohort were classified as the A-stratum. The upper continuous 

canopy layer was composed of the middle cohort, and was considered the B-stratum.

Trees belonging to the B-stratum are the most comparable to trees in the even-aged plot 

because of similar ages and sizes. Trees belonging to the youngest cohort were classified 

as the C-stratum (lower stratum beneath the B-stratum), and ranged from seedlings to 

saplings. All trees sampled were co-dominant within their respective strata, and were 

sampled at mid-canopy (see Figure 2.2b for sample tree selection). The average crown 

ratio was 0.69 for the multiaged stand structure and 0.55 for the even-aged.

Predawn xylem water potential - Predawn xylem leaf water potential 0Fprcdavvn) was 

measured during the growing season of 1998. Previous studies have shown no difference 

in measured 4/predawn throughout tree canopies of ponderosa pine (Valappil 1997), so mid

canopies were sampled for consistent sampling and comparisons. One branch was
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excised from each sample tree, placed in a plastic ziplock bag, and put on ice until all 

samples were obtained. After all samples were gathered, predawn was measured using a 

pressure chamber. Two fascicles of each branch were measured in the order that the 

samples were obtained. These two measurements were averaged to obtain an average 

predawn for that branch. If the two fascicles measured were not within 0.2 MPa, a third 

fascicle was measured, and the two closest values were averaged to get the vf/ieaf for that 

branch. As a check, the first branch measured was kept on ice and re-measured after all 

other samples to ensure that there was no effect of time since cutting on the measured

T  predawn-

Soil water content - On June 10 (even-aged), June 14 (multiaged), and July 15 (both 

structures), soil samples were collected for soil water content calculations. On each plot, 

ten points were randomly selected and soil samples between 15 and 20 cm from the top 

of the soil surface were collected. It is generally assumed that most of the fine roots of 

trees and understory vegetation occur within the top 30 cm of soil (Brady and Weil 

1999). The soil samples were placed in soil tins, brought back to the lab, weighed to the 

nearest g, dried for 48 hours at 80° C, and weighed again to the nearest g. Water content 

(% by weight) was calculated as (( wet-dry )/dry)* 100.

Gas exchange - A field portable closed gas exchange system (LI-6200, Li-Cor Inc., 

Lincoln, NE) was used to measure net photosynthesis (Anet) and stomatal conductance 

(gs) with a 1/4-1 cuvette. Two fascicles were excised from each branch and measured by 

placing the mid-portion of the fascicles inside the cuvette. Measurements were made 

every hour beginning at 0700-0900 and continued until 1600. Samples were obtained 

with a 4-m tall platform and a pole-pruner, or with a 12-gauge shotgun for larger trees.
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One sample from mid-canopy of each o f the previously identified sample trees was 

obtained and measured at each hour. Branches excised were fully sunlit at the time of 

sampling. Measurements were completed within three minutes o f detachment from the 

tree. Preliminary measurements found no difference in gas exchange when detached 

branches were measured within three minutes. Due to intermittent high clouds in August, 

a QED light source (Quantum Devices, Inc., Bameveld, WI) with a peak wavelength of 

670 nm was used to supply additional light (at a rate o f 800 pmol m '2 s '1) to ensure that 

photosynthesis was not light-limited. All other measurements were made on sunny days. 

Ambient photosynthetically active radiation (PAR, 400-700 nm) was measured with a 

quantum sensor (Li-Cor Inc., Lincoln, NE) attached to the tripod where the leaf chamber 

was mounted. The June 16 gas exchange measurements ceased at 0200 due to an 

equipment failure.

Computations o f  transpiration (E) and WUE - Transpiration (E) and water use 

efficiency (WUE) were computed using stomatal conductance and photosynthesis values 

obtained with the LI-6200. Immediately before each pair of fascicles was placed in the 

cuvette, the temperature of the air (simulated by using the chamber temperature measured 

by the LI-6200) and relative humidity were recorded. Vapor pressure difference (VPD) 

was computed as:

VPD = (esat Air - eair)/pressure (mb), where 

esat Air = 6.1078*exp((17.269*Tajr)/237.3+Tair), and 

eajr = esat A ir* (RH/100) 

following Campbell and Norman (1998). Transpiration was then computed as:

E = VPD*gs*1000
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WUE was computed as photosynthesis/transpiration (A/E).

Ponderosa pine has three-needled fascicles with stomata on all surfaces. All 

physiological data presented here are expressed on an all-sided leaf area basis. After gas 

exchange measurements, the width of the fascicles was measured to the nearest 0.1 mm, 

and multiplied by the width of the cuvette to obtain projected leaf area. Since the middle 

portion of the fascicles was placed in the cuvette, the area of ponderosa pine needles was 

assumed to be a right cylinder divided into thirds. It follows that the conversion factor 

from projected leaf area to all-sided leaf area is 2.36 (Rundel and Yoder 1998).

Data analysis - All even-aged trees were averaged together for each measurement 

day, as were all multiaged trees to look at mean values o f Anet, gs, E, WUE, and 'F|Caf 

diumally or across daily periods for both structures. Additionally, the multiaged leaf 

physiology data for each strata were weighted for the proportion of leaf area each strata 

represented in the plot. The proportions for the multiaged plot were as follows: A = 0.42, 

B = 0.55, C = 0.03. Diurnal patterns of An«, gs, E, WUE, and vFieaf are presented as 

structural means (even-aged and multiaged) with associated standard errors. An 

additional line is present representing the data weighted in the fashion just described for 

the multiaged plot (this is labeled as “multiaged weighted”).

Significant differences (a  = 0.05) in mean daily values between stand structures were 

determined by two sample t-tests. Linear regression was used to describe the 

relationships between A n„ and gs with VPD and Tajr, with no separation between 

structures. Even-aged and multiaged plots were treated separately to test for differences 

in the Anet versus T'leaf relationship. Differences in slope between even-aged and
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multiaged measurements were tested with a general linear model procedure. Ail 

analyses were conducted using SYSTAT (SPSS Inc.).

R E S U L T S

Predawn leaf water potential and soil water content -  There were no 

differences in TVcdawn between even-aged and multiaged plots for any measurement 

period in 1998 (Figure 2.3). Soil water content (% by weight) was significantly greater 

for the even-aged plot in both June and July in 1999 (Figure 2.4). It is important to note 

that for the June measurement, the even-aged plot was sampled on June 10 and the 

multiaged plot was sampled on June 14. The effect of time on the amount o f water in the 

soil cannot be quantified.

Environmental conditions — Photosynthetically active radiation (PAR, 400 -  700 

nm) followed a similar trajectory for all three measurement days (Figure 2.5a). PAR was 

variable on the August date as intermittent high clouds caused PAR to drop below 1000 

pmol m'2 s '1. Light saturation for photosynthesis in ponderosa pine generally occurs 

between 800 and 1000 pmol m'2 s '1 (Hadley 1969, Bond et al. 1999). Vapor pressure 

difference (VPD) and air temperature ( T a i r )  were very similar between measurement days 

(Figure 2.5b and 2.5c). Highest T a ir  and VPD were reached in August.

Gas exchange -  The time when net photosynthesis (Anet) was at its daily maximum 

was different for each measurement date (Figure 2.6). Photosynthesis was maximized at 

1100 for both even-aged and multiaged plots in June. The highest photosynthetic rates 

achieved in July and August were at the beginning of the measurement period (between 

the hours of 0800-0900) with a steady decline as the day progressed (Figure 2.6).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



47
Stomatal conductance (gs) was generally at its maximum early in the day, with the 

exception of the even-aged trees in June (Figure 2.7). Late in the afternoon in August, gs 

was severely depressed (Figure 2.7), corresponding to the depression in Anet (Figure 2.6). 

Average daily Anct (averaged over each measurement day for each structure) and average 

Amax (the average maximum photosynthetic rate for each plot on each day) declined from 

June to August, while gs and gs-max showed a variable pattern (Table 2.2).

Transpiration rates (E) were highest in June, decreasing in July and August (Figure 

2.8). Average daily E  and average Emax were significantly greater for the multiaged plot 

as compared to the even-aged in July only (Table 2.2). The depressed transpiration rates 

in August correspond to the lower rates of gs and An« (Figure 2.8). Early morning T'leaf 

was highest in June and lowest in August for both stand structures (Figure 2.9). Average 

'Ficaf tended to stay above -2.0 MPa, with no individual measurement less than —2.1 

except for one measurement in July (-2.3 MPa midday on the even-aged plot). The 

average lowest vF|Caf achieved was highest for June and lowest for July (Table 2.2). There 

were no significant differences in water use efficiency (WUE = A/E) for any 

measurement date, but average WUE generally increased from June to August for both 

stand structures (Table 2.2).

A distinct pattern in physiological measurements is apparent when comparing all data 

together over all measurement periods. Trends in diurnal patterns are very similar 

between even-aged and multiaged structures in June and August, while there are 

distinctly different patterns in Anet, gs, E, and in July between even-aged and 

multiaged plots (Figures 2.6,2.7,2.8 and 2.9). The multiaged trees demonstrated higher
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photosynthesis, stomatal conductance, transpiration and lower TVaf for the majority of 

the July measurement day.

Relationship ofAnetandgs with environmental variables -  In early summer (June), 

net photosynthesis (Anet) increased with increasing PAR, VPD, and T a ir ,  but in July and 

August, Anet decreased with increasing VPD and Tair (Table 2.3, Figures 2.10a and

2.1 la). There was a steeper decline in Anet with VPD in August than in July (P < 0.001). 

There was not a positive relationship between Anet and PAR in July and August (Table 

2.3). There was a significant linear relationship for all dates between Anetand Tair (Figure

2.1 la), with the strongest correlation occurring in August. Stomatal conductance (gs) 

decreased linearly with increasing V PD  (Figure 2.10b) and Tair (Figure 2.1 lb) for all 

three dates. The strongest correlation between gs and VPD and gs and Tajr was in August 

(R2 = 0.70 and R2 = 0.71, Table 2.3).

Relationship between An* and 'Fu„f -  Net photosynthetic rates (An«) increased with 

decreasing T^af in June (Figure 2.12) producing a significant relationship for the 

multiaged stand structure (R2 = 0.38, P = 0.006) but not the even-aged (R2 = 0.20, P =

0.107). In July, An« generally decreased with decreasing 'F|eaf (Figure 2.12), although 

only the even-aged stand structure exhibited a significant relationship (R2 = 0.22, P = 

0.049 for the even-aged structure; R2 = 0.08, P = 0.158 for the multiaged stand structure). 

The relationship between Anel and Tieaf was strongest in August for both stand structures 

(R2 = 0.66, P < 0.001 for the multiaged stand structure; R2 = 0.40, P  = 0.001 for the even- 

aged stand structure) with Anet decreasing with decreasing T/ieaf (Figure 2.12).
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D I S C U S S I O N

Seasonal differences in gas exchange and water relations have been observed and 

described in many different coniferous tree species (Teskey et al. 1984, Maier and 

Teskey 1992, Yoder et al. 1994, Kloeppel et al. 1995, Dang et al. 1997), including 

ponderosa pine (Hadley 1969, Helms 1972, Cregg 1993). One advantage o f being 

evergreen is the ability to fix carbon during any part of the year that conditions are 

favorable (Matyssek 1986, Man and Lieffers 1997). Even so, the summer months 

provide the most optimal growth conditions and remain the most important season for 

carbon gain (Troeng and Linder 1982a, Teskey et al. 1984, Maier and Teskey 1992, 

references within Teskey et al. 1994). Carbon assimilation is affected by environmental 

influences differently at various times in the season (Helms 1972, Maier and Teskey 

1992). Early in the growing season (May — June), irradiance presents the greatest 

limitation to maximum carbon assimilation (Helms 1972). As the season progresses, 

water typically becomes limiting. As a result, the evaporative demand o f the air (as 

described by vapor pressure difference, VPD) and air temperature become more 

important factors in controlling gas exchange (Helms 1972).

In the Intermountain West, precipitation occurs in fall, winter, and spring, with much 

of the growing season receiving little precipitation (Pfister et al. 1977). Ponderosa pine is 

especially well adapted to areas with high temperatures and low moisture availability 

(Franklin and Dymess 1988), and often is the first conifer encountered on the edge of 

grasslands (Pfister et al. 1977, Franklin and Dymess 1988). In this study, season 

influenced the relationship between the environment and physiological performance. In 

June, it appears that water was not limiting to gas exchange as net photosynthesis (Anet)
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increased with increasing VPD, Tajr, and decreasing 'Fieaf (Figures 2.10a, 2.1 la, and 

2.12). The strongest decreases in Anet with increasing VPD and Tair and decreasing Tieaf 

occurred in August, when water typically becomes most limiting in western Montana.

Ail environmental parameters measured (PAR, VPD, and Tair, Figure 2.5) were 

comparable between measurement days. These data alone suggest no obvious differences 

in the level of environmental stress as the season progressed. The 'Fpredawn data from 

1998 (Figure 2.3) and the decreasing soil water content in 1999 (Figure 2.4) suggest that 

soil water depletion throughout the season likely causes a water limitation later in the 

growing season. The lowest vPieaf values occurred in even-aged trees in July, and 

instantaneous WUE increased from June to August (Table 2.2), implying physiological 

adjustment by individual trees in response to their environment. This data contributes to 

the argument that ponderosa pine is a drought tolerant species, as it possesses the ability 

to thrive when water is adequate while avoiding water loss when water becomes limiting.

Others have shown a stronger correlation between carbon assimilation and VPD and 

Tair as water becomes more limiting later in the growing season. Helms (1972) found that 

light level explained most of the variation in photosynthetic rates under low stress 

conditions, with air temperature and relative humidity becoming more important as the 

level of environmental stress increased. Kaufinann (1982) found that photosynthetic 

photon flux density (PPFD) and absolute humidity difference (DAH) were the most 

important environmental variables in predicting stomatal conductance for any season 

using data from three subalpine conifers and one angiosperm. In this study, there was a 

significant but weak (R2 = 0.35) positive linear relationship between ambient PAR and 

AnCt in June only (Table 2.3). Maier and Teskey (1992) reported strong correlations of
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Anet and gs with absolute humidity deficit at predawn xylem pressure potentials less 

tiian —1.0 MPa, but no correlation above —1.0 MPa for eastern white pine. Vapor 

pressure difference and temperature regulated photosynthesis and mesophyll conductance 

(gm) in Picea mariana (Mill.) B.S.P. and Pinus banksiana Lamb., with stomatal 

limitations more apparent later in the growing season (Dang et al. 1997). From the data 

presented in this study, it is evident that water availability plays an increasing role in 

controlling gas exchange as the season progresses, with a similar effect in both the even- 

aged and multiaged stand structures.

Stomatal closure in relation to water potential has been observed in other coniferous 

species (Pseudotsuga menziesii (Mirbel) Franco. - Running 1976, Larix occidentalis 

Nutt. - ICloeppel et al. 1995). Stomata tend to be unaffected by a wide range in P icaf, with 

a linear or curvilinear decline after a threshold is reached (Ludlow 1980). The 

possibility of ponderosa pine exhibiting a linear decrease in An« and gs in response to a 

threshold xylem water potential has been extensively studied, with observed threshold 

values ranging between -1.0 and -1.5 MPa (Cleary 1971, Lopushinsky and Klock 1974, 

Bunce et al. 1979). Threshold water potentials have been observed in other conifers, 

including Pseudotsuga menziesii (Mirbel) Franco. (-2.0 MPa, Running 1976), Pinus 

banksiana Lamb, and Picea mariana (Mill.) B.S.P. (-1.3 and-2.5 MPa, Dang et al.

1997), and Pinus halepensis Mill. (-0.8 MPa, Melzack et al. 1985). 4/ieafin this study 

consistently remained between -0.90 and -2.1 MPa for each diurnal measurement period. 

The largest decline in Anet with decreasing T^af occurred in August for both even-aged 

and multiaged stand structures (Figure 2.12), with no negative effect of 'Fieaf on Anet in 

June. From this data, there also appears to be a minimum leaf water potential (-2.0 to —
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2.1 MPa) that ponderosa pine needles would not go below for all three measurement 

dates (Figure 2.9). A lethal water potential (no recovery of photosynthesis) of -2.2 MPa 

has previously been identified in ponderosa pine under controlled experimental 

conditions (Bunce et al. 1979). An important point to note from this study -  in 

comparison to others -  is that different varieties of ponderosa pine as well as different 

populations and sizes of individuals within varieties were investigated. It is therefore 

impossible to rule out genotypic or phenotypic variation in water relations with regard to 

gradients in the environment within ponderosa pine (in particular, influences of VPD and 

water availability on gs and Ane0-

All rates of gas exchange tended to decrease from June to August in this study, while 

WUE increased (Table 2.2, Figures 2.6, 2.7 and 2.8). A decrease in carbon assimilation 

with season has been observed previously in ponderosa pine (Helms 1972, Cregg 1993), 

although one early study demonstrated maximum rates of photosynthesis occurring in 

autumn and cool summer days (Hadley 1969). Furthermore, the time of the day when 

maximum rates of photosynthesis were reached changed with each measurement period, 

but was similar between the different stand structures. Early in the growing season, Anet 

reached a maximum rate during mid-day, while later in the season, An« was maximized 

during the earliest measurement periods (between 0800 and 0900, Figure 2.6) which may 

actually have presented a light limitation to CO2 assimilation at the time of sampling (see 

diurnal PAR, Figure 2.5). This emphasizes the importance of determining the time of 

day where gas exchange is being least limited when measuring CO2  assimilation in 

experimental studies, as various environmental parameters limit photosynthesis at
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different times of the day during different times of the season (Helms 1972. Running 

1976).

Previous physiological studies in ponderosa pine have identified temperature optima 

for photosynthesis to be between 17 and 35 °C (Hadley 1969, Helms 1972, Monson and 

Grant 1989). Helms (1972) identified different temperature optima during the growing 

season depending on the level of environmental stress, with optimum temperature 

increasing with greater stress. Helms (1972) also showed that as environmental stress 

increased, the relationship between photosynthesis and air temperature decreased. That 

was not the case in this study, where the relationship was strongest for the August 

measurements (Figure 10). The data analysis done by Helms (multiple regression with 

data transformation) was different than in this study (simple linear regression), which 

may contribute to differences in the results and conclusions o f each study. Nevertheless, 

it is difficult to discern a temperature optimum from the data presented here, but it would 

appear that temperatures above 30 °C are not favorable for photosynthesis (Figure 2.1 la). 

In this study, as in any field experiment, it is difficult to determine the true effect of 

temperature on gas exchange because increases in temperature are accompanied by 

changes in VPD (Helms 1976, Jarvis 1980).

The differences observed in soil water content (Figure 2.4) could be due to a number 

of factors. Since soil water content and predawn water potentials were not measured 

during the same growing season, it is impossible to test for a correlation between them, or 

to conclude that the patterns observed in water availability were the same for both 

growing seasons. The stand structure of multiaged ponderosa pine tends to be somewhat 

open as compared to even-aged stand structures (Figure 2.2) despite both structures
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having similar LAI. As a result, incident radiation often reaches the forest floor in 

multiaged stands. The two plots in this study were similar in leaf area, trees per hectare, 

basal area, sapwood basal area, and SDI (Table 2.1), and can be considered comparable 

in terms of site occupancy. If the multiaged structures allow for more light penetration, 

then the microclimate within the stand would certainly be different, including air 

temperature and VPD as the result of greater turbulence and mixing of the air. As a 

result, there may be increased evaporation from the soil in the multiaged structures, 

contributing to decreased soil water content. The multiaged structure may also be using 

more water as suggested by the higher transpiration rates in July. This would deplete the 

soil water resources, but tP|eaf values tended to be higher for the multiaged trees than the 

even-aged trees (Figure 2.9). This suggests that the multiaged site was equally able to 

support the gas exchange demands of the foliage present, especially considering total leaf 

area was similar for both plots. Ponderosa pine reportedly develops a taproot (Jackson 

and Spomer 1979), and it is likely that roots of larger trees are reaching into a source of 

water well beneath the upper soil surface. Multiaged stand structures, because of the 

varying sizes of trees present, may be more efficient at extracting water from different 

depths of the soil than trees in even-aged stand structures. This may result in a more 

efficient partitioning of water use throughout the canopy.

Instantaneous WUE was not different between structures (Table 2.2), but did increase 

as the season progressed in both structures. The data indicates no difference in the way 

trees in the two stand structures are using water (carbon produced per unit water lost), but 

the soil water content and gas exchange data suggest there are differences. As 

demonstrated earlier in chapter one (Nagel 2000), instantaneous WUE was not different
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between structures in either June in Oregon or July in Montana. The magnitude o f  Anet 

and E were different between structures in chapter one, suggesting no difference in WUE, 

but a difference in the magnitude of each process. This appears to be the case in this 

study, as well (Figures 2.6 and 2.8). Multiaged trees maintained higher Tieaf with higher 

rates of An« and E, suggesting less stomatal limitation as compared to the even-aged 

trees. In August, there appears to be a water limitation for both structures as Anet 

decreases significantly with Tieaf (Figure 2.12) coinciding with suppressed gs and E in 

both structures (Figures 2.7 and 2.8).

Long-term WUE (as determined by stable carbon isotope discrimination, 813C) has 

previously been found to be higher in even-aged stands of ponderosa pine when 

compared to multiaged stands (Valappil and O'Hara 2000). Lower TVcdawn was also 

observed in even-aged stands. If trees in even-aged stand structures are forced to close 

stomates sooner in the day in response to increased environmental stress, there may be 

less discrimination of 5 I3C, resulting in a higher long-term WUE, while instantaneous 

WUE may be the same between stand structures. Greater WUE in even-aged stands 

could also be partially attributed to greater site occupancy of even-aged structures, 

creating greater water stress for individual trees (Valappil and O’Hara 2000). In a 

progeny study involving ponderosa pine parents from coastal and interior varieties (var. 

ponderosa and var. scopulorum), Monson and Grant (1989) concluded that ponderosa 

pine exhibits greater WUE and lower transpiration rates at the expense of lower 

maximum rates o f photosynthesis. Zhang et al. (1997), however, found no relationship 

between drought tolerance and high WUE between three populations of ponderosa pine. 

Phenotypic acclimation or genotypic changes in the ratio of sapwood basal area to leaf
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biomass have been observed in desert vs. montane stands o f ponderosa pine in Nevada 

(var. ponderosa), with a higher ratio o f  sapwood basal area to leaf area in desert stands 

(Callaway et al. 1994). This phenomenon was not accompanied by a decrease in 

photosynthetic rate due to higher stem respiration partly because of a higher leaf nitrogen 

investment in the desert pines (Carey et al. 1998). Greater 5 l3C composition in desert 

stands was attributed to a greater evaporative demand in the desert environment, and not 

to greater WUE due to greater photosynthesis or lower transpiration (Carey et al. 1998).

In the even-aged stand sampled in this study, it appears that greater water stress in the 

even-aged structure has resulted in lower rates of carbon assimilation for at least part of 

the growing season, with no apparent effect on instantaneous WUE. Implications for 

long-term WUE are unknown, but results from Valappil and O'Hara (2000) suggest lower 

long-term WUE in even-aged stand structures of ponderosa pine.

From this study, it is clear that environmental conditions controlled gas exchange in 

various ways throughout the months o f  June, July and August. Different environmental 

controls were important depending on the amount of water stress present. Although the 

effects of PAR, Tair, VPD, and vP|eaf were tested separately, it is most likely that there is 

an interaction of environmental controls, especially later in the season where more stress 

is apparent (Helms 1972). This must certainly be the case where an increase in PAR is 

accompanied by an increase in VPD and Tair, resulting in a negative relationship between 

PAR and Anct in July and August (Table 2.3). Only fully sunlit, one year-old foliage 

from the middle portion of individual trees was sampled in this study, with a limited 

number of trees from each plot. Rates of photosynthesis and stomatal conductance tend 

to decrease with canopy depth in both evergreen and deciduous tree species (Beadle et al.
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1985, Hollinger 1989, Ellsworth and Reich 1993). Often times, there is more variation 

in photosynthesis and stomatal conductance within a tree crown than between individual 

trees of the same canopy (Troeng and Linder 1982b, Beadle et al. 1985). Variation is 

caused mainly by differences in light intensity, biochemical capacity of leaves to fix CO2 , 

and water loss associated with CO2  uptake (Holbrook and Lund 1995). Maximum rates 

o f photosynthesis occur in needles of various ages in conifers, but currently developing 

leaves through two year-old leaves are generally the most productive (two-year-old 

needles in Pinus ponderosa - Helms 1970, current-year needles in Pseudotsuga menziesii 

(Mirb.) Franco - Woodman 1971, one-year-old needles in Abies amabilis (Dougl.)

Forbes- Teskey et al. 1984, current- to one-year-old in Pinus strobus L., depending on 

season - Maier and Teskey 1992, one- to four-year-old in Pinus contorta Dougl. - 

Schoettle and Smith 1999). Therefore, it is likely that not all the variation between even- 

aged and multiaged stand structures of ponderosa pine was captured by the data presented 

here, and it would therefore be inappropriate to make inferences about all potential 

factors influencing productivity between these two stand structures of ponderosa pine.

In conclusion, values of VPD, Tajr, and vF|eaf can have very different implications on 

gas exchange depending on the time of year. The relationships between photosynthesis 

and stomatal conductance and any one environmental variable are not constant 

throughout the growing season. These different relationships need to be considered when 

predicting plant growth using environmental variables as drivers in mechanistic growth 

models. The importance of determining the time of day when carbon assimilation is at its 

peak is tremendously important when making field observations, especially as the level 

of water stress increases. It appears that physiological performance may be different
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between even-aged and multiaged stand structures of ponderosa pine, but the 

implication for overall productivity is still unknown.
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Table 2.1. Plot-level characteristics for the multiaged and 
even-aged plots. Plots were circular and 0.1 ha in s e e .

Multiaged Even-aged

LAI 5.63 5.53
age range 20-132 81
trees per hectare 350 410
basal area 21.76 24.22

(m2ha'')
sapwood basal area 14.38 14.13

(m2ha'‘)
SDI 382 458
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Table 2.3. Relationship between net photosynthesis (Anet) and stomatal 
conductance (gj) and photo synthetically active radiation (PAR), vapor pressure 
difference (VPD), and air temperature (Tair). SEE = standard error of the estimate. 
N for each date: June = 34, July' = 64, and August = 56.

Relationship Date B 0 *x R z SEE P

Anet VS- PAR June 2.266 0.001 0.35 1.162 <0.001
July 5.213 -0.002 0.36 1.016 <0.001
August 4.577 -0.002 0.38 1.149 <0.001

Anet VS- VPD June 2.647 0.511 0.17 1.313 0.016
July 5.015 -0.769 0.42 0.968 <0.001
August 4.322 -0.983 0.75 0.761 <0.001

AnetVS.Talr June 0.912 0.118 0.26 1.239 0.002
July 6.830 -0.159 0.38 1.001 <0.001
August 8.460 -0.243 0.73 0.790 <0.001

§5 vs. PAR June 0.068 <-0.001 0.31 0.012 0.001
July 0.046 < -0.001 0.26 0.010 <0.001
August 0.052 <-0.001 0.38 0.013 <0.001

g. vs. VPD June 0.071 -0.008 0.45 0.011 <0.001
July 0.045 -0.006 0.30 0.010 <0.001
August 0.050 -0.011 0.70 0.009 <0.001

gs vs- Tair June 0.088 -0.001 0.39 0.011 <0.001
July 0.060 -0.001 0.28 0.010 <0.001
August 0.097 -0.003 0.71 0.009 <0.001
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Figure 2.1. Diameter distribution for the even-aged and muidaged stand 
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June July August

■  even-aged ■  multiaged

Figure 2.3. Predawn leaf water potential CPprcclawn) values measured in 1998. 
Data are unweighted. Error bars represent +/- one standard error. N  = 3 for 
even-aged, N = 5 for multiaged.
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20

■ even-aged q  multiaged

June July

Figure 2.4. Soil water content (% by weight) for June and July 1999. Note that 
the even-aged samples were taken on June 10 and the multiaged on June 14. Both 
structures were re-sampled on July 15. Letters that are different denote significant 
differences. Error bars represent +/- one standard error. N = 10.
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CHAPTER THREE

Does stand structure influence productivity potential in 

shade intolerant Pinus ponderosa Dougl. ex Laws.?

A B S T R A C T

The relationships between canopy depth and area-based ( A ^ e a )  and mass-based ( A m a s s )  

maximum photosynthetic rates, specific leaf area (SLA), and area-based ( N a r e a )  and mass- 
based ( N m a s s )  leaf nitrogen were investigated for even-aged and multiaged stand 
structures of ponderosa pine (Pinus ponderosa Dougl. ex Laws.). The primary structural 
difference between stand structures involves greater canopy depth in the multiaged stand 
structures as compared to the even-aged, possibly resulting in different light relations 
within each canopy. Both Aarea and Amass were relatively constant with canopy depth in 
both stand structures. N a r e a  and N m ass  decreased with increasing canopy depth in the even- 
aged stand structures but not in the multiaged stand structures. SLA tended to increase 
with increasing canopy depth, although this relationship was significant only in the 
multiaged stand structures. The typical linear relationship observed for many species 
between photosynthetic rate and leaf nitrogen was not present in either stand structure on 
either an area- or a  mass-basis. Narea was highly correlated to SLA in both even-aged and 
multiaged stand structures (R2 = 0.66 and R“ = 0.52, respectively). These data suggest 
that leaf structure and nitrogen investment are adjusted in ponderosa pine such that 
photosynthesis is maximized in comparable ways throughout the canopies of both types 
of stand structure. This finding, along with similar levels of leaf area index (LAI) and 
basal area growth efficiency ( B  A G E ) ,  support the notion that multiaged stand structures 
of ponderosa pine have the physiological potential to produce similar amounts of wood 
volume as even-aged stand structures.
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INTRODUCTION

The primary growth factor that determines the distribution of photosynthetic surfaces 

within forest canopies is light (Holbrook and Lund 1995). The amount of intercepted 

photo synthetically active radiation (PAR, 400-700 nm) is highly correlated to measures 

of growth and productivity in both agricultural and tree species (Monteith 1981, Oker- 

Blom et al. 1989, Dalla-Tea and Jokela 1991, Law et al. 1992). Canopy light interception 

is influenced by the amount of light received at the top of the plant canopy, the total 

amount o f  foliage (leaf area index, LAI), the vertical distribution o f leaf area within the 

canopy, leaf angle, the optical properties of the leaves, and canopy architecture 

(Kuuluvainen and Pukkala 1989, Dalla-Tea and Jokela 1991, Chen et al. 1994). Crown 

shape and canopy structure primarily determine the spatial pattern of leaf display, which 

influences self-shading and efficiency of radiation interception (Kuuluvainen and 

Pukkala 1989, Stenberg et al. 1994).

The maximum or optimum amount of foliage a given species can support on a given 

site is determined by many factors, including site water balance (Grier and Running 

1977), climate (including evaporative demand, Gholz 1982, Vose et al. 1994), soils, and 

shade tolerance (Vose et al. 1994, Oliver and Larson 1996). Shade intolerant conifers 

typically show less plasticity in physical leaf properties in response to light environment 

than do relatively more shade tolerant evergreen coniferous or broadleaf deciduous tree 

species (Abrams and Kubiske 1990, Smith et al. 1991). This trend is related to leaf-life 

longevity and is accompanied by a decrease in SLA, Amax, and leaf nitrogen with 

increasing leaf-life span (Reich et al. 1995, Reich et al. 1997).
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Photosynthetic performance of foliage is often related to leaf structural properties 

in many forest species. A  strong relationship between leaf nitrogen ( N | e a f )  and m a x i m u m  

photosynthetic rates ( A m a x )  has been observed across a  diverse range of species (Field and 

Mooney 1986. Evans 1989, Reich et al. 1991, Reich et al. 1992). This relationship 

appears to be strongest in life-form groups that grow in environments rich in resources. 

Further, the A m a x - N | e a f  relationship appears stronger in broad-leaved deciduous trees than 

in evergreen conifers (Reich et al. 1998).

Specific leaf area (SLA, leaf area per unit dry leaf biomass) is a relationship that 

describes the distribution of leaf biomass in relation to leaf area of a plant canopy (Pierce 

et al. 1994). Species exhibiting high SLA are able to support a large leaf area with a 

small carbon investment (Matyssek 1986). Species with high SLA often have relatively 

high photosynthetic rates, partly because of a higher nitrogen investment (Matyssek 

1986, Reich et al. 1992, and Reich et al. 1997). Broadleaf deciduous trees generally have 

higher SLA than evergreen conifers (Abrams and Kubiske 1990, Kloeppel et al. 1995, 

Reich et al. 1998) with most Pinus species exhibiting low SLA relative to other 

coniferous species (Rundel and Yoder 1998). There are indications that deciduous tree 

species with a high SLA may exhibit lower water use efficiency (WUE = mmol CO2  

fixed in photosynthesis / mol H2O lost through transpiration) than evergreen trees that 

have lower SLA, lower nitrogen investment, and lower overall photosynthetic capacity 

(Matyssek 1986).

Leaf structure and physiology vary with canopy depth in many forest species 

primarily due to vertical gradients in light. Total dry mass of plant canopies is arranged 

in a manner that maximizes photosynthetic rates (Gutschick and Wiegel 1988). Plants
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generally have lower SLA in parts of the canopy where direct solar radiation is 

received (the top of the canopy where primarily “sun” leaves occur) and higher SLA 

where leaves may be shaded (Gutschick and Wiegel 1988, Klinka et al. 1992, Chen et al. 

1996). This trend corresponds to sun leaves typically being thicker with higher 

photosynthetic capacity than shade leaves (Bjorkman and Holmgren 1963, Boardman 

1977, Bjorkman 1981). Others have shown an increase in SLA and a decrease in leaf 

nitrogen content and photosynthetic capacity of leaves with increasing depth in deciduous 

and evergreen forest canopies (Hollinger 1989, Ellsworth and Reich 1993). Variations in 

these leaf properties, along with a decrease in leaf inclination angle with canopy depth, 

results in a more uniform distribution of PAR through the canopy and thus greater carbon 

gain than a forest with randomly distributed properties (Hollinger 1989).

Most Pinus species are classified as being relatively shade intolerant as compared to 

other coniferous evergreens (Daniel et al. 1979). Various forms of even-aged 

management are usually used for shade intolerant species because of their management 

efficiency and ease of regenerating intolerant species like most Pinus. Even-aged 

management usually results in a uniform canopy structure composed of one stratum. 

There is currently a growing desire to diversify stand structures across the landscape to 

meet a diverse array of objectives (O'Hara 1998), including timber production. Stand 

structure and stand development influence the vertical arrangement of LAI (Vose et al.

1994), further influencing light gradients throughout the canopy. In an intolerant Pinus 

species, enhancing the light environment for a greater portion o f leaf area within the 

canopy could affect potential productivity of foliage and may influence overall stand 

productivity Theoretically, a species on a given site should be able to support an
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optimum amount of leaf area regardless of the distribution of the foliage under various 

stand structures.

Ponderosa pine {Pinus ponderosa Dougl. ex Laws.) is a common conifer in western 

North America that is intensively managed for timber production as well as for its 

aesthetic value to the public. Ponderosa pine historically occurred in both even-aged and 

multiaged stand structures as the result o f disturbance patterns that included high 

frequency, low intensity fire (White 1985, Habeck 1990, Amo et al. 1995, Harrod et al. 

1999). Not much is known about optimum stocking levels, but there is some indication 

o f differences in productivity o f foliage (in terms of volume growth per unit of leaf area) 

o f ponderosa pine under different stand structures (O'Hara 1996, Valappil 1997). This is 

quite possibly related to stand structural characteristics that influence light absorption. 

Ecophysiological traits (such as gas exchange, Nieaf and SLA) of individual species under 

specific stand structures have been studied for many forest species. The relationship of 

these variables for a given species under different stand structures, however, is unknown. 

The mechanisms that contribute to differences in stand productivity of ponderosa pine in 

different stand structures also remain unknown, and may be explained by physiological 

variation in the foliage as a direct effect of the light environment. This study was 

implemented to test the relationships between site occupancy, light interception, leaf 

structural properties, and gas exchange throughout the canopies of different stand 

structures of ponderosa pine to elucidate possible differences in these relationships that 

may explain observed differences in stand productivity.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83
MATERIALS AND METHODS

Study sites - This experiment was implemented in stands of ponderosa pine in 

western Montana. Study sites were located on the Bitterroot and Lolo National Forests, 

on Lubrecht Experimental Forest, and on land managed by the Montana Department o f 

Natural Resources and Conservation. Pure stands of ponderosa pine (>95% ponderosa 

pine conifer composition) were selected, with individual plot pairs o f even-aged and 

multiaged stand structures placed in areas that were close in proximity and deemed to be 

of the same or similar site quality based on slope, aspect and vegetation characteristics. 

There was a total of five plot pairs (five even-aged plots and five multiaged plots) 

installed. Circular plots 0.1 ha in size were established in fully stocked stands with 

minimal differences in density within plot pairs and between plot pairs. Habitat types 

(Pfister et al. 1977) were identified for each plot (Table 3.1). Plot numbers followed by 

an E refer to even-aged plots; plot numbers followed by an M refer to multiaged plots 

(Table 3.1).

Tree measurements - Each tree breast height (1.37 m) and taller was counted and 

measured. Total tree height and height to the base of the live crown was measured with a 

clinometer or a height pole, and diameter was measured at breast height. Two increment 

cores at right angles were taken from each tree 12.7 cm (5 in) and greater in breast height 

diameter to obtain age at breast height. Average age of even-aged plots was 83 years 

(breast height age). Trees from the multiaged plots ranged from 10 to 152 years (Table 

3.1). Bark thickness was measured with a bark-gauge to the nearest mm directly below 

the location of each core on each tree. Sapwood length was measured on the increment 

cores in the field, and later used to compute sapwood basal area. Leaf area per tree was
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computed using equations that relate sapwood basal area with leaf area of individual 

trees (O'Hara and Valappil 1995). This concept is based on the pipe model theory to 

predict canopy leaf area presented by Waring et al. (1982). Sapwood basal area of trees 

less than 12.7 cm in diameter was assumed to be basal area minus the bark. Leaf area of 

each tree was computed, summed, and divided by the area of the plot to get leaf area 

index (LAI). Stand density index (SDI) was computed for each plot, using the formula:

SDI = ^(DBHi/lO) 1 6

where D B H i  is the diameter of the rth tree in the stand (Long and Daniel 1990). Crown 

diameter was measured for each tree on each plot in a north-south and east-west 

orientation. Crown width was assumed to be equal to the point where the end o f the 

longest branch extended from the bole o f the tree in each direction. The distance was 

estimated as the distance from the bole o f the tree as if a plumb-line was extended to the 

ground from the branch. Projected crown area was computed for each tree as a function 

of average crown width, summed across the plot, and divided by the plot area to obtain 

percent canopy cover.

Basal area increment was computed for each tree that was cored. Previous five-year 

radial growth was measured on each core and averaged for each tree. Basal area growth 

was computed as current basal area -  basal area of the tree 5-years previous. Annual 

basal area growth (BAGR, m2 ha*1) was computed by dividing 5-year basal area growth 

by 5. Basal area growth efficiency (BAGE) was computed as BAGR/leaf area of 

individual trees (mm2 m'2). Total BAGR and average BAGE were computed for each 

plot.
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Sample tree selection — Even-aged stands of ponderosa pine typically exhibit a 

bell-shaped diameter frequency distribution, while multiaged stands can typically be 

divided into cohorts o f trees that have arisen after a common disturbance (O'Hara 1996, 

see Figure 3.1, plots 8 E and 7M). Leaf area in the even-aged plots is concentrated in one 

canopy stratum (Figure 3.2a, Figure 3.3). The multiaged structures have a heterogeneous 

canopy layer with numerous strata, and leaf area located from the top of the canopy to the 

forest floor (Figure 3.2b, Figure 3.3).

For each even-aged plot, three trees were sampled for physiological measurements 

and leaf collection. Crown classification of individual trees was made following the 

definitions of Oliver and Larson (1996). The uniform canopy layer of all the even-aged 

stands sampled in this study was considered to be the B-stratum. For each multiaged 

plot, four to five trees were sampled, encompassing the range of ages and sizes that 

represent the number o f  cohorts present in each stand. Emergent trees belonging to the 

oldest cohort were classified as the A-stratum. The upper continuous canopy layer was 

composed of the middle cohort in each stand, and was considered the B-stratum. Trees 

belonging to the B-stratum are the most comparable to trees in the even-aged plot 

because of similar ages and sizes. Trees belonging to the youngest cohort were classified 

as the C-stratum (lower stratum beneath the B-stratum), and ranged from seedlings to 

saplings. All trees sampled were co-dominant within their respective strata.

Lisht interception — Measurements o f below-canopy PAR (Qz) were made on each 

plot using a Sunfleck Ceptometer (Decagon Devices, Pullman, WA, USA) following the 

procedures of Pierce and Running (1988). Measurements were made on cloud-free days 

one hour ± solar noon. A complete plot pair was measured on the same day to avoid day-
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to-day variations in light conditions. Before and after each plot was measured, open 

conditions were measured, recorded, and later averaged to obtain a value for open PAR 

(Q0) conditions. A 576 m2 square grid was placed on the 0.1 ha circular plots centered on 

plot center. Measurements began at the northwest comer of the grid, and were made at 3- 

m intervals from west to east along the first transect, from east to west along the second 

transect, and so forth. Each measurement point is the average of four readings taken in 

the four cardinal directions. Measurements were taken at a total of 81 points within each 

plot.

The Beer-Lambert Law was used to compute a canopy light extinction coefficient, k:

k  = \n(Q7/Qn)
LAI

The extinction coefficient was computed in two ways: as a point-based measure and as a 

plot-average. In the point-based method, k was computed for each point on the plot, and 

then averaged to obtain one k  for the plot. In the plot-average method, all values of Qz 

were averaged, and one k was computed for the plot. A PAR-ratio was computed as 

below canopy PAR divided by total incoming PAR (PAR ratio = Qz/Qo)- A low PAR- 

ratio indicates more light absorption by the plant canopy relative to a  high PAR-ratio.

Gas exchanee - A field portable closed gas exchange system (LI-6200, Li-Cor Inc., 

Lincoln, NE) was used to measure photosynthesis and stomatal conductance with a 1/4-1 

cuvette during the summer of 1999. Two fascicles were excised from each branch and 

measured by placing the mid-portion of the fascicles inside the cuvette. Gas exchange 

measurements were made within a one- to two-hour period that was centered over the 

peak in leaf gas exchange activity identified one day prior to measurement of each plot
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pair. The peak period for all measurement days in July fell between the hours o f 0830 

and 1 100. The maximum rate of photosynthesis (Amax) is assumed to be photosynthesis 

that occurs under non-limiting conditions (water, light, temperature, CO2 , etc.). By 

identifying the peak in leaf gas exchange activity, photosynthetic rates obtained with the 

LI-6200 under these conditions are being reported as rates of A max.

Samples were obtained with a 4-m tall platform and a pole pruner, or with a 12-gauge 

shotgun for larger trees. Two or three branches at varying heights were sampled on each 

previously identified sample tree. Gas exchange measurements were completed within 

three minutes of detachment from the tree. Preliminary measurements found no 

difference in gas exchange when detached branches were measured within three minutes. 

Supplemental light from a QED light source (Quantum Devices, Inc., Bameveld, WI) 

with a peak wavelength o f670 nm was used to supply additional light (at a rate o f 800 

p.mol m ' 2 s '1) for all measurements to ensure light saturating conditions for 

photosynthesis. All measurements were made on either sunny or mostly sunny days.

Gas exchange measurements were taken on the same day for plots 1M and 2E, 3M and 

4E, 7M and 8 E, and 11M and 12E. The Lubrecht plot pair (13M and 14E) was measured 

on July 21 and 23 respectively, because the proximity o f  the plots to each other made it 

impossible to measure both plots on the same day.

Ponderosa pine has three-needled fascicles with stomata on all surfaces. All gas 

exchange data are expressed on an all-sided leaf area basis (Aarea) or a mass basis (Amass)- 

After gas exchange measurements, the width of the fascicles was measured to the nearest 

0.1 mm, and multiplied by the width of the cuvette to obtain projected leaf area. Since 

the middle portion of the fascicles were measured, the area o f ponderosa pine needles
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was assumed to be a right cylinder divided into thirds. It follows that the conversion 

factor from projected leaf area to all-sided leaf area is 2.36 (Rundel and Yoder 1998).

Specific lea f area and leaf nitroeen — After each gas exchange measurement, five 

fascicles from the same branch were collected for measurement of specific leaf area 

(SLA) and leaf nitrogen (N[eaf). The fascicles were kept on ice until they were analyzed 

in the lab after gas exchange measurements were completed in the field. Length o f each 

needle was measured to the nearest 0.5 mm. The five fascicles were placed in water, and 

the volume of water displacement was measured. Following the procedures of Johnson 

(1984) for three-needled pines, the equation:

A = 21 [1 + itln ] * sqrt (V nln I) 

was used to compute all-sided leaf area collectively for the five fascicles, where A is the 

total surface area (cm2), V is the displaced volume of the needle sample (cm3), n is the 

number of needles per fascicle, and I is the cumulative needle length of the needles in the 

sample (cm). Needles were then dried at 70 °C for 48 hr, and weighed to the nearest g. 

SLA was computed as all-sided leaf area (cm2) divided by dry weight (g). Leaves were 

ground through a 40-size mesh using a Wiley Mill and analyzed for nitrogen content 

using an elemental gas analyzer. Leaf nitrogen is expressed on a mass (Nmass) and an area 

(Narea) basis.

The height o f  each branch sampled for physiological measurements and leaf 

structural analysis (both were measured on the same branch) was recorded at the time of 

sampling. To test the relationship of Aarea, Amass, N^a, Nmass, and SLA with canopy 

depth, a relative height for each sample in each plot was computed as follows: 

relative height = height of sample (m) / height of the tallest tree on the plot (m).
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The average relative height of the even-aged samples was 0.49 and ranged from 0.26 to 

0.76. The average relative height o f the multiaged samples was 0.34 and ranged from 

0.06 to 0.81.

Statistical Analysis -  Plot-level means (tph, basal area, sapwood basal area, LAI,

SDI, % canopy cover, and crown ratio) for even-aged and multiaged plot pairs were 

tested for significant differences using paired t-tests. Paired t-tests were also used to test 

for statistical significance in the light extinction coefficient (k) and PAR-ratio between 

even-aged and multiaged stand structures. Relationships between Amax, N i ea f ,  SLA, and 

relative height were analyzed with linear regression techniques using SYSTAT (SPSS 

Inc.). All differences were tested at the a  = 0.05 level.

RESULTS

Growing space occupancy and light relations -  Basal area (m2/ha) and stand density 

index (SDI), both diameter-based measures of site occupancy, were significantly greater 

in the even-aged plots as compared to their multiaged pairs (Table 3.2). The range in 

basal area for even-aged plots was 23.3 to 25.6 m2 ha' 1 compared to a range of 20.2 to 

23.8 m2 ha' 1 for multiaged plots (Table 3.2). Sapwood basal area (m2/ha) and LAI were 

not significantly different between stand structures (Table 3.2), indicating both structures 

supported the same amount of water-conducting tissue and the same amount of leaf area. 

Even-aged plots had significantly greater % canopy cover and significantly lower crown 

ratio on average as compared to multiaged plots (Table 3.2). Mean annual basal area 

growth (BAGR) and basal area growth efficiency (BAGE) were not significantly 

different between stand structures (Table 3.3). The range in mean BAGR was very
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aged plots and from 0.15 to 0.35 m2 ha' 1 yr' 1 for the multiaged plots. Mean plot-level 

BAGE ranged from 4.46 to 6.96 mm2  m' 2 for the even-aged plots and 3.60 to 8.28 mm2  

m ' 2 for the multiaged plots (Table 3.3).

There were no significant differences in the average light extinction coefficient (k) for 

the point-based or the plot-average based measure between stand structures (Table 3.4). 

Multiaged plots had a greater PAR-ratio overall as compared to even-aged plots, 

indicating the even-aged stands absorbed more light resulting in less light being measured 

under the canopy of the even-aged plots as compared to the multiaged plots (Table 3.4).

A mnn Nu„f. and SLA  — Relationships were variable between Amax, N i e a f ,  and SLA 

between stand structures and between methods of comparison. These relationships, as 

well as the relationship between A max, N | e a f  and SLA with canopy height are summarized 

in Table 3.5. There were few significant relationships o f A m a x  with any other variable. 

SLA was correlated best with mass-based A m ax  (Amass), area-based N | e a f  ( N a r c a ) ,  and 

relative height. There was no relationship in either stand structure between Amass or Aarea 

with relative height of sample within each structure (Figure 3.4a-d). Leaf nitrogen 

exhibited a positive linear relationship with increasing relative height when expressed on 

a mass ( N m ass )  and an area ( N ’ a r e a )  basis in the even-aged plots (Figure 3.5a and 3.5b), with 

no trend in the multiaged plots (Figure 3.5b and 3.5d). There was a tendency for N m a s s  to 

increase with increasing relative height in the multiaged plots (Figure 3.5b). Specific leaf 

area (SLA) tended to decrease with increasing height in both structures, with only the 

multiaged stand structure exhibiting a significant linear relationship (Figure 3.6a and 

3.6b, Table 3.5).
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There was no relationship between mass-based photosynthesis (A mass) and mass- 

based leaf nitrogen (N maSs) or between area-based photosynthesis (Aarea) and area-based 

leaf nitrogen (Narea) for either stand structure (Figure 3.7a-d, Table 3.5). A maSs was not 

correlated with SLA in the even-aged stand structure (Figure 3.8a), however A maSs 

showed a weak positive linear relationship with SLA in the multiaged stand structure 

(Figure 3.8b). There was no relationship between Aarea and SLA for either stand structure 

(Figure 3.8c and 3.8d). Leaf nitrogen on a mass basis (Nmass) and SLA were not 

correlated for even-aged or multiaged stand structures (Figure 3.9a and 3.9b). Leaf 

nitrogen on an area basis (N^m) was strongly correlated with SLA for both the even-aged 

and the multiaged stand structures (Figure 3.9c and 3.9d).

DISCUSSION

Multiaged stand structures comprised of pure ponderosa pine supported comparable 

amounts of leaf area as even-aged stand structures in this study (Table 3.2). Basal area 

growth efficiency (BAGE) tended to be greater (although not significant) for multiaged 

stands, but overall annual basal area growth (BAGR) was similar (Table 3.3). Basal area 

growth does not account for volume increment related to height, and may underestimate 

the wood production of large trees because of the relationship between basal area 

increment and tree size. The stands investigated in this study show the same trends in 

site occupancy and overall growth efficiency as stands sampled by O'Hara (1996) and 

Valappil and O'Hara (2000a and 2000b) in similar locations in western Montana. The 

current study further supports the notion that different stand structures of ponderosa pine 

can support similar amounts of leaf area and can produce similar amounts o f wood

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



92
volume. Diameter-based measures of density, including basal area and stand density 

index (SDI), may not be adequate descriptors of site occupancy of complex stand 

structures such as the multiaged stand structures sampled in this study. More 

physiologically-based measures o f site occupancy such as LAI (O'Hara 1988) and 

sapwood basal area may better represent the potential productivity of a site because they 

better represent first principle processes (water use and light capture) that occur within a 

forest stand structure (O'Hara and Valappil 1999).

The relationship between sapwood basal area and foliage biomass or leaf area o f 

individual trees has been well established for many coniferous species of western North 

America (Grier and Waring 1974, Snell and Brown 1978, Waring et al. 1982, O'Hara and 

Valappil 1995). This relationship, known as the pipe model theory, states that a given 

amount of transpiring foliage must be supplied with water by a proportional amount o f 

water conducting tissue (Margolis et al. 1995). Total site occupancy between and within 

northern coniferous forests as described by LAI is strongly related to site water balance 

(Grier and Running 1977). In the present study, sapwood basal area and LAI Eire 

comparable between homogenous canopy layers o f even-aged stands and stratified 

canopy layers of multiaged stands, allowing for the exEimination of leaf- and canopy-level 

physiological differences related to stand structure. Instantaneous gas exchange 

measurements combined with measures of leaf structural attributes that estimate longer- 

term leaf productivity eillow for investigation of potential differences in the physiology of 

leaf area as related to stand structure.

There are often inconsistencies in the literature involving the expression of Amax and 

leaf nitrogen. A reEison for expressing Amax on an area-basis is that light interception
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within the canopy is related to projected leaf area. Pinus species, however, have 

stomata on all surfaces (Rundel and Yoder 1998), and therefore conduct gas exchange on 

all leaf surfaces even though light absorption occurs on only a projected leaf area basis. 

SLA of Pinus species and coniferous evergreens in general can be highly variable 

between species (Rundel and Yoder 1998), suggesting that expression on a mass-basis 

might take into account variations in Amax due to variations in leaf structure. The range in 

Amass was similar for both stand structures, ranging from 21.18 to 60.78 nmol g' 1 s‘‘ for 

even-aged trees and 18.23 to 64.54 nmol g' 1 s*1 for multiaged trees. Amass and Aarea were 

highly correlated with each other for both stand structures (R2 = 0.84 for the even-aged 

plots and R2 = 0.85 for the multiaged plots, data not shown), suggesting relationships (if 

they do exist) between Amax and other variables (leaf nitrogen, SLA, or canopy depth) 

should be similar regardless of the method o f expression.

The lack o f any trend in photosynthetic rates with increasing canopy depth along with 

similarities in the rate of light absorption at the canopy level suggests light is not limiting 

to the foliage in either stand structure at any point within the canopy. Ponderosa pine is a 

relatively shade intolerant conifer that exhibits an open canopy structure (Harlow et al. 

1996). Foliage is typically shed when irradiance reaches 10% full sunlight (Bond et al. 

1999). Although even-aged stand structures had greater mean percent canopy cover, the 

rate with which the foliage absorbed incoming radiation was not different from the 

multiaged stand structures as indicated by similar light extinction coefficients (Table 3.4). 

PAR-ratios, however, indicate that even-aged stand structures were able to absorb 16% 

more radiation than multiaged stand structures (Table 3.4).
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The shade intolerance o f ponderosa pine may have contributed to the relatively 

small range in leaf nitrogen content for both stand structures (Nmass ranged from 1 1  to 

15.3 mg g' 1 for even-aged trees and from 10.3 to 16.8 mg g‘‘ for multiaged trees while 

Narea ranged from 1.17 to 2.07 g m' 2  for even-aged and 1.16 to 2.22 g m‘2 for multiaged 

trees). SLA also exhibited a relatively small range in values for both structures (68.17 to 

100.87 cm2 g"1 for even-aged and 62.26 to 97.21 cm2 g' 1 for multiaged trees). The 

amount of variation in SLA (increasing 32% in the even-aged and 36% in the multiaged 

with canopy depth) is similar to other reports of a 50% increase in SLA with canopy 

depth in ponderosa pine (Bond et al. 1999) and a 22% increase in a 25-year old even- 

aged stand of Pinus pinaster Ait. (Porte and Loustau 1998). Other more shade tolerant 

evergreen species often exhibit greater changes in SLA (up to several times higher) with 

increasing canopy depth (Hollinger 1989, Ellsworth and Reich 1993, Bond et al. 1999). 

The upper 20% of the canopies in both the even-aged and multiaged stand structures were 

not sampled in this study due to the restrictions associated with the sampling procedure 

implemented (the height o f the platform used and the range of the ballistic sampling 

device). Because of the small range observed in the other 80% of the canopy, it is 

unlikely that sampling the very top of the canopy would have captured a significant 

amount of additional canopy-level variation.

As leaves exhibit greater SLA within a plant canopy, leaf thickness tends to decrease 

and leaf area increases (Chabot et al. 1979, Kellomaki and Oker-Blom 1981). At the top 

of the canopy, where productivity of the foliage is expected to be the greatest within the 

canopy because of the greatest amount of incident radiation, SLA will tend to be lower 

because of greater leaf thickness and less leaf area (Gutschick and Wiegel 1988). Greater
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SLA is more efficient at capturing light when light is limiting because greater leaf area 

will receive more incident radiation. This may be accompanied by lower stomatal 

density, which may further result in greater water use efficiency due to increased 

transpiration resistance (Chen et al. 1996). On a mass-basis, leaf nitrogen may be similar 

throughout a given plant canopy because the nitrogen investment per unit o f leaf mass 

will be the same regardless of the leaf structure or leaf location within the canopy. Mass- 

based photosynthesis (Amass) will also tend to be similar throughout the canopy partly due 

to the strong relationship exhibited between nitrogen content of leaves and the significant 

role nitrogen plays in photosynthetic processes. Nitrogen is the primary constituent of 

proteins of the Calvin cycle and is strongly related to chlorophyll content o f leaves 

(Evans 1989). Previous studies have shown relative constancy in Nmass and Amass with 

canopy depth (Ellsworth and Reich 1993, Bond et al. 1999). On an area-basis, however, 

a strong relationship between leaf nitrogen and photosynthetic rates may be expected 

within any given plant canopy. Strong relationships between SLA, Narcaand Aarea have 

been observed in a broadleaf deciduous forest (Acer saccharum, Marsh., sugar maple), 

with significant gradients in these leaf properties with canopy depth (Ellsworth and Reich 

1993). Nmass and Amass did not show any trend with vertical canopy depth in the maple 

forest.

Broad-leaved deciduous trees tend to show stronger relationships between Amax and 

leaf nitrogen and exhibit higher SLA than evergreen conifers (Reich et al. 1995, Reich et 

al. 1998). Other studies have demonstrated greater variations in SLA and leaf thickness 

in deciduous broadleaf trees than in coniferous trees when comparing sun- and shade- 

type leaves (Abrams and Kubiske 1990). Further, shade tolerant conifers (Abies amabilis
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(Dougl. ex Loud.) Forbes, Abies lasiocarpa (Hook.) Nutt., Picea engelmannii Parry ex 

Engelm., and Pseudotsuga menziesii (Mirbel) Franco.) tend to exhibit more plasticity in 

SLA as the percent incident above canopy radiation decreases than more shade intolerant 

conifers (Pinus contorta Dougl. ex Loud, and Pinus ponderosa Dougl. ex Laws., Klinka 

et al. 1992, Chen et al. 1996, Chen 1997).

In the present study, there was a negative linear relationship between SLA with 

increasing canopy depth for the multiaged stand structures, with a similar tendency in the 

even-aged stand structures (Figure 3.6). The correlation between SLA and relative height 

was relatively low (R2 = 0.07 for even-aged and R2  = 0.20 for multiaged) and the range in 

values of SLA was small. Therefore, it can be concluded that SLA changed in the 

expected way with increasing canopy depth, but the rate o f change was relatively small in 

both even-aged and multiaged stand structures. Because ponderosa pine is a relatively 

shade intolerant pine, the light environment may be fairly constant from the top to the 

bottom of the canopy, resulting in the small range and lack of change in SLA with 

canopy height in both stand structures. Both Aarea and Amass were also relatively constant 

within the canopies of both the even-aged and the multiaged stand structures sampled in 

this study (Figure 3.4).

With a strong gradient in SLA with increasing canopy depth, area-based measures of 

leaf nitrogen and photosynthetic rates would be expected to vary with canopy depth also. 

There was a significant linear relationship between Narea with canopy depth for the even- 

aged structures but not for the multiaged stand structures (Figure 3.5c and 3.5d). The 

lack of relationship of photosynthetic performance with canopy depth resulted in no 

distinct relationships between photosynthesis and leaf nitrogen (Figure 3.7). The only
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significant relationship between photosynthesis and SLA was for Amass in the 

multiaged stand structures (Figure 3.8b). The observed trend (increasing Amass with 

increasing SLA) is the opposite of what might be expected in a plant canopy where a 

light gradient exists.

Nmass did not vary with SLA (Figures 3.9a and 3.9b) because the nitrogen investment 

per unit of leaf mass was the same regardless of canopy depth, stand structure, or SLA. 

Narea however was highly correlated with SLA in both stand structures (Figure 3.9c and 

3.9d). This trend indicates that at lower SLAs (where leaf area per unit leaf mass is less), 

nitrogen investment is greater on an area basis. This would correspond to sun-type leaves 

in canopies where light gradients are prevalent. Since there was no relationship between 

A ^a and SLA or between Aarea and canopy depth in this study, the strong relationship 

between Narea and SLA suggests that leaf structural properties have changed within the 

canopy so that photosynthetic rates are maximized in comparable ways throughout the 

canopies in both even-aged and multiaged stand structures.

Many factors determine photosynthetic capacity within a given forest canopy. It is 

well established that light environment influences leaf structural attributes and 

photosynthetic performance. It is also possible that gradients in temperature, vapor 

pressure difference, leaf water potential and CO2 concentrations exist within a given 

canopy and may be different between diverse canopy structures. In the present study, 

only fully sunlit one-year-old foliage was sampled, decreasing the total variation sampled 

within the canopies. Other studies have shown decreasing nitrogen content, 

photosynthetic rates, and SLA with increasing leaf age (Schoettle and Smith 1999, 

Valappil and O'Hara 2000b). Gas exchange measurements were conducted during
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previously identified peaks in July, which occurred most commonly between the hours 

of 0830 and 1100 (see chapters one and two, Nagel 2000a and 2000b). Light is often not 

saturating to photosynthesis at this time (at 0830, PAR is usually < 500 fimol m ' 2  s"1). 

Even though gas exchange measurements occurred under supplemental light ensuring 

light-saturating conditions for photosynthesis, some samples may have been clipped in 

environments experiencing light-limiting conditions at the time of measurement. All o f 

these uncontrolled and unmeasured variables must be recognized when extrapolating 

findings from this study to other situations, especially where the ecophysiology of a given 

species is quite different from ponderosa pine.

C O N C L U S I O N S

Canopy-average SLA is sometimes used in ecosystem process models to compute 

LAI from foliage biomass (Running and Gower 1991, Aber and Federer 1992, Landsberg 

and Waring 1997). SLA demonstrates significant plasticity within plant species, is often 

closely related to leaf nitrogen and photosynthetic capacity, and can be predicted from 

LAI (Pierce et al. 1994). Individual tree models designed to predict growth in response 

to manipulations in stand structure could incorporate leaf structural properties as they 

relate to gradients in the light environment within a forest canopy. The results from this 

study show that canopy-level light is attenuated similarly through the even-aged and 

multiaged stand structures sampled here. This resulted in a similar amount of variation in 

gas exchange and leaf structural properties of fully sunlit one-year-old foliage in both 

stand structures. The effect o f stand structure on the physiology of newly developing 

foliage, foliage greater than one-year-old, or foliage not fully exposed to sunlight was not
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quantified, and may play a significant role in overall stand-level productivity.

Therefore, the relationships between stand structure, light environment, water relations, 

leaf-level structure and physiology are quite complex and are influenced by many factors. 

Canopy-level growth models that do not take into account variations in leaf-level gas 

exchange in relation to stand structure may not adequately represent vegetation response 

to silvicultural manipulation.

The relative constancy in leaf physiology and leaf structure observed in both the 

even-aged and multiaged stand structures o f ponderosa pine may not hold true for other 

coniferous forest types. Broadleaf deciduous forests are also more likely to show 

different relationships because they typically exhibit greater variations in leaf structure 

and physiology in response to light environment as related to stand structure. This study, 

along with previous studies that have investigated production efficiency in ponderosa 

pine (O'Hara 1996, Valappil and O'Hara 2000a and 2000b) indicate that multiaged stand 

structures can be as productive as even-aged stand structures. Overall site occupancy, 

arrangement o f foliage by size classes o f trees, and spatial arrangement o f  stems as well 

as site quality act together in yielding a given stand productivity. We now have more 

evidence that complex stand structures can meet productivity objectives while meeting 

many other societal objectives.
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Table 3.3. Annual basal area growth (BAGR) and 
basal area growth efficiency (BAGE) for even-aged and 
mulbaged plots. Means are +/- one standard error.

Plot Plot Basal Area Basal Area
No. Type Growth Growth Efficiency

(m2 ha' 1 y r1) (nun2 m"2)

IM multiaged 0.24 6.31
2E even-aged 0.28 4.46
3M multiaged 0.31 7.88
4E even-aged 0.34 6.31
7M multiaged 0.24 4.03
8E even-aged 0.30 5.90

11M multiaged 0.15 3.60
12E even-aged 0.15 5.23
13M multiaged 0.35 8.28
14E even-aged 0.27 6.96

Means multiaged 0.26 (0.034) 1 6.02 (0.96) a

even-aged 0.27 (0.032) 5.77 (0.43) 3
P  - value 0.704 0.778
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Table 3.4. Light extinction coefficient (k ) and PAR-ratio for even-aged and 
multiaged plots. Means are +/- one standard error. Means followed by different 
letters are significantly different (a = 0.05).

Plot Plot Location k k PAR-
No. Type point-based plot average ratio

1M multiaged Sweeney Creek -0.52 -0.33 0.49
2E even-aged Sweeney Creek -0.46 -0.33 0.44
3 VI multiaged Tarkio Road -0.43 -0.28 0.52
4E even-aged Tarkio Road -0.49 -0.40 0.39
7M multiaged Tarkio Road -0.48 -0.34 0.49
8E even-aged Tarkio Road -0.47 -0.37 0.38

1 1M multiaged Larry Creek -0.40 -0.26 0.55
12E even-aged Larry Creek -0.42 -0.33 0.47
13M multiaged Lubrecht -0.40 -0.28 0.52
14E even-aged Lubrecht -0.34 -0.28 0.48

Means multiaged -0.45 (0.024) a -0 .30(0.016) a 0.51 (0.011) a

even-aged -0 .44(0 .027) a -0.34 (0.020) a 0.43 (0.020) b
P - value 0.689 0.127 0.009
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Table 3.5. Linear relationships (y = B 0 + B , x )  between photosynthesis (A ^^ 
and ^  ass), leaf structural attributes (Narea’ N mass, and SLA), and relative height 
(RH) for even-aged and multiaged stand structures. SEE = standard error o f 
estimate. N = 41 for even-aged and N = 52 for multiaged.

Relationship Structure Figure *0 *x R 2 SEE P

AnossVS. RH even-aged 3.5a 37.69 A 31 0.00 9.65 0.694
multiaged 3.5b 41.85 -11.82 0.03 10.60 0.204

Aarea vs- RH even-aged 3.5c 4.16 1.21 0.02 1.14 0.362
multiaged 3.5d 4.71 -0.09 0.00 1.18 0.930

Nmass vs- ^ even-aged 3.6a 11.69 2.93 0.15 0.98 0.012
multiaged 3.6b 13.91 -2.29 0.07 1.36 0.058

NareaVS.RH even-aged 3.6c 1.27 0.63 0.17 0.20 0.007
multiaged 3.6d 1.57 0.22 0.02 0.25 0.318

SLA vs. RH even-aged 3.7a 91.34 -14.59 0.07 7.74 0.106
multiaged 3.7b 88.43 -22.87 0.20 7.52 0.001

Amass vs- Nmass even-aged 3.8a 43.65 -0.29 0.00 9.67 0.843
multiaged 3.8b 53.61 -1.20 0.03 10.64 0.265

Aarea vs- N area even-aged 3.8c 3.20 0.99 0.03 1.14 0.251
multiaged 3.8d 5.84 -0.70 0.02 1.17 0.295

Amass VS- SLA even-aged 3.9a 21.49 0.22 0.03 9.51 0.259
multiaged 3.9b -7.75 0.57 0.19 9.67 0.001

Aarea vs- SLA even-aged 3.9c 7.51 -0.03 0.05 1.13 0.154
multiaged 3.9d 3.97 0.01 0.00 1.18 0.656

Nmass vs- SLA even-aged 3.10a 15.38 -0.03 0.04 1.04 0.206
multiaged 3.10b 13.32 0.00 0.00 1.41 0.923

Narea VS- SLA even-aged 3.10c 3.41 -0.02 0.66 0.13 <0.001
multiaged 3.10d 3.37 -0.02 0.52 0.17 <0.001
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