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I .  INTRODUCTION

An important class o f  thermal decompositions o f  so lids  

consists  o f  those reaction s  o f  the form:

^ ( s o l ld )   ̂ * ( s o 1id ) *  ^(gas) ’

The k in e t ic  data  concerning a s o l id  decomposition are g e n e ra l ly

expressed in the form o f  (a) the f r a c t io n a l  decomposition (a) as

a fu n c tio n  o f  time ( t )  o r  temperature ( i f  the reac tion  is performed

under an uniform  heating  r a t e ) ,  o r  (b) the ra te  o f  f r a c t io n a l  decom- 
da.

p o s it io n  as a fu n c tio n  o f  time or temperature.

Several commercial instruments are  a v a i la b le  fo r  o b ta in ing  

these da ta . Commonly used a re :

(a) D i f f e r e n t i a l  Thermal Analysis (D T A )-- ln  th is  tech­

nique one measures the d i f f e r e n t i a l  temperature between 

the sangle and an in e r t  reference m a te r ia l in a furnace  

heated a t a constant ra te .

(b) Thermogravlmetric Analysis (TGA)— For th is  one 

measures the weight loss o f  the reac tan t as a function  

o f  time or tem perature.

(c ) D i f f e r e n t i a l  Scanning C alo rim etry  (DSC)— This 

technique measures the d i f f e r e n t i a l  energy required  

to  m aintain  the same temperature in the sample and 

re fe rence  as the two are m aintained iso th erm a lly  or  

are  heated a t  a uniform ra te .

1
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(d) Gas E vo lu tio n  D etection  (GED)— One measures the

ra te  o f  the e v o lu t io n  o f  the gaseous decomposition products 

as a fu n c t io n  o f  t im e , g e n e ra l ly  by measuring the thermal 

c o n d u c t iv ity  o f  the c a r r i e r  gas leav ing  the c e l l  in 

which the decomposition is  o c curr in g .

(e) Pressure Change Method--One measures the pressure  

o f  the gaseous decomposition product(s ) as a fu nction  

o f  time in a constant volume system.

The e f f e c t  o f  temperature on reac tio n  ra te  may be seen from

the Arrhenius equation :

k .  A . - A E * / " ?  (1 )

where k is the reac tio n  ra te  a t  constant temperature I ,  A is the 

frequency fa c to r  (g e n e ra lly  independent o f  tem pera tu re ), AE* is 

the Arrhenius a c t iv a t io n  energy and R the gas constant. In the  

study o f  a p a r t ic u la r  thermal decomposition, the reac tion  ra te  

constants (k) a t  d i f f e r e n t  temperatures are c a lc u la te d  from 

experim ental da ta ; the a c t iv a t io n  energy can then be obtained  

from equation 1. The ra te  constant k can be obtained from data

o f  e i t h e r  a thermal scan o r  an isothermal run. Since data from

a thermal scan include one more temperature param eter, the mathe­

matics involved In the k in e t i c  expressions (see Theory below) 

a re  more com plicated. In the present study we w i l l  concentrate  

on isothermal reac tio n s .
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I I .  GENERAL ASPECTS OF SOLID DECOMPOSITION

In general the decomposition curves (a  vs. t )  obtained in

an isothermal run can be c la s s i f ie d  in fo ur types as shown in

Figure 1.^ Type (a) is a sigmoid curve, in d ic a t in g  an a u to c a ta ly t Ic  

re a c t io n . In (b) the a c c e le r a to r /  period Is r e la t iv e ly  s h o r t ,  

most m a te r ia l reacts  in the decay p eriod . In (c) no induction  

period occurs. Curve (d) shows, in a d d it io n  to a sigmoid, a small 

e v o lu t io n  o f  gas a t  the beginning o f  the re a c t io n . In g e n e ra l , 

g r in d in g  a c ry s ta l o r  scra tch ing the surface o f  a c ry s ta l w i l l  

reduce the Induction pe rio d . The corresponding graphs o f d a /d t  

vs. t  a ls o  appear in Figure I .

Any o f  these types o f  decomposition curves can be expla ined  

In terms o f  nu c lé a tio n  and propagation. At the s t a r t  o f a re a c t io n ,  

due to l a t t i c e  im perfection  ( l a t t i c e  d e fe c ts ,  d is lo c a t io n s ,  e t c . )  

on the surface of the c r y s ta ls ,  a number o f  a c t iv e  nuclei are formed

a t  those places where the a c t iv a t io n  energy is le a s t .  A growth

nucleus, depending upon the nature o f  the experimental m a te r ia l ,  

may take several in term ed ia te  steps to  form. A f te r  the form ation  

o f  a growth nucleus, i t  s ta r ts  to  grow. This process o f nucle i 

growth is c a l le d  propagation.

In the k in e t ic  study o f  a p a r t ic u la r  s o l id  decomposition, 

k in e t ic  equations in terms o f  a (or and t  are  derived based 

on c e r ta in  assumptions concerning nucleus form ation and growth.
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Figure 1— Typica l thermal decomposition curves
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Should on ly  one o f  these formulas f i t  the experim ental d a ta ,  we 

conclude th a t  the reac tio n  fo llo w s  the assumptions th a t  lead to  

th a t  k in e t ic  eq uation .
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I I I .  THEORY

Many equations fo r  d i f f e r e n t  k in e t ic  assumptions appear 

in the i i t e r a tu r e ;  on ly  those th a t  had to  be considered in the 

present in v e s t ig a t io n  w i l l  be considered here. For o ther theories  

the in te re s te d  reader can r e fe r  to  references 5 and 15, and current  

1 i te r a tu r e .

A. Nuc léation

Suppose the reac tan t contains nucleus forming s i te s  

which are o f  s l i g h t l y  lower chemical s t a b i l i t y  than the remainder 

of the c r y s t a l .  The ra te  o f  n u c léa tio n  is then proportional to  

the number o f  po in ts  which remain in a c t iv a te d  a t  time t .  The ra te  

o f nu c léa tio n  is

^  = k(N^-N) (2)

where N is the number o f  nucle i a t  time t , and k the proportio n ­

a l i t y  constant. From equation 2 we have

= k| dt
Jo”o 

and

N = -  e (3)

S u b s t itu te  equation 3 in to  equation 2 and we get 

^  = kN ^expt-k t) (4)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



This is c a l le d  the Exponential Law o f  N uc léation . I f  k is smal l ,  

we may expand the exponentia l term and neglect h igher powers than 

k t to  o b ta in :

and

N = kN^t

f  (5)

This case, in which the number o f  nucle i Increases l in e a r ly  wi th  

t i me,  is ca l l ed  the L inear Law. I f  k is very la rg e .  Instantaneous 

n u cléation  occurs, i . e .

N =

Al l  the nu c lé a tio n  laws mentioned above Involve only one

step . Nucléation processes in vo lv ing  more than one step are also
2

known. Bagdasar'yan has shown th a t i f  3 sucessive steps wi th  

p r o b a b i l i t i e s  k ^ , k2 " ' ' " , k g  are  required to  form an ac t i ve  growth 

nucleus, the number o f  nucle i a t time t  is

k ik
N = (6 )

3!

For example, i f  a combination o f  two in term ed ia ries  is involved  

in forming a growth nucleus, and the number o f  each a c t iv e  in t e r ­

mediate a t  time t  is k ' t  ( i . e .  using the Linear Law of Nucléation  

to  describe the ra te  o f  appearance o f  the in te rm e d ia te s ) ,  provided  

th ere  is no reverse reac tion  and k , th e i r  ra te  o f  combination to
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8

form n u c le i ,  is small compared wi t h k ' , the ra te  o f  nucleus 

fo rm ation is then

^  -  k ( k ' t ) 2

SO th a t
Icic I ^ ^

N -  (7)

in th is  example, th ree  steps are  requ ired and 3 has the 

value th re e ;  two steps are the appearance o f  the two intermediates  

requ ired  and the th i r d  step is  th e i r  combination. Consequently 

i f  3 steps are  requ ired  to  form a growth nucleus then the Power 

Law (eq. 6 ) is obta ined .

B. Propagation

A f te r  a growth nucleus is formed, i t  s ta r ts  to  grow in one, 

two or th ree  dimensions. In g e n e ra l ,  we can express the growth

o f  a nucleus as a fu nction  o f  volume (v) and time ( t ) :

V = o ( k g t ) ^  (8)

Atf
where a is a shape f a c to r ,  equal to  fo r  a spherical nucleus;

kg is the propagation ra te  constant and X is equal to 1, 2 or 3

fo r  one-, two- or three-d im ensional growth, re s p e c t iv e ly .

C. Complete Rate Expressions

1. The Power Law. In t h i s  kind o f  thermal decomposition 

k in e t ic s  the nu c léa tio n  process according to  equation 6 is assumed;

^  -  DSt®- '  (6 )
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I f  the  growth o f  a nucleus s t a r t s  a t  t ime t=y  and the o v e r la p  

between growing n u c le i  is not cons id ered ,  then the t o t a l  s i z e  o f  

al 1 n u c le i  a t  t ime t is

V ( t )

S u b s t i t u t i n g  from e quat io n  6 and changing t  to  y ,  we o b ta in

V ( t ) o[kg(t-y)]^DgyG"1dy

or

V(t) -
3+1 2! 3+2

X < 3 (10)

Since is p r o p o r t io n a l  to  a ,  f i n a l l y  we have

a  -  ( I t )

The f r a c t i o n a l  decomposit ion is p r o p o r t io n a l  to  a power o f  t im e ,  

eq u a t io n  11 is c a l l e d  the  Power Law.

2. Erofeev  Equat ion.  In e qua t io n  11 we have not considered  

o v e r la p  and in g e s t io n  between growing n u c l e i .  As the nuc le i  grow 

l a r g e r  they must impinge upon each o th e r  and the growth w i l l  

stop a t  the  p o in t  a t  which they touch. The f a c t o r  (1 -a )  is commonly 

used to c o r r e c t  the r a te  f o r  t h i s  e f f e c t . ^  From equat ion  11 we get

^  .  ( g + X ) C t ( 9 + A ) - '  (12)
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10

E ntering  the (1 -a )c o r re c t io n  fa c to r  in the usual way we obtain  

I I  -  (e + X )C t(6 + A )-1 ( i_ a )  (13)

In te g ra t io n  o f  (13) gives the Erofeev Equation^

a = 1 -  exp -

= 1 -  exp -  ( k t ) "  (14)

where n = g+X and k = C /($ + X ).  For a reac tion  th a t  shows
1 X

Erofeev k in e t ic s  a p lo t  o f  [ lo g ( f I^ ) ]> i  vs. t  w i l l  gi ve a s t ra ig h t  

l i n e  wi t h  slope equal to  k. The va lue o f  n is the sum o f the 

number o f  steps in form ation o f  a growth nucleus and the number 

o f dimensions o f  propagation.

3. Prout-Tompkins Equation. The development o f  the 

Prout-Tompkins equation is based on the concept o f  nucle i as l in e a r ,  

branching chains introduced by Garner and Ha i l e s . ^  In ad d it ion  

to a constant ra te  o f  nu c léatio n  ( k , )  a t  p o te n t ia l  s i t e s ,  a 

la rge  number o f  nucle i are  formed by the chain mechanism. In 

e f f e c t  many points on the propagation chain are e f f e c t i v e  nuclei 

a t  which branching can occur; i f  the p r o b a b i l i ty  o f  branching Is 

k2 , the ra te  of nu c lé a tio n  a t  time t  is then

3 T  ■ (15)

In Garner's equation (eq. 15) the in te r fe re n c e  between the 

branching chains is neglected . This may be corrected  by includ ing

Repro(juce(j with permission of the copyright owner. Further reproctuction prohibitect without permission.



11

a new term in e qua t io n  15 f o r  the p r o b a b i l i t y  o f  chain te rm in a t io n  

( k g ) . Thus

dN
dT “ + kgN - kgN ( 16)

I f  k  ̂ is very  l a r g e ,  the Nq p o t e n t i a l  s i t e s  a re  soon exhausted and 

we may n e g le c t  the f i r s t  term in e quat ion  16. We may then w r i t e

dN
d? = ( k ,  -  k )N = k 'N (17)

A l t e r n a t i v e l y  i f  k|  is  small the branching process s t i l l  predomi­

nates and (k 2 " k j ) N  »  k^N^, e quat io n  17 is s t i l l  v a l i d .  At any 

i n s t a n t  the r a t e  o f  decomposition ( ^ )  may be assumed to  be pro^ 

p o r t i o n a l  to the number o f  nu c le i  p r e s e n t ,  i . e .

da
d t (k 2 ~ k j )N  = k'N ( l 8 )

Equations 17 and 18 cannot be in t e g r a t e d  unless we know the  

p r o b a b i l i t i e s  k2  and k^ as a fu n c t io n  o f  a .  Prout and Tompkins^^ 

c ons id er  the case o f  a symmetrical sigmoid f o r  which the p o in t  o f  

i n f l e c t i o n  is a t  aj = i .  At t  = 0 ,  a = 0 and k j  must be ze ro ,  

because i n t e r f e r e n c e  a t  ze ro  time is not p o s s ib le .  While a t  t = t ; ,  

a  = a ; ,  ~  = 0 and k2  = k^. These boundary c o n d i t io n s  can be 

s a t i s f i e d  by the assumption

k^ = k g ^  (19)

Thus from e qua t io n  17
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12

dN
dt k f t l  -  ;^ )Na (20 )

Using equation 18 we have

k2

or

dN
I t

da

•( l  - a vda
0 7 ) 3 7

T ( '  -  f ) (21)

In te g ra t io n  o f  equation 21 gives

(22)

S u b s t itu t in g  equation 22 in to  equation 18 and s e t t in g  = & 

we ob ta in

~  = k 2 a ( 1 - a ) (23 )

Fu rther  In te g ra t io n  gives the Prout-Tompkins equation

log (-7^ )  = k , t  + constant (24)1 -a  ^

cal form o f  a c ry s ta l  is a sphere o f  

radius R, and n u c lé a tio n  occurs 

instan taneously  and un iform ly  

over the e n t i r e  surface  o f  the 

c r y s t a l .  The f r a c t io n  o f  m ate ria l  

remaining un reacted a t  time t  is then
Figure 2
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1 -  a
3Tr(R-kt)3

| itr3
(25)

where k Is the l i n e a r  p r o p o r t io n a l  c o n s ta n t ,  the r a te  o f  advance 

o f  the r e a c t a n t /p r o d u c t  i n t e r f a c e .  Rearrangement o f  equat ion  25 

gives
1

(1 -  a) 3 (26 )

I t  can be shown t h a t  th is  express ion  is v a l i d  f o r  p a r t i c l e s  

o f  any chunky shape, not n e c e s s a r i l y  s p h e r ic a l .

5 . D i f f u s io n  c o n t r o l l e d  Equat ion .  Based on the assumption 

th a t  the r a t e  o f  d i f f u s i o n  o f  the gaseous p r o d u c t (s )  through the

reacted  m a te r ia l  is in v e r s e ly  p r o p o r t io n a l  to  the th ickness  o f

the re ac ted  m a t e r i a l ,  dander^ d e r iv e d

an express ion  f o r  the r a te  o f  r e a c t io n

f o r  a s p h e r ic a l  p a r t i c l e

1
tl - ( l - a ) T )2 = -g  t

The above equat ion  can e a s i l y  be 

ob ta in e d  by s e t t i n g

(27)

dt
k'

1
(28)

Figure  3

where k* is the d i f f u s i o n  c o n s ta n t ,  and 1 the th ickness o f  the  

re ac te d  m a t e r i a l .  I n t e g r a t i o n  o f  the equat ion  28 g ives

1 = ( 2 k ' t ) &  = ( k t ) i
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P a r a l l e l i n g  equation 25 we have

,  -  0. .  j f d W h l  ( 2 3 )
r3

This gives formula 27 immediately.

14
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IV. EXPERIMENTAL

In the present  I n v e s t i g a t i o n ,  the decomposition o f  Na^HPO^ 

was s tu d ie d  a t  300-345°C.

Samples were heated Is o th e r m a l ly  In a D i f f e r e n t i a l  Scanning 

C a lo r im e te r  (DSC) a t  the d e s i re d  temperature  a t  atmospheric  pressure  

in a stream o f  i n e r t  gas (N ^) .  By means o f  a thermal c o n d u c t iv i t y  

c e l l  In the e f f l u e n t  gas stream the p a r t i a l  pressure  o f  w a te r  and% 

hence, the r a t e  o f  the e v o lu t i o n  o f  the c o n s t i t u t i o n a l  w a te r  was 

measured. The Instrument used and the procedure employed w i l l  be 

considered In more d e t a i l  below.

A. In s t ru m e n ta t io n

The D i f f e r e n t i a l  Scanning C a lo r im e te r ” 1B (P e rk ln -E Im e r  Co.)  

c o n s is ts  o f  two h o ld e rs ,  one f o r  the r e a c t a n t ,  another  f o r  an I n e r t  

re fe re n c e  m a t e r i a l .  A p la t in u m  r e s is t a n c e  thermometer and a h e a te r  

a re  I n s t a l l e d  In the base o f  each h o ld e r .  The machine Is designed  

to measure the d i f f e r e n t i a l  energy re q u ire d  to m a in ta in  both holders  

a t  the same temperature  w h i le  both ho lders  are  heated a t  a constant  

r a te  o r  a re  he ld  a t  the  same constant  tem pera ture .  The o p e r a t in g  

p r i n c l p i e ® ’ o f  the  DSC Is d iv id e d  in to  two loops as shown In 

F ig u re  4.

15
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Figure  4 — Block Diagram o f  DSC-1B (P e rk ln -E lm e r  Co.)

In the tem perature  c o n t ro l  loop the programmer feeds In 

a s i g n a l ,  which is p r o p o r t io n a l  to the temperature  o f  both sample 

and re fe r e n c e  h o ld e r s ,  to  the a m p l i f i e r .  The s ig n a l  when I t  reaches 

the  a m p l i f i e r ,  is compared w i th  ano th er  s ig n a l  from the thermometers 

o f  the  ho lders  v i a  an average temperature  computer. I f  the temper­

a t u r e  demanded by the programmer is h ig h e r  than the average temper­

a t u r e  o f  the  sample and re fe re n c e  h o ld e r s ,  more h e a t in g  c u r re n t  w i l l  

be s u p p l ie d  to  the h e a te r s .  I f  the average temperature  o f  the  

ho lde rs  is  h i g h e r ,  c u r r e n t  to  the h e a te rs  w i l l  be decreased. In 

t h i s  way the tem p era ture  o f  the  two ho lders  is r a p i d l y  ad jus ted  

to  the  tem pera ture  c a l l e d  f o r  by the programmer.
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In the  l i k e  manner» the  d i f f e r e n t i a l  tem pera ture  c o n t ro l  

loop compares the  s ig n a ls  re p re s e n t in g  the  sample and re fe re n c e  

te m p e ra tu re s .  Depending upon whether  the sample o r  the re fe re n c e  

temperatures  Is g r e a t e r ,  an ad ju s te d  d i f f e r e n c e  in power is fed  

to  the h e a te rs  to  e l i m i n a t e  the  tem perature  d i f f e r e n c e  between 

them. A s ig n a l  p r o p o r t io n a l  to  t h i s  d i f f e r e n t i a l  power is t r a n s ­

m i t te d  to  a r e c o rd e r .  However, due In p a r t  t o  the mass and heat  

c a p a c i ty  d i f f e r e n c e s  between the sample and re fe re n c e  c o n ta in e r s ,  

t h i s  s ig n a l  is so la r g e  t h a t  i t  is  not usefu l  a t  the s t a r t  o f  an 

Isothermal run f o r  which the p r e -h e a t  tem perature  Is s a f e l y  below 

the  r e a c t io n  te m p e ra tu re .

Because the  DSC d a ta  were not usefu l  in the beginning o f  an 

iso therm al  run,  in our  s tu d ie s  the DSC machine was used o n ly  f o r  

tem pera ture  c o n t r o l .  The m anufac turer  c la ims a temperature  re p ro ­

d u c i b i l i t y  o f  ±0.1®C. React ion ra te s  were measured by an E f f l u e n t  

Gas A n a ly z e r  (see next  p a ra g ra p h ) .  Lead metal (m.p. 600°K) was 

used t o  c a l i b r a t e  the  tem pera ture  d i a l  to  read 6 0 0 . 0°K ± 0 .1 °K  

a t  the  lead m e l t in g  p o i n t .  Over the r e l a t i v e l y  narrow temperature  

range used around 600®K the tem pera ture  u n c e r t a in t y  can be con­

s id e r e d  to  be ± 0 .1 ° C .

The DSC includes an E f f l u e n t  Gas A n a ly ze r  (EGA) u n i t .  In 

t h i s  u n i t  a tw o - t h e r m is t o r  b r id g e  (d e t e c t o r )  is used to  d e te c t  

carbon d i o x i d e ,  w a te r  vapor and o th e r  gaseous decomposition products  

by t h e i r  in f lu e n c e  on the thermal c o n d u c t i v i t y  o f  the sweeping gas 

stream  le a v in g  the  c e l l .  A gas stream such as n i t r o g e n  o r  he l ium
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is used to sweep out  the c e l l  c a v i t y  and to  c a r r y  a l l  gaseous 

products to  the d e t e c t o r .  From the d e t e c t o r  a s ig n a l  re p res e n t in g  

the composit ion o f  the  e f f l u e n t  gas is t r a n s m i t te d  to a recorder .

In our s t u d i e s ,  the o n ly  v o l a t i l e  decomposition product was 

w a te r .  The d e t e c t o r  s ig n a l  was p r o p o r t io n a l  to  the w ate r  vapor  

c o n c e n t ra t io n  in the n i t r o g e n  c a r r i e r  stream. At a constant  c a r r i e r  

f l o w - r a t e ,  t h i s  c o n c e n t r a t io n  was d i r e c t l y  p ro p o r t io n a l  to  the  

re a c t io n  r a t e .  The d e t e c t o r  s i g n a l ,  th e n ,  was d i r e c t l y  p ro p o r t io n a l  

to the r e a c t io n  r a t e .  I t  was found t h a t  under normal o p e r a t io n ,  

using the c a r r i e r  gas f lo w  r a te  o f  =30 ml/min recommended by the  

m anufacturer  and the c e l l  cover p ro v id e d ,  the  EGA s ign a l  did not  

match the  DSC s ig n a l  e x a c t l y .  This  seemed to  be due to the d i f f u s i o n  

o f  w a te r  vapor in to  the  ho l low  space o f  the  metal c e l l  cover (27 m l ) .  

Fast changes in the r a te  o f  e v o lu t i o n  o f  the w a te r  vapor were thus 

averaged somewhat b e fo re  they reached the  d e t e c t o r .  In o rd e r  to  

reduce the empty space a new c e l l  cover was b u i l t .  Th is  new cover  

(F i g .  5) had a volume o f  15 ml. With t h i s  reduced volume and an 

increase  in the c a r r i e r  gas f lo w  r a te  to  70 ml per minute,  the  

c a r r i e r  gas could sweep out the  gaseous product f a s t  enough to  

g iv e  EGA curves which matched the DSC curves (except f o r  the e a r l y  

p a r t  o f  the  DSC curve where the DSC s igna l  was not u s e fu l *  o f  

c o u r s e ) .

B. P r e p a r a t io n  o f  Samples

The sodium monohydrogen phosphate used was from M a l l in c k r o d t  

Chemical Company, Lot No. 7917- Samples o f  moderate s i z e  p a r t i c l e s
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and o f  very  f i n e  powder were prepared as fo l lo w s :

1. The commercial product was ground to moderate s i z e  

p a r t i c l e s .  By means o f  s ieves the sample was separated in to  4 0 -6 5 ,  

100-1 1 5 ,  115-150 ,  150 -170 ,  170 -2 0 0 ,  200-270 and 270-325  mesh 

p a r t i c l e  s i z e  ranges. For each sample acetone was used to wash 

out  a l l  powder a t tac h ed  to the s ur face  o f  the p a r t i c l e s .  The 

samples were heated a t  110-125°C in an oven f o r  two hours. Under 

the microscope the p a r t i c l e s  o f  each sample looked t ra n s p a re n t  and 

chunky in shape.

2. To o b ta in  a sample o f  very f i n e  powder, 40 -65  mesh 

Na^HPO^ and a metal bead were put in to  a small p l a s t i c  b o t t l e .

A Wig-L-Bug (Cresent  Dental Mfg. Co.) was used to  shake the b o t t l e  

f o r  f i v e  minutes. Powdered Na^HPO^ in the p l a s t i c  b o t t l e  was put  

in to  40 ml o f  methanol and s t i r r e d  v ig o ro u s ly  f o r  h a l f  a minute.

The m ix tu re  was a l lowed to  s e t t l e  f o r  one minute and then the  

s u p e rn a ta n t  l i q u i d  was decanted. The decanted m ix ture  was a l lowed  

to stand f o r  two minutes and then the supernatant  l i q u i d  was de­

canted ag a in .  The sample cons is ted  o f  the p a r t i c l e s  th a t  s e t t l e d  

out dur ing  the two-minute i n t e r v a l .  These p a r t i c l e s  were washed 

w i th  acetone and then d r ie d  in an oven a t  110-125°C f o r  more than 

two hours.

C. Procedure

Throughout t h i s  study the D i f f e r e n t i a l  Scanning C a lo r im e te r  

was used f o r  h e a t in g  purposes and f o r  temperature  c o n t r o l ,  using 

n i t r o g e n  as c a r r i e r  gas. The sample (10 -30  mg) to be decomposed
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was put In to  an aluminum pan. An empty pan was used as r e fe re n c e .  

In o rd e r  to  Increase  the  thermal c o n ta c t  between the sample and 

h o ld e r  and to  match the thermal e m i s s l v l t y  o f  the sample pan and 

r e f e r e n c e ,  both the sample pan and the r e fe re n c e  pan were capped 

w i t h  an Inner  cover  and a dome cover .  Experiments by a co-worker  

(Ronald S u s o t t ) , based on the apparent  m e l t in g  p o in t  o f  le a d ,  

showed t h a t  the top o f  an uncovered sample would be as much as 

3°C below the tem pera ture  a t  the bottom o f  the  sample. Except as 

repor ted  In the next  paragraph ,  a l l  samples were preheated a t  460°K  

f o r  10 to  15 m inutes .  Th is  pre he a t  tem perature  was 70°C lower 

than the tem pera ture  a t  which r e a c t io n  could f i r s t  be d e te c te d ,  

and was ap p ro x im a te ly  l40°C lower than the d e s i re d  re a c t io n  tem­

p e r a t u r e .  The sample was held  a t  the p r e -h e a t  temperature  u n t i l  

a l l  a i r  in the  h e a t in g  assembly had been swept out  by the n i t ro g e n  

c a r r i e r  gas, as determined by a c h ie v in g  a s t r a i g h t  b a s e - l i n e  In 

the EGA s i g n a l .  The DSC temperature  c o n t ro l  was then manually  

d i a l e d  from the p r e - h e a t  tem pera ture  to  the d e s i re d  re a c t io n  

tem pera ture  as r a p i d l y  as p o s s ib le  (about 10 s e c . ) .  In a d d i t io n  

to  t h i s  10 second p e r io d ,  ap p ro x im a te ly  one minute was requ ired  

f o r  the  machine to reach the  d e s i r e d  te m p era ture .  This  was 

determined by d i a l i n g  from the p r e -h e a t  temperature  (460°K) to  

the  m e l t in g  p o in t  o f  lead (600°K) and t im in g  the In t e r v a l  u n t i l

a lead sample m e l te d .

Instead  o f  p re h e a t in g  a t  460°K some samples o f  40-65  mesh 

were t r e a t e d  d i f f e r e n t l y .  Before the sample was put in the
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h e a t i n g  assem bly  th e  DSC was m a n u a l l y  s e t  a t  580°K. T h is  tem per ­

a t u r e  was 50°C h i g h e r  than  th e  te m p e ra tu re  a t  w h ich  th e  r e a c t i o n  

s t a r t e d .  The sample was then  p u t  on th e  sample h o l d e r  and a l l o w e d  

t o  r e a c t  f o r  10 t o  15 m in u t e s .  The r e a c t i o n  r a t e  a t  t h i s  t im e  

was v e ry  s lo w  and a s t r a i g h t  l i n e  was shown on th e  re c o rd  o f  th e  EGA 

o u t p u t .  The DSC te m p e r a t u r e  c o n t r o l  was then  d i a l e d  t o  th e  d e s i r e d  

r e a c t i o n  t e m p e ra tu re  ( 6 0 4 -6 2 0 ° K ) .  Less than  h a l f  a m inu te  was 

r e q u i r e d  f o r  t h e  machine t o  reach th e  d e s i r e d  t e m p e r a tu re .  T h is  

second p re h e a t  p r o c e d u r e ,  used in  runs t h a t  w i l l  be I d e n t i f i e d  

l a t e r ;  was d e s ig n e d  t o  e l i m i n a t e  a m in o r  f i r s t  s ta g e  r e a c t i o n  and 

t o  o b t a i n  more u s e f u l  d a ta  f o r  th e  e a r l y  p e r i o d  o f  t h e  main r e a c t i o n .

In a l l  r u n s ,  a f l o w  o f  80 m l /m in  (40 -65  mesh runs)  o r  69 

m l /m in  ( v e r y  f i n e  powder run s )  o f  n i t r o g e n  was used t o  sweep th e  

r e a c t i o n  c e l l  and c a r r y  w a t e r  va p o r  f ro m  th e  th e rm a l  d e c o m p o s i t i o n  

zone t o  th e  th e rm a l  c o n d u c t i v i t y  c e l l  o f  th e  EGA a n a l y z e r .  A i l  

r a t e  d a ta  r e p o r t e d  in t h i s  s tu d y  were d e te rm in e d  f ro m  the  EGA s ig n a l  

f r o m  i s o t h e r m a l  ru n s .  The t im e  a t  w h ich  t h i s  s i g n a l  f i r s t  d e p a r te d

f ro m  th e  b a s e l i n e  was c o n s id e r e d  t o  be z e ro  t im e  ( t „ )  f o r  a run .o

F r a c t i o n a l  d e c o m p o s i t i o n  (a) d a ta  were o b t a in e d  by i n t e g r a t i n g

th e  v s .  t  g ra p h .  The r e c o r d e r  used was eq u ip p ed  w i t h  a D isc  
d t

I n t e g r a t o r  f o r  th e  v e r y  f i n e  powder ru n s .  The i n t e g r a t i o n  was 

a c c o m p l i s h e d  f o r  th e  40 -65  mesh runs by t r a c i n g  th e  cu rve  and c u t t i n g  

and w e i g h in g .
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V. RESULTS

A. E f f e c t s  o f  P a r t i c l e  S ize

The thermal decomposit ion k i n e t i c s  o f  Na^HPO^ are  a f f e c t e d  

remarkably  by the  sample p a r t i c l e  s i z e .  A l l  samples s t a r t  to  reac t  

about 530®K, but  the  s m a l le r  the sample p a r t i c l e  s i z e  the g r e a t e r  

the i n i t i a l  r a te  o f  the  r e a c t io n .  In F ig u re  6 thermal scans 

( r e a c t i o n  r a te  vs .  tem pera ture )  o f  th re e  d i f f e r e n t  p a r t i c l e  s ize s  

a r e  compared. In ( a ) ,  f o r  40 -65  mesh p a r t i c l e s ,  a very  slow re a c t io n  

begins a t  550°K,  the r e a c t io n  cont inues s low ly  to  602°K,  and most 

m a te r ia l  reac ts  a t  602-620®K. In ( b ) ,  f o r  270-325  mesh p a r t i c l e s ,  

r e a c t io n  s t a r t s  a t  530^K w i th  the r a te  in c re a s in g  up to  605°K.

From t h i s  p o in t  the  r e a c t io n  r a p i d l y  becomes f a s t e r  and reaches 

a maximum r a te  a t  6 l9 ^ K ,  f o l lo w in g  which the r a te  decreases  

r a p i d l y .  In ( c ) ,  f o r  very  f i n e  powder, the r e a c t io n  begins a t  

520®K. The r e a c t io n  r a te  keeps in c re a s in g  markedly to a maximum 

a t  6 2 3 °K ,  and then decreases r a p i d l y .

For isothermal runs more o r  less the same r e s u l t  is o b ta in e d .  

F ig u re  7 shows thermograms o f  samples o f  d i f f e r e n t  p a r t i c l e  s i z e  

r e a c t in g  i s o th e r m a l ly  a t  604°K.  The f i r s t  hump in the thermogram 

becomes l a r g e r  as a sample o f  s m a l le r  p a r t i c l e  s i z e  is used; f i n a l l y  

a one-hump curve is o b ta in e d  f o r  the sample o f  very  f i n e  powder.

The t im e  t h a t  the r e a c t io n  takes to  reach the second maximum r a te  

is not  s t r o n g l y  dependent on p a r t i c l e  s i z e .  The f r a c t i o n a l

23
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decomposition (a) v a lu e  a t  the r a te  minimum between the two peaks 

o f  each o f  these curves is shown in Table  I .

For samples o f  a p a r t i c u l a r  s i z e ,  the r a te  minimum between 

the  two peaks s h i f t s  to  an e a r l i e r  p o s i t io n  as a h igher  r e a c t io n  

tem p era ture  is used. Tab le  I I  i l l u s t r a t e s  the a ' s  a t  the r a te  

minima as a f u n c t io n  o f  the r e a c t io n  temperature  f o r  270-325  mesh 

samples.

TABLE I 

Reaction tem perature  604°K

p a r t i c l e  s i z e
(mesh) g a t  mi n

4 5 -60  0 .0 3 4
100-115 0 .0 5 7
1 1 5 - 1 5 0  0 . 0 8 8

1 5 0 - 1 7 0  0 . 1 3

1 7 0 - 2 0 0  0 .1 4
2 0 0 - 2 7 0  0 . 1 5

270-325 0.21
very  f i n e  

powde r 1 .00

TABLE I I

Sample p a r t i c l e  s i z e  270-325 mesh 

re a c t  temp. (°K) g a t  min

6 0 0  0 . 2 7

6 0 2  0 .2 5
604 0.21
606 0 . 1 9

6 0 8  0 . 1 6

610 0 .1 2
6 1 2  0 . 0 7 4

6 l 4
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With the  above o b s e rv a t io n s  one might suspect th a t  Na^HPO^ 

may r e a c t  w i t h  aluminum. S ince  the s m a l le r  the  p a r t i c l e  s i z e  the  

g r e a t e r  the  c o n t a c t in g  s u r fa c e  between the sample and the aluminum 

pan, i f  the  f i r s t  hump is from the  r e a c t io n  o f  the sample and alum­

inum, o f  course the  f i r s t  hump w i l l  become l a r g e r  as a s m a l le r  

p a r t i c l e  s i z e  is used. However the  same r e s u l t s  were ob ta ined  

by press ing  down a f i n e l y  powdered s i l i c a  la y e r  to  s epara te  the  

d i r e c t  c o n ta c t  between the sample and the aluminum pan. So we know 

t h a t  the  r e a c t io n  s h i f t  to  an e a r l i e r  t ime is independent o f  the  

c o n t a in e r .

B. S e p a ra t io n  o f  the  React ion Stages

I f  we l e t  the sample o f  40 -65  mesh re ac t  a t  a low temper­

a tu r e  (say 5 8 0 ° K ) , a curve resembling the f i r s t  hump in F ig .  7a 

is o b ta in e d .  The i n i t i a l  r e a c t io n  r a t e  is f a s t  and reaches the  

maximum in  the f i r s t  m inu te .  The r e a c t io n  r a te  drops down g r a d u a l l y  

and becomes almost equal to  ze ro  a f t e r  r e a c t in g  f o r  s i x  minutes.  

However the  r e a c t io n  has not stopped a t  t h i s  p o i n t ,  i t  w i l l  keep 

going f o r  hours to  complete the decomposit ion.  No second hump 

l i k e  F ig .  7a appears .  I f  we change the r e a c t io n  temperature  to  

604°K a f t e r  the sample has re ac ted  a t  580°K f o r  s i x  minutes or  

more, a curve resem bling  the second hump in F ig .  7a is o b ta ined  

(F ig u r e  8 ) .  Samples o f  o t h e r  p a r t i c l e  s iz e s  show s i m i l a r  r e s u l t s .  

For s m a l le r  p a r t i c l e  s iz e s  a longer  t ime is re q u ire d  to  e l i m i n a t e  

the  f i r s t  hump, and the a rea  under the f i r s t  hump is g r e a t e r .

T h is  r e s u l t  in d ic a te s  t h a t  r e a c t io n  o f  Na^HPO^ a t  h igher
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temperatures (59&°K o r  h ig h e r )  in vo lves  a combination o f  two 

processes ,  one t h a t  can occur  a t  a lower te m p e ra ture ,  another  

r e q u i r in g  h ig h e r  te m p e ra tu re s .

C. K i n e t i c  S tud ies  f o r  Samples o f  40 -65  mesh

I f  we a l lo w  the samples o f  4 0 -65  mesh to reac t  a t  580®K

f o r  10 to  15 m inu tes ,  and then change to  a h ig h e r  temperature

( 4 0 6 - 6 2 0 ° K ) , the  minor r e a c t io n  s tep  is separa ted  from the main 

r e a c t io n  ( c f .  p rev ious  s e c t i o n ) .  A l l  runs in t h i s  s e c t io n  were 

c a r r i e d  out  t h i s  way. The da ta  o b ta in e d  a t  the h igher  re a c t io n  

tem p era tu re  are  c h a r a c t e r i s t i c  o f  an a u t o c a t a l y t i c  r e a c t io n  fo l lo w e d  

by a decay process ,  producing a maximum in the r e a c t io n  r a te .

A u t o c a t a l y t i c  e x p r e s s io n s ,  such as the E ro feev  Equat ion ,  Power Law

and Prout-Tompkins E q u a t io n ,  were te s te d  a g a in s t  our d a ta .  Table  

I I I  shows the data  o b ta in e d  a t  608°K. Tab le  i l l  a ls o  presents

v a lues  o f  v a r ious  fu n c t io n s  used to t e s t  the d i f f e r e n t  k i n e t i c

e qu a t io n s  descr ibed  below.

1. Power Law. As shown in e quat ion  11 obta ined  e a r l i e r ,

the express ion  o f  the Power Law is

a = Ct"̂

To t e s t  t h i s  e x pres s io n  we p l o t  log ot a g a in s t  log t  (F ig .  9A).

Th is  express ion  f i t s  o n ly  the very  beginning o f  the r e a c t io n  (a  < .3 0 )  

Note t h a t  because t h i s  p l o t  Is vs .  log t ,  the a  s c a le  on F ig .  9 

does not apply  to curve A.

2 .  Prout-Tompkins E quat ion .  We t e s t  f o r  Prout-Tompkins  

k i n e t i c s  (e qua t io n  24 ,  o b ta in e d  e a r l i e r )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

TABLE I I I

R eact ion  o f  Na^HPO^ (40 -6 5  mesh) a t  608°K

1 I inc
( m i n . ) a log t log a [ l o g ( ^

0 .4 0 0 .0049 - . 3 9 8 - 2 . 3 1 0 - 2 . 3 1 0 .0458
0 .6 0 0 .0166 - . 2 2 2 - 1 . 7 8 0 - 1 . 7 7 5 .0849
0 .8 0 0 .0451 - . 0 9 6 9 - 1 . 3 4 6 - 1 . 3 2 6 . I 4 l
1 .00 .0979 .000 - 1 . 0 0 9 -  . 9 6 5 .211
1 .20 . I 8 l . 0 7 9 2 -  .742 -  . 6 5 5 . 2 9 4

1.40 .281 . 146 -  . 5 5 1 -  .408 . 3 7 9

1 .60 .390 .204 -  .409 -  . 1 9 4 .463
1 .80 .501 . 2 5 5 -  . 3 0 1 . 0 0 0 8 . 5 4 9

2 .0 0 .605 . 3 0 1 -  . 2 1 9 .184 . 6 3 5

2 .2 0 .699 .342 -  . 1 5 5 . 3 6 7 . 7 2 3

2 .4 0 . 7 8 0 . 3 8 0 -  .108 . 5 4 9 .811
2 .6 0 .846 .415 -  . 0 7 2 8 . 7 3 8 . 9 0 1

2 .8 0 . 8 9 4 . 4 4 7 -  .0487 . 9 2 5 .987
3 .0 0 . 9 3 0 . 4 7 7 -  . 0 3 1 6 1 .12 1 . 0 7

3 .2 0 . 9 5 2 . 5 0 5 -  .0214 1 . 3 0 1 .15
3 .4 0 . 9 6 8 . 5 3 2 -  .0142 1.48 1.22
3 .6 0 . 9 7 8 . 5 5 6 -  . 0 0 9 8 1.64 1 . 3 0

3 .8 0 .985 . 5 8 0 -  .0068 1 .80 1.35
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F i g u r e  9 - - K I N E T I C  EX PRE SSI ON OF N a ^ H P O ^  ( 4 0 - 6 0  m e s h )  a t  608° K

P o w e r  L a w  l o g  a  v s .  l o g  tA
B

C

A  P r o u t - T o m p k i n s  E q u a t i o n  l o g ( - p ^ )  v s  t  

o  E r o f e e v  E q u a t i o n  [  1 o g ^  v s .  t
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log(-Y“ ) = k t  + constant

by p l o t t i n g  log a g a in s t  t ime (F ig .  9BJ . Th is  formula  does

not f i t  the a c c e l e r a t o r /  pe r iod  (b e fo re  the max. o f  the curve)  

o f  t h i s  r e a c t i o n .  However i t  does f i t  the decay p e r io d ,  and 

Prout-Tompkins k va lues  f o r  the decay per iod  a t  var ious temperatures  

were c a l c u l a t e d .  Tab le  IV shows these k values and the a range 

in which t h i s  express ion  ho lds .  These k values do not g ive  an 

a c c e p ta b le  A rrhen ius  p l o t ,

TABLE IV

Prout-Tompkins express ion  f o r  Na^HPO^ (40-65  mesh)

r e a c t ,  temp.
(OK) k (m in ~ l ) a  range

6 0 6 . 0  1 . 6 5  3 3 ” -99
608.0 2.15 ,28- ,98
6 1 0 . 0  2 . 6 9  . 3 8 - , 9 6

6 1 2 . 0  2 , 9 8  . 3 0 - , 9 3
6 1 4 .0  3 3 5  3 5 - , 9 4

6 1 6 .0  4 .5 5  . 3 4 - 3 9

6 1 8 .0  5 . 7 1  . 3 2 - 8 1

3 . Erofeev  E qu at ion ,  The best  f i t  f o r  our da ta  was found 

to  be the Erofeev  Equation (eq, 14) w i th  n equal to  2

l o g ( T ^ )  = ( k t ) 2  (30)

A s t r a i g h t  l i n e  is o b ta in e d  by p l o t t i n g  [ 1 o g ( y ^ ) l *  a g a in s t  

t ime ( F i g .  9C) .  This  equa t io n  f i t s  almost the e n t i r e  decomposition  

curve a t  every  tem pera ture  s t u d ie d .  The r a t e  c o n s ta n t ,  k can be 

c a l c u l a t e d  from the s lope o f  t h i s  s t r a i g h t  l i n e .  In Table  V are
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given  the r a te  c onstants  a t  d i f f e r e n t  temperatures to g e th e r  w i th  

the  range o f  ct in which the E ro feev  Equation ho lds .  The Arrhenius  

p l o t  is  shown In F ig u re  10, and the  a c t i v a t i o n  e nergy ,  AE*, is 

found to  be ± 5 k c a l /m o le .

TABLE V

t . temp 
(°K)

Erofeev  

k ,
(min ^)

express ion  f o r  NagHPO^ 

a  range

( 4 0 - 6 5  mesh) 

log k Y  x 10

6 0 6 . 0 . 4 9 3 .0 4 5 - . 9 8 - . 3 0 7 1 . 6 5 0

6 0 8 . 0 .653 .0 9 8 -9 5 - . 1 8 6 1.645
6 1 0 .0 . 7 8 7 . 0 7 8 - . 9 3 - . 1 0 4 1 . 6 3 9
6 1 2 .0 . 9 3 0 . 0 5 9 - , 9 3 - , 0 3 1 8 1 . 6 3 4

6 1 4 .0 1 . 1 7 . 0 9 3 - . 9 2 .0679 1.629
6 1 6 , 0 1 .43 .12 - . 8 9 . 1 5 5 1.623
6 1 8 .0 1 . 6 7 . 0 7 9 - , 8 7 .222 1 . 6 1 8

I t  is observed from Tab le  V t h a t  the equat ion  holds in a 

range .1 < a  < . 9 .  F i t  throughout the e n t i r e  run cannot be 

e x pected .  Since about h a l f  a minute is re q u ire d  f o r  the sample 

to  reach the d e s i r e d  r e a c t io n  te m p e ra tu re ,  we do not expect the  

e q u a t io n  to  f i t  the  v ery  e a r l y  t ime o f  the r e a c t io n .  In the l a t e r  

t ime o f  the  decom posi t ion ,  nucleus forming s i t e s  have been dep le ted ,  

so the  e quat ion  does not a pp ly .  Accumulated e r r o r  in the i n t e ­

g r a t i o n  o f  ^  v s .  t  to o b ta in  a  values a ls o  prevents  one from  

e x p e c t in g  a good f i t  a t  h igh a  v a lu e s .

As the sample p a r t i c l e  s i z e  used is decreased the f r a c t i o n  

o f  r e a c t io n  represented  by the  second hump becomes s m a l le r ,  and
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the  ex pe r im e n ta l  c o n d i t io n s  f o r  re s o lv in g  the two humps become 

more c r i t i c a l .  I t  has not been p o s s ib le  to  get  usefu l  data  fo r  

the  second r e a c t io n  w i th  s m a l le r  p a r t i c l e  s ize s  than 40-65 mesh.

D. K i n e t i c  S tud ies  f o r  Samples o f  Very F ine Powder

We have seen t h a t  the a rea  under the f i r s t  hump of  a thermo= 

gram increases  as sample p a r t i c l e  s i z e  decreases;  f i n a l l y  a one-  

hump curve is o b ta in e d  f o r  very  f i n e  powder, I t  Is reasonable  

t h a t  the  n a tu re  o f  the  f i r s t  hump in o th e r  thermograms can be 

understood by s tudy ing  t h i s  one-hump curve.

As shown In F igure  11, the re a c t io n  o f  a sample o f  very  

f i n e  powder has no in d u c t io n  p e r io d .  The i n i t i a l  r e a c t io n  is 

extreme,ly  f a s t  and reaches a maximum r a te  w i t h i n  h a l f  a minute.

Th is  is e s s e n t i a l l y  the  t ime re q u ire d  f o r  the sample to  reach the  

r e a c t io n  te m p e ra tu re .  The decay per iod  c o n s t i t u t e s  v i r t u a l l y  the  

e n t i r e  curve.  K i n e t i c  express ions s ta n d a rd ly  employed fo r  re ac t io ns  

w i t h  a v e ry  f a s t  i n i t i a l  r a t e ,  such as d i f f u s i o n  co n tro l  and 

s p h e r ic a l  i n t e r f a c i a i  express ions  were t r i e d  to  f i t  our da ta .

Ta b le  Vi i l l u s t r a t e s  da ta  o b ta in e d  a t  588°K and values of  d i f f e r e n t  

fu n c t io n s  used t o  t e s t  the  k i n e t i c  e q u a t io n s .  Statements concerning

each t e s t  a re  g i v e n  be low.

I .  Sph er ic a l  i n t e r f a c i a l .  From e quat ion  26 ,  ob ta ined  

e a r l i e r ,  the s p h e r ic a l  i n t e r f a c i a i  express ion  is

4- k( 1 - a ) T  = 1 -  — t

1
We t e s te d  t h i s  express ion  by p l o t t i n g  ( l = a ) 3  a g a in s t  t ime.  This
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TABLE Vt

React ion  o f Na^HPO^ (very  f i n e powder) a t  5 8 8 ®K

Time i 1 , 1
(min) a (1=a )3 [ 1 - ( 1 - a ) 3 ] 2

. 2 8 0 .0687 ,976 .00055 .0311

. 6 8 0 .240 .913 .00764 ,119
1 . 0 8 .365 . 8 5 8 . 0 1 9 8 .197
1 .48 .456 . 8 1 6 .0337 ,264
1 . 8 8 . 5 2 8 .778 .0491 . 3 2 6

2 , 2 8 , 5 8 8 .744 .0641 ,385
2 . 6 8 .641 . 7 1 2 ,0833 .445
3 .0 8 . 6 8 8 . 6 7 8 .103 . 5 0 6

3 .4 8 .729 .646 . 124 . 5 6 8

3 . 8 8 . 7 6 6 .617 .147 . 6 3 1

4 .2 8 .799 .586 . 172 .697
4 , 6 8 ,828 .555 .198 .765
5 .0 8 .853 .528 .224 .834
5 .4 8 .876 .499 .251 . 9 0 7

5 .8 8 .896 .472 .279 . 9 8 2

6 . 2 8 .912 .445 .306 1 , 0 6

6 . 6 8 .928 .415 ,341 1.14
7 ,0 8 .941 .390 .373 1 , 2 3

7 ,4 8 .951 .367 .403 1 . 3 1

7 ,8 8 ,961 .340 .437 1 .40
8 .2 8 .968 316 .468 1 . 5 0

8 .6 8 .974 .296 .497 1 . 5 9

9 .0 8 .979 .277 .527 1 .67
9 .4 8 .984 ,254 ,562 1.79
9 .8 8 .988 - - ,600 1 . 9 1
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express ion  does not  f i t  our d a ta  as shown in F igure  12A,

2. D i f f u s i o n  c o n t r o l .  From e q u a t io n  27 the d i f f u s i o n  

c o n t r o l  e x pres s io n  is

[1 - ( l - a )3 ]2  =

To t e s t  t h i s  e x p res s io n  we p l o t  [1 -  ( l - o ) 3 ] 2  a g a in s t  t ime ( F ig .  

1 2 8 ) ,  t h i s  form ula  f i t s  a t  the very  end o f  the decay per iod  

(a  > . 9 0 ) .

3. The bes t  f i t  to  t h i s  decay curve is found fo r  the  

e q u a t io n

1 o g ( - ^ )  = k t  (31)

The r a t e  c ons tan t  k can be o b ta in e d  from the s lope o f  a p l o t  o f

l o g ( —^  a g a in s t  t ime ( F i g .  12C). Values o f  k a t  var ious  temper-  
1 - a

a tu re s  a re  e n te red  in Tab le  V I I .  An Arrhenius  p l o t  is shown in 

F ig u re  13, and the  a c t i v a t i o n  energy is found to  be 42 ± 4 k c a l /m o le

TABLE VI I

Decay process o f  Na^HPO^ (very f i n e  powder)

r e a c t . 
temp. (°K) k ( m i n ' l ) a  range log(kxlO^) Y  X lo3

5 7 2 .0 .124 . 3 8 - . 9 5 1 . 0 9 3 1.748
5 7 6 .0 .173 . 3 4 - . 9 4 1 . 2 3 8 1.736
5 8 0 .0 .242 . 3 4 - . 9 0 1.384 1.724
5 8 4 .0 .292 . 3 0 - . 8 7 1.465 1 . 7 1 2

5 8 8 .0 .375 . 2 4 - . 8 7 1 . 5 7 4 1 . 7 0 1

5 9 2 .0 . 461 . 2 7 " . 8 5 1.664 1 . 6 8 9

5 9 6 .0 . 6o6 . 1 9 - 8 3 1 . 7 8 3 1 . 6 7 8

5 9 8 .0 .677 . 2 0 - . 8 7 1 . 8 3 1 1 . 6 7 2

6 0 0 .0 .682 . 1 7 - . 8 8 1 . 8 3 4 1 . 6 6 7
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1
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C â  D e c a y  p r o c e s s  l o g ( y L )  v s .  t

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40

m

CM

oo
VO

r-~
vO

oCMcn oo.o

X
■I t—

«N

*oa
CL

4)
C

4)>

O
CL.

OJm

o
’q.
t/t3
C

<c
I
Im

0)L.
3
cn

( j 0 ix > | )6 o (

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



41

Equation 31 does not hold f o r  small a  v a lu e s ,  t h i s  can be 

seen from the d i f f e r e n t i a l  form o f  the  equat ion

^  -  k e ' k t  (32)

According to  e q u a t io n  32 the a b s o lu te  maximum is a t  t ime  

z e r o ;  t h i s  is q u i t e  d i f f e r e n t  from the a c tu a l  case. Th ere fo re  

e q u a t io n  31 can o n ly  app ly  to  the  decay p e r io d  o f  the r e a c t io n .

Due to  e x p e r im e n ta l  l i m i t a t i o n s :  (a) the i m p o s s i b i l i t y  o f  b r in g in g

the sample to the  r e a c t io n  tem pera ture  in s ta n ta n e o u s ly  and (b)  

de lays  in the  response o f  the  r a te  measuring equipment, the  

e x p e r im e n ta l  curve  re q u ire d  a f i n i t e  per iod  o f  t ime to  show t ru e  

decay k i n e t i c s .  No decay k i n e t i c  express ion can f i t  the da ta  u n t i l  

the curve  has passed not o n ly  I t s  maximum, but a ls o  has passed 

the  I n f l e c t i o n  f o l l o w i n g  the  maximum. Although both o f  these po in ts  

occur e a r l y  In t im e ,  because o f  the  high I n i t i a l  r a te  these po in ts  

a re  r e l a t i v e l y  l a t e  in a .  For example, In the run I l l u s t r a t e d  

In F ig u re  11, the  maximum and the I n f l e c t i o n  f o l lo w in g  the maximum 

occur  a t  O . 3 6  and 0 .4 8  m in u tes ,  r e s p e c t i v e l y ,  out o f  a run l a s t in g  

about t h i r t e e n  m in u tes ,  but occur  a t  a  values o f  .11 and .1 6 ,  

r e s p e c t i v e l y .  Equat ion 31 f i t s  the d a ta  as e a r l y  in the run as can 

be e x p e c te d ,  and much e a r l i e r  than do a l t e r n a t e  express ions.

Due to  accumulated e r r o r  In the In t e g r a t i o n  o f  the vs .  

t  d a ta  to  o b ta i n  a  v a lu e s ,  no express ion  should be expected to  

f i t  the  very l a t e  p e r io d  o f  the r e a c t io n .
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V I .  DISCUSSION

The E ro feev  Mechanism

The exponent n in the  E ro feev  express ion  is the sum o f  the 

number o f  steps (B) r e q u i r e d  to  produce a growth nucleus and the  

number o f  dimensions (A) In which the r e a c t io n  propagates from 

t h a t  nuc leus .  In the decomposition o f  Na^HPO^ by the Erofeev  

mechanism n has the v a lu e  2. Since g r in d in g  increases the I n i t i a l  

r a te  by an e f f e c t  o t h e r  than p a r t i c l e  s i z e  re d u c t io n ,  the e f f e c t  

o f  g r in d in g  must be due t o  an Increase  In the n u c lé a t io n  r a t e .

The E ro feev  mechanism, th e n ,  In samples t h a t  have been ground l i t t l e ,  

must in v o lv e  a n u c l é a t i o n  process o f  a t  l e a s t  one s tep .  The change, 

f o l l o w i n g  the r a t e  maximum, to  a w e l l - d e f i n e d  decay per iod requ ires  

a p rop ag at ion  process In a t  l e a s t  one d i r e c t i o n .  I t  fo l low s  th a t  

the r e a c t io n  must In v o lv e  a o n e -s te p  n u c lé a t io n  and one-dI menslonal  

p ro p a g a t io n .  I t  Is not re q u ire d  t h a t  the propagat ion be l i n e a r ;  

the  p ropagat ion  cha in  might be a random w a lk ,  f o r  example. However, 

the one-d lm enslona l  p ropagat ion  ru les  out  chain branching,  and th is  

makes a random walk  u n l i k e l y .  I f  the chains are then considered  

to  propagate  In s t r a i g h t  l i n e ,  these l in e s  cannot a l l  be p a r a l l e l ,  

as the decay p e r io d  a r is e s  from an o v e r la p  term a t t r i b u t e d  to  chain  

t e r m i n a t io n  a r i s i n g  from encounters between chains .

The c r y s t a l  s t r u c t u r e  o f  NagHPO^ has not been determined.

I t  is I n t e r e s t i n g ,  however, t h a t  hydrogen phosphates are  known 

to  have hydrogen bonds between the an ions .  In any monohydrogen

42
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phosphate the s i n g l e  hydrogen atom per  phosphate ion Is j u s t  

enough to  e s t a b l i s h  hydrogen-bonded anion c ha ins .

-2  -2  -2
0 0 — —  H --------- - 0  .0 0 .0 ——  H —

>\ X X 0 0 0 0 —-------------- H 0 0

Such a hydrogen-bonded chain has been proposed in one c r y s ta l  

s t r u c t u r e  study o f  CaHPO^.^®

For o n ly  two anhydrous monohydrogen phosphates have the  

c r y s t a l  s t r u c t u r e s  been de te rm ined .  In both o f  these a c h a in - ty p e  

c a t i o n - a n i o n  c o o r d in a t io n  has been re p o r te d .  For CaHPO^, a 

r i b b o n - l i k e  double  cha in  s t r u c t u r e  has been re p o r te d .

0 0 0 0\ /
/  /  \  /  \
^ C a  0 0 -------  C a —— - 0  0

/ V y V
For BaHPO^, a s im ple  s i n g l e  chain  s t r u c t u r e  has been re p o r te d .^

Ba — PÔ i"— Ba— P0^=
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The r e a c t io n  chains in the E ro feev  mechanism might be e i t h e r  along  

hydrogen-bonded chains o r  c a t io n - a n i o n  c ha ins .

B. The L o g a r i th m ic  Decay Mechanism

We have seen the  decomposition of  NagHPO^ invo lves  a w h o l ly  

decay type  process in a d d i t i o n  to  the Erofeev mechanism. A pparent ly  

these  two processes a r e  not independent;  (1)  the f i r s t  peak ( the  

w h o l ly  decay process)  becomes l a r g e r  a t  the expense o f  the second 

as a sample o f  s m a l le r  p a r t i c l e  s i z e  is  used, and (2) f o r  any 

p a r t i c l e  s i z e ,  the  e n t i r e  r e a c t io n  can be c a r r i e d  out  as p a r t  o f  

the  f i r s t  r e a c t i o n .  A q u es t io n  a r is e s  concerning the r e l a t i o n s h i p  

between the  E ro fe e v  mechanism f o r  la rg e  p a r t i c l e s  and the decay 

process f o r  s m a l le r  p a r t i c l e s .  For answers to t h i s  and an under­

s ta n d in g  o f  the  mechanism t h a t  leads to  the k i n e t i c s  f o r  the very  

f i n e  powder, l e t  us examine the  r e s u l t s  o b ta ined  from the samples 

o f  v e ry  f i n e  p a r t i c l e .

1. Suppose t h a t  the p a r t i c l e s  o f  v e ry  f i n e  powder are  so 

small t h a t  a p a r t i c l e  is c o m p le te ly  converted to  product soon a f t e r  

n u c le i  a re  formed in t h a t  p a r t i c u l a r  p a r t i c l e .  That i s ,  propagat ion  

is not a f a c t o r  in the  k i n e t i c s  f o r  the  r e a c t i o n ,  and the r e a c t io n  

r a t e  is then de te rm ined  by n u c l é a t i o n  k i n e t i c s .  This  r a te  is 

dependent upon the  amount o f  r e a c ta n t  l e f t  a t  t ime t ,  assuming 

p o t e n t i a l  nucleus s i t e s  a re  u n i fo r m ly  d i s t r i b u t e d  throughout the  

sample.

^  = k ( l - a )
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so t h a t

1 og ( -J—) = k t  ( 3 3 )
1 - a

which IS the  k i n e t i c  express io n  we have found a p p l ie s  to  samples 

o f  v ery  f i n e  powder.

W ith  t h i s  decay process f o r  v ery  f i n e  p a r t i c l e s  and the  

E ro fe e v  mechanism f o r  b ig  p a r t i c l e s ,  the dependence on p a r t i c l e  

s i z e  o f  the  k i n e t i c s  f o r  the  decomposit ion process can be e x p la in ed  

as f o l l o w s .  G r in d in g  the sample in t o  s m a l le r  p a r t i c l e s  produces 

s c ra tc h e s  on the  s u r fa c e  o f  the  c r y s t a l s .  Assuming r e a c t io n  a t  

a s c ra tc h  Is  e a s i e s t ,  r e a c t io n  next  to  ( I . e . ,  propagat ion)

Is n ex t  e a s i e s t ,  and o r d i n a r y  p o t e n t i a l  nuc le i  s i t e s  are  hardest  

t o  r e a c t :

(a)  4 0 -6 5  mesh s a m p le - -v e r y  few s c ra tc h e s .  K in e t ic s

depend on the  slow& hard o r d i n a r y  n u c lé a t io n  step and

subsequent p r o p a g a t io n .  However, th e re  a re  a few

s c ra tches  t h a t  lead to  a minor f i r s t  s te p .  Because the

p a r t i c l e s  a r e  la r g e *  however , the propagat ion  chain

Is  long enough t h a t  the  f i r s t  s tep  does not have the

s imple  k i n e t i c s  o f  the  very  f i n e  powder. And, po ss ib ly

th e re  Is some I n t e r f e r e n c e  o f  c h a in s .

N u c lé a t io n  k i n e t i c s  f o r  r e a c t io n  s t a r t i n g  a t  a scra tch  

dN
a re  = k . ( N q -  N . ) .  N u c lé a t io n  k i n e t i c s  fo r  

dt  =» *
re a c t io n  s t a r t i n g  a t  o r d i n a r y  p o t e n t i a l  n u c le i  are

where N. Is  number o f  n u c le i  from scratches  
d t  *
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a t  t ime t ; is the number o f  p o t e n t i a l  nu c le i  a t  

scra tches  and the number o f  o r d in a r y  p o te n t i a l  

n u c le i  s i t e s ,  , The r a te  constant  f o r  n u c lé a t io n  

a t  s c r a t c h e s ,  is assumed to be much la r g e r  than kj  

the  r a t e  c onstan t  f o r  n u c lé a t io n  a t  o r d in a ry  p o te n t i a l  

n u c l e i .

(b) As the  p a r t i c l e  s i z e  is reduced, more o f  r e a c t io n  

is d e r iv e d  from n u c le i  formed a t  scra tches  as the r e s u l t  

o f  an in cre a s e  In the v a lu e  and in t e r f e r e n c e  

between chains becomes less important  In the k i n e t i c s ,  

because the chains a re  s h o r t  anyway. For in te rm e d ia te  

p a r t i c l e  s i z e  ranges ,  the observed dependence o f  ~

on t  c o n s is ts  o f  two o v e r la p p in g  s t e p s „ The f i r s t  step  

has the decay k i n e t i c s  o f  very  f i n e  powder, and there  

fo l lo w s  a second s tep  o f  E ro feev  mechanism as the s i t e s  

near sc ra tches  (Ng^) a re  used up. F igure  l4  shows 

how these two steps can combine to  g ive  the observed 

ki net i c s .

(c )  For v e ry  f i n e  p a r t i c l e s ,  the k i n e t i c s  a re  simply  

the  n u c l é a t i o n  k i n e t i c s  f o r  the  f i r s t  s te p .

2. From a n o th e r  v i e w p o i n t ,  suppose t h a t  s ur face  d e f e c t s ,  

such as s c ra tc h e s ,  se rve  as p a r t i c u l a r l y  e f f e c t i v e  nuc le i  fo r  de­

composit ion,  so t h a t  r e a c t io n  propagates  from scra tches  In s t a n t a n -  

e o u s ly ,  w i th  no k i n e t i c s  o f  n u c l é a t i o n  to  be cons idered .  The r a te  

o f  decomposition is then governed by the  one-d im ensional  growth o f
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t h e s e  nue le*  and t he  i n t e r f e r e n c e  o f  t hese  p r o p a g a t i o n  cha -ns  w i t h  

each o t h e r .  !n t h i s  case t h e  k i n e t i c  e q u a t i o n  w î H  be

a  = kg No t

and

da
dt" *  I q (34)

A l l o w i n g  f o r  o v e r l a p  in t he  usua l  way we have

I f  -  Kg Ng (1-3) 0 5 )

w h i c h  on i n t e g r a t i o n  g i * e s

'09 = kg No t  (36)

T h i s  i s  t h e  same e q u a t i o n  t h a t  we have found  a p p l i e s  t o  

samples o f  v e r y  f i n e  powder .  The h a r d e s t  p a r t  o f  t he  d e c o m p o s i t i o n  

i s  f o r m i n g  a g r o w t h  n u c l e u s .  Once the  n u c l e i  a re  formed by g r i n d i n g  

o f  a c r y s t a l ,  t h e s e  n u c l e i  w H  s t a r t  t o  r e a c t  a t  a t e m p e r a t u r e  

p r i o r  t o  t he  n u c l é a t i o n  in the r ema i nder  o f  t he  c r y s t a l ,  Thus

(a)  40 -65  mesh s a m p l e - - t h e  r e a c t i o n  f o l l o w s  m a i n l y  

t h e  E r o f e e v  mechanism..  The m i no r  f i r s t  s t e p  is due t o  

t h e  p r o p a g a t i o n  o f  some p r e v i o u s l y  fo rmed n u d e s  In 

s c r a t c h e s .  Because t h e  p a r t i c l e  i s  b i g  and very  few 

s c r a t c h e s  a r e  on t h e  s u r f a c e  o f  t h e  c r y s t a l  o v e r l a p  

in t he  p r o p a g a t i o n  o f  t h e s e  a c t i v a t e d  n u c l e i  i s l ess  

p o s s i b l e ,  uni  i k e  t h e  d e c o m p o s i t i o n  c u r v e  o f  v e r y  f i n e  

powder th e  f i r s t  hump i s  s m a l l  and f l a t
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(b) As p a r t i c l e  s i z e  is reduced, more a c t iv a te d  nuclei  

a re  formed on the sur face  o f  the c r y s t a ls .  Overlap in 

the  propagat ion o f  these nucle i  is po ss ib le ;  the f i r s t  

step fo l lo w s  the propagat ion k in e t ic s  o f  very f in e  

powder. The unscratched p o r t io n  s t i l l  fo l lows the Erofeev  

mechanism (F ig .  14 ) .

(c )  For very  f i n e  p a r t i c l e s ,  the k in e t ic s  are simply  

those o f  one-dimensional propagat ion ,  w i th  term inat ion  

from o v e r la p  o f  the chains.

From both v ie w p o in ts ,  the increas ing  importance o f  the f i r s t ,  

w h o l ly  decay step as one s tud ies  p rog ress ive ly  sm al ler  p a r t i c le s  

is a t t r i b u t e d  to  an in c r e a s in g ly  scratched p a r t i c l e  sur face .  Both 

v ie w p o in ts  r e l a t e  t h i s  f i r s t  step to the Erofeev k in e t ic s  o f  the 

main s te p .  The f i r s t  v iew p o in t  a t t r i b u t e s  the decay k in e t ic s  to  

(a )  the  in t ro d u c t io n  o f  a r e l a t i v e l y  f a s t  nuc léa t ion  process f o r  

the k i n e t i c s  o f  which the consumption o f  p o te n t ia l  nuclei cannot 

be ignored and to  (b) the e l im i n a t io n  o f  propagation as a k i n e t i c  

f a c t o r  due to the small s i z e  o f  the p a r t i c l e s .  The second view­

p o in t  a t t r i b u t e s  the decay k in e t ic s  to (a) the in t roduct ion  o f  

scra tches  th a t  serve as n u c l e i ,  e l im i n a t in g  nucléat ion  as a k i n e t i c  

f a c t o r  le a v in g  (b) the propagation k in e t ic s  as the re s u l ta n t  

observed k i n e t i c s .

C. I n t e r p r e t a t i o n  o f  A c t i v a t i o n  Energies

In the study o f  samples o f  40-65 mesh the ra te  constants

o b ta in e d  by p l o t t i n g  [ 1 o g ( - ^ ) ] ^ aga ins t  t ime are in fa c t  equal

to  where ki and k̂ . are  r a te  constants fo r  nucléat ion
2 ^
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3nd p ropagat ion  r e s p e c t i v e l y .  Consequently the a c t i v a t i o n  energy 

( 7 4  k c a l /m o le )  o b ta in e d  f o r  t h i s  re a c t io n  Is a combination o f

t>f n u c lé a t io n  and AEg o f  propagat ion .  The exact r e la t io n s h ip  

can be d e r iv e d  from Arrhenius  equat ions fo r  nuc léa t ion  and propa­

g a t i o n .  Let

- ae ’V rt
ki = A^e 1 (37)

and

kg = Age'AEg/RT ( 3 8 )

where Â  and A g are  frequency fa c to rs  fo r  nuc léa t ion  and propa­

g a t io n  r e s p e c t i v e l y .  R is the gas constant and T temperature.  

Combining the above equat ions we ob ta in

AE^ + AE*
^

1 g 1 9

N

( k , k _ ) i  = (A ,A_)2  e -  2RT (39)

jL

Since the observed r a te  c o n s ta n t ,  k , is equal to  ( ~ k i k g )  and 
N ,

the  f a c t o r  ( - y ) *  does not a f f e c t  the slope obta ined by p l o t t in g  

log k vs. we see from equat ion 39 t h a t

6 E1 + AEg
observed ~ 2 = 74 kca l /m ole  (40)

thus

AEÎ + AE’' = 148 k c a l /m o le  (41)
I g

For the decay k i n e t i c s  observed f o r  very  f i n e  powder we have 

found an a c t i v a t i o n  energy of  42 k c a l /m o le .  In the preceding
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s e c t io n  we presented two mechanisms c o n s is te n t  w i th  the decay 

k i n e t i c s .  From the  v ie w p o in t  o f  the f i r s t  o f  these mechanisms, 

a t t r i b u t i n g  the k i n e t i c s  to  new n u c léa t io n  k i n e t i c s ,  42 kcal /mole  

is the a c t i v a t i o n  energy f o r  t h i s  new n u c léa t io n  process occurr ing  

a t  s c ra tc h e s .  On the basis  o f  the  second mechanism, a t t r i b u t i n g  

the k i n e t i c s  to one-d imensional  chain propagation and o v e r la p ,  42 

k c a l /m o le  Is the a c t i v a t i o n  energy f o r  the propagat ion step In 

the Na^HPO^ decomposit ion. Depending on the mechanism fo r  the very  

f i n e  powder decom posit ion ,  th e n ,  two a c t i v a t i o n  energy assignments 

a re  p o s s ib le .  These a re  g iven In Table  V I 11.

TABLE V I I I

A c t i v a t i o n  Energies in the Na^HPO^ Decomposition

. Viewpoint .
Process 1 _________________ 2

N u c lé a t io n  a t  scra tches 42 kc a l /m o le  very small

N u c lé a t io n  a t  o r d i n ­
ary  p o t e n t i a l  s i t e s

Chain propagat ion

. To ta l  106 kcal /mole
148 kca l /m o le

42 kcal /mole

*These v iew poin ts  are  e x p la in e d  In Section B of  the associ  
ated  t e x t .

In essence,  the two v iew p o in ts  on the very f i n e  powder decomposition  

mechanism d i f f e r  in the  a c t i v a t i o n  energy assigned to  the decom­

p o s i t i o n  a t  a s c r a tc h .  I f  t h i s  process Is assigned an a c t iv a t i o n  

energy a p p r e c ia b ly  g r e a t e r  than z e r o ,  then the k in e t ic s  o f  nu c léa t ion
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a t  scra tches  must be cons idered;  I f  t h i s  a c t i v a t i o n  energy Is 

e s s e n t i a l l y  z e r o ,  then t h i s  process Is not Involved In the k i n e t i c  

e x p r e s s io n ,  and the observed k i n e t i c s  are propagation k in e t ic s .

No choice between these v iewpoints  can be made without  

f u r t h e r  s tudy .  H ig h ly  d e s i r a b le  would be a v isua l  study o f  the 

k i n e t i c s  o f  p ropagat ion  In s in g le  c r y s t a ls  th a t  had been a r t i f i c i a l l y  

nu c lea te d  on a s in g le  face  by s c ra tch in g  and Impregnating the face  

w i th  Na^P20y. I f  a r t i f i c i a l  n u c lé a t io n  could be Induced In th is  

way, the  propagat ion  a c t i v a t i o n  energy could be determined unam-

7
b ig u o u s ly .
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SUMMARY

The decomposition o f  NagHPO^ has been s tud ied  a t  300-3^5°C

2 NajHPO^ Na^PzO, + HjO .

By means o f  a thermal c o n d u c t iv i t y  c e l l  in the stream o f  c a r r i e r  

gas le a v in g  the r e a c t io n  zone the r a t e  o f  the e v o lu t io n  o f  the 

c o n s t i t u t i o n a l  w a te r  was measured during Isothermal runs. I t  was 

found t h a t  samples o f  la r g e  p a r t i c l e  s i z e  (40-65  mesh) fo l lo w  the  

E rofeev  k i n e t i c  e qua t io n  w i th  n « 2

lo g ( - ^ )  ■ (k t)2
I -a

Th is  exponent in d ic a te s  a mechanism o f  a s in g le  nuc léa t ion  s te p ,  

fo l lo w e d  by one-dimensional c h a in - ty p e  propagat ion .  A procedural  

a c t i v a t i o n  energy o f  74 ± 5 k c a l /m o le  was found. In te r p r e t a t io n s  

o f  t h i s  va lue  were o f f e r e d .

Samples o f  very  f i n e  powder f o l lo w  the decay k i n e t i c  

e xpress io n

1 og  ) *® k t1 -a

An a c t i v a t i o n  energy o f  42 ± 4 k c a l /m o le  was found f o r  th is  s tep .  

Two p o s s ib le  mechanisms were proposed to  e x p la in  the decay k in e t ic s  

For In te r m e d ia te  s i z e  p a r t i c l e s ,  a combination o f  the above 

two k i n e t i c  express ions  is fo l lo w e d .

53
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