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Brodie, Jedediah, Ph.D., August 2007              Biology 
 
Seed dispersal of Choerospondias axillaris by gibbons, sambar, and muntjac, and its 
disruption by wildlife poaching. 
 
Chairperson:  John L. Maron  
 
  Rampant illegal hunting threatens wildlife populations inside many tropical protected 
areas, compromising their long-term effectiveness.  A critical question concerns whether 
such harvest has indirect effects on non-hunted organisms that interact with the game 
species.  For example many tree species are demographically reliant on seed dispersal by 
vertebrates that are threatened by hunting; the anthropogenic disruption of this animal-
plant mutualism can severely alter the composition of tropical forests.  Here I show that 
illegal poaching has reduced or extirpated several mammal species from national parks in 
northern Thailand.  This, in turn, has negatively affected the demography of the canopy 
tree Choerospondias axillaris, which is dependent on the dispersal of its seeds to light 
gaps by gibbons (Hylobates lar), sambar deer (Cervus elaphus), and muntjac deer 
(Muntiacus muntjak).  In parks where these mammals are heavily hunted, far fewer seeds 
are dispersed to light gaps and seedling abundance is significantly reduced.  These results 
suggest that anthropogenic impacts such as overharvest can indirectly ramify through 
communities. 
  I also assessed the functional equivalence of the three seed-dispersing mammals in 
terms of their demographic impact on C. axillaris.  Sambar and muntjac dispersed far 
more seeds than gibbons.  Sambar deposited many seeds under female tree canopies; 
muntjac were the only disperser to deposit seeds in the most open habitats, which are 
beneficial for C. axillaris seed germination, seedling survival and growth.  Using stage-
based population models, I assessed how disperser-specific seed dispersal, variation in 
the frequency of canopy gap formation, and the interactive effects of these factors on 
plant demography influence the long-term population growth of C. axillaris.  Large 
differences in dispersal quantity and small differences in dispersal quality, when placed 
in a biologically complex population-level context, resulted in only marginal variation in 
the impacts of these frugivores on tree abundance.  Tree species more highly dependent 
on zoochorous seed dispersal will have more room for skewed interaction strengths 
among their dispersers.  In measuring functional redundancy or in trying to predict the 
role of diversity in species interactions, we must explicitly account for variation in life-
history traits. 
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CHAPTER 1: BIODIVERSITY AND THE RESISTENCE OF SEED DISPERSAL 

MUTUALISMS TO ANTHROPOGENIC DISRUPTION 

 

Introduction 

  The relationship between diversity and ecosystem processes constitutes a growing 

sub-field of ecology.  Research over the last decade has examined effects of diversity on 

invasion resistance (reviewed by Levine et al., 2004), ecosystem stability (Tilman et al., 

1994; Tilman and Downing, 1994), ecosystem reliability (Naeem and Li, 1997), primary 

production (reviewed by Hooper et al., 2005), bacterial decomposers (Stephan et al., 

2000), and litter decomposition rates (Blair et al., 1990; Williams, 1994).  The 

relationship between diversity and ecosystem function has risen to such prominence in 

part because of the current biodiversity crisis.  Conservationists urgently need to 

understand the broader impacts of species losses in order to make informed policy 

recommendations.  Studies on biodiversity and ecosystem function clearly attempt to 

address this need (e.g. Hooper et al., 2005; O’Connor and Crowe, 2005).   

 Yet the majority of studies on the relationship between diversity and ecosystem 

process have occurred in greatly simplified systems such as laboratory mesocosms or 

heavily disturbed grasslands (Naeem, 2001; Hooper et al., 2005).  These studies have 

involved only one (Hooper et al., 2005) or at most two trophic levels (Duffy, 2002), and 

have examined the consequences of species loss in assemblages that, for logistical 

reasons, are relatively species-poor.  Studies of biodiversity and ecosystem function have 

clearly advanced our understanding of the mechanisms by which diversity influences 

ecological processes (e.g. Hooper and Vitousek, 1997).  But these studies have yet to 

provide insight into the emergent impacts of species loss in diverse ecosystems with 

complex food webs; precisely those systems where species loss is of greatest concern. 

 Most studies of diversity and ecosystem function have ignored interactions such 

as mutualisms, herbivory, parasitism, and predation, which are known determinants of 

both community structure and ecosystem function.  One of the first effects of biodiversity 

loss is disruption of these interactions, which often leads to further impacts on ecosystem 

function (Terborgh et al., 2001; Ebenman and Jonsson, 2005; Larsen et al., 2005).  

Extinctions arising from anthropogenic activities are distinctly non-random (Reed, 1999; 
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Fagan et al., 2001; Larsen et al., 2005).  Large-bodied predators and mutualists are often 

the first species to go, particularly in biodiverse systems that suffer substantial human 

pressure (Garcia and Tarifa, 1991; Peres, 2000).  Moreover these first species to be lost 

are often functionally-crucial strong interactors (Larsen et al., 2005).  Therefore diversity 

loss in complex natural systems may have very different ecosystem impacts than random 

reductions of algal diversity in terraria or plant diversity in invaded grasslands.  In some 

instances the structure of food webs can have more impact than diversity within the basal 

trophic levels on ecosystem processes (Mikola and Setala, 1998; Laakso and Setala, 

1999).  Studies that examine the importance of biodiversity at larger spatial scales, and in 

systems that include ubiquitous interactions other than interspecific competition, are 

likely to provide important new insight into the ecological consequences of biodiversity 

loss.  

 Here we develop a predictive framework for how diversity may affect the 

resistance of communities to the anthropogenic disruption of mutualisms between 

zoochorous plants and frugivorous animals.  We focus on animal-mediated seed dispersal 

because frugivores and fruit-bearing plants are dominant components of biodiverse 

ecosystems, particularly in the tropics (Terborgh, 1983; Gautier-Hion et al., 1985; 

Estrada et al., 1993; Peres, 1999).  Furthermore frugivores may be more susceptible to 

anthropogenic-induced declines than other guilds (Terborgh and Winter, 1980; Ribon et 

al., 2003; Sekercioglu et al., 2004).   

 We currently lack a synthesis of research that examines how human-caused 

diversity loss in frugivore assemblages may indirectly influence plant communities and 

how diversity may buffer communities from negative effects of altered plant-seed 

disperser interactions.  We focus here on ‘endozoochorous’ dispersal, where animals are 

attracted to and “rewarded” by fleshy fruit, nutritious seeds, or elaiosomes (see Snow, 

1981), and we exclude exozoochorous syndromes where seeds attach themselves to 

animal pelage.  This analysis is primarily concerned with human-mediated changes in 

plant-seed disperser interactions, but the same anthropogenic forces that disrupt seed 

dispersal can simultaneously drive a host of other changes in natural communities, the 

impacts of which can be difficult to untangle from those of dispersal limitation.  For 

example, habitat fragmentation and selective logging can lead to the loss of seed-
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dispersing vertebrates but also alter abiotic conditions within the remnant forests 

(Laurance et al., 2002) in ways that influence plant demography (Jules, 1998; Bruna and 

Oli, 2005).   

 In this paper we argue for the importance of estimating indirect (in addition to 

direct) effects of biodiversity loss, in particular for plant-animal seed dispersal 

mutualisms.  We then offer four predictions for how seed dispersal mutualisms may 

respond to anthropogenic disruption, based on theory from the biodiversity and 

ecosystem function literature, and assess the empirical evidence supporting or refuting 

them.  Finally we discuss the theoretical potential and evidence for functional redundancy 

and frugivore compensation mediating disperser guild responses to disruption.   

  

The importance of estimating indirect effects of biodiversity loss 

 The disruption of food web structure is a common early consequence of diversity 

loss (Terborgh et al., 2001; Ebenman and Jonsson, 2005; Larsen et al., 2005).  Declines 

in animal diversity at higher trophic levels of complex food webs can produce cascading 

effects that alter community and ecosystem structure.  For example forest fragments 

deprived of their full complement of frugivores can have lowered seed dispersal, seedling 

diversity, and juvenile abundance (Chapman and Onderdonk, 1998; Asquith et al., 1999; 

Cordeiro and Howe, 2003), usually due to altered seed removal patterns (Chapman et al., 

2003; Galetti et al., 2003; Stoner et al., 2007; Wang et al. 2007) and very low 

germination rates of undispersed seeds, particularly of large-seeded species (Chapman 

and Chapman, 1995, 1996; Cochrane and Reef, 2003).  These effects will be especially 

strong in plants whose seeds are dependent on passage through animal digestive tracts for 

germination (see Traveset, 1998).  Even the direction of influence of anthropogenic 

indirect effects varies with food web structure.  Hunting, whether in intact forest 

(Redford, 1992) or in synergy with habitat fragmentation (Tabarelli et al., 2004), can 

have serious impacts on plants via the disruption of seed dispersal; yet forests with 

defaunated mammal communities can have either increased (Wright et al., 2000; Wright 

and Duber, 2001) or decreased (Asquith et al., 1997; Roldan and Simonetti, 2001) tree 

seedling recruitment depending on simultaneous impacts on seed predators (Wright et al., 

2007).   
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 Reductions in diversity influence not only single species, but entire systems 

(Loreau et al., 2001; Hooper et al., 2005).  For example, forests with reduced frugivore 

diversity show important shifts in plant species composition, with wind- and gravity-

dispersed trees increasing in abundance relative to animal dispersed species (Van 

Ruremonde and Kalkoven, 1991; Tabarelli et al., 1999; Cordeiro and Howe, 2001; Stoner 

et al., 2007).  Moreover animal-dispersed trees do not only interact with their frugivores; 

loss of such trees will in turn affect assemblages of secondary dispersers, seed predators, 

pollinators, and herbivores.  We need to broaden the scope of what is considered an 

“ecosystem function” when considering effects of biodiversity loss.   

 

 

Frugivore diversity and plant communities 

 Impacts of diversity loss on ecosystem function depend greatly on the trophic 

level at which the losses occur (Duffy, 2002; Thebault and Loreau, 2005).  We present 

several predictions for the ways in which frugivore and plant diversity affect the 

structuring of communities via the ecological integrity of their mutualistic interaction.  

These predictions arise out of current understanding of how diversity should influence the 

stability of ecological systems (e.g. Doak et al., 1998; Tilman, 1999; Duffy, 2002; 

Hooper et al., 2005). 

 

 Prediction 1: Greater diversity in the zoochorous plant assemblage should buffer 

that assemblage from changes in frugivore abundance.  This is the “statistical averaging” 

(Doak et al., 1998) or “portfolio effect” (Tilman et al., 1998) -the idea that greater 

diversity decreases temporal variability in community properties because individual 

components of larger data sets have less influence on the mean.  These effects have been 

demonstrated in plant communities, where diverse assemblages: 1) show less temporal 

variability in biomass due to altered abiotic conditions than do less diverse assemblages 

(Tilman and Downing, 1986) and experience smaller biomass reductions from grazers 

than depauperate assemblages (Thacker et al., 2001; McNaughton, 1985).  Additionally, 

more diverse plant assemblages are more stable in the face of consumption because 

higher diversity groups are more likely to contain species with higher resistance to 
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consumption (the “sampling effect”; Hooper et al., 2005).  By analogy, highly diverse 

zoochorous plant assemblages may be more likely to contain species that are less 

vulnerable to loss of their seed dispersing animals, or that are serviced by frugivores less 

susceptible to anthropogenic influence.  Increased diversity should thereby reduce the 

overall impacts of selective frugivore extirpation on the combined plant assemblage.   

 For the sampling effect to operate in seed dispersal interactions, species must vary 

in their reproductive life-history.  Indeed, zoochorous plants display high variance in their 

vulnerability to seed dispersal loss.  Shorter-lived plants with high disperser specificity 

(low diversity of frugivores providing dispersal services), high disperser dependence 

(where dispersal is critical for germination or recruitment), and important effects of 

current-year seeds on overall demography (high elasticity of the seed germination vital 

rate) all have relatively high vulnerability to dispersal loss (Bond, 1995).  Large-seeded 

fruits tend to have higher disperser specificity (Martin, 1985; Peres and Van Roosmalen, 

2002; Meehan et al., 2002; Alcantara and Rey, 2003) and greater reliance on biotic 

processes for recruitment (Jordano, 1995); they therefore tend to be at higher risk (but see 

Beckman and Muller-Landau, 2007).  Peres and Van Roosmalen (2002) list 102 genera 

of large-seeded woody plants in Amazonia that could be at risk of disperser failure due to 

overhunting.  The inability to recruit under conspecifics indicates high dependence on 

seed dispersal (Chapman and Chapman, 1995), and increased demographic vulnerability 

to frugivore loss.   

 However, the relationship between species diversity and life-history diversity is 

not yet clear.  Tropical rainforests and the South African fynbos are spectacularly 

speciose plant communities yet have very high proportions of species with large seeds or 

otherwise vulnerable life history traits (Bond, 1995; Kitamura et al., 2005).  Counter to 

the statistical averaging and sampling effect arguments, these diverse systems may 

therefore be highly vulnerable to loss of their seed dispersing animals.  Indeed, these are 

the systems where some of the best examples of community-wide effects of native seed 

disperser declines are manifest; i.e. where important changes in plant diversity follow 

frugivore extirpations (e.g. Silva and Tabarelli, 2000; Christian, 2001; Cordeiro and 

Howe, 2001).  Diversity alone is not enough to buffer a zoochorous plant assemblage 

without the requisite variation in vulnerable characteristics among component species.  
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 Prediction 2: Greater diversity of frugivores should reduce variation in total 

frugivore numbers or biomass due to anthropogenic disruption.  Nearly all of the 

diversity and ecosystem function literature examines richness of plants or microbes, yet 

the theory is often extrapolated to include animal assemblages (Hooper et al., 2005).  If 

frugivore species vary in their susceptibility to anthropogenic disruption, we would 

expect higher diversity assemblages to be more likely to include species resistant to 

anthropogenic disruption or able to compensate for extirpated species (Hooper and 

Vitousek, 1997; Duffy, 2002; Hooper et al., 2005).   

 Although the negative impacts of human activities on frugivores as a group are 

severe, there is high variation within tropical faunas in their responses to anthropogenic 

disruption (Naughton-Treves et al., 2003; Laurance et al., 2007; Peres and Palacios, 

2007).  Some animals respond positively to moderate levels of human disturbance, 

whereas others respond negatively (Janzen and Vasquez-Yanes, 1991).  Large-bodied 

species are among the most vulnerable (Redford, 1992; Fa et al., 2005; Peres and 

Palacios, 2007) because they are often preferentially hunted (Cowlishaw and Dunbar, 

2000), they require larger home ranges for persistence (Estrada et al., 1993; Cosson et al., 

1999), and because large body size is tightly correlated with low reproductive rate 

(Harvey and Purvis, 1999).  Wide-ranging species are particularly at risk because of their 

increased probability of interacting with humans, particularly at reserve edges 

(Woodroffe and Ginsburg, 1998).  Social animals tend to be more vulnerable to hunting, 

presumably as a result of being easier to detect and more profitable to pursue (Peres, 

1990; Cowlishaw and Dunbar, 2000).   

 The degree to which human activities directly influence a frugivore assemblage 

also affects the degree to which those activities indirectly impact the zoochorous plant 

assemblage.  Therefore a corollary to this prediction posits that diversity in the frugivore 

assemblage should buffer the zoochorous plant assemblage against changes in frugivore 

abundance or diversity.  Clearly, plant species with obligate one-to-one dispersal 

syndromes are at risk if their single disperser is extirpated (Traveset and Riera, 2005), 

and habitat fragmentation has stronger negative effects on tree species serviced by single 

frugivores, as compared to those serviced by more diverse assemblages (Ganzhorn et al., 
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1999; Hewitt and Kellman, 2002).  Nevertheless we have no empirical validation of 

whether frugivore diversity buffers the entire plant assemblage (as opposed to individual 

species) against anthropogenic disruption.   

 

 Prediction 3: Reductions in frugivore diversity should increase temporal 

variability in the indirect impacts on zoochorous plants.  Populations of frugivores within 

an assemblage may vary independently or negatively with each other due to competition; 

thus the total abundance of frugivores (across species) in diverse assemblages should be 

less variable than in depauperate assemblages (Doak et al., 1998; Tilman et al., 1998).  

Lower variability in frugivore abundance should lead to reduced annual variation in the 

number of seeds dispersed, and lower year-to-year variance in reproduction at the 

population level.  Smaller variance in reproduction across years should lead to higher 

long-term population growth rates, as variability in annual population change decreases 

the long-term growth rate of populations, even if the arithmetic mean of the annual 

changes remains constant (Morris and Doak, 2001).  Therefore, by reducing year-to-year 

variation in seed dispersal, diverse frugivore assemblages are predicted to confer higher 

population growth rates on the plants they service, as compared to less diverse groups.   

 To our knowledge there are no existing data that allow us to test this hypothesis.  

In practice the effect may often be damped by synchronous population reductions across 

all frugivore species in the assemblage.  Hunting by humans often drastically reduces the 

populations of all large-bodied mammals in an area (Garcia and Tarifa, 1991; Peres, 

1990).  Smaller-seeded plant species may then fall back on small-bodied frugivores, but 

large-seeded plants may have no such recourse (Meehan et al., 2002).   

 

 Prediction 4: Successive eliminations of frugivore species will have non-linear 

impacts on the demography or biomass of zoochorous plants.  As species diversity in 

plant assemblages rises, metrics of ecosystem-function generally increase up to some 

asymptote (Hooper et al., 2005).  For example, plant productivity often rises with 

increasing species richness up to a point, after which further increases in species richness 

have little effect on productivity.  This asymptotic relationship between diversity and 

ecosystem function would predict that as species are lost the effects on ecosystem 
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function may be minimal at first, but at some point reach a threshold where increasing 

declines in species produce steep declines in ecosystem function.  If diversity affects 

interspecific interactions as it does ecosystem function, the progressive removals of 

frugivore species from an assemblage should have increasingly dramatic effects on 

zoochorous plant demography or biomass (Hooper et al., 2005; also see Fig 1, line A).   

 Yet there is real reason to expect the opposite result in nature; the most dramatic 

effects of frugivore removals should follow the loss of the first few species.  Diversity-

ecosystem function experiments usually utilize random assemblages, but anthropogenic 

removal of species in nature are distinctly non-random (Peres, 1990, 2000; Peres and 

Palacios, 2007).  Large-bodied animals are particularly vulnerable to hunting and 

fragmentation, and these species are often the most important seed dispersers in frugivore 

assemblages because they consume a wide variety of seed sizes (Martin, 1985; Peres and 

Van Roosmalen, 2002; Alcantara and Rey, 2003) and may disperse seeds away from the 

parent canopy more frequently than smaller bodied frugivores (Howe, 1993).  Thus the 

first frugivores to be removed from assemblages will often be the most effective seed 

dispersers, implying that initial disturbance to a system could have immediate, drastic 

indirect effects on the zoochorous plants (Fig 1, line B).   

 Even before the large-bodied, vulnerable frugivores are extirpated, reductions in 

their density can disproportionately reduce their effectiveness as dispersers.  This non-

linearity is primarily due to two factors: 1) differences in foraging efficiency between 

conspecifics (Redford and Feinsinger, 2001, Table 17.2, and references therein), and 2) 

density-dependent foraging behavior (Redford and Feinsinger, 2001; McConkey and 

Drake, 2006).  Variation in individual foraging behavior suggests that the loss of 

particular individuals may disproportionately affect dispersal services.  Modest declines 

in frugivore numbers might have minimal effects on seed dispersal, but there may be 

thresholds beyond which extant frugivore populations cease to provide effective disperser 

services in their communities.  Our understanding of when and where these thresholds 

exist is quite poor.  We have almost no knowledge of how reduction (short of complete 

extirpation) of frugivore species will affect their relative interaction strengths and 

dispersal efficacies.   



 

 

 

9 

 This prediction has grave implications; even moderate disturbance to forest 

communities can severely impact seed dispersal.  Extractive reserves where hunting is 

“sustainable” in terms of maintaining wildlife populations may still suffer the loss of 

effective seed dispersal as the abundance of the most efficacious dispersers is reduced 

beyond their “ecologically effective” threshold (Soule et al., 2003).   

 Important to all four of these predictions, we have very little understanding of 

how seed dispersal affects zoochorous plant demography.  This is difficult to assess a 

priori.  On the one hand, the importance of seed dispersal could very plausibly be 

swamped by the myriad other factors affecting individual plant fitness between the 

germinating-seed and reproducing-adult life stages.  Seed-seedling transitions often have 

very low elasticity values (Silvertown et al., 1993; Howe and Mariti, 2004).  On the other 

hand, even differences between species that initially appear small can turn out, over 

longer time periods, to be very important (Brown et al., 2001) and vital rates with low 

elasticity but high variation can still have important impacts on population dynamics 

(Mills et al., 1999; Howe and Mariti, 2004).    

 

Functional redundancy in seed dispersal interactions 

 Central to the above predictions is the issue of functional redundancy.  If 

frugivore species in an assemblage are functionally equivalent, the loss of one disperser 

will be compensated for by the remaining species (Howe, 1984; Pizo, 1997; Loiselle and 

Blake, 2002), and reductions in the diversity of seed dispersers should have little impact 

on the effectiveness of seed dispersal.  Alternatively, if members of a disperser guild 

differ significantly in their effectiveness then the identity of the species that are lost can 

critically influence plant dispersal and persistence.  The amount of functional redundancy 

in a seed disperser guild may be related to the number of species in the assemblage, with 

higher diversity implying a greater degree of redundancy (Loiselle and Blake, 2002).  

This implies that species diversity has little relationship to functional diversity, so that 

speciose communities have higher diversity within functional groups but not necessarily 

more functional groups.  Yet this has never been explicitly tested.   

We still have very little understanding of the relationship between species- and 

functional-diversity.   
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 Frugivore species nearly always vary in the dispersal services they provide.  

Many animal-dispersed plants are serviced by a wide range of frugivores in different taxa 

(Fig 2; also see Bond, 1995), and these frugivore assemblages can be highly variable 

(Howe, 1983; Jordano, 1994; Fuentes, 1995).  The effectiveness of frugivore species can 

vary, sometimes quite widely (Howe and Vande Kerckhove, 1980; Bond and Slingsby, 

1984; Murray, 1988; Reid, 1989; Howe, 1993; Pizo, 1997; Santos et al., 1999; Alcantara 

et al., 2000; Figuerola et al., 2002; Ness et al., 2004; Wehncke et al., 2004; Dominy and 

Duncan, 2005).  Very few of the many frugivores visiting a given plant may actually 

provide beneficial dispersal (Howe, 1977; Cordeiro et al., 2004).  These differences in 

dispersal effectiveness suggest that functional redundancy may be low within frugivore 

assemblages. 

 However, though frugivore-specific differences in dispersal efficacy are common, 

whether these differences are manifest at the plant population level remains largely 

unknown.  As discussed above, we have very little understanding of how seed dispersal 

affects plants demographically, and therefore how differences among seed dispersing 

animals matter to plant population dynamics.  In one of the only studies to assess the 

relative effects of frugivores on plant population dynamics, seed dispersal by a species of 

bat led to positive population growth for a columnar cactus, while dispersal by three bird 

species led to negative growth (Godinez-Alvarez et al., 2002), though the confidence 

intervals were broadly overlapping.  It makes sense to use plant population growth rates 

attributable to specific frugivore species as the measure of one-way interaction strength 

(frugivores on plants), as per Godinez-Alvarez et al. (2002).  Much more data is needed 

on the population-level impacts of different dispersers on plants; the claim made over a 

decade ago by Schupp (1993: 26) that, “…more emphasis should be placed on 

quantifying the consequences of dispersal by different disperser species” still holds true.  

Knowledge of the variation in demographic susceptibility to disperser loss among plant 

populations is a necessary first step towards an eventual understanding of the 

mechanisms by which impacts on frugivore diversity ramify throughout natural 

communities.   

 We must also consider functional redundancy in the zoochorous plant 

assemblage.  Frugivores in systems with many fruit species should be less affected by, for 
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example, the overharvest of particular fruit species by humans.  Wild fruits collected by 

humans in developing countries are commonly consumed by large birds and mammals 

(Hladik et al., 1993).  The widespread harvest of wild fruits by humans affects wild 

frugivore populations, behavior, and species richness (Chapman and Onderdonk, 1998; 

Moegenburg and Levey, 2003). 

 Finally, we lack understanding of the relationship between species diversity and 

functional diversity.  Do frugivore assemblages with more species span greater ranges of 

body size, gape width, effective seed handling, or gut retention time?  We badly need 

research to assess whether repeated patterns will allow us to predict combinations of 

animal taxa that provide redundancy in seed-disperser assemblages. 

 

Compensation in seed dispersal interactions 

 Functional redundancy is usually implied to be temporally static, yet the degree to 

which zoochorous plants are affected by the loss of certain disperser species is also 

importantly influenced by the changes in density or behavior (“compensation”) of the 

remaining dispersers.  Indeed, communities under anthropogenic stress often show 

important changes in species composition or within-taxon abundance without clear 

impacts on ecosystem function (Folke et al., 1996); this implies that potential for 

functional compensation may be common in natural communities.  Persistent seed 

dispersers could increase in density or alter feeding behavior in ways that make their 

dispersal more efficacious, thereby potentially compensating –at the level of the plant 

populations- for the loss of other disperser species.  They might also expand their diet 

breadth to include fruit species not previously exploited, thereby compensating at a 

community level.  This illustrates an important problem with using static functional 

redundancy to assess mutualism vulnerability.  Snapshot assessments of frugivore species 

composition and functional attributes give us no a priori knowledge of the interactions 

between the frugivores themselves (see Berlow, 1999), and therefore no way of 

predicting the responses of non-target species to population or behavioral changes in 

anthropogenically affected species.   

 One approach used to examine functional redundancy among frugivores is to 

assess the degree of overlap in tree species they service (Gautier-Hion et al., 1985; 
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Kitamura et al., 2002; Poulsen et al., 2002).  This approach can provide useful 

information at the scale of the entire community but cannot tell us whether the respective 

frugivores differ in the effectiveness of the dispersal services they provide to a single 

plant species.  Furthermore these studies of dietary overlap rarely, if ever, account for the 

possibility of compensation.  Poulsen et al. (2002) convincingly demonstrated that 

hornbills (Ceratogymna spp.) and arboreal primates feed on different suites of fruit 

species in an Afrotropical forest, and from this the authors infer that loss of one group 

would not be compensated for by the persistence of the other (in terms of maintaining 

vegetation diversity).  However, following the loss of the primates with which they had 

formerly competed, hornbills could plausibly expand their diet to include species that 

they had formerly ignored due to facultative resource partitioning in the presence of 

sympatric competitors. 

 Persistent frugivores on islands and habitat fragments can increase in density 

following extirpation of another species (Weins, 1989), even to the point where the total 

number of individuals in the community remains stable (Renjifo, 1999).  For instance, all 

native frugivorous birds on Mangaia Island (southern Cook Islands archipelago) are 

extinct (Compton and McCormack, 1999), which would appear to doom Ficus prolixa –a 

primarily bird-dispersed strangler fig- to eventual extinction.  However recruitment of the 

tree appears healthy, perhaps due to replacement seed dispersal by fruit bats (Compton 

and McCormack, 1999).  Yet the remaining species might not be functionally similar to 

their eliminated counterparts.  Reduction in frugivore diversity or abundance in small 

habitat fragments negatively affects seed dispersal and recruitment (Santos and Telleria, 

1994; Pizo, 1997; Andresen 2003) as remnant plants in fragments are forced to rely on 

persistent yet less efficacious dispersers (Pizo, 1997; Santos et al., 1999).  The strength, 

and even the direction, of these effects may vary by species.  Several studies have shown 

weak effects of fragmentation on seedling:adult ratios, or decreased seed dispersal and 

increased seed predation in fragments (compared to contiguous forest) for some animal-

dispersed species, but not for others (Githiru et al., 2002; Guariguata et al., 2002). We 

have a clear need for research to assess whether there are certain combinations of 

frugivore species or functional groups where compensation is likely to occur.   
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Future directions 

 In this age of ever-increasing extinction it is important to understand the indirect 

effects of the loss of biological diversity on natural ecosystems.  We must conduct studies 

at spatial scales and trophic complexity levels appropriate to complex natural 

communities where particular species are at genuine risk.  How does species or functional 

group diversity affect the resistance of frugivore assemblages, and the zoochorous plant 

assemblages they service, to anthropogenic disruption?  How does diversity in the plant 

assemblage affect its vulnerability to actual or functional loss of frugivores?  What are 

the temporal and demographic effects of frugivore species loss on zoochorous plants?  Of 

particular importance, we need a much better understanding of the degrees to which 

functional redundancy and the potential for numerical or behavioral compensation exist 

within natural frugivore assemblages of varying diversity.  Is there any way of testing the 

potential for diet breadth expansion in frugivores?  Perhaps preference tests similar to 

those used in evaluations of potential host range for biological control agents could be 

useful.  If possible, can we identify traits that will allow us to predict the degree of 

functional redundancy or compensation potential within frugivore assemblages, so that 

we could identify a priori which plant communities might be at particular risk of negative 

indirect effects of anthropogenic impacts on their associated frugivore faunas? 

 Understanding how diversity affects the functioning of ecosystems is clearly an 

important task for ecologists, yet it must be undertaken at appropriate scales so that we 

can assess the potential impacts of real-world extinctions.  Advances in our knowledge of 

the relationship between diversity and interaction stability could allow us to design 

conservation strategies based, not on single-species, but on the preservation of 

ecologically-crucial species interactions. 
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Figure 1.1: Potential effects of seed disperser removal on zoochorous plant diversity or 

biomass.  Line A shows the prediction from diversity and ecosystem function theory 

(Hooper et al. 2005), which assumes random removal of species.  Line B shows the 

predicted relationship accounting for the observation that the most efficacious dispersers 

are often the first to be lost in real-world systems. 
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Figure 1.2: The number of tree species in a tropical seasonal forest in Thailand serviced 

by varying numbers of frugivore families.  Species diversity within families varies from 

one (Asian elephant: Elephantidae) to seven (bulbuls: Pycnonotidae); from data in 

Kitamura et al. (2002). 
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CHAPTER 2: AN EXPERIMENTALLY DETERMINED PERSISTENCE-RATE 

CORRECTION FACTOR FOR SCAT-BASED ABUNDANCE INDICES 

 

Introduction 

 Scat counts have long been used to indirectly assess mammal density in lieu of 

directly sampling the animals themselves (Bennett et al. 1940).  If scat abundance 

proportionally relates to actual mammal abundance, scat counts provide a valuable index 

of population size (White 1992).  If the functional relationship between the abundance 

estimate and true population size is known, then this index can be used to estimate 

population density (Krebs et al. 1987).   

Scat-based indices and estimators have been shown to scale proportionally to 

known snowshoe hare (Krebs et al. 1987), deer (Marquez et al. 2001), and large carnivore 

(Stander 1998) density.  Yet several studies comparing estimated deer population sizes 

from scat-based estimators to known populations in enclosures showed high variability in 

index-based estimates of deer abundance and relatively low correlations between the 

estimated and actual abundance values (Eberhardt and Van Etten 1956, Ryel 1959, 

Downing et al. 1965, Dzieciolowski 1976).  Studies testing the relationships between 

deer abundance estimates calculated from scat-based estimators and other estimators (e.g. 

drive counts, line-transect samples) have showed weak relationships (Dasmann and Taber 

1955, Fuller 1990) or relationships with substantial variation between years (Harris 1959) 

or habitats (White 1960).   

An important source of variation in pellet numbers between locations in the above 

studies (and a potential partial explanation for the weakness of the relationships between 

pellet-based abundance estimators and actual population size) is that persistence of the 

scat pellets might vary between study sites or over time at the same location.  There could 

be substantial spatial and temporal variation in the rates at which dung beetles, erosion, 

desiccation, and other factors cause scat to degrade or disappear.  This variation could 

lead to fewer pellet piles being found at some sites than at others regardless of actual 

differences in animal density or behavior.  Loss of scat due to natural degradation should 

minimally affect the usefulness of scat-based abundance indices, as long as the 

degradation rates are similar between study sites or periods.  However, several studies 
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have demonstrated important differences in scat decay rates depending on the habitat into 

which the pellets were deposited (Low 1959, unpublished data, as cited by Neff 1968; 

Dzieciolowski 1976).   

Marquez et al. (2001) suggest that a measure of persistence rate should be 

included as a parameter in the model used to convert raw scat counts into population 

estimators.  Their method involves marking a sample of fresh pellets in the areas to be 

surveyed, and measuring their persistence rates over the months preceding the scat 

survey.  While this approach should improve the accuracy of scat-based estimators, it has 

several potential problems.  First, determinations of whether scat is fresh can at times be 

problematic.  Van Etten and Bennet (1965) show that, under certain habitat and weather 

conditions, pellet piles up to 2 years old can appear fresh.  Furthermore, in some areas it 

may be difficult to locate a sufficiently large sample of fresh pellet piles to allow accurate 

determinations of decay rates. 

I propose a simple study design to experimentally measure scat persistence rates 

that can overcome the above sampling and logistical issues, and should improve accuracy 

in scat-based indices and the density estimators derived from them.  The method, 

exemplified here for deer, works as follows: 1) scat pellets are collected from high 

animal-use areas, where they are known to be fresh, 2) pellets are air dried and mixed, 3) 

pellet piles are set out at random or systematic locations within the study area and marked 

with flagging, 4) concurrent with conducting the scat survey, the proportion of the 

experimental pellet piles still visible is measured to determine the scat persistence rate, 

and 5) observed scat counts (uncorrected indices) are divided by the persistence rate to 

create corrected index values. 

Scat surveys generally use one of two general methodologies; the “clearance plot” 

method, whereby plots or transects are cleared of existing scat and then, usually several 

months later, resampled for scats that have been deposited in the intervening time, and 

the “standing crop” method whereby plots are not cleared beforehand (Marquez et al. 

2001).  Applying a persistence rate correction factor is especially important in the 

standing crop design since there is otherwise no way to determine the age of the observed 

pellet piles.  But such correction factors should also be used in the clearance plot design 

to measure the rate at which pellet piles deposited since plot clearance have disappeared 
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before sampling takes place.  In this case experimental piles can be set out at the time of 

plot clearance, and persistence measured during plot sampling, thus ensuring that factors 

promoting pellet pile decay act concurrently on experimental and naturally-occurring scat 

piles. 

 

Study Area 

I experimentally tested the persistence rates of sambar scat pellet piles across sites 

in monsoon forests of northern Thailand, to assess whether the use of a persistence-based 

correction factor alters the qualitative results of a scat-based relative abundance survey.  

This work was part of an ongoing study on the effects of wildlife poaching on 

zoochorous tree seed dispersal in 4 National Parks: Doi Inthanon, Doi Sutep-Pui, Nam 

Nao, and Khao Yai.  Khao Yai National Park (2,172 km2; 14o26’ N, 101 o22’ E) is a large 

plateau, 700-900 m in elevation, with mixed deciduous forest on the steep slopes and 

evergreen seasonal or mixed evergreen-deciduous forest types throughout most of the 

area (Smitinand 1977).  It receives about 250 cm of rain annually, mostly from May-

October; there is a pronounced dry season from December to April.  Abundance of many 

large mammals is high in the central portion of Khao Yai (Lynam et al. 2000, 2003).  

Nam Nao (966 km2; 16o44’ N, 101 o34’ E) is a matrix of mixed evergreen-deciduous 

forest types with open, grassy, pine-dipterocarp woodland (Elliot 2001).  All sampled 

plots in this park were in mixed evergreen forest.  The understory vegetation in the mixed 

evergreen forest of both parks is fairly open with rattan palms (Arecaceae) and 

Strobilanthes spp. (Acanthaceae; especially in Khao Yai) common and much exposed 

leaf litter on the forest floor.  There have not been any recent mammal density estimates 

in Nam Nao.   

Other pellet-forming ungulates in these parks include the common muntjac 

(Muntiacus muntjak), Fea’s muntjac (Muntjac feae; Nam Nao only), mouse deer 

(Tragulus spp.), and possibly the southern serow (Naemorhedus sumatrensis) and long-

tailed goral (Naemorhedus caudatus; Lekagul and McNeely 1977, Srikosamatara and 

Hansel 2000).  Serow and goral are unconfirmed in Nam Nao, and in Khao Yai they are 

rare and tend to reside in the hilly portion of the park (Srikosamatara and Hansel 2000), 
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not close to the sites used in this study.  Muntjac and mouse deer scat is easily 

distinguished from that of sambar by size.  

 

Methods 

I haphazardly selected 4 0.5ha plots in each park.  Out of the 16 plots, only 6 

showed evidence of sambar presence; the animals may be extirpated in Doi Sutep-Pui 

and Doi Inthanon, and only 2 of the sites in Nam Nao had sambar scat.  Therefore only 

the 6 plots (four in Khao Yai, two in Nam Nao) with sambar scat were used for the 

analyses below.  Within these plots I randomly chose four 50×4 m parallel belt transects 

in each plot, each ≥10 m apart.  To limit variation in the number of scat pellet piles due to 

differences in habitat or presence of local food sources, transects were staggered so as to 

stay within forest cover (i.e. avoiding light gaps) and to avoid fruiting Choerospondias 

axillaris (Anacardiaceae) trees.   

I cleared the transects of existing scat pellet piles at the beginning of the field 

season (mid-July) and sampled them for new pellet piles at the end of the season (mid-

October).  I conducted all surveys to reduce observer bias (Neff 1968). 

 I developed a plot-specific measure of scat persistence rates.  In early July, I 

collected fresh sambar scat from the grassy lawn of the Lam Ta Khong campground in 

Khao Yai National Park, a site of very heavy sambar use.  Pellets were dried in the sun, 

and then transported to the study sites.  On the same days that transects were cleared of 

existing pellet piles, I initiated the pile persistence rate experiments.  I placed 10 piles of 

10 pellets each at randomly chosen locations within each plot, and marked them with pin 

flags.  At the end of the season I determined whether the piles were still visible.  Piles 

were scored as either “visible” or “not visible”, rather than by the proportion of the 

original pellets remaining.  The proportion of the 10 original piles still remaining at the 

end of the season constituted the persistence-rate correction factor. 

 The uncorrected sambar abundance index was the mean number of pellet piles 

across the 4 transects on a plot.  The uncorrected index value divided by the plot-specific 

persistence rate correction factor constituted the corrected index.  If there was any loss of 

pellet piles at all, the corrected index value would be higher than the uncorrected value.  

But if scat persistence rates were similar across sites, the ratio of corrected to uncorrected 
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index values would remain relatively constant.  I calculated these ratios for all 6 sites 

(treating the sites themselves as independent) and, separately, for the 2 parks (treating 

sites within the parks as replicates).   

 

Results and Discussion 

The rank of the 6 sites, ordered by relative sambar abundance, changed when the 

persistence-rate correction factor was applied.  The rank order based on the uncorrected 

abundances was KY1 > KY2 > KY3 = KY4 > NN3 > NN1; the rank of the sites using the 

corrected sambar abundance was KY1 > KY4 > KY2 > KY3 > NN3 > NN1 (Fig. 2.1).  

The ratio of corrected to uncorrected abundance values (Fig. 2.2) varied among sites by a 

factor of 2.7.  The ratio of corrected to uncorrected abundance values between parks (Fig. 

2.3) varied by a factor of 1.6.  I speculate that the differences in scat persistence among 

sites and parks were due to variation in dung beetle abundance and local weather and 

habitat conditions; drier sites probably had higher persistence due to reduced direct 

impacts of precipitation on scat. 

 Many studies using indices seek to assess relative differences in population 

density between sites.  The application of the persistence-rate correction-factor in this 

study changed the qualitative ranking of the sites, implying that differences in scat decay 

rates between environments could be an important source of bias in index measurements.  

This result is further supported by the observation of highly variable 

corrected:uncorrected index value ratios across sites and parks.  The persistence-rate 

correction-factor proposed here should increase the accuracy of abundance indices, while 

serving as a necessary parameter in density estimator equations based on scat count data. 
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Figure 2.1: Sambar relative abundance indices with and without scat persistence rate 

correction factor.  On the X-axis are sites in 2 National Parks where sambar presence was 

detected; standard error bars represent variation across transects within each site.  
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Figure 2.2: Ratios of corrected to uncorrected abundance index values across study sites.    
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Figure 2.3: Ratios of corrected to uncorrected abundance index values across parks.  

Variation across sites within a park is represented by standard error bars. 
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CHAPTER 3: CASCADING INDIRECT EFFECTS OF WILDLIFE POACHING 

IN PROTECTED AREAS 

 

Introduction 

 Overharvest is one of the most serious threats to tropical vertebrates worldwide 

(Robinson & Bennett 2000; Fa & Peres 2001; Milner-Gulland et al. 2003).  “Bushmeat” 

hunting can reduce or eliminate mammals and birds in impacted areas (Robinson & 

Bennett 2000; Peres & Palacios 2007), leading to forests that are structurally intact but 

“empty” of large animals (Redford 1992).  Indeed hunting rates of large vertebrates 

across the tropics are often so high as to be unsustainable (Fa et al. 2001; Bennett & Rao 

2002; Milner-Gulland et al. 2003; Corlett 2007).   

 Although the direct effects of harvest on target species are of growing concern 

and have received considerable attention, hunted species represent only a small portion of 

the total biodiversity in any ecosystem.  A critical, though largely unresolved, issue 

concerns the extent to which this harvest has cascading indirect effects that threaten non-

hunted organisms (Springer et al. 2003; Frank et al. 2005), especially in complex tropical 

forests (Redford 1992; Brechin et al. 2003).  Much of what we know about the indirect 

impacts of overharvest stems from marine systems where harvest is largely legal and 

measurable (Baum et al. 2003; Myers & Worm 2003; Frank et al. 2005).  But in tropical 

terrestrial systems, most vertebrate harvest is illegal and extremely difficult to quantify.  

The annual black-market trade in wildlife is estimated at US $8 billion, second only to 

the illegal traffic of drugs and arms (WCS 2002).   

We do know that hunting in tropical forests can drastically reduce animal 

populations (O'Brien & Kinnaird 2000; Peres 2000; Peres & Palacios 2007), and that 

many of these hunted species are frugivores that disperser  tree and shrub seeds (Redford 

1992; Chapman & Chapman 1995; Stoner et al. 2007a; Stoner et al. 2007b).  Indeed 

frugivores comprise the bulk of vertebrate biomass in some tropical forests (Gautier-Hion 

et al. 1985; Peres 1999), up to 85% of the total bird and mammal biomass at one site in 

Mexico (Estrada et al. 1993).   As many as 70-90% of tree species in these habitats are 

adapted for animal-mediated seed dispersal (Howe 1977; Gautier-Hion et al. 1985).  Yet 
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the cascading impacts of hunting on zoochorous seed dispersal are only beginning to be 

explored (Stoner et al. 2007a; Stoner et al. 2007b; Wright et al. 2007).   

Although overhunting can reduce fruit removal (Wright et al. 2000; Wright & 

Duber 2001; Forget & Jansen 2007; Wang et al. 2007) and seed dispersal distances 

(Chapman & Onderdonk 1998), we have very little understanding of its effects on tree 

population dynamics.  Largely this is because the demographic effects of seed dispersal 

itself are still poorly understood.  On the one hand, reduced seed dispersal can lead to 

lower overall germination in a given fruit crop (Chapman & Chapman 1995; Forget & 

Jansen 2007).  But on the other hand, the chances that any given seed (dispersed or not) 

will survive to become a reproductive adult are extraordinarily slim (Howe & Smallwood 

1982).  Seed dispersal and germination often have very low elasticities, or low ability, 

relative to other vital rates, to affect population dynamics (Silvertown et al. 1993; Howe 

& Mariti 2004).  This is especially true for long-lived organisms such as tropical trees, 

where population growth is nearly always driven by adult survival rather than 

reproduction or the survival of younger age classes (Pfister 1998).  Therefore, to address 

the potentially cascading indirect effects of overhunting on animal-dispersed trees, we 

must place alterations in seed dispersal and germination in a population-level context.   

We capitalized on large-scale variation in poaching pressure across four national 

parks in northern Thailand (Fig. 1) to examine how reductions in several mammalian 

frugivore species might influence the recruitment and population growth rate of 

Choerospondias axillaris (Roxb.) Burtt & Hill (Anacardiaceae), a widespread canopy 

tree.  We surveyed four parks that protect tropical seasonal mixed-evergreen forest, 

including populations of C. axillaris.  These parks vary in their abundance of white-

handed gibbons (Hylobates lar), sambar deer (Cervus unicolor), and common muntjac 

(Muntiacus muntjak), the tree’s primary seed dispersers (Kunsakorn 2001).  We 

measured relative density of these mammals in each park, and quantified levels of seed 

dispersal and seedling abundance of C. axillaris.  We then used a stage-structured 

population model, based on demographic data collected in Khao Yai, to ask how C. 

axillaris population growth and persistence in this park would be affected if hunting were 

to increase and C. axillaris dispersal were to decrease to levels observed in other parks. 
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Methods 

Study sites 

 Prior to extensive deforestation, northern Thailand was dominated by seasonal (or 

“monsoon”) forests; many trees are deciduous or semi-deciduous (Gardner et al. 2000; 

Maxwell & Elliott 2001).  The southwest monsoon usually occurs from May or June 

through October or November, and there is a pronounced dry season from December to 

March (Smitinand 1977; Maxwell & Elliott 2001).  Doi Suthep-Pui (DS; 18°48’N, 

98°55’E) is the most recently established of the four parks we surveyed, and the smallest.  

Most of the park lies on a 350-1685 m mountain with two peaks; the study sites were 

located in mixed evergreen-deciduous forest at mid-elevations near the center of the park 

where C. axillaris is considered of “medium abundance” (Maxwell & Elliott 2001).  

Mean annual rainfall is approximately 2095 mm (Maxwell & Elliott 2001).  Chiang Mai, 

one of Thailand’s largest cities, is only a few kilometers from the border of Doi Suthep-

Pui, and at least four villages of ethnic Hmong people live inside the national park 

(approx. 5000 individuals as of 1999), practicing agriculture and illegal hunting 

(Maxwell & Elliott 2001).  Nearly all large birds (Round 1984) and mammals (Maxwell 

& Elliott 2001) have been extirpated from the park by overhunting, including sambar and 

gibbons; muntjac remain extant but very rare (Maxwell & Elliott 2001).  Doi Inthanon 

national park (DI; 18°32’N, 98°33’E) is larger than DS and within the same topographic 

zone and forest complex (Leimgruber et al. 2003).  It also has villages inside its 

boundaries (Hmong and Karen people), with attendant hunting and some illegal forest 

conversion.  None of our study sites were affected by forest conversion (though a C. 

axillaris tree on one of our plots was poached after the study concluded).  Gibbons (along 

with many other large mammals and birds) are almost certainly extirpated from this park; 

sambar and muntjac are uncommon (JFB, pers. obs.).  Nam Nao national park (NN; 

16°44’N, 101°34’E) is in the somewhat drier eastern plateau.  Much of the forests are 

relatively open and dominated by Dipterocarpus, Pinus, and Quercus species (JFB, pers. 

obs.); there are also extensive patches of mixed evergreen-deciduous forest (in wetter 

areas), in which we located our study plots.  Nam Nao is bisected by a major highway 

and several smaller roads.  Little is known about its hunting pressure or mammal 

densities; sambar and muntjac appear relatively common though gibbon abundance is 
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likely very low (JFB, pers. obs.).  Khao Yai (KY; 14°26’N, 101°22’E) is Thailand’s 

oldest and one of its largest parks.  It lies on a large plateau, 700-900 m in elevation, 

dominated by mixed evergreen-deciduous forests (Smitinand 1977).  Annual rainfall is 

approximately 2500 mm.  Khao Yai is nearly surrounded by towns and villages, but the 

steep slopes on the flanks of the plateau make access to the interior on foot difficult.  

There are no villages (other than park staff quarters) inside the park, and the small roads 

that cross the park are guarded by entry kiosks.  Poaching is rife on the periphery of the 

park, but the density of many large mammals in the central portion of the park is quite 

high (Lynam et al. 2006), suggesting a more limited impact of poachers.  Deer, gibbons, 

large birds such as hornbills (Bucerotidae), and elephant (Elephas maximus) sign are 

observed almost daily in Khao Yai, unlike in any of the other parks (JFB, pers. obs.).  A 

30 ha Forest Biodynamics plot was established in 1993 in the central western portion of 

the park (“Mo Sing To” area).  All trees over 1 cm DBH have been marked, mapped, and 

identified. 

Field work 

In 2002, we established four plots each in Khao Yai and Doi Suthep-Pui.  In 2003 

these were resurveyed, and four plots each established in Doi Inthanon and Nam Nao.  

All plots were resurveyed in 2004.  Each plot was 50×100 m and separated from others in 

the same park by 1-4 km; plots in Khao Yai were located systematically, and in other 

parks were placed in areas that resembled the Khao Yai plots as closely as possible in 

terms of forest type and C. axillaris density.  We estimated fruit crop on all trees in the 

plots by counting fruits on a portion of each tree’s canopy using 8×40 binoculars and 

dividing this count by the proportion of the canopy sampled.  We estimated the C. 

axillaris fruit crop on all adult female trees per plot at the beginning (July) of the fruiting 

season to determine the available fruit crop on each sampling plot.  At the end of the 

fruiting season (October) we measured the proportion of seeds that remained undispersed 

(i.e. were underneath or still on the parent tree).  The distances over which C. axillaris 

seeds are dispersed is a function of movement and gut retention time in the frugivores 

which, being large-bodied, mobile, mammals, could be quite high.  Therefore seed 

deposition through the forest is likely quite random with respect to location of the mother 

tree, and should not decay as a predictable function of distance from the mother, as it 
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would with smaller frugivores or those that spit seeds rather than ingesting them (Bodmer 

1991).  Thus, to detect dispersed seeds, we established four parallel 50×4 m transects 

randomly on each plot (away from the parent canopies and light gaps), instead of 

radiating out from mother tree trunks.  We surveyed these at the end of each fruiting 

season to measure the density of seeds dispersed to the forest (“shade dispersal”).   

Current-year seeds could be easily distinguished in this species (and were the only ones 

we counted); older seeds exhibited extensive decay.  Finally, since C. axillaris seed 

germination is enhanced in light gaps, we wanted to examine the probability of seeds 

being dispersed to these microhabitats in particular across our study sites.  We randomly 

located three 10×10 m plots in light gaps on each plot (or, if there were not three gaps on 

a plot, on the nearest gaps to the plot).  Light gaps were defined as <60% canopy cover, 

determined with a spherical densitometer, as this was an inflection point in seed 

germination probabilities (see Results and Fig. 5A below).  We surveyed these gaps for 

dispersed seeds (“light gap dispersal”) and seedlings at the end of each fruiting season.   

We measured gibbon abundance using auditory sampling of their vocalizations, a 

standard method for surveying forest primates (Brockelman & Ali 1987; Brockelman & 

Srikosamatara 1993).  At each plot, we measured the maximum number of groups heard 

calling during a one-hour period per day for five days.  The mean maximum number of 

groups heard across five days was the gibbon abundance index.  We measured relative 

abundance for muntjac and sambar using scat pellet counts (Bennett et al. 1940; Neff 

1968) on the same transects used to measure seed dispersal levels.  Transects were 

cleared of scat at the beginning of the season and sampled at the end.  The relative 

abundance index was the total number of scat piles per plot divided by an experimentally 

determined “scat persistence rate” (Brodie 2006).   

In 2003 and 2004 we set up planting arrays on the Khao Yai forest biodynamics 

plot to assess germination and seed predation across deposition environments (15 sites 

over a range of canopy cover conditions, ¼ of which were under adult female C. axillaris 

canopies).  We used two cage types: “closed” to measure rates of germination and beetle 

predation and “open” to measure rates of seed predation by small mammals.  

Germination is not affected by seed handling (i.e. defecation vs. regurgitation vs. not 

ingested) (Kunsakorn 2001) so this effect was not tested.  The number of remaining intact 
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seeds (open cages) and seedlings (closed cages) were recorded the year following the 

initiation of each experiment.  We also compared germination and seed predation across 

parks, using 6 open and 6 closed cages per plot, half in light gaps and half in the shade, 

each with 40 C. axillaris seeds.   

We marked naturally-occurring seedlings (n = 668) on the Khao Yai forest 

biodynamics plot and followed their fates from 2003-2005 to assess survivorship and 

growth rates.   

 We also administered written (in Thai) questionnaires to a haphazard sample of 

10 park rangers in each park (c.f. Wright et al. 2000), asking them to qualitatively assess 

poaching pressure in their park and whether it had affected gibbon, sambar, and muntjac 

populations.   

Population model 

 We assessed the importance of seed dispersal and its disruption for the population 

dynamics of C. axillaris using a stage-based, habitat-explicit matrix projection model.  

Much of the vital rate data for the model came from the Khao Yai forest biodynamics 

plot.  The model was female-based and used a post-birth census with five stage classes: 

seedlings under mother trees, seedling dispersed away from mother trees but in the shade 

(≥60% canopy cover), seedlings in light gaps (<60% canopy cover), juveniles (>1.3 m 

tall), and adults (>18 cm DBH; the smallest diameter at which trees begin fruiting; WYB, 

unpublished data).  Only adults produced seeds, and there was no seed bank (JFB, 

unpublished data).   

 The number of seedlings in habitat i (sdlgi) produced by each adult per year was: 

 sdlgi = SA × FA× PFemale× Di × Gi     (1) 

where SA is the annual survivorship of adults (measured by repeat censuses on the 

biodynamics plot), FA is the annual fecundity of adults (annual fruit counts of female 

trees on the biodynamics plot for 3 consecutive years), PFemale is the proportion of seeds 

that are female (assumed to be the same as the measured sex ratio of adults on the 

biodynamics plot), Di is the proportion of fecundity dispersed to habitat i, and Gi is the 

germination of seeds in habitat i (measured experimentally in Khao Yai; see Fig. 5A).  

For the “under mother tree” habitat, Di was the proportion of seeds that remained 

undispersed (Fig. 4A); for the two dispersed habitats: 
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where PU is the proportion of seeds undispersed, Yi is the density of dispersed seeds in 

habitat i (see Fig. 4B & 4C) and Yj is the density of dispersed seeds in the other of the two 

“dispersed” habitats.   

 Seedlings in given habitats could die, survive and remain seedlings in that habitat, 

or transition to become juveniles.  These transition rates (Ji) were based on habitat-

specific survival and growth rates (see Fig. 5B & 5C), the cutoff point (Z) between 

seedlings and juveniles (1.3 m), and accounted for size structure within the seedling 

stages (c.f. Crouse et al. 1987): 
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where Ss,i and Gs,i are the annual survival and growth, respectively, of seedlings in habitat 

i.   

 Survival of juveniles and adults, and the transition of juveniles to adults were 

estimated from repeat censuses of the forest biodynamics plot (WYB, unpublished data).   

 As most of the vital rate data come from Khao Yai, we could not make any 

inference about population growth rates in other parks.  Rather, we used the matrix model 

to ask how, if hunting were to increase in Khao Yai to the levels we see in the other 

parks, would C. axillaris population growth be affected?  For each of 10,000 bootstrap 

iterations, we re-sampled (with replacement) from the raw data to estimate vital rates and 

build four matrices that were identical except for the seed dispersal terms (which varied 

according to that observed in each park).  We calculated the dominant eigenvalue of each 

matrix ( λ̂ ) and took the differences in growth rate ( λ̂∆ ) between the Khao Yai matrix 

and each of the “increased hunting” matrices.  These bootstrap λ̂∆  arrays were ordered 

by rank and the 250th and 9750th used as lower and upper, respectively, 95% confidence 

limits.  We also calculated the exponential decay half-life of the population as: 
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to provide a simple metric for how changes in deterministic λ̂ might affect population 

persistence.   

 

Results 

Field work 

 Twice as many park rangers interviewed in Doi Suthep-Pui indicated that 

historical poaching had been “moderate” or “severe” as “light” or “none”.  In Khao Yai 

half of the respondents said that poaching had been “moderate”, the other half either 

“light” or “none”.  70% of respondents in Doi Inthanon and Nam Nao said that poaching 

had been “moderate”.  No rangers in any park indicated that current poaching was 

“severe” (see Fig. 2).    

 Relative density of the three mammals differed strongly among the parks in 2003 

(gibbons: ANOVA, F3,12 = 520.273, p < 0.001; muntjac: F3,12 = 11.910, p = 0.001; 

sambar: F3,12 = 33.552, p < 0.001) and 2004 (gibbons: F3,12 = 173.400, p < 0.001; 

muntjac: F3,12 = 9.428, p = 0.002; sambar: F3,12 = 23.675, p < 0.001; see Fig. 3).  Gibbons 

were consistently abundant in Khao Yai in both years and were never detected in Doi 

Suthep-Pui or Doi Inthanon; one group was heard calling once in Nam Nao (from very 

far off) in 2003, but none were detected in 2004.  Muntjac and sambar densities were 

relatively high in Khao Yai and lower in Nam Nao; muntjac but not sambar were 

detected in Doi Inthanon.  Neither of the deer were detected on our transects in Doi 

Suthep-Pui, though muntjac scat was observed on one occasion in the park (also see 

Maxwell & Elliott 2001).   

 The proportion of C. axillaris fruits remaining undispersed at the end of the field 

season (i.e. those that were still on or underneath the mother trees) differed strongly 

between parks in 2003 (ANOVA; F3,38 = 24.68, p < 0.001) and in 2004 (F3,38 = 13.22, p < 

0.001).  The proportion of undispersed fruits ranged from 80-94% in Doi Suthep-Pui to 

15-21% in Khao Yai (Fig 4A).  The density (m-2) of seeds dispersed away from mother 

trees but remaining in the shade (≥60% canopy cover) varied significantly among parks 

in 2004 (ANOVA; F3,12 = 19.60, p < 0.001), but not in 2003.  The density of seeds 

dispersed to light gaps varied significantly among parks in 2004 (F3,12 = 4.03, p = 0.034), 

but not in 2003 (Fig. 4).  In general the density of dispersed seeds and the proportion of 
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undispersed seeds positively and negatively (respectively) track variation in mammal 

density across the parks, though our small sample size (n = 4 parks) precludes effective 

formal correlation analysis.   

We pooled C. axillaris seedling density (m-2) data within plots across all years 

since, unlike seeds (which were always from the current year fruit crop), seedlings could 

survive to be counted in consecutive years.  The density of seedlings away from parent 

canopies but in the shade did not vary significantly among parks, but the density of 

seedlings in light gaps did (F3,12 = 6.07, p = 0.009).  Seedling density in light gaps was 

higher in Khao Yai than in any other park (Tukey post-hoc comparisons; Doi Inthanon: p 

= 0.050; Doi Suthep-Pui: p = 0.010; Nam Nao: p = 0.026).  In Doi Suthep-Pui, where 

large mammals are all but extinct, no C. axillaris seeds or seedlings were found in light 

gaps.   

 Seed germination in light gaps, determined experimentally in Khao Yai, was 

higher than in the shade (ANOVA; F2,116 = 8.31, p < 0.001; Fig. 5).  Germination under 

adult females was zero in our experiments, but this is partly an experimental artifact since 

seedlings can be found under female trees in nature.  There were no differences in rates 

of seed predation among habitats.  Seedling growth was higher in light gaps than in the 

shade or under mother trees (growth: F2,88 = 4.84, p = 0.010; Fig. 5).   

 Seed addition experiments showed no difference in germination rates across parks 

either in forest (ANOVA; F3,44 = 0.67; p = 0.577) or in light gaps (F3,44 = 0.12; p = 

0.947).  Seed predation rates, measured with open cages to which rodents and insects had 

access to seeds, did vary across parks in the forest (F3,43 = 3.05; p = 0.039): they were 

lower in Nam Nao than in Doi Inthanon (Tukey post-hoc comparison: p = 0.050).  They 

did not vary significantly in light gaps (F3,44 = 2.48; p = 0.073).  Annual survivorship did 

not differ among parks for seedlings under parent trees (F3,148= 1.15; p = 0.332), 

dispersed but still in the shade (F1,38 = 0.11; p = 0.774), or in light gaps (F2,78 = 0.18; p = 

0.838).  Surviving seedlings in the shade were too scarce in any park to test for 

differences in their growth rates.  Annual growth of seedlings under parent trees did not 

differ (F3,13 = 0.35; p = 0.793), though growth in light gaps did (F2,12 = 7.16; p = 0.009), 

due to lower rates in Khao Yai (mean = 7.96 cm/year) than in Doi Inthanon (mean = 

10.00 cm/year; p = 0.009). 
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Population model 

 The mean C. axillaris population growth rate in Khao Yai was estimated at 0.990.  

As seed dispersal declined across the “increased hunting” scenarios, the population 

growth rate dropped, though very slightly.  Nam Nao seed dispersal levels reduced the 

Khao Yai λ̂ by 0.003 (95% CI: 0.000, 0.018), Doi Inthanon seed dispersal levels by 

0.006 (0.000, 0.029), and Doi Suthep-Pui levels by 0.009 (0.000, 0.048; see Fig. 6).  The 

exponential decay half-life for the Khao Yai C. axillaris population, based on the best-

estimate λ, is 69.0 years.  As seed dispersal and λ̂ in the “increased hunting” scenarios 

decline, the population half-life is reduced by 17.2 years for Nam Nao hunting levels 

(95% CI: 0.0, 44.6), 24.6 years for Doi Inthanon hunting levels (0.0, 51.7), and 31.9 years 

for Doi Suthep-Pui levels (0.0, 57.3).    

 The analytical elasticity (sensu Caswell 2001) of seed dispersal (to all habitats 

combined) is the fourth-highest (0.014) out of 15 vital rates, following adult survivorship 

(0.792), juvenile survivorship (0.110), and the survivorship of seedlings in light gaps 

(0.034).   

 

Discussion 

 Parks with extensive hunting exhibit lower seed dispersal and fewer C. axillaris 

seedlings.  Gibbons, muntjac, and sambar in Khao Yai transport a high proportion of C. 

axillaris seeds away from the parent canopy, and some of them to light gaps, where 

germination and seedling survival are enhanced.  In the other parks, where the abundance 

of these mammals is lower, seed dispersal is curtailed; the density of seeds dispersed to 

the forest and to light gaps is lower and the proportion of seeds that remain undispersed is 

higher.  The density of C. axillaris seedlings in light gaps positively tracks both gibbon 

and deer density and the level of seed dispersal to gaps.   

 Previous studies have shown that hunting in Neotropical and Afrotropical forests 

can disrupt seed dispersal mutualisms by reducing the quantity of seeds removed (Wright 

et al. 2000; Wright & Duber 2001; Forget & Jansen 2007; Wang et al. 2007) or the 

distance which they are dispersed (Chapman & Onderdonk 1998).  Our results 

corroborate these findings for a widespread canopy tree of the Indomalayan tropics, and 

place the results in a population-level context.  In national parks with severe hunting, we 
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estimate that the long-term population growth rate and persistence of C. axillaris is 

reduced, albeit slightly.  Model output suggests that disruption of this seed dispersal 

mutualism by illegal hunting can lower the abundance and time to extinction of this 

zoochorous tree.   

 Although our results suggest that reductions in dispersers may decrease 

population growth of C. axillaris, this decrease in population growth rate is slight; even a 

massive reduction in mammal density, from quite high in Khao Yai to essentially zero in 

Doi Suthep-Pui, results in only a very small drop in C. axillaris λ̂ (see Fig. 6A).  This is 

likely explained by the relatively low elasticity of seed dispersal.  In other words, even if 

no regeneration were to go on at all, it would still take a very long time for the adults in 

the population to slowly fade from attrition.  But the declines, though slow, are real.  As 

mammalian frugivores are reduced or removed from tropical forests, the persistence and 

population dynamics of the trees that depend on them for seed dispersal may be affected, 

even if actual extinction could take many decades or longer.   

 Because our study, like all others on the topic, uses a natural experiment rather 

than a controlled manipulation, we cannot exclude the possibility that factors other than 

hunting explain the variation in mammal abundance across these parks.  The lowest 

relative abundance of all three mammals surveyed was in the smallest park, Doi Suthep-

Pui.  We think it unlikely, however, that the observed mammal abundances are strongly 

influenced by fragmentation effects (c.f. Terborgh et al. 2001; Cordeiro & Howe 2003; 

Laurance et al. 2006), since all the parks are embedded in larger forest complexes (Fig. 1) 

that substantially increase their effective area (Leimgruber et al. 2003).  There are no 

diseases or introduced species known to affect primate or ungulate populations in any of 

these parks.  The high proportion of drier, more open forests in Nam Nao could account 

for the very low gibbon density there.  But in the absence of hunting these forests should, 

if anything, support higher deer densities that closed-canopy moist tropical forest 

(Dinerstein 1982; Robinson & Bennett 2004).  Indeed hunting pressure is often a better 

predictor than forest type for mammal density in tropical areas (Bennett et al. 2000).  

Likewise, Doi Suthep-Pui and Doi Inthanon have villages inside their boundaries and 

some associated conversion of forest to agricultural fields; while this habitat alteration 

would undoubtedly have negative effects on the strictly arboreal gibbons, in the absence 
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of hunting it should not be detrimental to the deer (Dinerstein 1982; Robinson & Bennett 

2004).  Hunting is known to be unsustainably high across Southeast Asia (WCS 2002; 

Lynam et al. 2006), to have caused the extirpation of large-bodied vertebrates within 

protected areas of northern Thailand (Round 1984; Maxwell & Elliott 2001; 

Tungittiplakorn & Dearden 2002; Lynam et al. 2006), and to be “…the greatest threat to 

wildlife and wild lands in Asia” (WCS 2002: 31).  Despite small sample sizes, our 

interviews suggest that historically, poaching in Khao Yai was less intense than in the 

other three parks.     

 Likewise, factors other than seed dispersal limitation could potentially explain the 

differences in C. axillaris seedling abundance across parks.  C. axillaris seed 

germination, seed predation, and seedling survivorship rates did not differ importantly 

among parks.  Seedling growth was lower in Khao Yai than in Doi Inthanon, but clearly 

this cannot explain the higher seedling abundance in the former.  Though much of Nam 

Nao is drier than the other parks, the study sites in each park were broadly similar in 

forest type and approximate C. axillaris density.       

 We use a structured population model to assess the cascading effects of 

overhunting, and suggest that this approach can be highly valuable for evaluating the 

population-level consequences of mutualism disruptions in complex systems and on large 

geographic scales.  However, inherent in this approach are several assumptions that may 

affect the robustness of its results.  First, we assume that the only way for seeds to get to 

light gaps is to be dispersed there by animals, when in nature gaps can form (by falling 

trees or branches) above undispersed seeds.  But a more detailed model that includes such 

habitat transitions results in only very slight (<0.01%) changes in C. axillaris λ̂  (JFB, 

unpub. data).  Second, the model does not incorporate environmental stochasticity or 

density dependence, both of which could influence population dynamics.  Moreover 

some of the vital rates used to construct our model are based on relatively small sample 

sizes: two annual transitions for seedlings and repeat censuses three years apart for 

juveniles and adults.  Indeed these low sample sizes could explain the fact that C. 

axillaris λ̂  in Khao Yai is <1; if 5 of the 7 adults that died (out of 159 individuals) had 

lived instead, λ̂ in Khao Yai would equal 1.000.  However, even under if we assume that 

λ̂ in Khao Yai equals 1 (and adjust adult survivorship to make this so) the relative 
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differences ( λ̂∆ ) between Khao Yai and the increased-hunting scenarios (i.e. the other 

national parks) would change only slightly; NNλ̂∆ , DIλ̂∆ , and DSλ̂∆ would be reduced 

by17.6%, 21.4%, and 20.0% respectively.  Thus, if our baseline estimate of C. axillaris 

population growth rate in Khao Yai were biased low, true declines in λ̂ across the 

increased-hunting scenarios would be lower than we report here.  However, 1) there 

would still be statistically real declines in λ̂  in parks with higher hunting, and 2) 

estimates of relative differences in λ̂  among parks that vary in poaching would change 

only slightly.   

 The direct ecological impacts of hunting by humans in protected areas can be 

severe, and may in turn precipitate indirect negative effects on a widespread canopy tree.  

Even tree species such as C. axillaris, with multiple seed dispersers, are susceptible to the 

indirect effects of poaching if those dispersers are large mammals.  The mere 

establishment of protected areas is insufficient to fulfill conservation goals.  Effective 

enforcement, the active engagement of local people in protected area management, and 

education about the ecological effects of hunting are also required.   
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Figure 3.1: Northern Thailand showing locations of four national parks with the area of 

the park (NP) and the greater ecosystem (GE) within which it resides (Leimgruber et al. 

2003). 
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Figure 3.2: Responses by park rangers interviewed in Doi Suthep-Pui (top row), Doi 

Inthanon (second row), Nam Nao (third row), and Khao Yai (bottom row), asked to 

qualitatively assess poaching pressure “since the park was formed” (left column) and 

“currently” (right column) on gibbons, muntjac, and sambar.   
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Figure 3.3: Mean (+SE) relative mammal density across parks. 
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Figure 3.4: Mean (+SE) proportion C. axillaris fruits left undispersed (still on or 

underneath mother trees) at end of field seasons (A); density of seeds dispersed away 

from mother trees to shady habitats (B) and light gaps (C). 
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Figure 3.5: Mean (+SE) C. axillaris germination (A), seedling survivorship (B), and 

seedling growth (C) across habitats. 
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Figure 3.6: Estimated change in C. axillaris population growth rate (A) and exponential 

decay half-life (B) in Khao Yai if hunting in that park were to increase (and seed 

dispersal correspondingly decrease) to the levels seen in the other parks.  Bootstrap mean 

and 95% confidence intervals shown.  Exponential decay half-life under Khao Yai 

hunting scenario is 69.0 years.   
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CHAPTER 4: FUNCTIONAL EQUIVALENCE OF TROPICAL 

MAMMALIAN FRUGIVORES 

 

Introduction 

 The current extinction crisis has generated increasing interest in how loss of 

species will affect community stability (Tilman and Downing 1994) and ecosystem 

function (Hooper et al. 2005).  Functional redundancy in natural ecosystems is a crucial 

determinant of these effects.  Ecological function can be measured in several ways.  Here 

we use the metric of interaction strength as measured by demographic impact on 

interacting species (Power et al. 1996, Godinez-Alvarez et al. 2002); if two species in a 

guild have similar influence on the population growth rate of a third species, they are 

considered functionally equivalent.  If communities are composed of many functionally 

equivalent species, loss of one or a few would not be expected to have major ecological 

ramifications.  But if there is large variability in the strength of interactions among 

species, loss of the most strongly-interacting agents will have critical impacts on the 

assemblage.  Analyses of trophic interactions in intertidal (Raffaelli and Hall 1995, 

Wootton 1997) and grassland (Fagan and Hurd 1994) communities suggest that predator 

guilds in nature are usually composed of many weak and a few strong interactors, 

implying low functional equivalence.  Yet we have little data on the distribution of 

interaction strengths in other systems or types of guilds.   

 Here we use field observations and population modeling to infer how variation in 

the efficacy of seed dispersal among a group of tropical mammalian frugivores influences 

the demography and population growth of a canopy tree whose seeds they disperse.  We 

ask how variation in the quantity of seeds dispersed, the microhabitat they are dispersed 

to, and the frequency of canopy gap formation affects the population-level impacts of 

these frugivores on their host tree.  Although quantifying interaction strengths among 

species has historically been accomplished through a purely experimental approach (e.g. 

Paine 1992), this is difficult in complex tropical systems that harbor many long-lived 

species.  Our approach combines observations, small-scale experiments, and stage-based 

matrix modeling to infer how different dispersers may differentially influence tree 

abundance.  We assess seed dispersal in a biologically realistic context that includes the 
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complete life-cycle of the zoochorous tree as well as changes in the habitat in which it 

dwells.   

 Zoochorous seed dispersal is a mutualism critical to the function of many tropical 

forests, and has the potential for disruption by anthropogenic impacts on frugivorous 

vertebrates (Bond 1995).  Many tropical trees obligately rely on birds and mammals for 

seed dispersal (Estrada and Fleming 1986, Hamilton 1999).  Frugivores are susceptible to 

population decline and local extinction from human activities such as habitat 

fragmentation (Cordeiro and Howe 2001) and wildlife hunting (Redford 1992).  In 

systems where a plant is serviced by one frugivore, loss of that disperser can negatively 

affect the plant’s reproduction and regeneration (Traveset and Riera 2005).  But more 

commonly, several or many frugivores service a single plant species (Howe and 

Smallwood 1982, Bond 1995), and how diversity in the frugivore guild affects a tree’s 

susceptibility to loss of dispersal services is a critical hole in ecological knowledge 

(Loiselle and Blake 2002).  If different frugivore species are functionally similar, loss of 

one disperser can be compensated for by the services of the remaining species, and 

reductions in the diversity of seed dispersers should have little impact on the 

effectiveness of seed dispersal.  Alternatively, if members of a disperser guild differ 

significantly in the effectiveness of their services, the loss of a primary disperser may 

force plants to rely on less efficient secondary dispersers (Santos et al. 1999), with 

negative implications for the demography of the plant.   

 Numerous comparisons of seed dispersal services within frugivore guilds have 

found differences among the component species.  For a given plant species, some animals 

may remove more fruit (Howe and Vande Kerckhove 1981), disperse seeds farther 

(Howe 1993, Jordano et al. 2007), take them to better microhabitats (Reid 1989), or be 

more effective at seed scarification (Figuerola et al. 2002).  Yet we have very little 

understanding of the extent to which these differences manifest at the plant population 

level.  Fruit removal or seed dispersal distance may vary among frugivore species by 

orders of magnitude (Vazquez et al. 2005; and references therein), yet this still does not 

necessarily allow us to predict how these differences affect zoochorous plant population 

dynamics.  Among dispersers of a Mexican columnar cactus, the “effectiveness” (relative 

abundance × visitation rate × seed handling × probability of safe-site deposition) of a bat 
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species was four to five orders of magnitude greater than that of four avian seed 

dispersers (Godinez-Alvarez et al. 2002).  Yet the cactus population growth rate 

attributable to each of the five animals individually differed only slightly, with highly 

overlapping confidence intervals (Godinez-Alvarez et al. 2002). 

 For functional redundancy to be important at the population level, seed dispersal 

must have net positive effects on  plant demography; yet even this is rarely quantified 

(Howe and Miriti 2004).  On the one hand, the impressive energetic investment of many 

plants to the production of animal-attracting fruits suggests that, over evolutionary time 

scales, seed dispersal must be important (Howe 1977, Howe and Smallwood 1982).  On 

the other hand, myriad factors affect the fitness of an individual plant from seed to 

reproductive adult stages, potentially swamping the demographic importance of seed 

dispersal.  Thus studies of seed dispersal mutualisms must place seed dispersal within a 

broader demographic context by explicitly accounting for seed and seedling survivorship, 

growth, and variation in habitat quality that can influence these vital rates.  When such an 

approach is taken, it is often found that reproductive parameters such as seed dispersal for 

long-lived organisms like tropical trees have low elasticities (Pfister 1998), that is, little 

ability, relative to other vital rates, to affect population growth.  This would suggest that 

variation in seed dispersal might have minimal impacts of plant dynamics.  Alternatively, 

if the vital rates are highly variable (e.g. due to the differential efficacy of different seed 

disperser species), even those with low instantaneous elasticity can still importantly affect 

population dynamics (Mills et al. 1999, Howe and Miriti 2004).  Yet empirical 

comparisons of the demographic and population-level consequences of species-specific 

variation in seed dispersal are limited.   

 Here we compare the demographic and population-level effects of seed dispersal 

by gibbons, common muntjac deer, and sambar deer on the canopy tree Choerospondias 

axillaris (Roxb.) Burtt & Hill (Anacardiaceae) in tropical seasonal forest of Thailand.  

All three frugivore species are subject to intense illegal hunting pressure in protected 

areas across Thailand; thus it is of great interest to understand how declines in the 

abundance of one or several of these species might influence the abundance of their host 

tree, C. axillaris.   
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Methods 

Study area and species 

 Khao Yai National Park (14°26’ N, 101°22’ E; 2166 km2) straddles a large 

plateau, approximately 700-900 m elevation, with mixed deciduous forest on the steep 

edges and seasonal evergreen or mixed evergreen-deciduous forest types throughout most 

of the area (Smitinand 1977).  Annual rainfall is approximately 2500 mm, mostly 

occurring from May-Oct.; there is a pronounced dry season from Dec.-April.  Abundance 

of many large mammals in the central portion of the park is high (Lynam et al. 2006).  A 

30 ha Forest Biodynamics plot was established in 1993 in the central western portion of 

the park; all trees over 10 cm diameter at breast height (DBH; 130cm) were mapped, 

marked, and identified by 2002, a re-census (including measurements of individuals 1-10 

cm DBH) occurred in 2005.  The plot contains over 200 tree species, where C. axillaris is 

the 24th most abundant by frequency (1.2% of adult trunks), and 3rd most abundant by 

cumulative basal area (5.9% of total; WYB, unpub. data).   

 C. axillaris (syn. Spondias axillaris Burtt & Hill) is a large (up to 30 m tall) 

canopy tree widely distributed in tropical Asia from central Thailand to Nepal to Taiwan.  

It is dioecious and females bear fruits from Jun.-Oct.; the fruits are 2-3 cm long, and are 

composed of a pericarp surrounding fibrous, watery flesh, with a single stone inside.  Wet 

mass of the fruit pulp contains, on average, 84% moisture, 2.7% protein, 0.6% fat, and 

3.0% sugars (Chen et al. 2001).  Each stone (hereafter “seed”) has a very hard covering 

over 5 embryos.  In Khao Yai, fruits are consumed almost entirely by gibbons, sambar, 

and common muntjac (Kunsakorn 2001, Kitamura et al. 2002, this study).  Fruits and 

seeds are too large to be dispersed by most birds, and the fibrous pulp adheres strongly to 

the seed coat, a fruit anatomy not favored by hornbills (Bucerotidae; P. Poonswad, pers. 

comm.).  While rodents consume some fruits and may perform primary or secondary 

dispersal of seeds, relatively few seeds are dispersed by rodents relative to total fruit 

production (see ‘Results’ below).  C. axillaris is often present in early successional 

habitats, but persists into mature mixed-evergreen seasonal forest (Maxwell and Elliott 

2001).   

 White-handed gibbons (Hylobates lar) are frugivorous arboreal apes (4-8 kg; 

Lekagul and McNeely 1977); they are the most widely distributed gibbon in Southeast 
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Asia, and are common in much of Khao Yai.  The forest dynamics plot includes the entire 

range of one group of animals (“Group A” composed of 2 adults plus varying numbers of 

young and juveniles) that have been studied since the 1980s and are habituated to the 

presence of researchers.  Sambar and common muntjac are large (109-260 kg) and small 

(20-28 kg; Lekagul and McNeely 1977) deer respectively; both have extensive 

distributions across tropical Asia.  Gibbons consume C. axillaris fruits before they fall 

and defecate the seeds.  Both of the deer species primarily consume foliage, but are 

occasionally frugivorous and eat large quantities of C. axillaris fruit when it is available 

(JFB, pers. obs.).  They consume the fallen fruits and regurgitate cleaned seeds, usually 

while bedding and ruminating (WYB, JFB, pers. obs.).   

 C. axillaris seeds fall or are dispersed during the monsoon season (Jul.-Nov.), and 

remain on the ground to germinate the following wet season; we have detected no seed 

bank (see Results).  The seeds germinate equally well whether they are defecated by 

gibbons, regurgitated by deer, or the fruits are uneaten (Kunsakorn 2001); variance in 

germination is mainly due to habitat differences among deposition sites (see “Results”).  

Seeds are so large, conspicuous, and easily identifiable that they can be sampled with 

transects rather than seed traps.   

Field sampling 

 We established 15 belt transects (500×4 m each) across the Forest Dynamics plot 

(accounting for 10% of the total surface area of the plot).  We surveyed these transects 

weekly for 10 weeks from mid-July to September in 2003 and 2004.  Each transect was 

surveyed in two 2 m-wide passes.  We recorded the number of dispersed C. axillaris 

seeds, the density of the pile in which they had been deposited, and the identity of the 

disperser.  Disperser identity was easily determined because gibbons defecate seeds 

whereas deer regurgitate them.  The identity of the deer species that dispersed seeds 

could be determined by the size of tracks (Kanjanavanit 2004) and scat.  Because field 

work occurred during the rainy season, the forest floor stayed continually moist and deer 

tracks could easily be found under the leaf litter.  The quantity of seeds dispersed by deer 

and the microhabitats to which all frugivores dispersed seeds were measured from these 

transect data.  The deer deposited very shiny piles of regurgitated seeds and we are 

confident that, with our regular sampling, we missed very few deer-dispersed seeds.  
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Gibbon-defecated seeds, however, were somewhat less conspicuous.  Therefore we 

assessed the quantity of seeds dispersed by gibbons by following individuals all day for 

5-6 days/month and recording exactly how many C. axillaris seeds were defecated.  To 

calculate the total number of seeds dispersed by gibbons on the plot during the study 

period, we divided the total number of seeds dispersed by single gibbons on observation 

days by the proportion of the study period during which observations took place and 

multiplied by the estimated mean number of gibbons on the plot at any one time.  We 

assessed whether the proportion of seeds dispersed to different habitats differed by 

frugivore or year with chi-squared tests.   

We assessed seed germination and predation experimentally, and determined how 

canopy cover, seed pile size, and being under an adult female C. axillaris canopy 

influenced the seed-to-seedling transition.  We treated “under adult female canopy” as a 

separate microhabitat because it was nearly always high canopy cover, yet could also 

have had elevated seed and seedling mortality from seed predator attraction or host-

specific pathogens (c.f. Janzen 1970).  To do this, in 2003 and 2004 we set up arrays of 

seeds at different densities (2, 8, 30, 100 seeds/pile; spanning the range of observed 

deposition pile sizes), and in different microhabitats (15 sites across a range of canopy 

cover conditions, ¼ of which were under adult female C. axillaris canopies).  In order to 

examine rates of post-dispersal seed predation, we placed seeds in “closed” or “open” 

cages (30×30×15 cm wire enclosures pinned to the ground; total of 4200 seeds/year).  

Previous work in Khao Yai has shown that seed handling (i.e. fruit pulp intact vs. 

defecation by gibbons vs. regurgitation by deer) does not affect germination (Kunsakorn 

2001), so we did not test this effect further in this study.  The number of seedlings 

remaining in open and closed cages was recorded the year following the initiation of each 

experiment.  Therefore “germination” as used here includes germination per se and first-

year seedling survival (many of these seeds were destroyed by beetles or fungus), and 

seed removal by small mammals (open cages) is cumulative for an entire year.  We 

performed multiple logistic regressions of seed pile size, canopy cover proportion, and 

female canopy (a binary measure of whether the site was under a fruiting adult) versus 

germination and seed removal rates.  We report R2 values for full multiple linear 
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regression models, log-likelihood (LL) values for multiple logistic regressions (both 

significant at α = 0.05), and individual parameter coefficients (β) and partial p-values.   

To assess whether removed seeds were secondarily dispersed or destroyed by 

small mammals, we set out piles of 10 seeds at each planting array site in each year (200 

seeds/year; c.f. Forget and Milleron 1991), to which we had glued 60 cm of thin nylon 

string.  We returned 14 days later and scoured a 5 m radius circle around the point where 

the pile had been placed, looking for strings, which we followed to the attached seeds to 

determine whether they had been predated or were still intact.   

We measured canopy cover at all naturally dispersed seed piles, at locations 

where we found seedlings on transects, and at sites where we placed experimental seed 

arrays with hemispherical canopy photographs (2004, 2005) or a spherical densitometer 

(2003; standardized using a regression of densitometer vs. photography cover values).  

All photographs were taken 1 m above the ground and analyzed for canopy cover 

proportion using HemiView 2.1 (Dynamax Inc.).  Tropical forests are mosaics of dense 

tree cover, light gaps, and areas in between (Whitmore 1998).  To assess the change in 

forest cover over time, we set up 218 permanent photo points across a range of canopy 

conditions on 10 of the 15 transects.  At each, we took hemispherical canopy photos 

every year from 2003-2005.  We then constructed an annual transition matrix for habitat 

types. 

We marked all naturally-occurring seedlings on the transects (N = 670) and 

measured their survival and growth from 2003-2004 and 2004-2005.  We assessed the 

effects of canopy cover, height, and mother tree canopy on seedling survivorship using 

multiple logistic regressions and on seedling growth using linear regressions.   

Individuals >1.3 m tall (“breast height”) but smaller than 18 cm DBH were 

considered juveniles, those >18 cm DBH were defined as adults, as this was the smallest 

size of any observed fruiting tree.  Juvenile survival and growth and adult survival were 

measured from repeat censuses of all marked individuals on the plot.  We measured 

fecundity by visual counts (with 8×40 binoculars) of fruit crop at the beginning of the 

fruiting season in a random sample of the total adult female population.  We also 

measured the proportion of total fecundity that had dropped or been dispersed during the 

field season by repeating these visual counts (and counting seeds on the ground under the 
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canopies) at the end of the field season.  We compared fecundity (fruit crop at the 

beginning of the fruiting season) between years, and assessed its relationship to tree 

diameter using multiple linear regressions.   

Population model 

 We used female-only, post-birth census, stage-based matrix projection models to 

assess the influence of seed dispersers on the population dynamics of C. axillaris.  This 

model includes both demographic transitions for C. axillaris as well as transitions for 

habitat state, since forest habitat is dynamic through time and the demographic 

performance of C. axillaris is enhanced in light gaps.  We used 6 stage classes: habitat 0 

seedlings (underneath female canopies), habitat 1 seedlings (0.11-0.3 proportion canopy 

cover), habitat 2 seedlings (0.31-0.7 proportion canopy cover), habitat 3 seedlings (0.71-

1.0 proportion canopy cover), juveniles (over 1.3m tall but <18 cm DBH), and adults 

(>18 cm DBH).  No points in the forest had less than 0.11 proportion canopy cover.  The 

seedling stage boundaries were determined from graphical inspection of the relationships 

between canopy cover and germination and seedling survivorship.  Habitat 0 (underneath 

adult females) essentially mimicked the canopy cover range of habitat 3 (98% of habitat 

under female canopies was in the 0.71-1.0 proportion canopy cover range), but was 

considered a separate class because seedling survivorship was significantly lower (see 

“Results”).  Only adults reproduced, with fecundity estimated from measured fruit crops 

at the beginning of the two fruiting seasons.  Seed dispersal to different habitats by 

different frugivores was measured from the transect data and expressed as a proportion of 

the total fecundity available to the frugivores during the study period (i.e. total fecundity 

minus the proportion of seeds remaining on or underneath the trees at the end of the study 

period).  All vital rates were calculated from data pooled across years.   

 We used the habitat transitions probabilities measured from the repeat canopy 

photographs to construct a habitat transition matrix (C), rescaled so that each column 

summed to 1.  Seedlings could “move” among habitats via gaps opening up or closing in 

above them, measured by habitat transition probabilities, Cij.  Gap formation was 

assumed to occur at a predictable time of year (c.f. Pascarella and Horvitz 1998), 

specifically during the dry season (Dec.-Mar.) when winds increase.  Therefore the order 

of events in the model was: seed dispersal > habitat transition > germination, seedling 
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survivorship, and seedling growth.  Germination, seedling survivorship, and seedling 

growth were measured at the median canopy cover values for each habitat, using logistic 

(germination and seedling survival) or linear (seedling growth) regressions of each vital 

rate versus canopy cover.  We multiplied seed removal by the proportion of the removed 

seeds that had been predated (from the string experiments), to estimate total seed 

predation probabilities.  Annual seedling-to-juvenile transition probabilities (transj,juv) 

were measured as habitat-specific seedling growth (in vertical cm; from linear 

regressions of seedling growth versus canopy cover) accounting for size structure within 

the seedling stages (c.f. Crouse et al. 1987):  
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)/(

1)/(
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where sgj and survj are growth (in vertical cm) and annual survivorship, respectively, of 

seedlings in habitat j, and ht is the height cutoff between seedlings and juveniles (1.3 m).   

 Vital rates for juveniles and adults were independent of habitat, partly due to lack 

of habitat-specific data for these classes, and also because “canopy cover” loses much of 

its meaning for an adult tree that is itself part of the canopy.  We calculated transition of 

juveniles to adults using a formula identical to Eq. 1 except substituting juvenile growth 

(in cm diameter) and survivorship for the seedling equivalents, and using a diameter stage 

boundary (18 cm) between juveniles and adults.  (See Appendix A for details of model 

construction.)  We constructed separate matrices for each frugivore (using different seed 

dispersal data), and measured the C. axillaris population growth rate ( λ̂ ) attributable to 

each frugivore independently and all of them combined.  These frugivore-specific lambda 

estimates were our measures of interaction strength.  We generated bootstrap confidence 

intervals around each λ̂  by resampling from the original data to re-create vital rate 

estimates for each iteration, and used 10,000 iterations per matrix.   

 The confidence intervals around frugivore-specific estimates of lambda include 

variance from all of the vital rates in the population matrix, yet we also wished to assess 

the differences in C. axillaris λ̂  due solely to variance in seed dispersal among the 

mammals.  Thus we also constructed confidence intervals around the difference in λ̂  due 

to dispersal by each frugivore compared to no dispersal at all.  For each of 10,000 



 

 

 

52 

bootstrap iterations we resampled the original data to estimate vital rates and constructed 

5 matrices that differed only in the dispersal term.  We then estimated the difference in 

lambda ( λ̂∆ ) for dispersal by each frugivore versus no dispersal at all, and generated 

95% confidence intervals around these differences.   

 

Results 

Field sampling 

 Of the 8202 seeds dispersed in 103 piles across both years, we were able to 

confidently identify the disperser for 79.6% of piles (95.8% of total seeds).  Thirty seven 

percent of the unidentified dispersers were deer (based on the shiny regurgitated seeds), 

but due to a lack of distinct tracks near the seeds we could not identify the species of 

deer.  All of the seeds were dispersed by gibbons, muntjac, and sambar except 22 (0.3% 

of total) by a bear (Ursus sp.), 3 (<0.1%) by an elephant (Elephas maximus), and 7 

(0.1%) by either a large civet (Viverra sp.) or a macaque (Macaca nemestrina).  Handling 

by rodents was also evident in 1.4% of seeds, but it is unclear whether this represents 

primary or secondary dispersal.   

 Muntjac dispersed more seeds than gibbons or sambar, and dispersed a higher 

proportion of their seeds away from female canopies (Fig. 1).  There were no differences 

between years in the proportions of seeds dispersed to the different habitats for gibbons 

(χ2
[3] = 0.51, p = 0.917), muntjac (χ2

[3] = 0.02, p = 0.999), or sambar (χ2
[3] = 0.16, p = 

0.984).  Seeds were dispersed to different habitats roughly proportionally to the 

availability of those habitats for gibbons (χ2
[3] = 1.31, p = 0.727) and muntjac (χ2

[3] = 

0.37, p = 0.946).  Sambar dispersed more seeds than expected to the “underneath adult 

female canopy” microhabitat and fewer than expected to the other three microhabitats 

(χ2
[3] = 8.65, p = 0.034).  A majority of sambar-dispersed seeds were found under female 

C. axillaris, whereas muntjac and gibbons dispersed most of their seeds away from 

female canopies to forest in the 0.31-0.7 proportion canopy cover range (also see 

Appendix B).  Muntjac were the only dispersers to deposit seeds in the highest-light 

microhabitat (0.11-0.3 canopy cover; Fig. 1).   

Fruit crop at the beginning of the fruiting season did not differ between years 

(linear regression: R2 = 0.11, df = 24, p = 0.754), and was not significantly related to tree 
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diameter (β = -11.839, p = 0.127).  Mean (±SE) fecundity was 800.81 (±106.45) fruits per 

tree; on average 70.8% (±4.1%) of seeds produced were dispersed by the end of the field 

season (i.e. were not still on or underneath the canopy).  The percentage of seeds that 

were dispersed did not vary between years (linear regression: R2 = 0.09, df = 24, p = 

0.208) or as a function of tree diameter (β = -0.002, p = 0.487).   

Germination was significantly higher in 2003 than in 2004 (logistic regression: 

LL = -148.8, df = 2009, p = 0.041), and was negatively affected by canopy cover (β = -

3.745, p < 0.001; see Fig. 2).  However, seed germination was unaffected by seed pile 

size (β = 0.004, p = 0.238) or by being under an adult female canopy (β = -12.015, p = 

0.822).  While germination under female trees was zero in our trials, this is at least partly 

an experimental artifact since seedlings occur under female canopies in nature.  All 2003 

seeds that did not germinate and were not removed by 2004 (n = 3350) were monitored 

for the following year, and none germinated.  Mean (±SE) proportions of seeds per plot 

removed from the open cages were 0.341 (±0.047) and 0.372 (±0.059) for 2003 and 

2004, respectively; seed removal was not significantly affected by canopy cover, being 

under a female canopy, or seed pile size.  Post-removal seed predation was not 

significantly affected by canopy cover or location under a female canopy.  Of removed 

seeds with strings attached, 0.80 (±0.133) and 0.84 (±0.055) were recovered within five 

meters in 2003 and 2004 respectively.  Of these recovered seeds, the mean proportion of 

post-removal seed predation was 0.857 (±0.143) and 0.636 (±0.105) in 2003 and 2004, 

respectively.   

Seedling survivorship did not differ between years (logistic regression: LL = -

212.4, df = 580, p = 0.991).  Survivorship was negatively affected by canopy cover (β = -

3.746, p = 0.003; Fig. 2) and by being under an adult female canopy (β = -0.889, p = 

0.004), but not by seedling height (β = 0.026, p = 0.276).  Seedling growth did not differ 

between years (linear regression: R2 = 0.07, df = 90, p = 0.168).  Growth was 

significantly, negatively affected by canopy cover (β = -11.579, p = 0.012; Fig. 2), but 

not by seedling height (β = 0.083, p = 0.359).  Presence under an adult female canopy did 

not significantly affect seedling growth (β = 0.925, p = 0.530), but only 16 seedlings 

under female canopies survived (both yearly transitions combined), so we had low power 

to detect this effect.   
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 Of the 15 juvenile C. axillaris on the Khao Yai Forest dynamics plot in 2002, 14 

(93.3%) survived to the re-census three years later, resulting in a mean annual 

survivorship estimate of 0.977.  Juvenile tree diameter did not significantly affect 

survivorship (logistic regression: LL = 0.00, df = 14, β = 37.349, p = 0.838) or growth 

(linear regression: R2 < 0.01, df = 14, β = 0.011, p = 0.927).  Mean (±SE) juvenile growth 

was 1.89 cm (±0.43 cm) per year.  Of the 159 adults on the plot at the first census, 59 

were female and 152 (95.6%) survived to the re-census; estimated mean annual 

survivorship was 0.985.  Adult tree diameter did not significantly affect survivorship 

(logistic regression: LL = -27.75, df = 158, β = 0.034, p = 0.190) or growth (linear 

regression: R2 < 0.01, df = 158, β = 0.006, p = 0.704). 

Gaps in the forest canopy can become darker over time as they fill in with 

vegetation, or lighter as wind continues to knock down trees and branches on their edges.  

Repeat canopy photography at the permanent photo points revealed that the forest is 

slowly becoming darker.  Excluding the female canopy habitat (with a mean [±SD] 

canopy cover of 0.89 [±0.06]), darker-tending elements in the habitat transition matrix 

(below the diagonal; see Appendix C) sum to 0.60, lighter-tending elements (above the 

diagonal) to 0.15, and stasis elements to 2.25.   

Population model 

 Using simplified matrices with no microhabitat transitions and where the C. 

axillaris lifecycle played out entirely in single microhabitats, we calculated habitat-

specific population growth rates.  Mean (±SD) λ̂  was higher in the 0.11-0.3 proportion 

canopy cover habitat (1.123 ±0.042) than in the 0.31-0.7, 0.71-1.0, and “under female 

canopy” habitats (0.985 ±0.005 for all three).  The bootstrapped 95% confidence intervals 

(see Fig. 3) of habitat 1 (0.11-0.3 cover) did not overlap those of any other habitat; only 

in habitat 1 was population growth positive. 

 Under a scenario of no seed dispersal (all seeds deposited in habitat 0), our model 

projected C. axillaris population growth as 0.989 (±0.006).  Growth rate point estimates 

were marginally higher for the various dispersal scenarios (gibbon only: 0.991 ±0.006; 

muntjac only: 0.994 ±0.007; sambar only: 0.992 ±0.006; and all dispersers combined: 

0.993 ±0.007; also see Appendix D).  Nevertheless the confidence intervals for these 

growth rate estimates overlapped broadly, and all point estimates were included in the 
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confidence intervals of all other dispersal scenarios (Fig. 4A).  Running the model 

without habitat transitions (i.e. seeds and seedlings stay, grow, and survive where they 

are dispersed; Appendix F) did not affect relative differences among dispersal scenarios, 

but slightly increased C. axillaris λ̂  attributable to each.  The differences in lambda 

( λ̂∆ ) between each frugivore and no dispersal at all show only small differences among 

the scenarios.  None of the λ̂∆ confidence intervals overlapped zero, but all were broadly 

overlapping with each other (Fig. 4B).  Adult survival followed by juvenile survival had 

the highest elasticities (sensu Caswell 2001) among the vital rates.  Elasticities of 

fecundity, seed dispersal, seed predation, seedling survival and growth, juvenile growth, 

and habitat transitions were roughly equal (see Appendix E).   

 

Discussion 

 The C. axillaris population growth rates attributable to each of the three primary 

frugivores are remarkably close.  Moreover the differences between dispersal by each 

frugivore and no dispersal at all ( λ̂∆ ) have broadly overlapping confidence intervals.  

Together these results suggest that C. axillaris seed dispersal by its three mammalian 

mutualists s is largely equivalent and that the frugivores exhibit a relatively high degree 

of functional redundancy in their seed dispersal services.  The importance of each 

frugivore to C. axillaris appears roughly equal, in contrast to previous documentation of 

strong skew in interaction strengths within guilds (Raffaelli and Hall 1995, Wootton 

1997).  Other authors have suggested that frugivore visitation rate scales to interaction 

strength (e.g. Bascompte et al. 2006).  Yet in this study, muntjac and sambar removal of 

over twice as many seeds as gibbons did not appear to result in noticeably stronger 

interactions.  Indeed sambar and gibbons have nearly identical interaction strengths with 

C. axillaris, likely because many of the seeds that sambar ingest get “dispersed” right 

back under adult trees.  Differences in seed dispersal among the mammals may prove 

important for C. axillaris genetic structure or colonization of new habitats (c.f. Jordano et 

al. 2007), but are relatively unimportant for the population dynamics of this established 

population.   

 This study measures interaction strength as the total effect of each mammal 

species on C. axillaris population growth.  It is possible that differences among 
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frugivores would be more pronounced if we corrected for relative population density or 

biomass (e.g. per capita interaction strength).  A very rough estimate of the mean number 

of gibbons on the plot at any one time is approximately 2-6 individuals (WYB, pers. 

obs.), for a total biomass of 8-48 kg.  Estimated muntjac density in the vicinity of the plot 

during the time of this study was 0.7-4.2 km-2 (Lynam et al. 2006); abundance and 

biomass estimates for the 30 ha plot are therefore 0.2-1.26 individuals and 4-35.3 kg, 

respectively.  No such data are available for sambar.  The overlap in total species effect 

between gibbons and muntjac is unlikely to be due to differences in relative abundance or 

biomass, which appear qualitatively similar. 

 For such an abundant and prolifically-fruiting tree, C. axillaris has remarkably 

few seed dispersers.  While the fruit pulp is clearly edible to primates (including humans) 

and ruminants, it may contain secondary compounds that deter other animals; phenolic 

allergens are common in the Anacardiaceae (Judd et al. 2002).  C. axillaris may be 

adapted for dispersal by terrestrial frugivores; it is the only one of 255 fruiting tree 

species in a Hong Kong forest whose fruit drops undamaged when ripe (Corlett 1996).  

The related and ecologically-similar Spondias mombin of the Neotropics was thought be 

adapted for dispersal by gomphotheres (Pleistocene proboscideans; Janzen 1985).  Yet, 

although modern Asian elephants are abundant in Khao Yai, we only found 3 C. axillaris 

seeds in elephant scat, despite detailed examinations of nearly 50 scat piles from 2003-

2005.  Other frugivores could possibly remove seeds to communal roosts (e.g. Pteropodid 

fruit bats) or latrines (e.g. civets), avoiding our detection on transects.  However, only a 

small proportion of the seeds were unaccounted for; our estimation of the total number of 

seeds dispersed was actually slightly higher than the total number of seeds available on 

the forest dynamics plot (due either to measurement error or immigration of seeds from 

outside the plot; in the model the proportion of total fecundity dispersed could not exceed 

1; see Fig. 1),.   

 Gibbons, muntjac, and sambar differ both in where they deposit seeds and in the 

number of seeds they leave in deposition piles.  Although the location where seeds are 

dispersed can have clear effects on seed germination and seedling survival, the size of 

seed deposition piles did not appear to play an important demographic role, since 

germination and first-year seedling survivorship were not affected by seed pile size.  
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Moreover, due to overall low seedling survivorship across different sized seed piles there 

was no evidence for density-dependence even for seeds that germinated out of large 

deposition piles.  

 Secondary dispersal does not appear to play a major role for this species.  Though 

30-40% of seeds are removed from their primary deposition locations, most do not travel 

more than 5 m, and most are predated.  We occasionally encountered caches of C. 

axillaris seeds in the forest, possibly brought there by tree or ground squirrels, but these 

were rare and, again, many of the seeds had been destroyed.  Likewise C. axillaris does 

not appear to have a seed bank; if seeds do not germinate a year after they are deposited, 

they do not seem to germinate at all.  

 The stage-structure population model we employed places differences in seed 

dispersal in an ecologically realistic context that includes demographic transitions as well 

as transitions in habitat state.  We suggest that this approach is necessary for evaluating 

the population-level consequences of species interactions, especially for tropical trees 

that depend on canopy gaps for successful recruitment.  Yet our model also makes 

several assumptions that may affect the robustness of its output to uncertainty in 

particular vital rates.  Perhaps most importantly, juvenile vital rates in our model are 

habitat-independent.  If juvenile growth or survival were actually strongly enhanced in 

canopy gaps, seed dispersal to gaps could be more important than our results suggest.  

Moreover our model does not explicitly account for two factors known to importantly 

influence population dynamics: environmental stochasticity and density dependence.   

As our seedling vital rate measurements are based on two annual transitions, we cannot 

accurately assess variance in demography over time.  Because C. axillaris is so highly 

benefited by canopy gaps, its long-term demography may depend on periodic cycles of 

intense forest disturbance by cyclones (WYB, pers. obs.).  We explored this possibility 

by running the population model as described above, but including an intense storm every 

10 years that sent 50% of the forest to habitat stage 1.  Interestingly, this had little 

qualitative effect on estimates of population growth rate or differences among dispersal 

scenarios (see Appendix F).  According to our model, the C. axillaris population we 

surveyed is slowly declining (Fig. 4A).  This decline may be real; as noted, our habitat 

transition measurements indicate that the forest is getting darker over time (Appendix C), 
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reducing the availability of light gaps where C. axillaris germination is enhanced.  

Alternatively, the apparent decline may be an artifact of the low sample sizes used to 

estimate the two highest-elasticity vital rates: adult and juvenile survival.  If six of the 

adults that died had instead survived, C. axillaris λ̂ for the total dispersal scenario (all 

frugivores combined) would equal 1.000.  The relative differences in λ̂ attributable to 

each frugivore would, however, remain almost unchanged; λ̂ muntjac: λ̂ gibbon and 

λ̂ muntjac: λ̂ sambar ratios both decline by 0.09%.  Interestingly the exclusion of habitat 

transitions from the model (Appendix F) actually raises population growth rate estimates; 

this is likely due to the fact that the habitat transition matrix makes the forest generally 

move toward darker habitats.   

 The potential for redundancy in seed disperser assemblages will be strongly 

affected by variation in life-history traits across tree species.  Part of the explanation for 

the small differences among frugivore interaction strengths in this study lies in the fact 

that although seed dispersal is statistically advantageous for C. axillaris λ̂  in this 

population (none of the λ̂∆ confidence intervals overlapped zero; see Fig. 4B), the 

advantages are only slight.  And differences in dispersal among frugivores should 

decrease in magnitude as dispersal itself becomes less important.  C. axillaris seeds do 

not require ingestion in order to germinate.  While seed dispersal to open habitats does 

appear to be beneficial, seedlings can also change habitats as forest canopy opens or 

closes above them.  Tree species that are more dependent on, for example, seed 

scarification or dispersal to gaps tend to exhibit increased demographic reliance on seed 

dispersal (Bond 1995) and may show larger functional differences among their attendant 

frugivores.  Quantification of the distribution of interaction strengths in frugivore guilds, 

and an understanding of how tree life-history influences these distributions, will help 

alert us to situations where particular tree species may be at demographic risk from loss 

of crucial, non-redundant seed dispersers.   
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Figure 4.1: Quantity of seeds dispersed by each frugivore, expressed as proportions of 

total fecundity on the plot in 2003 (A) and 2004 (B; error bars represent 95% bootstrap 

confidence intervals).  Deposition habitats of dispersed seeds in 2003 (C) and 2004 (D): 

habitat 0 = underneath an adult female canopy, habitat 1 = 0.11-0.3 proportion canopy 

cover, habitat 2 = 0.31-0.7 canopy cover, habitat 3 = 0.71-1.0 canopy cover.   
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Figure 4.2: Mean (±SE) germination (A), seedling survivorship (B), and seedling growth 

(C) across habitat types.   
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Figure 4.3: Habitat-specific C. axillaris population growth rate (with 95% bootstrap 

confidence intervals). 
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Figure 4.4: A) C. axillaris population growth rate attributable to each frugivore alone and 

in combination; B) difference in C. axillaris λ̂  between dispersal by each frugivore and 

no dispersal.  Boxes represent mean ±1SD, bars represent 95% bootstrap confidence 

intervals.   
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Appendix A: Structure of C. axillaris population projection matrix: “surv” = 

survivorship, “trans” = stage transition, “germ” = germination, “disp” = dispersal, “fec” = 

fecundity, “SR” = sex ratio, “pred” = seed predation (habitat independent), “cij” = 

transition from habitat i to j.   
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Appendix B: Distance from dispersed seed piles to the nearest adult female C. axillaris.   
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Appendix C: Mean habitat transition matrix 

 

   

  Habitat 0 Habitat 1 Habitat 2 Habitat 3 

 

Habitat 0 0.9922  0.0000  0.0000  0.0000    

 

Habitat 1 0.0000  0.8135  0.0352  0.0031  

 

Habitat 2 0.0058  0.0934  0.5650  0.1064 

 

Habitat 3 0.0019  0.0931  0.3997  0.8904 
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Appendix D: Mean C. axillaris projection matrices for each dispersal scenario.  Sdlgi 

refers to seedlings in habitat i.   

No dispersal 

 Sdlgo  Sdlg1  Sdlg2  Sdlg3  Juvenile Adult 

 

Sdlg0 0.0796  0  0  0  0.1255  5.1982 

 

Sdlg1 0  0.5823  0.0257  0.0024  0  0 

 

Sdlg2 0.0022  0.0380  0.2146  0.0406  0  0 

 

Sdlg3 0.0002  0.0127  0.0508  0.1129  0  0 

 

Juv 0  0.0078  0.0003  0  0.9549  0 

 

Adult 0  0  0  0  0.0238  0.9851 

 

Gibbon dispersal 

 Sdlgo  Sdlg1  Sdlg2  Sdlg3  Juvenile Adult 

 

Sdlg0 0.0796  0  0  0  0.1523  6.3078 

 

Sdlg1 0  0.5823  0.0257  0.0024  0  0 

 

Sdlg2 0.0022  0.0380  0.2146  0.0406  0  0 

 

Sdlg3 0.0002  0.0127  0.0508  0.1129  0.0154  0.6368 

 

Juv 0  0.0078  0.0003  0  0.9549  0 

 

Adult 0  0  0  0  0.0238  0.9851 
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Appendix D (continued) 

Muntjac dispersal 

 Sdlgo  Sdlg1  Sdlg2  Sdlg3  Juvenile Adult 

 

Sdlg0 0.0796  0  0  0  0.0994  4.1147 

 

Sdlg1 0  0.5823  0.0257  0.0024  0.0052  0.2141 

 

Sdlg2 0.0022  0.0380  0.2146  0.0406  0.0032  0.1319 

 

Sdlg3 0.0002  0.0127  0.0508  0.1129  0.0048  1.8547 

 

Juv 0  0.0078  0.0003  0  0.9549  0 

 

Adult 0  0  0  0  0.0238  0.9851 

 

Sambar dispersal 

 Sdlgo  Sdlg1  Sdlg2  Sdlg3  Juvenile Adult 

 

Sdlg0 0.0796  0  0  0  0.1628  6.7400 

 

Sdlg1 0  0.5823  0.0257  0.0024  0  0 

 

Sdlg2 0.0022  0.0380  0.2146  0.0406  0  0 

 

Sdlg3 0.0002  0.0127  0.0508  0.1129  0.0170  0.7042 

 

Juv 0  0.0078  0.0003  0  0.9549  0 

 

Adult 0  0  0  0  0.0238  0.9851 
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Appendix D (continued) 

Total dispersal (all frugivores combined) 

 Sdlgo  Sdlg1  Sdlg2  Sdlg3  Juvenile Adult 

 

Sdlg0 0.0796  0  0  0  0.0545  5.1982 

 

Sdlg1 0  0.5823  0.0257  0.0024  0.0041  0.1706 

 

Sdlg2 0.0022  0.0380  0.2146  0.0406  0.0025  0.1051 

 

Sdlg3 0.0002  0.0127  0.0508  0.1129  0.0781  3.2350 

 

Juv 0  0.0078  0.0003  0  0.9549  0 

 

Adult 0  0  0  0  0.0238  0.9851 

 

 

 

 



 

 

 

88 

Appendix E: We estimated the sensitivity of the C. axillaris population growth rate (for 

all disperser species combined) to vital rates using both analytical elasticity analysis 

(Caswell 2001) and Life-stage Simulation Analysis ("LSA"; Wisdom et al. 2000).  The 

latter accounts for both the ability of infinitesimal changes in each vital rate to affect 

population growth (analytical elasticity) and the range of variability of the vital rates.  For 

each of 1000 iterations we randomly chose vital rates from uniform distributions bounded 

by their upper and lower 95% bootstrap confidence limits, constructed projection 

matrices, and calculated λ.  We then performed simple linear regressions of vital rates 

values versus λ.  The R2 value of each regression (rescaled so that the total summed to 1) 

was a measure of the sensitivity of λ to each vital rate.   
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Appendix F: C. axillaris population growth rate attributable to each frugivore alone and 

in combination, A) accounting for storms every 10 years that drive 50% of the forest to 

habitat 1 (0.11-0.3 proportion canopy cover), and B) with no habitat transitions (no 

storms and no Cij matrix) accounted for.  Boxes show mean ±1SD, bars represent 95% 

bootstrap confidence intervals.   
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