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Hydrothermal Water/Groundwater Interaction: A Comparaitive Study of
Electromagnetic Terrain-Conductivity Mapping and Standard Hydrogeochemical
Techniques

Director: Nancy W. Hinman,{,,\J

Electromagnetic (EM) terrain-conductivity surveys were conducted at two thermally-
influence drainages in Yellowstone National Park (YNP) to assess the feasibility of this
technique to detect the interaction of hot spring discharge with shallow groundwater.

This nonintrusive geophysical technique was successful in mapping the zones of mixing of
distinct waters in the subsurface at two sites that vary significantly in size and
hydrogeothermal morphology. Results compared closely with those indicated by standard
hydrogeologic and geochemical characterizations.

Data from the two sites, Sentinel Meadows and Octopus Spring, revealed EM terrain-
conductivity anomalies that reflect the influx of highly conductive hot spring discharge
into the local groundwater systems. The anomalies are indicative of the higher
temperatures and conductance of the Na-Cl-rich hydrothermal waters compared to the
receiving groundwaters.

Potentiometric surface and water quality data were obtained to determine the
hydrogeochemistry of both areas. Groundwater flow at Sentinel Meadows is
predominantly to the south but is deflected by siliceous sinter mound features in the valley.
EM terrain-conductivity mapping closely approximates the groundwater flow patterns and
the distribution of more highly conductive waters near zones of hot spring discharge.
Two groundwater systems present at Octopus Spring are distinct with respect to
temperature and conductive solutes. EM terrain-conductivity mapping reflects these
variations of data.

Study of subaerial microbial siliceous sinter has focused mainly at or near thermal
vents. It is speculated that silica mineralizing zones may form in the subsurface, resulting
in microbial fossilization that is not evident from the surface. EM terrain-conductivity
surveys appears to provide a means to identify such areas without disruptive and intrusive
exploration of the system.
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1.0 INTRODUCTION

Sinter mounds develop around alkaline hot springs as a result of silica precipitation
from thermal discharge waters. Precipitation of siliceous sinter occurs as silica-saturated
waters cool. Thermophyllic microbial mats in pools and outflow channels are entombed
by the silica precipitate (Walter and others, 1996; Hinman and Lindstrom, 1996). Around
the aprons of many hot springs, the discharge flows into extensive marshes of
diatomaceous earth. Diatoms in these areas receive the surface flows and use the silica in
their frustule. Other marsh plants live in these brackish waters but not in close proximity
to the hot springs The hot spring discharge ultimately flows into nearby streams or
infiltrates into the ground; thus, recharging local groundwater. The hydrothermal system,
therefore, is actually more extensive than just the sinter mounds and outflow channels. The
resulting hydrothermal features cover extensive areas and contain physical, chemical, and
biological signatures of the processes that shaped feature development.

Study of these unique geologic features has focused on processes that govern silica
mineralization and microbial fossilization mainly at or very close to the thermal vent and
strictly on the surface (White and others, 1956; White and others, 1964; White and others,
1988; Ertel, 1995; Hinman, 1995; Hinman, 1998)). The pathways for precipitation of
these biolithologic features are not fully understood but the resulting entombment of the
microbial morphotypes is recognizable in the geologic record (Walter and others, 1996).
As yet, no contributions have been made to understanding the subsurface processes that

are responsible for translating these microbial sinters into the geological record. Nor has
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any work been done on the extensive distal deposits of silica found in surrounding
marshes.

The surficial distribution of marshes around thermal features appears to be controlled
by the volume of thermal discharge and the geomorphology. These areas must represent
zones of mixing between thermal waters and meteoric waters. Hence, it is likely that these
are zones in which dynamic changes are occurring as chemical reactions, physical mixing,
and biological activity take place. In a hot spring environment, local groundwater
composition (mostly meteoric with perhaps some hydrothermal mixing) will be altered by
these processes. Influx from surface water springs and streams will further change the
groundwater’s makeup, especially influx from Na-Cl-rich hot spring discharge. Traditional
methods used to study the hydrodynamics and geochemistry of a groundwater system are
often impractical to apply and can be intrusive to the surrounding environment. Ground-
based geophysical techniques can be employed to identify conductivity anomalies in the
subsurface and may be useful identifying the flow of brackish waters in the subsurface.
These methods also may be used to locate potential mineralizing zones that can not be
identified from the surface.

This study examined two thermally-influenced drainages in Yellowstone National
Park to determine the extent of interaction between surface and subsurface thermal water
with local groundwater. Electromagnetic (EM) conductivity mapping was used to identify
areas with distinct geochemical signatures based on the type of geologic materials,
temperature and dissolved solids in the soil/water matrix. EM mapping results were

compared with those obtained using standard hydrogeologic and geochemical techniques
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to evaluate if this nonintrusive geophysical technique can be used in determining the

interaction among thermal and non-thermal surface waters with local groundwater.

1.1 Goals and Objectives

The thermal and chemical signature of mixing between hydrothermal and meteoric
waters should be easily detectable, provided a site can be sufficiently instrumented. But,
appropriate restrictions on such instruments in Yellowstone National Park prompt the
search for an alternative means of evaluating subsurface mixing zones and flow paths.
Therefore, a nonintrusive geophysical technique was used along with standard
hydrogeological and geochemical techniques to study the interaction of alkaline hot spring
discharge with the local environment. The primary goal of this project was to evaluate the
effectiveness of using electromagnetic (EM) terrain-conductivity to map the flow of
groundwater at the two study areas by comparing the results with those of standard
hydrogeological investigations. As an important secondary goal, hydrochemical models of
two thermally influenced areas in Yellowstone National Park, Sentinel Meadows and
Octopus Spring, were developed. These models include evaluation of the potential for
hydrothermal fluids to control subsurface conductivity through mineral solution and
precipitation processes.

Specifically, by comparing EM terrain-conductivity mapping with standard
groundwater investigative techniques, this research has been used to describe the

hydrogeology and geochemistry of the two areas by:
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e determining the interaction among thermal water, non-thermal surface water, and
local groundwater;
e mapping the flow of thermal water in the shallow subsurface; and

e predicting areas of mineral deposition in the shallow subsurface.

1.2  Thesis Organization

The remainder of this thesis is organized into five parts. Chapter 2 provides a
description of the two areas of study followed by discussions of the principles and
applications of electromagnetic conductivity mapping, the principles of hot spring
geochemistry, and the role of silica in the environment. Chapter 3 describes the
methodologies used to determine the surface and hydrogeologic settings of the two areas
of study. Chapter 4 presents the results of this study. Chapter 5 provides discussion of
the findings. Chapter 6 presents the conclusions.. The appendices present data obtained
during this study, including boring logs, potentiometric data, slug testing graphs, EM

terrain-conductivity maps, temperature probe data, and water chemistry data.
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2.0 BACKGROUND

This chapter is divided into four sections which provide background information
on the study areas (Sentinel Meadows and Octopus Spring), the principles and
applications of EM terrain-conductivity mapping, the relevant aspects of hot spring

geochemistry, and the behavior of silica in a hydrothermal environment.
2.1 Site Descriptions

The two study areas, Sentinel Meadows and Octopus Spring, are located in the
Lower Geyser Basin of Yellowstone National Park. The locations of the study areas are
shown in Figure 1. The differences in the size of the two areas has provided an
opportunity to determine the efficacy of EM conductivity mapping on different scales.

This study was conducted with the permission and cooperation of the National
Park Service (NPS Permit No.1671). The NPS stipulated that the two sites be mostly out

of view of the public.

2.1.1 Sentinel Meadows Study Area

Sentinel Meadows is a relatively large drainagé that has both thermal and non-
thermal springs. The valley is drained to the east by Sentinel Creek and the study area is
located approximately 2.3 km upstream from the confluence with the Firehole River. A
topographic base map of the study area is shown in Figure 2. The study area measures

approximately 750 meters by 550 meters and includes three major alkaline thermal springs:
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8
Flat Cone; Steep Cone; and a previously unnamed thermal spring that will be referred to as

“Carcass Cone”, Two other significant hydrothermal features, Red Terrace and Queen’s
Laundary are located south of the study area.

The area has a shallow water table and marshy soils. Flat Cone (SFC) and Steep
Cone (SSC) are radially symmetrical and extend above the surrounding plain
approximately 5 to 6 meters. Both of these springs surge periodically in minor eruptions,
though the time and patterns of the eruptions are not regular. Given the shape of the two
cones, the discharge patterns likely change from time to time, providing for the
symmetrical development. Currently, the discharge frém Flat Cone builds slowly and
flows through a channel to the southwest. After some time (typically less than 1 hour),
the spring erupts to a height of less than 1 meter and flows radially across the cone. The
discharge spills out onto the cone and quickly becomes channelized as it descends to the
plain below. A thumping, likely related to the release of gases, can be felt underfoot when
it erupts. After a relatively short eruption interval, the spring drops below the top of the
cone (approximately 1 meter) and the eruption process begins again. Steep Cone has a
similar eruption pattern as Flat Cone, though the time-interval is not necessarily the same.
This cone has been eroded by Sentinel Creek along its western side. Discharge flows
primarily to the south and off extensive bacterial mats hanging over the creek to the west.
Carcass Cone (SCC) has a sinter apron to the south and west but rises just slightly above
the surrounding plain to the north. Carcass Cone discharges continually to the east, but its
outflow surges. At the base of the sinter cones, their alkaline discharges flow into marshes

that are vegetated with marsh grasses.
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Several minor streams (designated Spring A (SSA) through Spring F (SSF))
originate from cold-water springs at the base of hills to the north. They flow south across
the study area and into Sentinel Creek (SC). Outcrops in the surrounding hillside are
composed of flow-banded rhyolite with vesicular black obsidian. The bedding and band
thickness of the outcrops vary across the area. Phenocrysts consists of euhedral
plagioclase and quartz.

In the northwest portion of the area is a small, neutral pH, tepid pool (designated
as Pool A (SPA)) that discharges to Spring C. North of Flat Cone is a large mound of
sinter and sinter breccia that does not exhibit any thermal activity. This mound likely
impacts the groundwater flow dynamics of the area but is otherwise dormant. To the east
of Flat Cone are two parallel sinter ridges that are bisected by Spring E, herein labeled
Elephant Back (SEB). At the southwest end of Elephant Back’s western ridge is a minor,
neutral pH tepid spring that flows into Spring E. A small, radially symmetrical sinter
mound exists in the northeast portion of the study area and appears to be an extinct cone.

The lineament of surface features in Sentinel Meadows appear to suggests that the

hydrothermal features may be aligned along fractures in the subsurface.

2.1.2 Octopus Spring Study Area

The Octopus Spring site is a smaller area located near the lower-most reach of the
White Creek. White Creek drains a fault-incised valley to the south and the numerous
thermal springs discharging to the creek constitute most of its flow. A topographic base

map of the study area is shown on Figure 3. The study area has one main spring (Octopus
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11
Spring (OCT)) and two smaller springs (identified as Pool A (OPA) and Spring A (0SA)).

Immediately south of the site are additional thermal springs with similar morphologic
structures.

The Octopus Spring area has an asymmetrical structure that is controlled by
topography. Octopus Spring is an alkaline hot spring that abuts a hillslope on the north
and a marsh to the east. The siliceous sinter and sinter breccia mound slopes
predominantly to the west toward White Creek (OWC). The spring and marsh are
separated by a siliceous sinter and sinter breccia apron which also extends to the south.
This portion of the mound is vegetated with pine trees and grasses. Octopus Spring rises
approximately 4 meter above White Creek (OWC) and continually discharges with
periodic surges through two well-defined, silica-lined outflow channels. As the discharge
flows across the sinter mound breccias, it is slowed in structural pools inhabited by
extensive microbial mats. Discharge from the pools is not channelized by the time it
reaches the creek.

Pool A is an alkaline hot spring that is located 1 to 2 meters above White Creek.
It continuously discharges, also with surging, to the creek though a well-defined, silica-
lined channel.

Spring A originates up a draw to the east and is fed by several small thermal
springs. It appears that as the Octopus Spring sinter mound (and sinter mounds to the
south) developed, the flow of Spring A was blocked. Today, the flow (designated OMO)

exits from south end of the marsh and flows overland into White Creek.
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Outcrops in the hillslopes immediately north and east of Octopus Spring are

composed of a matrix-supported conglomerate with rounded clasts (1 to 10 cm) of
unknown origin. The clasts exhibit crude bedding and imbrication overlain in sharp contact

by well-bedded welded rhyolite tuff. The matrix material is also a welded tuff.

2.2 Electromagnetic Conductivity Surveys

Electromagnetic conductivity (EM) instruments, such as the Geonics EM-31,
measure subsurface conductivity by inducing electromagnetic fields into the earth and
measuring the effect the terrain has on the induced fields. Surface EM methods have been
successfully used to delineate groundwater contamination from landfill leachates (Mack
and Maus, 1986) and to map the salt water-fresh water interface in coastal areas (Stewart,
1989; McNew and Arav, 1995). EM surveys have also been used to delineate the
migration of acidic groundwater from pyritic tailings at an abandoned mine (Brooks and
others, 1991).

Measurable conductivity changes in the earth are caused by difference in porosity,
conductivity of the pore water, shape of soil/rock pore spaces, degree of water saturation,
temperature, and clay content with moderate to high cation exchange capacity (CEC). As
described by McNeill (1990) an empirically based relationship (Archie’s Law) states, for

fully saturated soils, that

Go= Ouw”
where
G, is the bulk conductivity of soil (S/m)
o, is the conductivity of soil water (S/m)
¢ is the soil porosity
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m is a factor which varies with the particle shape (1.2 for spheres to 1.9 for platey
fragments)
The conductivity of dilute concentrations of electrolyte is given by
Ow = 965002.C M,
where
Ci is number of gram equivalent weights of the i ion per m* of water
M, is ionic mobility of the i* ion (m%sV)
For soil that is partially saturated, the conductivity varies approximately as
G4-0.5"
where
o4 is the conductivity of partially saturated soil
s is the fraction of total pore volume filled with electrolyte
k is a factor experimentally determined to be approximately 2
The temperature dependence of the conductivity of bulk soil is determined (for
temperatures above freezing) by the temperature dependence on the ionic mobility, which
is of the order of 2 percent per degree celcius for common ions. Based on this relatively
large coefficient, soil conductivity can be expected to vary significantly with temperature.
The presence of clay having a polar alignment can add an additional component to
the electrical conductivity. The clay content and type (a function of cation exchange
capacity (CEQC)) is essentially independent of the ionic component. Thus
G = o.w¢m + Celay
The contribution of clay is largest when the ionic concentrations of pore water are
low but becomes negligible relative to water at high ionic concentrations, especially for
clays with low to moderate CEC.

The EM-31 instrument induces a time-varying magnetic field from the transmitter

coil located at one end of the instrument, and the resulting circular eddy current loops
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penetrate earth. As the primary field spreads out (both above and below ground), induced

currents in the subsurface give rise to secondary EM fields that distort the primary field.
The receiving coil will pick up both the primary and secondary fields that will differ in
intensity, phase, and direction, and reveal the presence of conductive zones (Sharma,
1997). The ratio of the secondary and primary magnetic field is linearly proportional to
the terrain conductivity (McNeill, 1980b).

The EM-31 has an intercoil spacing of 3.7 meters and can be operated in either a
vertical or horizontal dipole mode. In the vertical dipole mode, the instrument provides
twice the effective depth of exploration as the horizontal dipole mode, 6 meters and 3
meters; respectively.

EM terrain-conductivity mapping of subsurface conditions in hydrothermal areas
should provide data that identify groundwater systems of higher temperatures and/or

conductivities resulting from mixing with hot spring discharge.

2.3  Hot Spring Geochemistry

The hydrothermal fluids of Yellowstone National Park originate from deeply
circulating meteoric waters. These waters circulate at minimum depths of 100 to 550 m
and reach temperatures of 180° to 270°C. These reservoirs are situated within thick
sequences of rhyolitic iava flows and ash-tuff. As the fluids circulate, they react to
dissolve the minerals of the rhyolite parent rock. Upon reaching the surface, these mineral-

rich fluids cool leaving mineral deposits in unique morphological structures. There may
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some contribution to the hydrothermal systems from briny-magmatic waters, though it

cannot be more than 0.2 to 0.4% (Fournier, 1989).

The availability and solubility of salts leached from the parent rock control the total
dissolved solids of the hydrothermal fluids. As the hydrothermal waters rise, they mix
with local groundwater, and further react with country rock. The resulting fluids are rich
in sodium, silica and bicarbonate. Anions such as chloride and sufate are added to
hydrothermal fluids as a result of outgassing of hydrochloric and sulfuric acids.
Hydrothermal waters are typically highly conductive as a consequence of the high Na* and
CI' contents..

Dissolved silica is a major constituent of thermal springs. It is found primarily in
the monomeric form as silicic acid. Chemical and physical factors control the distribution
of this neutrally charged constituent in the subsurface. The solubility of silica is dependent
on a number of factors including pH, temperature, and the chemical composition of the
fluid. Hence, as fluids move away from the sinter mounds, changes in these factors can
cause silica to precipitate or dissolve. Thus, precipitation of silica could impact the
groundwater flow dynamics. Table 1 shows representative chemical analysis of

hydrothermal waters from various basins in Yellowstone National Park.

2.4  Role of Silica in a Hot Spring Environment
Silica can exist in several phases at lower temperatures. Initially, silica precipitates
as amorphous silica (opal-A). It will recrystallize first to a poorly-ordered, low

cristobolite with low tridymite domains (opal-CT) and eventually to quartz. The increase
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TABLE 1

Chemical Analysis of Selected Thermal Waters from Yellowstone National Park

Number ) . 2 k] 4 5 & 7 ¥ 9 10
Lowahins Mummoih, West Shoshane Heart Lower Upper Upper Grand Nirns . Norns
Hot Springs Thumb Basin Lake Basin Basin Busin Busin Cuamyon Ranin Basin
Name Y-10 Lukeshate Washiub Unnamed Ojo Punch Ear Unnumcd Parcelain Cinder
drill hole Guyser Spring Culiente Bowl Spring Sevenmile Terrace Pool
Hole
Sample No. Y-8 JeR4 T7244 T7343 7560 17834 J1946 Jield )82y 13908
Daie 0913 1Y 10 0974 09N 09.73 - — - uP 2976 - -
Temp.t C) 70 0 Xt LR 85 93 93 CH EARS Q3
#H . 7.4 1.76 9.00 9.44 174 3.3 3.49 5.6t - 157
SO emg kg 1 88 — 33 366 230 32 3 pXE] [32] 19
Al 0.01 — .14 — _— _— — -— ous —
Fe 24 — 005 — - — - —_ — —
Ca 450 20 0.4 0.9 0.75 0.67 G.82 0.5 282 6.3
Mg 80 Q.51 0.05 0.G1 0.61 0.02 a0 .02 0.0} Q.12
Nu 181 <08 365 382 30 420 39 lob <04 336
K 69 0 1) b1} 10 17 17 i8 st M
Li 1.8 kil ] 1o 6.6 16 3.8 EX 345 5.8 19
NH, 1.0 — a1 - e —_ —_ — — —
HCO, 997 5 06 306 h 1 550 146 22) 417 0
50, $00 §5 Bt 100 6 19 19 &5 M 131
(o] 17! 61 s 368 1% 239 18 EVY) 669 569
F 4.2 (R 358 36 30 28 h2 ] 128 58 [}
8 38 33 23 4 13 18 36 16 9.9 3
Reference’ 1 2 3 3 2 2 ] 2 2 3
Number 1 12 132 14 18 13 17 18 19 20
Lusaluy Notris Crater Upper Hot Springs  Jesephs Coar Jesephs Coal Upper Boundary Wiushburn Washburn
Busin Hills Busin Busin Hot Springs  Hot Springs Basin Creek Hot Springs  Hot Springs
Name Echinus Crater Hills iron Unanamed Unnamed Unnamed Hillside Unnamed Unnamed Unnamed
Geyser Geyser Spring group .
Sample No, J7836 17%04 — YF348 Y'F45) YF452 T9-10 17930 11304 YF429
Daie — 09.28:78 1920s 06°22 68 06 2669 062669 — — 092273 06/23;69
Temp. (t Ct 93 L1 91 59 56 84 53 92 12 13
rH 32 348 33 ) 1.82 9.38 §.62 194 5.00 —
S0.omg ke™ 'y M8 676 368 in 333 138 170 20 247 —_
Al 0.60 —_ _ - - -_- 0.13 —_ — 0.2
Fe — - - —_ —_ b —_ - — —
Ca 49 5.6% . kYA 41 34 1.9 4.1 2 1.2
My 0.52 1.04 Truce 115 0.39 0.01 0.27 0.i10 .10 9.3
Na 166 60 77 HY ’ 7 109 150 181 9.7 LIRS
K s0 133 hi N 119 174 9 - 1.2 1.2 6.5 137
L 0.7 6.9 —_— 0.04 0.01 Q.18 0.5 394 0.1 0.1
NH, — — L] 121 57.2 24 0.1 0.51 270 658
HCO. 0 1] [} 0 0 315 p33] 259 107 8.2
50, 337 S6b 231 1330 1830 3 4.2 10 900 1950
Cl o2 90 | 0.1 0.} 5.4 72 107 7 2
F ih s 1.y 0.% -_ 3.7 12 19.1 0.1 0.5
B A0 20 32 s0% 0.07 0.36 117 1.8 6.6 7.84
Rederence® 4 L] K 3 3 3 3 [ k] ]
* References:
1) Unpublished dawa, USGS (R, Rurnes, analy) (43 Unpublished data, USGS (J. M. Thompaen, anulyst}
i2y Thompon & Yudm {1979} (51 Allen & Duy (19535 .
t3i Thompson ct al (1975} 161 Thorapson & Huwchinson (1950)

from Fournier, 19839
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in molecular ordering and decrease in spacing of the subsequent phases result in more

stable, less soluble silica polymorphs (Hinman, 1998). In most aqueous environments, the
solubility of silica is quite low. However, the solubility of silica increases with increasing
temperature. Thus, in hot spring environments, the waters become saturated with respect
to the silica phases, particularly quartz. These waters cool as they ascend and eventually
will become supersaturated with respect to the dissolved silica phases. Understanding the
controls on silica solubility is important for determining its behavior in the environment.

Dissolved silica exists primarily in the monomeric form as monosilicic acid
(H,S10,). Monosilicic acid’s structure involves silicon coordination with four oxygen
atoms as in amorphous silica and crystalline quartz. It is essentially nonionic in neutral and
weakly acidic solution but may be ionized in alkaline solution (Iler, 1979). Dissolved silica
will remain in the monomeric state for long periods of time at 25°C, as long as the
concentration is less than about 2 x 10° M (i.e., 56 mg/L). At higher concentrations it will
rapidly polymerize, initially forming polysilicic acids of low molecular weight and
eventually larger polymeric colloidal particles (Iler, 1979). White and others (1956) state
that even when highly saturated, most of the dissolved silica will exist in the monomeric
form.

The solubility equilibrium existing between the dissolved, monomeric form and
amorphous silica is not easily defined. The concentration of dissolved silica is dependent
on the morphology and crystal structure of the solid, but also includes: (1) the
temperature; (2) the pH of the water; (3) the type and concentration of other dissolved

silica polymorphs and complexes; and (4) the presence of additional minerals in the system
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(Williams and Crerar, 1985). Reported solubility values range from ~60 to 130 ppm at

25°C (Hler, 1979; Williams and Crerar, 1985).

Increasing temperature greatly affects silica solubility. At Steamboat Springs,
Nevada, the amorphous silica solubility at 90°C was measured at about 315 ppm (White
and others, 1956). Iler (1979) reports equilibrium solubilities of 117 mg/kg at 25°C and
321 mg/kg at 100°C. Silica solubility is mostly independent of pH below 9 (White and
others, 1956). From pH of 9 to 10.7, there is an apparent increase in the solubility of
amorphous silica resulting from the formation of silicate ion. Silica precipitation is aided
by the presence of other colloidal silica polymers by Ostwald ripening. The presence of
electrolytes in solution can also affect silica solubility. Increased pressure will increase
silica solubility, but realistically for a near surface environment, this is not an important
factor in silica behavior (Iler, 1979).

Silica is first deposited as amorphous opal or silica gel in the subaerial,
hydrothermal environment. The behavior of dissolved silica in a Yellowstone hot spring
was studied by White and others (1956). He stated that silica was precipitated largely by
inorganic processes. The aqueous concentrations of silica and chloride initially increased
as a result of evaporation, but some polymerization of dissolved silica occurred almost
immediately downstream of the vent. Though he predicted biological controls influencing
the deposition of siliceous sinter, he primarily attributed the polymerization and
precipitation of silica to contact with siliceous sinter. Apparently, the rate of

polymerization is increased if some polymeric molecules already exist in the system.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3.0 METHODOLOGY

The studies at Sentinel Meadows and Octopus Spring were conducted
concurrently and employed similar investigation techniques. Suitable topographic
basemaps were needed to provide necessary spatial control at each study area. Therefore,
a land survey of each area was conducted using a rod and transit and the resulting baseline
maps were developed (Figures 2 and 3). It was not feasible to accurately establish a
datum point based on USGS MSL, as these datums were quite far away and a transit level
is only accurate over a few hundred feet. At each site, a reference benchmark was
established with an assigned datum at 100 meters. Subsequent discussion of elevation is

based on these assigned datums.

3.1 Hydrogeology and Geochemistry

The baseline hydrogeologic and geochemical characterizations of both Sentinel
Meadows and Octopus Springs study areas were accomplished by examining the physical
and chemical characteristics of local groundwater, streams and hot spring effluent. Work
completed at each site included: (1) installing a network of groundwater monitoring wells
and st§ﬁ‘ gauges; (2) collecting and chemically analyzing groundwater and surface water
samples; (3) measuring stream and hot spring flow; and (4) estimating hydraulic

conductivity and apparent porosity of soil and subsurface sinter facies.
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3.1.1 Groundwater Monitoring Wells and Staff Gauges

Groundwater monitoring wells were installed at both Sentinel Meadows and
Octopus Spring study areas to: (1) develop potentiometric surface data; and (2) allow for
the sampling of local groundwaters at each site.

In Sentinel Meadows, wells SMW-1 to SMW-10 were installed in borings using a
2-inch diameter hand auger at the locations shown on Figure 2. Lithologic descriptions of
soils removed during auguring were recorded and logs are presented in Appendix A. The
wells were completed using 1-1/4-inch PVC with 6-inch screen intervals. Spoils generated
during boring were used for backfilling the annular space around a well and were replaced
at depths roughly corresponding to their depths of removal. At SMW-5, SMW-7, and
SMW-8, soils representative of the screened-interval of the aquifer were collected for
laboratory determination of hydraulic conductivity and porosity (discussed below).

Well SMW-1 encountered saturated conditions during boring but was dry during
subsequent sampling and monitoring activities and was abandoned. Depth of the
remaining wells ranged from 1.01 m (SMW-9) to 1.59 m (SMW-6).

During September 1996, nine '2-inch polyethylene sampling tubes (SFCW-1
through SFCW-9) were installed southwest of Flat Cone. These sampling tubes were
installed by driving a steel conduit, inserting the tubing inside, then removing the conduit.
The sampling tubes were installed to depths ranging from 74 to 114 cm. The purpose for
installing the small-diameter tubing was to limit the groundwater’s exposure to the
atmosphere and thus, limit effects of oxygen on the groundwater’s geochemistry. Two

sets of groundwater samples were collected from the sampling tubes, but difficulties in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21
sample collection (only small volumes of water could be removed at a time and the silty

water samples were very difficult to filter in the field) likely resulted in agitation and
lengthy exposure of the water to the atmosphere. Upon returning later in the winter,
several of the sampling tubes had been pulled-up and chewed upon by bison. Results from
these sampling tubes are presented in the chemical data but are not integral to evaluating
the geochemistry of the area. These results will not be discussed in Section 4.

A total of ten wells were installed at the Octopus Spring site at the locations
shown on Figure 3. Wells OW-1 to OW-7 and OW-9 were installed in borings using a 2-
inch diameter hand auger. Well OW-8 was installed by boring with a 2-inch diameter gas-
powered solid-stem auger spinning at a relatively high rpm. Well OW-1A was bored
adjacent to and deeper than OW-1 using a 1-1/8-inch diameter rock core. Lithologic
descriptions of soils removed during auguring and drilling were recorded (logs are
presented in Appendix A) and the resultant spoils were set aside for well completion.

At OW-1A cores of sinter were obtained during drilling within the following
depth intervals: 0 to 23 cm; 66 to 76 cm; 76 to 86 cm; 86 to 91 cm; and 102 to 112 cm.
Between the zones of hard ground, the coring encountered relatively soft material that was
likely sinter breccias. These sinter cores were retained for hydraulic conductivity and
porosity determination (discussed below).

With the exception of OW-1A, wells were completed using 1-1/4-inch PVC with
6-inch screen intervals. Well OW-1A was completed using a 3/4-inch by 6-inch plastic

fuel-tank siphon with a nylon screen. Spoils generated from each boring were used to
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backfill the annular space of that well and were replaced at depths roughly corresponding

to their depths of removal.

Three wells (OW-2, OW-3, and OW-5) were installed within the developed sinter
mound and did not yield water. When OW-2 was bored, water was initially noted at
approximately 41 cm below the surface, but upon completion, the well was dry. These
wells were subsequently abandoned. Depths of the remaining wells ranged from 0.66
meters (OW-1) to 1.52 meters (OW-6).

Staff gauges were installed in both Sentinel Créek and White Creek for comparing
the creeks surface elevations with the groundwater potentiometric elevations. The staff
gauges were installed by driving 3/8-inch rebar into the stream beds.

The top of PVC well casings and staff gauges at both sites were surveyed to
determine horizontal locations and apparent vertical elevations. The elevations were
referenced to a temporary reference benchmark established at each site.

Static water level and stream level measurements were obtained several times
during this study, except during spring runoff when the areas were closed for the grizzly
bear recovery program. Appendix B presents tables of water level and staff gauge
monitoring and hydrographs showing the relative elevations for both study areas.

A steel conduit was driven into the stream beds of both Sentinel and White Creek
near the locations of the staff gauges. The water levels inside these temporary
piezometers were allowed to equilibrate for several hours and the depth to water inside the
pipe and outside the pipe was then measured. This testing, completed on 30 August 1995,

was conducted to determine if the creeks are losing or gaining across their reach.
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Temporary piezometers were installed in the stream bed and 4.6 m north of the

creek at the locations of Staff Gauge 2 and 3. Water samples were collected from the
piezometers and from Sentinel Creek. This work was performed to provide water quality
samples to determine variations in chemistry related to the interaction between surface

water and groundwater in the area. The work was completed on 22 September 1995.

3.1.2 Groundwater and Surface Water Sampling

Groundwater and surface water samples were collected several times during
summer, fall, and winter seasons from August 1994 through September 1996. The sites
were not accessible during spring due to closure by the NPS for the grizzly bear recovery
program. These samples were analyzed for major cations and anions. Field measurements
for pH and temperature were obtained. During the September 1996 sampling event, the
dissolved oxygen of the the groundwater and cooler surface water (<50°C) was also
measured.

Groundwater monitoring wells were purged prior to sampling using a hand-held
peristaltic pump until pH and temperature stabilized. For both groundwater and surface
water (streams and hot springs), samples were collected with an acid-cleaned syringe that
was rinsed several times prior to collection. Samples taken for cations and anions were
filtered in the field with 0.45 um filters. Samples were filtered into acid-cleaned
polyethylene bottles. (The bottles were rinsed several times with filtered water to remove
residual acid). The cation samples were acidified with trace-metal grade nitric acid to a

pH<2. The anion samples were not acidified. In addition, a 20-ml sample of unfiltered
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water was collected for an alkalinity titration. Samples were kept refrigerated until

analysis.

Cations were analyzed by inductively coupled argon plasma emission spectroscopy
(ICAPES - Jerrell-Ash Atom Comp 800) with the exception of dissolved lithium, which
was analyzed with an Instumentation Laboratory 151 aa/ae Spectrophotometer. Anions
were analyzed with a Dionex 2000i ion chromatograph. Alkalinity was determined using a

Hach kit’s colorimetric titrator within 24 to 48 hours after collection.

3.1.3 Stream Flow Estimates

Flow measurements of creeks, springs, and hot spring effluent were obtained from
each site. This work was completed during the period of 29 to 31 August 1995 when
daily precipitation was relatively low. Therefore, it was assumed that surface water flow
may be primarily attributed to groundwater and spring discharge.

Stream flow measurements for Sentinel and White Creeks were obtained using
Pace AA and Pygmy flow meters, respectively. A Pygmy flow meter is recommended for
low-flow streams (<10 cfs). Flow calculations were obtained for cross-sectional areas of
each creek adjacent to the staff gauge locations. Flow measurement and flux calculation
followed procedures outlined by USGS guidelines (Rantz and others, 1982). Flow
measurements were obtained at closely spaced stations located perpendicular to stream
alignment at 0.6 depth of the stream. Essentially, each station measures flux across a
defined portion of a stream’s cross-section. The flux across each station can be integrated

for the width and depth of the stream to calculate volume discharge. Station spacing and
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flow velocities were recorded directly from the flow meter using a JBS AquaCalc 5000

Streamflow Computer (v. 2.1) instrument that determines flux per unit time at each station
and calculates the mean stream velocity and total discharge for each location.

Station spacing ranged from 0.2 to 1.0 ft across each creek. Stream flow
measurements were performed twice at each location,

Flow estimates for the springs flowing across the Sentinel Meadows site (Springs
A to F) and for Octopus Spring, Pool A, and Spring A and for were obtained using a
bobber and stopwatch method at the same locations where surface water samples were
collected. (It was not possible to measure the periodic discharge from Flat Cone and
Steep Cone in Sentinel Meadows). The cross-sectional area of each spring was measured
and the time for a small-diameter fishing bobber (approximately 1/2-inch) to float a
distance of 5 ft was recorded. This procedure was repeated 10 times. The average time
to travel 5 ft multiplied by the springs cross-sectional area produces the volumetric

discharge of each spring at the time of testing.

3.1.4 Hydraulic Conductivity and Porosity Measurements

Determination of the hydraulic conductivity of the Sentinel Meadows aquifer was
accomplished by in situ testing of wells SMW-8, MSW-9, and SMW-10. Rising-head and
falling-head slug tests (Hvorslev, 1951) were performéd on 26 September 1995. A
transducer was installed near the bottom of each well and head measurements were
allowed to equilibrate. The water column in each well was induced to rise by rapidly

lowering a 1-inch diameter slug into the well. During the falling-head tests, the water
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level in the well was recorded prior to and immediately after insertion of the slug. Water

levels were then recorded at timed intervals as the water table fell back toward the static
water level (at approximate 5 second intervals for the first minute then at 10 second
intervals). After the water level fell to static, the slug was pulled out inducing an
immediate drop of the water level in a well. Water levels were recorded as described
above as the water level rose toward static water level. The height of the water level’s rise
(or fall) immediately after inserting (or removing) the slug is #p. The height of the water
level relative to the static water level at some time, ¢, after the slug is lowered or removed
is A. A semilogarithmic plot of the ratios /A versus time was made and the time at 0.37
h/hy, was recorded. The hydraulic conductivity (K) is given by the following formula:
(L/R)

K=r*ln—~
211,

where

r is the radius of well casing

R is the radius of well screen

L is the length of well screen

1y is the time for water level to rise or fall 37% of initial change

A computer designed for data recording was not functioning so early time data
during the slug tests (0 to 5 sec) could not be accurately obtained. Head data were read
directly from the pressure transducer’s readout. Plots of the head ratios versus time for
each test are presented in Appendix D.

The hydraulic conductivity of soils collected from borings for SMW-5, SMW-7

and SMW-8 were tested in the laboratory using a constant-head permeameter (described

in Fetter, 1988). These soils were collected from the approximate depth of each well’s
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screened interval. The hydraulic conductivity (X) is determined from a variation of

Darcy's Law:
_ VL
Ath
where
V is the volume of water discharging in time t
L is the length of sample
A is the cross-sectional area of the sample
h is the hydraulic head
tis time

Laboratory determination of hydraulic conductivity of some of the sinter cores
collected during well construction of well OW-1A in the Octopus Spring site were
determined by falling-head permeameter testing. Hydraulic conductivity, X, is found by the

formula

K=£f_£ln(h_o)
d>t \h

where

d, is the diameter of the falling head tube

L is the length of the sample

d, is the diameter of the sample

hp is the initial water level above the outlet of the falling head tube

h is the water level after some time t

Following the permeameter testing, the porosity of these soils and sinter cores
were also determined. For the Sentinel Meadows samples, the soils were saturated and
recompacted in a beaker. For the Octopus Spring cores, it was assumed that the cores’
pore space was fully-saturated following permeameter testing. The saturated material was

weighed and then the soils and sinter cores were dried and weighed again. Dry bulk

density was then determined. A particle density of 2.65 g/cm® was assumed to be
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representative of the particle density of the obsidian soil matrix from the Sentinel

Meadows aquifer. For the Octopus Spring sinter core, a particle density of 2.25 g/cm®
was assumed (based on Hurlbut and Klein, 1977). For opal, particle density ranges from
2-2.25 g/cm’).

Porosity for material from each study area were computed using the relationship

P
(-5
By

where

P, is the particle density

Py is the dry bulk density

S is the total porosity
3.2  Electromagnetic Conductivity Surveys

Terrain conductivity was determined for the Sentinel Meadows site on 23 and 24
August 1994. A follow-up survey focussing on the area south of the primary hot spring
discharge from Flat Cone was completed on 23 September 1995. A site-wide EM
conductivity survey was completed at the Octopus Spring site on 21 to 22 August 1994,

Electromagnetic conductivity surveys were performed at both study areas using
transects shown on figures presented in Appendix E. Transects created for each site were
designed to provide sufficient areal spacing. A Brunton compass was used to determine
transect orientation. Distances between measuring stations were determined in the field by
pacing and adjusted as needed when plotted on the maps.

The instrument was operated in both vertical and horizontal dipole orientation at

each station. The vertical dipole mode provides twice the effective depth of exploration as

the horizontal dipole mode (6 m and 3 m, respectively). Both horizontal and vertical
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dipole measurements were taken at 0 m, 0.5 m, 1.0 m, 1.5 m, and 2.0 m above ground

level. Employing both the horizontal and vertical dipole positions produced vertical
spacing of 0.5 m across a range from 1.0 m to 6.0 m. During the focussed survey at
Sentinel Meadows during September 1995, full vertical conductivity profiles were
completed only at wells in the area. Depth specific conductivities at SMW-3 were an
average of 4.9% higher (ranging from 3.2% to 8.7% difference) during the September
1995 events when compared with the August 1994 event.

Apparent conductivity of the ground at each depth was recorded in millisiemens
per meter (mS/m). (mS/m are the same as millimhos per meter (mmho/m). Appendix E
contains plots of the terrain conductivity for each site using the contouring program

SURFER 5.0.

3.3 Temperature Probe Survey

A temperature probe survey was conducted at each site to evaluate the heat
distribution in vicinity of hot springs. Establishing the heat flux within an area can be used
to predict groundwater flow regimes (Smith and Chapman, 1985; Forster and Smith,
1989; and Deming, 1993). The shallow-depth heat distribution surveys were completed at
Sentinel Meadows on 24 September 1995 and at Octopus Spring on 25 September 1995.
On both days, the weather was clear and calm (approximate air temperature was 15°C)
and it was assumed that heat loss to the atmosphere would be uniform across the sites.

A Barnant 100 Model No. 600-2820 (JKT) Thermocouple-Thermistor was used to

obtain temperature of shallow soils and sinter at transect stations for both sites. At
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Sentinel Meadows, the thermistor was pushed into a hole approximately 20 cm below

ground surface and allowed to equilibrate for 1 minute. At Octopus Spring, a small
diameter rod was driven approximately 9.5 cm into the ground and the thermistor was
pushed into the hole and allowed to equilibrate for 1 minute.

At Sentinel Meadows, ground temperatures of the diatomatious soils typically
ranged from 7.3°C to 18.3°C. However, a temperature of 65.9°C was measured in sinter
located approximately 5 m from the Carcass Cone pool. At Octopus Spring, ground
temperatures ranged from 6.5°C (near well OW-1) to 43.3°C (between Pool A and the
vent located to the east).

Isotherms of the data do not provide regular contours of heat distribution around
the thermal features, contrary to what was expected. The shallow-ground temperatures
may be influenced by varying moisture content of soils and the insulating properties of
sinter and the results appear inconclusive. Ground temperatures obtained during these

surveys were plotted on maps presented in Appendix F but are not discussed further.
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4.0 RESULTS
This chapter is divided into two sections, presenting the results from the study of
Sentinel Meadows and Octopus Spring. Though similar research methodologies were

used, the sites differ in context and scale and are presented as separate section.

4.1 Sentinel Meadows Study Area
4.1.1 Hydrogeology

Sentinel Meadows is underlain by a shallow groundwater system that is
predominantly composed of obsidian and rhyolitic sands with some fine gravels. The
overlying diatomacous clays that cap the area range in thickness from 45 to 91 cm and
likely produce semi-confining conditions in areas of very shallow groundwater. The small
streams (Spring A through Spring F) that flow south across the site are perched above the
groundwater. The subangular to subrounded coarse-grained aquifer soils have eroded
from rhyolite and obsidian bedrock from the surrounding hillsides. The thickness of the
aquifer was not determined during this study.

In several of the borings, an orange precipitate was noted in the obsidian sands
near the water table. These conditions are likely the result of water table fluctuations
resulting in the precipitation of ferric iron oxides. In some areas (SMW-7 and SMW-8)
this zone of precipitation was noticeably hard and difficult to bore through.

A potentiometric surface map of the area (Figure 4) shows that groundwater flow
is primarily to the south, but radial patterns exist near the sinter mounds. This suggests

that the sinter deposits present no flow/low flow areas that deflect groundwater flow.
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that the sinter deposits present no flow/low flow areas that deflect groundwater flow.

Water level measurements, potentiometric surface elevations, and hydrographs are
presented in Appendix B.

Results from in situ and laboratory determination for hydraulic conductivity
compare favorably. The hydraulic conductivities range from 10™ to 10~ cm/sec for the
Sentinel Meadows aquifer (Tables 2 and 3). These results likely underestimate the actual
permeability of the aquifer. Early-time data from the slug tests could not by recorded as a
computer designed to record these data was not functioning. Permeameter testing and
porosity determination also required the reworking of the soils. Measured porosities

ranged from 36% to 39%, but the relatively high values may be the result of loose

compaction.
TABLE 2
Sentinel Meadows Slug Testing Results (9/30/95)
Well No. To (time for .37 of Hydraulic Conductivity
h/hy) ' (Horslev, 1956)
SMW-8 (Slug Out) 447 sec 1.67 x 10” cm/sec
SMW-9 (Slug In) 157 sec 4.7 x 10° cm/sec
SMW-9 (Slug Out) 177 sec 4.3 x 10” cm/sec
SMW-10 (Slug In) 5.2 sec 1.4 x 107! cm/sec
SMW-10 (Slug Out) 22.3 sec 3.4 x 107 cm/sec
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TABLE 3
Sentinel Meadows Constant -Head Permeameter
and Porosity Testing Results

Wells No.  Depth of Sample  Porosity Hydraulic Conductivity
SMW-5 101-122 cm 36% 4.3 x 10” cm/sec
SMW-7 89-99 cm 39% 3.5 x 10° cm/sec
SMW-8 90-114 cm 38% 8.3 x 10 cm/sec

4.1.2 Surface Water Hydraulics

It has been assumed that Sentinel Creek represents a regional discharge area for
the Sentinel Meadows aquifer. Stream flow measurements of the creek were made at the
staff gauge locations (Table 4). The results indicate that the creek may be losing in
vicinity of Staff Gauge 3. Interestingly, the stream bed along this reach of the stream is

heavily armored with a silica-cemented matrix.

TABLE 4
Sentinel Creek Flow Measurements (8/29/95)
Location Discharge Rate Mean Velocity
Staff Gauge 1 245 L/sec £3 0.20 m/sec
Staff Gauge 2 275 L/sec #3 0.30 m/sec
Staff Gauge 3 252 L/sec 3 0.39 m/sec
Staff Gauge 2 274 L/sec +8 0.40 m/sec

Comparison of the creek’s surface level with the water level inside temporary
peizometers driven into the stream bed shows a net upward potential between
groundwater and surface (Table 5) along most of the study site. It should be noted that a

piezometer could not be driven into the silica-armored stream bed at the location of Staff
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Gauge 3. A piezometer was driven into the soils next to the bank and the depth to the

creek’s water surface was estimated.

TABLE 5

Comparison of Sentinel Creek with Stream Bed Head (8/30/95)

Location Depthto Stream  Depthto Creek’s Relative Head Difference
Bed’s Water Level’ Water Surface

Staff Gauge 1 473 cm + 0.6 cm

Staff Gauge 2 81.8cm +12cm

Staff Gauge 3° 20.0 cm +1.9cm

Staff Gauge 4 59.8 cm +1.5cm

! Measured from the top of a temporary piezometer driven into the stream bed.
2 The pipe could not be driven into silica-armored stream bed at this location. A pipe was
driven into the stream bank approximately 43 cm from the creek.

Total discharge from the small streams (including the spring that flows from the
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Carcass Cone discharge downstream of the salt marsh) that flow across the study area into

Sentinel Creek is estimated at 33.4 L/sec (Table 6). The total contribution of Spring A

through D and the Carcass Cone spring to Sentinel Creek was approximately 25.9 L/sec.

Since the discharge rates from Steep Cone and Flat Cone could not be measured, their

flow contribution to the water budget is unknown.

TABLE 6
Sentinel Meadows Spring Discharge Rates (8/29/95)
Spring Name Spring Width Discharge Rate
Carcass Cone spring 12.7 cm 0.85 L/sec £0.14
Spring A 86.4 cm 0.57 L/sec £0.16
Spring B 813 cm 5.75 L/sec £1.22
Spring C 91.4cm 16.9 L/sec +1.85
Spring D 432 cm 1.78 L/sec £0.41
Spring E 45.7 cm 7.03 L/sec £1.01
Spring F 38.1 cm 0.54 L/sec +0.06
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4.1.3 Geochemistry

Graphical comparison of the geochemistry of thermal springs, surface water, and
groundwater is shown with modified stiff diagrams (Figure 5) that represent the
distribution of cations (Na*, Ca?*, Li*) and anions (CI', F’, SO,*, and HCO5 (presented as
CaCQs)) in area waters. Also included is non-charged, dissolved silica (most likely as the
monomeric form of amorphous silica (opal-A).

An analysis of the variability in concentrations of select chemical constituents (Na”,
Cl, Si, Li*, F, and B**) was performed by determining the analytical means and confidence
intervals of the distinct area waters. The waters were grouped as hot spring waters (Flat
Cone(SFC), Carcass Cone(SCC), and Steep Cone(SSTC)), Sentinel Creek surface waters
(SC1 through SC4), groundwater influence by thermal discharge (wells SMW-3 and
SMW-5 through SMW-10), and groundwater not influence by thermal discharge (SMW-2
is assumed to represent background groundwater concentration). Figure 6 shows the
graphical results of this comparison of the distinct waters at the site. A table summarizing
the results of the chemical analyses of waters obtained over a two year period is presented
in Appendix G. For the grouped waters and other area waters with chemical data from 3
or more sampling events, the means, standard deviations (o), and confidence intervals
(k(0.95) * o/ sqrt(n)) have been calculated. Also included in Appendix G is an evaluation
of the data quality comparing the results with those from field and laboratory duplicates.

All the waters are NaCl-type waters. The results indicate that thermal water

discharge and groundwater near the hot springs are comparable with respect to the
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primary cationic and anionic species, Na’ and CI', though the groundwater is significantly

lower in dissolved-silica. These waters are chemically distinct from the surface water and
from background groundwater concentrations. The distribution of the minor chemical
constituents, Li’, F, and B, are also shown on Figure 6. The thermal waters and local
groundwater near the hot spring are similar with respect to these constituents though the
groundwater concentrations are slightly lower.

The thermal waters have appreciable dissolved-silica concentrations. The receiving
groundwater has significantly lower Si concentrations. This is an expected observation as
the hot springs’ discharge flow across sinter and into diatomaceous marshes. Thermal
water discharged from Flat Cone is higher in dissolved silica compared to water emerging
from the base of the sinter cone to the southwest (sampling location SFCa). A similar
reduction in silica concentrations was observed between water discharged from Carcass
Cone and water downstream of a marsh in the small spring (SCCS). The silica-saturated,
alkaline hot spring waters are reduced in dissolved silica in the near-surface environment
before mixing with local groundwater. The dissolved-silica concentrations of the hot
springs ranged from 146 mg/L to 182 mg/L. Dissolved silica in groundwater was near
saturation, ranging from 46.3 mg/L (SM-2 on 2/22/95) to 67.5 (SMW-10 on 9/28/95).

There is little variability in groundwater temperatures. During the last two
sampling events (September 1995 and 1996), temperatures varied no more than 6.2°C
across the site and these variations cannot be correlated with proximity to the thermal

features.
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across the site and these variations cannot be correlated with proximity to the thermal

features.

Sentinel Creek waters and streams (Spring C through Spring F) have significantly
reduced concentrations of Na*, CI', Si and CaCO; compared to the thermal waters and
groundwater.

Table 7 summarizes the analytical results of water samples collected from the
creek and from temporary piezometers installed in the streambed and stream bank at the
locations of Staff Gauge 2 and Staff Gauge 3. This testing was done to evaluate the
interaction between surface water and groundwater.

TABLE 7

Surface Water/groundwater Chemical Interaction
Sentinel Meadows

pH T°C Cl CaCO; Na Si

Staff Gauge 2

Streambed 6.48 13.0 84.1 200 155 653
Stream Bank! 7.10 15.5 173 400 241 48 4
Creek Water 8.26 9.3 15.4 50 29.1 31.9
Staff Gauge 3

Streambed 7.58 11.0 18.7 150 41 37.1
Stream Bank' 6.88 13.5 178 276 226 492
Creek Water 8.35 9.1 16.2 58 28.5 310

Concentrations in mg/L
! Sample location 4.6 m from creek

4.1.4 Electromagnetic Terrain-Conductivity
Results of the EM terrain-conductivity mapping at 1.5 and 4.5 meters below the
surface are shown on Figure 7 and 8, respectively. Results of the depth discrete mapping

(from 1 m to 6 m below the surface) are presented in Appendix E.
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Figure 8. Sentinel Meadows, EM Terrain-Conductivity (4.5 m Depth)
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The terrain-conductivity mapping of the site indicates that there are zones of higher

conductivity originating near Carcass Cone (and the marsh to the east of its discharge) and
Pool A (located in the northwest portion of the site). The primary zone of higher
conductivity emerging from the Carcass Cone area remains relatively uniform, extending
to the south of Flat Cone and toward Sentinel Creek. The area of higher-conductivity
detected near Pool A is limited in extent and was not found to the south near well SMW-
2.

Relatively low terrain-conductivity was mapped near SMW-2, at Flat Cone, and in the
northeast quadrant of the site, including: the inactive sinter ridge north of Flat Cone, north
of the Elephant Back’s parallel ridges; and near the small extinct cone.

The configuration of mapped conductivity in the area approximates the potentiometric
surface map which indicates that groundwater flow is primarily to the south (and to the
southeast from Carcass Cone area) toward Sentinel Creek.

Figure 9 is a plot of measured terrain-conductivity versus depth at various
locations across the site. The conductivity values increase with depth with the highest
values noted at the Carcass Cone marsh, near Pool A, and at SMW-3. Relatively low
terrain-conductivity values were found within Flat Cone’s sinter mound and the inactive
sinter ridge to the north. The conductivity values spike at 3 m followed by a drop in
conductivity at 4 m depth. The 1 m to 3 m measurements were taken with the EM
instrument in the horizontal dipole mode. The 4 m to 6 m measurements were taken with

the EM instrument in the vertical dipole mode. The anomalous spikes are possibly an
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artifact of the instrument’s operation in the horizontal and vertical dipole modes. Perhaps

the induction coil or detector induces or receives the EM fields of slightly differing

intensity, phase, or direction in the two modes.

4.2  Octopus Spring Study Area
4.2.1 Hydrogeology

Two distinct groundwater systems exist near Octopus Spring. Shallow
‘groundwater occurs in the sinter mound west of the pool. A second system is present in
the marsh to the east. The two groundwater systems are separated by a no flow/low flow
boundary created by the eastern edge of the sinter apron.

Wells OW-3, and OW-5 did not produce water during this study, whereas,
saturated conditions do exist in the western and southern potions of the sinter mound
(OW-1, OW-1A, and OW-8) and in the marsh (OW-4, OW-6, OW-7). Saturated
conditions also occur west of White Creek (OW-9). Figure 10 shows the inferred
groundwater flow direction for the site. Water level measurements, potentiometric
surface elevations and hydrographs for wells at this site are presented in Appendix B.

Groundwater was encountered at 40 cm during the construction of well OW-2, but
upon completion of the well at 53 cm, the well was dry. The water encountered likely
represents interﬂow perched upon a zone of relatively impermeable siliceous sinter.

Saturated conditions were present in the siliceous sinter and sinter breccias of the
mound. Groundwater at the location of OW-1 and OW-1A had a net upward vertical

potential. OW-1A was completed deeper into the saturated zone and its potentiometric
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surface was typically higher than in OW-1. Upward vertical gradients of 0.19cm/cm and

0.49cm/cm were measured between the wells on 14 January 1996 and 3 September 1996,
respectively. The potentiometric surface in OW-1A was 0.3cm lower than in OW-1 on 22
November 1995, just 4 days after it was installed. It could be that the water level in the
well had not yet equilibrated.

The groundwater temperature increased with depth (Table 8) at the location of
OW-1 and OW-1A. The temperature of the nearby creek ranged from 15.3°C (November

1994) to a maximum of 52.1°C (July 1995).

TABLE 8
Groundwater Temperature Variation
Octopus Spring Sinter Mound

OW-1 OW-1A  Change Temperature Gradient'

11/22/95 4.3°C 19.1°C +14.8°C 0.43°C/cm
1/14/96 7.2°C 17.9°C +10.7°C 0.31°C/cm
9/3/96 17.5°C 24.6°C +7.1°C 0.21°C/cm

' OW-1A is 34.3 cm deeper into the saturated zone

The marsh located to the east of the pool is composed of plant material and soft,
organic-rich muds. The marsh is fed by Spring A that enters this area from the east.
Groundwater flow in marsh is to the south. Artesian conditions existed at OW-6, at the
eastern end of the marsh. Groundwater flowed slowly from the well casing, which was
completed approximately 15 cm above the marsh’s surface.

Well OW-8 was completed 38 cm into solid sinter next to the marsh’s outflow
channel. The sinter has laminar structure and water could be seen seeping into the boring

from between laminations at a very shallow depth.
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Well OW-9 was completed to the west of White Creek and a very shallow water

table exists in this area. The local groundwater system of this area is separated from the
groundwater system of the sinter mound by the creek.

Several cores of siliceous sinter were obtained when OW-1A was being bored. A
falling-head permeameter was designed to measure the vertical hydraulic conductivity of
the cores. Porosity determinations were also made and the results of this testing are
summarized on Table 9. The hydraulic conductivity of the most-shallow core (obtained
from 0-22 cm below the surface) was likely overestimated. This core was very short and
there may not have been a good seal with the permeameter’s tubing; thus, allowing water
to easily flow around the edges. The measured hydraulic conductivity of the deeper cores

ranged from 10° to 10 cm/sec. Measured porosities of the cores ranged from 12% to

24%.
TABLE 9
Octopus Spring Falling-Head Permeameter and Porosity Testing
OW-1A Sinter Cores
Core Interval  Core Length Time Hydraulic Conductivity Porosity

(cm) (cm) Elapsed
0-22 1.3 60 sec 3.0x 107 cm/sec  20%
66-76 3.0 45hr39min 4.2 x 10”° cy/sec 12%
76-86 4.1 49hr37min 1.3 x 10° cm/sec 19%
86-91 49 43hr15min 5.5 x 10" cm/sec 24%
102-112 3.0 38hr35min 23x10%cm/sec  22%
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4.2.2 Surface Water Hydraulics

White Creek flow measurements were made at the staff gauge locations (Table
10). The flow of the creek increases from 88 L/sec (STG1) to 103 L/sec (STG3) in the

downstream direction.

TABLE 10
White Creek Stream Flow Measurements (8/31/95)

Staff Gauge/Spring ID  Discharge Rate = Mean Velocity

OSTG-1 88 L/sec +3 0.55 m/sec
OSTG-2 97 L/sec £3 0.53 m/sec
OSTG-3 103 L/sec 7 0.52 m/sec
OSTG-2 102 L/sec 0.4 0.43 m/sec

The surface level of White Creek was compared with the water level measured
inside temporary piezometers driven into the stream bed near the location of the staff
gauges (Table 11). The creek was losing water upstream of the marsh’s outflow (STG1)
and downstream of the Octopus Spring surface discharge (STG4). White Creek was
gaining water in the reach along the sinter mound (STG2 and STG3). Interestingly, the

water level inside the piezometer at Staff Gauge 2 was noticeably fluctuating about 3 cm.

TABLE 11
Comparison of White Creek’s Stream Surface with Stream Bed Head (8/31/95)
Location Depth to Stream Depth to Creek’s Relative Head Difference
Bed’s Water Level Water Surface
Staff Gauge 1 82.2cm 65.7 cm -16.7cm
Staff Gauge 2' 111.9 cm 1173 cm + 5.4 cm
Staff Gauge 3 96.4 cm 101.1 cm +4.7 cm
Staff Gauge 4 98.3 cm 92.6 cm -57cm

! During this testing, the water level inside the peizometer was fluctuating 3.0 cm.
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Total discharge from Octopus Spring, Pool A, and the marsh’s outflow (Table 12)

was measure at 9.23 L/sec when the spings’ flow rates were the highest. At low flow, the
total discharge was measured at 5.34 L/sec. The marsh’s outflow was very shallow as it

flowed across the sinter mound and the measured discharge was difficult to obtain.

TABLE 12
Octopus Spring Area Discharge Rates (8/31/95)
Spring Name Flow Spring Discharge Rate
Level Width

Octopus Spring high 229cm 4.11 L/sec £0.54
(north channel) low 1.55 L/sec £0.19
Octopus Spring high 21.0cm 1.57 L/sec £0.15
(south channel) low 0.64 L/sec £0.10
Pool A high 28.0cm 3.02 L/sec £0.13

low 2.62 L/sec +0.26
Spring A (into marsh) 29.2 cm 3.15 L/sec £0.40
Marsh Outflow 45.7 cm 0.53 L/sec +0.15

4.2.3 Geochemistry

Graphical comparison of the geochemistry of thermal springs, surface
water, and groundwater is shown with modified stiff diagrams (Figure 11) that represent
the distribution of cations (Na*, Ca**, Li*, along with neutrally-charged dissolved silica)

and anions (CI', F,, SO,%, and HCO5 (presented as CaCO3)) in area waters.

An analysis of the variability in concentrations of select chemical constituents (Na”,
CI, Si, Li", F, and B) was performed by determining the analytical means and confidence
intervals of the distinct area waters. The waters were grouped as hot spring waters

(Octopus Spring (OCT) and Pool A (OPA), White Creek surface waters (OWC]1 through
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OWC-3), groundwater within the sinter mound (wells OW-1 and OW-1A), and

groundwater within the swamp to the east of the hot springs (OW-4, OW-6, and OW-7).
Figurel2 shows the graphical results of this comparison of the distinct waters at the site.
A table summarizing the results of the chemical analyses of waters obtained over a two
year period is presented in Appendix G. For the grouped waters and other area waters
with chemical data from 3 or more sampling events, the means, standard deviations (o),
and confidence intervals (k(0.95) * o/ sqrt(n)) have been calculated. Also included in
Appendix G is an evaluation of the data quality comparing the results with those from field

and laboratory duplicates.

All the waters are NaCl-type waters, with the exception of water at OW-9 which is
NaHCOs-type. The results indicate that hot springs’ discharge and the sinter mound’s
groundwater are comparable with respect to the primary cationic and anionic species, Na”
and CI', though the groundwater is significantly lower in dissolved-silica. The hot spring
waters and the sinter mound’s groundwater are chemically distinct from White Creek and
from the marsh’s groundwater system. The distribution of the minor chemical
constituents, Li*, F', and B, are also shown on Figure 12. The hot spring waters and the
sinter mound’s groundwater are similar with respect to these constituents though the

groundwater concentrations are slightly higher.
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4.2.4 Flectromagnetic Terrain-Conductivity

Results of the EM terrain-conductivity mapping at 1.5 and 4.5 meters below the
surface are shown on Figure 13 and 14, respectively. Results of the depth discrete
mapping (from 1 m to 6 m below the surface) are presented in Appendix E.

The terrain-conductivity mapping of the site indicates that there is a zone of higher
conductivity originating from Octopus Spring and extending to the west toward White
Creek. The marsh’s groundwater system t§ the east of Octopus Spring has a significantly
lower measured terrain-conductivity when compared to the sinter mound. Separating the
two groundwater systems is an apparent no-flow boundary created by the sinter apron
between the hot spring and the marsh. The lowest measured conductivities are present in
the sinter immediately west of the marsh near OW-7 and are especially evident from the
mapping at 4.5 m depth.

Figure 15 is a plot of measured terrain-conductivity versus depth at various locations
across the site. The conductivity values increase with depth with the highest increase
noted near OW-2 and OW-1, within the sinter mound groundwater system. The plots for
conductivity at OW-3 and on the rhyolite hillslope north of the hot spring have relatively

low conductivities indicative that these areas are not saturated.
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S.0 DISCUSSION
s.1 Sentinel Meadows Study Area

The Sentinel Meadows aquifer is composed primarily of obsidian sand with some
gravels and is overlain by over 45 cm of relatively impermeable diatomaceous earth. The
streams crossing the site are perched above the aquifer. The aquifer is a relatively
permeable system and the groundwater flow paths appears to be controlled by the active
and inactive thermal features in the area. Groundwater flow is primarily to the south, but
appears to be somewhat radial near the cones.

It has been assumed that the aquifer discharges to Sentinel Creek, as there are no
other receiving surface water bodies in the area. However, the interaction of the aquifer
with the creek may be a little more complex. Stream gauging of Sentinel Creek indicates
that the creek is gaining in flow by approximately 30 L/sec along the reach from just above
Steep Cone to Staff Gauge 2 but is losing in the area of Staff Gauge 3. The discharge
contribution from Steep Cone and Flat Cone could not be determined but the streams
crossing the study area may contribute almost 26 L/sec flow to the creek. There was
likely some error in estimating spring discharge, but the estimated surface water
contribution to the creek suggest that there is only minor influx to the creek from
groundwater.

Observations that the creek is losing near Staff Gauge 3 is supported by analytical
results obtained from the temporary piezometer installed to determine the surface
water/groundwater interaction. The results for the area near Staff Gauge 2 indicate that
the water chemistry in the stream bed is similar in chemistry to groundwater. However,

near Staff Gauge 3, the chemistry of the stream bed water looks more like the creek’s

60
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water chemistry. Interestingly, it is in this reach of Sentinel Creek the stream bed is silica-

armored. DeMonge (1999) has investigated silica-armoring in other areas of YNP and has
found that it appears to only occur where streams are losing.

The silica-rich, alkaline hot spring water discharging from Flat Cone is reduced in
dissolved silica concentration as the water percolates into and flows from the base of the
sinter cone to the southwest (sampling location SFCa). The silica is lost through
precipitation as the silica-saturated waters cool. The emerging water at the base of the
cone is slightly higher in pH (likely resulting from the loss of CO;). A similar reduction in
silica concentrations (with increased pH) was observed as waters discharged from Carcass
Cone flowed through the marsh and into its small spring (SCCS).

Local groundwater south of Carcass Cone and Flat Cone is only slightly lower in
Na-Cl than the thermal waters. The groundwater is much lower in dissolved silica, which
can be partly be attributed to the precipitaion of amorphous silica on the sinter mounds.
The groundwater chemistry in wells located south of the active thermal features (SMW-3,
and SMW-5 through SMW-10) are similar with respect to Na-Cl but the concentration of
these more conductive salts are significantly lower in wells further from the hot springs
(i.e. SMW-2 and SMW-4). Additionally, the Li" and F" concentrations within this zone of
higher conductivity are only slightly lower than in the thermal water. However, in SMW-
2, the groundwater’s F* concentration is >50% lower than at other well locations. This
can likely be attributed to this well being away from the hot spring sources.

Given the similarity in concentration of the more conductive constituents (i.e., Na*

Li*, CI', and F’) in both groundwater and the thermal waters near Carcass Cone and Flat
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Cone, there must be a zone of mixing of hot spring discharge waters with groundwater in

the area. The groundwater chemistry near the active hot springs contrasts sharply when
compared to the areas further away from the thermal sources. The groundwater chemistry
at SMW-2 and SMW-4 is significantly lower in conductive solutes and can be considered
to be somewhat representative of the background chemistry in the Sentinel Meadows area.
It is evident that that there is some interaction between thermal waters and local
groundwater near the hot springs.

Two possible mechanisms for the mixing of thermal waters and meteoric waters, as
end members, are proposed. First, the hot springs in this area (and most, if not all, areas
of the Park) discharge to marshes. The marshes are filled with diatoms that use the silica-
rich water for their frustules. Perhaps these areas also provide zones of mixing between
thermal waters and meteoric waters. Downgradient of the marshes would represent the
areas for mixing of marsh water with local groundwater, resulting in the observed
chemistry of the system. Hence, these marshes may be zones in which dynamic changes
are occurring as chemical reactions, physical mixing, and biological activity take place.

A second proposed mechanism may be the mixing of hydrothermal water leaking
into groundwater in the subsurface. Potential sources for this subsurface activity could be
Carcass Cone and the tepid Pool A located to the northwest. The zones of higher terrain-
conductivity observed in vicinity of Carcass Cone and Pool A may be indicative of their
relative age. Thermal features such as Flat Cone and Steep Cone are likely relatively old
(perhaps developing since the last ice age) given their relatively large size and height

above the valley floor. These older thermal features rﬁay have a well-established vents
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that are sealed-off and insulated from the surrounding subsurface environment. Assuming

that Carcass Cone and Pool A are relatively younger features, they may not have well-
developed vent systems and may be losing some discharge (and/or radiating more heat)
that mixes with groundwater. This mechanism also would produce the observed chemical
patterns. It is not possible to eliminate either proposed mixing model, based on the
available hydrogeochemical data.

The EM terrain-conductivity mapping (Figures 7 and 8) compares favorably with
findings of the groundwater geochemistry. The EM mapping defines a zone of more
conductive groundwater extending south from the active hot springs toward the creek.
The marsh area near Carcass Cone has the highest terrain-conductivity for the area. It
appears that this marsh area is where much of the mixing of hot spring discharge and
groundwater occurs; thus, supporting the first mechanism for mixing.

Results of EM mapping across the edge of Flat Cone show that the sinter mound is
a sink with respect to conductivity. It may be that the cone is relatively impermeable
below the water table resulting in lower conductivities (related to the degree of
saturation). If this is the case, then this finding indicates that Flat Cone is insulated from
the groundwater environment. Conversely, the relatively high conductivity observed near
Carcass Cone and Pool A suggest that the vent systems in these areas may have some
influence on the groundwater system. This observation supports the second mechanism
for mixing.

The configuration of EM terrain-conductivity contouring is similar to the

potentiometric surface mapping of the area. Since there is little observed variability in

/
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groundwater temperatures in wells near Flat Cone, the conductivity may be mostly

attributed to higher concentrations of conductive solutes. However, the Carcass Cone area
was not instrumented with groundwater wells, so the impact of temperature on measured
terrain-conductivity cannot be dismissed.

The EM mapping also shows a reach of lower conductivity between Flat Cone and
the inactive sinter mound to the north. This gap is slightly higher in elevation than the
plain to the east or west and it appears from the surface to be an obstruction to
groundwater flow. The low terrain-conductivity of the area suggests that these closely

space structures do, in fact, limit groundwater flow across this area.

5.2  Octopus Spring Study Area

The sinter mound and marsh groundwater systems are separated by a sinter apron
that appears to be relatively impervious. EM mapping shows that this area has low
terrain-conductivity compared to the two groundwater systems, indicating that it
represents a no-flow boundary.

Within the sinter mound, a component of the Octopus Spring discharge infiltrates
the siliceous sinter and sinter breccias and recharges a shallow groundwater system to the
west of the pool. There are competent layers of relatively impermeable siliceous sinter
within the mound occurring both in the vadose and saturated zones. It is unknown if these
subsurface sinter deposits are laterally continuous, but water was present on a perching
layer when OW-2 was constructed. Further downslope, an upward vertical gradient is

observed between OW-1A and OW-1. This vertical potential may be related to
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groundwater discharge to White Creek; however, relatively extensive areas of sinter in the

saturated zone could result in confining conditions within the mound.

There was a measured increase of 15 L/sec in the flow volume of White Creek as it
flowed past the sinter mound. This increase represents the total discharge to the creek
from the hot springs (Octopus Spring and Pool A), the outflow from the marsh, and
discharge from the sinter mound’s groundwater system. Some error in determining the
total discharge contribution from the thermal springs and marsh outflow was likely
(resulting from difficulty in determining the cross-sectional area of the outflow channels).
However, if the total volume of surface water discharged is assumed to be representative
of the area, then the groundwater flux into the creek is estimated to be between 5.77 L/sec
and 9.66 L/sec.

The results indicate that the geochemistry of the sinter mound’s shallow
groundwater system is distinct from the marsh’s groundwater system. However, the sinter
mound’s groundwater is comparable to the hot springs’ discharge waters (both are Na-Cl
rich); evidence that mixing is occurring. The thermal spring’s discharge has an appreciable
dissolved-silica concentration. Dissolved silica concentration in this groundwater system
is up to 50% lower than the discharge water from Octopus Spring; evidence that silica is
precipitating as the surface waters cool and infiltrate into the sinter mound.

The chemistry of the surface water entering (OSA) and exiting the marsh (OMO)
shows little change in chemical composition. The chemistry of White Creek’s water
increases slightly in Na-Cl and alkalinity as it flows past the sinter mound, likely a result of

discharges from groundwater and surface water.
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On the west side of White Creek (OW-9), there is sodium-bicarbonate type

groundwater that is distinct from the sinter mound’s and marsh’s groundwater systems
east of the creek.

The sinter mound’s and marsh’s groundwater systems differ significantly in
temperature and groundwater chemistry. Interpretations of the results from the EM
terrain-conductivity mapping needs to consider the impacts of both variables on measured
conductivity.

The terrain-conductivity is highest in the area of the sinter mound west of Octopus
Spring. The results verify that saturated conditions do exists in this area. The
conductivity distribution patterns remain mostly constant with depth but increase in
intensity, which would be expected when mapping saturated conditions. Conductivity will
increase as the EM signal penetrates deeper into the subsurface, travelling through a
greater cross-sectional area of saturated sinter and sinter breccia.

The groundwater temperature is as much as 15°C warmer in OW-1A than in OW-
1. Moving closer to Octopus Spring, it is likely that groundwater temperature will
increase nearer the spring and at increasing depth, due to heating by the spring’s vent. In
fact, the EM survey of this area indicates significantly higher conductivities near Octopus
Spring than at the western edge of the sinter mound.

The chemistry of the hot spring waters and groundwater in the sinter mound do
not differ with respect to the presence of conductive salts (i.e. Na" and CI). Hence,

increases in terrain-conductivity within the sinter mound nearer the pool indicates that
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temperature variations have a significant impact on measured conductivity values near this

thermal source.

The marsh’s groundwater system has significantly lower conductivities than the
sinter mound’s system. Comparing the terrain-conductivity results of the groundwater
systems may be reflective of the impact of both temperature and chemistry. Groundwater
near the western edge of the sinter mound is warmer than in the marsh. At the time of the
EM survey (August 1994), groundwater temperature in OW-1 and OW-4 were 30.0°C
and 16.7°C, respectively. During subsequent sampling events, the temperature was up to
9.8°C higher in the sinter mound (November 1995). The groundwater in the marsh is
significantly lower in conductive salts (i.e. Na" and CI') compared to the water in the sinter
mound that would result in lower detected terrain-conductivities. Hence, both temperature
and chemistry must be considered when evaluating the. results from EM mapping, though
distinguishing the impacts between the two cannot be made without direct-measurement

of the systems.

53 Conceptual Models of the Study Areas
The geochemistry of the Sentinel Meadows aquifer is influenced by the influx and
mixing with hot spring discharge and the infiltration of meteoric water. Figure 16 presents
a conceptual model for this site. Vents may either be closed (Flat Cone) or leaky (Carcass
Cone) conduits. Different patterns of groundwater interaction are observed in each case.
Groundwater in the area flows to the south past two dominant hot spring systems,

Carcass Cone and Flat Cone. Based on the geochemical and EM terrain-conductivity
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studies, it appears that the marshes are the primary areas where the mixing of the

hydrothermal water and groundwater occurs. There also may be some subsurface
contribution to the groundwater system from leakage of the hydrothermal vents. The
study did not look at the geochemical influence associated with the influx of meteoric
water, but it is obvious that precipitation (in the form of rain and snowmelt) is a
component of the water cycle. Further down the flow path, the groundwater interacts
with Sentinel Creek. Along most of the creek, groundwater likely discharges to this
surface water body. However, in some areas it appears that the creek discharges to
groundwater. It is in these losing sections of the stream that the streambed becomes
armored with silica-cemented matrix.

The Octopus Spring study area has two distinct groundwater systems that are
separated by a relatively impermeable apron of siliceous sinter. Figure 17A-C offers a
conceptual model for the emergence and development of the Octopus Spring
hydrothermal system over time. Figure 18 presents a conceptual model for the site as it
exists today.

The asymmetrical Octopus Spring sinter mound abuts a rhyolite hillside and
slopes to the west. As the hot spring system developed, the amorphous silica being
deposited appears to have created a structure that has blocked the fiow of Spring A.
The marsh formed as the sinter mound grew. Today, flow from the marsh exits the
system at the south end and flows overland into White Creek.to thé south. The
marsh’s groundwater is chemically distinct from the groundwater within the sinter

mound west of the hot spring. This study identified a no-flow boundary created by the

sinter apron east of Octopus Spring. Results from the EM terrain-conductivity mapping
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Figure 17A. Octopus Spring Development. The Octopus Spring vent becomes sealed in the subsurface
through hy drothermal-alteration of the country rock. The silica-saturated waters eventually contact the
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Figure 17B. The thermal water rapidly cools and silica precipitates upon contact with Spring A waters.
The resulting amorphous-silica precipitate east of the vent has a relatively-fine crystalline structure
and the young Octopus Spring vent becomes sealed-off on this side of the sinter mound. On the west
side of the vent, the thermal water flows across the sinter mound, cooling and precipitating and
resulting in the vertical and lateral growth of the system. Percolation and vent leakage likely
contributes to a groundwater system within the mound.
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Figure 17C. The Octopus Spring sinter mound continues to grow vertically and laterally to the west.
Discharge is primarily to the west. However, any discharge to the east will rapidly cool and
precipitate, further damming the flow of Spring A. The resulting marsh groundwater system is forced
to discharge to the south of Octopus Spring. Vent leakage and thermal discharge water continues to

percolate into the mound, feeding the mound’s groundwater system.
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and hydrogeological study concur that this area is not saturated and has dammed the

flow of Spring A.
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6.0 CONCLUSIONS

EM terrain-conductivity mapping can be used to indirectly determine the areas of
chemical mixing of hot spring waters with local groundwaters. This non-intrusive
geophysical technique can also be used to identify and contrast aquifer systems with
distinct physical and geochemical signatures. Correlating the geophysical data with
hydrogeologic and water quality data may provide a more reliable understanding of the
hydrogeochemical setting than either type of information used by itself (Fetter, 1988)

The EM-31 instrument was tested in two hydrothermal settings that significantly
differ in size and geology. Results obtained during this study indicates that the EM-31 was
effective in locating the interface of surface water/ groundwater mixing zones that vary in
conductivity (due to the presence of conductive salts) and/or temperature in both areas.

Within a sinter mound system, it appears that the hot spring waters infiltrate
directly into the siliceous sinter and sinter breccias. However, the mechanisms for mixing
with local groundwater are not known. Two possibilities have been considered. First,
most hot springs not located next to rivers and creeks discharge in to marshes. These
marshes are filled with diatoms. Perhaps these areas provide zones of mixing between
thermal waters and meteoric waters. These marshes represent zones in which chemical
reactions, physical mixing, and biological activity take place, resulting in dynamic changes
in the subsurface environment. A second mechanism could be that seepage from the hot

spring vents could mix directly with local groundwater.
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BORING LOGS

Sentinel Meadows

SMW-1 (6/19/94)

0-66 cm Gray diatomaceous clay with some sinter breccia, moist to wet.

66-85 cm Black with some reddish obsidian sand, some plagioclase, subangular to
angular, wet.

Screen Interval: 60-85 cm

SMW-2 (6/19/94)

0-71 cm Brown to dark brown clayey, fine sand (diatoms?), some obsidian sand,
some orange staining (ferric), moist to wet.

71-91 cm Gray/green clayey, fine to coarse obsidian sand, subangular, wet.

91-152cm  Black medium to coarse sand with angular pebbles (at 95cm), some
plagioclase, wet.

Screen Interval: 137-152 cm

SMW-3 (6/19/94)

0-81 cm Gray diatomaceous clay, some fine obsidian flecks, moist to wet.
81-140 cm  Black fine to coarse obsidian sand and fine gravel.

Screen Interval: 115-130 cm

SMW-4 (6/19/94)

0-74 cm Gray silty diatomaceous clay.

74-84 cm Mottled gray and greenish clayey sands, meadium to coarse sand., wet
(related to water table fluctuations?)

84-141cm  Black fine to coarse obsidian sand, subangular, wet.

Screen Interval; 126-141 cm

SMW-5 (9/15/95)

0-74 cm Gray diatomaceous clay, root zone 0-30 cm

74-91 cm Gray silt grading to obsidian sand and clay

91-128 cm  Black fine to coarse obsidian sand and fine garavel, subangular.
Screen Interval: 113-128 cm

SMW-6 (9/15/95)

0-51 cm Gray diatomaceous clay, root zone 0-25 cm, dry.

51-74 cm Brown silt with fine obsidian gravel, dry to damp

74-91 cm Black fine to medium obsidian sand with some reddish rhyolite flecks, wet.

91-160 cm  Dark gray and green silty fine to coarse obsidian sand, hard drilling at 107
cm. Mostly fine gravel at 152 cm
Screen Interval: 145-160 cm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SMW-7 (9/15/95)
0-41 cm Gray diatomaceous clay, dry,

41-56 cm Grading to light brown silt with coarse obsidian sand and fien gravel.

56-64 cm Very hard drilling, with yellowish staining
64-107 cm Black fine to medium obsidian sand with some silt.
Screen Interval; 92-107 cm

SMW-8 (9/21/95)
0-59 cm Gray diatomaceous clay, dry to damp.

59-89 cm Olive brown silt and fine obsidian sand, some fine gravel, orange stained at

59 cm (hard drilling), moist at 84 cm

89-150 cm Greenish black silty fine to medium obsidian sand, some fine gravel,

(appears reduced)
Screen Interval; 135-150

SMW-9 (9/21/95)
0-51 cm Gray diatomaceous clay, moist.

51-76 cm Greenish gray silty fine to coarse sand and fine gravel, subangular, some

orange (ferric) staining at 51 cm
76-112cm  Black obsidian sand and fine gravel, subangular
Screen Interval: 97-102 cm

SMW-10 (9/21/95)

0-46 cm Gray diatomaceous clay, dry
46-61 cm Greenish black fine to medium obsidian sand. Some orange (ferric) staining
at 51 cm

61-152 cm  Black fine to coarse obsidian sand and fine gravel, subrounded to
subangular, some rhyolite, silt interbeds at 127 cm and 152 cm
Screen Interval: 137-152 cm
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BORING LOGS

Octopus Spring

OW-1 (6/19/94)
0-66 cm Gray sinter breccia, hard layer at 8 cm; water at 41 cm.
Screen Interval: 51-66 cm

OW-1A (11/18/95)
0-112 cm Gray sinter and sinter breccia. Zones of solid sinter were encountered and
cores were collected within the follows intervals:
0-23 cm 2 sinters cores (~1.4 cm length)
23-48 cm 1 sinter core (~1.8 cm length)
66-76 cm 2 sinter cores (~3.0 cm and 3.2 cm length)
76-84 cm 2 sinter cores (~4.3 cm and 3.0 cm length)
84-91 cm 2 sinter cores (~4.4 cm and 2.2 ¢cm length)
102-112 cm 1 sinter core (~3.2 cm length)
Screen Interval: 87-102 cm

OW-2 (6/19/94)

0-53 cm Gray sinter breccia, (initial water at 41 cm but well is dry upon
completion).

Screen Interval: 38-53 cm

OW-3 (6/19/94)

0-135cm Gray sinter and sinter breccia, some brown to black fleck in upper 40 cm,
dry to moist.

Screen Interval: 120-135 (well remains dry)

OW-4 (6/19/94)
0-46 cm Dark brown organic debris and mud, very soft, wet,
46-79 cm Dark brown organic muds mixed with some gray sinter breccia or

diatomaceous clay. Hard drilling at 79 cm
Screen Interval: 64-79 cm

OW-5 (6/19/94)

0-61 cm Brown weathered rhyolite, clayey with some reddish streaks (possibly
geothermally altered), warm

61-109 cm  Buff clay with reddish streaks.

Screen Interval: 94-109 (well remains dry)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



OW-6 (6/19/94)
0-152 cm Dark brown organic debris and muds, very soft, little returns.
Screen Interval: 137-152 cm

OW-7 (6/19/94)
0-46 cm Dark brown organic debris and root material.
46-61 cm Yellowish brown root matenal, some roots up to %-inch.

61-137cm  Dark brown organic debris and clay, some sinter material at 130 cm.

Screen Interval: 122-137 cm

OW-8 (6/19/94)

0-4 cm Gray sinter breccia.

4-38 cm Gray sinter, very solid (hard drilling)
Screen Interval: 23-38 cm

OW-9 (6/19/94)

0-15cm Grass and roots with some clayey soil.
15-36 cm Brown to gray clay
36-48 cm Brown sand and fine gravel with clay.

48-69 cm Gray clay (weathered sinter)
Screen Interval: 54-69 cm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81



APPENDIX B

WATER LEVELS, POTETIOMETRIC SURFACE ELEVATIONS,
AND HYDROGRAPHS
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APPENDIX C

SLUG TEST GRAPHS
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APPENDIX F

EM TERRAIN-CONDUCTIVITY MAPS
AND TRANSECTS
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APPENDIX E

TEMPERATURE PROBE SURVEY PLOTS
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121
APPENDIX F

ANALYTICAL DATA AND
DATA QUALITY

This appendix presents the water chemistry data and data quality for water
samples collected from Sentinel Meadows and Octopus Springs. Water chemistry data
including field measurement (pH, T°C, and dissolved oxygen) and anions are presented
in the tables on pages 122-128. Water chemistry data including cations are presented
in the tables on pages 129-135.

An analysis of variability in concentration of the various analytes was performed
by determining analytical means, standard deviations (o), and confidence intervals
(k(0.95) * o / sqrt(n)) for waters at each site. The waters were grouped as hot spring
waters, surface waters, and groundwater to compare the variability between the
different waters. The means, standard deviations and confidence intervals for the
grouped waters and for other waters with 3 or more sets of analyses are highlighted
below the various analytes. Graphical comparison of select chemical constituents of
the distinct waters at each site are shown on the figures on pages 136-151.

A total of 167 water samples were collected from the 2 sites during this study.
There were 113 total samples collected from Sentinel Meadows and 54 total samples
collected from Octopus Spring. During analysis of the waters, instrument precision was
monitored by running standards and blanks after every 10 sample analyses. The
resulting standard and blank analyses were compared with previous runs to ensure that
random variation of the data remained within £10% for the instrument. The accuracy of
analysis of the waters was determined by analyzing a total of 18 field duplicate
samples, 5 laboratory duplicate samples and 8 laboratory spike samples. These
samples were compared with the results for the primary water samples to ensure that
the data for the primary cationic and anionic species was accurate to +10%. The
relative percent difference of the data (water samples compared with quality control
samples) are shown in the tables on pages 152-153.
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Sample | D.

detection limits
OCTOPUS SPRING
Hot Springs

ocT

OPA

mean
d dev
H(0.95)* sid devisqri(m)

White Creek
OWCl

OowC2

OwWC3

mean
A4 dev
k(0.95)* std dev/sqri(n}

£/25/94
11712794
219/95
2895
Viaes
97396
8/25/94
11/12/94
218/95
T/28195
986

#/25/94
111294
21895
7/28/95
9/3/96
8/25/94
1111294
218/95
V28/95
8/25/94
1112494
21895
7/28/95
9/3/96

pH

816
6121
8.13
187
782
176

8.74

7.18
727
7.68
0.692
8429

812
876

818
7163
8.16
8.92
811
824
8.14
915
822
838
802
829
0.396
0.207
14

T(C)

B5.9

B26
86.7
842
B5.8
841

Statistical Analysis (mean, standard deviation, confidence interval)
F cl Br NO3 S04 aC0O3

2

188
219
216
202
209
27
16.1
19.3
176
158

19.2
228
13§

n

715

9.12
9.62
9.21
705
8.12
9.0%
9.66

9.37
9.895
10.6

9.00
199
0.5M

0.5

5406
556
552

518
553

554
518

.6
64.1
612
578
6.99

]

Water Chemistry and

NO3@0.15 2

0643 164
0.578 178
0.085 17.9

17.0

013 16.2

0.12 17.2

141

0512 16.2
154

137

139

160

1.52

0.500

11

01
21.0
202

0.037 18.2
204
0.121 20.6
201
198

20.6

19.9

200

0.043 181
199

0352

0.463

262
90
265
P11
50
8
268
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203
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A A
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Groundwater Wells
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pH
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13
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T(C)
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23

2
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28
219
15
413
195

1.0
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14
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131
159

05

Water Chemistry and
Statistical Analysis (mean, standard deviatioré confidence interval)
F al Br NO3 S04 a

0122

NO3I@0.15
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0.136
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2
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275
515
369
.96
118

888
485

CO3

ocl
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Sample 1.D.
detection limits

SMW), SMWS through SMW10

SMW3

SMW5

SMW6

SMW7?

SMWE

SMW9

SMWI10

mean
std dev
Kk(0.95)" std dev/sqrt(n)

Sampling Tubes
SFCW1

SFCW2

SFCW3

SFCW4

SFCWS

SFCWé

Date

8/26/94
1130095
9/19/95
9/27/95
9/4/96
9/19/95
V2A7195
9/4/96
9/19/95
927195
9/4/96
9/19/95
9127495
9/4/96
921195
9127195
Y496
921195
927195
9/4/96
921195
928195
9/4/96

9/19195
9/27195

919/95
9/27/95

9/19/95
9/27/95

9/19195
9/27195

9/19/95
9/27/95

9/19/95
9/27/95

g
o
~

Gszgtgzzes

04

0274
027%
0.187

0327
0.126
0.135
8.293
0.142
0.084

0.523°

0518

0.703
0377

Lk 7]
291

0.520
0.082

4.4
317

0.555

0.07

1.08
0.178
0.203
0.236
0.945
0.489
0415

235
0.868
0.776
0.209
0.491
0.086
0.740
0719
0.486

194

108
0678

1.05

0.683
0342
0.753
0.535
0.219

0.644
0.628

0.394
0632

0.201
0.611

0.586
0.639

0.569
0.609

0382
0.889

Statistical Analysis (mean, standard deviation, confidence interval)
Ca Fe K Li Mg Mn Me Na

0.03

264
73
14
79
277
325
in
302
277
7
175
266
155
267
7
165
285
264
252
wmm
47
251
2.566
214
0.199
0.081
1)

263

25

289
114

al
312

294
a0

19
294

274
194

0.1

.3
1.14

an
293

6.68
465

181
200

49
5.00

263
31

0.03

172
315
0.571
0341
2.3
0673
0812
209
162
7.20
127
i
007
8.86
284
0.897
813
437
0.756
1917
404
3
469
315
2.63
1.08
23

142
147

210
261

580
329

1.40
0475

9.79
7.28

280
6.28

Water Chemistry and
3 0l 0.1
682 1.53 2.06
7.1 135 207
76.9 13 210
734 130 208
536 120 202
%5 1.89 0.689
72 181 0579
16.1 1.68 0.474
7.1 204 245
75.5 2.04 257
546 186 160
830 1.28 106
788 130 10.7
580 1.23 1.1
368 175 1.40
344 1.70 107
304 1.60 118
498 1.46 1.42
923 1.43 1.39
385 1.29 147
709 147 449
745 115 480
525 1.06 47
556 1.498 122
208 0.295 L1
8.52 (X 132
23 3 2
241 124 0.413
209 148 6375
357 - 136
9.7 163 2
841 218 219
34 185 1.70
323 170 0.794
246 170 0.665
339 239 209
263 161 161
324 163 074
302 1.48 117

0.005

151
0.744
0.567
0292
0338
014
0110
0.010
0.774
0.691
0.627
0.197
0161
0.165
0.128
0.097
0.088
0.439
0.149
0.166
0472
0.539
0.433

8.384
.39
0.139

n

0.0839
0.0865

0.879
0.779
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0.765

0.151
.17

101
0.915

0.662
0.764

001

0.0215
0.0165

00218
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0.0306
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0.0741
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0.0428

0l
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o

256
299
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2%
267
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0.670

bdl

0.250

0.240
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bd!

0220

0240
4.290
0.279
0.410
0.500

0.470
0.730

0.378
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0.160

1

0.730

0.360

3.00
089

280
0.640

240
bdl

330
0620

330
0.410
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751

68
36.2

110

649
958

0.0102
0.0096
0.0089
0.0087

0.0083

bdl
0.0184
0.0191

0.0637
0.0633
0.0528
0.0172
0.0156

00133
0.0142

00216
0.0261
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0.0190
8.00%3

16

0.0088
0.0061

0.0159
0.0079
0.005

0.0125
0.0092
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0.0092

06279
0.0233

0.0309
0.0107
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0.0949

00447
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0.2381
01431
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