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ABSTRACT 

 
With the discovery of Na-sulfate minerals (thenardite, mirabilite) on Mars and 

Europa, recent studies using these minerals have focused on their ability to assist in the 

detection of biosignatures.  On Earth, biotic and biotic processes can assist in the 

formation and deposition of these minerals.  A primary objective of these studies is the 

detection of bio/organic compounds that may be associated with the mineral. These 

biosignatures would imply biological involvement during mineral formation.  The 

following research presents a series of natural and synthetic investigations to determine if 

biological activity is associated with Na-sulfate mineralization, and if these minerals can 

assist in detecting bio/organic compounds.  Evidence for biological activity associated 

with the formation of Na-sulfate deposits in the basaltic subsurface of Craters of the 

Moon National Monument, Idaho was examined by laser desorption Fourier transform 

mass spectrometry (LD-FTMS), infrared spectroscopy and sulfur isotopic fractionation. 

These experiments show that bio/organic compounds are likely associated with the 

secondary Na-sulfate minerals, suggesting biological involvement in the mineralization 

of these deposits.  LD-FTMS results of the synthetic bio/organic-mineral combinations 

show the potential of Na-sulfate minerals to assist in the detection and identification of 

bio/organic compounds.  These results prove the importance of Na-sulfate minerals for 

future exploration missions that are likely to use LDMS to search for signs of life in the 

solar system.    
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PREFACE 
 

 The following dissertation discussion is based on my doctoral research conducted 

between 2005 and 2009 in the Geosciences Department at the University of Montana-

Missoula.  This discussion focuses on the effectiveness of thenardite (Na2SO4) to assist in 

the desorption and identification of various types of bio/organic compounds.  Bio/organic 

compounds are defined as chemical compounds produced by living organisms or derived 

from other biogenic organic compounds.  These observations underpin the determination 

of bio/organic compounds are associated with secondary mineralization at Craters of the 

Moon National Monument, Idaho (COM).  The following chapters are arranged to follow 

this progression.  Chapter 1 is a basic introductory chapter that provides the necessary 

knowledge about thenardite formation on Earth and the solar system.  Additionally, it 

reviews the methodology and rationale behind the laser desorption-Fourier transform 

mass spectrometry (LD-FTMS) instrument.  The chapter also discusses pertinent 

background information that may not be covered in the subsequent research chapters.  

Chapter 2 was published in the journal Geomicrobiology in August 2008.  Its focus is to 

determine the effectiveness of thenardite in the detection of aliphatic fatty acids, in 

addition to discovering the limit of detection of the LD-FTMS instrument.  Chapter 3 

focuses on the identification, formational mechanisms and gas-phase reactions of 

aromatic amino acids associated with thenardite, it was accepted by the International 

Journal of Astrobiology in July 2009.  The following two chapters focus on the secondary 

mineralization at COM.  Chapter 4 uses X-ray powder diffraction, attenuated total 

reflectance-Fourier transform infrared spectroscopy, and LD-FTMS to identify and 

characterize the secondary deposits found in the subsurface of COM.  In addition, the 
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chapter introduces the COM basalts as a viable analog to martian basalts.  It is currently 

under review by the journal of Chemical Geology.  Subsequently, chapter 5 discusses the 

role of microbial activity in the formation of thenardite in the secondary deposits at 

COM. It is currently in review by the journal of Earth and Planetary Science Letters.  

Finally, the last chapter offers a quick summary of the overall results of this dissertation 

research and discusses its implications into the search for life in the solar system.   

 With the exception of chapter 1, all the chapters were submitted for publication 

and are still formatted to reflect their respective journal.  Thus each chapter has its own 

reference list and any redundancy in the introduction and methodology between these 

chapters is inescapable.   Fortunately, the numbering of the tables and figures has been 

changed to reflect this discussion. 

 Appendix 1 is an excerpt from a recently published review chapter that discusses 

the occurrence and fate of organic compound in the solar system.  The chapter title is 

called, “The stellar stew: Distribution of extraterrestrial organics in the universe”.  It is in 

the book “Astrobiology: from simple molecules to primitive life”, published by American 

Scientific Publishers.   
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CHAPTER 1: INTRODUCTION 

1.1. OVERVIEW   

 The search for extraterrestrial life is primarily focused on Mars and Europa, a moon 

of Jupiter, as they are thought to, continuously or sporadically in their existence, contain 

the necessary ingredients for the emergence of life.  These planetary bodies have been 

visited by spacecraft and rovers and observed through terrestrial instruments in the search 

for bio/organic compounds, which are defined as organic structures that are made by 

organisms or derived from a bio/organic compound made by a living organism.  Since 

1976, with the Viking mission, these techniques have been used to search for bio/organic 

compounds on Mars.   

 Europa has not been directly investigated for evidence of extinct or extant life.  

However, Europa may contain the three necessary requirements for emergent life; 

chemical disequilibria, prebiotic compounds, and liquid water (Kargel et al., 2000).  

Subsequently, in 2020, a joint ESA/NASA endeavor called the Europa Jupiter System 

mission will further investigate the possibility of extant or extinct life on Europa.  Due to 

the oxidizing and radiolytic atmospheres of Mars and Europa, respectively, any 

bio/organic compound on the surface will easily degrade unless they are incorporated into 

a mineral structure.  Thus, finding, effective host minerals that can sequester and preserve 

any associated bio/organic compounds in addition to having the ability to facilitate the 

detection and characterization of bio/organic compounds is of the utmost importance.   

 Na-sulfate minerals are excellent targets for sequestering bio/organic compounds, 

as these minerals are key components in numerous geological and chemical reactions in 

the solar system.  On Mars, Na-sulfate salts are found in bedded layers as a weathering 
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product of the host basaltic rocks (Mangold et al., 2008; Zhu et al., 2006b).  Due to this 

aqueous basaltic weathering, Na-sulfate may contain chemical information about past 

environmental and possibly biological processes on Mars.  On Europa, the Na-sulfate 

system is an abundant solute in the subsurface ocean, and subsequently as a component 

of the surficial salt deposits (Kargel et al., 2000; McCord et al., 1998a; McCord et al., 

1999; Zolotov and Shock, 2001).  Terrestrial Na-sulfate minerals occur in evaporitic and 

basaltic settings and are important in many abiotic and biotic chemical pathways (Aubrey 

et al., 2006; Bowden and Parnell, 2007; Richardson et al., 2008).  As terrestrial Na-

sulfate minerals are known to harbor bio/organic compounds in several evaporitic and 

volcanic settings (Dongyan et al., 1998; Richardson et al., 2009b; Richardson et al., 

2008), their presence on Mars and Europa signifies their importance in the search for life 

beyond Earth.  

 Sodium and sulfate combine to form two stable minerals, mirabilite 

(Na2SO4•10H2O) and thenardite (Na2SO4).  Cell dimensions of the two minerals are only 

slightly different in the a- and b-axes, while the c-axis is approximately doubled in 

mirabilite.  Another key difference between these two minerals, is the ease in which 

mirabilite will effloresce, which makes it extremely vulnerable to dehydration, occurring 

within minutes depending on air temperature and relative humidity (Rodriquez-Navarro 

et al., 2000).  This rapid dehydration occurs at a relative humidity below 71% (at 20 °C) 

forming thenardite; above this value mirabilite will form at the expense of thenardite.  As 

a result of the efflorescent susceptibility of mirabilite, thenardite likely exists under the 

dry conditions of the martian atmosphere (Zhu et al., 2006b), while the cold, icy surface 

of Europa favors the formation and preservation of mirabilite (McCord et al., 2001a).   
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 A critical aspect in the search for biological activity is the ability to detect organic 

compounds associated with the mineral matrix.  This detection is dependent on the 

formation constraints (biotic vs. abiotic and aqueous precipitation vs. adsorption) and the 

type of association (sorption, inclusion and substitution).  These mineral-bio/organic 

compound associations can be accurately and effectively investigated using an imaging 

laser desorption/ionization Fourier transform ion cyclotron resonance-mass spectrometer 

(FTICR-MS), which is a laboratory-designed instrument, located at Idaho National 

Laboratory, Idaho Falls, ID.  Its ability to detect inorganic and organic chemical 

signatures associated with mineral matrices, demonstrates its importance in future laser 

desorption mass spectrometry techniques, such as the Mars Organic Molecular Analyzer 

(MOMA) slated to be aboard NASA’s ExoMars rover.    

1.2. OCCURRENCE OF TERRESTRIAL NA-SULFATE MINERALS  

Na-sulfate minerals are the second most common, naturally occurring water-

soluble minerals in the world.  Thenardite is one of several sulfate minerals formed in 

non-marine environments, such as massive salt deposits, as a constituent in evaporitic salt 

flats (sabkhas, playas), or in fumarolic exhalations (Wiedemann and Smykatz-Kloss, 

1981).  Additionally, Na-sulfate deposits are found as speleothems in both volcanic lava 

tubes and, to a lesser extent, in limestone caves if an excess of Na ions are present in the 

host lithologies (Hill and Forti, 1997).   

 
1.2.1. Evaporitic Settings 

The presence of Na-sulfate minerals in evaporitic environments is focused on 

playa lakes and their resulting mineralogy.  Playa lakes are ephemeral lakes that usually 

lack an outgoing channel; thus, loss of water is strictly through evaporitic processes.  
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Since these waters contain various ions, other than Na+ and SO4
2-, a diverse range of 

mineralogy is expected, with a high degree of mixed-mineral assemblages.  Although, the 

steep solubility curve for Na-sulfate minerals, which is unique relative to other minerals, 

leads to the preferential formation of mirabilite, even in highly diverse and concentrated 

brine waters (Eugster and Hardie, 1978).  This results in layered deposits of massive, 

fairly pure mirabilite, that can easily dehydrate to thenardite (Garrett, 2001).  Along with 

abiotic chemical deposition, organic compounds suggesting the influence of microbial 

activity during the formation of thenardite layers are observed in several evaporitic 

assemblages throughout the world (Dongyan et al., 1998; Richardson et al., 2008).          

Although most thenardite deposits are found in evaporitic environments, its 

presence has also been observed in volcanic cave settings.  These occurrences have been 

well documented from lava tubes and caves throughout the world (Hill and Forti, 1997).  

Unfortunately, studies of thenardite in basaltic settings have been limited to on-site 

observations offering no in-depth analytical investigations.  As a result, no detailed 

investigations regarding the mineralization have been conducted in relation to thenardite 

in basaltic cave settings. 

1.2.2. Craters of the Moon National Monument        

Nowhere in the world are the extent and abundance of secondary thenardite as 

prevalent and mysterious, as in the basaltic caves and lava tubes of Craters of the Moon 

National Monument, ID (COM).  These basaltic flows cover an approximate area of 

1,600 km2 and are the northernmost and largest of the 3 youngest lava fields (the others 

being Wapi and Kings Bowl) in the Eastern Snake River Plain (ESRP) in southern Idaho 

(Fig. 1.1).  The ESRP is composed of sub-5 km diameter monogenetic tholeiitic and low- 
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Figure 1.1. Map of Idaho showing location of Craters of the Moon National Monument and other basaltic 
lava fields in Eastern Snake River Plain.  Taken from (Putirka et al., 2009) 

 

angle basalt shield volcanoes intermittent dispersed between Quaternary-aged 

sedimentary layers (Kuntz et al. 1992).   These low-angle coalescent shields, subdued  

topography and shallow depositional slopes of the basaltic flows are generalized as 

“plains-style volcanism” proposed by Greeley and King (1977), which was later modified 

by Greeley (1982).  COM is a composite field made up of at least 60 individual lava 

flows and 25 tephra cones, emplaced due to eight eruptive periods between 15 ka to 2.1 

+/- 0.2 ka along the Great Rift (Kuntz et al., 1992; Reid, 1995).  The Great Rift is a 

tensional related series trending parallel to the basin and range fault system (Fig. 1.1), 

consisting of open cracks, eruptive fissures, shield volcanoes and cinder cones possibly 

are related to the extension of basement faulting (Leeman et al., 1976).              

 The approximately 60 basaltic flows in COM are chemically and petrologically 

atypical of the olivine tholeiites elsewhere in the ESRP (Hughes et al. 1999; Kuntz et al. 

1986).  Relative to ESRP basalts, the COM flows exhibit elevated Ti, Fe, Na, K, P and 
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depleted Mg and Ca (Hughes et al. 1999).  Since all basaltic flows in the ESRP are 

considered to originate from a single parent magma, the variance seen in the COM 

basalts likely reflect large degrees of crustal assimilation or magma fractionation (Kuntz 

et al., 1986; Kuntz et al., 1992; Leeman et al., 1976).    

The majority of the secondary sulfate minerals found in the ESRP are located at 

COM, although a limited amount of sulfate salts are found lining the walls and ceilings of 

lava tubes at Hell’s Half Acre, Wapi, and Shoshone lava fields (Karlo et al., 1980).  

These assemblages consist primarily of Ca-sulfate (gypsum, bassanite) and Mg-sulfate 

(bloedite, epsomite) minerals (Karlo et al., 1980).  Contrarily, Na-sulfate minerals 

dominate the secondary assemblages at COM (Richardson et al., 2009a).  The cation 

differences (Na vs. Ca, Mg) between the lava fields, likely reflect variations in the 

chemical composition of the respective host basalts, as COM basalts are enriched in 

alkali elements and depleted in alkali-earth elements relative to basaltic flows elsewhere 

in the ESRP (Hughes et al., 1999).    

Of the 60 cumulative flows that comprise COM, the young Blue Dragon flow 

(~2.1 ka) contains the majority of the accessible caves and lava tubes found at COM 

(Richardson et al., 2009a).  These subterranean features reflect the younger age of the 

flow, as they have had less time to undergo gravitational collapse.  Within the flow, three 

separate locations where choose for this purposes of this study. These include Wilderness 

Caves area, Cave Trail caves and within two hollow magma chambers beneath adjacent 

spatter cones (Snow Cone Pit, Crystal Pit).  These locations were based on personal 

communication with park officials, preliminary field observations and previous reports 

(Karlo et al., 1980; Morris et al., 1995; Peck, 1974).  These features vary in size from 15 
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m to nearly 2 km in length and between 2 m and 40 m in diameter. The secondary sulfate 

deposits occur in caves of all sizes.  A more detailed explanation of the subsurface 

features and the associated secondary minerals can be found in Chapters 5 and 6.  

1.3. OCCURRENCE OF NA-SULFATE MINERALS IN THE SOLAR SYSTEM 

Excluding Earth, the occurrence of surficial Na-sulfate minerals in the solar 

system is limited to Mars and the Galilean moons of Europa, Io and Ganymede (Fanale et 

al., 2001; Johnson, 2000; Kargel et al., 2000; Mangold et al., 2008; McCord et al., 1998b; 

McCord et al., 2001b; McCord et al., 1999; Wiens et al., 1997; Zhu et al., 2006b; Zolotov 

and Shock, 2001).   

Evidence of solid NaSO4 species on the surface of Io is observed by sputtering of 

molecular ion clouds from localized surface locations (Wiens et al., 1997).  These 

molecular clouds contain significant quantities of sodium-bearing molecular ions (NaxOy, 

NaxSy), evident by their interaction with Jupiter’s magnetosphere (Wilson and Schneider, 

1994).  Regardless of whether the endogenic Na neutrals originate from the atmosphere 

or from the surface, the Na must have once been associated with Na-bearing minerals on 

the surface (Wiens et al., 1997).  Spectroscopic observations of Io’s surface support the 

occurrence of Na-bearing sulfates with surficial concentration reaching up to 40% 

(Howell et al., 1989).  These surficial deposits are likely formed due to interaction of 

solid Na-silicates with oxidized SO2 atmospheric gases (Burnett, 1995; Johnson and 

Burnett, 1993).  

1.3.1. Io 
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Ganymede is the largest of the Galilean moons, and the third most distant from 

Jupiter. The near infrared mapping specrometer (NIMS) aboard the Galileo spacecraft 

observed evidence of H2O-bearing salt minerals, inferred to be Mg-sulfates with minor 

concentrations of hydrated Na-sulfate minerals (McCord et al., 2001b).  Ganymede, like 

Europa, is considered to have a subsurface liquid water ocean, containing a brine-type 

liquid ocean consisting of dissolved Mg, Na, and sulfate (Grundy et al., 2007; Kivelson et 

al., 2002; McCord et al., 2001b).      

1.3.2. Ganymede 

Europa is the second closest moon to Jupiter with a diameter nearly equal to 

Earth’s moon.  Unlike the Moon, Europa has a differentiated internal structure, 

comprised of a Fe-metallic-silicate core, water-rich rocky mantle and an icy lithosphere 

encompassing a subsurface liquid ocean (Kargel et al., 2000; McCord et al., 2001b; 

Zolotov and Shock, 2001).  The subsurface ocean was detected by its induced magnetic 

field by the magnetometer aboard the Galileo spacecraft, which indicated the existence of 

a salt-rich, liquid water ocean beneath approximately 100-150 km of solid ice (Khurana 

et al., 1998; Kivelson et al., 1997).  Determining the composition of this outer layer has 

been limited to geochemical and thermodynamic modeling (Zolotov and Shock, 2001), 

sputtering of surficial components produced by charged-particle irradiation associated 

with Jupiter’s magnetosphere (Brown and Hill, 1996), and by near-infrared reflectance 

spectroscopy (Carlson et al., 1996).  These observations suggest that the surface of 

Europa is heterogeneously composed of water ice with intermittently dispersed regions of 

hydrated salts.  These non-icy regions consist primarily of polyhydrated Mg- and Na-

1.3.3. Formation and Emplacement of Na-sulfate Minerals on Europa 
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sulfate minerals (MgSO4•7H2O; MgSO4•Na2SO4•4H2O; Na2SO4•10H2O) and possibly 

sodium carbonate (Na2CO3•10H2O) (McCord et al., 1998a; McCord et al., 1999).  These 

surficial sulfate minerals may comprise up to 90% of the non-icy regions with nearly 

40% attributed to polyhydrated Na-sulfate (Kargel et al., 2000; Orlando et al., 2005).   

The occurrence of surficial hydrated Na-sulfate minerals provides direct insight 

into the chemical constituents and speciation of the subsurface ocean.  These salts are 

strongly associated with well-defined, tectonically disrupted areas (lineaments, mottled 

and chaotic terrains), suggesting an endogenic emplacement followed by sublimation and 

sputtering of ice (McCord et al., 1998a; McCord et al., 1998b).  The presence of solutes 

in the subsurface ocean is undeniable assuming terrestrial investigations of water-rock 

interactions and ocean chemistries.  Thus, similar water-rock interactions during the onset 

of ocean formation on Europa would have led to multiple solute constituents.  These 

solutes were likely the result of leaching and degassing of elements from Europa’s 

silicate mantle (Fanale et al., 2001).  Unfortunately, the only insight into the chemical 

constituents and concentrations in the subsurface oceans is based on theoretical 

geochemical modeling.  Such modeling has implied that the europan ocean contains 

0.087 mol/kg of SO4
2- and 0.049 mol/kg of Na+, corresponding to 0.014 mol/kg of 

dissolved Na2SO4 (Zolotov and Shock, 2001).  The uppermost layer of this ocean is likely 

in chemical equilibrium with the overlying ice, with the remaining ocean saturated with 

sulfate and chlorine salts (Fanale et al., 2001).  Freezing of the ocean water on the water-

ice interface leads to the preferential deposition of Mg and Na-sulfate minerals, further 

causing the remaining oceanic composition to be concentrated in chlorine and chloride 

salts (Orlando et al., 2005).  Due to this preferential deposition and their subsequent 
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emplacement, surficial Mg- and Na-sulfate minerals offer direct insight into the chemical 

composition of the subsurface ocean.  

The production of secondary mineral assemblages depends on a number of 

interrelated factors, including primary igneous lithologic composition, alteration 

environment (i.e., gas, aqueous, subsurface, etc), pH, temperature and duration.  These 

characteristics ultimately dictate which assemblages will mineralize from the host 

lithology.  On Mars, investigations of secondary mineralogy and the formational 

pathways of these deposits have largely focused on phyllosilicates, Fe-sulfates and Fe-

bearing oxides and hydroxides (Chevrier and Mathe, 2006).  These minerals assemblages 

comprise the majority of secondary minerals found on Mars, although localized 

concentrations of sulfate minerals have been observed.  These sulfate minerals were first 

detected on the martian regolith by the Viking rover (Clark et al., 1976) and later 

confirmed in 2004 by the Mars Exploration Rovers Spirit and Opportunity (Christensen 

et al., 2004; Clark et al., 2005; Squyres and Knoll, 2005).  These rovers found that 

secondary sulfate minerals comprise approximately 40% of the mineralogy in certain 

evaporitic-like terrains (McLennan et al., 2005).     

1.3.4. Formation of Secondary Na-sulfate Minerals on Mars 

With the ubiquitous occurrence of Na-sulfate minerals on Earth, similar deposits 

are likely to be present within the martian regolith.  Until recently, Na-sulfates were 

undetected from the surficial mineral assemblages seen on Mars. This apparent absence is 

likely due to Na-sulfate minerals having similar characteristic bands as Mg-, Fe-, and Ca-

sulfates minerals, rather than the complete absence of Na-sulfate minerals (Mangold et 

al., 2008).  Additionally, Na-sulfate minerals are often intermixed with other secondary 
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minerals and Fe-oxides, which further conceals their signatures (Gendrin et al., 2005).  

Despite these similarities, characteristic spectra suggestive of Na-sulfate minerals were 

observed in the low-albedo region of Syrtis Major (Zhu et al., 2006b).  In addition, Na-

sulfate minerals are a constituent in the West Candor Chasma, which is one of the largest 

sulfate deposits known on Mars (Mangold et al., 2008).  

Indirect evidence of Na-sulfate deposits on Mars comes from thermal spectra and 

from geochemical modeling. Thermal spectrometry data obtained from the boundaries of 

the seasonal polar caps provide evidence of rapid seasonal hydration-dehydration cycles 

(Kuzmin et al., 2004). To explain these observations, Kuzmin et al. (2004) concluded that 

mirabilite likely dehydrates to thenardite in the summer months.  This is followed by the 

hydration of thenardite forming mirabilite in winter seasons.  Chemical and mineralogical 

evidence of Na-sulfate species also suggests the presence of Na-sulfates using a series of 

evaporation calculations based on known martian basaltic chemistries (Tosca and 

McLennan, 2006).     

The atmospheric conditions on Mars, except near the seasonal polar caps, favor 

the presence of thenardite at the expense of mirabilite.  The occurrence of thenardite is 

likely intermixed with other anhydrous and polyhydrated sulfate minerals, suggesting 

these species have similar formational pathways.  Two scenarios have been proposed to 

explain the occurrence of sulfate minerals on Mars (Fig. 1.2).   

1) The first scenario involves chemical weathering of sulfide-rich mineral 

assemblages in the presence of oxic, acidic aqueous solutions (Fig. 1.2A). 

This process begins with oxidation of the basaltic host rock well below the 

surface.  As the percolating groundwater rises it brings soluble cations (Mg2+, 
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Fe2+, Ca2+, Na+), along with carbonates and sulfate oxyanions to the surface.  

Once on the surface, layered precipitation occurs due to evaporation of the 

lacustrine water and the solubility of the precipitates (Burns, 1987; Burns and 

Fisher, 1990a; Burns and Fisher, 1990b; Zolotov and Shock, 2005).     

2) High concentrations of SO2 gas in the atmosphere could also be a factor in the 

formation of sulfate deposits (Fig. 1.2B).  The high SO2 is due to degassing 

volcanoes and by meteoric impact causing the release of volatiles (Chevrier 

and Mathe, 2006; Tosca et al., 2004; Wanke et al., 2001).  The SO2 is then 

converted to H2SO4 in presence of water, forming acid fog.  Subsequent 

percolation of the acid rain downward through the basalts interacts with the 

sulfide-rich basaltic deposits forming sulfate minerals (Banin et al., 1997; 

Tosca and McLennan, 2006).  As the formation and abundance of sulfate is 

dependent on volcanic activity and meteoric impacts this pathway is largely 

controlled by these episodic cycles during martian history (Tosca et al., 2004).   

In each proposed formational pathway, one of the main factors is the presence and 

subsequent interaction of aqueous solutions.  The abundance of water, either in the 

atmosphere or in the subsurface, is a limiting factor in the chemical weathering potential 

of martian basalts (Borg and Drake, 2005).  Therefore weathering rates and subsequent 

sulfate mineral formation are limited by the amount of atmospheric, surficial and/or 

subsurface water (Madden et al., 2004).   
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Figure 1.2. Two possible processes for the formation of sulfate deposits on Mars. (A) Hypothesis of 
alteration, leaching, transport and deposition in a lake or sea. (B) In situ alteration and transformation of 
minerals by input of acid rain and evaporation of water. Modified from Chevrier and Mathe (2006). 

 

The abundance of sulfate minerals on Mars reflects the enrichment of sulfur in the 

martian lithosphere (Chevrier and Mathe, 2006).  Sulfur concentrations in martian soils 

are nearly two-orders of magnitude higher than sulfur concentrations in terrestrial soils 

(Yen et al., 2005).  This abundance of sulfur is a direct result of the lack of differentiation 

on Mars due to the absence of tectonic activity and mantle dynamics (Burns and Fisher, 

1990a; Clark and Baird, 1979).  This homogeneity is observed by the lack of petrologic 

and mineralogical variations observed throughout the martian basaltic landscape 

(McSween, 2004).  
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1.4. ORGANIC COMPOUNDS AND FORMATIONAL PATHWAYS OF BIO/ORGANIC       
COMPOUNDS  

 
 Sulfate minerals are the predominant salts detected on the two main targets for 

extraterrestrial life, Mars and Europa.  On Earth, life requires liquid water, organic 

building blocks (prebiotic amino acids), and chemical disequilibria.  It is still unclear 

exactly how life arose on Earth, so it is difficult to determine how and if similar biotic 

pathways would develop in other planetary bodies.  Mars in particular was, and is still, 

considered the most earth-like of all planets, as it shows polar caps, an atmosphere with 

meteorological activity over a rocky surface, a comparable rotation period, seasonal 

variations, and moderate temperatures not too different from certain environments on 

Earth.  In addition to these similarities, early Mars may have contained the necessary 

ingredients for life.  In contrast, Europa’s surface environment and conditions are much 

different than Earth; nonetheless conditions on Europa may have continuously or 

sporadically fulfilled the requirements of emergent life in its subsurface ocean.  

 The presence of liquid water, prebiotic organic compounds, and an adequate 

energy source suggest the possibility of emergent life on Europa.  Exogenous delivery by 

comets early in europan history delivered an estimated 1-10 Gt of carbon and other 

biogenic elements (H, O, P, N, and S) based on modeling experiments, cometary impact 

velocities, and escape thresholds of the europan atmosphere (Pierazzo and Chyba, 2002).  

Estimates of organic compounds within the low-temperature, primordial ocean is nearly 

100 ppm, corresponding to about 4.8 × 1018 kg (Kargel et al., 2000).  These values imply 

that carbon could be in excess in the ocean, with concentrations much higher than 

present-day terrestrial oceans (Zolotov and Shock, 2001).  As a result, the europan ocean 

1.4.1. Chemical Pathways of Bio/organic Compounds on Europa 
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would have contained the necessary constituents for organic compound synthesis (Chyba, 

2000; Gaidos et al., 1999; Kotler et al., 2009).   

 Hydrothermal activity is also putatively agreed to produce numerous vents on the 

europan ocean floor (Fig. 1.3).  This energy gradient is likely due to upwelling water 

from metamorphic dehydration in the deep mantle (Prieto-Ballesteros and Kargel, 2005).   

Upwelling water would have carried soluble minerals in addition to forming non-uniform 

hydrothermal vents on the ocean floor. This outgassing and leaching would have further 

modified the chemical composition of the subsurface ocean (Kargel et al., 2000). The 

driving force for the hydrothermal circulation is a consequence of a Jupiter-induced tidal 

dissipation and radiogenic heat from rocky sub-ocean lithosphere (Lowell and Dubose, 

2005).  Combined, these processes may induce a total heat flux that is comparable to the 

present-day radiogenic heat flux on Earth.  However, due to Europa’s low acceleration of 

gravity, individual hydrothermal output on Europa is ten times less than vents on Earth 

(Lowell and Dubose, 2005; Vance et al., 2007).  Regardless, the energy output from the 

hydrothermal vents on the europan seafloor would satisfy the necessary energy gradient 

needed for emergent life (Chyba, 2000).  Biological activity by chemoautotrophic 

organisms could occur near the hydrothermal vents on Europa (Chyba, 2000; Gaidos et 

al., 1999).  Physiochemical conditions likely associated with the hydrothermal vents are 

within the acceptable range of hospitable conditions for numerous terrestrial 

microorganisms (Kargel et al., 2000).  If present, remnant biogenic compounds would be 

present in the subsurface ocean and intermix with inorganic solutes.  These interactions 

would subsequently trap the bio/organic compounds in the sulfate mineral lattice.  The 

sulfate minerals would become preferentially frozen at the ice-water interface and 
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emplaced on the surface by sublimation, cryovolcanism upwelling in fractures and/or 

impact events (McCord et al., 1998b; McCord et al., 1999; Orlando et al., 2005).   Thus, 

bio/organic compounds could be incorporated in Mg- and Na-sulfate deposits and 

preserved on the surface of Europa (Fig. 1.3) (Chela-Flores, 2006). 

 Preservation of bio/organic compounds is dependent on the stability of sulfate 

minerals on the europan surface.  The persistence and concentration of mirabilite in the 

ice-free lag deposits is dependent on their emplacement rate as well as its radiolytic and 

thermodynamic stability.  On the surface, incoming radiation has the most influential 

degradation effect on the stability of Na-sulfate minerals (Zolotov and Shock, 2001).  

This radiolytic bombardment is due to Jupiter’s immense magnetosphere (Johnson, 

2000).  Fortunately, the sulfate anion and the associated hydrogen bonds are effective in 

stabilizing the mineral from such degradation effects (Cooper et al., 2001).  However, 

minerals containing monovalent cations are not as stable, and much of the surface-layer 

sodium and hydrogen ions will desorb from the crystal lattice into the atmosphere 

(Johnson, 2000).  The sputtering rate and extent of neutral sodium loss is also dependent 

on depth within the lag deposits and the ice, because effective radiation can only 

penetrate the upper most ~ 0.1- 1 cm of the surface (Cooper et al., 2001; Johnson, 2000).   

Thus, below 1cm depth mirabilite should be relatively stable.  A similar depth profile is 

observed in the thermal dehydration of mirabilite.  At depth, mirabilite is 

thermodynamically stable for millions of years because of Europa’s surface temperatures 

and pressures, along with the dehydration kinetics and thermodynamic stability of the 

salts (McCord et al., 2001a; Zolotov and Shock, 2001).  Once the dehydration threshold 
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Figure 1.3.  Schematic of Europa illustrating the dynamic processes that lead to the formation, 
emplacement and degradation of surfical Na-sulfate minerals and possibly association of bio/organic 
compounds. Not to scale.  
 

 

 



 18 

is breached, mirabilite will quickly dehydrate into thenardite, causing dehydration 

stratification in the upper layers of the surface.  This desiccation further increases the 

amount of sputtered sodium into the atmosphere due to the loss of bonded water 

molecules from the mineral lattice (Johnson, 2000).   

 Regardless of the fate of Na-sulfate species on the surface or within the icy outer 

crust, Na-sulfates are a significant constituent of the non-icy lag deposits on the europan 

surface.  Their presence on the surface gives valuable insights into the past and present 

physiochemical processes that lead to their formation and emplacement, along with 

possibly hosting evidence of past biological activity on Europa (Fig. 1.3). 

 Without a protective atmosphere, the martian regolith is continually exposed to 

solar ultraviolet radiation, which likely results in photochemical production of oxidants 

and subsequent oxidation of any organic molecules that might be present (Encrenaz et al., 

2004; Oyama et al., 1977).  As a result, in situ investigations by martian rovers and 

landers have failed to detect the occurrence of organic compounds.  The Phoenix lander  

identified perchlorate (ClO4
-) at concentrations between 0.3-0.6 wt% in the soil, its 

presence is problematic as it can easily oxidize organic compounds, erasing any evidence 

of their past existence (Aubrey et al., 2009).        

1.4.2. Chemical Pathways and Preservation of Bio/organic Compounds on Mars 

 Fortunately, the detection of organic compounds is not restricted to in situ 

experiments, as the Planetary Fourier Spectrometer aboard the Mars Express Orbiter 

detected methane gas in the martian atmosphere (Formisano et al., 2004).  Its occurrence 

was later confirmed by Earth-based Fourier Transform Spectrometry (Krasnopolsky et 

al., 2004).  Atmospheric methane concentrations are between 0 and 30 ppbv (parts per 
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billion by volume), with a global mixing ratio of 10 ppbv (Formisano et al., 2004).  High 

concentrations were observed in spatially heterogeneous locations, signifying the 

methane is released from localized sources on the surface.  Continuous observations 

show that the methane has a short residence time, implying it is being replenished at rates 

faster than meteorite impact or magmatic activity can control (Oze and Sharma, 2005).  

As these are no longer a valid source, other explanations of the atmospheric methane 

include a by-product of methanogenic metabolism, emission through degassing by 

thermal activity, and cometary delivery (Formisano et al., 2004; Krasnopolsky et al., 

2004; Kress and McKay, 2004). 

 The bulk of the knowledge regarding martian organic matter comes from detailed 

investigations of the SNC (shergotite-nakhlite-chassignite) martian meteorites.  SNC 

meteorites contain many low and high mass complex organic molecules, such as 

aromatic, alkyl-substituted aromatic, oxygen-containing, and nitrogen-bearing aromatic 

hydrocarbons (Kotler et al., 2009; Sephton, 2002).  Organic compounds have also been 

identified when incremental combustion experiments released CO2 between 200–400°C, 

which is the typical range of carbon-bearing compounds (Jull et al., 1998; Wright et al., 

1989). 

 Due to the link between liquid water and biological activity on Earth, evidence of 

past surficial water have been taken as hopeful signs that Mars might once have 

supported life.  The presence of fluvial features provides direct evidence that liquid water 

was once present on the martian surface (Jolliff et al., 2006; Knoll and Grotzinger, 2006). 

Present-day conditions on Mars are too cold; with an atmosphere that is too thin, to 

support liquid water on its surface.  Thus, Mars must have had a thicker atmosphere in 
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order to sustain liquid water even sporadically in its past.  Presently, the martian surface 

does not appear to have the necessary conditions to support life.  By analogy with Earth, 

life may have originated on Mars early in its history, possibly during the end of the late 

heavy bombardment (3.8- 4.0 Ga) when the surface of Mars was wetter and warmer 

(Bibring et al., 2006; Knoll and Grotzinger, 2006; McKay, 1997). 

 The abundance of sulfate minerals on the martian evaporitic terrains and their 

association with water during their formation makes them ideal targets for biosignature 

investigation (Parnell et al., 2004).  Small quantities of bio/organic compounds can be 

preserved in the sulfate mineral lattice as intracrystalline inclusions or substitutions 

(Aubrey et al., 2006; Bowden and Parnell, 2007).  Such associations are often observed in 

terrestrial sulfate minerals, indicating the direct or indirect influence of biological activity 

in their formation (Aubrey et al., 2006; Bowden et al., 2005; Kotler et al., 2008; 

Richardson et al., 2008).  Sulfate deposits are easily susceptible to dissolution and erosion 

on Earth.   Fortunately, surficial water has been much less prevalent on Mars, implying 

sulfate minerals have not been exposed to much, if any, water (Aubrey et al., 2006; 

Martinez-Frias et al., 2006).  Thus, preservation of sulfate minerals is feasible over long 

geological time scales due to the martian atmospheric and dry, cold surface conditions.  

As a result, bio/organic compounds may also be preserved over billions of years when 

shielded within a sulfate mineral matrix (Aubrey et al., 2006; Kminek and Bada, 2006).     

 Evidence of microbial activity may also be found in the martian subsurface 

(Boston et al., 2001; Leveille and Datta, 2009).  Orbiter imagery and thermal anomalies 

have confirmed the presence of lava tubes and related structure in the large-scale basaltic 

edifices of Mars (Cushing et al., 2007; Riedel and Sakimoto, 2002; Wyrick et al., 2004).  
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On Earth, caves and lava tubes are unique environments that provide stable 

physiochemical conditions for both secondary mineralization and microbial growth.  

Such environments offer valuable insight into the diversity and resilience of past 

microbial and aqueous activity.  Likewise, martian caves and lava tubes may contain 

subsurface groundwater and provide habitable environments, both past and present (Grin 

et al., 1998; Schulze-Makuch et al., 2005).  These subsurface features may contain 

secondary minerals and water ice that harbor paleoenvironmental indicators and 

bio/organic compounds.  Such environments would also offer pristine conditions for 

secondary mineral and bio/organic compound preservation, providing shelter from 

surficial ultraviolet radiation, temperature fluctuations, and desiccation (Boston et al., 

2001).  Due to the low gravity, dry arid conditions, and extremely slow weathering rates, 

it is possible that subsurface features seen today could have existed during warmer and 

wetter periods of martian history (Leveille and Datta, 2009).  By offering shelter from 

harsh surface conditions, caves and lava tubes may preserve minerals and associated 

bio/organic compounds for longer than typical surface deposits.  As a result, caves and 

lava tubes may provide the most likely environment for preserving and finding 

bio/organic compounds on Mars (Leveille and Datta, 2007, 2009). 

1. 5. ORGANIC COMPOUNDS AND THEIR RELATIONSHIP TO BIOTIC AND ABIOTIC  
PROCESSES  

 
Terrestrial organic matter is so ubiquitous that is difficult to determine bio/organic 

compounds and organic matter of nonbiological origin.  Past studies of terrestrial samples 

largely suggest that the most accurate methodology is the use of carbon chemistry.  Other 

methods (morphological, mineralogical, isotopic) may always be part of planetary 
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explorations, but no one single methodology provides as much pertinent information as 

organic analysis.   

Because of the harsh atmospheric conditions on Mars and Europa, bio/organic 

compounds are not stable unless they can be associated with a protective mineral matrix.  

Size restraints between the mineral lattice and complex bio/organic compounds (nucleic 

acids, proteins, phospholipids, carbohydrates, steroids) make these organic compounds 

unlikely to be associated with minerals.  However, their precursor bio/organic 

compounds (amino acids, fatty acids, hydrocarbons) and other smaller bio/organic 

compounds may be adequately sized to be associated with the mineral matrix.  

Unfortunately, many of these smaller bio/organic compounds also have a nonbiological 

origin.  Therefore, in the search for molecular evidence of past or present biological 

activity in the solar system, it is imperative to be able to distinguish between organic 

compounds formed by abiotic processes and those synthesized by biological processes 

(Parnell et al., 2007a).  Abiogenic processes can make a wide range of organic 

compounds, such as amino acids, hydrocarbons and sugars.  Fortunately, bio/organic 

compounds have specific chemical characteristics (chirality, preferential number of 

carbons, isotopic distribution, structural isomers) that can distinguish them as having a 

biotic or abiotic origin (Table 1.1) (Kotler et al., 2009; Simoneit, 2004; Simoneit et al., 

1998).   

An important aspect of terrestrial life, and thus identifying biological activity, is 

the fact that all organisms utilize a distinct set of small compounds as building blocks to 

construct more complex bio/organic compounds.  Some of the more understood subunits 

include the 20 essential amino acids of proteins, the four nucleotides of DNA, and acetate 
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(C2H3O2) of fatty acids and lipids.  For example, the preferential accumulation of acetate 

subunits is seen in the formation of fatty acids (in the bacterial and eukaryotic domains of 

life) by the addition of acetate subunits. Acetate accumulation will always result in an 

even number of carbons in the fatty acid, thus growth of the fatty acid is accomplished by 

binding of additional acetate units producing an even number of carbons (e.g., C16, C18, 

C20) (Mathews et al., 2000).  The ability of acetate and other molecular subunits to 

construct more complex compounds reflects the propensity of these smaller compounds 

to be arranged in distinct chemical and structural configurations.  These configurations 

are called isomers, which are molecules having identical formulas but exhibit different 

spatial arrangements of their atoms.  These different configurations can lead to a number 

of important biological properties.  Biogenic amino acids are synthesized exclusively as 

using one of these isomeric structures (Peters et al., 2004).  These structures, called 

enantiomers, are compounds with different chirality but identical chemical formulas.  In 

contrast to biogenic amino acid formation, abiotic synthesis of amino acids has no 

preferential production regarding chirality, resulting in 1:1 racemic ratio of the 

enantiomers.  This preference of one enantiomer over another also pertains to sugars. 

Enantiomeric excess in either amino acids or sugars would strongly indicate a biological 

origin (Peters et al., 2004).  This biologic preference, to utilize one specific isomer, is in 

direct contrast to the thermodynamically-controlled pathways of abiotic organic synthesis 

(Lambert, 2008).   

 

 

 
 
 



 24 

Table 1.1.  Select biocompounds, their biological function, and distinguishing characteristics in 
 their identification. 
Biocompound Biological Function Characteristics 
Nucleic Acids Genetic information  Complex structure 
Proteins Building blocks of enzymes Complex structure 
Nucleotides Building blocks of nucleic acids Complex structure 
Hydrocarbons Building blocks of membranes Distinct number of carbons 
Isoprenoids* Membranes, quinones Repeating 5-carbon subunits 
Peptides Breakdown products of proteins Short chain of L-amino acids 
Amino Acids Building blocks of proteins Chirality  
Sugars Energy source, biosynthetic precursor Chirality 
Nucleobases Building blocks of nucleotides Fragile, contain N 
* Stable for longer periods of geological time 

 

The discovery of any complex family of organic compounds associated with life 

on Earth would have dramatic implications if found on Mars and Europa.  However, 

discovery of these large complex bio/organic compounds is unlikely due to the harsh 

surficial conditions of these planetary bodies.  As a result, the search for unambiguous 

signs of biological activity is largely focused on smaller bio/organic compounds, which 

could be protected and preserved within surficial minerals.  The discovery of repeating 

preference or patterns of carbon number, chirality, or structural isomers in these organic 

compounds would be extremely significant in interpreting and elucidating the emergence 

of life in the solar system.   

1.6. BACKGROUND OF GEOMATRIX-ASSISTED LASER DESORPTION/IONIZATION   
FOURIER TRANSFORM ION CYCLOTRON RESONANCE MASS SPECTROMETRY  

 
 Laser desorption mass spectrometry (LDMS) has been proposed to be a viable 

method in the search for extraterrestrial bio/organic compounds.  Biosignature detection 

is dependent on the concentrations of the bio/organic compound, ionization efficiency 

between the matrix and the analyte, and the instrument capabilities.  Therefore, 

maximizing the ionization efficiency of the matrix and improving the mass accuracy, 

resolution, detection limits and other instrument parameters are particularly important.  
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Geomatrix-assisted laser desorption/ionization (GALDI) combined with a FTICR-MS has 

shown repeatedly to detect biosignatures in a wide host of mineral matrices (Kotler et al., 

2008; Richardson et al., 2008; Richardson et al., 2009c; Yan et al., 2007a; Yan et al., 

2007c).  This technique is capable of much greater resolution and mass accuracy than 

traditional LDMS techniques.  For example, the FTICR-MS has high resolution (< 10, 

000), high mass accuracy (mass error of ± 0.003 amu), high sensitivity (≤  400 ions for 

peaks with signal-to-noise ratio ~3), high spatial resolution, automated mapping 

capabilities, low detection limits (~ 3 parts per trillion), and automated data acquisition 

and interpretation capabilities (Richardson et al., 2008; Yan et al., 2007a), all of which 

can be acquired using a single laser shot, which is unusual compared to conventional 

LDMS instruments. 

 Most bio/organic compounds require assistance in desorption and ionization 

processes to produce ions that can be observed, exceptions being polycyclic aromatic 

hydrocarbons and some aromatic compounds (Macha et al., 2000; Richardson et al., 

2009c; Yan et al., 2007c).  Thus, the focus of GALDI-FTICR-MS studies is the ability of 

a mineral matrix to facilitate the desorption and ionization of bio/organic compounds. 

Previous studies using GALDI-FTICR-MS have shown that the type of mineral moiety 

directly influences the bio/organic peaks observed in the spectrum (Kotler et al., 2008; 

Richardson et al., 2008; Richardson et al., 2009c; Yan et al., 2007a; Yan et al., 2007c).  

For example, certain Fe-bearing oxides are incapable of assisting in analyte detection as 

they produce either no signal or highly fragmented peaks (Yan et al., 2007a).  The 

concentration of the bio/organic compound is also particularly important, because as the 

ratio of the bio/organic compound to mineral decreases, the signal attributable to a 
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bio/organic compound tends to increase (Richardson et al., 2008).  This is likely due to 

the bio/organic compound being completely surrounded and incorporated into the mineral 

matrix.  Thus, biosignatures can be easily and accurately detected even at extremely low 

concentrations.  Not only does this matrix surrounding the analyte lower the limit of 

detection, but results in the improved ability to detect minute quantities of remnant 

bio/organic compounds that may have been heterogeneously dispersed within a mineral. 

 The type of bio/organic compound-mineral association (e.g., sorption, inclusion, 

substitution) is another critical aspect in bio/organic signature detection in the solar 

system.  Exogenous ultraviolet radiation, on solar bodies that lack a substantial protective 

atmosphere, will easily degrade bio/organic compounds if not properly shielded by a 

mineral.  On the surface, the bio/organic compound can survive if adequately entrained 

within the mineral matrix, where it would have a much greater chance of being shielded.  

Thus, understanding the differences between these associations (inclusion, adsorption, or 

substitution) is essential in GALDI-FTICR-MS studies.    

 The ability and parameters of GALDI in conjunction with the FTICR-MS, makes 

this a unique and crucial instrument in the search for biosignatures in the solar system.  

Although the instrument is too large for space exploration, it accurately detects and 

characterizes organic, biological, and mineralogical constituents in a range of terrestrial 

samples.  Furthermore, its ability to assist in characterizing a wide range of bio/organic 

compounds associated with relevant extraterrestrial minerals can further assist in future 

space-based LDMS missions searching for life in the solar system as well as analysis of 

samples returned to Earth. 

 



 27 

1.7. REFERENCES 

Aubrey, A., Cleaves, H.J., Chalmers, J.H., Skelley, A.M., Mathies, R.A., Grunthaner, 
F.J., Ehrenfreund, P. and Bada, J.L., 2006. Sulfate minerals and organic 
compounds on Mars. Geology 34(5), 357-360. 

Aubrey, A., Parker, E., Grunthaner, F. and Bada, J., 2009. Implications of the presence of 
surface perchlorate for in situ detection of organic compounds during future 
missions, The New Martian Chemistry Workshop, Medford, Ma, pp. 1. 

Banin, A., Han, F. and Cicelsky, A., 1997. Aciditic volatiles and the Mars soil. J. 
Geophys. Res 102(E6), 13341-13356. 

Bibring, J.P., Langevin, Y., Mustard, J.F., Poulet, F., Arvidson, R., Gendrin, A., Gondet, 
B., Mangold, N., Pinet, P. and Forget, F., 2006. Global mineralogical and aqueous 
mars history derived from OMEGA/Mars express data. Science 312(5772), 400-
404. 

Borg, L. and Drake, M., 2005. A review of meteorite evidence for the timing of 
magmatism and of surface or near-surface liquid water on Mars. J. Geophys. Res 
91(B13), E207-E214. 

Boston, P., Spilde, M., Northup, D., Melim, L., Soroka, D., Kleina, L., Lavoie, K., Hose, 
L., Mallory, L., Dahm, C., Crossey, L. and Schelble, R., 2001. Cave biosignatures 
suites: microbes, minerals, and Mars. Astrobiology 1, 25-55. 

Bowden, S., Cooper, J. and Parnell, J., 2005. The extraction of organic compound from 
sulfate minerals for astrobiological exploration. Lunar and Planetary Science 
XXXVI(Abstract 1325). 

Bowden, S. and Parnell, J., 2007. Intracrystalline lipids within sulfates from the 
Haughton Impact Structure-implications of survival of lipids on Mars. Icarus 187, 
422-429. 

Brown, M. and Hill, R., 1996. Discovery of an extended sodium atmosphere around 
Europa. Nature 380, 229-231. 

Burnett, D., 1995. Competition between Na2SO4 and Na sulfide in teh upper crust of Io. 
Journal of Geophysical Research 100, 21265-21270. 

Burns, R.G., 1987. Ferric Sulfates on Mars. Journal of Geophysical Research 92(B4), 
E570-E574. 

Burns, R.G. and Fisher, D.S., 1990a. Evolution of Sulfide Mineralization on Mars. 
Journal of Geophysical Research-Solid Earth and Planets 95(B9), 14169-14173. 



 28 

Burns, R.G. and Fisher, D.S., 1990b. Iron-sulfur mineralogy of Mars: Magmatic 
evolution and chemical weathering products. J. Geophys. Res. 95, 14,415 – 
14,421. 

Carlson, R., Smythe, W., Baines, K., Barbinis, E., Becker, K., Burns, R., Calcutt, S., 
Calvin, W., Clark, R., Danielson, G., Davies, A., Drossart, P., Encrenaz, T., 
Fanale, F., Granahan, J., Hanse, G., Herrera, P., Hibbitts, C., Hui, J., Irwin, P., 
Johnson, T., Kamp, L., Kieffer, H., Leader, F., Lellouch, E., Lopes-Gautier, R., 
matson, D., McCord, T., Mehlman, R., Ocampo, A., Orton, G., Roos-Serote, M., 
Segura, M., Shirley, J., Soderblom, L., Stevenson, A., Taylor, F., Torson, J., Weir, 
A. and Weissman, P., 1996. Near-infrared spectroscopy and spectral mappping of 
Jupiter and teh Galilean satellite: results from Galileo's initial orbit. Science 274, 
385-388. 

Chela-Flores, J., 2006. The sulphur dilemma: are there biosignatures on Europa's icy and 
patchy surface? International Journal of Astrobiology 5, 17-22. 

Chevrier, V. and Mathe, P.E., 2006. Mineralogy and evolution of the surface of Mars: A 
review. Planetary and Space Science 55(3), 289-314. 

Christensen, P.R., Wyatt, M.B., Glotch, T.D., Rogers, A.D., Anwar, S., Arvidson, R.E., 
Bandfield, J.L., Blaney, D.L., Budney, C., Calvin, W.M., Faracaro, A., Fergason, 
R.L., Gorelick, N., Graff, T.G., Hamilton, V.E., Hayes, A.G., Johnson, J.R., 
Knudson, A.T., McSween, H.Y., Mehall, G.L., Mehall, L.K., Moersch, J.E., 
Morris, R.V., Smith, M.D., Squyres, S.W., Ruff, S.W. and Wolff, M.J., 2004. 
Mineralogy at Meridiani Planum from the Mini-TES experiment on the 
Opportunity Rover. Science 306(5702), 1733-1739. 

Chyba, C., 2000. Energy for microbial life on Europa. Nature 406(6794), 391-395. 

Clark, B. and Baird, A., 1979. Is the martian lithosphere sulfur rich? Journal of 
Geophysical Research 84(B14), 8395-8403. 

Clark, B., Baird, A., Rose, H., Toulmin, P., Keil, K., Castro, A.J., Kelliher, W.C., Rowe, 
C.D. and Evans, P.H., 1976. Inorganic analyses of martian surface samples at the 
Viking landing sites. Science 194, 1283-1288. 

Clark, B.C., Morris, R.V., McLennan, S.M., Gellert, R., Jolliff, B., Knoll, A.H., Squyres, 
S.W., Lowenstein, T.K., Ming, D.W., Tosca, N.J., A., Y., Christensen, P.R., 
Gorevan, S., Bruckner, J., Calvin, W., Dreibus, G., Farrand, W., Klingelhoefer, 
G., Waenke, H., Zipfel, J., Bell III, J.F., Grotzinger, J., McSceen, H.Y. and 
Rieder, R., 2005. Chemistry and mineralogy of outcrops at Meridiani Planum. 
Earth and Planetary Science Letters 240, 74-94. 

Cooper, J., Johnson, R., Mauk, B., Garrett, H. and Gehrels, N., 2001. Energetic ion and 
electron irradiation of the icy galilean satellites. Icarus 149, 133-159. 



 29 

Cushing, G.E., Titus, T.N., Wynne, P.R. and Christensen, P.R., 2007. Themis observes 
possible cave skylights on Mars. Geophysical Research Letters 34(L17201 ), 
Doi:10.1029/2007/2007GL030709. 

Dongyan, W., Zhenmin, L., Xiaolin, D. and Shaokang, X., 1998. Biomineralization of 
mirabilite deposits of Barkol Lake, China. Carbonates & Evaporites 13, 86-89. 

Encrenaz, T., Bezard, B., Greathouse, T., Richter, L., Lacy, J., Atreya, S., Wong, A., 
Lebonnis, S., Lefevre, F. and Forget, F., 2004. Hydrogen peroxide on 
Mars:evidence for spatial and seasonal variations. Icarus 170(2), 424-429. 

Eugster, H. and Hardie, L., 1978. Saline Lakes. Lakes: chemistry, geology, physics. 
Springer-Verlag, 237-293 pp. 

Fanale, F.P., Li, Y.-H., De Carlo, E., Farley, C., Sharma, S.K., Horton, K. and Granahan, 
J.C., 2001. An experimental estimate of Europa's "ocean" composition 
independent of Galileo orbital remote sensing. Journal of Geophysical Research 
106(E7), 14595-14600. 

Formisano, V., Atreya, V., T., E., Ignatiev, N. and Giuranna, M., 2004. Detection of 
methane in the atmosphere of Mars. Science 306, 1758-1761. 

Gaidos, E., Nealson, K. and Kirschvink, J., 1999. LIfe in Ice-Covered Oceans. Science 
284, 1631-1633. 

Garrett, D., 2001. Sodium sulfate: handbook of deposits, processing, properites, and use. 
Academic Press, London, UK. 

Gendrin, A., Mangold, N., Bibring, J., Langevin, Y., Gondet, B., Poulet, F., Bonello, G., 
Quantin, C., Mustard, J., Arvidson, R. and LeMouelic, S., 2005. Sulfates in 
Martian Layered Terrains: The OMEGA/Mars Express View. Science 307(5715), 
1587-1591. 

Grin, E., Cabrol, N. and McKay, C., 1998. Caves in the martian regolith and their 
significance for exobiology exploration, 29th Lunar and Planetary Science 
Conference, Houston, TX, pp. Abstract #1012. 

Grundy, W., Buratti, B., Cheng, A., Emery, J., Lunsford, A., McKinnon, W., Moore, J., 
Newman, S., Olkin, C., Reuter, D., Schenk, P., Spencer, J., Stern, S., Throop, H. 
and Weaver, H., 2007. New Horizons mapping of Europa and Ganymede. Science 
318, 234-237. 

Hill, C. and Forti, P., 1997. Cave minerals of the world, 2nd National Speleological 
Society, Huntsville, AL. 

Howell, R., Nash, D., Geballe, T. and Cruikshank, D., 1989. High-resolution infrared 
spectroscopy of Io and possible surface materials. Icarus 78, 27-37. 



 30 

Hughes, S.S., Smith, R., Hackett, W. and Anderson, S., 1999. Mafic volcanism and 
environmental geology of the eastern Snake River Plain. In: S.S. Hughes and G. 
Thackray (Editors), Guidebook to the geology of eastern Idaho. Idaho Museum of 
Natural History, Pocatello, Idaho, pp. 143-168. 

Johnson, M. and Burnett, D., 1993. SO2-rock interaction on Io: reaction under highly 
oxidizing conditions. Journal of Geophysical Research 98, 1233-1230. 

Johnson, R.E., 2000. Sodium at Europa. Icarus 143, 429-433. 

Jolliff, B., McLennan, S. and Team, a.t.A.S., 2006. Evidence for water at Meridiani 
Elements 2, 163-167. 

Jull, A., Courtney, C., Jeffrey, D. and Beck, J., 1998. Isotopic evidence for a terrestrial 
source of organic compounds found in martian meteorites Allan Hills 84001 and 
Elephant Moraine 79001. Science 279(5349), 366-369. 

Kargel, J.S., Kaye, J.Z., Head, J.W.I., Marion, G.M., Sassen, R., Crowly, J.K., 
Ballesteros, O.P., Grant, S.A. and Hogenboom, D.L., 2000. Europa's crust and 
ocean: origin, composition, and the prospects for life. Icarus 148, 226-265. 

Karlo, J.H., Jorgenson, D.B. and Shineldecker, C.L., 1980. Sulfate minerals in Snake 
River Plain volcanoes. Northwest Science 54(3), 178-182. 

Khurana, K., Kivelson, M., Stevenson, D., Schubert, G., Russell, C., Walker, R. and 
Polansky, C., 1998. Induced magnetic fields as evidence for subsurface oceans in 
Europa and Callisto. Nature 395, 777-780. 

Kivelson, M., Khurana, K., Joy, S., Russell, C., Southwood, D., Walker, R. and Polansky, 
C., 1997. Europa's magnetic signature: report from Galileo's pass on 19 December 
1996. Science 276, 1239-1241. 

Kivelson, M., Khurana, K. and Volwerk, M., 2002. The permanent and inductive 
magnetic moments of Ganymede. Icarus 157, 507-522. 

Kminek, G. and Bada, J., 2006. The effect of ionizing radiation on the preservation of 
amino acids next term on Mars. Earth and Planetary Science Letters 245(1-2), 1-
5. 

Knoll, A. and Grotzinger, J., 2006. Water on Mars and the prospect of martian life. 
Elements 2, 169-173. 

Kotler, J.M., Hinman, N.W., Yan, B., Stoner, D.L. and Scott, J.R., 2008. Glycine 
identification in natural jarosites using laser-desorption Fourier transform mass 
spectrometry: Implications for the search for life on Mars. Astrobiology 8, 253-
266. 



 31 

Kotler, J.M., Richardson, C.D., W., H.N. and Scott, J.R., 2009. The stellar stew: 
distribution of extraterrestrial organics in the universe. In: V.A. Basiuk (Editor), 
From simple molecules to primitive life. American Scientific Publishers, 
Valencia, CA, pp. in press. 

Krasnopolsky, V., Maillard, J. and Owen, T.C., 2004. Detection of methane in the 
martian atmosphere: evidence for life? Icarus 172, 537-547. 

Kress, M. and McKay, C.P., 2004. Formation of methane in comet impacts: Implications 
for Earth, Mars, and Titan. Icarus 168(2), 475-483. 

Kuntz, M., Champion, D., Spiker, E. and Lefebvre, R., 1986. Contrasting magma types 
and steady-state, volume-predictable volcanism along the great rift, Idaho. GSA 
bulletin 97, 579-594. 

Kuntz, M., Covington, H. and Schorr, L., 1992. An overview of basalitc volcanism of the 
eastern Snake River Plain, Idaho. In: P. Link, M. Kuntz and L. Platt (Editors), 
Regional geology of eastern Idaho and western Wyoming. Geological Society of 
America memoir, pp. 227-267. 

Kuzmin, R.O., Christensen, P.R. and Zolotov, M.Y., 2004. Results of global mapping of 
bound water distribution in the martian surface material base on TES data. 
Geophysical Research Abstracts 6(07008). 

Lambert, J., 2008. Adsorption and polymerization of amino acids on mineal surfaces: A 
review. Origins of Life and Evolution of the Biosphere 38, 211-242. 

Leeman, W., Vitaliano, C. and Prinz, M., 1976. Evolved lavas from the Snake River 
Plain: Craters of the Moon National Monument, Idaho. Contributions to 
Mineralogy and Petrology 56, 35-60. 

Leveille, R. and Datta, S., 2007. Basaltic caves and lava tubes: astrobiological targets on 
Earth and Mars, Lunar and Planetary Science XXXVIII, Houston, TX. 

Leveille, R. and Datta, S., 2009. Lava tubes and basaltic caves as astrobiological targets 
on Earth and Mars: A review. Planet. Space Sci, 10.1016/j.pss.2009.06.004. 

Lowell, R. and Dubose, M., 2005. Hydrothermal systems on Europa. Geophysical 
Research Letters 32, L05202.1-L05202.4. 

Macha, S.F., Limbach, P.A. and Savickas, P.J., 2000. Application of nonpolar matrices 
for the analysis of low molecular weight nonpolar synthetic polymers by matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry. Journal Of 
The American Society For Mass Spectrometry 11(8), 731-737. 

Madden, M.E.E., Bodnar, R.J. and Rimstidt, J.D., 2004. Jarosite as an indicator of water-
limited chemical weathering on Mars. Nature 431(7010), 821-823. 



 32 

Mangold, N., Gendrin, A., Gondet, B., LeMouelic, S., Quantin, C., Ansan, V., Bibring, J., 
Langevin, Y., Masson, P. and Neukum, G., 2008. Spectral and geological study of 
the sulfate-rich region of West Candor Chasma, Mars. Icarus 194, 519-543. 

Martinez-Frias, J., Amaral, G. and Vazquez, L., 2006. Astrobiological significance of 
minerals on Mars surface environment. Reviews in Environmental Science and 
Biotechnology 5, 219-231. 

Mathews, C., van Holde, K. and Ahern, K., 2000. Biochemistry. Addison Wesley 
Longman, San Francisco. 

McCord, T., Orlando, T., Teeter, G., Hanse, G., Sieger, M., Petrik, N. and van Keulen, 
L., 2001a. Thermal and radiation stability of the hydrated salt minerals epsomite, 
mirabilite, and natron under Europa environmental conditions. Journal 
Geophysical Research 106, 3311-3319. 

McCord, T.B., Hansen, G., Clark, R.N., Martin, P., Hibbitts, C.A., Fanale, F., Granahan, 
J., Segura, M., Matson, D.L., Johnson, T., Carlson, R., Smythe, W., Danielson, G. 
and Team, T.N., 1998a. Non-water-ice constituents in the surface material of the 
icy Galilean satellites from the Galileo near-infrared mapping spectrometer 
investigation. J. Geophys. Res 103(E4), 8603-8626. 

McCord, T.B., Hansen, G., Fanale, F., Carlson, R., Matson, D.L., Johnson, T., Smythe, 
W., Crowley, J., Martin, P., Ocampo, A., Hibbitts, C.A., Granahan, J. and Team, 
N., 1998b. Salts on Europa's surface detected by Galileo's near infrared mapping 
spectrometer. Science 280, 1242-1245. 

McCord, T.B., Hansen, G.B. and Hibbitts, C.A., 2001b. Hydrates salt minerals on 
Ganymede's surface: Evidence of an ocean below. Science 292, 1523-1525. 

McCord, T.B., Hansen, G.B., Matson, D.L., Johnson, T.V., Crowley, J.K., Fanale, F.P., 
Carlson, R.W., Smythe, W.D., Martin, P.D., Hibbitts, C.A., Granahan, J.C. and 
Ocampo, A., 1999. Hydrated salt minerals on Europa's surface from the Galileo 
near-infrared mapping spectrometer (NIMS) investigation. Journal of Geophysical 
Research 104, 11827-11851. 

McKay, C.P., 1997. The search for life on Mars. Origins of Life and Evolution of the 
Biosphere 27(1-3), 263-289. 

McLennan, S.M., Bell, J.F., Calvin, W.M., Christensen, P.R., Clark, B.C., de Souza, 
P.A., Farmer, J., Farrand, W.H., Fike, D.A., Gellert, R., Ghosh, A., Glotch, T.D., 
Grotzinger, J.P., Hahn, B., Herkenhoff, K.E., Hurowitz, J.A., Johnson, J.R., 
Johnson, S.S., Jolliff, B., Klingelhofer, G., Knoll, A.H., Learner, Z., Malin, M.C., 
McSween, H.Y., Pocock, J., Ruff, S.W., Soderblom, L.A., Squyres, S.W., Tosca, 
N.J., Watters, W.A., Wyatt, M.B. and Yen, A., 2005. Provenance and diagenesis 
of the evaporite-bearing Burns formation, Meridiani Planum, Mars. Earth and 
Planetary Science Letters 240(1), 95-121. 



 33 

McSween, H.Y., 2004. Basaltic rocks analyzed by the Spirit Rover in Gusev Crater. 
Science 305, 842-845. 

Morris, R.C., Anderson, R.C., Earl, S., McCurry, M. and Pearson, L., 1995. A Mineral 
and Biotic Survey of Two Caves at Craters of the Moon National Monument. 
Environmental Science and Research Foundation. 

Orlando, T.M., McCord, T.B. and Grieves, G.A., 2005. The chemical nature of Europa 
surface material and the relation to a subsurface ocean. Icarus 177, 528-533. 

Oyama, V., Berdahl, B. and Carle, G., 1977. Preliminary findings of the Viking gas 
exchange experiment and a model for martian surface chemistry. Nature 265, 
100-114. 

Oze, C. and Sharma, M., 2005. Have olivine, will gas: serpentinization and the abiogenic 
production of methane on Mars. Geophysical Research Letters 32, L10203. 

Parnell, J., Cullen, D., Sims, M., Bowden, S., Cockell, C., Court, R., Ehrenfreund, P., 
Gaubert, F., Grant, W., Parro, V., Rohmer, M., Sephton, M., Stan-Lotter, H., 
Steele, A., Toporski, J. and Vago, J., 2007. Searching for Life on Mars: Selection 
of Molecular Targets for ESA's Aurora ExoMars Mission. Astrobiology 7, 578-
604. 

Parnell, J., Lee, P., Cockell, C. and Osinski, G., 2004. Microbial colonization in impact-
generated hydrothermal sulphate deposits, Haughton impact structure, and 
implications for sulphates on Mars. International Journal of Astrobiology 3, 247-
256. 

Peck, S.B., 1974. Unusual mineralogy of the Crystal Pit Spatter Cone, Craters of the 
Moon National Mounument, Idaho. NSS Bulletin 36(1), 19-24. 

Peters, K., Moldowan, J. and Walters, C., 2004. The Biomarker Guide. Cambridge 
University Press, Cambridge, MA. 

Pierazzo, E. and Chyba, C., 2002. Cometary delivery of biogenic elements to Europa. 
Icarus 157, 120-127. 

Prieto-Ballesteros, O. and Kargel, J., 2005. Thermal state and complex geology of a 
heterogeneous salty crust of Jupiter's satellite, Europa. Icarus 173, 212-221. 

Putirka, K., Kuntz, M., Unruh, D. and Vaid, N., 2009. Magma evolution and ascent at the 
Craters of the Moon and neighboring volcanic fields, southern Idaho, USA: 
Implications for the evolution of polygenetic and monogenetic volcanic fields. 
Journal of Petrology 50, 1639-1665. 

Reid, M., 1995. Processes of mantle enrichment and magmatic differentiation in the 
eastern Snake River Plain: Th isotope evidence. Earth and Planetary Science 
Letters 131, 239-254. 



 34 

Richardson, C., Hinman, N., McHenry, L., Kotler, J. and Scott, J., 2009a. Secondary 
sulfate mineralization and basaltic chemistry of Craters of the Moon National 
Monument, Idaho: A view into the martian subsurface. Chemical Geology, 
submitted. 

Richardson, C., Hinman, N., McHenry, L. and Scott, J., 2009b. Biological activity in the 
mineralization of secondary deposits within the basaltic subsurface of Craters of 
the Moon National Monument: Implications for the search for life on Mars. Earth 
and Planetary Science Letter, in prep. 

Richardson, C., Hinman, N., McJunkin, T., Kotler, J. and Scott, J., 2008. Exploring 
biosignatures associated with thenardite by geomatrix-assisted laser 
desorption/ionization Fourier transform ion cyclotron resonance mass 
spectrometry (GALDI-FTICR-MS). Geomicrobiology Journal 25(7), 432-440. 

Richardson, C., Hinman, N. and Scott, J., 2009c. Effect of thenardite on the direct 
dectection of aromatic amino acids: Implications for the search for life in the solar 
system. International Journal of Astrobiology 8(4), 291-300. 

Riedel, S. and Sakimoto, S., 2002. MOLA topgraphic constraints on lava tube effusion 
rates for Alba Patera, Mars, 33rd Lunar and Planetary Science Conference, pp. 
Abstract #1410. 

Rodriquez-Navarro, C., Doehne, E. and Sebastian, E., 2000. How does sodium sulfate 
crystalllize? Implications for the decay and testing of building materials. Cement 
and Concrete Research 30, 1527-1534. 

Schulze-Makuch, D., Irwin, L., Lipps, J., LeMone, D., Dohm, J. and Fairen, A., 2005. 
Scenarios for the evolution of life on Mars. Journal of Geophysical Research E: 
Planets 110, 1-12. 

Sephton, M.A., 2002. Organic compounds in carbonaceous meteorites. Natural Product 
Reports 19(3), 292-311. 

Simoneit, B., 2004. Biomarker (molecular fossils) as geochemical indicators of life. 
Advances in Space Research 33, 1255-1261. 

Simoneit, B., Summons, R. and Jahnke, L., 1998. Biomarkers as tracers for life on early 
Earth and Mars. Origins of Life and Evolution of the Biosphere 28, 475-483. 

Squyres, S.W. and Knoll, A.H., 2005. Sedimentary Geology at Meridiani Planum, Mars. 
Earth and Planetary Science Letters 240(1), 1-10. 

Tosca, N.J. and McLennan, S.M., 2006. Chemical divides and evaporite assemblages on 
Mars. Earth and Planetary Science Letters 241, 21-31. 

Tosca, N.J., McLennan, S.M., Lindsley, D.H. and Schoonen, M.A.A., 2004. Acid-sulfate 
weathering of synthetic Martian basalt: The acid fog model revisited 



 35 

 .Journal of Geophysical Research 109. 

Vance, S., Harnmeijer, J., Kimura, J., Hussmann, H., deMartin, B. and Brown, J., 2007. 
Hydrothermal systems in small ocean planets. Astrobiology 7, 987-1005. 

Wanke, H., Bruckner, J., Dreibus, G., Rieder, R. and Ryabchikov, I., 2001. Chemical 
composition of rocks and soils at the Pathfinder site. Space Sci. Rev 96, 317-330. 

Wiedemann, H. and Smykatz-Kloss, W., 1981. Thermal studies of thenardite. 
Thermochimica Acta 50, 17-29. 

Wiens, R.C., Burnett, D.S., Calaway, W.F., Hansen, C.S., Lykke, K.R. and Pellin, M.J., 
1997. Sputtering products of sodium sulfate: Implications for Io's surface adn for 
sodium-bearing molecules in the Io torus. Icarus 128(2), 386-397. 

Wilson, J. and Schneider, N., 1994. Io's fast sodium: implications for molecular and 
atomic atmospheric escape. Icarus 111, 31-44. 

Wright, I., Grady, M. and Pillinger, C., 1989. Organic materials in a martian meteorite. 
Nature 340, 220-222. 

Wyrick, D., Ferrill, D., Morris, A., Colton, S. and Sims, D., 2004. Distribution, 
morphology, and origins of martian pit crater chains. Journal of Geophysical 
Research 109, E06005. 

Yan, B., Stoner, D.L., Kotler, J.M., Hinman, N.W. and Scott, J.R., 2007a. Detection of 
biosignatures by geomatrix-assisted laser desorption/ionization (GALDI) mass 
spectrometry. Geomicrobiology Journal 24, 379-385. 

Yan, B., Stoner, D.L. and Scott, J.R., 2007b. Direct LD-FTMS detection of mineral-
associated PAHs and their influence on the detection of other organics. Talanta 
72, 634-641. 

Yen, A., Gellert, R., Schroder, C., Morris, R.V., Bell III, J.F., Knudson, A.T., Clark, 
B.C., Ming, D.W., Crisp, J.A., Arvidson, R., Blaney, D., Bruckner, J., 
Christensen, P.R., Des Marais, D.J., de Souza, P.A., Economou, T., Ghosh, A., 
Hahn, B.C., Herkenhoff, K.E., Haskin, L., Hurowitz, J.A., Jolliff, B., Johnson, J., 
Klingelhoefer, G., Madsen, M.B., McLennan, S.M., McSween, H.Y., Richter, L., 
Rieder, R., Rodionov, D., Soderblom, L., Squyres, S.W., Tosca, N.J., Wang, A., 
Wyatt, M. and Zipfel, J., 2005. An integrated view of the chemistry and 
mineralogy of martian soils. Nature 436, 49-57. 

Zhu, M., Xie, H., Guan, H. and Smith, R., 2006. Mineral and lithologic mapping of 
martian low albedo regions using OMEGA data, Lunar and Planetary Science 
XXXVII pp. 2173.pdf. 



 36 

Zolotov, M.Y. and Shock, E.L., 2001. Composition and stability of salts on the surface of 
Europa and their oceanic origin. Journal of Geophysical Research 106(E12), 
32815-32827. 

Zolotov, M.Y. and Shock, E.L., 2005. Formation of jarosite-bearing deposits through 
aqueous oxidation of pyrite at Meridiani Planum, Mars. Geophysical Research 
Letters 32(21). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 



 37 

CHAPTER 2:  EXPLORING BIOSIGNATURES ASSOCIATED WITH 
THENARDITE BY GEOMATRIX-ASSISTED LASER 
DESORPTION/IONIZATION FOURIER TRANSFORM ION CYCLOTRON 
RESONANCE MASS SPECTROMETRY (GALDI-FTICR-MS)  
 
C. Doc Richardson1, Nancy W. Hinman1, Timothy R. McJunkin2a, J. Michelle Kotler1, 
and Jill R. Scott2b 
 

1Geosciences Department, University of Montana, Missoula, MT  59812 
2aIndustrial Technology and 2bChemical Sciences, Idaho National Laboratory, Idaho 
Falls, ID  83415 
 

Short title:  BIOSIGNATURES IN THENARDITE BY GALDI-FTICR-MS 

 

2.1 ABSTRACT 

Geomatrix-assisted laser desorption/ionization (GALDI) in conjunction with a 

Fourier transform ion cyclotron resonance mass spectrometer (FTICR-MS) has been 

employed to determine how effectively bio/organic molecules associated with the mineral 

thenardite (Na2SO4) can be detected.  GALDI is based on the ability of the mineral host 

to assist desorption and ionization of bio/organic molecules without additional sample 

preparation. When glycine was mixed with thenardite, glycine was deprotonated to 

produce C2H4NO2
- at m/z 74.025.  The combination of stearic acid with thenardite 

produced a complex cluster ion at m/z 390.258 in the negative mode, which was assigned 

a composition of C18H39O7Na-.  A natural sample of thenardite from Searles Lake in 

California also produced a peak at m/z 390.260.  The bio/organic signatures in both the 

laboratory-based and natural samples were heterogeneously dispersed as revealed by 

chemical imaging. The detection limits for the stearic acid and thenardite combination 

were estimated to be 3 parts per trillion or ~7 zeptomoles (10-21) per laser spot.  Attempts 

to improve the signal-to-noise ratio by co-adding FTICR-MS data predetermined to 
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contain the biosignatures of interest revealed problems due to a lack of phase coherence 

between data sets. 

 
Key words:  glycine, stearic acid, geomatrix, evaporite, GALDI, laser desorption, mass 

spectrometry, FTICR-MS. 

 
2.2. INTRODUCTION 

Laser desorption mass spectrometry (LDMS) has been suggested as a method for 

searching for signs of life for both terrestrial and extraterrestrial geological samples 

because it should not require sample preparation as do many other methods under 

consideration for detecting bio/organic compounds (Botta and Bada, 2002; Kujawinski et 

al., 2002; Navarro-Gonzalez et al., 2006; Rodier et al., 2001).  In addition, it is also 

possible to simultaneously obtain both mineral and bio/organic signatures from the same 

analysis (Yan et al., 2007b).  Most of the initial research using LDMS to detect organic 

compounds associated with geological matrices has been on samples, such as meteorites 

(Elsila et al., 2004; Kovalenko et al., 1992), that contain polycyclic aromatic 

hydrocarbons (PAHs) (Bezabeh et al., 1997; Dale et al., 1994; Hankin and John, 1999; 

Rodgers et al., 2000; Zimmermann et al., 2000). However, PAHs appear to ionize well 

with LDMS when associated with any mineral because they can self-ionize and even 

assist the ionization of other bio/organic compounds (Macha et al., 2000; Vermillion-

Salsbury and Hercules, 2002; Yan et al., 2007b).  Most other bio/organic compounds 

require some assistance for desorption and ionization processes to produce ions that can 

be observed by the mass spectrometer (Karas and Hillenkamp, 1988; Stump et al., 2002; 

Tanaka et al., 1988).  Our research focuses on the ability of minerals to perform this 
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desorption/ionization assistance, a method referred to as geomatrix-assisted laser 

desorption/ionization (GALDI) (Yan et al., 2007b). 

Previously, GALDI in conjunction with a laser desorption Fourier transform ion 

cyclotron resonance mass spectrometer (FTICR-MS) was investigated using halite 

(NaCl) and hematite (Fe2O3) with the amino acids histidine, threonine, and cysteine as 

well as the small cyclical protein gramicidin S (Yan et al., 2007b).  In general, halite 

samples produced the expected cation-attached bio/organic ions (i.e., [M+Na]+, where M 

is the molecular formula).  The laboratory-based samples were prepared by two different 

methods: 1) application of a solution of the bio/organic compound to the geomatrix 

surface and 2) physically mixing the dry bio/organic compound with the geomatrix.  The 

surface applied sample preparation used by Yan et al. (2007a) is similar to surface-

assisted laser desorption/ionization (SALDI) (Chen et al., 2008; Kim and Kang, 2000; 

Speir and Amster, 1992; Wu et al., 2007), while the physically mixed sample preparation 

is analogous to matrix-assisted laser desorption/ionization (MALDI) (Karas and 

Hillenkamp, 1988b; Stump et al., 2002; Tanaka et al., 1988). Yan et al. (2007a) reported 

that the physically mixed samples tended to yield mass spectra with less fragmentation 

and better signal-to-noise ratios than those samples that were applied to the surface.  This 

observation was attributed to bio/organic molecules being surrounded by an excess 

number of geomatrix particles in the physically mixed samples.  Thus, the excess 

geomatrix particles absorbed most of the laser power and protect the bio/organic 

molecules from fragmentation.  In MALDI and SALDI, the matrix or surface substrate 

are typically chosen because they absorb efficiently at the laser wavelength (Allwood et 

al., 1997).  For GALDI, Yan et al. (2007a) used a laser wavelength of 355 nm for all of 
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the mineral samples, including the sodium salt NaCl (halite) that only absorbs strongly in 

the deep ultraviolet (~245 nm) (Müller, 1927). Thus, the sodium salt/laser interaction 

most likely involved multiphoton interactions. While the mechanism(s) for laser-induced 

desorption of alkali salts has been investigated (Fernandez-Lima et al., 2008), the process 

is not thoroughly understood.  Yan et al. (2007a) speculated that the ionization efficiency 

for the physically mixed samples was increased relative to the surface-applied samples 

because more geomatrix particles were desorbed per laser shot providing a greater chance 

for the cationization of the analytes.  In the case of hematite, no bio/organic signatures 

were observed with either sample preparation. There are few reports of cationization of 

organic compounds by iron using LDMS and results are generally poor compared to 

cationization by alkali metals (Budimir et al., 2007; Speir et al., 1993; Yalcin et al., 

2002).  Iron cationization has only been observed successfully using GALDI for the 

siderophore desferrioxamine B (Scott et al., 2007). 

Jarosite as a geomatrix for GALDI has also been studied because the jarosite 

group minerals have been discovered on the martian surface by the Mars Exploration 

Rover Opportunity (Kotler et al., 2008a).  Natural samples from 7 locations around the 

world were analyzed by GALDI-FTICR-MS.  Organic matter was detected in several of 

the jarosite samples.  One of the biosignature ions (C11H19O2N2S2
+) from the natural 

jarosites was attributed to a complex cluster ion formed from interaction of jarosite with 

glycine.  While the mass-to-charge ratio (m/z) for the biosignature peak was 275.087, 

which is significantly larger than the monoisotopic molecular weight of glycine (75.032 

u), a systematic study revealed that the same peak was observed in spectra from 

combinations of glycine with synthetic ammonium and potassium jarosites as well as 
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Na2SO4 and K2SO4 in the positive mode. Therefore, the complex cluster ion formation 

was attributed to the presence of sulfur as sulfate. According to Kotler et al. (2008), the 

mechanism for the formation of the complex cluster ion is not currently known, but could 

occur either in the initial laser desorption/ablation plume or latter in the gas phase. 

In this article, we extend the use of GALDI-FTICR-MS for analysis of 

bio/organic compounds associated with the mineral thenardite (Na2SO4).  Thenardite is 

one of several sulfate minerals formed in non-marine environments, such as evaporitic 

salt flats (sabkhas, playas), fumarolic exhalations, and in the dehydration of mirabilite 

(Na2SO4·10H2O) (Wiedemann and Smykatz-Kloss, 1981).  Thenardite has also been 

suggested to be a constituent of the martian regolith based on chemical/mineralogical 

modeling (Tosca and McLennan, 2006)and recent spectroscopy data from the Mars 

Express Orbiter (Zhu et al., 2006b).  The existence of thenardite and other sulfate 

minerals on Mars indicates the past existence of water on the planet.  Results of 

interactions of thenardite with glycine and stearic acid are used to illustrate two types of 

GALDI ionization mechanisms:  proton abstraction and complex cluster ion formation.  

Preliminary results from a natural sample from Searles Lake in California are also 

presented and compared to the laboratory-based samples.  In addition, the stearic acid and 

thenardite combination is used to demonstrate issues related to sample heterogeneity and 

detection limits, including attempts to increase the signal-to-noise ratio (S/N) by signal 

averaging.   

2.3. EXPERIMENTAL 

Anhydrous Na2SO4 (thenardite) was purchased from Fischer Scientific (Pittsburgh, 

PA), which contained ≤0.02% chloride.  Glycine, palmitic acid, and arachidic acid were 

2.3.1. Materials 
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purchased from Sigma-Aldrich (St. Louis, MO), while stearic acid was obtained from 

Fischer Scientific (Pittsburgh, PA).  All chemicals were used as received. 

Physical mixtures of thenardite with either glycine or stearic acid were prepared 

based on procedure (Yan et al., 2007b).  Approximately 1 × 10-4 mole (0.0075 g) of 

glycine was added to 10 g of thenardite (Na2SO4) in a glass vial. The sample was then 

mixed for 5 min at 70 Hz using a vortex mixer (Model 231, Fisher Scientific, Pittsburgh, 

PA) with two 4.5 mm zinc-plated steel ball bearings (Premium Grade BBs, Daisy 

Outdoor Products, Rogers, AR) to produce a relatively homogeneous 1 μM (~0.8 ppm) 

sample. The palmitic acid, stearic acid, and arachidic acid samples were produced in a 

manner similar to glycine.  For example, 0.028 g of stearic acid was added to 10 g of 

thenardite.  The sample was then mixed in a glass vial for 5 min at 70 Hz using a vortex 

mixer with two ball bearings to produce a 1 μM sample corresponding to a bulk 

concentration of ~3 ppm.  Lower concentrations of stearic acid with thenardite were 

made by dry serial dilutions with incremental steps of 10-3 molar, resulting in bulk 

sample concentrations of stearic acid down to 1 pM or 3 ppt.  Higher concentrations of 

stearic acid were made in a similar manner starting with larger amounts of stearic acid.  

Vortex mixing occurred between all dilution steps to facilitate homogenization of the 

samples. Because Yan et al. (2007a) reported that the organic analyte, gramicidin S, 

appeared to cling to surface of the vial after vortex mixing, the vials were visually 

inspected after transferring the sample. No obvious organic material appeared on the 

surfaces of the vials or ball bearings. To prevent cross contamination, new ball bearings 

and vials were used for each sample.  Samples were then pressed into pellets using a 0.5-

2.3.2. Laboratory-based Sample Preparation 
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inch Beckman dye with a Carver Laboratory Press (Menomonee Falls, WI) at an 

approximate pressure of 3.5 x 10-7 Pa prior to mounting on copper discs using epoxy 

(Devcon 5 minute epoxy, Danvers, MA).  Epoxy was allowed to dry for almost 5 min 

before the pressed pellet was applied to prevent the sample from absorbing any epoxy. 

The pellet press dye was cleaned with distilled water and ethanol between samples.  

     Natural thenardite was obtained from Searles Lake by Valley Mineral Co. (Trona, 

CA).  The natural sample was ground into a powder using a corundum mortar and pestle 

to help homogenize the sample.   

2.3.3. Natural Sample 

Mass spectra were obtained using a laboratory-built laser desorption Fourier- 

transform mass spectrometer (Scott and Tremblay, 2002) equipped with a 7 T Oxford 

(Oxford, England) superconducting magnet, a 2-inch cubic cell and an Odyssey control 

and data acquisition computer system (Finnigan, FT/MS, Bremen, Germany).  A 

Nd:YAG laser (Continuum, Santa Clara, Ca) operating at 355 nm with a 6 ns pulse width 

was used for desorption/ionization, with a laser irradiance of 1 x 108 W/cm2 for a ~10 µm 

diameter. While the term desorption is use, it should be noted that the laser parameters 

may be more consistent with the ablation regime (Aubriet et al., 2005; Haglund, 1996).  

Using these settings, the imaging LD-FTICR-MS has high mass accuracy (mass error of 

± 0.003 Da), resolution (approximately >10,000), high sensitivity (≤400 ions for peaks 

with signal-to-noise ratio ~3 (Limbach et al., 1993; Marshall et al., 1998)), and high 

spatial resolution (~6 µm) (Yan et al., 2007b).  Samples were located ~0.5 cm from the 

front electrostatic plate in the ionization cell.  During ionization, voltage potential 

2.3.4. FTICR-MS Instrumentation and Parameters 
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between the front and back plates was maintained at 0 V.  After ionization, a trapping 

potential of either –2 V was applied to both trap plates.  The applied trap potentials were 

then maintained throughout the experiment until the quench event.  A delay of 0.5 s was 

allowed prior to chirp excitation over the range of 50 Hz to 4 MHz (corresponding m/z 

105 and 26.9, respectively) with a sweep rate of 3600 Hz/μs.  Each spectrum was 

collected from a single laser shot having a diameter of 10 µm and an approximate depth 

of 0.2 µm.  Ions were detected in direct mode using 64 K data points.  After acquisition, 

data were baseline corrected, Hamming apodized, zero filled, and Fourier transformed.  

All spectra are negative mode spectra unless specified otherwise.  Pressure during 

analysis was ≤5 x 10-9 Torr.   

The chemical map was made taking advantage of the automated laser scanning 

mechanism associated with the laboratory-based FTICR-MS system (McJunkin et al., 

2002a; Scott and Tremblay, 2002; Scott et al., 2006 ).  The mapping area covered a 2 mm 

× 2 mm area.  The center-to-center distance between laser desorption spots was set to 100 

µm for a closest packed pattern.  The Fuzzy Logic Inference Engine (FLIE) was used to 

automate the analysis (McJunkin and Scott, 2006; Scott et al., 2003; Yan et al., 2005; 

Yan et al., 2006).  FLIE was modified to allow the program to classify peaks based on the 

signal-to-noise ratio. 

2.3.5. Chemical Imaging 

2.4. RESULT AND DISCUSSION 

Two different bio/organic compounds were chosen to mix with thenardite for 

GALDI-FTICR-MS investigation.  The first bio/organic compound chosen was the amino 

acid glycine (C2H5NO2).  Degradation of amino acids on Mars is expected to be less than 
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on Earth (Aubrey et al., 2006).  The second biomolecule chosen was the lipid stearic acid 

(C18H36O2), which is a straight chain fatty acid that forms portions of cell membranes of 

eukaryotes and prokaryotes (Bowden and Parnell, 2007).  Although straight chain fatty 

acids can also be synthesized abiotically via Fischer-Tropsch Process, the probability that 

a large C18 chain produced in this manner is extremely low (Parnell et al., 2007b).  Both 

glycine and stearic acid are considered very stable relative to other bio/organic 

compounds in the martian environment and are ubiquitous in terrestrial life. 

Previous research has focused predominantly on positive bio/organic ions 

generated by GALDI from various minerals.  In these studies, ionization of glycine 

occurred either as simple cation attachment to form species such as C2H5NO2Na+ with 

halite (Yan et al., 2007b) or complex cluster ion formation to form species such as 

C11H19O2N2S2
+ with jarosite (Kotler et al., 2008).  The focus of the current study is on 

negative ions produced from thenardite with and without glycine present (Figure 2.1). 

2.4.1. Glycine and Thenardite  

Figure 2.1A has a host of high mass peaks that might suggest that thenardite 

interacts with glycine to produce a complex cluster ion similar to that observed with 

glycine and jarosite (Kotler et al., 2008).  However, Figure 2.1B shows a typical negative 

ion spectrum from thenardite alone that is almost identical to that in Figure 2.1A.  As is 

also true for positive ion spectra of simple sulfate salts (Kotler et al., 2008a), there are a 

number of inorganic peaks produced that include several high mass peaks, such as those 

at m/z 184.97, 350.91, 516.82, and 682.71, that are present in negative mode spectra of 

thenardite with and without glycine present (Figure 2.1).  The high m/z peaks observed 

are different from those observed by (Van Vaeck et al., 1998a) for Na2SO4 using a laser 
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wavelength of 266 nm. In addition to the difference in laser wavelength, there differences 

in the FTICR-MS parameters used to obtain the spectra that may be important because 

Van Vaeck et al. (1998) did demonstrate that the production of higher m/z cluster ions is 

dependent on gas-phase reactions. There may also be differences in sample preparation 

that could influence ions observed.   

Besides the fact that the thenardite sample used to create Figure 2.1B is from a 

purely inorganic sample, these high m/z peaks can also be easily identified as inorganic 

in nature based on their mass defects (i.e., the number after the decimal point).  Most 

common inorganic elements have mass defects between 0.90 to 0.99 u (NIST; 1984) with 

exceptions being low atomic weight elements such as Li and Be and high atomic weight 

elements >211Rn.  Common non-hydrogen elements associated with bio/organic 

compounds have mass defects closer to 0.000 u (e.g., 12C at 12.000 u, 16O at 15.995 u, 

14N at 14.003 u).  Hydrogen has an elemental mass of 1.008 u and tends to dominate the 

mass defect in bio/organic molecules because there are usually twice as many hydrogen 

atoms as other elements.  However, one caveat is that inorganic cluster ions that are 

highly hydrated (Gianotto et al., 2004) can have sufficient H atoms such that the mass 

defects are similar to organic compounds.  Hence, it is necessary to have sufficient mass 

accuracy and resolution to distinguish between peaks related to inorganic and organic 

cluster ions. 

While the negative mode spectrum of thenardite with glycine (Figure 2.1A) 

appeared very similar to that of thenardite alone (Figure 2.1B), closer inspection revealed 

that there was indeed a peak distinct for deprotonated glycine (C2H4NO2
-) at m/z 74.025 

(Figure 2.2A) that was not present in spectra from thenardite alone (Figure 2.2B).  The 
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other peaks between m/z 67 and 77 were related to isotopes of Cl2
- at m/z 69.938 (35Cl2

-), 

m/z 71.935 (35Cl37Cl -), m/z 73.932 (37Cl2
-).  Even if the concentration of chloride in a 

sample is small (≤0.02% chloride in the thenardite), chloride-related peaks may be  

 

Figure 2.1. Negative ion GALDI-FTICR-MS spectra of thenardite (A) with and (B) without glycine 

 

abundant in a mass spectrum because halogens are easily ionized.  Thus, the abundance 

of ions in a LDMS spectrum is not only dependent on the amount of the substance in the 

sample, but also by how efficiently it is desorbed and ionized (Yan et al., 2006).  In 

addition, less abundant HCl2
- isotope peaks at m/z 70.946 and m/z 72.943 are also 

observed in the combined glycine and thenardite sample (Figure 2.2A). 

Analysis of a pellet of glycine alone did not produce any peaks in positive or 

negative mode, which is consistent with the reports by Yan et al. (2007a) and Kotler et al. 

(2008) for the same experimental conditions. Therefore, it is possible that one or more 

inorganic cluster ions or neutrals may have a gas-phase basicity (i.e., proton affinity) 
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(Raczyńska et al., 2007) sufficient to abstract a proton from glycine either in the 

desorption plume or in the gas phase.  However, the exact mechanism for the formation  

 

Figure 2.2.  Expanded m/z 67–77 region for negative ion GALDI-FTICR-MS spectra of (A) glycine 
mixed with thenardite and (B) thenardite alone. 

 

of deprotonated glycine in thenardite is not yet known.  Previous combination of glycine 

with other, similar minerals did not produce a deprotonated glycine peak as summarized 

in Table 2.1. 

The variation in ionization for the different samples may be due to subtle 

differences in the geomatrices and how they interact with the laser light.  It is likely that 

there multiple reactions possible in the laser desorption plume that compete with each 

other, especially because the experimental condition might actually be in the laser 

ablation regime where rearrangements are expected (Aubriet et al. 2005). The closest two  
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Table 2.1.  List of observed m/z peaks for various combinations of bio/organic compounds and 
minerals. 

Sample Na+ attached 
peak (m/z) 

Deprotonated 
peak (m/z) 

Complex cluster ion 
peak (m/z) 

Ref. 

Glycine + 
NaCl 98.02   Yan et al. 2007 

Glycine 
+Jarosite   259.11, 275.09 Kotler et al. 2008 

Glycine + 
Na2SO4 

  259.11, 275.09 Kotler et al. 2008 

Glycine + 
Thenardite  74.02  This study 

Palmitic acid + 
Thenardite 

 
279.23 

 
255.23   

This study 
Stearic Acid + 

Thenardite   390.26 This study 

Arachidic Acid 
+ Thenardite    

393.32, 421.32 
 

This study 
 

experments were the glycine with high purity Na2SO4 by Kotler et al. (2008) and the 

glycine with thenardite in this study. In the Kotler et al. (2008), glycine with Na2SO4  

producd as complex cluster ion peak at m/z 275 that was consistent with the glycine and 

jarosite sample. The primary difference between these two experiments was the presence 

of chloride in the thenardite. Chloride was obviously present in the glycine and NaCl 

(halite) samples analyzed by Yan et al. (2007a and b); however, these samples only 

produce Na+-attached ions at m/z 74.02 in the positive mode and not deprotonated ions in 

the negative mode.  Interestingly, in negative ion mode the primary chloride species 

observed by Yan et al. (2007a) were elemental only (i.e., 35Cl - and 37Cl -), whereas the 

current thenardite produced Cl2
- isotope peaks.  Therefore, ion formation is dependent on 

the exact constitution of the geomatrix because there are multiple competitive reactions 

that can affect which bio/organic signature is observed for a particular compound in a 

given geomatrix.  Natural thenardite is an evaporate mineral that is likely to also contain 

chloride because it may be mixed with other evaporate minerals (e.g., halite).   

2.4.2. Natural Thenardite—Searles Lake 
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A negative mode spectrum from a natural thenardite sample acquired from 

Searles Lake in California is shown in Figure 2.3.  Searles Lake is an evaporitic basin 

related to a succession of Pleistocene lakes located in southeastern California.  Lacustrine 

assemblages consist of halite, bedded thenardite and mud layers, capped by a massive 

halite layer deposited during the last lake event (Li et al., 1996).  Because of the halite 

(NaCl) present, it is not surprising that a set of peaks for Cl2
- isotopes was observed in 

spectra from Searles Lake (Figure 2.3), similar to that observed in Figure 2.1.  However, 

to date, no definitive deprotonated glycine peaks have been observed in any of the spectra 

acquired from this natural sample. However, some spectra do have small peaks with S/N 

2 to 3 at the expected m/z 74.025.  Approximately 30% of the negative ion spectra 

acquired from a Searles Lake sample did have a peak at m/z 390.260, which has a mass 

defect suggestive of a bio/organic compound. 

 

Figure 2.3.  GALDI-FTICR-MS spectrum of natural thenardite sample from Searles Lake in California. 
Inset shows  expanded view of m/z 380–400. 
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Because lipids are key components of cell membranes, we investigated the types 

of biosignatures that common lipids can be produced using different geomatrices.  The 

preliminary results are summarized in Table 2.1. Similar to the case of glycine, the 

different bio/organic-mineral combinations produced a variety of results, which are 

probably caused by competition between various gas-phase reactions. We chose to focus 

on stearic acid because it produced a similar peak to that observed in the Searles Lake 

sample and only appeared to produce one type of ion. 

2.4.3. Stearic Acid and Thenardite 

Under the given experimental conditions, the pellet of stearic acid alone did not 

produce any peaks in the negative mode.  Cation spectra of stearic acid did show peaks 

for low mass fragment ions (<130 u). This is in contrast the to previous results reported 

using 337 nm laser desorption/ionization with a time-of-flight mass analyzer that showed 

deprotonated stearic acid and fragments ions in the negative mode (Soltzberg and Patel, 

2004). Besides the difference in laser wavelength and irradiance, Soltzberg and Patel 

(2004) also used a very thin, transparent film of sample over the stainless steel target. 

Thus, their sample preparation may have lead to a SALDI-type of ionization mechanism. 

When stearic acid was mixed with thenardite, a distinct peak at m/z 390.258 was 

produced in the negative mode that was not present in spectra of the thenardite by itself 

(Figure 2.4). A range of bulk stearic acid concentrations were analyzed to determine if 

any significant loss of the stearic acid had occurred during the sample preparation and to 

investigate the limit of detection. The spectra actually improved as the concentration of 
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stearic acid decreased compared to thenardite, which suggests that there was no 

significant loss of stearic acid during the sample preparation. 

Interestingly, similar peaks at m/z 390 were observed in spectra from the natural 

sample from Searles Lake in California (Figure 2.3).  This biosignature peak is not from 

simple proton abstraction as was observed for glycine.  The peak at m/z 390 appears to be 

an example of complex cluster ion formation similar to that reported for glycine with 

jarosite (Kotler et al., 2008a).  Using the procedure outlined in Kotler et al (2008), the 

most likely composition for the peak is C18H39O7Na- (m/z 390.260).  This appears to be a 

complex cluster ion formed with one stearic acid molecule and adducts from the mineral 

matrix.  Complex reactions often occur in the laser desorption (or ablation) plume or in 

the gas phase, resulting in ions larger than the expected molecular ion due to formation of 

adducts (Karas and Kruger, 2003) from addition of matrix (Knochenmuss et al., 1996a) 

and/or analyte species (Budimir et al., 2007; Ham et al., 2003b).  Additionally, it is not 

uncommon for an alkali metal atom to be observed in both positive and negative singly-

charged ions (Budimir et al., 2007; Tomlinson et al., 1999; Yan et al., 2007b), 

presumably because one alkali metal atom displaces a H atom, especially in carboxylic 

acid groups. Although the cluster ion has 18 carbon atoms the same as intact stearic acid, 

it would be presumptuous to assume that this cluster ion is formed by a single stearic acid 

molecule and mineral adducts.  It is possible that that this ion is formed by a combination 

of stearic acid fragments along with some mineral moieties. The mechanism for the 

formation of the complex ions is still unknown because experiments to elucidate the 

mechanism have been hindered by the heterogeneous nature of the samples. 
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Figure 2.4. Expanded m/z 380–400 region of GALDI-FTICR-MS spectra for (A) thenardite alone and 
stearic acid mixed with thenardite for bulk stearic acid concentrations of (B) 3‰, (C) 3 ppm, (D) 3 ppb, 
and (E) 3 ppt. 
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The laboratory-based stearic acid and thenardite combination was used to 

investigate issues of heterogeneity and limits of detection.  A series of dry serial dilutions 

were used to produce a final sample equivalent to 2.8 × 10-12 g stearic acid to 1 kg of 

mineral for a 3 parts per trillion bulk sample that would translate into 6.8 zeptomoles (6.8 

× 10-21 moles or 4095 molecules) per laser spot, based on the volume of the laser 

desorption spot, assuming a homogeneous sample.  Even though the dry samples were 

mixed using a vortex with ball bearing method similar to a dry MALDI preparation 

(Hanton and Parees, 2005; Trimpin et al., 2001), the samples were not homogeneous as 

shown in the map in Figure 2.5.  While ~40% of spectra contained a peak at m/z 390 with 

S/N ≥3, only ~6% of all spectra had a peak at m/z 390 with S/N >10.  

2.4.4. Heterogeneity and Detection Limits 

Initially, it may appear obvious to conclude that the amount of analyte per laser 

spot is greater than that estimated based on the bulk values and would be closer to ~20 

zeptomoles taking into account the percent of spots that produced a positive signal.  

However, we have observed that as the relative concentration of the organic compound 

decreases as shown in Figure 2.4 for stearic acid in thenardite, the S/N in the mass spectra 

increases. In addition, the number of spectra per sample with peaks indicative of the 

bio/organic compounds also increases. The number of positive spectra for the series 

shown in Figure 2.4B-E ranged from 0%, ~10%, ~15%, ~35%, and ~40% for bulk stearic 

acid concentrations of 3 ‰, 3 ppm, 3 ppb, and 3 ppt, respectively. While it is not intuitive 

that this should be the case, it is consistent with observations for MALDI where the 

signal improves as the molar ratio of matrix-to-analyte increases.  Yao et al. (Yao et al., 

1998b) showed that samples that produce no analyte signal with low amounts of matrix 
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can produce decent signals as the concentration of matrix is drastically increased.  Thus, 

the spectra with higher S/N may actually have fewer bio/organic molecules (i.e., analyte) 

than those with low or no signal.  The signal intensity increases presumably because of 

more efficient ionization as the bio/organic molecules are more completely surrounded 

by the mineral matrix. 

 

Figure 2.5. Two-dimensional map showing heterogeneity of distribution of stearic acid biosignature in 
thenardite. Gray spots have m/z 390 peaks with S/N of 3 to 10 and black spots have S/N 10 or greater.  The 
representation of the spot size is not to scale. 

Attempts to increase the signal-to-noise ratio were made in order to improve 

observation of minor peaks, such as the potential C2H4NO2
- at m/z 74 in the Searles Lake 

samples. In addition, observation of minor isotopes is necessary to make unequivocal 

composition assignments for the biosignatures (Kotler et al., 2008a).  A common practice 

in mass spectrometry to increase the S/N is to signal average or co-add spectra.  For 

FTICR-MS, the raw data that is based on measuring the ion cyclotron frequencies is 

2.4.5. Signal-to-Noise Ratio and Co-addition of Spectra 
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actually co-added (Kujawinski et al., 2002; Pastor and Wilkins, 1997; Scott et al., 1997).  

As many as 18,000 spectra from homogeneous samples have been co-added to reveal 

peaks of interest (Kujawinski et al., 2002).  The commercial software associated with the 

FTICR-MS does allow for co-addition of raw data; therefore, it would appear appropriate 

to co-add spectra identified to have peaks of interest to increase to ability to observe 

peaks from lower abundant ion types, such as minor isotopes, that can be lost in the 

noise.  Signal averaging spectra that do not have the peak(s) of interest is actually 

deleterious and will actually average the desired signal(s) into the noise (Lyons, 2004).  

Therefore, for heterogeneous samples, predetermining which data from the single laser 

desorption spots have signal(s) of interest is a necessary prelude to co-addition or signal 

averaging.   

However, the commercial FTICR-MS software does not take into account the 

phase of the FTICR-MS frequency data.  If the frequencies of spectra that are added 

together are coherent (i.e., perfectly in phase), then the resulting spectrum should have 

peaks with abundances that are the sum of the co-added spectra.  However, if the signals 

of the FTICR-MS data added together are not in phase, then the resulting amplitude will 

be less than the sum of the amplitudes as illustrated in Figure 2.6.  Figure 2.6 was created 

by co-adding two of the spectra from the map in Figure 2.5 that had a peak at m/z 390.  

The resultant spectrum (Figure 2.6C) from the co-addition has a significantly poorer S/N 

ratio than the single shot spectrum in Figure 2.6B.  The general peak quality (e.g., shape 

and resolution) in the spectrum (Figure 2.6C) resulting from co-addition is degraded 

compared to either individual spectra (Figures 2.6A and 2.6B).  While other co-added 

combinations did not produce results as poor as Figure 2.6C, none of them produced 
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results with significant improvements in S/N compared to individual spectra from single 

laser shots.  Hence, a scheme to determine and account for the phase difference to allow 

for coherent co-addition of FTICR-MS data is currently being developed. 

 

 

Figure 2.6. Illustration of potential negative effect of co-adding GALDI-FTICR-MS spectra.  Raw data 
from single shot spectra (A and B) were co-added to produce (C) resultant spectrum. 

 

2.5. CONCLUSIONS 

As a geomatrix for GALDI, thenardite is capable of ionizing bio/organic compounds 

either by deprotonation or complex cluster ion formation in the negative mode.  In the 

case of deprotonation of glycine, gas-phase neutral or ionic inorganic species from the 

thenardite geomatrix are suspected to have basicities appropriate for abstracting a proton 

from glycine.  The complex cluster ion formed with stearic acid is likely due to adducts 

from the thenardite matrix and is similar to peaks observed in spectra from natural 

thenardite samples from Searles Lake.  Experiments to elucidate the reaction mechanisms 

responsible for these ionization schemes have been hindered by the heterogeneity of the 

sample preparation.  

Detection limit for GALDI of stearic acid in thenardite was estimated to be at least 3 

parts per trillion based on bulk concentration, which would translate into ~7 zeptomoles 
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per laser spot assuming a homogeneous sample.  However, the heterogeneity of the 

sample leaves the actual detection limit in question, which is further complicated because 

the S/N tends to increase as the concentration of the biomolecules decreases relative to 

the mineral.  Hence, less bio/organic molecules per sample tends to translate into more 

abundant biosignature peaks in the mass spectrum, which should be the case until the 

abundance begins to fall off as one approaches the limit of the number of ions the mass 

analyzer can detect (~400 for the current FTICR-MS instrument) or ultimately 1.66 

yoctomoles (i.e., 1.66 × 10-24 moles or one molecule).   

Because bio/organic molecules are heterogeneously dispersed in geological samples, 

signal averaging data to improve S/N is only a viable option if it is known that the 

biosignature of interest is present in all of the co-added spectra.  However, co-adding the 

frequency-based FTICR-MS data is more complicated than generally acknowledged 

because commercial software does not take into account the phase of the frequency data.  

Therefore, co-adding data where the frequencies are not in phase can actually degrade 

spectral quality (i.e., S/N, peak shape, etc.). 

In general, for simple ionization mechanisms (e.g., cationization and deprotonation), 

the mass accuracy obtainable with GALDI-FTICR-MS can allow the exact bio/organic 

molecule to be identified. When complex cluster ions are formed, the mass accuracy 

affordable by GALDI-FTICR-MS can be used to determine that the ion contains organic 

constituents. However, because the mechanisms and/or conditions that lead to the 

formation of complex cluster ions are not thoroughly understood at this time, the 

identification of the specific bio/organic compound involved in the complex cluster ion 
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requires laboratory experiments to determine expected fingerprints for different 

bio/organic-mineral combinations. 
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Short Title: DIRECT DETECTION OF AROMATIC AMINO ACIDS WITH 
THENARDITE  
 

3.1. ABSTRACT 

With the discovery of Na-sulfate minerals on Mars and Europa, recent studies 

using these minerals have focused on their ability to assist in the detection of bio/organic 

signatures.  This study further investigates the ability of thenardite (Na2SO4) to 

effectively facilitate the ionization and identification of aromatic amino acids 

(phenylalanine, tyrosine, and tryptophan) using a technique called geomatrix-assisted 

laser desorption/ionization in conjunction with a Fourier transform ion cyclotron 

resonance mass spectrometry.  This technique is based on the ability of a mineral host to 

facilitate desorption and ionization of bio/organic molecules for detection.  Spectra 

obtained from each aromatic amino acid alone and in combination with thenardite show 

differences in ionization mechanism and fragmentation patterns.  These differences are 
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due to chemical and structural differences between the aromatic side chains of their 

respective amino acid. Tyrosine and tryptophan when combined with thenardite were 

observed to undergo cation-attachment ([M+Na]+), due to the high alkali ion affinity of 

their aromatic side chains.  In addition, substitution of the carboxyl group hydrogen by 

sodium led to formation of [M- H+Na]Na+ peaks.  In contrast, phenylalanine mixed with 

thenardite showed no evidence of Na+ attachment.  Understanding how codeposition of 

amino acids with thenardite can affect the observed mass spectra is important for future 

exploration missions that are likely to use laser desorption mass spectrometry to search 

for bio/organic compounds in extraterrestrial environments.   

 

Key words:  biosignature, geomatrix, thenardite, GALDI, aromatic amino acids, FTICR-

MS, Mars, Europa 

 

3.2. INTRODUCTION 

Both hydrated and unhydrated Na-sulfate minerals exist in numerous bodies 

throughout the solar system.  On Earth, Na-sulfates form in non-marine environments 

(playas, sabkhas), in basaltic weathering (Hill and Forti, 1997; Karlo et al., 1980), as 

fumarolic exhalations (Hill and Forti, 1997), in atmospheric aerosols (Rankin et al., 

2002), and in subsurface Antarctic ice (Ohno et al., 2006).  Beyond Earth, Na-sulfates are 

found on Mars as weathering products in evaporitic environments (Mangold et al., 2008; 

Zhu et al., 2006a), and as surface components of the Jupiter’s moons, Ganymede 

(McCord et al., 2001), Io (Wiens et al., 1997), and Europa (Johnson, 2000; McCord et al., 

1998; McCord et al., 1999). Additionally, numerous prebiotic organic compounds have 
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been detected on these solar bodies making them high priority candidates for biological 

activity (Kotler et al., 2009).  Thus, with the ubiquity of Na-sulfates in the solar system, 

understanding their ability to preserve and relinquish bio/organic signatures, which are 

signatures that are organic and potentially biological in origin, is crucial in the search for 

extraterrestrial life.  

Since the Viking missions (Klein, 1979; Oro, 1979), the search for life in the solar 

system has predominantly focused on the planet Mars (Chyba and McDonald, 1995).  

Unfortunately, due to the oxidizing martian atmosphere, bio/organic compounds are 

better preserved when protected (via substitution, inclusion, adsorption) by a mineral host 

to avoid degradation (Parnell et al., 2007). On Earth, organic compounds are often 

codeposited in sulfate salts during mineralization (Aubrey et al., 2006; Kotler et al., 2008; 

Richardson et al., 2008).  Likewise, if life once existed on Mars, bio/organic compounds 

could be incorporated and preserved in the martian geological record.  Sulfate minerals 

are a likely candidate for bio/organic preservation, since they are ubiquitous on the 

martian regolith, forming in evaporitic environments due to weathering of primary 

basaltic minerals (Squyres et al., 2004).   Chemical/mineralogical models using data from 

SNC-type meteorites, MER rovers, and martian orbiters provide evidence that Na-

sulfates are a likely constituent of evaporitic assemblages on Mars (Tosca and 

McLennan, 2006).  Additionally, spectrometry data from the Visible and Infrared 

Mineralogical Mapping Spectrometer, (OMEGA) aboard the Mars Express Orbiter, 

detected signatures consistent with the presence of thenardite (Na2SO4) near the low-

albedo region of Syrtis Major (Zhu et al., 2006a).  More recently, Mangold et al. (2008) 

suggested that polyhydrated Na-sulfates may be a constituent in the layered sulfate 



 68 

sequences of West Candor Chasma, known to contain one of the largest sequences of 

sulfate minerals on Mars.  

In addition to Mars, several Galilean satellites have spectrometric signatures 

characteristic of surficial Na-sulfates.  Of these satellites, the moon-sized satellite of 

Jupiter, Europa, is the most promising in the search for extraterrestrial life, as it likely 

contains liquid water, biogenic elements, and chemical disequilibria (Chela-Flores, 2006; 

Chyba and Phillips, 2002; Gaidos et al., 1999; Kargel et al., 2000).  The surface 

composition of Europa is dominated by water ice with localized regions of non-ice 

components, consisting mostly of polyhydrated Na- and Mg-sulfate species (Fanale et al., 

2001; Kargel et al., 2000; McCord et al., 1998; McCord et al., 1999; Zolotov and Shock, 

2001).  These sulfate minerals originate as solutes in the internal ocean, probably derived 

from leaching and degassing of elements on the ocean-rock interface (Fanale et al., 

2001).  These solutes subsequently are emplaced on the surface by cryovolcanism and 

impact events (Orlando et al., 2005).     

Geomatrix-assisted laser desorption/ionization mass spectrometry (GALDI-MS) 

is a proven technique capable of characterizing bio/organic compounds associated with 

terrestrial sulfate minerals (Kotler et al., 2008b; Richardson et al., 2008), and possibly 

bio/organic compounds associated with returned samples from Mars and Europa.  This 

technique uses a mineral matrix to aid in desorption so that organic signatures can be 

detected along with any bio/organic signatures present in the sample (Yan et al., 2007c). 

Further, the mineral matrix can stabilize organic ions to aid detection. Thus, the ability of 

minerals to facilitate the ionization and desorption of bio/organic compounds is a primary 

focus in the effectiveness of GALDI-MS.  When used in conjunction with a Fourier 
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transform ion cyclotron resonance mass spectrometer (FTICR-MS) (Scott and Tremblay, 

2002), GALDI-FTICR-MS has the ability to obtain high resolution spectra using a single 

laser shot, with low detection limits for chemical signatures, with little or no sample 

preparation (Kotler et al., 2008b; Richardson et al., 2008; Yan et al., 2007a).  When 

coupled with imaging or mapping capability (Scott and Tremblay, 2002), GALDI-

FTICR-MS can search for bio/organic signatures in heterogeneous geomatrices from both 

terrestrial samples (Kotler et al., 2008b; Richardson et al., 2008) and future samples 

returned from Mars and Europa.  While FTICR-MS systems are not practical for a rover, 

a low power, compact laser desorption quadrupole ion trap mass spectrometer is being 

developed for deployment on Mars as part of the Mars Organic Molecule Analyzer 

(MOMA) as part of the ExoMars mission (Evans-Nguyen et al., 2008). 

Previous GALDI-FTICR-MS investigations have focused on sulfate salts and 

halides (NaCl) acting as mineral matrices to facilitate the ionization and desorption of 

bio/organic compounds (fatty acids, amino acids, and proteins) (Kotler et al., 2008b; 

Richardson et al., 2008; Yan et al., 2007a; Yan et al., 2007c).  These combinations 

produced inorganic and organic cluster ions (Kotler et al., 2008b; Richardson et al., 

2008), deprotonated bio/organic compounds ([M-H]-) (Richardson et al., 2008), and/or 

cation-attached peaks [M+Na]+ (Yan et al., 2007a).  Polycyclic aromatic hydrocarbon 

(PAH) compounds are also of interest due to their occurrence throughout the universe 

including meteorites (Kotler et al., 2009).  Unlike most bio/organic compounds, PAH 

compounds self-ionize during laser ablation and may facilitate the detection of non-

ionizing bio/organic compounds (Yan et al., 2007c).   



 70 

The occurrence of thenardite (Na2SO4) throughout the solar system makes it a 

primary candidate for GALDI-FTICR-MS studies.  The mineral has sufficient gas-phase 

basicity to abstract a proton from the aliphatic amino acid glycine, contrary to results 

using other sulfate salts (Richardson et al., 2008).  Furthermore, thenardite taken from a 

terrestrial evaporitic environment showed signatures consistent with bio/organic 

compounds (Richardson et al., 2008).  Gas-phase reactions between thenardite and stearic 

acid produce organic and inorganic cluster ions, similar to cluster ions observed by 

matrix-assisted laser desorption/ionization (MALDI), such as an accumulation of adducts 

(Karas and Hillenkamp, 1988a), matrix moieties (Knochenmuss et al., 1996b) and/or 

analyte components (Budimer et al., 2007; Ham et al., 2003a).  Thenardite was also used 

to ascertain the limit of detection for GALDI-FTICR-MS, estimated to be approximately 

3 parts per trillion based on bulk concentrations, corresponding into ~7 zeptomoles (10-

21) per laser shot (Richardson et al., 2008).           

 In this study, we evaluate the ability of thenardite to facilitate the desorption, 

ionization, and detection of aromatic amino acids using GALDI-FTICR-MS.  Aromatic 

compounds were chosen because they have been proposed as primary biosignature 

targets in the solar system (McKay, 2007; Parnell et al., 2007; Storrie-Lombardi et al., 

2001), as they readily donate electrons via multiple metabolic pathways during protein 

synthesis in terrestrial microorganisms (Plekan et al., 2008; Porat et al., 2004).  Spectra 

obtained from mixing of individual aromatic amino acids (tryptophan, tyrosine and 

phenylalanine) with thenardite were evaluated for differences in ionization and 

fragmentation patterns.  The effectiveness of thenardite to assist in the detection of 
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aromatic amino acids and other bio/organic signatures, along with its occurrence on Mars 

and Europa, further signifies its importance in the search for life in the solar system.   

3.3. MATERIALS AND METHODS 

Physical mixtures of thenardite (Fischer Scientific, Pittsburgh, PA) with 

phenylalanine, tyrosine, and tryptophan (Sigma-Aldrich, St. Louis, MO) were prepared 

following methods of Richardson et al. (2008) and Yan et al. (2007a).  Approximately 

1×10-4 mole (0.02 g) of tryptophan was added to 10g of thenardite.  The mixture was then 

mixed for approximately 5 minutes at 70 Hz using a vortex mixer (Model 231, Fischer 

Scientific, Pittsburgh, PA) with two 4.5 mm zinc-plated steel ball bearings (Premium 

Grade BBs, Daisy Outdoor Products, Rogers, AR) to ensure a relatively homogeneous 

sample corresponding to a bulk concentration of ~2 ppm.  The phenylalanine and tyrosine 

samples were produced in a similar manner to that of tryptophan.  

 Lower concentrations of phenylalanine, tyrosine, and tryptophan with thenardite 

were produced by a series of dry serial dilutions with incremental steps of 10-3 molar.  

The resulting samples had an approximate concentration of ~1 nM (~3 ppb).  Vortex 

mixing was completed between all dilutions steps to ensure homogeneity, similar to 

previous methods by Richardson et al. (2008) and Yan et al. (2007a).  Samples were then 

pressed into half inch pellets using a Beckman dye with a Carver Laboratory Press 

(Menomonee Falls, WI) at an approximate pressure of 3.5 x 10-7 Pa.  Samples were 

subsequently mounted on copper discs using epoxy (Devcon 5 minute epoxy, Danvers, 

MA).  To prevent absorption of the epoxy, the epoxy was allowed to dry for 

approximately 5 minutes before applying the sample pellet. 
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Mass spectra were obtained using a laboratory-built imaging laser desorption 

FTICR-MS (McJunkin et al., 2002b; Scott et al., 2003; Scott and Tremblay, 2002) with a 

7 T Oxford (Oxford, England) superconducting magnet.  Instrumental parameters are 

similar to those previously described (Kotler et al., 2008b; Richardson et al., 2008; Yan et 

al., 2007a; Yan et al., 2007c).  Data acquisition was accomplished using an Odyssey 

control and data acquisition computer system (Finnigan FT/MS, Bremen, Germany).  

Desorption/ionization was performed using a Nd:YAG laser (Continuum, Santa Clara, 

CA) operating at 355 nm with a 6 ns laser pulse and an irradiance of 1 x 108 W/cm2, 

unless otherwise specified.  During ionization, voltage potential between the front and 

back plates was maintained at 0 V, while after ionization, a trapping potential of 2 V was 

applied to both trap plates. A delay of 0.5 s was allowed prior to chirp excitation over the 

range of 50 Hz to 4 MHz (corresponding to m/z 105 and 26.9, respectively) with a sweep 

rate of 3600 Hz/μs.  Ions were detected in direct mode using 128 K data points.  After 

acquisition, data was baseline corrected, Hamming apodized, zero filled, and Fourier 

transformed.  Pressure during analysis was ≤ 4 x 10-9 Torr.  For the given parameters, the 

LD-FTICR-MS has a mass error of ±0.003 Da, resolution of ~10,000), high sensitivity (≤ 

400 ions for peaks with signal-to-noise ratio ~3) for m/z range <2000 Da.  All spectra 

were acquired with single laser shots and in the positive mode unless specified otherwise. 

Peak identification was accomplished by systematic analysis following the method 

described in Kotler et al. (2008). Additional information regarding FTICR-MS can be 

found in the literature (Comisarow, 1993; Marshall and Hendrickson, 2002; Marshall et 

al., 1998).   

3.3.1. Instrumentation 



 73 

3.4. RESULTS AND DISCUSSION 

The possibility of life on Mars and Europa in conjunction with the occurrence of 

endogenous Na-sulfates that could potentially harbor signatures of life makes 

understanding the interaction between Na-sulfates and bio/organic compounds crucial for 

the potential applications for LDMS techniques in the search for extraterrestrial life in the 

solar system.  A first step toward understanding the spectra is distinguishing the 

difference between peaks produced from inorganic ions generated from the mineral from 

those of the bio/organic compounds of interest. The second major step is determining if 

the mineral is likely to affect the types of peaks observed from the bio/organic 

compounds, which is the primary focus of this paper. 

Positive spectra of the mineral thenardite (Fig. 3.1) by itself are dominated by a 

small number of peaks.  The peaks represent inorganic cluster ions at m/z 164, 265, 279, 

and 305.  These peaks are easily identified as representing inorganic ions, based on their 

mass defect (Kim et al., 2006; Kotler et al., 2008; McLafferty and Tureček, 1993; Sack et 

al., 1984). The high mass accuracy and resolution of FTICR-MS enables distinction 

between inorganic and organic ions.  Detailed explanation and methodology for 

identification of peaks is found in Kotler et al. (2008) and Richardson et al. (2008). The 

presence of H, and some of the O, in the inorganic ions is likely the result of remnant 

water left behind from hydrated Na-sulfate mineral phases.  Similar inorganic cluster ions 

have been previously reported in Na-sulfate spectra (Kotler et al., 2008b; Richardson et 

al., 2008; Van Vaeck et al., 1998b), including the Na3SO4
+ peak at m/z 164  observed by 

Van Vaeck et al. (1997). Unlike the negative mode spectra of thenardite which show 
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numerous inorganic cluster ions (Richardson et al., 2008), the positive mode spectrum of 

thenardite (Fig. 3.1) shows significantly fewer peaks.    

 

Figure 3.1.  Positive ion GALDI-FTICR-MS spectrum of thenardite. 

 

The aromatic amino acids are presented from lowest to highest molecular weight, 

which also corresponds with their cation affinities (i.e., Phe<Tyr<Trp). A common 

fragmentation occurs from the cleavage of the Cα–Cβ bond (location of Cα–Cβ bond in 

the aromatic amino acids is shown in the diagram below using Phe for illustration) for all 

of the aromatic amino acids (Plekan et al., 2008).  The structural schemes in Figures 3.2, 

3.3, and 3.4 are provided as an aid to understanding how the ions are related to the neutral  

 

 



 75 

amino acid and as possible formation pathways to the observed ions. They are not 

necessarily indicative of the actual gas-phase structure, which can be quite complex (El 

Aribi et al., 2004; McLafferty and Tureček, 1993) and are beyond the scope of this paper. 

The spectrum of phenylalanine alone (Fig. 3.2A) is dominated by fragmentation 

of the molecular backbone and the phenyl aromatic ring ion.  Decarboxylation of the 

molecular backbone results in the peak at m/z 120.  Further fragmentation is seen in the 

cleavage of the Cα–Cβ bond of the molecular backbone resulting in the positively charged 

C2H4NO2
+ fragmented backbone at m/z 74 and the phenyl ring fragment observed at m/z 

91 (Fig. 3.2C).  The high intensity peaks at m/z 155 and 139 in the phenylalanine 

spectrum (Fig. 3.2A) are due to sample contamination (<1%) of alkali ions (K+, Na+) and 

their subsequent gas-phase interactions. These contaminants may have been introduced 

via a salt with its own counter anion, or as a salt of phenylalanine.  Regardless of the 

exact source of the contaminants, these cluster ions have inorganic compositions based 

on their high mass defects.  Furthermore, systematic analysis of their isotopic distribution 

supports the presence of alkali elements and their subsequent interaction with the 

phenylalanine and thenardite moieties.  Further, the peak at m/z 38.96 corresponds to 

singly-charged K+ ions.  Alkali element contamination has been reported in similar 

spectra of aromatic amino acids (Karas et al., 1985; Plekan et al., 2008; Willey et al., 

1998).  The high intensity of the alkali element-attached peaks reflects the ease of alkali 

element ionization at 355 nm, resulting in abundant alkali element desorption and 

subsequent high intensity peaks (Karas et al., 1985; Scott et al., 2006 ; Yan et al., 2007c), 

although the exact formation mechanisms of these cluster ions are highly speculative and 

unclear at this time. 
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Figure 3.2.  GALDI-FTICR-MS spectra showing (a) phenylalanine alone and (b) thenardite mixed with 
phenylalanine (3 ppb). The numbers next to the peaks on (a) correspond to the possible fragmentation ion 
illustrated in scheme (c).  Inorganic cluster ions are designated by ×’s.  Structures shown in (c) are not 
indicative of the actual gas-phase structure, but are shown as a reference to the neutral phenylalanine 
structure.   

 

Excluding the alkali element-cluster peaks, the highest intensity peak in the 

phenylalanine spectrum (Fig. 3.2A) is caused by decarboxylation ([M-COOH]+), contrary 

to studies by Plekan et al. (2008) whose major peak corresponded to breakage of the Cα–

Cβ bond and the subsequent formation of the molecular backbone ion.  The difference in 

major peaks between studies is likely a function of the laser irradiance and system 

parameters.  Major peaks corresponding to [M-COOH]+ were observed using laser 

desorption mass spectrometry instrumentation (Karas et al., 1985) under higher laser 

intensities than were used in this study.  High laser fluences could cause ablation at the 

laser-mineral interface rather than desorption (Aubriet, 2007; Aubriet et al., 2005; 
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Aubriet and Muller, 2008).  However, the distinction between desorption and ablation 

processes for GALDI-FTICR-MS has not been determined because only one type of 

spectral signature was observed when varying the laser irradiance.  The relatively high 

laser irradiance used in GALDI-FTICR-MS appears to be necessary for optimal 

ionization due to the refractory nature of the host minerals.  

The absence of peaks in mixed phenylalanine-thenardite spectra implies that there 

are competitive gas-phase reactions.  This competition results in the self-ionized peaks of 

phenylalanine being completely suppressed.  However, there is also an absence of cation-

attached peaks of phenylalanine, which would be expected due to the presence of 

thenardite.  The absence of cation-attached peaks associated with phenylalanine may also 

be the result of the low binding energy of Na+ with the phenyl ring as well as with the 

carbonyl oxygen and the nitrogen of the amine group (Dunbar, 2000; Ryzhov et al., 

2000).  Binding energies associated with the aromatic amino acids tend to decrease with 

decreasing polarization of the aromatic ring, although the stability of Na+ chelation with 

phenylalanine is largely controlled by the carbonyl oxygen and/or amine nitrogen 

(Ryzhov et al., 2000).  It follows that cation affinity associated with tryptophan will be 

greater than tyrosine and even more so than phenylalanine.  This is further supported by 

collision-induced dissociation experiments showing that Na+ tends to form stronger 

bonds with phenol than with benzene rings (Armentrout and Rodgers, 2000), which is 

contradictory to studies by Ryzhov et al. (2000) and Dunbar (2000) that suggest Na+ 

binds to phenol and benzene rings with equal strength.  Even though phenylalanine is less 

prone to cationization than tyrosine or tryptophan, cation attachment can occur when the 

laser intensity is near the optimized peak height irradiances of singly-charged alkali 
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element ions (Karas et al., 1985).  At these irradiances, the alkali element ions and cation-

attached peaks have comparable peak heights, but at higher intensities, alkali element ion 

formation dominates, while cation-attached abundances decrease (Karas et al., 1985).  

This observation is concurrent with the peak heights of the singly-charged K+ ions and 

alkali element-attached inorganic cluster ions in Figure 3.2A.  Thus, the absence of Na-

attachment peaks in Figure 3.2B could reflect both the low cation binding energy of 

phenylalanine and the typical laser intensity used in this study, while the absence of self-

ionized peaks in Figure 3.2B may result from thenardite suppressing the self-ionization 

mechanisms of phenylalanine.  The exact mechanisms are still unclear, but could reflect 

the suppression of ion formation or that the self-ionization occurs, but is subsequently 

neutralized in the desorption plume due to their interaction with desorption products from 

thenardite.  

The major peak of the tyrosine spectrum (Fig. 3.3A) is observed at m/z 107 

(C7H7O+), which is consistent with previous tyrosine spectra (Plekan et al., 2008; Vorsa 

et al., 1999).  The C7H7O+ ions arise from fragmentation of the Cα–Cβ bond and the 

concomitant loss of the H+ ion from the attached hydroxyl group (Fig. 3.3C).  The 

additional loss of the O from the C7H7O+ ion leads to the C7H7
+ fragment ion (m/z 91).  

Fragmentation of the molecular backbone (Fig. 3.3C) is observed by successive cleaving 

of the amine group ([M-NH2]) and the carboxyl group ([M-COOH]) at m/z 165 and 136, 

respectively.  This fragmentation is consistent with previous tyrosine spectra (Vorsa et 

al., 1999).  Both fragments are less than 10% of the major peak and comparable in 

intensity to the molecular ion at m/z 182.   
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Structurally, tyrosine is identical to phenylalanine with the addition of a hydroxyl 

group bonded to the aromatic ring.  Although this hydroxyl group is located far from the 

Cα–Cβ bond, the tyrosine spectrum is much different than the phenylalanine spectrum.  

This dichotomy results from the ionization energy potentials and the preferential 

organization of the positive charge after cleavage of the Cα–Cβ bond.  For tyrosine, the 

lowest ionization energy is attributed to the removal of the π-electron from the phenol 

functional group, this differs from phenylalanine where the lowest ionization energy 

corresponds to removal of the amine-group electron or the phenyl-group electron 

(Campbell et al., 1992; McLafferty and Tureček, 1993).  As a result, the positive charge 

in tyrosine is transferred to the Cβ fragment (phenol ring) (Plekan et al., 2008; Willey et 

al., 1998).  Conversely, for phenylalanine the relocation of the positive charge is 

dominated by the Cα fragment. This preferential charge localization in tyrosine along 

with the subsequent hydroxyl deprotonation from the phenol group leads to the formation 

of the C7H7O+ major peak.  The presence of this peak suggests that thenardite does not 

significantly affect the C7H7O+ formation mechanism.  Conversely, the self-ionization 

peaks in the phenylalanine spectrum are suppressed and absent when phenylalanine is 

associated with thenardite.  

Unlike the corresponding phenylalanine spectrum, the spectrum of tyrosine mixed 

with thenardite (Fig. 3.3B), is virtually devoid of inorganic cluster ions, although 

inorganic cluster ions were observed in other spectra from the same sample.  This 

discrepancy is not unusual considering the single shot technique and the heterogeneity of 

the sample.  Additionally, it is possible that inorganic cluster ion formation may be 

affected by the relative amount of organic constituent present in a particular shot.    
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Figure 3.3.  GALDI-FTICR-MS spectra showing (a) tyrosine alone and (b) thenardite mixed with tyrosine 
(3 ppb).  The numbers next to the peaks on (a) correspond to the possible fragmentation ion illustrated in 
scheme (c).  Likewise values on (b) correspond to the possible fragmentation ion illustrated in scheme (d).  
Inorganic cluster ions are designated by ×’s.  Structures shown in (c) and (d) are not indicative of the actual 
gas-phase structure, but are shown as a reference to the neutral tyrosine structure. 
 

However, only a small number of peaks are typically observed in the spectra, which are 

either from tyrosine fragmentation or cation attachment between thenardite and tyrosine 

(Fig. 3.3D).  An exception is found in the peaks at m/z 78 and 100, which represent 

inorganic cluster ions based on their mass defect, similar to peaks found in previous 

spectra of Na-sulfates (Richardson et al., 2008; Van Vaeck et al., 1998b).  It is likely that 

the presence of the organic analyte affects the production of the inorganic peaks from 

thenardite, possibly through alterations of the desorption process or through competitive 

gas-phase reactions. 
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The major peak in spectra from the tyrosine mixed with thenardite samples 

(Fig. 3.3B) corresponds to Na+ binding to the π-electron from the aromatic ring of 

tyrosine (Fig. 3.3D).  This Na-π bond is likely centered across the face of the aromatic 

ring with chelation by the phenol ring as well as the amine nitrogen and carbonyl oxygen 

(Ryzhov et al., 2000).  An additional sodium exchanges with the hydrogen of the 

carboxyl group to form the alkaline carboxylate salt, either in the condensed phase or in a 

gas-phase reaction, leading to formation of [M-H+Na]Na+ ions observed at m/z 226 with 

a peak height roughly half that of the single cation-attached peak.  An ion with two alkali 

metals attached is sometimes referred to as a double-cation attached ion (Tomlinson et 

al., 1999; Lou et al., 2007), which is a slight misnomer because only one of the alkali 

metals is providing the charge for the singly-charged ion.  

The structure of tryptophan is characterized by the indole functional group: 

benzene ring attached to an N-heterocyclic five-member ring (pyrrole).  The major peak 

(m/z 130) of the tryptophan spectrum (Fig. 3.4A) is attributed to the dehydroindole ion 

(C9H8N+). This major peak is consistent with previous studies of tryptophan mass spectra 

(Junk and Svec, 1963; Plekan et al., 2008; Vorsa et al., 1999; Wilson et al., 2006).  

Fragmentation of the molecular backbone (Fig. 3.4C) is evident as loss of the amine 

group ([M-NH2]) at m/z 188, similar to previous observations using laser desorption mass 

spectrometry (Gogichaeva et al., 2007; Karas et al., 1985; Wilson et al., 2006), and time 

of flight-secondary ion mass spectrometry techniques (Vorsa et al., 1999).  Additional 

fragmentation of the molecular backbone is seen at m/z 159, corresponding to 

decarboxylation.  
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Figure 3.4B shows a spectrum of thenardite mixed with tryptophan.  The major 

peak in the spectrum, as with the tryptophan spectrum, corresponds to the dehydroindole 

ion at m/z 130.  Simple cation attachment [M+Na]+ is observed at m/z 227, 

corresponding to a Na+ ion attaching to the indole functional group (Fig. 3.4D).  Further 

gas-phase reactions between tryptophan and thenardite leads to the formation of the 

double cation-attached ion ([M-H+Na]Na+) observed at m/z 249 (Fig. 3.4D).  This peak 

is roughly 80% of the major peak and slightly less abundant than the [M+Na]+ peak.   

 

Figure 3.4.  GALDI-FTICR-MS spectra showing (a) tryptophan alone and (b) thenardite mixed with 
tryptophan (3 ppb).  The numbers next to the peaks on (a) correspond to the possible fragmentation ion 
illustrated in scheme (c).  Likewise values on (b) correspond to the possible fragmentation ion illustrated in 
scheme (d).  Inorganic cluster ions are designated by ×’s.  Structures shown in (c) and (d) are not indicative 
of the actual gas-phase structure, but are shown as a reference to the neutral tryptophan structure.   
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As previously mentioned, Na+ has the strongest affinity to bind with tryptophan, 

evidenced by the presence and high abundance of both the single and double cation-

attached peaks in Figure 3.4B.  The formation of the double cation-attached peak (m/z 

249) is accomplished via a multiple step process (Fig. 3.4D).  Initially, a Na+ ion attaches 

to the π-electron of the indole aromatic ring.  This attachment is likely offset to the side 

of the pyrrole ring face, rather than the benzene ring, because of differences in binding 

energies between the two regions of the indole group.  This offset position above the 

pyrrole ring, results in cation chelation to the nitrogen from the amine group, the oxygen 

from the carbonyl group, and the π-electrons from the pyrrole group (Ryzhov et al., 

2000).  Secondly, another Na+ from thenardite replaces the H+ ion from the carboxyl 

group, either in the desorption plume or in the gas phase, leading to the formation of the 

[M+Na-H]Na+ ion (Yan et al., 2007c). Comparison of the tyrosine and tryptophan 

spectra, with and without thenardite present, suggests that cation-attachment competes 

with and suppresses the self-ionization mechanisms and some related fragmentation 

pathways.  However, fragment peaks related to the aromatic side chains of tyrosine and 

tryptophan are still observed in the presence of thenardite.   

Other minerals can also provide cations to function in a similar manner to 

thenardite for ionizing bio/organic compounds. Sodium ions from the mineral halite 

(NaCl) participates in the formation of cation-attached peaks associated with the amino 

acids histidine, threonine, and cysteine (Yan et al., 2007c).  These results are not 

surprising considering the ease with which Na+ ionizes and its affinity to interact with 

bio/organic compounds in the desorption plume or gas phase (Liu et al., 2001); however, 

it is interesting to note that high concentrations of salts, similar to the minerals halite and 
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thenardite, suppress ion formation in MALDI (Goheen et al., 1997; Yao et al., 1998a).  

Cation attachment to histidine (Yan et al., 2007c) is not surprising, considering the 

aromaticity and the high alkali affinity of histidine (Kish et al., 2003).  Thus, cation-

attachment mechanisms of histidine with halite are likely similar to that described above 

for tyrosine and tryptophan in the presence of thenardite.  Because threonine and cysteine 

are aliphatic amino acids, the formation of their cation-attached peaks is likely different 

than their aromatic counterparts.  Regardless of the formation mechanisms, the 

occurrence of cation-attached peaks associated with different Na-salt geomatrices (halide 

and sulfate) suggests that Na+ ionization and subsequent gas-phase interactions are 

common regardless of the anion or oxyanion moiety.  

3.5. CONCLUSIONS 

Pure samples of the aromatic amino acids (phenylalanine, tyrosine, and 

tryptophan) all produce ions through self-ionization mechanism(s) and produce similar 

fragmentation patterns when thenardite is absent.  In all spectra, the fragmentation of the 

molecular backbone is observed by loss of the carboxyl group.  Spectra from tyrosine and 

tryptophan show additional loss of the amine group.  Further, fragmentation is observed 

in aromatic side chains, which accounts for the major peaks in the tyrosine and 

tryptophan spectrum, which is consistent with ionization potentials between the aromatic 

ring and the molecular backbone. 

Of the aromatic amino acids used in this study, tyrosine and tryptophan associated 

with thenardite are observed to undergo cationization.  The cation attachment results 

from the high affinity of the aromatic side chain for bind with alkali metal ions.  

Substitution of the carboxyl hydrogen by Na leads to formation of “double cation-
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attached” ions.  In contrast, phenylalanine shows no evidence of Na+ interaction, a 

consequence of system parameters (e.g., laser intensity, wavelength) and/or lower alkali 

element-binding energy.  In addition, the presence of thenardite suppresses all of the self-

ionized peaks that are definitive for the presence of phenylalanine, leaving only fragment 

peaks common to all three aromatic amino acids studied.  However, the ability of cation 

attachment to out compete and suppress the majority of the self-ionized peaks for 

tyrosine and tryptophan associated with thenardite makes interpretation of spectra for 

these aromatic amino acids less complicated. 

The effectiveness of thenardite, and other Na-related geomatrices, for detection of 

bio/organic compounds is a product of analyte-matrix interactions and competitive gas-

phase reactions.  Understanding these types of Na-sulfate mineral and bio/organic 

compound interactions has astrobiological implications because terrestrial Na-sulfate 

mineral deposits are known to harbor bio/organic compounds; therefore, the presence of 

these minerals on Mars and Europa represent a prime opportunity to search for signs of 

life using LDMS instruments on rovers. 
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4.1.  ABSTRACT 

Secondary deposits associated with the basaltic caves of Craters of the Moon 

National Monument (COM) in southern Idaho were examined using X-ray powder 

diffraction (XRD), X-ray fluorescence spectrometry (XRF), Fourier transform infrared 

spectrometry (FTIR), and Fourier transform ion cyclotron resonance mass spectrometry 

(FTICR-MS). Good agreement was found between XRD, FTIR, and FTICR-MS for 

mineral characterization.  The secondary mineral assemblages are dominated by Na-

sulfate minerals (thenardite, mirabilite) with a small fraction of the deposits containing 

minor concentrations of Na-carbonate minerals.  The assemblages are found as white, 

efflorescent deposits in small cavities along the cave walls and ceilings and as localized 

mounds on the cave floors. Formation of the deposits is likely due to direct and indirect 
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physiochemical leaching of meteoritic water through the overlying basalts. Whole rock 

data from the overlying basaltic flows are characterized by their extremely high iron 

concentrations, making them good analogs for martian basalts. Understanding the 

physiochemical pathways leading to secondary mineralization at COM is also important 

because lava tubes and basaltic caves are present on Mars.   

 

Keywords: Craters of the Moon National Monument, thenardite, Mars, secondary sulfate 

mineralization, FTIR, XRD, FTICR-MS 

 

4.2.  INTRODUCTION 

Basaltic caves and lava tubes are widespread on Earth, offering stable 

physicochemical conditions for the formation and preservation of secondary minerals. 

Unfortunately, detailed investigations regarding the minerogenetic mechanisms of 

secondary cave deposits in basaltic environments have been limited (Forti, 2005; Hill and 

Forti, 1997), even though these minerals provide valuable insight into past aqueous 

activity and any associated biological activity during mineral formation.  Recently, 

basaltic caves and lava tubes have been observed on Mars (Cushing et al., 2007; Wyrick 

et al., 2004).  These subsurface features could intercept groundwater and provide 

adequate physiochemical conditions for the mineralization and subsequent preservation 

of secondary minerals on Mars.  Additionally, these stable environments are ideal 

locations to search for evidence of past biological activity, as they offer protection from 

the harsh oxidizing martian atmosphere.  Thus, investigating the formation of secondary 
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mineral assemblages in terrestrial basaltic caves is imperative in the search for past 

evidence of aqueous activity and associated biological activity in the subsurface of Mars. 

In this study, we identify and characterize the secondary minerals found within 

the basaltic subsurface of Craters of the Moon National Monument (COM), while 

comparing the basaltic chemical signatures of COM to that of Mars. Secondary Na-

sulfate (thenardite; Na2SO4), found at COM, is typically found in non-marine 

environments such as evaporitic salt flats (sabkhas, playas), fumarolic exhalations (Hill 

and Forti, 1997), and subsurface Antarctic ice (Ohno et al., 2006).  Recently, Na-sulfates 

have been found on Mars in evaporitic environments (Mangold et al., 2008; McLennan et 

al., 2005; Zhu et al., 2006) and have also been suggested to be a constituent of the 

martian regolith based on chemical/mineralogical modeling (Tosca and McLennan, 

2006).  The occurrence of thenardite and polyhydrated sulfate minerals (e.g., gypsum, 

kieserite) on Mars indicates the past existence of water on the planet.  Therefore, the 

presence of sulfate speleogenesis at COM offers an excellent opportunity to investigate 

similar formational mechanisms and physiochemical processes that may occur in the 

subsurface of Mars. 

4.3.  SITE DESCRIPTION  

The lava flows at COM (43.417° N; 113.518 ° W) collectively cover 1,600 km2 

along the northern flank of the Eastern Snake River Plain (ESRP) in southern Idaho 

(Kuntz et al., 1992). Radiocarbon dating of underlying carbonized vegetation has 

constrained the basaltic flows between 15 ka and 2.1 ka, representing eight eruptive 

periods (Kuntz et al., 1986; Kuntz et al., 1992; Reid, 1995).  These eruptive events 

originated along the Great Rift, a tensional feature that extends approximately 85 km, 
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running parallel to the basin and range fault systems (Fig. 4.1), suggesting that the Great 

Rift may be a extension of basement faulting allowing the ascent of COM lavas (Kuntz et 

al., 2002; Leeman et al., 1976).  Unlike the majority of the basaltic flows in the ESRP, 

which are olivine tholeiites (Hughes et al., 1999), chemical compositions of the COM 

basalts are slightly more evolved (Kuntz et al., 1986; Stout and Nicholls, 1977; Stout et 

al., 1994) with elevated Fe and alkali-elements and depleted alkali-earth elements 

(Hughes et al., 1999).  Since all basaltic flows in the ESRP are thought to originate from 

a single parent magma, the variance likely reflects extensive crustal assimilation or 

magma fractionation (Kuntz et al., 1986; Kuntz et al., 1992; Leeman et al., 1976).   

Of the 60 cumulative flows that comprise COM, the young Blue Dragon flow 

(~2.1 ka) contains the majority of the accessible caves and lava tubes.  These features 

likely reflect the younger age of the flow because they have had less time to undergo 

gravitational collapse.  

4.4. SAMPLE COLLECTION AND ANALYTICAL METHODS 

Samples of the secondary deposits were collected biannually between June 2006 and 

October 2008 from several cave locations within the Blue Dragon flow.  Distances 

between these caves ranged from several hundred meters to approximately two 

kilometers. Deposits were carefully transferred to glass vials, making sure no extraneous 

material or contamination was introduced.  Observations were noted and compared to 

previous visits to determine any physical alterations or changes in mineral abundances.   

4.4.1.  Mineral Collection 

 

 



 102 

 

Figure 4.1.  Map of COM lava field showing extent of Blue Dragon flow.  Location of Arco Tunnel, 
Wilderness Caves and spatter cones are also shown (indicated by ’s).  Location of basaltic samples used 
for whole rock analyses are indicated by ×’s.  Map modified from Kuntz (1989). 
 

Samples were ground into a fine powder with a corundum mortar and pestle, 

before being mounted on glass slides for X-ray powder diffraction (XRD) studies for 

mineral characterization.  Analyses were performed using a Philips APD 3720 X-ray 

diffractometer with a step size of 0.01 °2θ with a scan rate of 0.24 °2θ/min.  Spectral 

features were compared to published mineral patterns from the Joint Committee on 

Powder Diffraction Standards (JCPDS).   

4.4.2.  X-ray Powder Diffraction  

Attenuated total reflectance Fourier transform infrared spectroscopy (FTIR) 

spectra were obtained using a Thermo Nicolet Nexus 670 FTIR spectrometer (Madison, 

4.4.3.  Fourier Transform Infrared Spectroscopy 
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WI).  Spectra were collected with an average of 100 scans with a resolution of 4 cm-1.  

All spectra were measured in absorbance between 4000 cm-1 and 500 cm-1.       

 

4.4.4.  Fourier Transform Ion Cyclotron Resonance-Mass Spectrometry Instrumentation 
and Parameters 

Fourier transform ion cyclotron resonance-mass spectrometry (FTICR-MS) 

spectra of the mineral deposits were obtained using a laboratory-built imaging laser 

desorption FTICR-MS (McJunkin et al., 2002b; Scott et al., 2003; Scott and Tremblay, 

2002) with a 7 T Oxford (Oxford, England) superconducting magnet.  Parameters have 

been previously described (Kotler et al., 2008b; Richardson et al., 2008; Richardson et 

al., 2009; Yan et al., 2007a; Yan et al., 2007b).  All spectra were acquired with single 

laser shots in both positive and negative mode.   Peaks were identified by systematic 

analysis following procedures previous described in Kotler et al. (2008). 

4.4.5.  X-ray Fluorescence 

Bulk compositions of the COM basalts were analyzed by X-ray fluorescence  

(XRF).  One gram of finely ground sample powder was combined with 10 g of flux 

(50:50 LiT:LiM with integrated LiBr non-wetting agent) and ~1 g of an oxidizer 

(ammonium nitrate).  The mixture was fused in a platinum crucible in a Claise M4 fluxer 

using a predetermined 21-min fusion routine (high temperature ~1050 °C ) before being 

analyzed using a Bruker S4 Pioneer WD-XRF (Madison, WI).  The instrument was 

calibrated for major and minor elements using 11 USGS rock standards. More detailed 

methods are reported in (McHenry, 2009).  Because of difficulties with sulfur loss during 

fusion, a separate pressed pellet was prepared for XRF analysis for sulfur. The sample 

was powdered using a tungsten carbide shatterbox, and then ten grams of sample was 

mixed with a wax binder (in the shatterbox) for 30 s. The powder was pressed into a 

  



 104 

40 mm pellet using a semiautomatic press, where it was held at 30 tons for one minute. 

The pressed pellet was then analyzed using the Bruker S4 Pioneer, using a calibration 

curve derived from six USGS rock standards with published sulfur concentrations 

prepared using the same method. 

4.5.  RESULTS  

The caves and lava tubes of the Blue Dragon flow host a majority of the 

secondary sulfate deposits found at COM.   Field observations and past reports indicate 

that secondary minerals are found throughout the flow within caves, lava tubes, and 

beneath spatter cones (Karlo et al., 1980; Peck, 1974).  Their presence in the Blue 

Dragon flow likely results from the young age and morphological characteristics of the 

flow, rather than chemical and mineralogical differences between them and the older 

flows (Stout et al., 1994). The caves and lava tubes of the Blue Dragon flow are 

concentrated in a few locations (Wilderness Caves, Cave Trail caves) and vary in size 

from small and shallow to >1 km in length.  Extent of the Blue Dragon flow and 

locations of caves used in this study can be seen in Figure 4.1. Secondary sulfate 

minerals occur in caves of all sizes. The more extensive caves (e.g., Arco Tunnel) 

maintain cold conditions (< 10 °C, ~ 75% relative humidity) year round and associated 

lower-temperature secondary minerals (e.g., mirabilite). 

4.5.1. Mineral Deposits    

The secondary deposits are found in small cavities on the ceiling and walls and as 

localized mounds on the cave floors (Fig. 4.2A, 4.3A).  Floor deposits are found 

intermittently dispersed as localized, efflorescent, white, powdery mounds, with 

thicknesses ranging from ~ 1 cm to ~ 10 cm in depth.  These deposits are not a direct 
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alteration product of the weathering basalts, as the interface between the authigenic 

minerals and the cave floors is quite abrupt, showing no evidence of basaltic replacement 

or mixing of basaltic minerals (plagioclase, diopside, olivine).  Likewise, the floor 

deposits do not seem to form directly as precipitates from liquid water, as the precipitates 

are not found in the deepest spots on the cave floor or as uniform coatings in the lowest 

areas of the cave floor.  In addition to the floor deposits, secondary deposits are found 

within small (< 2 cm diameter) cavities and cracks on the ceilings and walls (Fig. 4.2A).  

These deposits are found in the same caves, but are less frequent than the floor deposits.  

No spatial correlation is observed between ceilings deposits and their floor counterparts. 

 The secondary sulfate deposits appear to be a seasonal feature.  Observations 

made between October and June of 2007 and 2008 showed significant differences in the 

amount of each representative deposit.  In October, fewer mineral deposits were found 

and were general smaller in abundance. Conversely, in June, the deposits were more 

abundant and larger.  It appears that the formation of sulfate minerals fluctuates on an 

annual basis, dissolving during wet months and reprecipitating when dry.  Changes in 

temperature and relative humidity within the caves also appear to be important, especially 

for the Na-sulfate minerals.  Mirabilite (Na2SO4·10H2O), the hydrous, low-temperature 

Na-sulfate, was observed during June visits when the cave temperatures and relative 

humidity were more conducive for mirabilite formation and preservation.  For example, 
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Figure 4.2.  (A) Photograph of secondary deposit within a ceiling cavity taken in a cave from the Blue 
Dragon flow (B) Background corrected XRD of corresponding deposit demonstrating the sample consists 
entirely of thenardite. (C) FTIR spectrum from same deposit confirming the sample is dominated by 
thenardite with no evidence of Na-carbonates.  Sample is representative of a majority of the secondary 
sulfate deposits found in the subsurface of COM. 
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temperature and relative humidity of a unnamed cave in the Wilderness Caves area was 

recorded to be ~ 8 °C and 73%, respectively.  Conversely, in October, the cave was 

slightly warmer (~ 15 °C) and drier (67% relative humidity) and thenardite was present 

instead of mirabilite.  The dehydration-rehydration between Na-sulfate species occurs 

with slight changes in temperature and relative humidity, as the efflorescent susceptibility 

of mirabilite make it extremely vulnerable to dehydration, occurring within minutes 

depending on air temperature and relative humidity (Rodriquez-Navarro et al., 2000), 

which is consistent with the conversion of mirabilite to thenardite and vice versa with 

only slight changes in cave temperature and relative humidity between October and June 

visits.   

Secondary deposits at COM are dominated by Na-sulfate minerals (thenardite, 

mirabilite) with minor concentrations of Na-carbonate minerals (i.e., trona, natron) 

(Table 4.1).  The bulk XRD spectrum shown in Figure 4.2B is representative of a 

majority of the secondary deposits analyzed.  Peak assignments show the sample is 

composed entirely of thenardite with no evidence of any other mineral constituent, 

further supported by the FTIR spectrum shown in Figure 4.2C. The FTIR spectrum 

shows three dominant bands at 1109 cm -1, 639 cm -1 and 621 cm-1, corresponding to a 

SO4
2- ν3 symmetric stretch and a ν4 double bend, respectively.  The symmetric stretch at 

1109 cm-1 has an associated ν3 stretch at 1129 cm-1.  These double bands are consistent 

with synthetic samples of thenardite observed in this study and with previously reported 

spectra of thenardite (Farmer, 1974; Lane, 2007; Vassallo and Finnie, 1992).  No bands 

corresponding to the carbonate oxyanion were observed in this particular sample.   

4.5.2.  Secondary Mineral Identification 
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Although all samples consist primarily of thenardite or mirabilite depending on 

cave conditions, approximately 50% of the samples analyzed also have minor 

concentrations of Na-carbonate minerals (trona, natron).  Evidence of Na-carbonates can 

be seen in a representative XRD spectrum in Figure 4.3B, which along with thenardite 

has numerous peaks attributed to trona and/or natron.  As with the XRD spectrum in 

Figure 4.3B, the FTIR spectrum (Fig. 4.3B) shows prominent absorbance bands 

consistent with carbonate and sulfate moieties.  The doublet bands of sulfate near 1169 

cm-1, 1130 cm-1, 637 cm-1, and 614 cm-1 are reminiscent of thenardite, while additional 

bands suggest the presence of Na-carbonate species.  The most prominent bands of the  

carbonate anion are seen at 1691 cm-1, 1451 cm-1 and 847 cm-1, with minor bands at 1764 

cm-1,1032 cm-1, 875 cm-1, and 680 cm-1.  Exact carbonate species identification using 

FTIR was unobtainable, as bands of various Na-carbonate and bicarbonate species often 

overlap, making accurate identification difficult.   

Table 4.1. Mineral assemblages secondary deposits as determined by XRD, FTIR, and FTICR-MS. 

    XRD       FTIR   FTICR-MSb 

  
Cave 

Locationa 
Na-

sulfate burkeite 
Na-

carbonate 
Na-

sulfate burkeite 
Na-

carbonate 
Na-

sulfate 
Na-

carbonate 

Floor deposits           

071010.1A WC XXX - - XXX - - XXX - 

70604.1A WC XX - X XX + X XXX + 
070604.3A WC XXX - + XXX - + XXX + 
071010.1B WC XX X + XX X X XX X 
COM-781 AT XXX - - XXX - - XXX - 
070605.5a AT XX X + XX + X XX + 

Ceiling and wall deposits           
071010.1A WC XXX - - XXX - - XXX - 
080607.3a AT XXX - - XXX - - XXX + 
070605.5a AT XX X + XX + X XX X 

XXX=abundant, XX= common, X = between common and rare, + = rare, - = not detected  
a AT= Arco Tunnel, WC= Wilderness Caves.      
b FTICR-MS identification was based on positive and negative spectra.     
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In addition to sulfate and carbonate species, several peaks in the XRD spectrum 

(Fig. 4.3B) are attributed to the presence of the carbonate-sulfate salt burkeite 

(Na6CO3(SO4)2).  FTIR spectral features in Figure 4.3C support the presence of burkeite, 

by the characteristic band at 1764 cm-1 due to a ν3 bend of CO3, which is not 

characteristic of the mentioned Na- carbonate or Na-sulfate species (Farmer, 1974; Lane, 

2007).  Other CO3 and SO4 spectral bands characteristic of burkeite are seen (at 1128 cm-

1, ν3 stretch of SO4; at 637 cm-1 and 614 cm-1 due to ν4 bend of SO4; at 1477 cm-1 due to 

v3 of CO3; and at 875 cm-1 due to ν2 of CO3), although these bands also correspond to 

Na-sulfate and Na-carbonate species.  Thus definitive evidence of the presence of 

burkeite is difficult using FTIR spectra when sulfate and carbonate minerals are also 

present in the sample, however its presence is also supported by the XRD spectra.              

 In addition to XRD and FTIR, mineral deposits were characterized using imaging 

FTICR-MS (Table 4.1).  This technique has been used successfully in previous studies of  

4.5.3.  Chemical Identification using FTICR-MS 

synthetic and natural sulfate minerals (Kotler et al., 2008b; Richardson et al., 2008; 

Richardson et al., 2009; Yan et al., 2007a), demonstrating its ability to characterize 

inorganic minerals at a microscopic level.  Imaging mass spectrometry is a useful 

technique for micron-scale identification of compounds and minerals, especially 

compared to more conventional methods that tend to have problems identifying 

individual mineral species in heterogeneous mixtures (Van Vaeck et al., 1998).  Mass 

spectrometry techniques yield signals composed of a combination of mineral moieties, 

including adduct ions formed during the desorption and ionization process.  These adduct 

ions, consisting of one or two intact analyte molecules and a stable ion, allow specific  
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Figure 4.3.  (A) Photograph of a secondary floor deposit in a cave within the Blue Dragon flow, (B) 
Background corrected XRD of corresponding deposit demonstrating the sample is dominated by Na-sulfate 
with minor concentrations of Na-carbonate minerals and possibly double salt burkeite (thenardite = T; 
burkeite = B; trona = Tr; natron = N. (C) FTIR spectrum from same deposit confirming the sample is 
dominated by thenardite with peaks corresponding to Na-carbonates and burkeite.   
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and accurate identification of the molecule (Poels et al., 1998; Van Vaeck and Gijbels, 

1990).  Previous mass spectrometry studies involving Na-sulfate species have shown that 

corresponding adduct ions can be easily and accurately identified by deductive reasoning 

rather than relying on reference spectra (Poels et al., 1998). Similar studies identifying 

minerals have also shown that the fingerprints can be determined without specific 

reference spectra (Poels et al., 1998; Yan et al., 2006). 

Figure 4.4 shows the positive and negative mode FTICR-MS spectra of a 

representative secondary deposit.  The sample appears to be dominated by Na-sulfate 

moieties, consistent with XRD and FTIR analyses. Peaks were identified following the 

detailed procedures of Kotler et al. (2008) and were systematically compared to a suite of 

synthetic reference samples.  The major peaks in the positive spectrum (Fig. 4.4A) are 

clearly attributed to Na-sulfate ions, with the exception of peaks at m/z 130, 175, 225, 

310, and 393, which contain carbonate adduct ions.  Generally, these peaks are less 

abundant than peaks consisting entirely of Na-sulfate ions. No peaks in the spectrum 

consist entirely of Na-carbonate constituents, possibly reflecting the lower concentration 

of carbonate minerals in the sample.  Peaks at m/z 62, 110, 165, and 227 are comprised of 

Na-sulfate ions and have been identified in previous mass spectrometry studies of 

Na2SO4 (Poels et al., 1998; Richardson et al., 2009; Van Vaeck et al., 1998).   

 The negative mode spectrum of the secondary deposit (Fig. 4.4B) shows similar 

adduct ions to those observed in the positive mode spectrum.  The major peaks in the 

spectrum are dominated by Na-sulfate adduct ions, while peaks at m/z 166 and 351 

contain the carbonate moiety.  Peaks consisting entirely of Na-sulfate adduct ions have 

been previously reported in Na2SO4 studies (Poels et al., 1998; Van Vaeck et al., 1998).  
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As with the positive spectrum, the negative spectrum suggests that the sample consists of 

Na-sulfate with a minor amount of Na-carbonates.  Quantification of the oxyanions is 

difficult using laser desorption mass spectrometry (LDMS) practices, as the abundance of 

the ions in the spectrum is not only dependent on the amount of the substance in the 

sample, but also by its ionization efficiency (Yan et al., 2006) and subsequent gas-phase 

interactions between the ions (Richardson et al., 2009).  The general consistency between 

the FTICR-MS spectra and the bulk analyses of the XRD and FTIR results between each 

sample results confirm that imaging laser desorption FTICR-MS is a useful technique for 

the direct fingerprinting of heterogeneous mineral assemblages (Yan et al., 2006).  

4.6.  DISCUSSION  

 XRF whole-rock compositions of the COM basalts (Table 4.2) prove they are an 

excellent analog for geochemical and mineralogical studies of martian secondary mineral 

formations.  COM basalts are very high in Fe by Earth standards (Kuntz, 1989), and thus, 

are more comparable to martian basalts than other traditional terrestrial analogs (e.g., 

Hawaii, Antarctica; (Chevrier et al., 2006; Morris et al., 2000)).  Whole-rock chemical 

comparisons between these environments can be seen in Table 4.2.  Although COM and 

the martian basalts have similar Fe concentrations, they differ substantially in other 

potentially important elements as do other terrestrial analogs.  COM basaltic chemistries 

are higher in Al, Ti, Na, and K and lower in Mg, Ca, and S than their martian 

counterparts, which is consistent with previous studies of COM basalts (Hughes et al., 

1999; Kuntz et al., 1986; Stout et al., 1994).  Despite these differences, the COM basalts 

are closer to martian basaltic compositions than previously and frequently used terrestrial 

basalts that suffer from the same limitations but have lower Fe concentrations.  
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Figure 4.4.  Laser desorption FTICR-MS spectra of secondary sulfate deposits from floor deposit within a 
cave in the Wilderness Caves area. (A) Positive mode spectrum and corresponding (B) negative mode 
spectrum. 
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If the basaltic emplacement of COM is indeed analogous to Mars, then lava tubes 

and caves should be a common feature across the martian landscape and a potentially 

pristine environment for the preservation of secondary minerals.  Lava tubes have been 

putatively observed by martian orbiters (Drost et al., 2006; Wyrick et al., 2004), in 

addition to recent observations by the Thermal Emission Imaging System aboard the 

Mars Odyssey Orbiter, which confirmed the existence of several potential cave openings, 

along the side of Arsia Mons, the southernmost flank of the Tharsis shield volcanoes 

(Cushing et al., 2007).  Morphological characteristics of these volcanic plains closely 

resemble the plains-style volcanism found in the ESRP in size, volume, and shape of the 

basaltic shields (Sakimoto et al., 2003).   

Table 4.2.  Comparison of COM, Hawaii, and Mars basaltic compositions 
    COM flows   Hawaii  Mars Basalts 

Oxide BD1 a NC a BD2 b BC b MK c Spirit d Sherg e Merid f 
SiO2 47.8 48.7 49.0 51.3 49.7 45.4 51.3 38.1 
TiO2 3.0 2.7 2.9 2.5 2.8 0.5 0.9 0.9 
Al2O3 12.5 12.7 13.4 14.2 17.4 10.9 6.8 6.0 
Fe2O3T 17.1 16.9 15.3 14.6 12.0 20.0 19.4 19.6 
MnO 0.2 0.3 0.2 0.3 0.2 0.4 0.5 0.3 
MgO 3.3 3.1 3.3 2.9 3.9 11.9 9.3 7.4 
CaO 7.0 6.7 6.9 6.4 6.6 7.4 9.6 4.5 
Na2O 3.1 2.9 3.6 3.6 4.3 2.7 1.4 1.1 
K2O 1.9 2.1 2.0 2.2 1.9 0.1 0.2 0.6 
P2O5 - 1.8 1.8 1.6 0.9 0.5 0.7 1.0 
Cr2O3 - - - -   0.6 0.2 0.2 
Cl - - - -   0.1  0.4 
SO3 0.02 - - - 0.1 1.2 0.1 21.0 
Total 96.0 97.9 - 99.5 99.7 - 100.3 - 
a Blue Dragon (BD1) and North Crater (NC) Flows, COM. This study.  
b Blue Dragon(BD2) and Big Crater (BC) flows, COM. From Stout et al. (1994).  
c Average unaltered Hawaiitic tephra from Mauna Kea (MK).  From Morris et al. (2000). 
d MER Spirit analysis of Adirondack (RAT). From Gellert et al. (2004).  
e Shergotty meteorite, calculated volatile free. From Lodders (1998).   
f MER Opportunity analysis of McKittrick (RAT). From Rieder et al. (2004).  

 

 The evaporitic assemblages on Mars consist primarily of secondary Mg-, Ca-, and 

Fe-bearing sulfate minerals and silica; however, spectroscopic signatures suggestive of 
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minor concentrations of Na-sulfate species have been observed from several evaporitic 

environments on Mars (Mangold et al., 2008; McLennan et al., 2005; Zhu et al., 2006).  

Na-sulfates may be more abundant within the secondary assemblages on Mars, as 

spectroscopic signatures of Mg-, Ca-, and Na-bearing sulfate minerals are sufficiently 

similar to prevent precise mineral identification (Mangold et al., 2008).  Furthermore, 

chemical/mineralogical modeling suggests that Na-sulfates could form through primary 

basaltic weathering on Mars (Tosca and McLennan, 2006).  The general lack of Na-

sulfate and Na-carbonates on Mars could also reflect differences in environmental 

conditions, as terrestrial thenardite is typically an evaporitic mineral from neutral to 

alkaline non-marine environments (Spencer, 2000), while Mg and Fe-sulfates, which are 

common on Mars, are more typical of acidic environments (Chevrier and Mathe, 2006; 

Clark et al., 2005; Hill and Forti, 1997).  This difference is unlikely related to variations 

in the availability of water, as jarosite and thenardite are both highly soluble and 

representative of arid conditions.  Thenardite also has a solubility that is between the Mg-

sulfates of epsomite and kieserite (Spencer, 2000), both observed on Mars (Chevrier and 

Mathe, 2006; Peterson et al., 2007).      

4.7.  MINERAL FORMATION 

Previous hypotheses have suggested that the secondary sulfate deposits are the 

result of fumarolic activity during basaltic emplacement (Stearns, 1963), by influx of 

brine-type groundwater (Peck, 1974), or a combination of the two (Karlo et al., 1980).  

These hypotheses seem unlikely as no volcanic activity has occurred in over 2000 years, 

and field observations imply that the deposits are a seasonal feature.  Likewise, evidence 

of brine-type groundwater infiltration and subsequent mineral precipitation was not 
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observed in any of the caves.  The secondary sulfate deposits more likely form from the 

primary weathering of the overlying basaltic host.    

PHREEQC modeling software was used to understand the progression of 

secondary minerals that would precipitate from the aqueous leaching of the major basaltic 

minerals.  Minerals used in the modeling were based on XRF data and subsequent CIPW-

NORM modal analysis (only the major minerals were used in the modeling, mineral 

dissolution equations are shown in Figure 4.5).  PHREEQC input files are shown in 

Appendix C. These models show that when calcite reaches oversaturation and 

precipitates out, it reduces the Ca concentrations leading the Mg/Ca ratio in the residual 

solution to increase.  Consequently, this leads to shifts in the saturation indices (SI) of 

epsomite and gypsum (Figure 4.5).  The SI values of mirabilite are unaffected by the 

precipitation of calcite.  Since the secondary deposits at COM are dominated by 

mirabilite and thenardite, Na-sulfate may be among the first constituents to precipitate 

out of solution.  These chemical divides may help explain the lack of gypsum in the 

secondary deposits. Similar mineral fractionation trends have been described by Eugster 

(1980).  The absence of Mg-sulfate in the secondary deposits based on these models is 

perplexing but may be due to the increased precipitation of dolomite and magnesite.   

 The abrupt contact between the sulfate mounds and the basaltic floor, in addition 

to the absence of intermixing between the sulfate mounds and the authigenic basaltic 

minerals further supports that secondary mineralization occurs via precipitation rather 

than direct mineralogical replacement.  The fact that some of the sulfate minerals are 

found as mounds on the floor is interesting, and may suggest a biogenic activity in their 

formation, either through biooxidation of basaltic sulfidic minerals or through alteration 
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of bat guano.  The lack of associated gypsum, nitrate, and phosphate minerals makes the 

latter possibility unlikely, as these are the most common minerals formed through 

alteration and leaching of bat guano (Forti, 2005; Hill and Forti, 1997).  Additionally, the 

occurrence of thenardite in wall and ceiling cavities (Fig. 4.2) make any interaction and 

associated mineralization via bat guano unlikely.  

 

Figure 4.5. Saturation indices for calcite, gypsum, epsomite and mirabilite as a function of the systematic 
evaporation of water using PHREEQC modeling software.  Mineral dissolution formulas were based on 
PHREEQC database equations.  Basaltic minerals and equations used in modeling are: Diopside, 
CaMgSi2O6 =  Ca2+ + Mg2+ +2H2O +2SiO2; Fayalite, Fe2SiO4 + 4H+ = SiO2 + 2Fe2+ +2H2O; Ilmenite, 
FeTiO3 + 2H+ + H2O = Fe2+ + Ti(OH)4; Quartz, SiO2 = SiO2; Pyrite, FeS2 + H2O = 0.25H+ + 0.25SO4

2- + 
Fe2+ + 1.75HS-, Plagioclase, Na0.6Ca0.4Al1.4Si2.6O8 + 5.6H+ = 0.6Na+ + 0.4Ca2+ + 1.4Al3+ + 2.8H2O 
+2.6SiO2. 
   
  

4.8. CONCLUSION 

COM basalts offer an excellent analog to martian basalts, as they have elevated Fe 

concentrations compared to traditional terrestrial analogs.  Although secondary sulfate 

minerals on the evaporitic regions of Mars consist primarily of Mg-, Ca-, and Fe-bearing 

sulfate minerals, recent spectroscopic data have shown the presence of Na-sulfate 

minerals.  Secondary precipitates within the basaltic subsurface of the Holocene COM 
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basaltic flows are dominated by Na-sulfates (thenardite, mirabilite) with minor 

concentrations of Na-carbonates (trona, natron).  The deposits are found in cavities along 

the ceiling and walls of the caves and as localized efflorescent mounds on the cave floors.  

The occurrence of Na-sulfate and Na-carbonate minerals in the subsurface of COM 

suggests that similar mineral assemblages could occur in the subsurface of Mars.  The 

formation of secondary sulfate minerals within the subsurface of COM is likely the result 

of leaching of overlying basaltic host rock, through abiotic and possible biotic 

physiochemical pathways.   
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5.1 ABSTRACT 

  
Evidence of microbial activity associated with the mineralization of secondary 

Na-sulfate minerals (thenardite, mirabilite) in the basaltic subsurface of Craters of the 

Moon National Monument (COM), Idaho was examined by laser desorption mass 

spectrometry, infrared spectroscopy and sulfur isotopic fractionation.  Peaks suggestive 

of bio/organic compounds were observed in the secondary Na-sulfate deposits by Fourier 
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transform mass spectrometry (FTICR-MS), suggesting biological involvement in the 

formation of the deposits.  These secondary Na-sulfate minerals form by aqueous 

leaching of Na ions and biooxidation of Fe-sulfide minerals in the overlying basalt rock.  

With the chemical composition of the COM basalts being similar to their martian 

counterparts, the occurrence of biological activity in the formation of sulfate minerals at 

COM has direct implications for the search for life on Mars.  Additionally, the presence 

of caves on Mars suggests the importance of these environments as a possible location for 

the growth and preservation of microbial activity.  Thus, understanding the 

physiochemical pathways of abiotic and biotic mineralization in the COM basaltic 

subsurface and similar basaltic settings is imperative into the search for extinct or even 

extant life in the martian subsurface. 

 
Kewords:  Thenardite, Mars, Craters of the Moon National Monument, bio/organic 

compounds, FTICR-MS 

 

5.2. INTRODUCTION   

Lava tubes and caves are a common feature in terrestrial basaltic settings, offering 

unique physiochemical conditions for the biogenic growth of secondary minerals.  These 

stable conditions lead to the formation and preservation of secondary mineral deposits 

that may subsequently harbor bio/organic compounds, which are define as chemical 

compounds produced by living organisms or derived from other biogenic organic 

compounds.  Understanding the abiotic and biotic physiochemical processes in terrestrial 

caves may provide valuable insight into the presence of life elsewhere in the solar 

system.  Lava tubes and caves on Mars would represent ideal locations in searching for 
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past evidence of aqueous and biological activity, as these subsurface environments would 

offer protection from radiolytic degradation and diurnal temperature fluctuations (Boston 

et al., 2001; Leveille and Datta, 2007, 2009).  In this research, it is necessary to conduct 

geomicrobiological and geochemical investigations of terrestrial basaltic caves to help 

elucidate similar abiotic and possibly biotic physiochemical processes on Mars.   

Due to the thin atmosphere and weak magnetic field, the upper few meters of the 

martian surface is constantly bombarded with ultraviolet radiation (Benner et al., 2000; 

Martinez-Frias et al., 2006) and high-energy galactic cosmic particles (Badhwar, 2004; 

Parnell et al., 2007).  As a result, the martian surface is considered an inhospitable 

environment for life, contrary to the martian subsurface which may provide more 

favorable physiochemical conditions for the growth and preservation bio/organic 

compounds (Boston et al., 2001).  Thus, the martian subsurface may offer the most stable 

environment and the best chance to observe evidence of extinct or even extant life. 

 This study investigates the role of microbial activity in the formation of 

secondary Na-sulfate deposits found within the basaltic subsurface of Craters of the 

Moon National Monument (COM), Idaho.  Due to the high-Fe content of the COM 

basalts, they are an excellent analog to the Fe-rich martian basalts, especially when 

compared to more traditional terrestrial analogs (Richardson et al., 2009a).  The 

importance of Na-sulfate minerals has been made clear to the astrobiological community 

since their discovery in several planetary bodies throughout the solar system.  Recently, 

Na-sulfates have been observed as weathering products in the martian regolith (Mangold 

et al., 2008; Zhu et al., 2006), and they are a major surficial component on the icy moon 

of Europa (Fanale et al., 2001; Kargel et al., 2000; McCord et al., 1998; 1999; Zolotov 
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and Shock, 2001).  Additionally, anhydrous Na-sulfate (thenardite) is a proven host 

mineral in the direct detection of bio/organic compounds using laser desorption Fourier 

transform ion cyclotron resonance-mass spectrometry (FTICR-MS) (Richardson et al., 

2008; Richardson et al., 2009b).  The role of microbial activity in the mineralization of 

Na-sulfates in the basaltic subsurface of COM, and the ability of these minerals to assist 

in the direct detection of bio/organic compounds has significant implications for the 

search for life on Mars, especially considering future laser desorption mass spectrometry 

(LDMS) instruments, like Mars Organic Molecule Analyzer which will search for similar 

bio/organic compounds as a part of the upcoming ExoMars mission. 

COM is located along the northern flank of the Eastern Snake River Plain in 

southern Idaho.  It is composed of more than 60 individual Holocene-aged basaltic flows 

(Kuntz et al., 1986; 1992; Reid, 1995).  COM basalts are enriched in silica, iron and 

alkali-elements relative to basaltic flows elsewhere in the Eastern Snake River Plain 

(Hughes et al., 1999).  These differences are putatively agreed to reflect larger degrees of 

crustal assimilation and/or fractionation (Leeman et al., 1976).   

5.2.1. COM as a Martian Analog 

Mineralogical and bulk chemical comparisons between COM and martian basalts 

show similar compositions (Hughes et al., 1999; Richardson et al., 2009a).  These two 

regions are marked with extremely high Fe concentrations, especially when compared to 

other terrestrial basaltic chemistries. However, COM basalts are slightly higher in Al, P, 

Ti, Na, and K and lower in alkali-earth elements and S than their martian counterparts 

(Hughes et al., 1999; Kuntz et al., 1986; Richardson et al., 2009a).  Despite these 

differences, COM basalts are still closer in chemical composition to martian basalts than 
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other frequently used terrestrial analogs, which suffer similar variations but also have 

much lower Fe concentrations.   

Lava tubes and caves are widely considered to be a common feature on Mars due 

to the weak martian gravity and their occurrence in terrestrial basaltic environments 

(Leveille and Datta, 2009).  Lava tubes and related features have now been observed by 

martian orbiters (Drost et al., 2006; Wyrick et al., 2004).  Imagery from Mars Odyssey, 

Mars Global Surveyor, Mars Express, and Mars Reconnaissance Orbiters have observed 

such subsurface features as collapsed lava tubes, lave tube pits, and hollow lava tube 

conduits (Leveille and Datta, 2009; Wyrick et al., 2004).  Additionally, thermal imaging 

has observed caves measuring between 100 m to 250 m in diameter (Cushing et al., 

2007).  These caves are located in the Tharsis shield volcano region, which is considered 

to be morphologically and topographically similar to the basaltic shields of the Eastern 

Snake River Plain (Sakimoto et al., 2003).   

5.2.2. Occurrence of Subsurface Features on Mars 

5. 3. METHODOLOGY AND ANALYTICAL TECHNIQUES 

Samples of the secondary deposits were collected biannually between June 2006 

and October 2008.  Approximately 10 g of the deposits were carefully transferred to 

glass containers, making sure no extraneous material or contamination was introduced.  

Unfortunately, due to safety regulations, COM park officials did not grant access into 

the two spatter cones, named Crystal Pit or Snow Cone Pit.  As a result, all samples from 

these spatter cones were obtained through subsampling from the mineral archive located 

5.3.1. Mineral Collection 
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at COM Park Headquarters, these samples were originally collected by the 

Environmental Science and Research Foundation (Morris et al., 1995).   

 Attenuated Fourier transform infrared spectroscopy (FTIR) spectra were obtained 

using a Thermo Nicolet Nexus 670 FTIR spectrometer (Madison, WI).  Spectra were 

collected using an average of 100 scans with a resolution of 4 cm -1.  All spectra were 

measured in absorbance between 4000 cm-1 and 500 cm-1.  

5.3.2. Fourier Transform Infrared Spectroscopy 

Spectra of the secondary sulfate deposits were obtained using a laboratory-derived 

FTICR-MS (McJunkin et al., 2002; Scott et al., 2003; Scott and Tremblay, 2002) 

equipped with a 7 T Oxford (Oxford, England) superconducting magnet. Instrument 

parameters have been previously described (Kotler et al., 2008; Richardson et al., 2008; 

2009b; Yan et al., 2007a; 2007b).  All spectra were acquired using single laser shots in 

both the positive and negative mode.  Peak identification was accomplished by 

systematic analysis following Kotler et al. (2008). 

5.3.3. FTICR-MS Instrumentation and Parameters 

Evidence of sulfur fractionation between the secondary deposits and the host 

basalts was obtained using a continuous flow stable isotope ratio mass spectrometer by 

DPRA-Zymax Industries (Escondido, CA).  Eleven secondary mineral samples, from the 

three sampling locations, were analyzed and compared to two host basalts taken from 

Wilderness Caves area and on the flank of Crystal Pit Spatter Cone, respectively.  These 

basalt samples bound the eastern and western boundary of the sampling area in the Blue 

5.3.4. Sulfur Isotopes 
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Dragon flow (Fig 5.1).  Sulfur isotope ratios are reported in the conventional δ-notation, 

expressed as ‰ deviation relative to Vienna Canyon Diablo Troilite (VCDT).   

5.4. RESULTS  

Of the 60 basaltic flows that compose COM, the young Blue Dragon flow (~ 2.1 

ka) contains the majority of the accessible lava tubes and caves found in the Eastern 

Snake River Plain.  Their abundance is due to the young age of the flow, as it has had less 

time to undergo gravitational collapse.  As a result the Blue Dragon flow hosts a majority 

of the secondary sulfate deposits found at COM; likely the result of its morphological 

characteristics rather than any chemical differences between adjacent COM flows 

(Richardson et al., 2009a; Stout et al., 1994).   

5.4.1. Description of Subsurface Features at COM 

Within the Blue Dragon flow three locations were chosen for mineral sampling, 

these locations where chosen based on mineral occurrence, mineral abundance, cave 

accessibility and lack of public access.  The extent of the Blue Dragon flow and cave 

locations used in this study are shown in Figure 5.1.  Wilderness Caves area is a 

collection of roughly six small lava tubes and caves covering an area nearly 200 meters in 

diameter.  Approximately two kilometer to the west of the Wilderness Caves area is the 

branching lava tunnel of Arco Tunnel.  Cumulatively, Arco tunnel extends for over a 

kilometer while maintaining a relatively shallow depth (<30 m).  The final sampling 

location comes from the two hollow magma chambers located within adjacent spatter  

cones (Crystal Pit, and Snow Cone Pit).  These spatter cones are approximately two and 

half kilometers west of Arco Tunnel on the western boundary of the Blue Dragon flow.  

These magma chambers are only accessible through narrow > 20-meter vertical throats  
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Figure 5.1. Map of COM lava field showing cave locations in Blue Dragon flow.  Map modified from 
Kuntz (1989) with permission of American Geophysical Union. 
 

(Morris et al., 1995; Peck, 1974).  The hollow magma chambers of Crystal and Snow 

Cone Pit are only two of three such formations known to the authors worldwide (Morris 

et al., 1995; Stefansson, 1992), as similar magma chambers are inaccessible due to lava 

infill, weathering and/or ice plugs.   

Secondary Na-sulfate deposits from Wilderness Caves area and Arco Tunnel are 

found in small cavities on the ceilings and walls and as mounds on the floors.  Floor 

deposits are found intermittently dispersed as localized, efflorescent, white, powdery 

mounds.  These deposits appear to be a seasonal feature, as the size and amount of each 

representative mineral deposit fluctuates on a semi-annual basis.  It appears these 

deposits fluctuate throughout the year, dissolving during wetter months, and 

5.4.2. Description of Secondary Deposits 
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reprecipitating during drier times of the year.  A more detailed description of the 

secondary deposits can be found in Richardson et al. (2009a). 

The secondary deposits found in the subsurface of COM are dominated by Na-

sulfate minerals (thenardite, mirabilite) with approximately 50% of the deposits 

containing minor concentrations of Na-carbonate minerals (trona, natron) (Richardson et 

al., 2009a).  These secondary deposits were investigated for chemical and isotopic 

biological signatures.  Biological activity associated with mineral deposits can be inferred 

through various methods including chemical or isotopic signatures, which can be 

preserved in the minerals (Boston et al., 2001; Leveille and Datta, 2007).  Such 

bio/organic compounds would suggest direct or indirect biological involvement in the 

mineralization of the Na-sulfate deposits at COM. It must be noted that other mechanisms 

of bio/organic compounds interaction with the secondary deposits can not be overlooked.  

Although unlikely, emplacement and delivery of these bio/organic compounds to the 

secondary deposits may be due to plant detritus moving downward through the basalts, 

organic aerosols, and post-depositional interaction with cave animals. To the authors’ 

knowledge, no investigation of biogenic activity related to Na-sulfate mineralization in 

volcanic settings has been conducted.  However, evidence of biological activity, such as 

fossilized remnants and FTICR-MS spectra containing  peaks suggestive of bio/organic 

compounds, has been observed in Na-sulfate minerals in several evaporitic settings 

(Dongyan et al., 1998; Richardson et al., 2008).   

4.3. Evidence of Microbial Activity 

Mineral deposits were investigated for microbial evidence using geomatrix 

assisted laser desorption/ionization (GALDI) (Yan et al., 2007a).  This technique uses a 
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mineral matrix to assist in the desorption and ionization of bio/organic compounds with 

little to no sample preparation.  The ability of minerals to facilitate in the desorption and 

ionization of bio/organic compounds is a primary focus in previous studies of GALDI-

FTICR-MS as a viable technique for bio/organic compound detection (Kotler et al., 2008; 

Richardson et al., 2008; Richardson et al., 2009b; Yan et al., 2007a; Yan et al., 2007b).  

Previous studies using synthetic and natural thenardite have shown the ability of 

thenardite to assist in the ionization and detection of bio/organic compounds (Richardson 

et al., 2008; Richardson et al., 2009b).    

  In order to accurately identify any associated bio/organic compounds in the 

COM secondary deposits, a suite of FTICR-MS spectra was compiled, composed of 

inorganic thenardite, Na-carbonate (trona, natron), and physical combinations between 

these Na-sulfate and Na-carbonate minerals.  This inorganic suite of minerals was based 

on previous XRD, FTIR and FTICR-MS spectra of COM secondary deposits by 

Richardson et al. (2009a).   

The positive and negative mode FTICR-MS spectra of the Na-sulfate standards 

obtained from this study are identical to previously reported spectra (Richardson et al., 

2009a; Richardson et al., 2008; Richardson et al., 2009b).  All spectra of the Na-sulfate 

and Na-carbonate minerals (not shown) have peaks with mass defects (i.e., the number 

after the decimal point) suggestive of inorganic constituents.  Common non-hydrogen 

elements associated with bio/organic compounds have mass defects near 0.00 amu (e.g., 

12C at 12.000 amu, 16O at 15.995 amu).  Hydrogen with an elemental mass of 1.008 amu 

tends to dominate the mass defects of bio/organic compounds because there are usually 

twice as many hydrogen atoms as other elements.  Hence, it is necessary to have 
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sufficient mass accuracy and resolution to distinguish between peaks related to inorganic 

and organic ions.  Distinguishing between an inorganic and organic ion based on the 

peak’s mass defect is easily accomplished when the ion has a m/z (mass-to-charge) less 

than 400, as the m/z begins to rise above this value, organic ions tend to accumulate 

hydrogen atoms causing the mass defect to appear to contain inorganic elements.  

Figure 5.2 is a representative negative mode spectrum from a secondary deposit 

collected from a wall cavity inside Arco Tunnel.  The inorganic peaks observed in the 

spectra have been reported in previous studies of Na-sulfate spectra (Poels et al., 1998; 

Richardson et al., 2009a; Richardson et al., 2008; Van Vaeck et al., 1998).  Among the 

inorganic peaks, two distinctive peaks at m/z 183.081 and 339.040 have mass defects 

suggestive of bio/organic compounds.  These peaks are related to bio/organic compounds 

due to (1) absence of the peaks in the inorganic Na-sulfate and Na-carbonate standards, 

(2) mass defects suggestive of bio/organic elements, and (3) isotopic distributions 

(expanded regions in Fig. 5.2), which correspond to the theoretical isotopic distribution 

of the suggestive bio/organic formulas.  The bio/organic related peaks are an example of 

complex cluster ions, similar to that reported for glycine with jarosite (Kotler et al., 

2008), and stearic acid with thenardite (Richardson et al., 2008).  Using a systematic 

procedure based on the mass defects and isotopic distributions outlined by Kotler et al. 

(2008), the most likely composition for the peaks at m/z 183 and 339 are C8H16SONa- 

and C10H20S3O5Na-, respectively.  The occurrence of these complex cluster ions is not 

unusual, as they often form due to complex reactions in the laser desorption plume or in 

the gas phase (Budimir et al., 2007; Karas et al., 1985; Knochenmuss et al., 1996).  These 

reactions lead to ions larger than the expected molecular ion due to formation of adducts 
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from the addition of matrix components and/or analyte species (Budimir et al., 2007; 

Ham et al., 2003; Karas and Kruger, 2000; Knochenmuss et al., 1996).  The exact 

identification of the original bio/organic compound was unobtainable as it is quite 

difficult to ascertain without undertaking a systematic experiment using a variety of 

bio/organic compound/thenardite combinations. 

As with the negative spectra, a number of complex bio/organic or organic cluster 

ions are seen in the positive spectra of the secondary deposits (Table 5.1).  A 

comprehensive list of these positive and negative mode peaks and their suggestive 

chemical formulas is shown in Table 5.1.  Approximately 30% of these suggestive 

formulas have C:H:O ratios that resemble ratios observed in lipids, sugars and/or amino 

acids.  Unfortunately, many of the suggestive formulas seen in Table 5.1 have suggestive 

formulas that may result from gas-phase reactions in the desorption plume.  These gas-

phase reactions can lead to unusual chemical formulas.  Similar gas phase reactions have 

been observed in previous FTICR-MS studies using thenardite (Richardson et al. 2008).  

A representative positive mode spectrum (Fig. 5.3) shows several high mass peaks, most 

of which are easily identified as inorganic based on their high mass defects, their 

occurrence in the inorganic standard spectra, and their occurrence in previously reported 

thenardite spectra (Poels et al., 1998; Richardson et al., 2009b; Van Vaeck et al., 1998).  

Close inspection reveal that the peaks at m/z 141.052, 170.044 and 181.039 have mass 

defects suggestive of bio/organic compounds and are absent in the inorganic standard 

spectra.  Peak identification in the positive spectra was more difficult as the minor 

isotopic peaks were less distinct (i.e., low abundance) due to poor S/N.  This is not 

uncommon as thenardite interactions often produce elevated background noise in the  
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Figure 5.2. (A) Negative mode laser desorption ion FTICR-MS spectrum of a secondary sulfate deposits 
from a wall cavity inside Arco Tunnel.  Peaks at (B) m/z 183 and (C) m/z 339 have mass defects and 
isotopic distributions suggestive of bio/organic cluster ions. 
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positive mode (Richardson et al., 2009b).  However, peak identification was obtained by 

comparing the observed mass defects with theoretical mass defects.  Using this method, 

the peak at m/z 141.052 was found to have only one likely composition with a theoretical 

weight of 141.053, corresponding to a formula of C5H10O3Na+.  Precise identification of 

the peaks at m/z 170.044 and 181.039 were unobtainable as several likely formulas could 

account for these mass defects (Formulas are shown in Table 5.1).  However, these peaks 

are clearly related to bio/organic compounds due to their mass defects and their absence 

in the Na-sulfate, Na- carbonate and physical mixture standard spectra.  Additional 

evidence of associated bio/organic compounds in the secondary deposits was investigated 

using FTIR techniques.  Even though FTIR does not have the sensitivity and  

 

Table 5.1. Suggestive chemical formulas for bio/organic peaks associated with the 
secondary sulfate deposits observed in the laser desorption FTICR-MS spectra. 

m/z  Positive Mode Bio/organic Peaks Cave Location  
113.022 C3H6O3Na+ AT, SC  
130.098 C7H14O2

+, C5H12N3O+ CP  
136.098 C4H10SNa2

+, C4H8O5
+, C6H9SNa+,  CP  

141.053 C5H10O3Na+ WC, SC  
163.026 C5H9O3Na2

+, C5H9NO3S+,  WC, CP  
170.044 C4H9NO4Na+, C4H10O7

+, C6H11O2SNa+ WC, CP  
181.037 C5H11NSO4

+, C6H8NO4Na+, C6H13S2O2
+ WC, CP  

186.052 C5H11O5Na+ AT, WC, SC   
223.007 C4H8O9Na+, C5H7NO6Na+, C5H12S2O4Na+ CP  
233.071 C9H15NSO4

+, C6H14N2O6Na+ CP  
m/z  Negative Mode Bio/organic Peaks Cave Location  

136.009 C3H6SNO3
-, C3H6O3Na2

-, C2H4N2O5
- AT, SC  

161.047 C4H10O5Na-, C6H9O5
- CP  

163.046 C5H9NO5
-, C5H11NSNa2

- WC, CP  
183.081 C8H16SONa- AT, CP  
187.047 C5H10NO5Na- AT, WC, SC, CP  
191.055 C5H10O6Na-, C7H11O6

-, C10H9NO3
-, C7H13NO3S- AT, WC, SC, CP  

281.008 C5H10N2O8SNa-, C6H14O3N3S3Na- AT, WC, CP  
339.041 C10H20S3O5Na-  AT, SC, CP  
390.260 C18H39O7Na- CP  

Arco Tunnel= AT; Wilderness Caves= WC; Snow Cone Pit= SC; Crystal Pit= CP. 
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resolution as FTICR-MS, several bands were observed to support the presence of organic 

compounds.  Representative spectra are shown in Figures 5.4A,B.     

The inorganic bands in Figure 5.4A are representative of thenardite; a more 

detailed description of these bands can be found in Richardson et al. (2009a).  Evidence 

of organic-related bands can be seen at 559 cm-1, 545 cm-1, 536 cm-1 and a double band at 

2111 cm-1.  These bands are all consistent with bonding vibrations of organic functional 

groups.  The double band at 2111 cm-1 correlates to a C–C triple bond or a C–N triple 

bond stretch, while the bands at 559 cm-1, 545 cm-1 and 536 cm-1 are characteristic of 

stretching and rocking of singly-bonded C–compounds (Smith, 1999).  Unfortunately, 

direct identification of organic compounds was unsuccessful as the major of organic 

characteristic bands (> 2500 cm-1) were not observed. 

 

 

Figure 5.3. Positive mode laser desorption FTICR-MS spectrum of a secondary sulfate deposit from a floor 
deposit within a cave in the Wilderness Caves area.  
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The prominent bands seen in figure 5.4B result from a combination of sulfate and 

carbonate oxyanions similar to that observed by Richardson et al. (2009a).  In addition to 

the major inorganic bands, several bands are suggestive to be representative of organic 

compounds.  These bands at 536 cm-1 and 580 cm-1 are representative of singly-bonded 

organic compounds (Smith, 1999), similar to those observed in figure 5.4A.  

Additionally, the band at 785 cm-1 is reminiscent of a C–H stretch associated with 

aromatic organic compounds (Coates, 2000).    

 

Figure 5.4. Representative FTIR spectra of secondary deposits, (A) spectrum is dominated by sulfate 
oxyanion, while (B) has additional bands corresponding to carbonate oxyanion.  Both spectra show bands 
suggestive of organic bonding (indicated by *). 
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The oxidation of sulfidic minerals to sulfate through a series of intermediate 

species represents an important energy-yielding pathway for chemolithoautrophic 

microorganisms.  Sulfur compounds are among the most energy-rich inorganic 

compounds available to microbes (Douglas, 1995).  Unfortunately little is known 

regarding the direct sulfur isotope fractionation associated with biologically mediated 

oxidation of natural sulfide minerals (Canfield, 2001), especially in reference to the 

formation of secondary minerals in basaltic environments.  FeS2 is one of the most 

abundant metal sulfide minerals in basaltic rocks and, therefore, is likely fundamental in 

biological weathering of basaltic rocks.  Biologically mediated oxidation of sulfidic 

minerals results in progressively more depleted 34S isotope ratios in the secondary 

minerals, as microbes preferential metabolize the lighter 32S isotope.  As a result, wide 

ranges of sulfur isotope fractionation values during bacterial sulfide oxidation have been 

observed in laboratory experiments (Balci et al., 2007; Kaplan and Rittenberg, 1964; 

Toran and Harris, 1989).  In contrast, abiotic oxidation of sulfide minerals is considered 

to be a unidirectional process producing negligible sulfur isotope fractionation with ∂34S 

values being indistinguishable from the parent sulfide minerals (Balci et al., 2007; 

Canfield, 2001; Haubrich and Tichomirowa, 2002; Rye et al., 1992). However, sulfide 

oxidation is highly variable and is poorly understood.  Fractionation of sulfide to sulfate 

is accomplished via multiple oxidation steps, with fractionation values having a high 

range of values.  Canfield (2001) summarized the various oxidation steps for both abiotic 

and biotic pathways, although most of these reported values where done in controlled 

laboratory environments. These values are shown in Table 5.2.  

5.4.4. Sulfur Fractionation 
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Table 5.2. Summary of fractionation values during sulfur 
compound oxidation. Modified from Canfield (2001). 

General Reaction   Fractionation ‰ 
Biotic    

H2S→S⁰  -1 to 1 
H2S→SO4

2-  0 to -19 
S⁰→SO4

2-  0 
S2O3

2-→SO4
2-  -0.4 

Abiotic   
H2S→S⁰, S2O3

2-, SO4
2-  4 to 5 

SO3
2-→SO4

2-   0.4 
S⁰, S2O3

2-, SO3
2- are intermediate species.  

 

Additionally the pathways of sulfide oxidation can form several intermediate 

compounds (S⁰, S2O3
2-, S4O6

2-, SO3
2-), in which any these intermediate compounds may 

be undergo oxidation, reduction, and/or disproportionation (Canfield 2001).  Thus, an 

accurate propagation of either biotic or abiotic sulfide oxidation can be highly variable, 

which can depend on environmental conditions, mineralogy, type of electron acceptor, 

and the oxidizing microorganism involved. 

Sulfur fractionation between the COM host basalts and the secondary minerals is 

shown in Figure 5.5.  The greatest fractionation difference between the host basalt and 

the secondary deposits is 4.5 ‰, with several additional values exceeding 3.5 ‰.  These 

small but significant differences may imply biological oxidation as inorganic 

fractionation of sulfidic minerals generally do not exceed 3 ‰ (Lefticariu et al., 2006; 

Taylor and Wheeler, 1994).  Although, laboratory experiments have shown that 

biological oxidation of H2S to SO4
2- can yield fractionation values reaching up to 10 to 

18‰ (Canfield, 2001).  One possible explanation of the lack of substantial 34S 

fractionation may be explained by preferential oxidation of 34S by disproportionation of 

metastable intermediate sulfur species (Canfield, 2001).  During disproportionation   
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Figure 5.5. Picture illustrating the depletion of 34S (‰VCDT) in the secondary deposits relative to the 
overlying host basalts.  The two host basaltic samples were collected from the eastern and western 
boundary of the sampling area. Length of each box represents standard deviation of the measurement. BD- 
Blue Dragon flow; AT= Arco Tunnel; WC= Wilderness Caves; SC= Snow Cone Pit; CP= Crystal Pit.  
 

processes, microorganisms show no preferential uptake between the sulfur isotopes, 

resulting in enriched 34S values in sulfate products (Bottcher et al., 2001; Habicht et al., 

1998; Smock et al., 1998).  Thus, the presence of disproportionating bacteria may cause 

34S values to remain near the host basaltic values.  Even though, the fractionation 

observed in the secondary deposits may suggestive a biological oxidation in their 

formation, it still is possible that these fractionation values may be due to abiotic 

processes.   

No correlation with the cave location or from within the cave can be seen 

regarding sulfur fractionation, this lack of spatial correlation may imply that a similar 

oxidative pathway occurs throughout the sampling area and microbial oxidation 

processes are ubiquitous between these locations.     

5.5. DISCUSSION 

Several previous hypotheses have tried to explain the unusual occurrence of 

secondary sulfate deposits within the basaltic subsurface of COM.  Stearns (1963) 

suggested a fumarolic origin, which can explain the isolated jarosite deposits found in 
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Crystal Pit (Peck, 1974) and Snow Cone Pit (Morris et al., 1995), but fails to explain the 

formation of more soluble and low temperature secondary minerals (i.e., mirabilite, 

thenardite, burkeite) (Richardson et al., 2009a).  Peck (1974) hypothesized that the 

deposits were formed through groundwater leaching followed by subsequent deposition 

in open cavities on the cave floors.  Although groundwater is a factor in the formation of 

the secondary sulfates, its influence is more related to weathering of the overlying basalt 

and subsequent physiochemical transport.  A combination of fumarolic activity and 

subsequent groundwater leaching and redeposition was introduced as a third possible 

scenario for mineral precipitation (Karlo et al., 1980), although this hypothesis still 

suffers the same limitations as its predecessors.  Furthermore, none of these hypotheses 

were further explored using detailed analytical techniques or subsequent field 

observations.   

Alternatively, the secondary sulfate deposits could form from a combination of 

abiotic and biotic physiochemical weathering of the overlying basalt (Fig. 5.6).  The Na-

rich secondary deposits are consistent with the elevated alkali concentrations of COM 

basalts (Richardson et al., 2009a; Stout et al., 1994).  Thus leaching could be a plausible 

source for the sodium cation, as Na leaching is a source for Na-rich speleothems in other 

basaltic cave settings (Forti, 2005).  The source of the sulfur is more questionable since  

the overlying basalts have a sulfur concentration of 0.02% (Richardson et al., 2009a).  

Regardless, a potential sulfur source could be sulfide minerals located within the basaltic 

glass substrate, as sulfur concentrations in basaltic glass are shown to positively correlate 

with increasing overall Fe-content in the basalt (Czamanske and Moore, 1977).  This 

could be a possible source, considering that glass percentages in the Blue Dragon flow  
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Figure 5.6.  Schematic showing the biotic and abiotic weathering of the overlying basalts at COM, and the 
subsequent mineralization of secondary Na-sulfate minerals on the cave floors. 
 

reach up to 25 % by volume, and COM flows are marked with extremely high Fe 

concentrations (Stout et al., 1994).  Thus, it is possible that the glass substrate could 

provide a source for the sulfur.  Additionally, endolithic microorganisms are commonly 

found within glass substrates in basalts (Cousins et al., 2009; Thorseth et al., 1995), and 

subsequent biological weathering has been observed by textural and chemical signatures 

(Fisk et al., 1998; Thorseth et al., 1995).  FTICR-MS and FTIR spectra implies that the 

secondary deposits are associated with a variety of suggestive bio/organic compounds, 

implying a biogenic influence during the formation of the secondary sulfate deposits at 
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COM. Thus meteoritic leaching, possibly through fractures in the basaltic glass, along 

with biological oxidation of reduced sulfur may account for the needed sodium and 

sulfate ions to induce precipitation (Fig. 5.6).   

5.6. CONCLUSIONS 

The secondary sulfate deposits in the subsurface of COM are products of biogenic 

and abiogenic weathering and subsequent precipitation.  Peaks suggestive of bio/organic 

compounds observed in the FTICR-MS spectra imply the secondary sulfate deposits 

directly or indirectly formed through biological activity, which is further supported by 

field observations, infrared spectroscopy and sulfur fractionation.  The effectiveness of 

natural Na-sulfate minerals in the ionization/desorption of associated bio/organic 

compounds further implicates the importance of Na-sulfate minerals in future LDMS 

instruments like the Mars Organic Molecular Analyzer aboard the upcoming ExoMars 

rover.  The occurrence of biological activity associated with the formation of secondary 

minerals in the lava tubes and caves of COM, in addition to the chemical and 

morphological similarities between the COM and martian basalts, offers further reasons 

as to the importance of the subsurface as an auspicious environment in the search for life 

on Mars. 
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APPENDIX A: DISTRIBUTION OF ORGANIC COMPOUNDS IN THE SOLAR 
SYSTEM: PLANETARY BODIES 
 

 The emergence of complex organic molecules in our solar system depends, in 

part, on the occurrence of organic compounds, whose type and distribution are controlled 

by the processes that form them from existing organic molecules. Thus, Earth-based 

telescopic and space-based instrumental detection and characterization of reservoirs of 

organic compounds is crucial to understanding the formation of organic molecules. The 

composition of organic molecules and the relationships between organic-molecule 

reservoirs remain active topics of extraterrestrial research. 

 With the exception of Mars, Europa, and Titan, planetary bodies are considered 

unsuitable for extant or extinct life, although these bodies offer valuable insight into 

surficial and atmospheric organic-chemical processes that lead to formation and 

accumulation of organic molecules. Therefore, this section will summarize evidence on 

the distribution and formation of organic molecules on planetary bodies in our solar 

system; although, it is very exciting that methane has been recently discovered on an 

extrasolar planetary body by space-based spectroscopy [338]. Reviews of planetary 

bodies have been published previously [339,340,341]. 

A1.1. THE KUIPER BELT AND CENTAURS 

 The Kuiper belt is a disk-shaped region between 30 to 200 AU beyond Neptune. 

The icy objects of the Kuiper belt follow heliocentric orbits. They are variably sized, with 

tens of thousands of them measuring greater than 100 km in diameter [342]. They have 

undergone minimal chemical and physical modifications from solar UV radiation [343]. 

Their current chemical composition likely reflects their original composition and, hence, 
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that of the solar proto-nebula. Dark refractory material and volatiles dominate the 

composition, making detection of organic constituents difficult. Unfortunately, chemical 

characterization of these bodies is also hindered by their small size and great distance 

from Earth. 

 Neptune’s gravitational field occasionally ejects Kuiper belt objects from their 

orbits, relegating them to an unstable elliptical orbit among the Jovian planets (Jupiter, 

Saturn, Uranus, and Neptune) [344]. These objects, called Centaurs, are closer to Earth 

and, therefore, more easily observed than their parent Kuiper belt objects. Some Centaurs 

show variations in dust and evaporated gas content and composition, suggesting that 

Centaurs formed at different temperatures. Consequently, the compositions of these 

Centaurs and Kuiper-belt objects may be compositionally similar to short-lived comets 

[345,346]. 

 Earth-based infrared spectroscopy shows that the surface composition and 

characteristics of Centaurs vary significantly. Several objects absorb strongly at the same 

infrared wavelengths as does the organic material, tholin, suggesting it may be present 

[347,348]. Tholins are high molecular weight, synthetic, macromolecular compounds 

produced from irradiated gaseous or solid mixtures of simple hydrocarbons, water, or 

nitrogen.  They contain combinations of nitrogen heterocycles, amino acids, pyrimidines, 

and/or purines [349,350]. Additional surface components of Centaurs are water ice, 

minor amounts of methanol, (CH2)6N4 (a photolytic product of methanol), amorphous 

carbon, and kerogen-like organic molecules [351,352]. The surface compositions of 

Centaurs are likely representative of all Kuiper belt objects [343]. 
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 Organic ices (hydrates) of carbon dioxide and carbon monoxide along with 

refractory minerals likely comprise the interiors and surfaces of Kuiper belt objects [353]. 

The largest and most easily studied of the Kuiper-belt objects is Pluto. Spectroscopic data 

show that Pluto’s surface, which is compositionally similar to the Neptunian satellite, 

Triton, contains varying amounts of CH4, CO, and tholin ices (see Figure A1.1.) [354]. 

These CH4, CO, and tholin ices, which are produced by photochemical reactions of N2 

and CH4 in Pluto’s atmosphere [355], subsequently condense and precipitate onto Pluto’s 

surface. Like Triton, Pluto also has other complex organic compounds (HCN, C2H4, 

C2H6, C2H2, and nitriles) that likely formed by photochemical reactions in the atmosphere 

[356]. 

 

Figure A1.1.  Near-infrared spectra of Pluto, Pluto’s moon Charon, and the large Kuiper belt object 
Quaoar Wavelengths of solid CO, CO2, N2 and CH4 are shown. Reprinted from [357] by permission from 
Macmillian Publishers Ltd:  Nature, Jewitt, D.C. and Luu, J., 432, 731 (2004), copyright (2004). 
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A1.2. GIANT PLANETS 

 Atmospheric compositions of the Jovian planets, determined by infrared and 

ultraviolet spectroscopy from orbiting spacecraft (Voyager 1, Voyager 2, Galileo, and 

Cassini) and terrestrial-based instruments, are dominated by hydrogen and helium with 

minor concentrations of CH4 and other carbon-bearing compounds (see Table A1.1.) 

[358]. The carbon-bearing compounds are the result of three different mechanisms of 

CH4 dissociation. The first is photolysis of singly bonded carbon resulting in CH3 

radicals. The CH3 radicals subsequently react with atomic H to form simple 

hydrocarbons, such as ethane (C2H6), 154thane (C2H4), and acetylene (C2H2) [359,360]. 

Other complex organic molecules, such as C4H2 and C6H6 are produced by further 

photochemical reactions of the simpler hydrocarbons (ethane, ethane, and acetylene) 

[361,362]. The second formation mechanism of organic compounds in the Jovian 

planetary atmospheres is the reaction of magnetically trapped ions (H+, CH3
-
 ) with 

atmospheric CH4, which produces a cloud of simple and more complex hydrocarbons 

(see Table A1.1.) [363]. The last mechanism is the synthesis of organic molecules from 

CH4 during lightning storms. This interaction can drive non-equilibrium organic reactions 

leading to formation of C2H6, C4H2, and C6H6. The exact formation processes of this last 

mechanism and its relative importance are poorly understood [364,365]. 

 Hydrogen cyanide (HCN) and its polymers are likely formed in the atmospheres 

of the Jovian planets by photolysis of CH4 and NH3 [366]. The polymers are precursors to 

polypeptides and amino acids [367,368]. The occurrence of HCN and its polymers may 

potentially account for Jupiter’s banded coloration and for the changes observed after 



 155 

impact of comet P/Shoemaker-Levy 9 with Jupiter in 1994 [367,369]. The occurrence of 

HCN polymers on Saturn may cause the brown-orange color of the planet [367]. 

A1.3. SATURN’S ICY MOONS 

 NASA’s Cassini spacecraft entered Saturn’s orbit in summer 2004. One primary 

objective of the mission was detection and characterization of surficial and atmospheric 

composition of Saturn’s icy moons (all of Saturn’s moons except Titan). Cassini data 

reveal that the icy moons are physically and chemically diverse. 

Table A1.1.  Chemical composition of atmospheres of the Jovian planets [370-374]. 
 Jupiter Saturn Uranus Neptune 

Major 
compounds mixing ratio relative to H2 

H2 1 1 1 1 
He 0.15 0.06 0.18 0.18 
CH4 0.001-0.003 0.002 0.03 0.03 

Minor 
compounds ppm 

C2H6 1-2 1-3 trace 1-3 
C2H2 0.03 0.07 0.1 0.1 
C2H4 0.007 trace   
C3H8  trace   
C3H4 0.003 trace   
C6H6 0.002    
HCN trace trace  0.001 
CO 0.002 0.002 0.01 1 
CO2 trace trace trace trace 

 

 Phoebe is Saturn’s outermost moon. The elliptical retrograde orbit, unusual for 

moons, supports one interpretation that it may be a gravitationally captured Kuiper-belt 

object [375,376]. Further, the surface composition of Phoebe is unlike any surface 

composition observed in the outer solar system. The unusual, heterogeneous surface 

composition may reflect a thin veneer of cometary or intersolar material [377]. 

A1.3.1. Phoebe 
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 Spectroscopic data of Phoebe’s surface shows the presence of PAHs, CO2, 

amorphous carbon, nitriles, tholin, and cyanide compounds bound in a matrix of water ice 

[377-380]. CO2 is ubiquitous on Phoebe and, along with these other compounds, accounts 

for the low albedo of the surface [377]. The origin of PAHs on Phoebe is still uncertain, 

although similar molecules are found on another of Saturn’s satellites, Iapetus [378]. 

 Iapetus is Saturn’s third largest moon. The surface is divided into a low-albedo 

hemisphere and a water-rich high-albedo hemisphere [381,382]. This difference in 

albedos is atypical in the solar system and represents different surface compositions in 

the two hemispheres. The composition of the high-albedo hemisphere is dominated by 

water ice with minor, but ubiquitous amounts of tholin [383]. Conversely, the low-albedo 

hemisphere is composed of several organic compounds; PAHs with aromatic and 

aliphatic bonds have been detected spectroscopically [378], while modeling experiments 

suggest the presence of spatially variable tholin, poly-HCN, and low concentrations of 

water ice [383,384]. Additionally CO2, a photodissociation product trapped in water ice 

and organic solids, is ubiquitous in the low-albedo hemisphere [379,385,386]. The 

occurrence of CO2 and the existence of PAHs suggest a possible evolutionary link with 

Phoebe and possibly with carbonaceous meteorites and interstellar dust [377,378]. 

A1.3.2. Iapetus 

 Embedded in Saturn’s largest planetary ring is the volcanically active moon, 

Enceladus. Its atmosphere is composed with minor amounts of CH4, CO, and CO2 [387-

389]. Additionally, the organic compounds, acetylene and propane, were detected from 

an outgassing volcanic plume. The presence of these organic compounds suggests that 

A1.3.3. Enceladus 
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Enceladus potentially has a thermally active carbon-bearing interior [388,390,391], which 

results in the accumulation of surficial CH4, CO2, and water ice [392]. 

 Of the remaining icy moons, few are found to contain carbon-bearing molecules. 

These moons include Rhea, Hyperion, Mimas, Tethys, and Dione, all of which have trace 

amounts of atmospheric CO2 [393,394]. Atmospheric CO2 in the moons, detected by 

Cassini’s VIMS (Visible and Infrared Mapping Spectrometer), is likely a dissociation 

product of interaction of Saturn’s magnetosphere with existing tholin and cyanogens 

[393]. Minor amounts of surficial organic compounds (CH4, nitriles, and tholin), detected 

by radiometric and infrared instrumentation are likely interstitially bound in a rock and 

water ice matrix [395]. 

A1.4. TITAN 

 The atmosphere of Saturn’s moon, Titan, is approximately 90% molecular N2 

with up to 8% CH4 (see Table A1.2.). CH4 is essential in the production of atmospheric 

hydrocarbons, CO2, CO, nitriles, and amorphous organic solids [339,396,397]. The 

interaction of cosmic rays, UV radiation, and magnetospheric radiation with CH4 forms a 

methyl radical (CH3) [398], which subsequently reacts to form tholin (see Figure A1.2.). 

 Photoionization of N2 to N ions leads to the formation of nitriles, which 

subsequently react with methyl radicals to form hydrocarbons (see Figure A1.2.) 

[399,400]. These atmospheric reactions are common resulting in formation of 

increasingly more complex organic compounds (propane, butane, polyacetylene, and 

cyanoacetylene) [401-403]. Benzene, a precursor of PAHs, is found in an opaque haze 

cloud in the upper layers of the atmosphere [397,401,404,405]. 
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Table A1.2.  Organic inventory on Titan based on data from [397,408]. 
Major constituent Percentage     

N2 82–90   
CH4 1–8   

Minor carbon compound ppm Minor carbon 
compounds 

ppm 

C2H6 20 C4H2 0.01 
C2H4 1—4 CO2 0.01 
C2H2 1 CO 10-50 
C3H8 1—10 HCN 1 
C3H4 0.01 C2N2 0.02 
C6H6 — HC3N 0.1–0.03 
C8H2 — CH3CN 0.003 
C4N2 —   

—detected but abundance not determined 
 

 Temperature fluxuations in Titan’s atmosphere result in continual exchange 

between surficial and atmospheric CH4 [396], resulting in a global CH4 cycle with 

atmospheric (CH4 cloud) and liquid reservoirs and evaporation/precipitation transfer 

mechanisms, analogous to the terrestrial water cycle [406]. Evidence of liquid CH4 

reservoirs derives from morphological, radar backscattering, and climatic models [407]. 

The CH4 inventory in these lakes is roughly 30–30,000 km3, a hundred times more than 

known hydrocarbons reserves on Earth [407]. Further, although temperatures are too cold 

for liquid water, the high concentrations of CH4, and abundance of complex organic 

compounds suggests that life potentially could have evolved during warmer periods 

during Titan’s past. 
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Figure A1.2.  Formation of hydrocarbons, nitriles and tholin by interaction of UV radiation and charged 
particles from Saturn’s magnetosphere react with N2 and CH4 in the upper layers of the atmosphere. From 
[397], Atreya, Science 316, 5826 (2007). Reprinted with permission from AAAS. 

A1.5. TRITON 

 Neptune’s largest moon, Triton, was investigated directly by Voyager 2 

spacecraft. Voyager mission data and ground-based telescopic observations suggest solid 

CO2, CH4, CO, and H2O on Triton’s surface [409-411] likely in an N2-ice matrix [412]. 

 Models of vapor pressure, temperature, atmospheric pressure, and surface organic 

composition suggest a variety of organic gases should be stable in the atmosphere [343]. 

Organic gases form by sublimation of N2, CH4, and CO ices. These gases are 

subsequently destroyed by solar winds and photolyzed by UV radiation [413-416], 

producing small organic compounds, such as HCN, C2H2, C2H4, and C2H6 [343]. These 

products subsequently condense as a result of Triton’s cold temperature and precipitate 

on the surface [413-415]. However, either because of rapid sublimation or dilution by 

more abundant N2, CH4, and CO, these organic compounds have not been detected on 

Triton’s surface [411]. Of these more abundant gases, CH4 appears to be photochemically 

degraded in the atmosphere and is replenished by either sublimation of solid organic 
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compounds or volcanic outgassing. This CH4 cycle is apparently similar to that of 

Saturn’s moon, Titan, but differs because of Triton’s lower temperature and thinner 

atmosphere [417]. 

 Jupiter’s largest moons (Io, Europa, Ganymede, and Callisto) are called the 

Galilean moons. With the exception of Io, each contains a significant concentration of 

surficial water ice [418], along with hydrated silicates and trapped volatiles [419]. 

Furthermore, infrared spectroscopy data from the Voyager and Galileo spacecraft suggest 

carbon-bearing compounds are incorporated in these surficial components [420-422]. 

A1.6. Galilean Satellites 

 Spectroscopic and gravimetric data confirm that Europa’s surface is a 100–150 

km thick ice layer overlying a potentially liquid water ocean [422,423]. The existence of 

the liquid water interior is still uncertain, although magnetic, spectroscopic, and 

morphologic observations from the Voyager and Galileo spacecrafts support its presence 

[422,424,425]. A subsurface ocean could contain organic compounds, possibly 

emanating from hydrothermal vents on the ocean floor [426,427]. Unfortunately, any 

inferences of the composition of the subsurface ocean are only speculative. 

A1.6.1. Europa 

 Comets delivered an estimated minimum of 1 to 10 Gt of carbon and other 

biogenic elements (H, O, P, N, and S) to Eurpoa based on modeling experiments using 

cometary densities, cometary impact velocities, and escape thresholds of Europa’s 

atmosphere [428]. Hence, Europa has the necessary components for formation of organic 

compounds. 
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 The presence of liquid water, organic matter, and volcanic activity suggests the 

possibility of extant or extinct life. These characteristics, in conjunction with past 

conditions, could generate biochemical compounds and induce polymerization to provide 

the necessary ingredients for emergent life. 

 Ice on Ganymede, the largest moon in the solar system, covers approximately 

50%–90% of the surface and is estimated to be 1,000 km thick [429]. Additionally, the 

surface has minor concentrations of CO2, tholin, and cyanogens (compounds with a 

[CN]2 component) interstitially bound in the water ice [420]. The presence of these 

carbon-bearing compounds mirrors organic compounds on Callisto, suggesting similar 

origin for organic compounds on the two moons [420]. 

A1.6.2. Ganymede and Callisto 

 Callisto has a heavy cratered surface devoid of tectonic activity [421] and a CO2-

dominated atmosphere [430]. The CO2 likely originated from degradation of existing 

organic compounds supplied by cometary impacts [431] or degassed from the interior 

[430]. Atmospheric CO2 is degraded by irradiation from Jupiter’s magnetosphere, 

producing CO and amorphous carbon on both Callisto and Ganymede [420]. 

A1.7. THE TERRESTRIAL PLANETS 

 The four innermost solar bodies are called the terrestrial planets. Their 

atmospheres result from internal thermal activity and cometary impacts. Compositionally, 

these atmospheres differ from the atmospheres of the Jovian planets. Spectroscopic 

investigations using orbiting spacecraft and Earth-based telescopes show that the 

terrestrial planets are depleted in organic compounds relative to the large Jovian planets. 

A1.7.1. Mercury 
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 The lack of a substantial atmosphere on Mercury and its proximity to the Sun 

causes temperature to reach 440°C. At this temperature, organic compounds are unstable. 

Thus, long-term preservation of organic compounds on Mercury is unlikely. Only two 

spacecraft have investigated Mercury, the Mariner 10 orbiter, which was launched in the 

mid 1970’s, and the MESSENGER spacecraft, which did a flyby in early 2008 and is 

scheduled to enter Mercury’s orbit in 2011. A future joint mission between Japan’s 

Aerospace Exploration Agency and the European Space Agency is tentatively scheduled 

for launch in 2013. 

 Venus is the closest planet to Earth and comparable in mass, diameter, density, 

and chemical composition but lacks liquid water. Further, Venus has a dense corrosive 

atmosphere (with pressures up to 90 bar) and a runaway greenhouse effect causing 

surface temperatures to reach 450°C [432,433]. In addition to CO2, the atmosphere 

contains trace amounts of CO and possibly carbonyl sulfide (OCS) [434]. The extreme 

surficial and atmospheric conditions on Venus make it unlikely for synthesis and 

preservation of organic compounds. 

A1.7.2. Venus 

 Viking 1 and 2 were launched in the mid 1970's. A primary objective was the 

detection of biological processes in the martian soil. Instrumentation aboard the landers 

was designed to detect photosynthetic, metabolic, and respiration by-products of 

microbial communities that might be present in the martian regolith. The main instrument 

for detecting biological processes was a gas chromatography-mass spectrometer with 

high sensitivity and broad applicability. Unfortunately, no organic carbon was detected 

A1.7.3. Mars 
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using this technique. These results, or lack of results, could be explained by the presence 

of an oxidant, possibly H2O2 [435,436]. Without a protective atmosphere, the martian 

regolith is continually exposed to solar UV radiation, which could result in 

photochemical production of oxidants and subsequent oxidation of any organic molecules 

that might be present [437,438]. 

 The Planetary Fourier Spectrometer aboard the Mars Express Orbiter detected 

CH4 in the martian atmosphere [439]. Its presence was confirmed using the Earth-based 

Fourier Transform Spectrometer [440]. Atmospheric CH4 concentrations are between 0 

and 30 ppbv (parts per billion by volume), with a global mixing ratio of 10 ppbv [439]. 

Theories of the origin of atmospheric CH4 include release as a by-product of 

methanogenic metabolism in the martian soil [440], emission through degassing by 

thermal activity [439], and introduction by cometary delivery [441]. 

 In May 2008, Phoenix mission landed in the northern polar region of Mars to look 

for evidence of liquid water, biologically necessary elements (C, P, N, H), and evidence 

of organic compounds potentially indicative of life [442]. With only a week on the 

surface at this time, the Phoenix mission has taken two samples, but no chemical analyses 

have been completed [443]. NASA’s Mars Science Laboratory Rover, scheduled to land 

in summer 2010 has a primary objective of identifying potential signatures of extinct or 

extant life [444]. The Sample Analysis at Mars Instrument Suite (SAM), will search for 

organic compounds using gas chromatography, mass spectrometry, and tunable laser 

spectrometry. Further, SAM can detect some light biogenic elements, such as H, O, and 

N. 
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 The SNC (shergotite-nakhlite-chassignite) meteorite classification system is  

A1.8. SNC Meteorites 

based primarily on oxygen isotope fractionation in meteoritic materials that indicate an 

extraterrestrial origin [445] and also correlate with compositional and isotopic 

measurements of the martian atmosphere taken by Viking spacecraft [446]. The 

chemistry of gas inclusions in the SNC meteorites (e.g., N2, CO2, and various noble 

gases) serve as geochemical fingerprints linking these meteorites to Mars, which has a 

unique atmospheric composition [447,448]. 

 Martian meteorites are classified according to their primary mineralogy and 

petrologic relationships. All martian meteorites are considered to be achondritic stony 

meteorites. Stony meteorites are similar in composition to terrestrial rocks that have been 

differentiated or processed by igneous processes resulting in distinct textures and 

mineralogies; achondritic meteorites are stony meteorites that lack chondrules. 

Achondritic meteorites account for only 8% of classified meteorites compared to the iron-

nickel and chondritic meteorites that constitute the remaining 92% percent of classified 

meteorites [449]; some meteorites are still unclassified. The shergotites are named after 

Shergotty, a 5 kg meteorite that fell in the Bihar State of India in 1865 [449]. There are 6 

identified shergotites, all recovered from India, Nigeria, and various localities in 

Antarctica [445]. The term “shergotites” includes meteorites with basaltic and lherzolitic 

composition, although the lherzolitic shergotities have only been found in Antarctica 

[450]. The nakhlites are also igneous rocks and are named after the archetype meteorite, 

Nakhla, which fell in 1911 at El-Nakhla el-Bahariya in northern Egypt [449]. Two other 

nakhlites, Layfette and Governador Valadares, have uncertain histories; they may be 
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from the Nakhla fall [451]. Since 2000, four additional nakhlites have been discovered; 

two in northwest Africa and two from separate localities in Antarctica [452]. There are 

only two chassignite (Chassigny) meteorites, which are the only known martian dunite 

samples. The first was observed to fall in Haute-Marne, France in 1815 [453-455]. The 

second Chassigny meteorite, NWA 2727, was found in North West Africa [456]. 

 Our understanding of martian organic matter is limited to what is known from the 

SNC meteorites because of the lack of detection of organic matter by Viking landers. 

SNC meteorites contain many complex organic molecules. Aromatic, alkyl-substituted 

aromatic, oxygen-containing, and nitrogen-bearing aromatic hydrocarbons (see Table 

A1.3.) were detected in the Nakhla meteorite, EETA 79001, by pyrolosis GC-MS [459]. 

Additionally, stepped-heating combustion experiments released CO2 between 200–

400°C, suggesting the presence of carbon-bearing compounds. The amount of CO2 

release is equivalent to approximately 1,000 ppm of carbon [460,461]. 

 Meteorite ALH84001 does not fall specifically into the SNC classification 

system, but it is still considered to have a martian origin [457] based on oxygen isotopic 

composition and gas chemistry [445]. Geochronological investigations estimated the age 

of the meteorite to be 4.5 ± 0.13 Ga, which is 3 to 4 billion years older than the other 

SNC class meteorites. Although the age of ALH84001 has raised questions about its 

designation as the oldest known martian meteorite [458], it is now generally accepted to 

have originated from Mars [452]. 
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Table A1.3.  Distribution of organic compounds detected in martian meteorites based on data from 
[459,467,468]. 
High mass organic compounds detected in EETA79001*,# 
aromatic and alkyl-substituted 
benzene C6H6 
toluene C7H8 
naphthalene C10H8 
ethenylbenzene C8H8 
oxgyen-containing 
phenol C6H5OH 
nitrogen-containing 
benzonitrile C6H5CN 
High mass organic compounds detected in ALH84001+ 
phenanthrene C14H10 
pyrene C16H10 
chrysene C18H12 
benzopyrene C20H12 
anthanthrene C22H12 
benzopenylene C22H12 
coronene C24H12 
kerogen-like compound  
amino acids (considered to be terrestrial contamination) 

* a Nakhla meteorite has same organic compounds with addition of biphenyl ( C12H10),  
# using pyrolsis-GC-MS,  
+ using LD-MS 
 

 In 1996, McKay et al. [462] issued an astonishing report that ALH84001 

contained signsof extraterrestrial life, supported by the appearance of nanofossils, 

biogenic magnetite, nd PAHs. One of the stronger arguments in support of extraterrestrial 

biogenic influences in ALH84001 is chemical zonation in the carbonate globules. The 

sequence of Mn-carbonate deposition, followed by Fe-carbonate deposition, followed by 

Fe-sulfide formation is commonly observed in terrestrial environments where microbial 

processes control solution chemistry and hence, mineral solubility [463]. The sequence of 

chemical environments necessary to produce these structures abiotically is complicated. 

Hence, McKay et al. [462] dismiss an abiotic origin for this sequence as unlikely in 

ALH84001’s history. Another piece of evidence is the presence of small, elongated, 

single-crystal magnetite grains. Although McKay et al. [462] acknowledge that some of 
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these structures can form abiotically, their statement that the elongated magnetite crystals 

in ALH84001 are biogenic is supported by other work that suggests that these structures 

can be biologically mediated in the form of magnetofossils produced by bacterial 

magnetosomes [463]. 

 McKay et al. [462] consider possible sources of contamination from Antarctic 

groundwaters that contain terrestrial organic compounds and microorganisms. Further, 

they discuss the possibility of sample preparation contaminants and artifacts introduced 

during some of the analytical procedures. The controversial observation of the 

nanofossils generated contentious debate and is now considered the weakest evidence for 

extraterrestrial life. The nanofossils observed by McKay et al. [462] are found in 

carbonate globules. The nanofossils are purportedly similar in size, shape, and texture to 

bacterially induced carbonate precipitates in terrestrial samples. Sample-preparation 

issues, specifically, Au/Pd coatings used in electron-microscopy studies can affect sub-

micron morphology. Bradley et al. [464] suggests that Au/Pd imparts fine-scale 

segmentation and that the segmentation increases as the thickness of the coatings 

increases. This argument has effectively placed nearly insurmountable doubt on the the 

veracity of purported nanofossils in ALH84001 [462] by calling them ‘microscopy 

artifacts’ [465]. 

 McKay et al. [462] boldly conclude that “Although there are alternate 

explanations for each of these phenomena taken individually, when they are considered 

collectively, particularly in view of their spatial association, that they are evidence for 

primitive life on early Mars.” While carbon isotopic values and others lines of evidence 

have discredited the finding of signs of life in ALH84001, examination of the bulk matrix 
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material and carbonate globules indicate that these materials are indeed of extraterrestrial 

origin based on isotopic studies of the PAHs present in the meteorite [466]. Multiple 

species of polycyclic aromatic hydrocarbons (see Table 7) [462,467] and amino acids 

(glycine, serine, alanine) were also detecting using LD-MS and HPLC, but some were 

considered to be products of terrestrial contamination [467,468], especially the amino 

acids that are thought to be contaminants from Antarctic meltwater [466]. Discussions 

related to martian meteorite ALH84001 are likely to continue. A benefit to the scientific 

community is that intense scrutiny of the data has altered the rationale and methods in the 

search for martian life. Multiple methods (e.g., morphological, chemical, mineralogical, 

and isotopic) are needed to unequivocally identify signs of extraterrestrial life [469,470]. 
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APPENDIX B:  DEFINITION OF MASS DEFECT 
 
 
 The mass defect is the number to the right of the decimal and is used in a variety 

of mass spectrometry applications, but maybe none as important as peak identification.  

The mass defect is related to the nuclear binding energy released upon formation and 

subsequent stabilization of the nucleus of any given isotope.  The mass defect arises since 

the mass of the nucleus is slightly lower compared to the sum of its constituent matter. 

The mass defect can be used to calculate the nuclear binding energy, with the equation:  

 

Mass of bound system = sum of masses of its parts - (binding energy)/c2. 

  

Thus, the mass of a helium nucleus is thus a bit less than two times the proton mass plus 

two times the mass of a neutron.  The mass of any nucleus is less than the sum of the 

separate masses of its protons and neutrons. In other words, sticking protons and neutrons 

together somehow causes some of their mass is converted into energy (by the equation 

e=mc2).  By convention, the mass defect of 12C is defined as having zero atomic mass 

units, and the mass defect of any other isotope is calculated as the difference between the 

actual mass of the isotope and the isotope's nominal mass (Hall et al. 2003).  As a result, 

1H has a larger mass defect because it has not lost mass by combining with neutrons.  See 

Figure below for relative mass defects of common elements. 
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Figure illustrating the relative mass defects (depected by horizontal line) of some common organic and 
inorganic elements.   

 

 

Hall, M., Ashrafi, S., Obegi, I., Petesch, R., Peterson, J., Schneider, L., 2003. 'Mass 
 defect' tags for biomolecular mass spectrometry. Journal of Mass spectrometry 3
 8, 809-816. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 179 

 
APPENDIX C:  PHREEQC INPUT FILE FOR COM BASALTIC WEATHERING 
MODEL AND SUBSEQUENT SECONDARY MINERAL FORMATION  
 
PHREEQC input file corresponding to Figure 4.5 
 
Title :  weathering of basalts at COM 
SOLUTION 1  Pure water 
 
    pH      7.0 
       temp    25.0  CO2(g) -3.5 
    pE       12.5    O2(g) -0.68 
equilibrium_phases 
 
    CO2(g)  -3.5 10 
 
save solution 1 
END 
 
Title :  dissolution of Blue Dragon 
Solution 2 Equilibration with basalt 
use solution 1 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
Diopside  
Quartz   
Fayalite  
pyrite  0.0001 
Ilmenite 
Plagioclase 
 
phases 
 
Plagioclase 
        Na.6Ca.4Al1.4Si2.6O8 + 5.6 H+ = \ 
                  0.6 Na+ + 0.4 Ca++ + 1.4Al+++ + 2.8 H2O + 2.6 SiO2 
 
save solution 2 
end 
 
use solution 2 
Reaction 1   evaporation in multiple steps 
 
H2O -1 
5.53 in 1 step     # 55.3 moles *-1= -55.3 moles of H2O removed 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
dolomite   
 
save solution 3 
end 
 
use solution 3 
Reaction 2  second step of evaporation 
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H2O -1  5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite 
    
save solution 4 
end 
 
use solution 4 
Reaction 3   thirst step of evaporation 
H2O -1  
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite  
     
save solution 5 
end 
 
use solution 5 
Reaction 4   fourth step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite  
      
save solution 6 
end 
 
use solution 6 
Reaction 5    fifth step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite 
      
save solution 7 
end 
 
use solution 7 
Reaction 6  sixth step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
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calcite 
dolomite 
    
save solution 8 
end 
 
use solution 8 
Reaction 7 seventh step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite    
   
save solution 9 
end 
 
use solution 9 
Reaction 8 eighth step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite    
   
save solution 10 
end 
 
use solution 10 
Reaction 9 ninth step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite    
   
save solution 11 
end 
 
use solution 11 
Reaction 10 Final step of evaporation 
H2O -1 
5.53 in 1 step 
 
EQUILIBRIUM_PHASES 
CO2(g)      -3.5    10 
calcite 
dolomite      
save solution 12 
end 
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