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Director: Alden H. Wrig]

Genetic Algorithms have be'em proved to be very useful for optimization. Until 
recent years, most of the research on Genetic Algorithms has been based on a 
stationary environment that assumes the fitness function will not change from 
generation to generation. Under a stationary environment, mutation can help to 
increase the diversity of the population, while crossover may help to keep 
advantageous alleles for the optimal solution. Re-initialization, adaptive mutation 
and memory reuse have been the most common genetic algorithm methods to 
handle optimization in a non-stationary environment. It is not clear what is the 
role of crossover in a non-stationary environment. In this thesis we will review 
previous work on GAs in a dynamic environment. We will also do empirical 
research on crossover's influence in a GA in a dynamic environment. Using a set 
of bit-strings as the population of a GA and designating a certain bit-string as an 
advantageous string with higher fitness, i.e. the NEEDLE, the Needle-1 n-The- 
Haystack (NEEDLE) fitness function will be used in the experiments while the 
environment change will be simulated by moving the NEEDLE periodically. 
Preliminary results clearly show that the crossover operation greatly helps a GA 
population to adapt itself to dynamic environment changes and moves the 
population to new optimums.
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Chapter 1 Previous Work

Since the emergence of genetic algorithms (GAs) in late 1960s, many efforts 

have been made to understand and utilize the generic mechanisms of biological 

evolution to improve optimization in computer systems. It is broadly accepted that 

a GA is a population-based search method that uses selection based on fitness, 

crossover and mutation. While all those elements are important in GAs, 

crossover is the key operation that sets GAs apart from other heuristic 

optimization methods such as hill climbing, evolution strategies, and evolutionary 

programming. But how crossover contributes to GAs' success is still not well 

understood. Schema theory [1] proposes that crossover helps to build highly fit 

schemata from lower order ones while mutation helps to keep the diversity of 

population. Others [2] think that the role of mutation has been underestimated by 

schema theory. The exact model [3] precisely describes a simple GA and it gives 

us more details on the effects of crossover and mutation.

1.1 Schema Theory

In Holland’s classical schema theory [1], a schema is a set of bit-strings that can 

be represented by a string using the symbols 0’s, 1’s, and asterisks. An asterisk 

represents a “don't care” bit. While positions containing a 0 or 1 are fixed 

positions, all asterisk bits are variable positions. The schema 1*0* represents the
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set {1000, 1001, 1100, 1101}. The order of a schema is the number of fixed bits. 

For example the schema H = **1**10 is of order-3, or denoted as o(H) = 3. The 

defining length of a schema H is the distance between the first and last fixed bits. 

It can be denoted as S(H)  = 4. Schemata help us to trace how GAs search for 

optimum solutions. By keeping and accumulating highly fit schemata while 

eliminating lower fit schemata, GAs can increase the frequency of highly fit 

individuals in the population. When majority of individuals in the population are 

the instances of the optimum schema, we can say the GA has converged the 

population to the optimum.

The GA's operations can be thought of as a search for schemata of higher than 

average fitness carried out by sampling individuals in a population and biasing 

future samples towards schemata that are estimated to have above average 

fitness. By considering the effects of the three GA operations: selection, 

crossover, and mutation, Holland’s schema theorem gives the lower bound of the 

expected frequency of a schema after one generation of GA operations. Among 

the three GA operations, selection is the simplest one to calculate the effect. 

Let/>0) be the proportion of string x in the population P and f ( x )  be the fitness 

of string x.  Proportional selection will make the expected number of string x\n

the population be: p'(x) = _  /( * )p (* )—  j f  x |S an jnstance of schema H  in the
2^yePf{y)p{y)

search space, then f ( H )  = YjX€Hf ( x)p(x) *s the average fitness of schema H .  

Similarly, the average fitness of the population P is  f ( P )  =  '£J Pf ( y ) p ( y ) -
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Therefore after the proportional selection we get p' (H) = • Hence it is clear

that the selection has a linear effect on p ' (H ). Schemata with higher fitness will 

have higher expected frequency in the population after selection operation. The 

crossover and mutation operations can both destroy and create instances of a 

schema H .

Now consider the one-point crossover operation with the applied rate c . 

Crossover will generate two children by exchange parts of the two parents 

delimited by this point. If the crossover point is in between of two fixed positions 

of a schema, the crossover may create two children not-in the schema. For 

example, two parents 10 0, 11 1, with the crossover point between the second 

and third positions (note this point is also between the two fixed positions), two 

children will be 101 and 110. Though the first parent is of schema 1*0, neither of 

the children falls in the given schema. So we say that crossover has destroyed 

an instance of the schema. If the crossover point occurs in variable positions that 

are not between any two fixed positions, it will not destroy the instance of the 

schema. According to the previous reasoning, schema theorem gives the 

frequency of a schema H  in a population after crossover operation with

f  S t T T \ \

crossover rate c : p ' (H)>  p(H)  . Mutation will flip the bit at the
V £  ~  1 J

randomly picked position. When mutation occurs in fixed positions, it will destroy 

the instance of the schema while mutations occurs in variable positions will not 

destroy this instance. Similarly, we can get the frequency of a schema H  in a
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population after mutation operation with mutation rate p : 

p ' { H ) > ( \ - p ) oWp{H) .  Holland’s schema theorem gives a lower bound of the 

next generation expected frequency of a schema based on the above 

consideration of the disruptive effects of crossover and mutation on a schema 

with crossover rate c and mutation rate p

p ' ( H ) >  -  j u y (H)' Tlie theorem describes the effects of
f ( P ) I - 1

selection, crossover, and mutation in an intuitive way and helps people to 

understand how a GA works.

1.2 Exact Model of Simple GA

As mentioned earlier, the schema theorem considers the disruptive effects of the 

GA crossover and mutation operators. But to make the consideration simple and 

intuitive, it ignores the constructive effects of these operators. Therefore it only 

gives an inequality equation. With consideration of both construction and 

destruction of crossover and mutation, Vose (with helps from others) gives an 

exact model [3][4][5] that exactly models the GA’s dynamics for infinite population. 

This model can be used to determine the exact expected frequency of any 

schema from one generation to the next. It is very helpful for understanding GA 

precisely but it cannot be applied computationally to most practical situations 

because of its computational complexity.
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1.3 The Role of Crossover

In Holland’s early work [1], he used only one-point crossover. Later, this 

operation was extended to n-point [6] and uniform crossover [7]. Compared to n- 

point crossover, uniform crossover does not have defining length bias but has 

more disruption and exploratory power [8]. While the disruption analysis of 

schema theorem suggests that disruption is not good for GAs and should be 

avoided, other people [8] think under certain circumstances, such as a 

homogeneous population or small population, disruption may actually be helpful 

to the GA by creating new individuals from parents with nearly identical genetic 

material. Both crossover and mutation have disruptive and constructive effects in 

GAs. How to understand and compare their roles in GAs? By calculating the 

probability of destroying an instance from a schema with crossover or mutation, 

Spears et al. [9] found that mutation can achieve any level of disruption that 

crossover possibly can achieve. On the other hand, disruption is not the only 

effect of crossover and mutation. They can also construct new instances of a 

schema from instances of other schemata. Measured by the probability of 

creating a new instance from crossover or mutation, crossover has a higher level 

of construction than that of mutation when the population is diverse (less than 

70% ~ 80% convergence). When a population is mostly converged (more than 

70% ~ 80%), crossover has lower level of construction than mutation. The 

definition of convergence they use is the average probability Peq of any two

schemata having the same allele at a particular fixed position. When Peq is close
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to 1, the population has very low diversity. In a later paper [10], he used more 

sophisticated models to show that crossover and mutation interact in a more 

complicated way than the earlier disruption and construction theory.

Though the intuitive idea of fitness function is that the fitter schemata have more 

offspring, Stephens et al. [11] found that fitness landscape alone does not 

prevent the construction of low fitness schemata. They introduced the concept of 

effective fitness derived from the exact model showing that schemata of higher 

than average effective fitness receive an “exponentially" increasing number of 

trials overtime. The intuitive idea behind effective fitness is that the schemata will 

have high effective fitness if there is high probability that their offspring have high 

fitness. Thus, effective fitness of schemata is not fixed to their own fitness but 

reflect the fitness of their offspring. Their schema equation is simple by

introducing effective fitness: p ' ( H )  = p ( H)  where f eff{H)  is the

effective fitness of schema H . The ) is fairly complicated to compute. A

simple example shows the effective fitness is more relevant: Let search space 

Q = {00,01,10,11} with a fitness function /(01) = /(10) = / ( l l )  = 2 , /(00) = 1. For

mutation rate p ,  at * = 0, f eff(U) = 2, f eff(0l) = f eff(l0) = 2 - p , f eff (00) = 1 + 2 p .

Therefore, the effective fitness function provides a selective pressure by 

selecting the schemata having a higher probability to produce fit descendents. 

While the traditional schema theorem emphasizes the destructive effect of 

crossover, their model takes into account the reconstructive aspect of crossover
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as well. They also found from the model that generically there is no preference 

for short, low-order schemata. In the case where schema reconstruction is 

favored over schema destruction, large high-order schemata tend to be favored.

Suzuki et al. [12] used Babel-like fitness function (the same as the NEEDLE 

fitness function in this paper) to explore the role of crossover in GA. The 

definition of their Babel-like fitness function is that a single sequence denoted by 

[11...1] has fitness far larger than the others and all other sequences have the 

same fitness. In the context of this paper, the sequence [11 ...1] is the NEEDLE 

of the search space. They defined the domination time as the time until the 

advantageous string occupied half of the population. By breaking the domination 

time (Td) into three parts: diversification time (Ty ) (The population starts from

homogeneous distribution), creation time ( Tc ) and spread time ( Ts ) as

Td =Ty +TCNC +TS, they found that with a moderate mutation rate, crossover

could greatly reduce the domination time. With the definition of acceleration rate 

of crossover Across as the ratio of Td without crossover and Td with crossover,

ACrosS can be 1 to 10,000 depending on different crossover, mutation, population

and other parameter settings. They disagree with the Building Block Hypothesis’s 

statement that crossover mainly recombines short low-order schemata into long 

high-order schemata. Instead, they claim that crossover helps not only to create 

novel schemata but also to combine created schemata into optimal sequence. 

However, the effectiveness of crossover needs the help of mutation to keep the 

diversity of population.

7



Geiringer's theorem [13] gives us the limit of crossover without selection and 

mutation. Linkage is the association of alleles at different loci in the population. 

When there is no association between alleles at any loci, the population is said in 

linkage equilibrium. According to Geiringer’s theorem, without selection, the limit 

of crossover moves the population into linkage equilibrium. In other words, 

crossover does not change the distribution of alleles at any locus, it merely 

shuffles those alleles at each locus, therefore de-correlates the alleles at different 

loci.

While many efforts have been made to prove that crossover does help the GA to 

converge to optimal solution, additional work has revealed that it is not 

appropriate to expect the role of crossover has a simple positive or negative 

effect on a GA.

From Eigen’s quasi-species model [14], we know given a population in a 

sequence space, with a low mutation rate, through either asexual replication 

(mutation without crossover) or sexual replication (mutation and crossover), the 

population will crowd together around the fittest sequence(s) (optimum(s)) with 

relatively small Hamming distance between any two individuals of the population. 

Such a population distribution is called ’’quasi-species”. But when the mutation 

rate is too high, the population will lose its ability to cluster around the optimum. 

This disruptive mutation rate is called the “error threshold”. Previous work [15,16]
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found that crossover lowers the error threshold therefore it has a very important 

role in determining the optimal mutation rate.

By doing numerical simulations based on the Vose exact model of [3], Wright et 

al. [17] found that crossover may keep a GA population from moving towards the 

optimum string with the NEEDLE fitness function (also known as Single-Peak 

Fitness Landscape in the literature). Crossover has a “catastrophic effect” when 

the mutation rate is around “error threshold”. The “catastrophic effect” refers the 

fact that GA loses the power to move the population to any optimum string. 

Under the “catastrophic effect” the population tends to random distribution. The 

crossover operation also decreases the error threshold of mutation rate (this is 

consistent with [16]). There are some very important conclusions from [17]:

• Crossover always pushes the error threshold lower and makes the 

population distribution sharper.

• The error thresholds are inversely proportional to chromosome length. The 

larger the bit string, the lower the error threshold.

One notable conclusion is that for NEEDLE fitness function, the crossover 

operation decreases the frequency of the optimum string (also known as master 

sequence in the literature), increases the frequency of the near-neighbors of the 

optimum string, and decreases the frequency of the strings far from the optimum 

string. Even though these experiments were done in a stationary environment,
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they could suggest experiments in a non-stationary environment. Because of the 

movement of the NEEDLE in non-stationary environment, a near neighbor of the 

optimum string may become a new NEEDLE and therefore they may help the 

survival of a population under environmental changes. The lowering of mutation 

“error threshold” by crossover may also help a GA population to survive 

environmental change because it indirectly magnifies the disruptive effect of 

mutation.

1.4 Non-Stationary Environment

Whenever there are some changes in a GA occur, such as the optimization goal, 

or the fitness function, we say the GA is in a dynamic or non-stationary 

environment. In dynamic optimization, when the environment changes, the 

optimum of the problem is likely changed also. This complicates the GA 

application. In this thesis, the definition of non-stationary environment or dynamic 

environment is that the optimum will change from time to time. In this, thesis, the

environment of the GA is the fitness function. Fitness function changes reflect the

environmental changes.

There are many factors that have effects on the design of non-stationary GA 

application:

1. How can we detect/determine an environment change happening?

2. How often does the environment change?

3. How severe are the environment changes?
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4. How predictable are the environment changes?

Because GAs are likely to push the population to converge to an optimum and 

lose the diversity, with the less diverse population, it is hard for GAs to get new 

optimum when the environment changes. Several approaches have been 

proposed to keep the GAs adaptive enough to follow the changed environment 

(and the new optimums)[18][19][20]. All methods mentioned here are based on 

the observation: traditional GAs tend to converge to an optimum. Thus once the 

population is dominated by advantageous schemata, the GA loses the ability to 

adapt to a change in the environment. Because the population has lost its 

diversity, it may be impossible for the GA to find new highly fit schemata in a 

changed environment.

The simplest approach is to restart the process whenever the environment 

changes [18]. But there are some difficulties with this approach:

1. Sometimes it is hard to detect when the environment changed;

2. Methods to detect the environment changes often do not fit into the 

evolutionary computation framework;

3. Even if we can keep track of the changes, restarting the process will lose 

all previous information and cause high computation cost. And it may 

make this approach impractical to frequently changed environment.
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Other approaches try to modify one or more operations to keep the diversity of 

the population. The two most used operations are mutation and selection. Efforts 

can also be made to keep extra population information along with the dynamic 

environment changes.

The adaptive mutation (or hypermutation) method [19] is based on the 

observation: the disruptive effects of mutation can be used to increase the 

diversity of population when needed. By hiking the mutation rate whenever a 

change happens, this approach can help the GA move to a new optimum when 

the optimum changes. The difficulty here again is to detect when the environment 

changes.

Modifying selection is another approach to maintain diversity in non-stationary 

environment. Weaker selection can increase the diversity of the population. By 

adjusting the selection method to increase the diversity of the population during 

GA run. Another common approach is to use sharing [21], i.e., individuals in the 

same region of the environment share their fitness. Therefore individuals in less 

populated regions are favored over those of highly populated areas. This 

approach improves the GA’s ability to track optima in slowly changing 

environments [22].

Another approach is to memorize or save some good schemata for reuse as 

necessary. But this approach needs to be implemented carefully to memorize the

12



right information about the population while not increasing computational 

complexity too much. Implicitly we can use a redundant representation to 

memorize useful schemata. Or we can explicitly use extra memory to store and 

retrieve useful schemata. Both memory approaches are suit for periodically 

changing environment [23] because it is easier to define the “useful schemata”. 

Its effectiveness in other non-stationary environments is still an open question 

[24].

So far, there has not been much discussion of crossover’s effect on a non- 

stationary environment GA. I have not found any research on non-stationary 

environments that describes an attempt to keep diversity in the population solely 

by crossover.
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Chapter 2 Objective

Understanding the role of crossover in GA is a key to utilizing GAs. It is of 

interest to examine crossover in dynamic environment. When a GA population 

adjusts itself to the environmental changes and keeps following the new 

optimums, we say the GA survives the dynamic environment. Otherwise, we say 

the GA fails in the dynamic environment. The ability of a GA to survive in a 

dynamic environment is a very important measure of GA performance. Based on 

conclusions from [12] and [17], it is intuitive to expect crossover to help a GA 

population to survive environmental changes. Therefore, the main objective of 

this thesis is to answer the question: Does crossover help a GA population to 

survive in a dynamic environment? If it does help the GA in dynamic 

environment, how does it help and to what extent?

As indicated by [17], crossover will lower the “error threshold” of mutation rate, so 

within certain range, we expect crossover will help a GA population to survive in 

small movement dynamic environment because crossover leverages the 

diversification effect of mutation. In other words, crossover lets the GA get the 

same disruptive effect with lower mutation rate to keep the necessary diversity of 

the population in dynamic environment. Because crossover increases near­

neighbors of optimal string but decreases far-away strings, when mutation rate is 

low, i.e. within the “error threshold” boundaries, we expect that crossover helps

14



the GA more in a situation with small environment changes than in a situation 

with large environment changes.

In dynamic environment, a GA is of little interest if the population can not 

converge to the new optimum in a timely manner. The ultimate goal of GA is to 

search for optimal solutions. Therefore to make GA a useful adaptive tool, we 

expect crossover helps GA populations not only to survive but also to converge 

to optimum in dynamic environment.

According to [12], crossover also helps the GA to converge to optimal string 

when the mutation rate is moderate (within error threshold). From the results of 

[12] and [17], there should be a range of mutation rates that crossover helps both 

the convergence and the survival of a GA population. We can call this range of 

mutation rates the optimal range of mutation rates. Within this range, we can 

expect a GA population will quickly adjust itself to environmental changes and 

converge to optimums in a timely manner. An intuitive conjecture is that the 

optimal mutation rate is lower than the error threshold (so the population will stay 

close to the optimum strings) but close to the error threshold (so the population 

will maintain necessary diversity).

The questions addressed in this thesis are:

15



1. What are the effects and effectiveness of crossover on different degrees 

of environmental change?

2. Does crossover help a GA population retain copies of the optimum in 

dynamic environments?

3. What are the effective ranges of parameters if crossover helps a GA 

population survival in dynamic environments?

4. Though survival is an important measure of GA’s performance in dynamic 

environment, it is not the only gauge. The ultimate goal of a GA is to not 

only survive environmental changes but also to adaptively converge to 

optimal solutions quickly. Therefore, an effort is made to find the balance 

point (or optimal crossover and mutation rate range) for both good 

survival and quick convergence.
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Chapter 3 Methodology

While there are different ways to simulate a dynamic environment, we need a 

method that satisfies the following requirements:

1. It should be easy to control the environmental changes, such as:

• The time and frequency of the changes

• The magnitude of the changes

2. It should be easy to watch the population during the process, such as:

• The distribution of the population

• The fitness of individuals

• The overall fitness of the population

The search space of our experiment will be a set of binary strings of fixed-length 

of £. By manipulating the bits of NEEDLE string, the dynamic environment can 

be easily simulated and controlled. With the NEEDLE fitness function defined 

below, such a dynamic environment satisfies all above requirements.

The NEEDLE fitness function is defined as:

r  1 + a  where a > 0, the NEEDLE string 

/ = 1L 1, all non-NEEDLE string

17



There is only one NEEDLE string in the search space. Note that at any 

generation, the whole population may have multiple optimum strings that have 

the same bit sequence as the NEEDLE string or may not have any optimum 

string at all. When number of the optimum strings is more than 50% of the 

population we say the population has converged. When there is no optimum 

string in a population, we say this population has lost its NEEDLE. When a 

population loses its NEEDLE, it may need many generations to find the NEEDLE 

again.

We start the population with a random distribution. Let a  = 1 so the fitness o f the 

NEEDLE is 2 and the fitness of all other strings is 1. The NEEDLE string is also 

created randomly. The periodic NEEDLE movement is done randomly by a 

Hamming distance h where /zcan be adjusted for different experiment purposes. 

The NEEDLE movement is a simulation of environment change. When the 

NEEDLE moves, the used-to-be-needles are not needles any more and the 

overall fitness of the population changes. The population needs to adapt to the 

new environment to find and converge to the new NEEDLE. Based on the claim 

of [17]: “Crossover ... increases the frequency of the near-neighbors of the 

optimum string, and decreases the frequency of the strings far from the optimum 

string”, we have an intuitive conjecture that crossover might be more effective for 

small environmental changes. Experiments on different h values may help us 

verify this.
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In a changing environment, a once good individual may turn to -be a bad 

individual and vice versa. The commonly used version of the steady-state GA 

usually will mislead the fitness evaluation process because it uses a new 

individual to replace the worst individual in the population based on the previous 

evaluations. A once good individual may survive forever without being 

reevaluated in the new environment while a once bad individual may be replaced 

even though it is a very good one in the new environment. Therefore we use 

generational algorithm for the selection process. Because every individual’s 

fitness will be evaluated every generation, there will be no individual fall through 

the evaluation cracks. The selection process can swiftly react to any 

environmental changes.

The main parameters we have are:

1. String length i  -  10

2. Special fitness increment value for needle a  = 1

3. Hamming distance of needle movement h -  1,2

4. Population size p  = 1000

5. Generations between needle movement m: 10

6. Generations of a GA run g: 500

7. Repetitions of a GA run r. 100
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The two experiments are the survival experiment and the convergence 

experiment.

The algorithm of the survival experiment can be described as following:

1. Start with a population of p randomly chosen length I  binary strings

2. Randomly specify the NEEDLE string

3. Test the population to count its optimum individuals. If there are optimum 

individuals, record this generation as a survival generation. Otherwise if 

this is the 10th consecutive generation that lacks the optimum individual, 

go to step 1 for a new round run

4. If the same NEEDLE has been run for m generations, change the 

NEEDLE by Hamming distance h

5. If this is the generation g, stop the GA run

6. Select two parents from the population proportionally based on individual 

fitness

7. Create the child from selected parents by uniform crossover with 

crossover rate c

8. Mutate the child according to the mutation rate p

9. Add the child into the population of the new generation

10. Go to step 5 until the new generation is full-sized

11. Go to step 3
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The survival experiment focuses on the survival cases to see how many 

generations a population can retain copies of the NEEDLE string in the changing 

environment. The experiment periodically moves the needle each 10 generations 

(To let the population get enough diversity from initialization, the first round is 20 

generations for survival experiments). Whenever the population loses the needle 

for 10 consecutive generations, we say the GA fails in the survival run and we 

record its survival generations without the 10 lost generations. The experiment 

records the average survival generations from multiple repetition runs. By 

analyzing those records, we can clearly see whether crossover helps the GA to 

survive in a dynamic environment.

The algorithm of the convergence experiment can be described as following:

1. Start with a population of p randomly chosen length t  binary strings

2. Randomly specify the NEEDLE string

3. Test the population to count its optimum individuals.

• If there is no optimum individual, record this generation as a lost 

generation.

i. If this is the 10th consecutive lost generation, record this 

round as a lost round then go to step 1 for a new round run.

• Else if the number of optimum individuals is less than 50% of the 

population size, record this generation as a convergence 

generation.
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• Otherwise the population has converged

i. If the population has converged before the first needle 

movement, we do not count it as a valid run for the dynamic 

environment experiment. Go to step 1 for a new round run

ii. Else sum and record the total number of convergence 

generations then stop the GA

4. If the same NEEDLE has been run for m generations, change the 

NEEDLE by Hamming distance h

5. Select parents from the population proportionally based on individual 

fitness

6. Create the child from selected parents by uniform crossover with 

crossover rate c

7. Mutate the child according to the mutation rate ju

8. Add the child into the population of the new generation

9. Go to step 5 until new generation is full-sized

10. Go to step 3 to test this new generation

The convergence experiment focuses on the convergence cases to see how 

many generations a population needs to run before it converges. The experiment 

restarts a new round whenever the population converges 50%. Whenever the 

population has more than 50% individuals being the same as the needle, we say 

the GA has converged and if the convergence happens after the first needle
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movement, we record its convergence generations. The experiment records the 

average convergence generations from multiple repetition runs. The data tell us 

whether crossover helps the GA population to converge to new needles in 

dynamic environment.
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Chapter 4 Results

With crossover rates from 0 to 100%, mutation rates from 0.0001 (10'4) to 0.001 

(10'3), and needle movement of Hamming distance 1, crossover always 

increases the average survival generations (ASG) 2 to 5 times compared to a GA 

without crossover (crossover rate = 0). A notable phenomenon: when mutation 

rate is more than 0.0005, the increasing of crossover rate does not always 

increase the ASG while for lower mutation rates, higher crossover rates always 

give higher ASG. See Figure 1.

Ayerage S u rv iv a l Generations

M utation Rata

0. 2 0.6

Figure 1 Average Survival Generations for needle movement of Hamming distance 
1. Values are averaged over 100 repetitions of 500-generation runs.
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For the same crossover and mutation ranges, bigger environmental changes 

(needle movement at Hamming distance of 2 in Figure 2) show that only higher 

crossover rates have real power to increase the ASG.

vei'age S u rv iva l Generations

- 0 - 0 . 0005 

-m -Q . 0009 

—* — 0 . 003 

K (J. OOo

400

35-0

300

150

100

Crossover Rate

Figure 2 Average Survival Generations for needle movement of Hamming distance 
2. Values are averaged over 100 repetitions of 500-generation runs. Note that for 
crossover rate less than 0.5, increments of ASG are not as effective as higher 
crossover rates.

With mutation rates from 0.0001 to 0.001, crossover helps the GA population to 

converge earlier than GA without crossover. But higher crossover rate (100%) 

does not always help the convergence. See Figure 3, 4. Interestingly, moderate 

crossover rates (40% ~ 60%) are more effective than higher rates. Note the
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effective mutation rate is much smaller than the error threshold calculated by the 

formula from [16]. This is consistent with conclusion of [17].

Average Convergence Generations3S

1 .OOE-04 

3.00E-04 

S.OOE-04 

7.00E-04 

9.00E-Q4 

1.00E-03

0 0.2 0.8 10.4 0.6

I Crossover Rare I

Figure 3 Average Convergence Generations for needle movement of Hamming 
distance 1. Values are averaged over 500 repeat runs. Error bars are the standard 
deviations from repeat runs. 0.30 < SD < 0.51. Note that crossover rate 1.0 does not 
help to decrease the ACG.
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0.009
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Crossover rate

Figure 4 Average Convergence Generations for needle movement of Hamming 
distance 2. Values are averaged over 100 repeat runs. Note that for low mutation 
rates (0.0001 -  0.001) crossover has little impact on ACG so the lines are mostly 
overlapped to each other. Note that crossover rate 1.0 does not help to decrease the 
ACG.

Figure 3 shows that in the convergence experiments, a relatively low but nonzero 

crossover rates reduce the ACG more than higher crossover rates.

By comparing figure 3 and figure 4, we can find another interesting thing: for 

different NEEDLE movements, crossover helps GA convergence more for 

Hamming distance 1 than for Hamming distance 2. While crossover can shorten 

the ACG by 13% for Hamming distance 1, there is only insignificant improvement 

of ACG for Hamming distance 2. This confirms our intuitive conjecture based on
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[17] that crossover might be more effective for smaller environmental changes. It 

will be an interesting experiment to extend the NEEDLE movement to other 

Hamming distances such as 3, 4, and so on.
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Chapter 5 Conclusions

With the results from the previous chapter, we can come to some important 

conclusions regarding the role of crossover in a dynamic GA environment.

The experiments clearly demonstrate that the crossover operation helps a GA 

population both to survive environmental changes and to converge to new ' 

optimums in dynamic environment. There is an optimal crossover and mutation 

rate range in which both the survival ability and the convergence ability of a GA 

are strong. This is very important for crossover being useful in dynamic GA. But 

there is not a one-fits-all crossover rate. Different crossover rates suit different 

situations so it should be fine-tuned for specific GAs. Consistent with the 

conclusion of [17], the effective mutation rates are lower than the theoretical 

“error threshold” calculated by formula of [16].
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Chapter 6 Future Work

This study verifies the intuitive conjectures made in chapter 2 that crossover 

helps dynamic GAs with low mutation rates for both survival and convergence 

experiments. However, this is just a first step to explore the role of crossover in 

dynamic GAs. There are several questions that worth future investigation:

1. The experiments cover,a small set of parameters. Future work should 

explore a larger variety of parameter combinations. Following parameters 

are of special interest:

• String length I

• Hamming distance of needle movement h

• Population size p

• Generations between needle movement m

The experiments show that crossover is more effective to the environment 

changes of Hamming distance 1 than of Hamming distance 2. What will 

happen to qther Hamming distances?

2. The work does not analyze the population distributions that may reveal 

more information of the course of dynamic GAs.

3. The interaction between crossover and mutation is still not clear in these 

experiments, special design of GA runs may help us to get more insight of 

this very important aspect.

30



Crossover helps dynamic GAs with the simple NEEDLE fitness function. 

Can similar behavior be repeated in dynamic GAs with other more 

complex fitness function landscapes?
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