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Callahan, C. Paul, B.A. Chemistry, Gettysburg College 1986 

Water Yield Recovery In the Northern Rockie^^;;:^

Committee Chairperson: Dr. Donald F. Potts, Associate Dean and Professor of 
Watershed Management, University of Montana, School of Forestry

The effect of timber harvest on aquatic ecosystems has been the subject of 
much debate. One of the pivotal aspects of this debate is hydrologie recovery 
times after clearcut logging. It is theorized here that the hydrologie recovery 
curves currently in use in the Northern Rockies overestimate the time to 
complete recovery. This study will clarify some of the terminology used in the 
discussion of hydrologie recovery, present new recovery curves, and will report 
the results of a new technique, using leaf area estimation and increment cores, 
by which land managers in the Northern Rockies could easily predict one 
component of hydrologie recovery, namely annual water yield recovery.
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I  can foretell the way of celestial bodies, but can say nothing 
about the movement of a small drop of water.

Galileo Galilei 
as quoted by Daniel Hillel (1980)
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INTRODUCTION

Recovery of the hydrologie regime after timber harvest is a function of a 

multitude of processes. The term itself, "hydrologie recovery", means different 

things depending on which group of processes one is considering. Strictly 

speaking, any discussion of hydrologie recovery must consider the effect of 

roads, ditches, and skid trails as these features have a tremendous effect on the 

hydrology of a site. To many, a site can never recover hydrologically as long as 

roads are present. There is much validity to this argument but one must keep in 

mind the scope of the discussion.

The current study does not address the relationship of roads to streamflow, it 

is limited to recovery of annual water yield from unroaded, naturally regenerating 

sites. It is recognized, also, that skid trails will prolong recovery times. This 

issue, however, was left to the judgement of the hydrologist. Where there are 

extensive skid trails, as where there is poor regeneration, the curves presented 

here would underestimate recovery times.

It is the hope of this researcher that the results given below will help land 

managers in the Northern Rockies gain insight into the temporal effects of timber 

harvest on water yield. However there are many factors involved in producing 

cumulative, detrimental effects on water resources and an appropriate policy 

would be to consider them all.

The major objective of this study is to propose recovery curves for groupings
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of habitat types of Western Montana (Pfister and others 1977) which are 

supported by a review of published literature and by the results of a procedure 

utilizing leaf area estimates and increment cores to predict the annual water 

yield recovery of a stand.

Numerous studies throughout the world have investigated hydrologie 

recovery over time. To paraphrase Cook and Reeves (1976), it is easy to 

become “perplexed by the shifting current of conflicting arguments, the 

discharge of unsubstantiated assertions, the pools of controversy, and the 

shoals of abandoned hypotheses.” In addition there is the concern over 

extrapolation of results from geographical areas outside the Northern Rockies. 

Data specific to Western Montana concerning hydrologie recovery do not exist 

other than anecdotally.

Most hydrologists in this region use the methods outlined in Forest Hydrology 

Part II (USDA Forest Service 1973a) to conduct cumulative effects analyses for 

proposed forest management activities. In this method the past and proposed 

activities are equated to an “equivalent clearcut area” which brings about an 

increase in water yield. This increase recovers back to pre-disturbance levels 

along one of nine curves depending on the habitat type of the site. There have 

been many attempts at refining the habitat type groupings for each of these 

curves but the underlying assumptions of the curves have rarely been disputed.

One reason for the unwavering acceptance of these curves is perhaps that 

they are very protective of the resource. Hydrologists concerned with the impact
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of multiple harvest activities in a drainage have pointed to the recovery times of 

100 years or more as an argument for less harvest. This concern is often well- 

founded, however, the use of water yield recovery curves, which have not been 

validated in over 25 years of use, as a tool to limit harvest activities is 

inappropriate. A goal of this study is to present a more quantitative approach to 

the issue of water yield recovery.

Practically speaking, annual water yield recovery can be viewed as a function 

of two processes, evapo-transpiration (ET) recovery (i.e. vegetative regrowth) 

and the recovery of snow accumulation pattern and process (Figure 1 ). In the 

current study, the first process is quantified using leaf area index and heartwood 

formation. An estimate of leaf area growth over time is made using the 

ecosystem model FOREST-BGC (Running and Gower 1991). Two field 

measurements of leaf area index (LAI) are compared to the model results, which 

are considered to most accurately reflect stand level LAI over time, to determine 

where the stand falls on the leaf area recovery curve. In addition, heartwood 

formation is linked to the complete utilization of growing season moisture.

Recovery of snow accumulation processes is dealt with through a 

comprehensive review of current literature, a discussion of the relevant 

climatological conditions prevalent in the study area, and a discussion of 

relevant stand structure characteristics and their response to harvest.
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BACKGROUND

Water Yield Recovery Curves

The most comprehensive water yield recovery data sets are from work done 

in Colorado at the Fraser Experimental Forest (see below for a synopsis of these 

studies). The prediction of water yield recovery times coming from these studies 

was the foundation for the seminal work, in Montana, of A! Galbraith and Dale 

Pfankuch in the early 1970's (personal communication with AI Galbraith, 

Hydrologist - Bridger-Teton National Forest, Jackson, WY). Water yield 

recovery curves presented in the documents Forest Hydrology Part II (USDA 

Forest Service 1973a) (Figure 2) and Vegetation Manipulation Guide for the Lolo 

National Forest (USDA Forest Service 1973b) (Figure 3a-c) were based solely 

on the intuition and personal experience of silviculturalists and hydrologists.

The methods outlined in Forest Hydrology Part II have been incorporated into 

the cumulative effects model WATSED and are still widely used.

Of the lasting contributions which this document has made, perhaps the most 

important is the idea that water yield recovery estimates should be made on a 

site specific basis and that a suite of different curves should be used to reflect 

different site, hydrologie characteristics. By presenting multiple curves and 

grouping sites by the productivity of the habitat type one can more accurately 

predict recovery times. Galbraith’s (USDA Forest Service 1973a) curves remain 

the basis for most water yield recovery estimates being made in the Northern 

Rockies.
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Figure 1. Processes involved in the recovery of annual water yield

In order to set the context within which the current study was undertaken a 

close look at the water yield recovery curves in both of the previously mentioned 

Forest Service documents is warranted. First, however, an explanation of the 

conventional presentation of water yield recovery curves. Water yield recovery 

curves, as generally shown, may be misleading to some. The log-normal axes, 

which have become the norm, obscure the

actual relationships which are at work in nature. Figure 4a shows a water yield 

recovery curve without transformed axes. The recovery occurs quickly in the 

years immediately following disturbance and slows as time passes. Galbraith 

(USDA Forest Service 1973a) reversed the axes, putting recovery on the x-axis
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and years since disturbance on the y-axis, yielding a curves of the form shown in 

Figure 4b. This curve has a logarithmic form which can then be plotted as a 

straight line on log-normal axes. The reasoning behind these transformations is 

unclear, however, the convention will be followed in this study.
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Fiigure 2. Water yield recovery curves developed by AI Galbraith (USDA For. Ser. 1973a)
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F/çuro 3. The three factors in water yield recovery (USDA For. Serv. 1973b): a) Evapotranspiration 
recovery: b) recovery of snow redistribution processes; and c) recovery of snow interception 
processes.

A close look at the recovery curves In Forest Hydrology Part II (USDA Forest 

Service 1973a) reveals some inconsistencies. These curves seem to grossly 

overestimate the time of ET recovery which accounts for approximately 70-85% 

of the water yield recovery (e.g. Gary and Troendle 1982). For instance, the
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slowest type to recover in Figure 2 is shown by line 9. The slope of this line 

indicates that it takes more than 50 years for the ET to return to predisturbance 

levels, an estimate which is without foundation in current literature.

Another example of a recovery estimate based on inconsistent logic is that 

presented in Vegetation Manipulation Guidelines (USDA Forest Service 1973b) 

for the Lolo National Forest, headquartered in Missoula, Montana. In this 

document the author recognized that ET recovers quickly (~20 years) (Figure 

3a) but projects the time of

■o2

I
I

I
Y««n Sine* Obturb«ne*

Figure 4a. Generic water yield recovery curve before transforming the axes.
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Figure 4b. Generic water yield recovery curve with axes «vwrcned to yield a logarithmic curve.
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complete hydrologie recovery to be 100 years because of differential snow 

accumulation (Figure 3b,c). Here, the majority of the water yield increase after 

20 years is shown to be from redistribution of snow. As will be discussed below, 

however, strong evidence indicates that redistribution is not an important factor 

in differential snow accumulation.

Evapotranspiration Recovery

One of the major foci of this study is the investigation of the theory that 

heartwood forms in unsuppressed trees at the time of complete site utilization of 

moisture. Confirmation of this idea would establish the time of ET recovery, one 

of the two factors in water yield recovery (Figurel ).

Evapotranspiration is defined as evaporation from soil, water bodies, and 

plant surfaces, along with water losses through plant leaves. The relationship of 

ET to streamflow is shown in the water budget equation for a watershed;

[1] Q = P - E T - S ~ L

where Q (mm) is streamflow, ET  (mm) is évapotranspiration, P (mm) is 

precipitation over a time period. S is the amount of storage (recharge capacity) 

in the watershed,

and L is deep seepage (the difference between seepage into and seepage out of 

the watershed).
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It can be seen from this equation, and research throughout the world has 

demonstrated, that removing vegetation (i.e. reducing ET) increases water 

available for streamflow This increase in available water results from 1 ) 

reduced transpiration which leaves a greater amount of soil moisture at the end 

of the growing season reducing recharge capacity for the following spring melt 

and 2) savings from growing season rain interception/evaporation (this second 

component, however, rarely makes its way to the stream because it is quickly 

utilized by regrowing vegetation or stored as soil moisture (Brooks and others 

1990)).

My approach to the investigation of ET recovery is through the relationship 

between leaf area, heartwood formation, and available moisture.

Leaf Area/Heartwood/Moisture Relationship

Leaf area index (leaf area per unit ground area) is probably the single most 

important structural property of forests for use in quantifying energy and mass 

exchange. LAI is directly proportional to canopy interception, transpiration, and 

net photosynthesis and is, as McNaughton and Jarvis (1983) demonstrated. 

Important in determining canopy-scale estimates of évapotranspiration.

Long and Turner (1975) and Grier and Running (1977) were the first to show 

that a forested site has a leaf area carrying capacity dependent on water 

balance and independent of stand density (Knight and others 1981 ). I interpret
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their findings to mean that, for water-limited sites, maximum site leaf area index 

(LAI) will occur at the time of complete site utilization of moisture.

Related to the above theory is the assumption that heartwood forms as a 

result of competition for light, moisture, or nutrients or a combination of these 

inputs. Given that, in general, the Northern Rockies is a water-limited 

environment (McMinn 1952) and given the fact that, by sampling only 

unsuppressed trees, light is not limited, it seems reasonable to state that the 

competition for moisture is the impetus of heartwood formation.

Support of this assertion is as follows: Shinozaki and others (1964) observed 

that sapwood basal area is proportional to leaf area. Subsequent studies have 

confirmed this relationship, dubbed the "pipe model" theory (e.g. Kaufmann and 

Troendle 1981, Ryan 1989). It follows that, on individual trees, maximum leaf 

area will coincide with maximum sapwood basal area (i.e. heartwood formation 

will begin). This assertion, along with the above statement that maximum site 

LAI is an indicator of complete site utilization of moisture leads to the postulation 

that the onset of heartwood formation coincides with complete site utilization of 

moisture. Leaf area on a site may be mostly in the form of shrubs and 

herbaceous vegetation early in a stands development but, on forest-potential 

sites, will gradually become, primarily, conifer leaf area.

Riparian areas, by definition, may not be water-limited and trees in these 

locations may begin to form heartwood as a result of some other limiting factor or 

combination of factors (i.e. structural, physiological, light). Sub-alpine sites, as
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well, may not be water-limited (McMinn 1952, Daubenmire 1968) but could 

experience water stress due to low soil temperatures which restrict rates of water 

uptake (Hinckley and Ritchie 1972).

Heartwood formation in an individual tree or a subsample of trees may not, of 

course, indicate that the entire stand is being stressed by water limitation. To 

address this complication, the trees sampled in this study were only those which 

were thought to be the last on the stand to experience water stress, that is, only 

dominants and co-dominants.

This raises the question; does heartwood form differentially across crown 

class? This issue was informally investigated by coring individual trees across 

crown class within a single stand. It was theorized that the suppressed and 

intermediate trees would experience water limitation and begin heartwood 

formation first, the co-dominants next, and the dominant individuals would be 

last. This, however, was not a distinct trend. The more dominant individuals 

certainly had much greater ring width than the more suppressed trees but the 

age of onset of heartwood seems consistent across crown class.

Heartwood formation is a poorly understood process. What we do know is 

rudimentary. The pipe model theory indicates that when a tree reaches the point 

where it has enough conducting tissue to support its maximum leaf area it will 

begin to turn the inner pith of the tree to heartwood (the new growth ring will be 

sapwood and the sapwood area will remain constant, therefore some tissue 

around the pith must become heartwood). As it grows out each year an
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additional ring of sapwood will be added to the perimeter while an additional 

amount of sapwood will be converted to that heartwood already present around 

the pith.

The formation of heartwood allows for the maintenance of a relatively 

constant sapwood basal area as growth rings (i.e. additional sapwood) are 

added annually. The number of annual rings of sapwood decreases as the tree 

diameter increases. For instance, say a tree experiences relatively constant 

growing conditions for 50 years and each growth ring is 0.2 inches in width.

Let's say further that the tree is cored at age twenty and nineteen of the twenty 

growth rings are found to be sapwood. This would mean that the sapwood basal 

area (SWA) is -49  in^ (total basal area = 50.26 in^, heartwood basal area = 1.26 

in^, sapwood basal area is (50.26 -1.26 = 49 in^ ). If the tree was cored again at 

age 50 and the SWA had remained constant there would only be four rings of 

sapwood (total basal area = 314.2 in^, if SWA = 49 in^ then HWA must be 265.2 

in^ which would be -46  annual rings of heartwood, leaving 4 rings of sapwood).

Since the sapwood area has theoretically remained constant since reaching a 

maximum (i.e. since heartwood formation began) then a simple count of the 

number of sapwood rings will reveal the age at which heartwood on that tree 

began to form. This approach would be the most valid if the tree had begun 

heartwood formation in the recent past. The older and larger the tree gets the 

more potential error is introduced. In the example above, it would be safe to
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assume the tree had begun to form heartwood at age 19 if the tree core was 

observed at age 20.

Water Yield Recovery

The effect of silvicultural practices on water yield has been studied in a 

number of experiments on small, gauged watersheds. These studies, 

summarized by Hibbert (1967), Anderson and others (1976), and Bosch and 

Hewlett (1982), demonstrate that removing forest cover increases water yield 

and that the magnitude of increase depends mainly on water availability and is 

proportional to the amount of vegetation removed (Rothacher 1970, Reinhart 

and others 1963).

Troendle and Leaf (1981) presented the following description of the 

mechanism of water yield increase. During the growing season the 

evapotranspirational draft, and the resulting depletion of soil moisture, is 

reduced when vegetation is removed. As a result, soil in harvested areas has 

higher soil moisture at the beginning of the dormant season. During the winter, 

precipitation is stored on the ground in the snowpack. When, in the following 

spring, the snow begins to melt, the soil moisture recharge requirements are 

satisfied more quickly and the remaining snowmelt becomes available for 

streamflow. In addition, clearcut areas tend to store snow more efficiently due 

mainly to decreased surface area, resulting in less ablation.
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The first paired catchment study in this country was conducted on the Wagon 

Wheel Gap watershed in the Fraser Experimental Forest near Fraser, Colorado. 

Between 1911 and 1926 Bates and Henry (1928) monitored streamflow before 

and after clearcutting. They observed that the increased streamflow, which was 

as much as 5 cm, diminished to pre-treatment levels in 5 years due to rapid 

aspen regrowth. Further work by scientists at Fraser has likely contributed more 

to the understanding of the effect of vegetation manipulation on forest hydrology 

than anyone.

Two other important paired catchment studies conducted at the Fraser 

Experimental Forest are the Deadhorse Creek (Troendle 1982, Troendle and 

King 1987) and Fool Creek (Troendle and King 1985) experiments (for an 

excellent synopsis of these three Fraser studies see Troendle and Kaufmann 

1987).

Because of the rigor and lengthy period of record it is tempting to put great 

faith in the results of these studies. However, extrapolation to the Northern 

Rockies is risky. The headquarters of Fraser Experimental Forest lies at an 

elevation of 9500 feet. Precipitation on the Forest ranges from 15-30 cm. The 

snow which fails is generally lower in water equivalent (that is, it is more likely to 

be blown by wind) and the region receives much greater winter solar radiation 

than much of Western Montana. Nevertheless, these studies offer good insight 

into the fundamental relationships between forest hydrology and vegetation 

manipulation.
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The Fool Creek watershed was harvested using a pattern of alternating 

clearcut and forested strips in 1956. Troendle and King (1985) estimate an 80- 

year hydrologie recovery (more accurately, water yield recovery, since they do 

not address peak flow problems or subsurface flow changes as a result of roads) 

period for this watershed and in a separate study based on basal area regrowth 

Kaufmann (1985) predicts hydrologie recovery in 70 to 80 years. This is for a 

watershed with a very short growing season and harsh environmental 

conditions. Elevations range from 9500 feet to 11,500 feet. In fact, the upper 

quarter of the drainage is alpine tundra.

In the Deadhorse Creek study Troendle (1982) and Troendle and King (1987) 

observed an average increase in peak water equivalent (PWE) of the snowpack 

(measured about April 1 each year) of 18 percent for the four years following 

clearcutting of 36 percent of the drainage. The average observed increase in 

flow was 24 percent but, interestingly, this increase had no detectable effect 

downstream. Troendle (1982) states, "The magnitude of the change would not 

cause a significant increase in either the wetted or evaporative surface along the 

channel, seepage to groundwater, or an increase in consumptive use by 

vegetation. It is assumed that the increase has not been "lost" but is simply not 

detectable at the main gaging station." This study is presented as an illustration 

of the potential pitfalls, due to observing at an inappropriate scale, which one 

must face when studying cumulative watershed effects. Potential problems such
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as severe channel scour can occur in first order streams while little change is 

detected downstream at a mainstem monitoring site.

As with other studies in Colorado (Troendle and Leaf 1981) and at the James 

River in Alberta (Golding 1981), the observed increase in flow appears on the 

rising side of the hydrograph. The increase results from a combination of 

advancing the spring melt by exposing the pack and smaller soil water deficits 

from the previous growing season. The peak volume, though advanced two 

days from the normal date of occurrence, was not increased (Golding 1987).

In more moderate climates, several studies have been conducted which 

indicate that the invasion of harvested sites by shrubs and grasses quickly 

brings about recovery of the soil moisture depletion regime. Hibbert (1969), 

working in the southern Appalachians, clearcut 22 acres and seeded fescue 

grass. He showed that in years when grass production was high, water yield 

was about the same as, or less than the expected yield from the original forest 

(in a rainfall-dominated area such as the southern Appalachians water yield 

increases would be expected to be attributed almost entirely to soil water 

savings, the increases in snow accumulation should be minor contributors, thus 

water yield recovery and ET recovery should correspond closely). A further 

observation was that the grass appeared to evaporate more water early in the 

spring and less water late in the summer than the original forest cover.

Closer to my study area, Cline and others (1977) working at the Priest River 

Experimental Forest in North Idaho showed that invading ninebark rapidly
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reoccupied a south slope clearcut, eliminating soil water savings (i.e. water yield 

increases due to reduced ET) within five years of harvest. In this same study a 

north slope clearcut was reoccupied more gradually by fireweed, a herbaceous 

species, and showed much slower recovery, though they failed to quantify it. 

They made no prediction of when the site would recover. Similar results were 

observed in the Douglas-fir zone of Southwest Oregon where vegetation 

recovered enough in less than five years after burning a clear-cut area, for soil 

moisture depletion to equal the rate of the adjacent old-growth forest (Schmidt 

1970 as cited in Tobin-Scheer 1993).

Two other studies conducted in the Sierra Nevada found short recovery times 

for soil moisture depletion. After a selection cutting, soil water savings dropped 

by 50% in 4 years (Anderson 1963). Similarly. Ziemer (1964) predicted that 

increases in water stored in the soil would fall to zero by the 16th year following 

clearcut harvesting.

Others have made predictions of hydrologie recovery. In northeastern Utah 

four spruce stands at approximately 8400 feet elevation were clearcut. ET 

recovery was expected to take at least 50 years (Hart and Lomas 1979) and 

differential snow accumulation patterns were expected to persist for 80 to 160 

years in the subalpine zone of Colorado (Leaf and Brink 1975). The later study, 

however, was based upon the premise that increased snow accumulation is due 

to redistribution (i.e. snow blowing from the canopy and from adjacent forested 

areas). Strong evidence, discussed in the following section, now disputes the
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notion of redistribution and favors the theory of interception savings as tne main 

cause of increased snow accumulation. This issue is discussed in detail in the 

following section.

Recovery of Snow Accumulation Pattern and Process

It is difficult to separate the many processes which play a role in the 

differential snow deposition patterns which are observed between openings and 

forests. It seems clear, though, that in openings which are small enough to 

mitigate the effects of wind scour loss (less than about 3 tree heights; Golding 

1982), the amount of snow water equivalent (SWE) will be greater than in the 

adjacent forest. Sources of this increased snow accurnulation include 1 ) that 

which would normally accumulate under an undisturbed forest canopy, 2) that 

which would have been intercepted and evaporated/sublimated from the forest 

canopy if the trees were still there, 3) that which falls into the opening because 

of the canopy discontinuity created by the opening, and which otherwise would 

have fallen downwind (or even upwind) of the opening, and 4) that which is 

blown in, either from the canopy or from under the canopy of the adjacent forest 

(Haupt 1979).

Each of these sources will be addressed in turn. For the purposes of this 

discussion the first source of increased SWE can be ignored. If the snow would 

have been on the ground under an undisturbed canopy then its presence in a 

clearcut presents no change in the site water balance. The fourth source can be
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split into two; during storm repositioning and between storm repositioning. The 

amount of snow which is repositioned, from either under or in the forest canopy, 

into an opening between storms has been observed to be negligible (Troendle 

and others 1988, Meiman 1987). Snow repositioned into openings during a 

storm is indistinguishable from that which is deposited in the openings due to 

wind eddies. The significance of this source in increased water yield will 

depend on the météorologie characteristics of each particular storm. The energy 

of the wind, as well as the density and moisture content of the snow, will affect 

how much is repositioned after settling on the ground or on a tree crown.

The second and third sources which Haupt (1979) has described are the 

ones about which the debate has centered. Most often, the term redistribution, 

used in the context of snow accumulation, refers to the process of increased 

deposition in clearings due to the aerodynamic effects caused by a break in the 

forest canopy. Snow which is blown along the shear plane just above the tree 

canopy may encounter an aerodynamic eddy which causes it to be deposited in 

the opening. This effect is dependent on clearing size and would persist until 

the regeneration in the openings is high enough to maintain the wind shear 

plane along the canopy.

The term “interception savings" refers to Haupt’s (1979) second source of 

increased SWE. The canopy of a forest intercepts snow which is then subjected 

to some degree of sublimation or evaporation. This loss occurs to a lesser 

extent when vegetation is removed. The amount of snow intercepted and
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evaporated/subiimated is greatly influenced by météorologie and physiographic 

factors. Latitude, aspect, elevation, albedo, temperature, snowflake 

characteristics, and storm characteristics are all critical factors (for an excellent 

discussion of the factors influencing snow accumulation and runoff see Delk 

1972).

The role of particular meteorological conditions on the interception of snow is 

a complex issue, mostly out of the scope of this study. After all, most of the 

forces at work would have equal influence on a mature and a young forest. For 

example the capability of a tree to intercept snow has been correlated with low 

specific gravity of the snow and storm size (Schmidt and Gluns 1991 ). These 

conditions would be the same for both a young stand and a mature forest. The 

question is whether the stand structure has any relationship to interception 

capabilities. McNay and others (1988) found that mean crown completeness 

(the proportion of the sky obscured by tree crowns within a specified angle view 

from the ground) and storm size were the factors most responsible for a 

particular stand’s capability to intercept snow. They found crown length, crown 

width, basal area per hectare, tree height, and tree density to be less well- 

correlated.

Once the snow has accumulated in the tree crown its fate is dependent on a 

set of factors as complicated as those involved in interception. Snow can be 

evaporated directly from the canopy or fall in solid or liquid form to the ground. 

Mass transport of snow could occur due to strong wind conditions or by the
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process of snow melt and subsequent loss of cohesive strength. Several 

factors, such as wind velocity, albedo, and temperature, which affect the rate 

and magnitude of interception retention of snow in trees, also determine the 

amount of evaporation of that snow. As stated above, however, these factors 

should all act equally on mature and immature stands.

Regarding the relative effects of redistribution and interception savings as 

causes of the well documented, increased SWE, the scientific dogma has come 

full circle in the 50 years since the phenomenon was first investigated.

Wilm and Dunford (1948) studied the effect of differing harvest levels on 

snowpack accumulation in lodgepole pine {Pinus conforta) stands on the Fraser 

Experimental Forest. They observed an increase in peak water equivalent with 

increased intensity of harvest and concluded that the increase was due to 

interception savings.

This assertion was generally accepted until Hoover and Leaf (1967), also 

working at Fraser, concluded that the differences in snowpack accumulation 

between forest and clearcuts were a reflection of deposition and redistribution 

processes rather than interception savings. They further stated that any 

interception savings would be lost through increased evaporative loss from the 

snowpack. Several subsequent studies concurred (e.g. Gary 1974, Dietrich and 

Meiman 1974, and Leaf 1975). Of note is a study in the maritime climate of 

North Idaho which continued to point out the importance of winter loss by 

interception/sublimation (Haupt 1972).
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While there is agreement that more snow accumulates in openings there is 

considerable debate about the opposing effect of higher ablation rates in 

openings. Troendle and King (1987) state that "ablation and differential 

deposition are inseparable." Nevertheless, it seems reasonable to suggest that 

slopes with south aspects or at high elevations will receive greater winter and 

spring solar energy and thus the ablation rate of the snowpack will be greater 

than that of the adjacent forest and will, to some degree, offset the higher 

accumulation resulting from redistribution and/or interception savings. This, in 

fact, was the interpretation made in several studies (e.g. Meiman 1968, 

Satterlund and Haupt 1972, Haupt 1979, Golding and Swanson 1986).

In contrast, however, Gary (1979) found the greafesf differences in SWE 

accumulation between clearing and forest to be on south aspects and he 

explained the cause as exposure to prevailing southwest winds. This is a clear 

demonstration of the difficulty in making generalizations about the interwoven 

processes at work in snowfall accumulation patterns.

Those still holding the opinion that redistribution is the major process 

affecting differential accumulation argue that the combination of available energy 

and vapor pressure gradients are seldom adequate to account for the reported 

values of interception loss. Currently, however, the weight of the scientific 

evidence seems to support the theory that interception savings, not 

redistribution, is the major factor in differential snow accumulation (e.g. Gary 

1979, Gary and Troendle 1982, Gary and Watkins 1985, and Meiman 1987).
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Troendle and others (1988) saw little snow accumulation in openings 

between storms, agreeing with findings of Troendle and Meiman (1984, 1986) 

and Wheeler (1987). Troendle and King (1985) harvested a watershed using a 

strip clearcut method and observed a 9% net increase (significant at the 1% 

level) in snowpack averaged over an entire watershed in Colorado. They 

concluded that “it does not seem likely that depositional differences can play as 

significant a role as previously thought." This conclusion is supported by the 

work of Packer (1962) who reported a uniform increase of 10.7 cm snow water 

equivalent after harvest on the Priest River Experimental Forest.

The proportion of annual precipitation which is lost due to snow 

interception/evaporation has been estimated by Golding (1982) at 18.3% at 

Marmot Creek and 12.5% at James River, both in Alberta. Satterlund and Haupt 

(1970) working in northern Idaho estimated snow interception loss to be only 

4.5% and 5.2% of total snowfall in Douglas-fir {Pseudotsuga menziesii) and 

western white pine {Pinus monticofa) respectively. They found that more than 

80% of the snow initially caught in the crowns ultimately reached the ground 

being washed off by the subsequent rain, falling by direct mass release, or 

dripping as melting snow. Anderson (1963) states that most studies show that 

interception losses amount to 10% or less of actual precipitation (USDA Forest 

Service 1973a). Haupt (1979) showed that PSME and PIPO saplings lost 

approximately 5% of total snowfall to evaporation.
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METHODS

Plot Selection/Sampling Scheme 

Habitat types were hypothetically categorized into theoretical slow, moderate, 

and fast recovery types based upon site a combination of productivity, length of 

growing season, and other stand development influences (for instance, high 

water table, high elevation, etc.) (Pfister and others 1977, Appendix E-3) (high 

productivity correlates with fast recovery of vegetation) and length of growing 

season. From each of these categories two habitat types were chosen (Table 1 ) 

that had a high frequency of occurrence in the study area. The chosen habitat 

types are quite common in Western Montana and are considered to be clearly 

representative of the recovery rate category into which they are placed. The 

selection of the PSME/PHMA moist and dry phases was based on more recent 

work (Arno and others 1993). Three stands in each habitat type were located 

from information provided by Champion International Corporation (CIC) and the 

U.S. Forest Service (Table 2).

As the availability of water, light, and/or nutrients (i.e. growing space) 

changes, the rate of growth of foliage and the associated sapwood (conducting 

tissue in the bole) willfluctuate. As a result of this it seems likely that heartwood 

may form intermittently through the lifespan of an individual tree. In other words, 

when a disturbance, either natural or anthropogenic, makes more growing space 

available, a tree that had been putting on heartwood for several years may, once 

again, add sapwood and cease heartwood formation for a period of time.

25
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Because of this, the stands desired for this study were at an age where the 

codominant and

Table 1. Habitat Type Recovery Classes west of the continental divide in the Northern Rockies.

FAST RECOVERY HABITAT TYPES

mountain hemlock/glacier lily (TSHE/CLUN) 
western redcedar/glacier lily (THPL/CLUN)* 
grand fir/glacier lily (ABGR/CLUN)* 
grand fir/twinflower (ABGR/LIBO) 
spruce/dwarf huckleberry (PICEAA/ACA) 
spruce/glacier lily (PICEA/CLUN) 
subalpine fir/glacier lily (ABLA/CLUN)

MODERATE RECOVERY HABITAT TYPES

subalpine fir/sweetscented bedstraw (ABLA/GATR) 
subalpine fir/menzes// ferruginea (ABLA/MEFE)* 
sublapine fir/twinflower (ABLA/LIBO)
Most Douglas-fir types (PSME/PHMA moist phase)*

SLOW RECOVERY HABITAT TYPES

pinus albicaulus/subalpine fir (PIAL-ABLA) 
subalpine f«Auzuia hitchcockii (ABLA/LUHI) 
subalpine fv/caiamagrostis canadensis (AB LA/C AC A) 
sublapine fir/beargrass (ABLA/XETE)*
Douglas-fir/ninebark (PSMEPHMA dry phase)*
All ponderosa pine types (PIPO/****)

* chosen for this study

dominant individuals were just beginning to put on heartwood.

The age at which heartwood begins to form was initially hypothesized to be 

30, 45, and 60 years for the fast, moderate, and slow recovery types, 

respectively. This was based on a general knowledge of the literature regarding 

ET recovery. Early in the data collection, however, it became apparent that 

heartwood formation occurs as early as 7 -10  years on the fast types and no 

later than 25 years on the slow types. As a result of this late realization, some of
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the stands which were sampled early In the data collection process are not in the 

desired age range and some error in the determination of heartwood initiation 

ages may have been introduced.

Data Collection

Within each of the 19 stands (three each for each of five habitat types, four 

for ABLA/XETE) (Table 2) two tenth-acre fixed area plots were laid out aligned 

with the cardinal directions (on very dense, homogenous stands the plots were 

smaller). On each plot all trees were tallied in their respective DBH class. 

Increment cores were then taken from three trees of each of the two dominant 

species. Two cores were taken at right angles at collar height (15 cm or as low 

as the local duff and terrain permitted) to accurately determine the total age of 

the tree and the age at onset of heartwood. The latter being determined by 

counting the number of rings of sapwood. To accurately distinguish the 

heartwood-sapwood boundary several stains were tried but they were very 

species-specific and none were truly effective. The most effective method found 

was to hold the core up to a light sky. When the core was backlit properly the 

conducting sapwood tissue was translucent while the heartwood was opaque. In 

certain species (i.e. Douglas-fir) there is also a distinct color difference between 

heartwood and sapwood.

Within each tenth-acre plot a twentieth-acre circular plot was used to conduct 

an understory inventory (O'Brien and VanHooser 1983).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



28

Table 2. Plot Name, location, ID code (for use on figures), physical setting, and age.

Plot Location Plot ID Habitat Type Slope%
Elev.

(ft)

Aspect

(deg)

StandAge

(yrs)

W .Fk. Schwartz Crk (Lolo NF) PPD1 PSME/PHMA dry 55 3900 90 70

Windy Saddle {Lolo NF) PPD2 - 32 4000 160 32

Antenna Rd./Wirxly Saddle (Lolo 

NF)

PPD3 30 4600 202 31

W.Fk. Gold Crk (CIC) AX1 ABIJVXETE 65 5000 35 56

Sleeping Child Bum (Bitteroot NF) AX2 • 25 7000 80 23

Sleeping Child Bum (Bitterroot NF) AX3 • 30 7100 110 24

Sleeping Child Bum (Bitterroot NF) AX4 - 32 7240 30 25

Park Creek (Lolo NF) PPM1 PSME/PHMA

moist

80 4200 0 42

Blue Mtn. (Lolo NF) PPM2 - 26 5800 154 27

SnowtMwl Rd. (Lolo NF) PPM3 • 37 4900 325 26

W .Fk. Schwartz Crk. (Lolo NF) AM1 ABLA/MEFE 33 4600 50 26

W .Fk. Schwartz Crk. (Lolo NF) AM2 • 30 4700 115 24

W .Fk. Elk Crk. (Lolo NF) AM3 ■ 20 5000 110 26

Whitetail Crk. (Kootenai NF) T C I THPUCLUN 30 3850 90 23

W .Fk. Yaak R. (Kootenai NF) TC2 • 24 4400 120 25

W . Fk. Yaak R. (Kootenai NF) TC3 ■ 19 4200 90 24

Jewel Basin (Flathead NF) AC1 ABGR/CLUN 55 3860 310 30

Jewel Basin (Flathead NF) AC2 ■ 60 4000 180 30

Jewel Basin (Flathead NF) AC3 « 50 4200 15 27

Leaf Area Index Estimation

Three methods were used to calculate leaf area index (LAI) for each stand. 

The first estimation was obtained from the forest growth simulation model 

FOREST-BGC (Running and Gower 1991). The second method utilized light 

attenuation as measured by a portable integrating radiometer (Decagon Devices 

1987, Pierce and Running 1988). Finally, by piecing together relationships from
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several different studies I was able to develop an allometric calculation of LAI for 

each stand. Each of these methods will be discussed in turn below.

FOREST‘BGC LA! Estimate

The most recent version of FOREST-BGC uses water and nitrogen limitations 

to alter the leaf/root/stem carbon allocation fraction dynamically at annual 

iterations (Running and Gower 1991). This model was used in the current 

application to "grow" a stand for 50 years, starting at an estimated age of 6 

years. The leaf carbon output (kg) was then converted to leaf area using the 

specific leaf area of 25 m^/kg carbon (Running and Hunt 1993). The 

dimensionless stand LAI was calculated by dividing leaf area (m^) divided by 

ground area (m^).

In order to run this model for a specific geographic area a number of 

initialization parameters are required. Default values for several of these 

parameters have been derived and tested in other applications (Running and 

Gower 1991, Running 1993) and these were applied here (see Appendix A). 

Certain stand specific values, however, were used to differentiate each of my 

sites.

Soil water holding capacity (SWC) is an important parameter to define for this

model. Running (1993) states that :

...by far the most difficult important parameter to define is soil water- 
holding capacity available for water uptake by roots. Although, 
typically these measurements are made for the top 1 m of soil, in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

reality we have no way of knowing the depth and rooting extension of 
trees on these sites. The SWC measured by accepted 
techniques...ranged from 4 cm to 22.6 cm across the sites, yet 
measured SWCs are clearly inadequate to support the observed 
vegetation....it is clear that typical soil-sampling data is the wrong 
methodology to rely on for this parameterization.

A figure of 20% of the volume of the rooting zone is a reasonable estimate of soil 

water-holding capacity but, as stated above, there was no way of knowing the 

depth and rooting extension of the trees on these sites. Because of this 

uncertainty I decided to hold SWC constant at 2000 m  ̂/ hectare for all my sites. 

This corresponds to an estimate of 1 m for the rooting zone for all of the study 

sites.

Another parameter for which the defaults were not used was the initial carbon 

allocation figures. In a previous study (Milner and Coble, pers. comm.) a 12-15 

year old stand was assigned the carbon initialization values of 400 kg for foliage, 

3320 kg for stem, and 820 kg for roots.

Since I wanted my BGC run to start with a stand younger than 12 years I 

used figures which were 50 percent of those values and assumed the starting 

age was 6 years. This age was chosen to reflect an average time it takes for a 

seedling to become established. As with SWC this value was held constant for 

all of the model runs.

The distinguishing parameter between sites was the climate data set. To 

obtain these I used the weather extrapolation model MT-CLIM (Running and 

others 1987). This model takes data from a base meteorological station and
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projects what the conditions would be at a different but nearby location, given 

the slope, elevation, and aspect. The base stations that were used for the 

various sites, along with the estimated yearly precipitation (USDA SCS 1970) 

are shown in Table 3.

Individual 50 year BGC runs were made for each location and the output 

value of leaf carbon (kg) was converted to l_AI (specific leaf area = 25 m^/kg). 

The LAI thus determined was all-sided. This value was then divided by 2.2 to 

arrive at projected LAI. Using the age of each stand a single LA! figure was 

determined from the appropriate LAI growth curve.

Ceptometer LAt Estimate

The second estimate of stand LAI was made using a portable integrating 

radiometer (ceptometer). Canopy transmittance of each plot was sampled using 

the sunfleck ceptometer on cloudless days between 20 July and 31 August in 

two field seasons, 1992 and 1993. Because of the travel distance and unusually 

cloudy weather not all plots have ceptometer measurements.

For each plot sampled, 3200 points were measured at each of three heights, 

soil surface, 1.5 feet, and 6.1 feet. This was easily accomplished because the 

instrument instantaneously integrates 80 radiometer measurements at once and 

stores them in a datalogger (Decagon Devices 1987) The 3200 measurements
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''able 3. W eather Data Inputs to MTCLIM

Location Base Station Base Sta. 
PPT (cm) Plot PPT (cm)

W.Fk.Schwartz Creek #1(Lolo NF) Missoula 40 63.5

Windy Saddle (Lolo NF) Missoula 40 63.5

Antenna Rd /Windy Saddle(LoloNF) Missoula 40 76.0

W.Fk.Gold Creek (CIC) Missoula 40 76.0

Sleeping Child Bum #1 (Bitterroot NF) Darby 44 70.0

Sleeping Child Bum #2 Darby 44 70.0

Sleeping Child Bum #3 Darby 44 70.0

Park Creek (Lolo NF) Missoula 44 63.5

Blue Mountain (Lolo NF) Missoula 40 63.5

Snowbowi Road (Lolo NF) Missoula 40 64.0

W.Fk.Schwartz Creek (Lolo NF) Missoula 40 51.0

W.Fk.Schwartz Creek (Lolo NF) Missoula 40 51.0

W.Fk.Elk Creek (Lolo NF) Missoula 40 51.0

Whitetail Creek (Kootenai NF) Troy 90 127.0

W.Fk.Yaak River #1 (Kootenai NF) Troy 90 127.0

W.Fk.Yaak River #2 (Kootenai NF) Troy 90 114.0

Jewel Basin (Flathead NF) Creston 51 89.0

Jewel Basin (Flathead NF) Creston 51 89.0

Jewel Basin (Flathead NF) Creston 51 69.0

at the soil surface were used to determine total plot LAI. The transmittance 

values for each plot were then averaged and converted to LAI using the Beer- 

Lambert Law;

[21 LAI = ~ln(Q/QJ/K,
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where LAI is projected LAI, K is a light extinction coefficient, Q, is the average 

below-canopy transmittance, and 0^ is the average total incoming transmittance.

An extinction coefficient is a value which is used to characterize the ability 

of vegetation to intercept solar radiation. The value may range from 0.3 to 1.5 

(Landsberg 1986) but data collected by Jarvis and Leverenz (1983) indicate that 

the average value for both coniferous and deciduous forests is about 0.5. 

Following Pierce and Running (1988) I used a value of 0.52 except where a plot 

had a large deciduous component. In this case a value of 0.70 was used.

LAI Estimate Using Allometric Relationships

To calculate stand LAI using allometric equations several studies were 

utilized. Leaf area for each of the four lifeforms in each stand (trees, shrubs, 

forbs, and grasses) was calculated by a different method. Once the leaf area 

value for each of these components was calculated they were summed to give a 

total stand LAI.

Allometric Estimate of Overstory Conifer Leaf Area Index

To calculate conifer LAI, I first calculated tree foliage biomass using the 

regression statistics shown in Table 4 (the deciduous overstory component LAI 

was calculated using the shrub method described below). Using the tree tally by 

diameter class, a dry weight biomass was calculated for all conifers on each plot 

and a specific leaf area of 5 m^/kg dry mass (note that this is different than the
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specific leaf area based on kg of carbon used in the BGC conversion) was used 

to calculate leaf area for each tree. These figures were summed to arrive at leaf 

area per plot area. Converting units appropriately yielded stand LAI for conifers.

Allometric Estimate of Shrub Leaf Area Index

In an unpublished study conducted in 1974 and 1984 at the Coram 

Experimental Forest near Columbia Falls, Montana, Schmidt and Fiedler (1984) 

derived regression equations for the biomass of several shrubs using foliage 

volume (Table 5). I used these relationships, as follows, to derive shrub 

biomass for each plot and applied a specific leaf area of 17m^/kg (Running and 

Hunt 1993) to calculate LAI.

As mentioned previously, the understory was inventoried using the method 

of O'Brien and Van Hooser (1983). For each of the four most prevalent tree, 

shrub, forb, and grass species a cover class was visually estimated and 

assigned one of the following classes (Daubenmire 1959):

Crown 
canopy 
cover 

class codes 
1 
2
3
4
5
6

Percent
crown
canopy
coverage

5
6-25

26-50
51-75
76-95
96-100
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Likewise, the height layer was estimated ocularly. The height layers were as 
follows:

Layer 1 - (0-1.5 ft)
Layer 2 - (1.6-6 ft)
Layer 3 - (6.1 + ft)

Using the midpoints of these categories I was able to calculate volume of 

foliage.

In the case of some shrub and deciduous tree species I estimated the length 

of "canopy" instead of using the layer mid-point. For instance, many of the plots 

had geyers willow {Salix geyerani) as a prevalent component. This species often 

was called as being in layer 3 (greater than 6.1 feet) however, the foliage of this 

species is generally limited to only the upper 2-4 feet of the plant. In this case a 

canopy length of 3 feet (-10 dm) was used.

For many species the use of layer midpoints obviously overestimated or 

underestimated the actual foliage volume. However, it was assumed that these 

discrepancies would cancel each other, leading to a reasonable canopy volume 

estimate.

There were species present on certain plots for which no regression 

relationship was developed in Schmidt and Fiedler (1984). In these cases a 

species was chosen from Table 4 which had similar foliage characteristics and 

the regression equation for that species was used.
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Biomass figures were calculated for all shrubs and deciduous trees. These 

were summed and multiplied by the specific leaf area and then divided by area 

to arrive at a plot LAI. Units were converted where appropriate.

Table 4. Statistics to Determine Conifer Foliage Biomass
Species Regression Statistics

a b r?

Douglas-fir 5.630 0.989 0.46

Ponderosa Pine 4.788 1.213 0.66

Western Red Cedar 5.314 1.363 0.96

Western Larch 4.986 1.046 0.98

Sub-alpine Fir 5.970 1.185 0.90

Grand Fir 6.108 0.961 0.81

Lodgepole Pine <1000 TPA 10.300 0.016 0.96

Lodgepole Pine 1000-1500 TPA -1.000 0.034 0.83

Lodgepole Pine 1500-2500 TPA -0.500 0.031 0.84

Lodgepole Pine >9000 TPA -0.140 0.025 0.84

Reference

2

2

2

2
1 Snell and Brown (1978;

Model: In(wt) = a + b ln(d);
wt is foliage biomass in grams, d is DBH in cm

2 Pearson and others (1984);
Model: wt = a + b (tba);
wt is foliage biomass in kg, tba is tree basal area in cm^

Allometric Estimate Forb and Grass Leaf Area Index

Studies conducted to determine biomass of forbs are few. The one 

conducted closest geographically to my study area was that of Olson and Martin 

(1981) working in north-central Washington. Fortunately, this paper also 

presented a relationship for pinegrass {Calamagrostis rubescens), the most
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common grass on my plots. Unfortunately, the Olson and Martin study was 

limited in scope, only testing three forbs (Table 6).

Table 5. Regression Statistics To Determine Shrub Foliage Biomass
Soecies b d

Rocky Mountain Maple {Acer globularis) 0.2619 0.97

Alder {Ainas sinuate) 0.1775 0.93

Serviceberry {Amalancher ainifoUa) 0.1403 0.96

False Huckleberry {Menziseii feruginea) 0.2292 0.87

Ninebark {Physocarpus malvaceus) 0.1477 0.93

Prickly Currant {Ribes montigenum) 0.1311 0.97

Scouler willow (Sa/ix scouleriana) 0.0450 0.92

Buffalo-berry {Sheperdia canadensis) 0.3265 0.95

Mountain Ash {Sorbus Scopulina) 0.1156 0.98

Spirea {Spirea betulafolia) 0.1266 0.91

Snowberry {Symphoricarpus albus) 0.1117 0.95

Big Huckleberry {Vaccinium membranaceum) 0.2532 0.92

Huckleberry {Vaccinium giobuiarus) 0.3497 0.87

Schmidt and Fiedler (1984);
Model: wt = b(vol)
wt *  foliage biomass in grams, vol = foliage volume in dm^

Given the dearth of information on this subject I was forced to use one of 

these equations for each of the forbs on my plots. I chose the species from 

Table 6 which most closely resembled each of my forbs and used that 

regression equation to calculate foliage biomass.

The biomass figures were summed and multiplied by specific leaf area and 

divided by area of the plot to arrive at forb LAI.
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The foliage biomass for all grass species was calculated using the equation 

for pinegrass. The specific leaf area of 5 m^/kg dry mass was applied to arrive at 

plot leaf area and, again, divided by plot area to arrive at stand LAI.

Table 6. Statistics to Determine Forb and Grass Foliage Biomass

Species a b d

Sidebells pyrola {Pyrola secunda)* -0.23194 0.06348 0.95

Meadowrue ( Thalictrum occidentale) 0.10045 0.00639 0.96

Western Rattlesnake plantain 
(Goodyera oblongifola)

0.39309 0.30382 0.83

Pinegrass {Calamagrostic rubescens)* 0.78009 0.25822 0.70

Olson and Martin (1981);
Model: wt = a + b(cov) * (ht)
wt = foliage biomass (g/0.5m ^, cov = percent ground cover, ht = plant height in cm
"Model for Pyrola and Calamagrostis was wt = a + b (cov)
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RESULTS

Figure 5 shows the average age of onset of heartwood for the study plots in 

each habitat type. The Slow recovery types (ABLA/XETE and PSME/PHMA dry 

phase) had an average onset age of 17 and 26 years, respectively. The 

moderate recovery types both averaged 15 years and the Fast recovery types 

(ABGR/CLUN and THPL/CLUN) averaged 12.5 and 11 years respectively.

The LAI grovyth curves, as estimated by FOREST-BGC, for each study site 

are shown in Figures 6a-c, 7. It was expected that the large differences in site 

precipitation levels would be reflected by significant differences between the leaf 

area recovery curves. This was not the case, however. The similarity of these 

curves between stands may be explained by the fact that all the model runs were 

initialized with exactly the same values with the exception of the climate data. 

The climate data which was used for MT-CLIM varied in the annual precipitation 

and the physiographic characteristics of the stands (i.e. slope, elevation, aspect, 

latitude, longitude). The range of elevations for the plots in this study Is from 

3850 feet on the Kootenai National Forest in northwest Montana to 7240 feet on 

the Bitterroot National Forest in west-central Montana. The difference in 

latitude, with the lowest site being the furthest north and the highest site being 

the furthest south could account for the low variability in LAI estimations 

calculated from model runs. Using the approximate age of each stand (Table 2), 

as determined by increment cores, the BGC-predicted LAI was obtained from the 

LAI recovery curve (Figures 6a-c). For all stands modeled the LAI reaches
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a maximum of approximately 3.5 to 4.5 between the age of 20 and 25. After 

reaching this maximum the LAI drops slightly to a plateau of approximately 3.0 to 

4.0. These values are graphed with ceptometer LAI measurements and 

allometric LAI estimations in Figures 8a-c.

The allometric LAI values are notably out of agreement with the other two 

estimates. They are higher than BGC-predicted LAI in 32 of the 38 plots. The 

lodgepole pine allometric is the cause of the large discrepancies found for the 

ABLA/XETE plots 2 through 4. These stands were extremely dense and the 

allometric equation may, in fact, be the most accurate calculation of actual LAI. 

Another possible explanation for the high allometric LAI could be that, because 

these stands were so heavily stocked, tallying the trees on the plot was more 

difficult and some error could have been introduced.
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The allometric LAI values for the ABGR/CLUN stands are also very much 

higher than the ceptometer or model values. There seems to be no good 

explanation for this other than the fact that allometrics have been shown to 

overestimate leaf area (relative to other estimates) inprevious studies (K.Milner, 

pers.comm.). The ceptometer LAI observations were the lowest of the three 

estimations in every stand.
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DISCUSSION AND CONCLUSIONS

There should be little argument over the fact that the factor delaying annual 

water yield recovery for long periods of time is not the return of predisturbance 

ET levels. Rather, it is changes in the pattern and process of snow 

accumulation which cause lingering effects.

Recovery of ET to predisturbance levels has been observed to occur quickly 

due to invasion of shrubs and herbaceous vegetation (e.g. Anderson 1963, 

Ziemer 1964, Hibbert 1969, Cline and others 1977). On the other hand, water 

yield increases attributed to changes in the snowmelt regime have been 

expected to remain detectable for 80 (Troendle and King 1985) to 160 years ( 

Leaf and Brink 1975). The major objective of this study was to present water 

yield recovery curves supported by scientific evidence. A part of this objective 

was to present evidence that, by obtaining increment cores for a representative 

sample of trees on a site, one could establish annual water yield recovery. It 

seems clear, as will be shown in the following discussion, that increment cores 

can be utilized to determine if a stand has reached a maximum LAI. If the stand 

has done so that should establish ET recovery. However, the snow 

accumulation processes must be dealt with separately and so water yield 

recovery, perse, can not be determined solely by the establishment of ET 

recovery.

The approach utilized to determine ET recovery is to use stand-level leaf 

area and heartwood formation as indicators. The reasoning behind this

42
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The approach utilized to determine ET recovery is to use stand-level leaf 

area and heartwood formation as indicators. The reasoning behind this 

approach is as follows; leaf area has been shown to be proportional to sapwood 

basal area (Shinozaki and others 1964) and maximum leaf area occurs at the 

time of complete site utilization of moisture (Grier and Running 1977).

Therefore, heartwood formation should coincide with maximum site utilization of 

growing season moisture (i.e. évapotranspiration recovery). Average, observed 

ages of onset of heartwood are shown in Figure 5. These ages are in agreement 

with numerous studies indicating ET recovery in 5 to 30 years.

LAI recovery was estimated using three methods, allometric equations, 

FOREST-BGC ecosystem model, and a portable, integrating ceptometer. The 

large variability in the three LAI estimates (Figures 8a-c) made it untenable to 

draw a clear conclusion, based on my results alone, that leaf area had reached 

a maximum and thus, that ET had recovered. Nevertheless, a certain degree of 

confidence may be placed in the LAI recovery curves as modeled by FOREST- 

BGC. Use of this model in numerous other studies has confirmed it's accuracy 

in predicting ecosystem carbon allocation and, thus, leaf area. The curves from 

the model indicate that LAI recovery occurs in 20 to 25 years. This, along with 

published research and the heartwood onset ages, provides significant credence 

to the theory that ET recovers in 10-30 years, depending on site productivity.

Evapotranspiration, technically speaking, would also include ablation of a 

snowpack. In the context of water yield increases, however, the processes
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involving snow must be dealt with separately from ET. The reason for this is that 

a significant portion of the snowmelt runoff in the Northern Rockies occurs 

before the vegetation is transpiring in the spring. If there is an increase in the 

amount of snow accumulation over predisturbance levels there will be an 

increase in water yield which is not subject to use by regrowing vegetation.

The recent research into snow accumulation processes indicates that 

interception, rather than redistribution, is the dominant cause of the observed 

increase in snow water equivalent in openings. McNay and others (1988) 

showed that the canopy completeness was the best stand characteristic at 

predicting the amount of snow intercepted. Canopy closure in forest types of 

this region can be expected sometime between age 17 (Wilford 1987) and 40 (K. 

O’Hara, pens. comm, as cited in Tobin-Scheer 1993). An estimate of 20-25 

years to canopy closure is reasonable for all but the low productivity sites. Other 

studies lend these estimates credence (Osawa 1990, Raison and others 1992).
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Though it is likely that the stand must return to pre-disturbance structure for 

the aerodynamic regime to return to a pre-disturbance state (Hoover and Leaf 

1967) there are numerous current studies (i.e. not superceded by more recent 

work) which indicate that redistribution due to altered aerodynamics is a minor 

cause of increase snow-water equivalent (see Troendle and King 1985).

Given these conclusions, I propose the hydrologie recovery curves shown in 

Figure 9. These are presented as reasonable estimates for Slow, Moderate, and 

Fast recovery types. They take into account only slight regeneration delays (1 

to 2 years). Any delay in vegetative regrowth would delay recovery for a 

corresponding amount of time. As a comparative tool, the curves are presented 

with the comparable curves from Forest Hydrology Part I! (USDA Forest Service 

1973). An initial categorization of habitat types in western Montana into the 

three recovery classes is made in Table 1. The category of any given habitat 

type may change for a particular area based on local knowledge.

Evidence does not exist to substantiate every point along these curves.

There is little hard data to precisely say when a site will recover hydrologically. 

The y-intercept values for the curves are somewhat arbitrary. As stated above, 

the curves will shift up and down, while keeping the same slope, depending on 

the regeneration of the site. The most precise points on the curves are those 

near 70-80% recovery. Numerous studies, as pointed out above, have shown 

that ET savings account for approximately 70-80% of the water yield increases, 

and these
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increases recovery in between 10 and 30 years. The curves presented here 

agree with these approximations. The points of complete water yield recovery 

(60, 45, and 30 years for the slow, moderate, and fast types, respectively) were 

chosen as reasonable estimates which are conservative (i.e. conservative) and
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yet more substantiated than those currently in use. Based on the evidence 

presented here, these curves represent a more substantiated set of curves to 

use in cumulative effects assessments, and they, hopefully, will provide a new 

benchmark from which to continue research on this subject.

Though the present study has proposed hydrologie recovery times which are 

much shorter than previously thought there are many factors which could 

prolong actual recovery times. Skid trails, poor regeneration, and, certainly, 

roads all have a profound effect on site water balance and the routing of water to 

the stream. Consideration of all of all of these factors is essential.
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Appendix A. Sample input file used for FOREST-BGC model.

GOLD CREEK (GOLDCRK.DAT)

1
1 8 2 5 0
0
1
0
3 6 5
0
3 6 5
0
F IL E )
0
F IL E )
0
20
1 8 5 0 .0
1000.0  
0.0 
0.0 
0.0  
0.0 
0.0  
200.00 
1 6 6 0 .0
4 1 0 .0 0  
3 0 0 0  
000 
4 0 0 0 0
200.0  
1 8 .0  
100 
1 8 .0
3 0 0 .0  
2000 
000 
50
2 5 .0  
- 0 . 5
8 0 0 .0  
0 .0 0 0 5  
10000 
0 .0 0 0 7  
4 7 .0  
0.8  
0 . 5  
3 0 0 0  
0 .0 0 1 6  
1 .6 5

KSTART -  START SIMULATION LOOP COUNTER
STOP = STOP SIMULATION LOOP, DAY
DAY OUTPUT CONTROL: 1 MEANS YES; 0 MEANS NO
GRW OUTPUT CONTROL: 1 MEANS YES; 0 MEANS NO
LNG OUTPUT CONTROL: 1 MEANS YES; 0 MEANS NO
KPRINT = I F  KPRINT = 10 THEN OUTPUT ONCE EVERY 10  ITERATIONS
KBEGIN = BEGIN PRINTING AFTER ITERATION > KBE6IN
LOOP = LOOP TO THE CARBON/NIT SUBMODEL EVERY x x  DAYS
L IF E  CYCLE REDEFINE B CONSTANTS WITH LOOP # (1=Y E S, 0=NO, * .L I F

SEASONALLY REDEFINE B CONSTANTS WITH YEARDAY (1=Y ES, 0=NO, * . SEA

NEGX -  PRINT ERROR MESSAGES WHEN
NUMX

1
2
3
4
5
6
7
8 
9

10
11
12
13
14
15
16
17
18
19
20

NUMB
1
2
3
4
5
6
7
8 
9

10
11
12

X ( I )  IS  
TO READ 

(

NEGATIVE: 1 MEANS YES.
= NUMBER OF X VALUES 

SNOWPACK
SO IL WATER CONTENT 
WATER OUTFLOW 
TRANSPIRATION 
EVAPORATION 
PSN
RESPIRATION AUTOTROPHIC 
LEAF CARBON 1200
STEM CARBON 1 0 0 0 0
ROOT CARBON 2 5 0 0
LEAF/ROOT LITTER CARBON 
RESPIRATION DECOMP, C 
SO IL CARBON 
AVAILABLE NITROGEN 
LEAF NITROGEN (1 .5 %  OF X8{
STEM NITROGEN {
ROOT NITROGEN .75%  OF X 10(
L /R  LITTER NITROGEN 1%X11( KG 
SO IL  NITROGEN ( KG
NITROGEN LOSS { KG

= NUMBER OF B CONSTANTS TO READ
S P E C IF IC  LEAF AREA (M **2/KG C)
CANOPY LIGHT EXTINCTION COEFFICIENT 
SO IL WATER CAPACITY 2 3 5 0  (M **3)

M * * 3  
M * * 3  
M * * 3  
M**3 
M**3 
KG 
KG 
KG 
KG 
KG 
KG 
KG 
KG 
KG 
KG 
KG 
KG

INTERCEPTION COEFF 
GROUND SURFACE AREA 
SNOWMELT COEFF 
LATITUDE
1 -  SURFACE ALBEDO 
SPRING MIN. PMS 
RAD. RED LC THRESHOLD 
MAX CANOPY AVG. LC 
LWP AT STOMATAL CLOSURE

(M /LAI/DAY) 
(M**2 /  HA ) 
(M/DEG C/DAY) 
(DEG)

(MPA)
(K J/M **2/D A Y
(M /SEC)
(MPA)
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0 .0 5 B( 1 3 ) SLOPE ABS HD REDUCTION (M /SEC/ABSHD)
432 B< 1 4 ) PSN LIGHT COMP P T . (K J/M **2/D A Y )
9 7 2 0 B< 1 5 ) PSN I  (K J/M **2/D A Y )
0 .0 0 0 8 B( 1 6 ) MAX L C (C 02) (M /SEC)
0 B( 1 7 ) MIN TEMP. PSN (DEG C)
4 0 B( 1 8 ) MAX TEMP. PSN (DEG C)
0 .0 0 0 2 B< 1 9 ) LEAF RESPIRATION COEFF
0 .0 0 1 0 B( 2 0 ) STEM RESPIRATION COEFF
0 .0 0 0 2 B( 2 1 ) ROOT RESPIRATION COEFF
0 B( 2 2 )
4 . 0 B< 2 3 ) TEMP. EFFECT MESOPHYLL COND. ADJUSTMENT
CO EFFICIEN T.
0 B( 2 4 )
0 .0 8 5 B( 2 5 ) Q 1 0 = 2 .3  CONSTANT FOR EXPONENTIAL RESPIRATION
SURFACE
0 .0 4 4 B( 2 6 ) MAXIMUM CAN AVE LEAF NITROGEN CONC (%x 2 .2
C /C H 20)
0 .0 1 3 2 B( 2 7 ) MINIMUM CAN AVE LEAF NITROGEN CONC
0 .5 0 B( 2 8 ) MAX LEAF NITROGEN RETRANSLOCATION FRACTION (DIM
1 . 0 B( 2 9 ) SO IL WATER DECOMP RATE FACTOR ( 0 - 1 )  (DIM)
0 . 5 B( 3 0 ) N/C DECOMP RELEASE FRACTION (DIM)
1 2 .0 B< 3 1 ) MAXIMUM LEAF AREA INDEX, ALL SIDES (DIM)
3 . 0 B( 3 2 ) LEAF TURNOVER RATE (YR)
0 .2 5 B( 3 3 ) LEAF LIGNIN FRACTION (% /1 0 0 )
0 B( 3 4 )
1 . 0 B( 3 5 ) NITROGEN AVAIL LEAF/ROOT ALLOCATION FACTOR (DIM)
0 B( 3 6 ) DATE OF SPRING LEAF GROWTH (YEARDAY)
3 6 5 B( 3 7 ) DATE OF FALL LEAF DROP (YEARDAY)
2 0 .0 B< 3 8 ) MOBILE N RETENTION TIME (YR)
5 . 0 B( 3 9 ) ATMOSPHERIC DEPOSITION N ( KG/HA/YR)
0 . 0 B( 4 0 ) BIOLOGICAL FIXATION N (KG/HA/YR)
0 .0 0 B( 4 1 ) STEM TURNOVER COEFF
0 .4 0 B( 4 2 ) ROOT TURNOVER COEFF
0 .3 5 B( 4 3 ) LEAF GROWTH RESP
0 .3 0 B< 4 4 ) STEM GROWTH RESP
0 .3 5 B( 4 5 ) ROOT GROWTH RESP
5 0 .0 B( 4 6 ) DECOMPOSITION TEMPERATURE OPT (DEG)
0 .0 3 B( 4 7 ) S O IL /L IT T E R  C DECOMP FRACTION (DIM)
0 . 4 B( 4 8 ) DECOMPOSITION RATE SCALAR (DIM)
0 B( 4 9 )
0 B( 5 0 )
0  NÜMIZP = NUMBER OF Z VARIABLES TO PR IN T: CAN BE 0
14  NUMIGP = NUMBER OF G VALUES TO PR IN T: CAN BE 0
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