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ABSTRACT 
 
Golinkoff, Jordan, PhD, Spring 2013      Forestry 
 
Estimation and modeling of forest attributes across large spatial scales. 
 
Chairperson:  Dr. Steven W. Running 
 
The accurate estimation of forest attributes at many different spatial scales is a critical 
problem.  Forest landowners may be interested in estimating timber volume, forest 
biomass, and forest structure to determine their forest’s condition and value.  Counties 
and states may be interested to learn about their forests to develop sustainable 
management plans and policies related to forests, wildlife, and climate change.  Countries 
and consortiums of countries need information about their forests to set global and 
national targets to deal with issues of climate change and deforestation as well as to set 
national targets and understand the state of their forest at a given point in time. 
 
This dissertation approaches these questions from two perspectives.  The first perspective 
uses the process model Biome-BGC paired with inventory and remote sensing data to 
make inferences about a current forest state given known climate and site variables.  
Using a model of this type, future climate data can be used to make predictions about 
future forest states as well.  An example of this work applied to a forest in northern 
California is presented.  The second perspective of estimating forest attributes uses high 
resolution aerial imagery paired with light detection and ranging (LiDAR) remote sensing 
data to develop statistical estimates of forest structure.  Two approaches within this 
perspective are presented:  a pixel based approach and an object based approach.  Both 
approaches can serve as the platform on which models (either empirical growth and yield 
models or process models) can be run to generate inferences about future forest state and 
current forest biogeochemical cycling.   
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Introduction 

The goal of this work is to develop methods to estimate forest attributes across large 

spatial scales.  The spatial scale can range from the ownership level to the full globe although 

this work is primarily focused on the ownership level.  The motivating factor that drives this 

work is to develop methods that allow landowners and policy makers to more accurately 

understand the stocks and fluxes of forests.  Using this information, policy makers and 

landowners can be better informed designers and participants in the new and developing market 

for forest carbon offsets.  Unlike traditional markets for forest products (e.g., dimensional 

lumber), this new market for forest carbon offsets values trees that are standing.   

 Forest carbon offsets serve as one tool to help mitigate climate change.  A forest acts as a 

sponge that absorbs CO2 – one of the most important greenhouse gases – from the atmosphere 

and sequesters this gas as woody tissue in trees.  For policy makers, accurate estimates of current 

carbon stocks in forests as well as reasonable predictions of the future are important components 

of setting reasonable baselines and in evaluating how given climate change policies are 

performing. For landowners, these tools are critical components of deciding whether to engage in 

the forest carbon offset market and evaluating the expected returns of enrolling a forest in a 

forest carbon offset program.  

 To address this need, two distinct approaches to estimating the state and change of forests 

were examined.  The first approach using the BiomeBGC process model was examined to 

understand its effectiveness at predicting forest stocks and fluxes and how to best combine this 

model with other data sources.  BiomeBGC (BBGC) is a mechanistic model that is used to 

estimate the state and fluxes of carbon (C), nitrogen (N), and water (H2O) into and out of an 

ecosystem.  In conjunction with these nutrient cycles, BBGC models the physical processes of 
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radiation and water disposition.  BBGC partitions incoming radiation and precipitation and treats 

the excess/unused portions as outflows.  The primary physiological processes modeled by BBGC 

are photosynthesis, evapotranspiration, respiration (autotrophic and heterotrophic), 

decomposition, the final allocation of photosynthetic assimilate, and mortality.  Chapter one 

provides the theoretical background for this model by describing the general model framework, 

comparing it to other model types such as growth and yield models and gap models, and 

detailing the physiological basis of how this model “grows” forests (Golinkoff 2010).   

Chapter two extends this discussion of model dynamics by applying BBGC to estimate 

forest stocks and growth for a forest in northern California.  Modeling ecosystems’ productivity 

with process models allows hypothetical scenarios to be tested and can also help constrain claims 

that landowners and governments make about the carbon they are sequestering and storing.  

Generating reasonable estimates of potential productivity is difficult both because of a lack of 

data and because of future climate change.  However, by using inventory measurements and flux 

data to calibrate process models, specific locations across the globe can be accurately 

represented.  A process model parameterized in this way can then be used to expand estimates of 

productivity across space when paired with remote sensing data.  This integration of multiple 

data sources at multiple scales can provide flexibility in estimating ecosystem state and allow for 

estimates to vary based on different future climate scenarios.  In chapter 2, the BBGC model was 

run within pixels across the full ownership where pixels vary based on their underlying soil 

properties and their spatially inferred climate variability (Golinkoff and Running 2013).  Results 

indicate that BBGC may be a poorly constrained inversion problem and that running separate 

models for all pixels across a landscape may not be the most effective means to simulate 

ecosystem productivity. 
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After studying how Biome-BGC could be used to estimate forest stocks and fluxes, a 

second approach that combined remote sensing and ground-based inventory data was examined 

to see if improvements to traditional forest estimation methods could be made.  This second 

phase was motivated by two critical gaps.  The first gap is the need to develop more accurate 

estimates of forest stocks that can better incorporate inventory and remote sensing data. The 

second gap is the need to develop forest stratification approaches that could serve as better 

platforms on which to stage model runs similar to those examined in the first phase of study. 

Chapter three proposes a new pixel-based approach to stratifying a forest and structuring a forest 

inventory that leverages high-resolution color-infrared imagery, high-density Light Detection 

and Ranging (LiDAR) data, and ground inventory plots (Golinkoff et al. 2011).  This chapter 

specifically addresses how to develop inventory systems that comply with voluntary forest 

carbon offset protocols.  Monitoring, reporting, and verifying carbon stocks and fluxes at a 

project level is the single largest direct cost of a forest carbon offset project.  There are now 

many methods for estimating forest stocks with high accuracy that use both Airborne Laser 

Scanning (ALS) and high-resolution optical remote sensing data.  However, many of these 

methods are not appropriate for use under existing carbon offset standards and most have not 

been field tested.  To bridge this implementation gap, a new, forest stratification and sampling 

method that meets the requirements of the Climate Action Reserve (CAR) Forest Project 

Protocol was designed and applied to a verified and registered carbon project in California.  This 

approach meets the requirements of the CAR standard while reducing the costs of inventory and 

increasing the accuracy of estimates of carbon stocks and basal area.  Results indicate that while 

this method achieves improvements in inventory accuracy and reductions in cost, it is not 

optimal for future modeling or management planning. 
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To address the shortcomings of the previous forest inventory stratification system, a new 

method that uses a similar set of remote sensing and ground inventory data, but instead uses an 

object-based approach to generate forest stands of similar characteristics, was developed 

(Golinkoff 2013).  Well defined forest stands and forest strata allow managers to accurately 

estimate current stocks of timber and carbon as well as plan for future harvests effectively.  As 

was shown in chapter 3, information from remotely sensed high-resolution imagery and LiDAR 

can provide a powerful and data rich environment to help make inferences about forests.  

However, these data are often too complicated for forest managers to work with and available 

methods may be too rigid to provide output products that are well suited to managers’ needs.  In 

chapter 4, a new Area Dependent Region Merging (ADRM) method is outlined that uses LiDAR 

data in conjunction with expert knowledge to develop forest stands and strata based on user 

supplied constraints.  This method uses an area-dependent scale parameter that allows for 

different merging criteria based on the size of the objects being merged.  The method was 

applied in several different forests located in Mendocino County, CA.  Results were used to 

develop a new forest inventory that showed improved accuracy with significantly fewer field 

plots.  Results also showed that compared to non-area-dependent region merging approaches, the 

area-dependent scale parameter was more effective at reducing the within stand variability and 

matched more closely with a reference manual stand delineation.  The use of an object-based 

approach augments the work done in chapter three by producing a final stand delineation and 

stratification that is more easily understood and useable by managers and landowners.  It also 

does a better job of representing the features of interests in forests – e.g. clearcuts, openings, etc. 

The results of these studies taken together allow for three broad conclusions that further 

the field.  First, this works shows the power of using models of different types combined with 
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remote sensing and field inventory data to generate accurate estimates of forest carbon, timber, 

and structure.  Second, this work has explored several ways that remote sensing and field data 

can be used to partition a forest or landscape and thereby serve as a platform for future modeling 

of forest growth and change.  Last, these methods have not only been shown to improve 

inventory accuracy, reduce field inventory cost, and provide a framework for future forest 

modeling but they have also been successfully verified and registered as approved methods in the 

voluntary forest carbon offset arena.  The implementation of these methods provides a blueprint 

for other landowners and project operators to follow and hopefully can help to increase the 

participation in this new market for forest ecosystem services. 
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Chapter 1 

A Theoretical Framework of Biome-BGC version 4.2 

 

Abstract: 

 BiomeBGC (BBGC) is a mechanistic model that is used to estimate the state and fluxes 
of carbon (C), nitrogen (N), and water (H2O) into and out of an ecosystem.  BBGC is actively 
used in institutions around the globe and its most recent release is version 4.2.  As mentioned 
above, the 3 primary biogeochemical cycles represented in BBGC are the C, N, and H2O cycles.  
In conjunction with these cycles, BBGC models the physical processes of radiation and water 
disposition.  BBGC partitions incoming radiation and precipitation and treats the excess/unused 
portions as outflows.  The primary physiological processes modeled by BBGC are 
photosynthesis, evapotranspiration, respiration (autotrophic and heterotrophic), decomposition, 
the final allocation of photosynthetic assimilate, and mortality.  To model these processes, 
BBGC first models the phenology of the systems based on the input meteorological data.   

This description of BBGC below will attempt to follow the order and structure of BBGC 
as it is implemented to best represent the flow of information through the model system.  A 
general discussion of the model flow and required inputs will be given first, followed by a broad 
outline of the model processes and assumptions.  BBGC will be compared to Forest Gap Models 
and Growth and Yield Models.  Lastly, a detailed description of each of the BBGC’s processes 
will be presented (Peter Thornton’s thesis was an essential reference in understanding this model 
(Thornton 1998)).   

1:  General Model Flow 

 Figure 1 shows the general flow of the BBGC model.  The first step in any BBGC model 

run is a spinup to bring the model into equilibrium.  It is common for ecosystem models to 

require a steady state initial condition so as to insure that there is a balance between input and 

output fluxes and that the system has equilibrated to the environmental and site forcings 

(Thornton and Rosenbloom 2005).  In the current version of BBGC, this means that the 

difference between the annual average daily soil carbon stocks must be less than a specified 

spinup tolerance value (SPINUP_TOLERANCE = 0.0005 kg/m2/yr).   
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Figure 1:  Conceptual diagram showing BiomeBGC general model structure 

 As seen in figure 1, any model run (spinup or otherwise) requires a certain set of input 

data.  BBGC requires meteorological (met), physical (ini), and ecophysiological (epc) data for 

each site.  Appendix A details the inputs required for each of these categories.  Every model run 

then produces a set of data that can be outputted for the user to analyze.  Appendix B lists the 

output variables users can request (in either binary or text form).  These variables include all of 

the C, N, and H2O fluxes and pools that BBGC tracks as well as summary variables (e.g. -Net 

Ecosystem Exchange (NEE) or Net Primary Productivity (NPP)) at daily, monthly, or annual 

time scales.  BBGC can be run to a spinup steady state and then forward in time, or it can accept 

as an input the ending model state of a previous model run (a restart file) and run from this point 

forward with a new set of model assumptions if desired. 

 

2:  Model Overview 

Broad Conceptual Basis and Critical Assumptions: 
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 BBGC is a one-dimensional model meaning that it represents a point in space with all 

fluxes and stocks scaled to a per square meter basis (Thornton 1998).  When run in a spatial 

context over a landscape, each cell is a distinct model run and does not interact with other cells.  

This rules out the use of BBGC to examine competitive dynamics across space such as shading 

from differing height growth.  It also prevents more detailed analysis of the impact of vegetation 

on the hydrological flow across a landscape.  That said, models with this spatial awareness do 

exist and BBGC could be modified to account for spatial interactions, but this is not pursued in 

this work.  Given BBGC’s spatial perspective, it is helpful to think of this model as an estimate 

of stand level processes that have been aggregated and averaged to a per unit area basis.  This 

scale is an appropriate framework as BBGC does not attempt to represent individual trees or 

even individual species but rather the dynamics at a point of a plant functional type (PFT) – e.g. 

– evergreen needleleaf forest, or deciduous broadleaf forest, or C3 grassland (Waring and 

Running 2007). 

 Another critical abstraction BBGC makes is to ignore successional dynamics within its 

spatial context.  BBGC is parameterized by a user to grow a given PFT for the full span of its 

model run.  Ignoring plant succession also allows BBGC to ignore competition between PFTs 

that is mediated by different adaptive strategies and growth traits.  As an example of where this 

abstraction is used, all of BBGC’s pools are dimensionless and can better be thought of as 

buckets for storage rather than actual plant structures with known height, width, and lengths.  

Some variants of BBGC have attempted to remove this abstraction to model competition 

between PFTs (Korol, Running et al. 1995; Bond-Lamberty, Gower et al. 2005).  The only 

exception in BBGC to the use of dimensionless pools is the treatment of leaf carbon. 
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 To model the process of photosynthesis, BBGC converts leaf C into an equivalent leaf 

area (LA) based on user defined Specific Leaf Area (SLA) parameters.  SLA is a measure of the 

thickness of a leaf and its units are area per unit mass (i.e. - m2/kgC).  BBGC further partitions 

leaf C and LA into sun and shade leaves.  All photosynthetic, respiration, and transpiration 

processes are then carried out for both the sun and shade leaf components of the system.  This 

two leaf model is more accurate than simple big-leaf models (one big leaf) and doesn’t sacrifice 

much accuracy when compared to more complicated multi-layer approaches (De Pury and 

Farquhar 1997).  This approach to modeling canopy dynamics is also able to capture some of the 

known variability of SLA through a tree crown (Koch, Sillett et al. 2004; Thornton and 

Zimmermann 2007).  For example, it has been observed that leaves exposed to full sun usually 

have lower SLA than those in the shade on the same tree. 

Another abstraction made in the implementation of BBGC is the chosen temporal 

resolution.  BBGC uses both a daily and an annual timestep.  Most processes are applied on a 

daily basis with some pool updating occurring annually (Thornton, Law et al. 2002).  Despite 

this model time scale, many of the actual processes that occur within plants adjust rapidly to 

changes in the environment that happen on a sub-daily basis (Lambers, Chapin et al. 2008).  

However, accurate measurements at this time scale are much more difficult to obtain and in 

many cases are unavailable.  Therefore, using a daily time-step, while not capturing some of the 

true ecosystem dynamics (e.g. – sun spots, clouds, wind gusts, etc), allows for a more broadly 

usable model.  Furthermore, some of these sub-daily phenomena likely average out when 

looking at the daily rates. 

The last two major assumptions built into BBGC concern growing ecosystems without 

knowing future conditions.  Because BBGC is a prognostic model (it is not constrained by 
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diagnostic observations over time but rather builds a given system from a series of first 

principles), some look-ahead logic must be used to help constrain the model as it grows into the 

future.  The first instance of this is the model’s phenological approach.  This approach uses a 

critical soil temperature constraint (and moisture constraints for grasslands) to estimate the start 

of growing season (and the start of senescence for deciduous systems) (White, Thornton et al. 

1997).  However, this requires looking ahead at the input climate data to calculate the 

appropriate onset and senescence dates rather than allowing the system to prognostically 

determine these dates on the fly.  The second look ahead approach is used to prevent the model 

from developing a large C or N deficit.  BBGC allocates newly assimilated carbon first to a 

carbon pool that can then be used over the course of a growing season when conditions for 

growth become stressful.  This mimics a plant’s ability to store carbon for stressful times and 

negates the model’s need to look ahead and estimate respiration demand based on future climate 

(Thornton and Rosenbloom 2005).  

 

Physical Model Processes 

Radiation: 
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Figure 2:  BiomeBGC radiation partitioning 

Once model phenology is defined as described above, the first step is to account for the 

disposition of incoming shortwave radiation.  This is done for each day the model is run.  An 

estimate of incoming shortwave radiation is one of the required daily inputs in the 

meteorological data (see Appendix A).  Figure 2 shows a conceptual diagram outlining how 

radiation is partitioned by the model.  As can be seen, the proportion of radiation absorbed by the 

canopy depends on the sun and shade leaf LA.  Therefore, prior to the radiation partitioning, the 

leaf C pool paired with the SLA of shade and sun leaves is used to determine the total leaf area 

and the sun and shade leaf proportions of this.  The incoming shortwave radiation, converted first 

to Photosynthetically Active Radiation (PAR ~ 400 to 700 nm), is then absorbed by the canopy 

following Beer’s Law of light attenuation (Nobel 1991; Jones 1992). The partitioned radiation is 



 13

one of the inputs then used to drive canopy evapotranspiration, photosynthesis, and soil 

evaporation.   

 

Precipitation and H2O Cycle: 
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Figure 3:  BiomeBGC water pools and fluxes. 

Once the radiation budget for a day is calculated, the water state variables can be 

addressed.  The only input of water into the system occurs through precipitation either as rain or 

snow.  Daily precipitation is also one of the required daily meteorological input variables (see 

Appendix A).  This precipitation is then routed to several potential pools.  Figure 3 outlines the 

H2O pools and fluxes.  The first resting place for incoming precipitation is the canopy 

intercepted rainwater pool.  The amount of intercepted rainwater is a function of a user defined 

canopy interception coefficient, the amount of rainwater, and the Leaf Area Index (LAI – a 

unitless value that is the area of all leaves per unit ground area – m2/m2).  The model assumes no 

snow interception.  Snow accumulates in a snow water pool when the temperature is below 
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freezing and melts when the temperature is warmer than freezing.  Snow also can sublimate 

when the temperature is less than freezing based on the amount of incoming solar radiation it 

receives.  

If there is more than enough water to fill the canopy interception pool, the remaining 

water enters the soil water pool.  The current soil water matric potential (MPa) is a function of 

the water in the soil now in relation to the soil’s saturated water holding capacity.  Saturated soil 

water and field capacity soil water holding are defined based on the soil texture and depth (as 

specified in the site initialization file (see Appendix A – percentage sand, silt, clay, and depth) 

(Cosby, Hornberger et al. 1984; Saxton, Rawls et al. 1986).  The current soil water matric 

potential ( soil ) is then determined by removing the calculated evaporation from the soil and the 

addition of water to the soil pool from precipitation (and snowmelt if there is any).  All 

evaporative processes (canopy evaporation of intercepted water, transpiration during 

photosynthesis, and soil evaporation) are calculated using a modified Penman-Monteith Equation 

– PME (McNaughton and Jarvis 1983; Waring and Running 2007; Monteith and Unsworth 

2008).  This equation calculates an evaporation rate that is a function of incoming radiation, 

vapor pressure deficit (VPD), and the conductances associated with the evaporation surface. 

 

Physiological Model Processes:  C and N Cycle – Pools and Fluxes  

Throughout the general discussion of the C and N cycle’s pools and fluxes, refer to 

figures 4 and 5 for a schematic representation of these pool and fluxes in the ecosystem.  Most 

broadly, the C cycle consists of all of the pools seen in figure 4.  The only addition of C to the 

system occurs through the photosynthesis process.  C is removed from the system during all of 

the respiration processes:  autotrophic (maintenance and growth) and heterotrophic 
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(decomposition).  C is also lost from the system during a fire or harvest disturbance event.  In the 

case of fire, C pools are moved to an atmospheric pool and are not tracked by the model. 
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Figure 4:  BiomeBGC C and N pools. 

In general and as seen in figure 5, the N cycle in BBGC consists of all of the plant pools 

as well as a soil mineral N pool and a plant retranslocated N pool.  N retranslocation occurs 

based on the phenology of the system as tissues turnover during the growing season.  When 

plants lose their leaves, some of the leaf N is reabsorbed by the plant for future use.  Soil mineral 

N is added to the system in only three ways:  mineralization from the slowest soil organic matter 

(SOM) pool, N wet and dry deposition (Ndep) from the atmosphere, and N fixation (Nfix) (Ndep 

and Nfix are both user defined rates found in the .ini file – see Appendix A).  Mineralized N is 

lost from the system either through leaching when there is H2O outflow or through bulk 
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denitrification (N volatilization) where both leaching and volatilization are assumed to occur at 

constant rates. 

Maintenance Respiration: 

 Once the water state and the radiation partitioning are known, BBGC enters into the main 

C and N cycle calculations.  The first step of this process is to calculate maintenance respiration 

(MR) of all living tissues.  This is done before photosynthesis as the MR of leaves is needed in 

the carbon assimilation calculation. MR in BBGC is a Q10 function of temperature and a linear 

function of the N content.  A Q10 function is an exponential function where a 10°C increase in 

temperature relates to a Q10 factor change in the rate of respiration.   

Photosynthesis: 

 As discussed above, the BBGC photosynthesis model uses a two-leaf representation of 

the canopy to model all canopy photosynthesis.  All photosynthesis calculations are performed 

separately for sun and shade leaves.  The details of the model implementation of photosynthesis 

are based on Farquhar et al. (1980) and will be further discussed in the detailed model 

description section.  The photosynthesis model is based on the enzymatic kinetics of Rubisco in 

relation to temperature, the availability of CO2 and the rate of Rubisco regeneration.  

Photosynthesis is the only process in BBGC that provides an input of C into any pool.  All C 

comes from the C assimilated during this process.  Initially, this assimilate is placed into a 

temporary storage pool (cpool) where it is then portioned to future growth, storage, and current 

growth.  Before the assimilate can be allocated however, the microbial demand for N from 

decomposition must be derived to determine if N will limit the allocation of assimilated C. 

Decomposition: 
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 As can be seen in figure 4, BBGC has several pools that store the C and N of dead and 

decaying wood and leaves.  The coarse woody debris (CWD) pool is the first pool that dead 

coarse roots and dead stem wood enter when they die.  This pool then fragments into the litter 

pools over time.  The rate of fragmentation is dependent on the moisture and temperature of the 

site.  As opposed to coarse woody material, fine roots and leaves directly enter the litter pools 

when they die.  The defragmented CWD and the leaves and fine roots are partitioned into 

specific litter pools depending on the relative amounts of carbon found in labile, cellulose, or 

lignin forms (user defined constants in .epc file – see Appendix A).  These litter pools then 

decompose and enter into the soil organic matter (SOM) pools.   

Leaves
= dead pools

Legend

Coarse Woody Debris
Litter

= live pools

Fast SOM pool Medium SOM pool Slow SOM pool Recalcitrant SOM pool

Maintenance Respiration 
is applied to all live pools

Growth Respiration is applied 
to all vegetation pools

= respiration flux
= C assimilation
= mortality and 
senescence flux

All litter and soil pools 
decompose through 
heterotrophic respiration= CWD fragmentation

= decomposition flux 
(and N immobilization)

Psyn C input
NDep

= N flux

N Leaching

N 
Volatilization

Soil Mineral N

N 
Plant

Uptake

N Fixation

Figure 5:  BiomeBGC C and N fluxes. 

The SOM pools also undergo decomposition constrained by soil water and temperature.  

As SOM decomposes and N is immobilized by microbes, the SOM is transferred into 
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successively slower decomposing pools.  Figure 5 shows the fluxes from CWD and litter and 

between the SOM pools.  BBGC calculates the non-N limited rates of decay and stores these 

rates until the plant’s N demand is calculated.  The potential plant C allocation and the potential 

decomposition are scaled by the total N limitation of the system.  This framework makes several 

key assumptions.  As mentioned above, BBGC assumes that resolving plant N demand 

competition with microbial N demand at a daily timestep can appropriately represent what 

occurs at a sub-daily time scale.  Second, BBGC assumes that microbes and plants have equal 

weight when competing for soil N.  BBGC also assumes constant C:N ratios for soil pools 

regardless of PFT as well as constant decomposition rates of the litter and soil pools regardless of 

the PFT.   

Allocation: 

 The allocation of assimilated C, and the actual decomposition that occurs, are all 

calculated after photosynthesis has found the potential assimilation and decomposition has 

calculated the potential decay.  BBGC scales the actual allocation and decomposition based on 

the availability of N – both soil mineral N and retranslocated N found in the plant as storage.  

The core of BBGC’s allocation scheme uses a set of fixed fractions for all plant structures (user 

defined in the .epc file – see Appendix A) to apportion C once the N limits are considered.  

BBGC also sets aside a fixed percentage (again user defined) of the assimilated carbon as storage 

for next year’s growth and a fixed percentage (30%) for GR (growth respiration).  When 

allocating this year’s growth to different tissues, BBGC scales all allocation in relation to leaf 

carbon allocation while maintaining the user defined proportions in every pool (Waring and 

Pitman 1985; Waring and Running 2007; Wang, Ichii et al. 2009).  All of the allocation 

proportions are assumed constant over the life of the ecosystem.  Furthermore, although there is 
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explicit N limitation built into the photosynthesis calculation, if there is further N limitation 

during allocation, BBGC reduces shade and sun leaf assimilate proportionally to reflect this 

limitation. 

Growth Respiration: 

 Growth respiration (GR) is assumed to be a constant proportion of all new tissue growth 

(30% of new tissue is respired - (Larcher 2003)).  GR is accounted for during the allocation of 

assimilate to new tissue. 

Mortality: 

 BBGC uses a user defined (epc file) fixed mortality fraction that is applied each day.  

BBGC also has a fixed user defined fire mortality fraction that behaves in the same way but 

moves the C and N to an atmospheric pool rather than into decomposing pools. 

 

Principle of the Conservation of Energy and Mass: 

 BBGC’s fundamental principle is that incoming energy radiation, C, N, and H2O must all 

be in balance at any given time (Thornton 1998).  In practice, this means that at the end of each 

day BBGC updates each state variable and checks for balance.  For the four elements listed 

above to be “in balance”, the incoming quantities minus the outgoing quantities must be equal to 

the storage in the model.  After all of the processes described above are modeled, BBGC checks 

this condition. 

3:  Comparison of BBGC with Gap Models and Growth and Yield Models 

 There are many models used to represent forest ecosystem dynamics.  These models can 

broadly be put into two large categories:  mechanistic/process/physiological based models or 

empirical models.  Process models, like BBGC, attempt to model and explain ecosystem function 
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by modeling the mechanisms within plants that cause them to grow, breathe, die, and decay 

(prognostic).  Empirical models use measurements of ecosystems to generate relationships 

between critical ecosystem variables (e.g. height growth and age) and then use these measured 

relationships to model how ecosystems will change (diagnostic).  Vanclay (1994) also makes the 

distinction between “models for understanding” and “models for prediction”.  In this framework, 

some models (i.e. process models and FGMs) have been developed to help improve our 

understanding of ecosystem function and explain the dynamics observed in natural systems.  

Other models (i.e. forest growth and yield models) have been developed to predict future 

ecosystem states for more applied purposes such as forest management or timber harvest income 

stream prediction.  Although many process modelers would take issue with this distinction 

(clearly process models are used to predict future ecosystem state as well) and there have been 

numerous applications of “models of understanding” to forest management (e.g. - (Harmon and 

Marks 2002; Pietsch and Hasenauer 2002; Shugart 2002; Thornton, Law et al. 2002; Schmid, 

Thürig et al. 2006), in general it is still true that the vast majority of forest management occurs 

using empirical based models. 

Despite the differences in the application of these different model types, there is less of a 

dichotomy and more of a continuum of model types in between pure process based approaches 

and pure empirical methods of understanding forest change and stocks.  Figure 6 is a conceptual 

diagram showing the continuum between the underlying model basis as well as the model’s 

spatial scale.  Figure 6 also shows another set of color ramped axes that could be used to color 

each model oval:  whether they focus on one species/PFT or many and whether they model 

mixed-age systems or even-age systems. 
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Figure 6:  Conceptual ecosystem modeling continuums.   

1)  Model Basis vs. Spatial Scale and 2) Age Structure vs. Species/PFT composition 

 

Forest Gap Models: 

 Forest Gap Models (FGMs) can be thought of as falling somewhere in between empirical 

approaches of forest modeling and mechanistic approaches.  JABOWA, the seminal FGM, was 

developed to predict successional change in a New Hampshire forest (Botkin, Janak et al. 1972).  

Hence, FGMs are also known as successional models.  Like all broad model categories, there are 

many variants of FGMs that have been developed over the years.  Despite the wide range of 

FGMs that have been developed, there are some overarching characteristics that define this 

approach.   

To begin, the scale that FGMs focus on are gaps in the forest created when large trees die 

and there is resulting competition between trees in these openings.  As a result, most FGMs focus 

on forest patches between 100 and 1000 m2 (the size of the crown of one or two dominant trees).  
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Second, by definition, FGMs model individual trees within each patch.  Originally, FGMs were 

distance independent and were not spatially explicit when considering the location of individual 

trees.  Later FGMs introduced this spatial explicitness within patches and other models 

developed nearest neighbor relationships between patches (e.g. ZELIG) (Bugmann 2001).  The 

growth of trees in FGMs is driven in most cases by empirical relationships between age, height, 

and density.  However, many FGMs also scale growth rates by site conditions such as nutrient 

supply and climate forcings.  Additionally, all FGMs attempt to understand the dynamics of 

succession (mediated by shading) and in these senses they also model some of the mechanisms 

of forest growth and change (Shugart 2002).  Most broadly, FGMs track individual tree growth, 

individual tree mortality, patch density, regeneration and recruitment to help explain competition 

and succession.  Figure 7, from Solomon and Bartlein (1992), summarizes the different common 

components of most FGMs. 

In comparison to BBGC, FGMs are focused on individual tree dynamics.  Some FGMs 

use a stochastic approach to seed dispersal and mortality.  In these cases, many FGM runs will be 

used to generate stand level estimates of the forest state rather than individual tree estimates 

(however the model itself still grows individual trees).  Over the years, more and more 

physiology has been added to FGMs as an attempt to better model the growth of trees (e.g. the 

FIRE-BGC and HYBRID FGMs).  In many ways, these FGMs use similar approaches to 

modeling growth as BBGC uses.  For example, these models use a Q10 respiration model and the 

Farquhar Photosynthesis Model to estimate growth (Farquhar, Caemmerer et al. 1980).  To 

incorporate this physiology, the temporal scale of FGMs has been changed from annual time 

steps to daily time steps.  Incorporating these processes into a FGM at a tree level then allows 

forward looking projections that take into account changing climate and CO2 levels.  From the 
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opposite perspective, FOREST-BGC (BBGC’s predecessor, see Running and Gower (1991)) was 

modified to incorporate some of FGMs’ logic in estimating stand density and competition 

(Korol, Running et al. 1995).  In conclusion, BBGC’s process level approach of focusing on 

pools and fluxes at a stand level makes it substantially different than FGMs empirically driven 

focus on individual tree competition dynamics. 

Figure 7:  Figure from Soloman and Bartelein (1992) showing the FGM components. 

 

Forest Growth and Yield Models: 

 As mentioned above, a growth and yield model (GYM) is an example of an empirical 

model.  These models can take many forms and, as seen in figure 6, run the gamut between 

focusing on whole stand modeling to individual tree modeling.  GYMs are predominantly used 

by field foresters to predict future forest states on the time scale of a rotation (i.e. – 20 to 50 



 24

years).  Yield in these models refers to the total volume of timber available for harvest at any 

given time.  Growth is defined as the rate that yield accumulates and is the first derivative of the 

yield function (Avery and Burkhart 1975).  The field of GYM is quite old and foresters have 

used models of this sort for over 250 years beginning with simple density independent stand 

volume tables (Porté and Bartelink 2002). 

 At their core, GYMs are built from empirically derived relationships between stand 

characteristics such as density, height, diameter distributions, age, and site class against stand 

volume.  Individual tree GYMs use a similar approach but relate these stand characteristics to 

individual tree growth.  The data used to drive these models can come from long term permanent 

plots showing forest development over time or can be taken from many different forests of 

different ages, site conditions, and stocking rates to build the appropriate relationships.  Because 

GYMs use data from past forest growth, GYMs implicitly assume that past drivers of growth 

such as climate and CO2 levels will not change enough to dramatically impact the growth 

dynamics of forests in the future.  For short time scales, this assumption may be valid but for 

longer timescales, this is probably an inappropriate assumption.  Furthermore, although GYMs 

can model stands while considering different nutrient constraints, these models do not model the 

impact of management on the nutrient cycle and hence may overlook the impact of changes in N 

deposition rates or the impact of removing live trees, litter, and CWD (and their associated N 

pools) on plant growth. 

 In comparison to BBGC, most GYMs do not employ process logic to estimate ecosystem 

state but rather rely on observations of similar ecosystems to make predictions about stocks and 

change.  With that said, some GYMs have incorporated some scaling logic to account for the 

impact of changes in the drivers to growth on the predicted future forest state.  Furthermore, 
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most GYMs track only those variables that are important to forest managers and have explicit 

dimensional representations of the trees modeled.  In contrast to this, BBGC accounts for all 

fluxes into and out of most of the pools found within a stand and does not account for tree 

dimensions.  Because of these differences, GYMs and BBGC are at opposite ends of the 

modeling basis continuum seen in figure 6.   

4:  BiomeBGC – Utility and Applications 

 Based on BBGC’s model framework and the assumptions that underlie this framework as 

well as the comparison of BBGC with FGMs and GYMs, it is possible to appreciate BBGC’s 

utility and optimal application.  As a “model of understanding”, BBGC is used in studying the 

underlying mechanisms that have caused an ecosystem to look and behave as it does.  However, 

these mechanisms are restricted to systems with one primary plant functional type and few 

successional dynamics.  Furthermore, given BBGC’s treeless and density-less abstraction, 

BBGC cannot give insight into the inter-tree competitive processes at play at a location.  Despite 

this, BBGC has been applied in many systems to help understand the drivers of growth and 

decay. 

 Because of the spinup process BBGC uses, BBGC can be used to estimate the old-

growth (steady-state) outcome of systems.  With realistic fire mortality parameters, BBGC can 

help to understand the steady state stocks and fluxes of systems that undergo periodic 

disturbances as well.  Because BBGC accounts for changing climate and CO2 levels in the 

atmosphere, BBGC can be used to predict ecosystem states and fluxes given changing climate 

(Vetter, Churkina et al. 2008).  With some minor modifications, BBGC can also be used to 

model human disturbance such as harvest as well as natural disturbances (Thornton, Law et al. 

2002).  BBGC has also been modified to allow for modeling successional change between PFTs 
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at a given location by taking into account the height growth of PFTs (Bond-Lamberty, Gower et 

al. 2005).   

 Two areas that limit BBGC’s utility are its spatial approach and its parameterization.  

Although BBGC has been used to create gridded spatial runs, it is important to understand that 

neighboring cells do not interact in any way.  This does not prevent BBGCs use in a spatial 

setting, but it does limit some of the inferences that can be made from these runs.  Second, 

although when parameterized well BBGC can accurately represent many biome types across the 

globe, the amount of physiological detail required to adequately initialize the model can make it 

prohibitively difficult to use in some cases (see Appendix A).  In particular, forest managers 

often have information about merchantable forest stocks, the dimension of trees or the density of 

trees.  However, they do not often have information about leaf chemistry or assimilate allocation 

fractions.  There have been several large scale attempts to provide sources for BBGC’s 

parameterization, however in some cases these documents still might not provide enough 

information to adequately proceed (White, Thornton et al. 2000; Pietsch, Hasenauer et al. 2005).  

Furthermore, because the outputs BBGC provides are not commonly used by managers, they 

have less utility in the field.  One challenge moving forward is to try to modify BBGC in ways 

that make it more broadly useful to managers of systems rather than just academics.   

Lastly, as with any representation of a complex natural system, BBGC’s modeling 

assumptions may or may not be appropriate to represent a given system.  In some cases this 

means that some systems require specific variants of the model (e.g. addressing the stomatal 

uptake of fog water in Redwood trees).  In other cases, the model’s logic may not be a correct 

representation of how systems actually work.  For example, Wang et al. (2009) found that BBGC 



 27

may not be modeling enough MR and GR to accurately estimate NPP and modified the model to 

address this problem.   

5:  Detailed Model Description 

 This section will outline all of the major processes and equations that BBGC uses to 

model an ecosystem and will be faithful to the actual model structure referring to the individual 

model functions when appropriate.  Figure 8 is a detailed flow chart of all of the conceptual 

components of BBGC.  Throughout this discussion, reference will be made to several standard 

constant values.  These values are defined in the bgc_constants.h file and are included here as 

Appendix C. 

 

Precalculations: 

 Before entering into the main daily loop of BBGC, all of the input files are read, the data 

structures are initialized, and several calculations are performed.  The soil texture information (% 

sand, silt, and clay) is used to find the saturated soil conditions.  The following equations are 

used from Cosby et al. (1984): 
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 Incoming shorwave radiation (SRAD) is converted to incoming PAR by multiplying by 

0.45 (Nobel 1991).  The atmospheric pressure is calculated based on the elevation and using 

several atmospheric constants (Iribane and Godson 1981) – 

(4) AtmPres (Pa) = 
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where PSTD = standard pressure (Pa) at 0m elevation, LRSTD = standard temperature lapse rate 

(-K/m), TSTD = standard temperature (K) at 0m elevation, GSTD = gravitational acceleration 

(m/s2), R = gas law constant (m3*Pa/mol K), and MA = molecular weight of air (kg/mol).  

 Lastly, the shielded and unshielded fractions of the cellulose litter pool are calculated in 

the epc initialization routine.  The model for this is found in several studies that outline litter 

decomposition rates based on lignin ratios in litter (Berg, Ekbohm et al. 1984; Berg and 

McClaugherty 1989; Donnelly, Entry et al. 1990; Taylor, Prescott et al. 1991; Stump and 

Binkley 1993).   If the ratio of lignin to cellulose is less than or equal to .45, then there is no 

shielded cellulosic pool.  If the ratio is between .45 and .7, then the shielded cellulosic 

component is: 
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(6) Unshielded cellulose fraction = cellulose fraction – shielded cellulose fraction 

If the ratio is greater than .7, the shielded cellulosic component is 80% of the cellulose fraction 

and the unshielded component is the remaining 20% of the cellulose fraction of the litter. 



 29

Figure 8:  BiomeBGC detailed model flow chart.  See:  
http://www.ntsg.umt.edu/models/bgc/index.php?option=com_content&task=view&id=23&Itemid=27 
 
 
Prephenology (prephenology.c): 

The phenology model used by BBGC is described in White et. al (White, Thornton et al. 

1997) and all of the constants below can be found in that paper.  BBGC’s phenology can also be 

user specified if the user has information about the onset of growing season (i.e. – bud break) 

and beginning of senescence in deciduous systems.  The White et. al model specifies separate 

phenologies for woody plants (i.e. trees and brush) versus grasses. For evergreen systems, it is 

assumed that the growing season is all year long. 
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For deciduous woody plants, leaf onset begins when the running sum of the daily average 

soil temperatures (when the average soil temp is above 0°C) is above a critical value defined by:   

(7) TcritSumwoody = exp(4.795+0.129*Tavg)   

The model also specifies that the day length must be longer than 10 hours and 55 minutes for leaf 

out to occur (39300 seconds).  For grasses, the leaf onset is controlled by both temperature and 

water availability in a similar fashion.  The critical temperature running sum value for grasses is 

defined as:   

(8) TcritSumgrass = 
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where Tavg is the mean daily average temperature over the full meteorological input record.  The 

critical precipitation value is defined as: 

(9) PrcpCritSumgrass = AvgAnnPrcp * 0.15.   

When both the summed soil temperatures and the summed precipitation values are greater than 

or equal to the grass critical values, leaf onset begins.  The actual leaf onset day is 15 days prior 

to this calculated date to estimate the start of the growing season. 

The beginning of leaf senescence is also separately defined for woody and grass species.  

For deciduous woody PFTs, senescence begins if it is past July 1st and the day length is less than 

the critical day length described above and the soil temperature is less than the average fall soil 

temperature (Sept. and Oct. in the northern hemisphere) OR if the soil temperature ever drops 

below 2°C.  For grasses, senescence begins under two conditions.  First, if there has been less 

than 1.14 cm of rain in the last 30 days and there is less than .97 cm of rain in the coming 7 days 

and the current maximum temperature is greater than 92% of the maximum annual temperature, 

leaf senescence begins.  Second, if it is past the middle of the year (day 182) and the three day 
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average minimum temperature is less than the annual average minimum temperature, senescence 

will also begin.   

Once the prephenology is defined, the daily looping through the meteological data 

begins. 

 

Daily Meteorology and Soil Temperature (daymet.c): 

 The daily meteorology routine populates the daily meteorology structure and also 

calculates several new variables from the input met data.  Soil temperature is assumed to be the 

11 day running weighted average of daily average temperature.  The daytime and nighttime 

average temperatures are calculated as (Running and Coughlan 1988):  

(10) tday = .045 * (tmax – tavg) + tavg  

(11) tnight = (tday + tmin) / 2.   

Soil temperature is then further corrected using the difference between the day’s soil temperature 

and the average air temperature for the full met data record such that if there is snow water 

present: 

(12) tsoil = tsoil + [.83 * (TavgAirTotal – tsoil)]  

and if there is no snow water then: 

(13) tsoil = tsoil + .2 * (TavgAirTotal – tsoil). 

This correction is applied as snow will insulate the soil and help it to retain heat and in general 

soil retains more heat than the air even in the absence of snow. 

 

Apply Prephenology to Daily Fluxes (phenology.c): 
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 The daily phenology routine transfers C and N from transfer pools into new tissue pools 

if the current day is in the growing season.  Litterfall is allocated differently for different PFTs.  

Evergreen PFTs have litterfall everyday of the year.  Deciduous PFTs litterfall occurs with a 

linearly ramping rate starting at 0 such that all live fine roots and leaves are removed by the end 

of the litterfall period.  The litterfall routine moves C and N from the fine roots and leaves to the 

four litter compartments in the proportions specified in the .epc file at the rates as defined above 

(see Appendix A).  Based on the leaf litter C to N ratio, this routine also calculates the amount of 

retranslocated N that is removed from leaves before they senesce.  Live and dead stem and live 

and dead coarse roots also have daily turnover rates as defined in the epc file.   

 

Partition Leaf C into Sun and Shade LAI and Partition Incoming Radiation (radtrans.c): 

 The first step in partitioning incoming radiation is to partition the leaf carbon into sun and 

shade leaves.  First, the whole canopy projected LAI is calculated using the user defined average 

SLA multiplied by the leaf C.  The all-sided LAI is then found by multiplying the user supplied 

all-to-projected LAI ratio by the calculated projected LAI.  The projected LAI for the sun and 

shade leaves are calculated based on Jones (1992) assuming only horizontally oriented leaves: 

(14) SunPLAI = 1 – e-TotalPLAI 

(15) ShadePLAI = TotalPLAI - SunPLAI 

Thornton (1998) explains that it is appropriate to ignore leaf angle at a daily time scale as it is an 

approximate integration over the full day.  The SLA for sun and shade leaves follows using the 

user supplied ratio of shaded to sunlit SLA. 

 With the sun and shade leaves defined, the calculation of SRAD and PAR absorption can 

proceed.  The logic of this process is outlined in figure 2.  First the albedo effect (from the ini 
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file) is deducted from the incoming SRAD.  Then, using Beer’s Law, the SRAD absorbed by the 

canopy is calculated as:   

(16) SWabs = (SRAD – albedo effect) * (1 – e-k) 

where k is the user supplied canopy light extinction coefficient.  The SRAD transmitted through 

the canopy (not absorbed) is simply:   

(17) SWTrans = (SRAD - albedo effect) – SWabs.   

The absorbed PAR is calculated similarly except that albedo is 1/3 as large for PAR because less 

PAR is reflected than SRAD (Jones 1992).  PAR and SRAD absorbed are then further 

partitioned into the absorption by sun and shade leaves as: 

(18) SWabsSun = k * (SRAD-albedo effect) * SunPLAI 

(19) SWabsShade = SWabs – SWabsSun 

These quantities are then scaled by the PLAI (projected LAI) of sun and shade leaves to get per 

PLAI values.  PAR absorbed by sun and shade leaves is calculated similarly.  The final step is to 

convert the radiation values that are in W/m2 into umol/m2/s so that they can be used in later 

model steps. 

 

Precipitation Routing (prcp_route.c): 

 With all-sided LAI known from the previous function, the canopy interception of 

precipitation can be calculated.  The interception is a simple function of the incoming 

precipitation multiplied by the user defined interception rate and the all-sided LAI.  No snow fall 

interception is modeled.  Non-intercepted water is added to the soil water pool as as it is 

considered through fall. 
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Snow Water (snow_melt.c:) 

 As mentioned above, there is no canopy snow interception.  There are several sources 

that help define the amount of melted snow each day as well as the amount of sublimated snow 

(Running and Coughlan 1988; Marks, Dozier et al. 1992; Coughlan and Running 1997).  If the 

average daily temperature is greater than 0°C, then: 

(20) Snowmelt = .65 * tavg + 
)/(

)//( 2

kgkJfusionofheatlatent

daymkJradiationincident
 

where the latent heat of fusion is 335.  If the temperature is less than 0°C, then: 

(21) Snow Sublimation = 
)/(lim

)//( 2

kgkJationsubofheatlatent

daymkJradiationincident
 

where the latent heat of sublimation is 2845. 

 

Penman-Monteith Equation (within canopy_et.c): 

 One of the most important processes in ecosystems, and hence in BBGC, is the 

evaporation of H2O.  Evaporation occurring from within leaves into the atmosphere through 

stomata is referred to as transpiration.  The sum of ecosystem evaporation and transpiration is 

collectively called evapotranspiration.  The Penman-Monteith equation (PME) is a general 

equation that relates the incoming radiation, vapor pressure deficit (VPD), the density of air, the 

specific heat of air, and the resistances to sensible heat flux and water vapor flux to the loss of 

latent heat by evaporation (Waring and Running 2007; Monteith and Unsworth 2008).  For plant 

leaves, the Penman-Monteith equation considers the leaf level conductance to water vapor which 

is based on the stomatal conductance to water and the leaf conductance to sensible heat which is 

equal to the boundary layer conductance.   
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Essentially, the PME uses characteristics of a particular surface (e.g. – surface 

resistances) and current meteorological data (e.g. – wind, incoming radiation, VPD, air 

temperature, air pressure) to calculate an instantaneous heat balance of an object.  This heat 

balance is a rate of heat loss or gain.  For wet objects, the rate of heat loss can be used to find the 

rate of evaporation.  The rate of evaporation is equal to the incoming heat radiation minus the 

loss of sensible heat by convection (long-wave radiation).   

(22) λE = Rn – C (Monteith and Unsworth 2008) 

For transpiration in leaves, the rate of evaporation is also a function of the amount of 

coupling between the canopy resistance to water vapor flux and VPD.  This coupling varies 

based on different individual species’ responses to water stress.  When the canopy is highly 

coupled to VPD (i.e. there is strong stomatal control of transpiration), the rate of evaporation is 

governed by the boundary layer conductance.  When the canopy is not coupled or loosely 

coupled to atmospheric VPD (i.e. there is not a strong stomatal control of transpiration), the rate 

of evaporation is controlled more by stomatal conductance. 

In BBGC, the PME is used to calculate soil H2O evaporation, the evaporation of canopy 

intercepted water, and the transpiration of water from leaves.  The PME is found in the penmon 

function within the canopy_et.c subroutine.  The PME is called by the soil evaporation routine 

and the canopy evapotranspiration routine.  Using the results from the PME calculations, BBGC 

also is able to compute the stored soil water and the water that leaves the system as outflow. 

 The PME equation uses many parameters.  Some are user supplied, some are assumed 

constant, and some are allowed to vary.  The actual evaporation is also a function of the input 

meteorological data.  The PME used in BBGC requires the following inputs:  1) air temperature 

(°C), air pressure (Pa), VPD (Pa), incident radiant flux density (W/m2), resistance to water vapor 
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flux (s/m), and resistance to sensible heat flux (s/m) (resistance = 1/conductance).  The air 

temperature, VPD, and air pressure are input meteorological data or derived from the constant 

site parameters and the meteorological data.  The incident radiant flux density (incoming 

radiation) is calculated for whatever surface the PME is being used on to calculate evaporation.  

This is a function of the shade and sun leaf LAI and the partitioning of incoming radiation.  

Hence, this varies with user supplied parameters that specify the sun to shade specific leaf area 

(SLA) ratio, the light extinction coefficient, the average SLA, and the model calculated leaf C.  

The resistance to water vapor and sensible heat are dependent on the location of evaporation.  

For water evaporating off of leaves, the resistance to sensible heat and the resistance to water 

vapor are both equal to the leaf boundary layer resistance.  For transpiration, the resistance to 

water vapor is a function of the boundary layer, cuticular, and stomatal conductances while the 

resistance to sensible heat is the boundary layer resistance.  For soil water evaporation, the 

sensible heat and water vapor resistances are both equal to a temperature and pressure corrected 

constant bare soil evaporation resistance based on data collected over bare soil in south-west 

Niger (Wallace and Holwill 1997).  The boundary layer, cuticular, and stomatal conductances are 

all user specified parameters.  Transpiration’s water vapor resistance is different than just the 

boundary layer resistance because water vapor must pass through the stomata and/or cuticle for 

evaporation of internal leaf water to occur. 

McNaughton and Jarvis (1983) modified this equation to account for the coupling effects 

that climate variables like wind, VPD and canopy architecture have on evaporation.  The 

modified Penman-Monteith equation requires the following inputs:  1) air temperature (°C), air 

pressure (Pa), VPD (Pa), incident radiant flux density (W/m2), resistance to water vapor flux 
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(s/m), and resistance to sensible heat flux (s/m) (resistance = 1/conductance).  The penman 

function found within canopy_et.c first calculates the density of air as a function of temperature: 

(23) ρ = 1.292 – (0.00428 * tair (°C)) 

The resistance to radiative heat transfer through the air (rR) is then calculated: 

(24) rR = 
3**4

*

tempKSBC

c p
 

where cp is the specific heat of air (J/kg/°C) and SBC is the Stefan-Boltzmann constant 

(W/m2*K4).  The combined resistances to convective and radiative heat in parallel are then 

calculated as: 

(25) rHR = 
RH

RH

rr

rr


*

 

where rH is the resistance to convective heat transfer (i.e. - resistance to sensible heat flux, 

boundary layer resistance in leaves).  The latent heat of vaporization is calculated as: 

(26) lhvap = 2.5023E6 - 2430.54 * tair (°C) 

The next step is to find the rate of change (slope) of the saturation vapor pressure with 

temperature (( TTes  /)( ).  This is done to find the approximate relationship between saturation 

vapor pressure and the unknown temperature at the site of evaporation (Monteith and Unsworth 

2008).  In BBGC this is done by first estimating the saturation vapor pressures at two 

temperatures ±0.2 °C from tair.   

(27) SVP1 = 610.7 * exp(17.38 * (tair + .2) / (239.0 + (tair + .2));  

(28) SVP2 = 610.7 * exp(17.38 * (tair - .2) / (239.0 + (tair - .2)); 

(29) s = slope = (SVP1 – SVP2)/[(tair + .2) – (tair - .2)] 

With these quantities calculated the final evaporation rate (W/m2/sec) can be calculated: 
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where ε is the ratio of molecular weights of water vapor and air (0.622) and rV is the resistance to 

water vapor flux (rV varies based on the surface being evaporated from.  For leaf intercepted 

water and soil water, rV is the boundary layer resistance.  For transpiration, rV is a function of 

stomatal, cuticular, and boundary layer resistance.).  This evaporation rate is then multiplied by a 

time to find the quantity of evaporated water. 

 

Soil Water Evaporation (baresoil_evap.c): 

 Soil water evaporation is calculated by scaling the potential evaporation, as calculated by 

the PME, by a quantity determined by the days since the last rain event.  The logic behind this is 

that the soil will more tightly hold onto water as water becomes more scarce and therefore less 

evaporation will be possible (Taiz and Zeiger 2006). As opposed to leaves that have separate 

resistances to convective and water vapor flux due to stomata, the soil resistance to vapor flux is 

the same as the resistance to sensible heat flux.  The first step in finding this resistance is 

calculating a factor to correct conductance to sensible heat based on temperature and pressure 

(Jones 1992): 

(31) rcorr = 
   

AirPa
tday

101300
*15.293/15.273

1

75.1
 

A reference soil resistance taken over bare soil in the tiger bush of Niger is then scaled by this 

factor to find the boundary layer resistance to sensible heat flux (Wallace and Holwill 1997).  

The PME is then used to calculate the potential evaporation.   
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If at least as much precipitation reaches the soil as the potential evaporation, then the 

actual evaporation is 60% of the calculated potential evaporation.  Otherwise, the days since the 

last rain event (DSR) counter is incremented.  The realized proportion of evaporation is then 

calculated as: 

(32) Actual Evaporation = 
2

3.0

DSR
* potential evaporation 

 

Soil Matric Potential (soilpsi.c): 

 The soil matric potential is a function of the soil volumetric water content (VWC) and the 

saturated soil matric potential:    

(33) psi_actual = psi_sat * (VWC / VWC_sat) ^ b  

where VWC_sat and psi_sat were precalculated based on soil texture and b, also precalculated is: 

(34) b = -3.1 + 0.157*clay – 0.003*sand 

This essentially scales the known soil saturation potential by the ratio of current volumetric water 

capacity to saturation water capacity.  The current volumetric soil water is calculated as: 

(35) VWC = soilW (kg/m2) / (1000 * soilDepth) 

where 1000 is the density of water (kg/m3). 

 

Maintenance Respiration (maint_resp.c): 

 Maintenance Respiration (MR) in BBGC uses a Q10 relationship with temperature as well 

as the N content of tissues to estimate this rate.  A Q10 relationship means that for every 10°C 

change in temperature, there is a Q10 factor change in respiration.  The Q10 relationship assumes a 

reference temperature of 20°C and therefore all temperatures are scaled by this value. The N 

relationship is linear with MR being 0.218 kgC/kgN/day (Ryan 1991).  MR is calculated for sun 
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and shade leaves and partitioned into night and day respiration since daytime respiration is 

needed to calculate assimilation.  MR is then calculated for fine roots, live stem, and live coarse 

roots –  

(36) MR = 0.218 * N * 10/)20(
10

tempQ  

Once the total day and night MR is calculated for sun and shade leaves, these rates are scaled to 

be per PLAI and per second. 

 

Canopy Evapotranspiration (canopy_et.c): 

 The canopy evapotranspiration (ET) routine calculates both canopy intercepted water 

evaporation and the leaf transpiration.  To make the transpiration calculation, this function also 

calculates the leaf level conductance and the stomatal conductance.  Cuticle and boundary layer 

conductances are user defined in the epc file as well as the maximum rate of stomatal 

conductance (see Appendix A).  To simulate the drivers of stomatal closure, BBGC scales the 

maximum stomatal conductance by a series of multipliers between 0 and 1 for:  1) 

photosynthetic photon flux density, 2) soil water potential, 3) minimum temperature, and 4) 

VPD.  As with the soil evaporation function, the first step is to calculate a conductance 

correction factor for the current air pressure and temperature (see equation 30 except that 

conductance is not a quotient dividing 1 but only the divisor).  The equations to calculate the four 

multiplier functions are below and figure 9 shows these relationships graphically (Korner 1995; 

Conklin and Neilson 2005).  The limiting values are drawn from the default evergreen needleleaf 

epc file –  
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Figure 9:  Graphical representations of the multiplier functions for stomatal conductance for a typical 

evergreen needleleaf forest. 

(37) M_PPFD = 
PLAIPPFD

PLAIPPFD

/75

/


 

(38) M_TMIN, M_VPD, and M_SOILPSI = 
MinSOEMaxSOE

MinSOEvaluecurrent




 

where MinSOE (minimum stomatal opening endpoint) represents the lower limit below which 

there is full stomatal closure and MaxSOE is the upper limit above which there is maximum 

stomatal opening. 

 The final multiplier is the product of these four multipliers.  This final multiplier and the 

conductance correction factor are then applied to the maximum stomatal conductance supplied 

by the user.  Leaf conductance to water vapor is assumed equal to the boundary layer 

conductance as is the leaf conductance to sensible heat.  The total leaf conductance to water 
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vapor is then calculated by combining the stomatal, boundary, and cuticle level conductances in 

parallel for both sun and shade leaves. 

(39) GT_WV = 
 

csbl

csbl

ggg

ggg




 

Once all of these values are found, this function passes the leaf level information to the 

PME to calculate the evaporation rate of the canopy intercepted water (CIW).  For the CIW, 

there is only boundary layer and sensible heat resistances, not a stomatal component.  The 

resulting rate is then divided into the amount of CIW to calculate the amount of time required to 

evaporate this pool.  The remaining time (if there is any) is then used to calculate the amount of 

transpiration.  All calculations are done separately for sun and shade leaves.  The sun and shade 

leaf calculated conductances are also stored for later use in the photosynthesis routine. 

There are several assumptions that are made by BBGC when using the PME.  First, one 

evaporation rate is calculated per day and expanded by multiplying by the appropriate amount of 

time of evaporation.  This daily scale evaporation does not account for the changes that occur 

within a day in terms of incident radiation, VPD, and temperature.  Another set of assumptions 

are the shapes of the scaling factor curves seen below in Figure 9. 

The multipliers could all follow non-linear curves that define the stomatal opening.  For 

example, it may be that stomatal conductance remains mostly constant through a range of VPDs 

and then stomata rapidly close as a limiting VPD is reached.  Lastly, this approach assumes that 

all plants will eventually close their stomata given some set of limiting environmental conditions.  

However, as McDowell et al. (2008) showed, some anisohydric species will retain stomatal 

opening even under great stress.   

These scaling factors control the coupling of transpiration between the canopy and VPD.  

The scaling of stomatal conductance is a critical assumption that regulates transpiration and also 
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C fixation.  Based on the extensive history of use and validation of BBGC, this scaling approach 

to stomatal conductance seems justified.  However, some species have developed alternative 

mechanisms of water intake and stomatal control (e.g. – Redwoods absorb fog water through 

their stomata).  In these cases, the model logic may not be appropriate.  Additionally, as 

mentioned above, applying the stomatal conductance scaling factors to anisohydric species may 

also incorrectly represent the behavior of these plants’ stomatal opening.  Therefore, if using 

BBGC to represent a specific plant community, it is important to consider these assumptions and 

the underlying model logic when parameterizing the model and interpreting the model results. 

 

Photosynthesis (photosynthesis.c): 

 The photosynthesis function in BBGC is the single most important part of the model in 

that it mechanistically represents the ecosystem addition of C.  The basis of this photosynthesis 

code is the DePury and Farquhar two-leaf model of photosynthesis (Farquhar, Caemmerer et al. 

1980; De Pury and Farquhar 1997).  Additionally, the enzyme kinetics built into this model are 

based on Woodrow and Berry (1988).  The rate of photosynthesis is sensitive to the N content of 

leaves, the portion of N in Rubisco, and the temperature as this controls the enzyme kinetics.  

Photosynthesis also depends on the amount of absorbed PAR, the calculated MR, and the 

difference between the internal and external partial pressure of CO2.  As always, all steps are 

done separately for sun and shade leaves. 

 Photosynthesis is the process where CO2 and H2O molecules are combined using 

energy from the sun to generate simple sugars.  The general reaction is: 

6CO2 + 6H2O + Light Energy  C6H12O6 + 6O2 (Taiz and Zeiger 2006) 
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BBGC represents this reaction using three separate equations to represent three different controls 

on the rate of photosynthesis.  The first equation (equation (41)), represents the CO2 diffusion 

constraints of photosynthetic rate.  This is the rate that CO2 can enter the leaf and is a function of 

stomatal opening and the difference between the atmospheric CO2 pressure and the leaf internal 

CO2 pressure.  As described above, the stomatal opening is a function of several scaling factors 

that are both user-defined and model constants. 

 The second equation used to constrain the rate of photosynthesis represents the 

carboxylation rate control of the photosynthesis reaction (equation (42)).  Carboxylation is the 

process where 3 CO2 molecules are fixed to a carbon skeleton by the Rubisco enzyme (Taiz and 

Zeiger 2006).  The rate at which this occurs depends on the enzyme kinetics that governs how 

fast CO2 can be bound to RuBP (the carboxylation substrate) by the Rubisco enzyme.  When the 

rate of photosynthesis is carboxylation limited, this means that the availability of the RuBP 

substrate is not limiting and instead photosynthesis is limited by the concentration of CO2 

(Lambers, Chapin et al. 2008).  This also depends on the leaf internal pressure of CO2 and in this 

way is related to equation (41) discussed below.  The Rubisco enzyme is also sensitive to the 

amount of O2 in the cell as Rubisco can also bind to O2 instead of CO2.  This also constrains the 

rate of carboxylation.  The carboxylation rate is also dependent on the temperature as all enzyme 

activity varies with temperature.  Lastly, the assimilation is governed by the amount of leaf N in 

Rubisco as this determines the quantity of Rubisco available to catalyze the carboxylation 

reaction.  The amount of Rubisco is therefore dependent on the user-defined fraction of leaf N in 

Rubisco and the user-defined C:N ratio of leaves (both defined in the epc file). 

 The third and last equation used to constrain the rate of photosynthesis represents the 

electron transport limitation of RuBP regeneration (equation (43)).  When the leaf concentration 
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of CO2 is not limiting the rate of photosynthesis (i.e. – there is enough CO2), the assimilation rate 

is governed by how fast RuBP can be regenerated to fix new CO2 molecules.  This is the electron 

transport limitation.  The figure below is taken from the Lambers et al. (1998) book.  It shows 

the RuBP saturated (CO2 limited) carboxylation limited portion of the assimilation curve (A(c) – 

A(v) in equation (42) below) and the RuBP limited due to the rate of electron transport RuBP 

regeneration portion of the assimilation curve (A(j) in the figure below and equation (43) below).  

The rate of assimilation is the minimum of these two equations (the solid lines).  In BBGC, 

equation (41) is solved for Ci and substituted into equations (42) and (43) to create two quadratic 

equations that can both be solved.  The smaller of the two resulting solutions is then used as the 

rate of C assimilation. 

 

The enzyme kinetics built into this model are based on Woodrow and Berry (1988).  The 

rate of photosynthesis is sensitive to the N content of leaves, the portion of N in Rubisco, and the 

temperature as this controls the enzyme kinetics.  Photosynthesis also depends on the amount of 

absorbed PAR, the calculated MR, and the difference between the internal and external partial 

pressure of CO2.  As always, all steps are done separately for sun and shade leaves. 

 The first step in this calculation is to convert the already calculated stomatal conductance 

to water vapor to a conductance for CO2 and to convert this into the units used by the 
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photosynthesis (PSYN) submodel (m/s to umol/m2/s/Pa). This conversion is seen below (Nobel 

1991; Jones 1992): 

(40) gmTc =  15.273*6.1

*106

TdayR

gTv  

where R is the universal gas constant, gTv is the leaf scale conductance to transpired water, tday 

is the daytime temperature, and 1.6 is the ratio of the molecular weights of water vapor to CO2.   

 Once the leaf level conductance to CO2 is known, the main PSYN routine is begun.  The 

core logic of the PSYN routine consists of three main equations (Farquhar, Caemmerer et al. 

1980): 

(41) A(v or j) = gmTc * (Ca – Ci) 

(42) Av = 
 
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(43) Aj = 
 
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where Ca is the atmospheric concentration of CO2 (Pa) and Ci is the intercellular concentration of 

CO2 (Pa), Г* (Pa) is the CO2 compensation point in the absence of leaf MR, Kc and Ko are the 

kinetic constants for rubisco carboxylation and oxygenation scaled by the temperature using a 

Q10 relationship, O2 is the atmospheric concentration of O2 (Pa), MRleafday is the daytime leaf 

maintenance respiration on a PLAI basis, and J is the maximum rate of electron transport.  Each 

of these variables will be discussed in more detail below.   

Equation (40) represents the diffusion limitation of CO2 on assimilation.  Equation (41) 

represents the carboxylation limitation on the rate of assimilation.  Equation (42) represents the 

electron transport rate of substrate regeneration limitation on assimilation.  Thornton (1998) 
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explains that by solving equation 40 for Ci and then substituting this value back into equations 41 

and 42, two quadratic equations are created that can be solved.  The smaller of the two results 

when solving both equations is then used as the actual assimilation rate.   

There are several steps required before the quadratic roots are ready to be calculated.  To 

begin, J must be calculated.  J is a function of the maximum rate of carboxylation (Vcmax) 

(Wullschleger 1993): 

(44) Jmax = 2.1 * Vcmax 

where Vcmax is a function of the N per unit PLAI in the shade and sun leaves as well as the 

fraction of leaf N in rubisco and the activation potential of rubisco as defined by the Woodrow 

and Berry (1988): 

(45) Vcmax = Nsun or shade leaves * fraction of leaf N in rubisco * 7.16 * ACT 

The N content of sun and shade leaves is a function of the user defined ratio of C:N in leaves: 

(46) Nsun of shade leaves = 
shadeorsunSLA

leafNC ):/(1
 

The fraction of leaf N in rubisco is a user supplied parameter.  7.16 is the weight proportion of 

rubisco relative to its N content (Kuehn and McFadden 1969; Kuehn and McFadden 1969; 

Fasman 1976), and ACT is the activity of rubisco scaled by temperature, [O2] and [CO2].  The 

first step in calculating the enzyme kinetics of rubisco is to calculate the [O2] assuming it is 21% 

of the atmosphere by volume: 

(47) O2 = 0.21 * atmospheric pressure (Pa) 

Next, the rubisco activity can be calculated following its Michealis-Menten dynamics for 

O2 and CO2 (the CO2 calculations vary depending on whether it is <= or > 15°C).  All variables 

with a 25 subscript are the constant values at 25°C that are being scaled based on temperature.  
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The different Q10 values relate to the different Q10 relationships with temperature for each of 

these reactions. 

(48) Ko = Ko25*
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b. ACT = 
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With ACT, Kc, and Ko calculated, Г* (Pa) (the CO2 compensation point in the absence of leaf 

MR) and Vcmax can now be found.  Г*
 is: 

(51) Г* = 0.105 * Kc * 
oK

O2  

All of these calculations are done for both sun and shade leaves and at the end of the day 

the total assimilate is the sum of the sun and shade leaf assimilation.  The assimilated C that is 

calculated is actually a rate of C assimilation per second scaled by PLAI.  This value must be 

multiplied by the length of daylight and then multiplied by the sun or shade PLAI to find the 

total C assimilated.  This assimilate is converted from umol/m2/sec to kg/m2/day and then placed 

into the Cpool for future allocation. 
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Given these assumptions and the model logic described above, users can have a high 

degree of confidence in model runs with the major caveat that the user specified parameters need 

to be appropriate for a given system.  As stated before, when correctly parameterized to represent 

a system, this model has been validated in many diverse systems across the globe.  However, this 

parameterization can at times feel quite arbitrary and there are a few parameters that really are 

more “tuning dials” than real physiological system components (e.g. – soil depth).  In this sense, 

the model has made some conceptual abstractions to allow a user to represent a given system 

with more certainty despite the underlying lack of clarity in the model representation of actual 

physiological processes.  This is always a tradeoff that any model is forced to make.  In practice, 

what this means is that BBGC can be used across many diverse systems with appropriate 

calibration and in this sense, with a broad enough perspective, it is very valuable.  However, to 

explore specific physiological concepts that relate to specific plant communities, model 

modifications may be required to more accurately represent the underlying mechanisms at work. 

 

N Deposition and Fixation (within bgc.c): 

 The N deposition and N fixation are added to the soil mineral N pool. 

 

H2O outflow (outflow.c): 

 Outflow occurs in two cases.  First, for fast outflow, if the incoming precipitation causes 

the soil water to exceed the saturated soil water capacity, outflow is the difference between the 

soil water capacity and the remaining water over capacity.  Second, for slow outflow, if the soil 

water is above field capacity, then the outflow occurs at an exponentially decaying rate each day 
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with half of the water that is above field capacity draining.  If the soil water is less than field 

capacity, there is no outflow. 

 

Decomposition (decomp.c): 

 The BBGC decomposition model is similar to the canopy evapotranspiration model logic 

in that both use multiplicative scalars to adjust maximum rates.  BBGC uses a compartment 

system to represent the litter pools and the soil organic matter pools.  The four litter pools are 

broken out based on the dominant material found in them – labile carbon in the form of basic 

sugars, starches, and proteins, unshielded cellulose, shielded cellulose with some lignin fraction, 

and a lignin pool.  A CWD pool accepts inputs from the stem and coarse root pools and 

subsequently adds to the litter pools after it is broken into smaller pieces over time.  Only fine 

roots and leaves initially enter the litter pools.  The fractions of leaf and fine root litter, as well as 

the fractions of dead wood that are cellulose and lignin, are all user supplied and also are used to 

calculate the shielded and unshielded fractions of the cellulose litter pool. 
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Taken from Thornton and Rosenbloom (2005).  Changes reflect BiomeBGC v4.2 code.
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Figure 10:  BiomeBGC litter and soil pools and fluxes 

 

Upon decomposition, the litter pool fractions enter into the soil organic matter pools.  The 

maximum rate constants for decomposition and biomass loss through heterotrophic respiration 

(HR) are all defined as constants in BBGC and were defined based on a literature review of C14 

decomposition studies by Thornton (1998).  Figure 10 is a detailed diagram of the decomposition 

dynamics in BGC (Thornton and Rosenbloom 2005).  The rates seen in this diagram are adjusted 

based on the temperature (Lloyd and Taylor 1994) and the availability of water in the soil as seen 

in figure 11 (Orchard and Cook 1983; Andren and Paustian 1987).  There is no decomposition if 

the temperature is below -10°C.   
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Figure 11:  Decomposition rate scalar function graphs for temperature and water availability. 

 

(52) t_scalar = 227.13-soilTK

1
-4.344692

e  

(53) w_scalar = 
)max/ln(min

)/ln(min

soilpsisoilpsi

soilpsicurrentsoilpsi
 

where soilTK is the soil temperature in Kelvin.  The final scalar is the product of the water and 

temperature scalar. 

 Once the rate scalar has been calculated, all of the litter compartments C:N ratios are 

calculated based on the known C and N amounts in each litter pool.  The constant decomposition 

(and fragmentation for CWD) rates are then adjusted by multiplying them by the rate scalar.  The 

adjustment is used since the original rates were found under well watered conditions with a soil 

temperature of 25°C.  With these adjusted decomposition rates, the first step is to fragment the 

CWD and apportion it to the litter pools (except for the labile pool).   

 The non-N limited decomposition of the litter and soil compartments are then calculated 

for each pool.  These are all potential decomposition rates and the actual decomposition will be 

scaled based on the competing plant N demand during the allocation routine.  Each pool has a 

similar set of calculations applied to it.  First, the potential C loss is found by multiplying the 
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adjusted decomposition rate by the amount of C in the litter pool.  The ratio of the C:N ratio of 

the given soil pool that accepts the decomposed matter to the C:N ratio of the litter pool that is 

losing C is then found.  The same step is performed for the soil to soil fluxes as well.  The 

potential N immobilization by microbial decomposition is then calculated from these data: 

(54) potential N immobilization = potential C loss * 
poolacceptingNC

poolacceptingNC

pooldonorNC
HRfrac

:

:

:
1 

 

As a last step, the sum of all of the potential N immobilization for the fluxes between the 

pools is calculated.  In some cases, given the C:N ratios of the pools, this may be a negative 

number in which case this is considered potential N mineralization. 

 

Allocation (daily_allocation.c): 

With the amount of potential C assimilate known from the photosynthesis process, and 

the amount of microbial N demand known from the decomposition process, it is now possible to 

allocate C assimilate and account for N limitation.  The BBGC allocation logic is built around 

the concept that all new allocation is constrained by leaf C allocation (Waring and Pitman 1985; 

Waring and Running 2007).  There are four user defined allocation ratios for woody plants:  1) 

new fine root C to new leaf C, 2) new stem C to new leaf C, 3) new live wood C to new total 

wood C, and 4) new coarse root C to new stem C.  There is also one user defined proportion that 

defines how much of the assimilated C should be set aside for next year’s growth.  These ratios 

then are used to define how C is allocated throughout the plant. 

The first step in the allocation is to find the C available to allocate.  This is Gross Primary 

Production (GPP) minus the MR of all live tissues.  In some cases, the cpool variable that holds 

the daily assimilated C and acts as a bank account for plant C demand can be negative.  This 
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could occur, for example, if growing conditions prevented assimilation but MR was still 

occurring.  In these cases, a rate of repayment of this cpool deficit is calculated such that the 

deficit is gone in one year and the available C for allocation is first allocated to alleviate the 

deficit at this rate.  Any leftover C can then be allocated to plant growth. 

The next step is to calculate the amount of C needed per unit of leaf C growth in all of the 

other pools based on the allocation fractions described above as well as the amount of C needed 

for growth respiration based on this allocation.  BBGC assumes a constant rate of GR for all 

tissue growth = 30% of the total C used for new tissue.  The C allometry calculation is followed 

by calculating the associated N needed to grow the plant based on this C allometry and the 

respective C:N ratios of the different plant pools.   

(55) C needed / unit leaf C = (1 + GR%) * 




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where NLwood is new live wood and Nwood is total new wood both live and dead and croot is 

coarse root.   

 Dividing equation 54 by equation 55 gives the C:N ratio of newly allocated tissue.  

Multiplying this by the C available for allocation tells us the plant N demand given the potential 

C to allocate.  The total N demand in the system is also known since the potential microbial N 

demand from the decomposition function is now known.  If the total system N demand is less 

than the available soil mineral N (SMN) pool actual allocation is equal to potential allocation and 

actual decomposition is also potential decomposition.  If the available retranslocated N can 
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satisfy the plant N demand, the plant N demand quantity is shifted from the retranslocation pool 

to the npool to be allocated at the end of the daily loop.  If not, the total daily N retranslocated is 

applied to plant N demand and the additional N needed is removed from the SMN pool.  Half of 

any excess N is assumed mineralized each day and is added to a bulk denitrification flux 

(volatilization) to be deducted from the SMN pool.   

If there is less SMN than total demand, the potential N immobilization flux (the potential 

microbial decomposition) is scaled based on the ratio of the potential immobilization to the total 

system N demand.  The fraction of potential N immobilization (FPI) is then: 

(57) FPI = 
tionimmobilizaNpotential

demandNtotal

tionimmobilizaNpotential
SMN *

=
tionimmobilizaNpotential

tionimmobilizaNactual
 

Once the microbial N demand is partially satisfied in this way, the plant N demand is addressed 

by first looking at the available retranslocated N pool.  If there is enough retranslocated N and 

SMN available, plant C allocation will not be limited by N and will proceed at its potential rate.  

If there is not enough retranslocated N to meet the plant N demand, the C assimilate available for 

allocation is proportionally reduced (for both shade and sun leaves – Wang et al. noted this and 

postulated that this should be accounted for by greater respiration costs instead of scaling the 

amount of assimilated C (Wang, Ichii et al. 2009)).  The actual C allocated to new growth is then 

the actual N available for plants * the N:C allometry ratios defined in equations (54) and (55).  

The excess C is removed from the assimilated C for sun and shade leaves in proportion to their 

size relative to total GPP and this serves as another limit on plant photosynthetic capacity. 

 With the actual allocation amounts now known, BBGC moves the assimilated C and the 

associated N into the different tissue pools and storage pools for next year’s growth.  This 

function also then scales each potential decomposition flux based on the FPI calculated above. 
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One other point to note is that during spin-up runs, BBGC adds additional N to the system if N is 

limiting to speed the systems’ attainment of its steady-state result. 

 

Growth Respiration (growth_resp.c): 

 The GR function simply allocates the C to the GR pools and the storage GR pools for 

next year’s growth.  These quantities were already calculated in the daily allocation routine. 

 

Update C, N, and H2O state (state_update.c): 

 After the functions above have been completed, BBGC moves the fluxes identified to and 

from the C, N, and H2O state pools.  All of the functions above do not modify the actual states 

but rather update flux variables that are then modified in the state_update routine.  On the last 

day of the year, the storage C and N pools are moved to become transfer pools that can then be 

used for the next year’s growth. 

 

N Leaching (nleaching.c): 

 N leaching only occurs if there was water outflow.  If there was outflow, then 10% of the 

SMN is removed and considered leached.  

 

Mortality (mortality.c): 

 The daily mortality fraction is user defined in the epc file and is applied to all plant pools 

both live and dead as well as the transfer and storage pools.  This function partitions the 

mortality into the appropriate CWD and litter pools.  The mortality function also applies any user 

specified fire mortality to plant C and N pools moving the specified daily proportion from the 
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pools into a fire sink pool that represents the loss of C and N to the atmosphere.  The fire routine 

also assumes there will be some recruitment of CWD and therefore only applies 30% of the fire 

mortality loss to the CWD pool. 

 

Mass Balance Check (check_balance.c): 

 Once all of the state variables have been updated by both the state update routine and the 

mortality function, the check balance function is called to insure the Principle of the 

Conservation of Mass.  Table 1 shows all of the sources, outflows/removals, and storage pools 

for C, N, and H2O that the model tracks and balances by testing whether the balance is <= 

0.00000001.  The daily balance is defined as: 

(58) Balance = in – out – stores 

The only balance that is not checked (but probably should be) is the radiation energy balance. 

Table 1:  BiomeBGC inputs, outputs, and storage for mass balance check. 
 In Out Storage 

H2O 
(see figure 3) 

Precipitation 

Outflow 
Soil evaporation 
Snow sublimation 
Canopy evaporation 
Leaf transpiration 

Soil water 
Snow water 
Canopy water 

C 
(S and T 
refer to 

Storage and 
Transfer 

Pools) 
(see figure 4) 

Sun leaf psyn 
Shade leaf psyn 

Leaf MR and GR 
Fine root MR and GR 
Live stem MR and GR 
Live coarse root MR and GR 
Dead stem GR 
Dead coarse root GR 
Labile litter (litter 1) HR 
Cellulose litter (litter 2) HR 
Lignin litter (litter 4) HR 
Fast Soil (SOM1) HR 
Medium Soil (SOM2) HR 
Slow Soil (SOM3) HR 
Recalcitrant Soil (SOM4) 
HR 
Fire 

Leaf C and S and T 
Fine root and S and T 
Live stem and S and T 
Dead stem and S and T 
Live Coarse Root and S and T 
Dead Coarse Root and S and T 
CWD 
Litter Pools 1-4 
SOM Pools 1-4 
Cpool 
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N 
(S and T 
refer to 

Storage and 
Transfer 

Pools) 
(see figure 4) 

N fixation 
N Deposition 

N leaching 
N volatilization 
(denitrification) 
Fire loss N 

Leaf N and S and T 
Fine root and S and T 
Live stem and S and T 
Dead stem and S and T 
Live coarse root and S and T 
Dead coarse root and S and T 
CWD 
Litter pools 1-4 
SOM pools 1-4 
Soil Mineral N 
Retranslocated N Pool 
Npool 
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Appendix A:  Required BiomeBGC Inputs 

Ecophysiology Input File (.epc file): 

ECOPHYS       ENF-cool (evergreen needleleaf forest - cool climate)  
1             (flag)    1 = WOODY             0 = NON-WOODY 
1             (flag)    1 = EVERGREEN         0 = DECIDUOUS 
1             (flag)    1 = C3 PSN            0 = C4 PSN 
1             (flag)    1 = MODEL PHENOLOGY   0 = USER-SPECIFIED PHENOLOGY 
0            *(yday)    yearday to start new growth  (when phenology flag = 
0) 
0            *(yday)    yearday to end litterfall  (when phenology flag = 0) 
0.3          *(prop.)   transfer growth period as fraction of growing season 
0.3          *(prop.)   litterfall as fraction of growing season 
0.25          (1/yr)    annual leaf and fine root turnover fraction 
0.70          (1/yr)    annual live wood turnover fraction 
0.005         (1/yr)    annual whole-plant mortality fraction 
0.005         (1/yr)    annual fire mortality fraction 
1.0           (ratio)   (ALLOCATION) new fine root C : new leaf C 
2.2           (ratio)   (ALLOCATION) new stem C : new leaf C 
0.1           (ratio)   (ALLOCATION) new live wood C : new total wood C 
0.3           (ratio)   (ALLOCATION) new croot C : new stem C 
0.5           (prop.)   (ALLOCATION) current growth proportion  
42.0          (kgC/kgN) C:N of leaves 
93.0          (kgC/kgN) C:N of leaf litter, after retranslocation 
42.0          (kgC/kgN) C:N of fine roots  
50.0          (kgC/kgN) C:N of live wood  
729.0         (kgC/kgN) C:N of dead wood 
0.32          (DIM)     leaf litter labile proportion 
0.44          (DIM)     leaf litter cellulose proportion 
0.24          (DIM)     leaf litter lignin proportion 
0.30          (DIM)     fine root labile proportion 
0.45          (DIM)     fine root cellulose proportion 
0.25          (DIM)     fine root lignin proportion 
0.76          (DIM)     dead wood cellulose proportion 
0.24          (DIM)     dead wood lignin proportion 
0.041         (1/LAI/d) canopy water interception coefficient  
0.5           (DIM)     canopy light extinction coefficient 
2.6           (DIM)     all-sided to projected leaf area ratio 
12.0          (m2/kgC)  canopy average specific leaf area (projected area 
basis) 
2.0           (DIM)     ratio of shaded SLA:sunlit SLA 
0.04          (DIM)     fraction of leaf N in Rubisco 
0.003         (m/s)     maximum stomatal conductance (projected area basis) 
0.00001       (m/s)     cuticular conductance (projected area basis)  
0.08          (m/s)     boundary layer conductance (projected area basis) 
-0.6          (MPa)     leaf water potential: start of conductance reduction 
-2.3          (MPa)     leaf water potential: complete conductance reduction 
930.0         (Pa)      vapor pressure deficit: start of conductance 
reduction 
4100.0        (Pa)      vapor pressure deficit: complete conductance 
reduction 
 

Meteorology Input File (.met file format): 
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Missoula, 1950-1993 : Sample input for MTCLIM v4.1 
MTCLIM v4.1 OUTPUT FILE : Tue Aug 25 10:15:00 1998 
  year  yday    Tmax    Tmin    Tday    prcp      VPD     srad  daylen 
             (deg C) (deg C) (deg C)    (cm)     (Pa)  (W m-2)     (s) 
  1950     1   -3.90  -13.90   -6.65    0.10   158.19   123.31   30229 
  1950     2   -7.80  -21.70  -11.62    0.00   136.27   183.78   30284 
  1950     3  -16.10  -23.30  -18.08    0.00    53.36   140.67   30344 
 

Physical Site Input File (.ini file): 

Biome-BGC v4.1.2 example : (normal simulation, Missoula, evergreen 
needleleaf) 
 
MET_INPUT     (keyword) start of meteorology file control block 
metdata/miss5093.mtc41  meteorology input filename   
4             (int)     header lines in met file 
 
RESTART       (keyword) start of restart control block 
0             (flag)    1 = read restart file     0 = don't read restart file 
0             (flag)    1 = write restart file    0 = don't write restart 
file 
1             (flag)    1 = use restart metyear   0 = reset metyear 
restart/enf_test1.endpoint    input restart filename 
restart/enf_test1.endpoint    output restart filename 
 
TIME_DEFINE   (keyword - do not remove) 
44            (int)       number of meteorological data years  
44            (int)       number of simulation years  
1950          (int)       first simulation year 
0             (flag)      1 = spinup simulation    0 = normal simulation 
6000          (int)       maximum number of spinup years (if spinup 
simulation) 
 
CLIM_CHANGE   (keyword - do not remove) 
0.0           (deg C)   offset for Tmax 
0.0           (deg C)   offset for Tmin 
1.0           (DIM)     multiplier for Prcp 
1.0           (DIM)     multiplier for VPD 
1.0           (DIM)     multiplier for shortwave radiation 
 
CO2_CONTROL   (keyword - do not remove) 
0             (flag)    0=constant 1=vary with file 2=constant, file for Ndep 
294.842       (ppm)     constant atmospheric CO2 concentration 
xxxxxxxxxxx   (file)    annual variable CO2 filename 
 
SITE          (keyword) start of site physical constants block 
1.0           (m)       effective soil depth (corrected for rock fraction) 
30.0          (%)       sand percentage by volume in rock-free soil 
50.0          (%)       silt percentage by volume in rock-free soil 
20.0          (%)       clay percentage by volume in rock-free soil 
977.0         (m)       site elevation 
46.8          (degrees) site latitude (- for S.Hem.) 
0.2           (DIM)     site shortwave albedo 
0.0001        (kgN/m2/yr) wet+dry atmospheric deposition of N 
0.0004        (kgN/m2/yr) symbiotic+asymbiotic fixation of N 
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RAMP_NDEP     (keyword - do not remove)  
0             (flag) do a ramped N-deposition run? 0=no, 1=yes 
2099          (int)  reference year for industrial N deposition 
0.0001        (kgN/m2/yr) industrial N deposition value 
 
EPC_FILE      (keyword - do not remove) 
epc/enf.epc   (file) evergreen needleleaf forest ecophysiological constants 
 
W_STATE       (keyword) start of water state variable initialization block 
0.0           (kg/m2)   water stored in snowpack 
0.5           (DIM)     initial soil water as a proportion of saturation 
 
C_STATE       (keyword) start of carbon state variable initialization block 
0.001         (kgC/m2)  first-year maximum leaf carbon  
0.0           (kgC/m2)  first-year maximum stem carbon 
0.0           (kgC/m2)  coarse woody debris carbon 
0.0           (kgC/m2)  litter carbon, labile pool 
0.0           (kgC/m2)  litter carbon, unshielded cellulose pool  
0.0           (kgC/m2)  litter carbon, shielded cellulose pool 
0.0           (kgC/m2)  litter carbon, lignin pool  
0.0           (kgC/m2)  soil carbon, fast microbial recycling pool 
0.0           (kgC/m2)  soil carbon, medium microbial recycling pool 
0.0           (kgC/m2)  soil carbon, slow microbial recycling pool 
0.0           (kgC/m2)  soil carbon, recalcitrant SOM (slowest) 
 
N_STATE       (keyword) start of nitrogen state variable initialization block 
0.0           (kgN/m2)  litter nitrogen, labile pool 
0.0           (kgN/m2)  soil nitrogen, mineral pool 
 
OUTPUT_CONTROL   (keyword - do not remove) 
outputs/oth     (text) prefix for output files 
1   (flag)  1 = write daily output   0 = no daily output 
1   (flag)  1 = monthly avg of daily variables  0 = no monthly avg 
1   (flag)  1 = annual avg of daily variables   0 = no annual avg 
1   (flag)  1 = write annual output  0 = no annual output 
1   (flag)  for on-screen progress indicator 
 
DAILY_OUTPUT     (keyword) 
23     (int) number of daily variables to output 
20     0 ws.soilw 
21     1 ws.snoww 
38     2 wf.canopyw_evap 
40     3 wf.snoww_subl 
42     4 wf.soilw_evap 
43     5 wf.soilw_trans 
44     6 wf.soilw_outflow 
70     7 cs.cwdc 
509    8 epv.proj_lai 
528    9 epv.daily_net_nmin 
620    10 summary.daily_npp 
621    11 summary.daily_nep 
622    12 summary.daily_nee 
623    13 summary.daily_gpp 
624    14 summary.daily_mr 
625    15 summary.daily_gr 
626    16 summary.daily_hr 
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627    17 summary.daily_fire 
636    18 summary.vegc 
637    19 summary.litrc 
638    20 summary.soilc 
639    21 summary.totalc 
579    22 psn_sun.A 
 
ANNUAL_OUTPUT    (keyword) 
6               (int)   number of annual output variables 
545     0 annual maximum projected LAI 
636     1 vegetation C 
637     2 litter C 
638     3 soil C 
639     4 total C 
307     5 soil mineral N 
 
END_INIT      (keyword) indicates the end of the initialization file 
 

Appendix B:  BiomeBGC Output Map (taken from output_map_init.c) 
/* daily meteorological variables */ 
output_map[0] = &metv->prcp; 
output_map[1] = &metv->tmax; 
output_map[2] = &metv->tmin; 
output_map[3] = &metv->tavg; 
output_map[4] = &metv->tday; 
output_map[5] = &metv->tnight; 
output_map[6] = &metv->tsoil; 
output_map[7] = &metv->vpd; 
output_map[8] = &metv->swavgfd; 
output_map[9] = &metv->swabs; 
output_map[10] = &metv->swtrans; 
output_map[11] = &metv->swabs_per_plaisun; 
output_map[12] = &metv->swabs_per_plaishade; 
output_map[13] = &metv->ppfd_per_plaisun; 
output_map[14] = &metv->ppfd_per_plaishade; 
output_map[15] = &metv->par; 
output_map[16] = &metv->parabs; 
output_map[17] = &metv->pa; 
output_map[18] = &metv->co2; 
output_map[19] = &metv->dayl; 
 
/* water state variables */ 
output_map[20] = &ws->soilw; 
output_map[21] = &ws->snoww; 
output_map[22] = &ws->canopyw; 
output_map[23] = &ws->prcp_src; 
output_map[24] = &ws->outflow_snk; 
output_map[25] = &ws->soilevap_snk; 
output_map[26] = &ws->snowsubl_snk; 
output_map[27] = &ws->canopyevap_snk; 
output_map[28] = &ws->trans_snk; 
 
/* water flux variables */ 
output_map[35] = &wf->prcp_to_canopyw; 
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output_map[36] = &wf->prcp_to_soilw; 
output_map[37] = &wf->prcp_to_snoww; 
output_map[38] = &wf->canopyw_evap; 
output_map[39] = &wf->canopyw_to_soilw; 
output_map[40] = &wf->snoww_subl; 
output_map[41] = &wf->snoww_to_soilw; 
output_map[42] = &wf->soilw_evap; 
output_map[43] = &wf->soilw_trans; 
output_map[44] = &wf->soilw_outflow; 
 
/* carbon state variables */ 
output_map[50] = &cs->leafc; 
output_map[51] = &cs->leafc_storage; 
output_map[52] = &cs->leafc_transfer; 
output_map[53] = &cs->frootc; 
output_map[54] = &cs->frootc_storage; 
output_map[55] = &cs->frootc_transfer; 
output_map[56] = &cs->livestemc; 
output_map[57] = &cs->livestemc_storage; 
output_map[58] = &cs->livestemc_transfer; 
output_map[59] = &cs->deadstemc; 
output_map[60] = &cs->deadstemc_storage; 
output_map[61] = &cs->deadstemc_transfer; 
output_map[62] = &cs->livecrootc; 
output_map[63] = &cs->livecrootc_storage; 
output_map[64] = &cs->livecrootc_transfer; 
output_map[65] = &cs->deadcrootc; 
output_map[66] = &cs->deadcrootc_storage; 
output_map[67] = &cs->deadcrootc_transfer; 
output_map[68] = &cs->gresp_storage; 
output_map[69] = &cs->gresp_transfer; 
output_map[70] = &cs->cwdc; 
output_map[71] = &cs->litr1c; 
output_map[72] = &cs->litr2c; 
output_map[73] = &cs->litr3c; 
output_map[74] = &cs->litr4c; 
output_map[75] = &cs->soil1c; 
output_map[76] = &cs->soil2c; 
output_map[77] = &cs->soil3c; 
output_map[78] = &cs->soil4c; 
output_map[79] = &cs->cpool; 
output_map[80] = &cs->psnsun_src; 
output_map[81] = &cs->psnshade_src; 
output_map[82] = &cs->leaf_mr_snk; 
output_map[83] = &cs->leaf_gr_snk; 
output_map[84] = &cs->froot_mr_snk; 
output_map[85] = &cs->froot_gr_snk; 
output_map[86] = &cs->livestem_mr_snk; 
output_map[87] = &cs->livestem_gr_snk; 
output_map[88] = &cs->deadstem_gr_snk; 
output_map[89] = &cs->livecroot_mr_snk; 
output_map[90] = &cs->livecroot_gr_snk; 
output_map[91] = &cs->deadcroot_gr_snk; 
output_map[92] = &cs->litr1_hr_snk; 
output_map[93] = &cs->litr2_hr_snk; 
output_map[94] = &cs->litr4_hr_snk; 
output_map[95] = &cs->soil1_hr_snk; 
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output_map[96] = &cs->soil2_hr_snk; 
output_map[97] = &cs->soil3_hr_snk; 
output_map[98] = &cs->soil4_hr_snk; 
output_map[99] = &cs->fire_snk; 
 
/* carbon flux variables */ 
output_map[120] = &cf->m_leafc_to_litr1c; 
output_map[121] = &cf->m_leafc_to_litr2c; 
output_map[122] = &cf->m_leafc_to_litr3c; 
output_map[123] = &cf->m_leafc_to_litr4c; 
output_map[124] = &cf->m_frootc_to_litr1c; 
output_map[125] = &cf->m_frootc_to_litr2c; 
output_map[126] = &cf->m_frootc_to_litr3c; 
output_map[127] = &cf->m_frootc_to_litr4c; 
output_map[128] = &cf->m_leafc_storage_to_litr1c; 
output_map[129] = &cf->m_frootc_storage_to_litr1c; 
output_map[130] = &cf->m_livestemc_storage_to_litr1c; 
output_map[131] = &cf->m_deadstemc_storage_to_litr1c; 
output_map[132] = &cf->m_livecrootc_storage_to_litr1c; 
output_map[133] = &cf->m_deadcrootc_storage_to_litr1c; 
output_map[134] = &cf->m_leafc_transfer_to_litr1c; 
output_map[135] = &cf->m_frootc_transfer_to_litr1c; 
output_map[136] = &cf->m_livestemc_transfer_to_litr1c; 
output_map[137] = &cf->m_deadstemc_transfer_to_litr1c; 
output_map[138] = &cf->m_livecrootc_transfer_to_litr1c; 
output_map[139] = &cf->m_deadcrootc_transfer_to_litr1c; 
output_map[140] = &cf->m_livestemc_to_cwdc; 
output_map[141] = &cf->m_deadstemc_to_cwdc; 
output_map[142] = &cf->m_livecrootc_to_cwdc; 
output_map[143] = &cf->m_deadcrootc_to_cwdc; 
output_map[144] = &cf->m_gresp_storage_to_litr1c; 
output_map[145] = &cf->m_gresp_transfer_to_litr1c; 
output_map[146] = &cf->m_leafc_to_fire; 
output_map[147] = &cf->m_frootc_to_fire; 
output_map[148] = &cf->m_leafc_storage_to_fire; 
output_map[149] = &cf->m_frootc_storage_to_fire; 
output_map[150] = &cf->m_livestemc_storage_to_fire; 
output_map[151] = &cf->m_deadstemc_storage_to_fire; 
output_map[152] = &cf->m_livecrootc_storage_to_fire; 
output_map[153] = &cf->m_deadcrootc_storage_to_fire; 
output_map[154] = &cf->m_leafc_transfer_to_fire; 
output_map[155] = &cf->m_frootc_transfer_to_fire; 
output_map[156] = &cf->m_livestemc_transfer_to_fire; 
output_map[157] = &cf->m_deadstemc_transfer_to_fire; 
output_map[158] = &cf->m_livecrootc_transfer_to_fire; 
output_map[159] = &cf->m_deadcrootc_transfer_to_fire; 
output_map[160] = &cf->m_livestemc_to_fire; 
output_map[161] = &cf->m_deadstemc_to_fire; 
output_map[162] = &cf->m_livecrootc_to_fire; 
output_map[163] = &cf->m_deadcrootc_to_fire; 
output_map[164] = &cf->m_gresp_storage_to_fire; 
output_map[165] = &cf->m_gresp_transfer_to_fire; 
output_map[166] = &cf->m_litr1c_to_fire; 
output_map[167] = &cf->m_litr2c_to_fire; 
output_map[168] = &cf->m_litr3c_to_fire; 
output_map[169] = &cf->m_litr4c_to_fire; 
output_map[170] = &cf->m_cwdc_to_fire; 
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output_map[171] = &cf->leafc_transfer_to_leafc; 
output_map[172] = &cf->frootc_transfer_to_frootc; 
output_map[173] = &cf->livestemc_transfer_to_livestemc; 
output_map[174] = &cf->deadstemc_transfer_to_deadstemc; 
output_map[175] = &cf->livecrootc_transfer_to_livecrootc; 
output_map[176] = &cf->deadcrootc_transfer_to_deadcrootc; 
output_map[177] = &cf->leafc_to_litr1c; 
output_map[178] = &cf->leafc_to_litr2c; 
output_map[179] = &cf->leafc_to_litr3c; 
output_map[180] = &cf->leafc_to_litr4c; 
output_map[181] = &cf->frootc_to_litr1c; 
output_map[182] = &cf->frootc_to_litr2c; 
output_map[183] = &cf->frootc_to_litr3c; 
output_map[184] = &cf->frootc_to_litr4c; 
output_map[185] = &cf->leaf_day_mr; 
output_map[186] = &cf->leaf_night_mr; 
output_map[187] = &cf->froot_mr; 
output_map[188] = &cf->livestem_mr; 
output_map[189] = &cf->livecroot_mr; 
output_map[190] = &cf->psnsun_to_cpool; 
output_map[191] = &cf->psnshade_to_cpool; 
output_map[192] = &cf->cwdc_to_litr2c; 
output_map[193] = &cf->cwdc_to_litr3c; 
output_map[194] = &cf->cwdc_to_litr4c; 
output_map[195] = &cf->litr1_hr; 
output_map[196] = &cf->litr1c_to_soil1c; 
output_map[197] = &cf->litr2_hr; 
output_map[198] = &cf->litr2c_to_soil2c; 
output_map[199] = &cf->litr3c_to_litr2c; 
output_map[200] = &cf->litr4_hr; 
output_map[201] = &cf->litr4c_to_soil3c; 
output_map[202] = &cf->soil1_hr; 
output_map[203] = &cf->soil1c_to_soil2c; 
output_map[204] = &cf->soil2_hr; 
output_map[205] = &cf->soil2c_to_soil3c; 
output_map[206] = &cf->soil3_hr; 
output_map[207] = &cf->soil3c_to_soil4c; 
output_map[208] = &cf->soil4_hr; 
output_map[209] = &cf->cpool_to_leafc; 
output_map[210] = &cf->cpool_to_leafc_storage; 
output_map[211] = &cf->cpool_to_frootc; 
output_map[212] = &cf->cpool_to_frootc_storage; 
output_map[213] = &cf->cpool_to_livestemc; 
output_map[214] = &cf->cpool_to_livestemc_storage; 
output_map[215] = &cf->cpool_to_deadstemc; 
output_map[216] = &cf->cpool_to_deadstemc_storage; 
output_map[217] = &cf->cpool_to_livecrootc; 
output_map[218] = &cf->cpool_to_livecrootc_storage; 
output_map[219] = &cf->cpool_to_deadcrootc; 
output_map[220] = &cf->cpool_to_deadcrootc_storage; 
output_map[221] = &cf->cpool_to_gresp_storage; 
output_map[222] = &cf->cpool_leaf_gr; 
output_map[223] = &cf->transfer_leaf_gr; 
output_map[224] = &cf->cpool_froot_gr; 
output_map[225] = &cf->transfer_froot_gr; 
output_map[226] = &cf->cpool_livestem_gr; 
output_map[227] = &cf->transfer_livestem_gr; 
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output_map[228] = &cf->cpool_deadstem_gr; 
output_map[229] = &cf->transfer_deadstem_gr; 
output_map[230] = &cf->cpool_livecroot_gr; 
output_map[231] = &cf->transfer_livecroot_gr; 
output_map[232] = &cf->cpool_deadcroot_gr; 
output_map[233] = &cf->transfer_deadcroot_gr; 
output_map[234] = &cf->leafc_storage_to_leafc_transfer; 
output_map[235] = &cf->frootc_storage_to_frootc_transfer; 
output_map[236] = &cf->livestemc_storage_to_livestemc_transfer; 
output_map[237] = &cf->deadstemc_storage_to_deadstemc_transfer; 
output_map[238] = &cf->livecrootc_storage_to_livecrootc_transfer; 
output_map[239] = &cf->deadcrootc_storage_to_deadcrootc_transfer; 
output_map[240] = &cf->gresp_storage_to_gresp_transfer; 
output_map[241] = &cf->livestemc_to_deadstemc; 
output_map[242] = &cf->livecrootc_to_deadcrootc; 
output_map[243] = &cf->cpool_leaf_storage_gr; 
output_map[244] = &cf->cpool_froot_storage_gr; 
output_map[245] = &cf->cpool_livestem_storage_gr; 
output_map[246] = &cf->cpool_deadstem_storage_gr; 
output_map[247] = &cf->cpool_livecroot_storage_gr; 
output_map[248] = &cf->cpool_deadcroot_storage_gr; 
 
/* nitrogen state variables */ 
output_map[280] = &ns->leafn; 
output_map[281] = &ns->leafn_storage; 
output_map[282] = &ns->leafn_transfer; 
output_map[283] = &ns->frootn; 
output_map[284] = &ns->frootn_storage; 
output_map[285] = &ns->frootn_transfer; 
output_map[286] = &ns->livestemn; 
output_map[287] = &ns->livestemn_storage; 
output_map[288] = &ns->livestemn_transfer; 
output_map[289] = &ns->deadstemn; 
output_map[290] = &ns->deadstemn_storage; 
output_map[291] = &ns->deadstemn_transfer; 
output_map[292] = &ns->livecrootn; 
output_map[293] = &ns->livecrootn_storage; 
output_map[294] = &ns->livecrootn_transfer; 
output_map[295] = &ns->deadcrootn; 
output_map[296] = &ns->deadcrootn_storage; 
output_map[297] = &ns->deadcrootn_transfer; 
output_map[298] = &ns->cwdn; 
output_map[299] = &ns->litr1n; 
output_map[300] = &ns->litr2n; 
output_map[301] = &ns->litr3n; 
output_map[302] = &ns->litr4n; 
output_map[303] = &ns->soil1n; 
output_map[304] = &ns->soil2n; 
output_map[305] = &ns->soil3n; 
output_map[306] = &ns->soil4n; 
output_map[307] = &ns->sminn; 
output_map[308] = &ns->retransn; 
output_map[309] = &ns->npool; 
output_map[310] = &ns->nfix_src; 
output_map[311] = &ns->ndep_src; 
output_map[312] = &ns->nleached_snk; 
output_map[313] = &ns->nvol_snk; 
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output_map[314] = &ns->fire_snk; 
 
/* nitrogen flux variables */ 
output_map[340] = &nf->m_leafn_to_litr1n; 
output_map[341] = &nf->m_leafn_to_litr2n; 
output_map[342] = &nf->m_leafn_to_litr3n; 
output_map[343] = &nf->m_leafn_to_litr4n; 
output_map[344] = &nf->m_frootn_to_litr1n; 
output_map[345] = &nf->m_frootn_to_litr2n; 
output_map[346] = &nf->m_frootn_to_litr3n; 
output_map[347] = &nf->m_frootn_to_litr4n; 
output_map[348] = &nf->m_leafn_storage_to_litr1n; 
output_map[349] = &nf->m_frootn_storage_to_litr1n; 
output_map[350] = &nf->m_livestemn_storage_to_litr1n; 
output_map[351] = &nf->m_deadstemn_storage_to_litr1n; 
output_map[352] = &nf->m_livecrootn_storage_to_litr1n; 
output_map[353] = &nf->m_deadcrootn_storage_to_litr1n; 
output_map[354] = &nf->m_leafn_transfer_to_litr1n; 
output_map[355] = &nf->m_frootn_transfer_to_litr1n; 
output_map[356] = &nf->m_livestemn_transfer_to_litr1n; 
output_map[357] = &nf->m_deadstemn_transfer_to_litr1n; 
output_map[358] = &nf->m_livecrootn_transfer_to_litr1n; 
output_map[359] = &nf->m_deadcrootn_transfer_to_litr1n; 
output_map[360] = &nf->m_livestemn_to_litr1n; 
output_map[361] = &nf->m_livestemn_to_cwdn; 
output_map[362] = &nf->m_deadstemn_to_cwdn; 
output_map[363] = &nf->m_livecrootn_to_litr1n; 
output_map[364] = &nf->m_livecrootn_to_cwdn; 
output_map[365] = &nf->m_deadcrootn_to_cwdn; 
output_map[366] = &nf->m_retransn_to_litr1n; 
output_map[367] = &nf->m_leafn_to_fire; 
output_map[368] = &nf->m_frootn_to_fire; 
output_map[369] = &nf->m_leafn_storage_to_fire; 
output_map[370] = &nf->m_frootn_storage_to_fire; 
output_map[371] = &nf->m_livestemn_storage_to_fire; 
output_map[372] = &nf->m_deadstemn_storage_to_fire; 
output_map[373] = &nf->m_livecrootn_storage_to_fire; 
output_map[374] = &nf->m_deadcrootn_storage_to_fire; 
output_map[375] = &nf->m_leafn_transfer_to_fire; 
output_map[376] = &nf->m_frootn_transfer_to_fire; 
output_map[377] = &nf->m_livestemn_transfer_to_fire; 
output_map[378] = &nf->m_deadstemn_transfer_to_fire; 
output_map[379] = &nf->m_livecrootn_transfer_to_fire; 
output_map[380] = &nf->m_deadcrootn_transfer_to_fire; 
output_map[381] = &nf->m_livestemn_to_fire; 
output_map[382] = &nf->m_deadstemn_to_fire; 
output_map[383] = &nf->m_livecrootn_to_fire; 
output_map[384] = &nf->m_deadcrootn_to_fire; 
output_map[385] = &nf->m_retransn_to_fire; 
output_map[386] = &nf->m_litr1n_to_fire; 
output_map[387] = &nf->m_litr2n_to_fire; 
output_map[388] = &nf->m_litr3n_to_fire; 
output_map[389] = &nf->m_litr4n_to_fire; 
output_map[390] = &nf->m_cwdn_to_fire; 
output_map[391] = &nf->leafn_transfer_to_leafn; 
output_map[392] = &nf->frootn_transfer_to_frootn; 
output_map[393] = &nf->livestemn_transfer_to_livestemn; 
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output_map[394] = &nf->deadstemn_transfer_to_deadstemn; 
output_map[395] = &nf->livecrootn_transfer_to_livecrootn; 
output_map[396] = &nf->deadcrootn_transfer_to_deadcrootn; 
output_map[397] = &nf->leafn_to_litr1n; 
output_map[398] = &nf->leafn_to_litr2n; 
output_map[399] = &nf->leafn_to_litr3n; 
output_map[400] = &nf->leafn_to_litr4n; 
output_map[401] = &nf->leafn_to_retransn; 
output_map[402] = &nf->frootn_to_litr1n; 
output_map[403] = &nf->frootn_to_litr2n; 
output_map[404] = &nf->frootn_to_litr3n; 
output_map[405] = &nf->frootn_to_litr4n; 
output_map[406] = &nf->ndep_to_sminn; 
output_map[407] = &nf->nfix_to_sminn; 
output_map[408] = &nf->cwdn_to_litr2n; 
output_map[409] = &nf->cwdn_to_litr3n; 
output_map[410] = &nf->cwdn_to_litr4n; 
output_map[411] = &nf->litr1n_to_soil1n; 
output_map[412] = &nf->sminn_to_soil1n_l1; 
output_map[413] = &nf->litr2n_to_soil2n; 
output_map[414] = &nf->sminn_to_soil2n_l2; 
output_map[415] = &nf->litr3n_to_litr2n; 
output_map[416] = &nf->litr4n_to_soil3n; 
output_map[417] = &nf->sminn_to_soil3n_l4; 
output_map[418] = &nf->soil1n_to_soil2n; 
output_map[419] = &nf->sminn_to_soil2n_s1; 
output_map[420] = &nf->soil2n_to_soil3n; 
output_map[421] = &nf->sminn_to_soil3n_s2; 
output_map[422] = &nf->soil3n_to_soil4n; 
output_map[423] = &nf->sminn_to_soil4n_s3; 
output_map[424] = &nf->soil4n_to_sminn; 
output_map[425] = &nf->sminn_to_nvol_l1s1; 
output_map[426] = &nf->sminn_to_nvol_l2s2; 
output_map[427] = &nf->sminn_to_nvol_l4s3; 
output_map[428] = &nf->sminn_to_nvol_s1s2; 
output_map[429] = &nf->sminn_to_nvol_s2s3; 
output_map[430] = &nf->sminn_to_nvol_s3s4; 
output_map[431] = &nf->sminn_to_nvol_s4; 
output_map[432] = &nf->sminn_leached; 
output_map[433] = &nf->retransn_to_npool; 
output_map[434] = &nf->sminn_to_npool; 
output_map[435] = &nf->npool_to_leafn; 
output_map[436] = &nf->npool_to_leafn_storage; 
output_map[437] = &nf->npool_to_frootn; 
output_map[438] = &nf->npool_to_frootn_storage; 
output_map[439] = &nf->npool_to_livestemn; 
output_map[440] = &nf->npool_to_livestemn_storage; 
output_map[441] = &nf->npool_to_deadstemn; 
output_map[442] = &nf->npool_to_deadstemn_storage; 
output_map[443] = &nf->npool_to_livecrootn; 
output_map[444] = &nf->npool_to_livecrootn_storage; 
output_map[445] = &nf->npool_to_deadcrootn; 
output_map[446] = &nf->npool_to_deadcrootn_storage; 
output_map[447] = &nf->leafn_storage_to_leafn_transfer; 
output_map[448] = &nf->frootn_storage_to_frootn_transfer; 
output_map[449] = &nf->livestemn_storage_to_livestemn_transfer; 
output_map[450] = &nf->deadstemn_storage_to_deadstemn_transfer; 
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output_map[451] = &nf->livecrootn_storage_to_livecrootn_transfer; 
output_map[452] = &nf->deadcrootn_storage_to_deadcrootn_transfer; 
output_map[453] = &nf->livestemn_to_deadstemn; 
output_map[454] = &nf->livestemn_to_retransn; 
output_map[455] = &nf->livecrootn_to_deadcrootn; 
output_map[456] = &nf->livecrootn_to_retransn; 
 
/* phenological variables */ 
output_map[480] = &phen->remdays_curgrowth; 
output_map[481] = &phen->remdays_transfer; 
output_map[482] = &phen->remdays_litfall; 
output_map[483] = &phen->predays_transfer; 
output_map[484] = &phen->predays_litfall; 
 
/* ecophysiological variables */ 
output_map[500] = &epv->day_leafc_litfall_increment; 
output_map[501] = &epv->day_frootc_litfall_increment; 
output_map[502] = &epv->day_livestemc_turnover_increment; 
output_map[503] = &epv->day_livecrootc_turnover_increment; 
output_map[504] = &epv->annmax_leafc; 
output_map[505] = &epv->annmax_frootc; 
output_map[506] = &epv->annmax_livestemc; 
output_map[507] = &epv->annmax_livecrootc; 
output_map[508] = &epv->dsr; 
output_map[509] = &epv->proj_lai; 
output_map[510] = &epv->all_lai; 
output_map[511] = &epv->plaisun; 
output_map[512] = &epv->plaishade; 
output_map[513] = &epv->sun_proj_sla; 
output_map[514] = &epv->shade_proj_sla; 
output_map[515] = &epv->psi; 
output_map[516] = &epv->vwc; 
output_map[517] = &epv->dlmr_area_sun; 
output_map[518] = &epv->dlmr_area_shade; 
output_map[519] = &epv->gl_t_wv_sun; 
output_map[520] = &epv->gl_t_wv_shade; 
output_map[521] = &epv->assim_sun; 
output_map[522] = &epv->assim_shade; 
output_map[523] = &epv->t_scalar; 
output_map[524] = &epv->w_scalar; 
output_map[525] = &epv->rate_scalar; 
output_map[526] = &epv->daily_gross_nmin; 
output_map[527] = &epv->daily_gross_nimmob; 
output_map[528] = &epv->daily_net_nmin; 
output_map[529] = &epv->m_tmin; 
output_map[530] = &epv->m_psi; 
output_map[531] = &epv->m_co2; 
output_map[532] = &epv->m_ppfd_sun; 
output_map[533] = &epv->m_ppfd_shade; 
output_map[534] = &epv->m_vpd; 
output_map[535] = &epv->m_final_sun; 
output_map[536] = &epv->m_final_shade; 
output_map[537] = &epv->gl_bl; 
output_map[538] = &epv->gl_c; 
output_map[539] = &epv->gl_s_sun; 
output_map[540] = &epv->gl_s_shade; 
output_map[541] = &epv->gl_e_wv; 
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output_map[542] = &epv->gl_sh; 
output_map[543] = &epv->gc_e_wv; 
output_map[544] = &epv->gc_sh; 
output_map[545] = &epv->ytd_maxplai; 
output_map[546] = &epv->fpi; 
 
/* photosynthesis variables */ 
/* sunlit canopy fraction */ 
output_map[560] = &psn_sun->pa; 
output_map[561] = &psn_sun->co2; 
output_map[562] = &psn_sun->t; 
output_map[563] = &psn_sun->lnc; 
output_map[564] = &psn_sun->flnr; 
output_map[565] = &psn_sun->ppfd; 
output_map[566] = &psn_sun->g; 
output_map[567] = &psn_sun->dlmr; 
output_map[568] = &psn_sun->Ci; 
output_map[569] = &psn_sun->O2; 
output_map[570] = &psn_sun->Ca; 
output_map[571] = &psn_sun->gamma; 
output_map[572] = &psn_sun->Kc; 
output_map[573] = &psn_sun->Ko; 
output_map[574] = &psn_sun->Vmax; 
output_map[575] = &psn_sun->Jmax; 
output_map[576] = &psn_sun->J; 
output_map[577] = &psn_sun->Av; 
output_map[578] = &psn_sun->Aj; 
output_map[579] = &psn_sun->A; 
 
/* photosynthesis variables */ 
/* shaded canopy fraction */ 
output_map[590] = &psn_shade->pa; 
output_map[591] = &psn_shade->co2; 
output_map[592] = &psn_shade->t; 
output_map[593] = &psn_shade->lnc; 
output_map[594] = &psn_shade->flnr; 
output_map[595] = &psn_shade->ppfd; 
output_map[596] = &psn_shade->g; 
output_map[597] = &psn_shade->dlmr; 
output_map[598] = &psn_shade->Ci; 
output_map[599] = &psn_shade->O2; 
output_map[600] = &psn_shade->Ca; 
output_map[601] = &psn_shade->gamma; 
output_map[602] = &psn_shade->Kc; 
output_map[603] = &psn_shade->Ko; 
output_map[604] = &psn_shade->Vmax; 
output_map[605] = &psn_shade->Jmax; 
output_map[606] = &psn_shade->J; 
output_map[607] = &psn_shade->Av; 
output_map[608] = &psn_shade->Aj; 
output_map[609] = &psn_shade->A; 
 
/* carbon budget summary output variables */ 
output_map[620] = &summary->daily_npp; 
output_map[621] = &summary->daily_nep; 
output_map[622] = &summary->daily_nee; 
output_map[623] = &summary->daily_gpp; 
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output_map[624] = &summary->daily_mr; 
output_map[625] = &summary->daily_gr; 
output_map[626] = &summary->daily_hr; 
output_map[627] = &summary->daily_fire; 
output_map[628] = &summary->cum_npp; 
output_map[629] = &summary->cum_nep; 
output_map[630] = &summary->cum_nee; 
output_map[631] = &summary->cum_gpp; 
output_map[632] = &summary->cum_mr; 
output_map[633] = &summary->cum_gr; 
output_map[634] = &summary->cum_hr; 
output_map[635] = &summary->cum_fire; 
output_map[636] = &summary->vegc; 
output_map[637] = &summary->litrc; 
output_map[638] = &summary->soilc; 
output_map[639] = &summary->totalc; 
output_map[640] = &summary->daily_litfallc; 
output_map[641] = &summary->daily_et; 
output_map[642] = &summary->daily_outflow; 
output_map[643] = &summary->daily_evap; 
output_map[644] = &summary->daily_trans; 
output_map[645] = &summary->daily_soilw; 
output_map[646] = &summary->daily_snoww; 
 

Appendix C:  BBGC Constants (from bgc_constants.h) 
/* atmospheric constants */ 
/* from the definition of the standard atmosphere, as established 
by the International Civil Aviation Organization, and referenced in: 
 
Iribane, J.V., and W.L. Godson, 1981. Atmospheric Thermodynamics. 2nd  
 Edition. D. Reidel Publishing Company, Dordrecht, The Netherlands. 
 (pp 10,167-168,245) 
*/ 
G_STD    9.80665         /* (m/s2) standard gravitational accel. */  
P_STD    101325.0        /* (Pa) standard pressure at 0.0 m elevation */ 
T_STD    288.15          /* (K) standard temp at 0.0 m elevation  */  
MA       28.9644e-3      /* (kg/mol) molecular weight of air */ 
W       18.0148e-3      /* (kg/mol) molecular weight of water */ 
CP       1010.0          /* (J/kg K) specific heat of air */ 
LR_STD   0.0065          /* (-K/m) standard temperature lapse rate */ 
R        8.3143          /* (m3 Pa/ mol K) gas law constant */ 
SBC      5.67e-8         /* (W/(m2 K4)) Stefan-Boltzmann constant */ 
EPS      0.6219          /* (MW/MA) unitless ratio of molec weights  
 
/* ecosystem constants */ 
RAD2PAR     0.45     /* (DIM) ratio PAR / SWtotal  */ 
EPAR        4.55     /* (umol/J) PAR photon energy ratio */   
SOIL1_CN    12.0     /* C:N for fast microbial recycling pool */ 
SOIL2_CN    12.0     /* C:N for slow microbial recycling pool */ 
SOIL3_CN    10.0     /* C:N for recalcitrant SOM pool (humus) */ 
SOIL4_CN    10.0     /* C:N for recalcitrant SOM pool (humus) */ 
GRPERC      0.3      /* (DIM) growth resp per unit of C grown */ 
GRPNOW      1.0      /* (DIM) proportion of storage growth resp at fixation*/ 
PPFD50      75.0       /* (umol/m2/s) PPFD for 1/2 stomatal closure */ 
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DENITRIF_PROPORTION  0.01   /* fraction of mineralization to volatile */ 
MOBILEN_PROPORTION   0.1    /* fraction mineral N avail for leaching */ 
 
/* respiration fractions for fluxes between compartments (unitless) */  
RFL1S1  0.39 /* transfer from litter 1 to soil 1 */ 
RFL2S2  0.55 /* transfer from litter 2 to soil 2 */ 
RFL4S3  0.29 /* transfer from litter 4 to soil 3 */ 
RFS1S2  0.28 /* transfer from soil 1 to soil 2 */ 
RFS2S3  0.46    /* transfer from soil 2 to soil 3 */ 
RFS3S4  0.55 /* transfer from soil 3 to soil 4 */ 
 
/* base decomposition rate constants (1/day) */  
KL1_BASE 0.7 /* labile litter pool */ 
KL2_BASE 0.07 /* cellulose litter pool */ 
KL4_BASE 0.014 /* lignin litter pool */ 
KS1_BASE 0.07 /* fast microbial recycling pool */ 
KS2_BASE 0.014 /* medium microbial recycling pool */ 
KS3_BASE 0.0014 /* slow microbial recycling pool */ 
KS4_BASE 0.0001 /* recalcitrant SOM (humus) pool */ 
KFRAG_BASE 0.001 /* physical fragmentation of coarse woody debris */ 
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Chapter 2 

A system to integrate multi-scaled data sources for improving terrestrial C balance 

estimates 

 
Abstract 
 Climate change and the policy responses for mitigation and adaptation have necessitated 
a better understanding of the carbon cycle and land use change dynamics.  One approach to 
spatially quantifying ecosystem function is estimating the potential productivity of different land 
use types both on a year-to-year basis and from a maximum carbon storage perspective.  
Modeling ecosystems productivity with process models allows hypothetical scenarios to be 
tested and can also help constrain claims that landowners and governments make about the 
carbon they are sequestering and storing.  Generating reasonable estimates of potential 
productivity is difficult both because of a lack of data and because of future climate change.  
However, by using inventory measurements and flux data to calibrate process models, specific 
locations across the globe can be accurately represented.  A process model parameterized in this 
way can then be used to expand estimates of productivity across space when paired with remote 
sensing data.  This integration of multiple data sources at multiple scales can provide flexibility 
in estimating ecosystem state and allow for estimates to vary based on different future climate 
scenarios. 
 

1. Introduction 

1.1. Motivation and Applications 

 Between 6-17% of the total annual anthropogenic CO2 emissions come from terrestrial 

ecosystem degradation or loss making up the second largest source of greenhouse gases in the 

world after fossil fuel emissions (Van der Werf et al. 2009).  Because of this, many policy 

makers have focused on reducing emissions from terrestrial ecosystems as one way to help 

mitigate climate change.  The estimation of carbon stocks and fluxes that result from land use 

change and ecosystem management is critical for policies that attempt to incentivize increased 

ecosystem sequestration or reduced emissions of greenhouse gases (GHGs).  Furthermore, 

estimates of potential sequestration rates in optimal conditions, as well as anticipated changes in 

growth rates due to climate change, are important in understanding how emissions reductions or 

sequestration fit within a broader understanding of terrestrial carbon exchange.   

For more than a decade, decision makers have debated how to best include terrestrial 

ecosystems in policy approaches to mitigate and adapt to climate change.  Recently, these 

discussions have focused on REDD (Reducing Emissions from Deforestation or Ecosystem 
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Degradation) at a country scale.  A REDD policy framework therefore requires credible 

estimates of the state of ecosystem carbon stocks and fluxes at a country scale as well as some 

understanding of how ecosystems have changed in the past and might change in the future at this 

scale.  As policy makers in the international arena struggle to craft national REDD policies, the 

voluntary carbon market has rapidly evolved to fill the void left by the absence of international 

climate change policy.  The voluntary carbon offset market relies on a suite of different carbon 

offset standards (CCBA 2008, VCS 2008, CAR 2010) that provide guidance on how to monitor, 

report, and verify carbon sequestration activities at much smaller scales (e.g. – project level vs. 

country scale).  Given the state of REDD policy and the voluntary carbon market, the purpose of 

this chapter will be to explore a technical approach that can be used to generate credible 

estimates of carbon stocks and fluxes and to constrain the claimed benefits of carbon projects or 

policies at multiple scales.   

There are several methods using a variety of data sources to arrive at reasonable estimates 

of ecosystem growth or carbon storage at reasonable cost.  A data assimilation approach may 

best leverage existing data sets and improve the precision of estimates across space and time.  

These estimates could then be applied at varying scales to provide an independent assessment of 

claimed climate change mitigation benefits.  Today there still is a critical need for defensible, 

consistent, and understandable estimates of spatially explicit ecosystem carbon stocks and fluxes 

as well as the continued need for modeling scenarios that simulate the outcomes of policy 

decisions on the future state of ecosystems.  These models will allow policy makers and land 

managers to better understand the implications of new policies and the role of ecosystems in 

climate change mitigation. 

 

1.2. Constraining Mitigation Claims and Future Growth 

 In addition to accurate estimates of current ecosystem carbon stocks and fluxes, an 

understanding of the potential uptake or emission of CO2 is necessary to define the bounds of the 

direct impacts ecosystems can have on the climate system.  In most cases, ecosystem 

sequestration is measured against a Business as Usual (BAU) baseline scenario.  The BAU 

scenario is a hypothetical counterfactual description of how an ecosystem would change without 

implementing a carbon project or emissions reduction policy.  For example, the BAU baseline 

for a country like Brazil might be the average rate of forest loss over the past 20 years (Ewers et 
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al. 2008) extended into the future to serve as the predicted rate of deforestation.  The activity that 

occurs after the policy or project begins is, however, constrained more by the potential 

productivity of the system.  Therefore, when a country or project proponent claims a climate 

benefit, these claims must reside within the limits of how fast an ecosystem can grow and 

sequester carbon dioxide.   

-----------------------------------------SIDEBAR---------------------------------------------- 

Chapter Terminology and Conceptual Underpinnings (Sidebar) 

For the purposes of this chapter, we will focus on Net Ecosystem Production or NEP.  NEP is 

Gross Primary Production minus autotrophic and heterotrophic respiration – NEP = GPP – RA – 

RH – and represents the net CO2 sequestered by an ecosystem.  For a more complete discussion 

of NEP and other carbon cycle concepts see Chapin III et al. (2006) or Waring and Running 

(2007).  This understanding of potential productivity helps to inform both regional scale carbon 

estimates and a forest carbon offset project’s long-term climate impact.  However, many 

projections of ecosystem change assume constant climate conditions.  To more completely 

understand the climate benefits of that proposed climate policy or a single forest carbon offset 

project create, understanding ecosystems’ responses to climate change should be incorporated 

into the modeling of future ecosystem growth and change.  Both of these needs (constraining 

current claimed climate benefits and defining the future ecosystem dynamics) require not only 

the best suite of data products such as forest inventory data, flux measurements, and satellite 

observations, but also incorporating some process modeling that can capture the range of 

productivity and the impacts of a changing climate. 

 Forest ecosystems sequester carbon dioxide (CO2) and emit oxygen as photosynthesis 

occurs.  Photosynthesis produces sugar which is converted into starch and other carbon based 

molecules that trees and other plants then store and use for growth and maintenance.  The CO2 

sequestered by trees is stored in their woody biomass and as individual trees grow and die, there 

is a cycle of sequestration and decay (Larcher 2003, Lambers et al. 2008).  At a landscape scale 

however, the individual tree dynamics in most cases combine to form a saturating dynamic.  

Over time, as the forest ages, tree mortality due to disease, age, or disturbance creates openings 

where new trees grow.  At this scale, there is a theoretical sigmoidal increase in the carbon stored 

in a forest over time asymptotically approaching a maximum stored biomass (Waring and 

Running 2007). 
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----------------------------------------------------------------------------------------------------------------- 

2. Data Sources and Carbon Cycle Background 

There are three quantities that are typically estimated to assess an ecosystem:  its stocks 

or current state, its fluxes or rates of change, and its future state based on a set of assumptions 

about stocks and fluxes in the future.  Predicting the carbon stored at a given point in time and 

space, as well as over time, has been done by using process based physiological models and 

empirical growth and yield models (Vanclay 1994, Thornton et al. 2002, Turner et al. 2004, 

Arney et al. 2007, Randerson et al. 2009, Shoch et al. 2009, Dixon 2010).  Establishing the state 

of a forest ecosystem in the present is done by measuring the current forest using field-based 

plots to estimate stocks or flux-towers to estimate fluxes.  In addition to these ground based 

measurements, remotely sensed images of ecosystems can provide valuable information that can 

be used to infer some of the ground based parameters across broad spatial extents.   

 

2.1. Estimation of Ecosystem Carbon Stocks 

2.1.1. Forest inventory and forest growth and yield models 

Forest inventory and forest growth and yield models have been used by foresters for over 100 

years to estimate the volume of timber found in a given area and to predict the timber yields into 

the future.  Many growth and yield tables developed in the 1950s and 1960s are still the primary 

source of information when predicting ecosystem changes over time and are still used today 

(e.g.,(King 1966)).  Measuring the biomass in a forest involves installing plots on the ground and 

measuring trees – both live and dead, dead material, and the soil to estimate the conditions of a 

forest.  Traditional forest inventories were used to estimate the volume of merchantable board 

feet and to understand how much a forest was worth in terms of its timber value.   

Because of climate change policies and the voluntary carbon market, forest inventory 

data is now also being used to estimate the stocks of carbon in ecosystems.  Land being managed 

to produce timber most likely has been extensivly inventoried, If no inventory data exists, there 

are many manuals that describe procedures to collect inventory data and the rationale for what 

data to sample (Shiver and Borders 1996, Avery and Burkhart 2002, Law et al. 2008, GOFC-

GOLD 2009).  If collected over time, forest inventory data can be used to characterize ecosystem 

change.  This stock change approach to estimating change is a common alternative to direct 

measurement of fluxes. 
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2.3. Remote Sensing Data Products 

Remote sensing data can be acquired either from satellites or aircraft observations.  There 

are many different types of remotely sensed data defined by the scale of the data received.  The 

spatial scale is defined both by the resolution or pixel size of the imagery generated and the area 

covered by the data (the spatial extent).  The temporal scale is defined by the time interval over 

which data are collected.  Generally, today, the finer the spatial reolution the less frequently are 

the observations collected. Remotely sensed data can also be broadly split into two groups:  

passively acquired observations or active response observations. 

2.3.1. Passive remotely sensed observations 

Passive remotely sensed observations are acquired by sensors that measure either reflected solar 

radiation or emitted terrestrial radiation.  For example, Moderate Resolution Imaging 

Spectroradiometer satellite data (MODIS) is a passive sensor system that acquires measurements 

in the visible, near infrared, shortwave infrared and thermal infrared portions of the EM 

spectrum. MODIS observations are collected gobally on a near-daily basis, with 250m, 500m, or 

1km pixel sizes.  Landsat Thematic Mapper observations are collected at a 30m spatial resolution 

with a global return frequency of 16 days.  The earlier Landsat Multispectral Scanner 

observations (1972-1992) were collected at 80m spatial resolution and 18 day repeat cycles 

(“Landsat Missions” n.d., “MODIS Website” n.d., “The Landsat Program” n.d., Lillesand et al. 

2004).   

Remotely sensed data are useful because they can be used in difficult to reach areas and 

can provide wall-to-wall coverage of areas over time at scales where this density of data would 

be cost prohibitive to collect in any other way.  Given the features of remotely sensed data 

described above, they are also a critical tool in monitoring and identifying when major changes 

occur in an ecosystem.  For example, changes in canopy cover or leaf area as inferred from 

greenness and the fraction of absorbed radiation can be used to estimate annual NPP or GPP 

(Running, Nemani et al. 2004).  When compared over time, remote sensing products can 

highlight areas of ecosystems that have experienced disturbance (Goward et al. 2008, Mildrexler 

et al. 2009, Huang et al. 2010) and these products can then be used to estimate the flux of carbon 

loss to the atmosphere.   

2.3.2. LIDAR and RADAR Active Remote Sensing 
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Active remotely sensed observations are acquired by generating a pulse of energy and 

then measuring features of the response at the surface as this energy pulse is reflected.  The 

characteristics or signature of this backscatter at different locations can then be mapped to 

physical attributes of the Earth’s surface.  LiDAR (Light Detection and Ranging) is one form of 

an active remote sensing system.  The other commonly used is radar (radio detection and 

ranging).  Due to the characteristics of these active remote sensing systems, LiDAR and radar 

can provide an assessment of the three-dimensional structure of vegetation canopies.  

Because ecosystem biomass and carbon storage are in many cases closely related to 

height, and these active remote sensing approaches can estimate height, they can help to define 

the biomass storage of ecosystems across space. As such, radar and LiDAR have been used to 

estimate forest height and biomass (Patenaude et al. 2004, Akay et al. 2009, Collins et al. 2009, 

Goetz et al. 2009, García et al. 2010).  Two important caveats to this are:  1) radar signals may 

saturate in ecosystems that store large amounts of carbon (Kasischke et al. 1997) and 2) both of 

these data sources require ground data to calibrate and validate their results.  Radar is particularly 

useful for forest sensing as the wavelengths it uses can penetrate cloud cover and allow 

monitoring of ecosystems that are consistently covered in clouds such as moist tropical forests 

(Kasischke et al. 1997, Sãnchez-Azofeifa et al. 2009).  

In addition to the remote sensing of forest structure, remotely sensed data can be used to 

make inferences about ecosystem change (both disturbance and flux).  As discussed above, 

LIDAR and RADAR can both be used to estimate the stock of specific ecosystem variables (e.g. 

carbon).  As with the measurement of carbon stocks using ground based forest inventory, flux 

towers and distributed sensor networks are the only direct way to measure ecosystem fluxes over 

a short time scale.  Like forest inventory data, these flux measurements serve a critical need by 

providing data that can be used to validate and train ecosystem models and remotely sensed 

estimates of fluxes.   The estimation of forest stocks and fluxes using remote sensing data draws 

on an extensive body of research modeling the processes that take place in ecosystems as well as 

empirical relationships between the observed remotely sensed data and the measured stocks or 

fluxes.  However, to predict the capacity of a system in the present, or the potential storage or 

sequestration of a system in the future, process models are needed.   

 

2.4. Terrestrial Ecosystem Carbon Models (TECMs) 
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2.4.1. Process based physiological models 

Process based physiological models use our understanding of the workings of photosynthesis, 

respiration, the physics of water movement and state change, and decomposition to estimate the 

growth dynamics of an ecosystem.  The scale of a given model determines what processes are 

included and how the model behaves.  For example, BiomeBGC works at a single point in space 

and uses both daily and annual time steps to estimate leaf-level photosynthesis.  This model 

works at the leaf level to model photosynthesis, rather than using a simpler light use efficiency 

(LUE) model (a LUE model would apply a light conversion efficiency factor to incoming solar 

radiation to estimate the amount of fixed carbon dioxide).  BiomeBGC accepts meteorological, 

soil, ecosystem type, and atmospheric CO2 concentration inputs and uses these variables to drive 

the model.  Other models such as C-Fix (Maselli et al. 2008) or the CASA model (Potter et al. 

1993, 2003) work at slightly larger scales and, rather than focus on within-leaf physiology, use 

the fraction of absorbed photosynthetically active radiation (FPAR) to estimate the 

photosynthesis of leaves.  Other models such as ED (Albani et al. 2006) are demographic or gap 

models that model tree growth and competition based on tree size and forest structure.  Another 

example of a process model that works at a higher level of abstraction is the 3-PG model.  This 

model estimates growth and storage based on light use efficiency and scaling values based on 

water availability, nutrient availability, and a suite of other constraining variables (Landsberg 

and Waring 1997, Sands and Landsberg 2002, Landsberg et al. 2003).   

2.4.2. Empirical Growth and Yield Models 

In addition to the process models described above, empirical models such as forest 

growth and yield models (GYMs) can help to estimate the potential of a system in the present 

and into the future.  At their core, GYMs are built from empirically derived relationships 

between stand (a stand is a contiguous forest area with similar conditions) characteristics such as 

density, height, age, and site class against stand volume or biomass (Avery and Burkhart 2002).  

Individual tree GYMs use a similar approach as stand GYMs but relate stand characteristics to 

individual tree growth as opposed to overall stand growth (Porté and Bartelink 2002). The data 

used to drive these models can come from long term permanent plots showing forest 

development over time or can be taken from many different forests of different ages, site 

conditions, and stocking rates to build the appropriate relationships. Because GYMs use data 

from past forest growth, GYMs implicitly assume that past drivers of growth such as climate and 
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ecosystems across space (e.g. - (Pietsch et al. 2005, Heinsch et al. 2006, Randerson et al. 2009)).  

The power of remote sensing data is that it allows the earth system to be observed across large 

spatial extent at relatively frequent intervals.  Once remotely sensed data are paired with models 

and measurement to generate accurate estimates of the current stocks and fluxes, the next step is 

to use models to help predict the future ecosystem state in terms of the ecosystems’ potential to 

grow and store carbon. 

 

3. Example – Using BiomeBGC to estimate ecosystem states and fluxes across space 

 Given the broad range of data sources and models available to estimate carbon stocks and 

fluxes, it is helpful to consider an example system to elucidate some of the principles that will be 

discussed in this chapter.  With the goal of illustrating both the state of the science and some of 

the shortcomings of current approaches to the estimation of stocks and fluxes across space, the 

BiomeBGC model will be used to estimate the state of a forest located in Mendocino County, 

CA.  The Garcia River Forest is a moist temperate rainforest dominated by Redwood (Sequoia 

sempervirens) and Douglas-Fir (Pseudotsuga menziesii) that is about 10,000 hectares in size.  

This forest is actively managed and there are relatively accurate biomass estimates across the full 

10,000 hectare extent from forest inventory data.   

3.1. BiomeBGC Model Background 

BiomeBGC (BiomeBGC) is a mechanistic model that is used to estimate the state and 

fluxes of carbon (C), nitrogen (N), and water (H2O) into and out of an ecosystem. BiomeBGC is 

actively used in institutions around the globe and its most recent release is version 4.2. In 

addition to the C, N, and H2O cycles, BiomeBGC models the physical processes of radiation and 

water disposition. BiomeBGC partitions incoming radiation and precipitation and treats the 

excess/unused portions as outflows. The primary physiological processes modeled by 

BiomeBGC are photosynthesis, evapotranspiration, respiration (autotrophic and heterotrophic), 

decomposition, the final allocation of photosynthetic assimilate, and mortality. To model these 

processes, BiomeBGC first models the phenology of the systems based on the input 

meteorological data (Thornton 1998, Thornton and Running 2002, Golinkoff 2010). 

The general flow of the BiomeBGC model is based on an abstraction of how natural 

ecosystem operate (Figure 4 and Table 2).  
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Table 2:  A partial list of inputs that must be provided to the BiomeBGC model. 

Data Type Name Units Description 

Climate Data 

Tavg Degree C Average Daily Temperature 

Tmin Degree C Minimum Daily Temperature 

Prcp cm Daily precipitation 

VPD Pascals Average daily Vapor Pressure Deficit 

SRAD W/m2 Daily Solar Radiation 

Ecophysiology 
Data 

C:N of leaves kgC/kgN Carbon to Nitrogen ratio of leaf biomass 
Annual 
Mortality 1/yr Annual whole plant mortality fraction 

SLA m2/kgC 
Canopy average specific leaf area 
(projected area basis) 

FLNR no units fraction of leaf N in Rubisco 

VPAstart Mpa 
The vapor pressure deficit where leaf 
conductance begins to be reduced. 

VPAcomplete Mpa 
The vapor pressure deficit where leaf 
conductance is zero. 

Site Data 

CO2 ppm 
A constant or a file with changing yearly 
atmospheric CO2 concentrations 

SoilDepth m 
Effective soil depth (corrected for rock 
fraction) 

% silt, sand, 
clay % Percentage silt, sand, and clay in soil 

Elev m Site elevation 

Latitude degrees Site latitude 

Ndep kgN/m2/yr Wet and dry atmospheric deposition of N 

Nfix kgN/m2/yr Symbiotic and asymbiotic fixation of N 
 

BiomeBGC is run at one point in space and for estimation of ecosystem states across 

space, the point returns are simply gridded to create a spatial estimate.  However, because of the 

structure of BiomeBGC, BiomeBGC does not incorporate cell-to-cell interactions or flows of 

nutrients or water between cells.  Given BiomeBGC’s point-based perspective, it is helpful to 

think of this model as an estimate of stand level processes that have been aggregated and 

averaged to a per unit area basis.  In general, this model divides photosynthesis between shade 

leaves and sun leaves.  The carbon fixed by these leaves is then partitioned to other organs with 

the theoretical tree as well as into soil carbon pools.  Carbon is also modeled as lost to respiration 

both for maintenance and growth.  A full discussion of the details of how BiomeBGC works is 

beyond the scope of this chapter but several references have been included here to aid the reader 
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3.3. BiomeBGC Input Data – Gridding Climate and Soil Driving Data 

 Once the model parameters have been established to reflect the ecosystem, the driving 

data for the model must be interpolated across space at an appropriate scale to represent the main 

topographical drivers of ecosystem productivity.  The topographical drivers are slope, aspect, 

and elevation and impact the temperature and water availability at a given site.  Additionally, the 

soil data must also be converted to a grid of the same extent and resolution as the driving 

meteorological data.  The creation of the daily climate data used for this particular model run is a 

bit more complicated owing to the fact that redwood trees are known to absorb fog moisture 

through their needles (Weathers 1999, Burgess and Dawson 2004, Ewing et al. 2009, Simonin et 

al. 2009).  However, the BiomeBGC model structure uses only soil water holding capacity when 

determining the moisture limitations of growth.  Therefore, to address this “missing source” of 

plant available moisture, fog precipitation was added to the soil water at regular intervals across 

the year based on the measured amounts of fog water by month reported by Dawson (1998).  The 

raw meteorological data were generated across the forest extent at 250 meter resolution using 

DAYMET (http://www.daymet.org/, accessed May, 2009).  The DAYMET algorithms are based 

on the logic used by the MT-CLIM program (Thornton et al. 1997, 2000, Thornton and Running 

1999, Hasenauer et al. 2003).  The soil data used were percent sand, silt, and clay and this 

information was taken from the Natural Resource Conservation Service (NRCS) Soil Survey 

Geographic Database (SSURGO – see (“Soil Data Mart - Home.” n.d.) 

http://soildatamart.nrcs.usda.gov/ - accessed May, 2009).   

 Once each 250m grid cell has the appropriate site (soil and topography) and climate 

driving data, an initialization file is created for each grid cell.  This initialization file directs 

BiomeBGC to use the climate and site data provided, along with the physiology data defined as 

above to grow the ecosystem.  The ecosystem is then grown until it reaches a steady state (i.e. – 

an old growth state).  At this point, 95% of the aboveground biomass pools were removed to 

simulate the almost complete harvest of this area by the late 1950s.  The harvested ecosystem 

was then grown for 50 years to simulate the average age of the forest today.  

 

3.4. BiomeBGC Model Results 
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 After parameterizing the BiomeBGC model and creating a set of gridded input data, the 

model was run as described in section 3.3 and the final model results were collected and 

summarized across space.  BiomeBGC can generate many outputs but for this discussion we will 

focus on NPP and total carbon stocks (Figure 6).  The results in this example were then validated 

at a property scale to the average carbon stocks measured using over 1000 forest inventory plots.  

The forest inventory plots used were variable radius plots that used a basal area factor prism or 

relaskope to determine which trees to measure.  Variable radius plots use a probability 

proportional to size sampling approach that makes it more likely to measure larger trees (Avery 

and Burkhart 2002).  The average carbon stocks on this property in 2005 based on these plots is 

about 130 Mg/ha.  The average growth on a per year basis (NPP) is between 6.6 and 10 Mg/ha 

according to BiomeBGC.  Based on the Forest Projection and Planning Systems (FPS) growth 

and yield model (Arney et al. 2007) as well as plots installed over time, the average growth rate 

is about .54 kg/m2/year.  At a property level, it seems that the process model results are 

reasonably close to the estimates of carbon stocks and growth as found by plot measurements 

and local growth and yield models. 

The lower estimate derived from the growth and yield model and measurements reflects 

ongoing harvests on this property, which were not modeled using BiomeBGC.  This validation of 

the model results is done at a very coarse scale (average across a 10,000 ha property) and not on 

a cell-by-cell basis.  However, the rough agreement in the model and measurement is 

encouraging because it suggests that the BiomeBGC model logic is appropriately capturing some 

of the biophysical and physiological processes in this ecosystem and producing results that fall 

within the natural range of ecosystem variability.  Furthermore, areas with the highest forest 

carbon stocks are found in stream bottoms as would be expected.  Unfortunately, the annual NPP 

metrics should also correlate with the terrain in a similar way and they seem to have the opposite 

pattern with the highest productivity areas occurring near ridge tops and the lowest productivity 

areas in the stream bottoms.  This result probably stems from the fact that the model is 

inadequately representing the moisture limitations experienced by the trees in this ecosystem (see 

section 3.3 about Redwood trees unique fog water uptake).   



 

 
Figure 6:

 

 

 

Mg/

Mg/h

  BiomeBGC O

High:  13
 
 
Low:  121

/ha 

ha/year 

High:  10.
 
 
Low:  6.64

Outputs Show
Image for th

8.82 

1.91 

.05 

4 

wing Vegetatio
e Garcia Rive

on C stored as
er Forest in M

s well as Annu
Mendocino Cou

Mg/h

Mg/h

ual NPP drape
unty, CA 

a

ha/year 

ed over a Hills

93

 
shade 



 94

3.5. Discussion – Shortcomings and Potential Directions 

  As shown above, as a result of parameterizing this model to accurately represent this site, 

and adjusting the precipitation to account for fog water use, the BiomeBGC model does a 

reasonable job of estimating average ecosystem states and fluxes when aggregated across a 

10,000 ha extent.  There are several problems with this approach however that suggest 

improvements that are needed. These are: 

1. Incorporate the impacts of harvest on ecosystems into the BiomeBGC model.   

2. Incorporation of estimates of the ecosystem age.  These data are critical constraint when 

estimating the stocks and fluxes of an ecosystem.   

3. Improvements to the model to more adequately represent the ecosystem physiology and 

structure.  For example, in the case of redwoods, the BiomeBGC model does not 

adequately capture the foliar uptake of water and therefore a work-around approach to 

water availability must be employed.   

4. Improvements in techniques to estimate certain parameters that are difficult if not 

impossible to know with any certainty.  For example, an accurate estimate of soil depth 

across space often does not exist.  However, the soil depth parameter in BiomeBGC is 

critical when determining when moisture availability will become limiting to plant 

growth.   

Based on these concerns, a more general and consistent approach to parameterizing and using the 

BiomeBGC model spatially is needed.  Specifically, the improvements listed above should be 

considered when considering how models like BiomeBGC might be applied to on-the-ground 

questions regarding the capacity of ecosystems to mitigate and adapt to climate change.   

Given the errors seen in this particular modeling exercise, it is clear that models should 

be carefully evaluated and validated before they are applied in a policy setting.  More 

importantly, the discrepancies discussed above illustrate the fact that although no modeling 

exercise is perfect, the results taken as a whole demonstrate that ecosystem function can be 

accurately represented.  In any model run applied across space, it is possible to find areas of 

agreement and disagreement.  Although ideally we would like to accurately model ecosystem 

states and fluxes at many different scales with little or no error, in practice this is unlikely if not 

impossible both because models rely on many types of input data that have their own errors and 

uncertainty (e.g. – soil data, past management data, etc.) and because of errors in model logic.  
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However, the purpose of models is to bridge the gaps of each individual data source and to better 

generate scalable estimates of ecosystems.   

It is difficult if not impossible to adequately measure an entire watershed’s carbon stocks 

and fluxes.  Wall to wall measurements become even more infeasible at a country scale due to 

time and cost constraints.  However, a model system can incorporate sparse measurement data as 

well as remotely sensed data to generate more accurate wall-to-wall estimates of ecosystem state.  

While no model is perfect, the ability to generate estimates of an ecosystem state and fluxes at 

multiple scales both temporally and spatially provides a strong rationale for model use despite 

the inevitable errors found at particular locations or points in time. 

4. Estimating Potential Productivity 

 The productivity of an ecosystem is generally thought of as the rate at which an 

ecosystem can sequester carbon.  Productivity can also be thought of in relation to the maximum 

ecosystem storage of carbon.  Younger forests for example can be thought of as highly 

productive when they are rapidly adding biomass and sequestering CO2.  The coastal redwood 

forests in California can also be considered some of the most productive forests in the world 

given that in their climax state, they can store more carbon than any other ecosystem (Busing and 

Fujimori 2005).  The potential productivity of a given site can therefore be thought of as either 

the maximum rate that biomass or carbon is accumulated or it can be thought of as the maximum 

amount of carbon stocks that the system can eventually store given the forcing variables of the 

site conditions and the climate.  These two concepts can be distinguished as a rate potential and a 

state potential.  Formally, the rate potential of a given system is the maximum possible rate of 

ecosystem carbon uptake (NEP = GPP – RA – RH) given the climate and site constraints.  The 

state potential is the maximum possible biomass storage at a late successional state given the 

climate and site constraints ( 
SS

NEPstate
0

max , where SS is the steady state climax state defined 

by a little or no change in soil carbon stocks) .  The difference between the rate and state 

potential scenarios and the actual measured or observed scenarios is therefore the influence of 

human disturbance and/or management.  Conceptually, the rate and state potential are valuable 

for constraining claimed climate mitigation benefits as well as for better understanding of the 

impact of land-use change on the carbon cycle.   
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Because of the theoretical nature of potential productivity, process models are required to 

estimate values for rate and state potentials.  Furthermore, process models are essential when 

considering the impacts of future climate change on potential rates and states.  However, as 

discussed above in section 2, before a process model can be applied to a single point in space, let 

alone across a large spatial extent, there are many data sources that must be collected, organized, 

and processed both to drive the model and to parameterize the model to accurately apply to the 

location it is intended to model (see  

Table 3).  This is a non-trivial exercise and there is a need for a streamlined approach to 

parameterizing and applying model logic across space. 

 

4.1 Data Assimilation –  How Process Models Can Incorporate Measurements  

 As described above, process models use our understanding of how terrestrial ecosystems 

work to model how ecosystems grow and change over time.  There are many different models 

and model types and each model’s focus and purpose will in some way dictate how it is designed 

and what processes have been incorporated into the model logic.  Regardless of the model used, 

data measured at the site to be modeled can be used both to parameterize the model to better 

estimate the site and to validate the results of the model runs.  This process of incorporating a 

variety of data sources (model results, model structure, measurements at a given location, remote 

sensing data) is broadly described as data assimilation.   

Data assimilation (DA) has been used extensively in many fields.  Within the earth 

sciences, DA is most developed within the atmospheric and oceanographic communities and is 

used to estimate large scale atmospheric transport of gases constrained by point measurements of 

gas concentrations from flasks or flux towers (Evensen 2003, Mathieu and O’Neill 2008, Reichle 

2008).  However, the idea to leverage multiple data sources to better estimate Earth system 

processes and the application of these methods has become state of the art in the terrestrial 

ecosystem modeling community as well (Running et al. 1999, Knorr and Kattge 2005, Thum et 

al. 2007, Wang et al. 2007, 2009).   

 The general idea of DA is a model-data fusion (MDF) whereby a model is constrained 

and parameterized by the available data to generate model outcomes that are closer to data 

observations.  One approach to this MDF for simple systems that can be represented in closed-

form equations is simply to invert the model given the measurements to “solve” for the 
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parameters.  For example, if an ecosystem model could be represent as a linear system that 

consisted of a set of operators that mapped some input variables to an output set of variables, this 

system could be formally written as (Equation 1): 

Equation 1:  y = Z * β 

Where y is a vector of the ecosystem output state, Z is a matrix of predictor values, and β is a 

vector representing the model parameters.  Using simple linear algebra to solve this system given 

known inputs and measured ecosystem state variable, the model structure could be calculated 

(Johnson and Wichern 2002) (Equation 2). 

Equation 2:  β = Z-1 * y (or if Z is not invertible β = (Z’ * Z)-1 * Z’ * y) 

Most Terrestrial Ecosystem Models (TECMs) however are too complicated to be represented in 

this way both because they are non-linear and because their form prevents a simple 

representation and therefore other approaches are necessary to help parameterize them.  

Regardless of how the system is represented, the basic structure of a DA approach is to consider 

the forcing variables that drive the model behavior, the model structure – i.e. the parameters and 

logic – as a function, a set of initial conditions, and the output state of the system.  Model 

systems can be represented using either a continuous form (Equation 3) or adiscrete form 

(Equation 4). 

Equation 3:   noisepuxf
dt

dx
 ),,(  

Equation 4:  noisepuxtfxx nnnn  ),,(1  
 

where x is a vector of the state variable, u is a vector of forcing variables, and p is a vector of the 

model parameters. f is the model logic that is applied to these inputs and results in a new set of 

state variables defined by the rate of change to the system dx/dt (Raupach et al. 2005).   

The observed data can also be considered as a function.  In the case where the observed 

data exactly matches the variables in the state vector generated by the model, no model is needed 

and the observations alone are used.  However, in many cases, the measured variables need to be 

converted to analogues of the model outcomes both from a scale perspective and in that the 

observed data may be surrogates of the actual quantities that are modeled as opposed to the 

variables themselves (e.g. – we may measure standing volume of a forest but the TECM predicts 

the carbon content of an ecosystem on a per area basis).  The desired latent variable can then be 

modeled as a function of the observed data (Equation 5): 
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Equation 5:  zn = h(xn,un)  + noise 

where x is a vector representing the measured data at time n, u is again the vector forcing 

variables, z is the desired latent variable, and h is a function to convert the data and forcing 

variables to a set of data to constrain or parameterize the model (Raupach et al. 2005).   

 Once the model and data are represented in this manner, the DA method proceeds to 

estimate a set of target values.  These target values can be parameters of the model, outputs of 

the model (e.g. – state variables), or even the error structure itself.  These target values are the 

values that the DA attempts to constrain and refine.  With the target values defined, the final step 

in the DA process is to estimate the target values by minimizing a cost function that considers 

the data values as well as the uncertainty of the data values.  The uncertainty of the model is 

considered the representation error.  This includes the uncertainty of the parameters as well as 

any uncertainty associated with the model logic.  The uncertainty of the observations is the 

natural variability of the estimates as well as the error associated with the measurements of these 

data.  In most cases, the representation uncertainty should be larger than the observation 

uncertainty (Raupach et al. 2005).  An optimization approach is used to find a global 

minimization of the cost function and by doing so to generate estimates of the target values 

(Wang et al. 2009). 

 DA methods can be broadly separated into sequential or non-sequential methods.  

Sequential methods consider new data over time and use these observations to constrain multiple 

timesteps of a model.  Non-sequential methods, or batch methods, consider all of the 

observational data and model outputs at one time when estimating target values (Raupach et al. 

2005, Wang et al. 2009).  Non-sequential approaches are often used for parameterizations that 

then guide model runs given a set of initial observations.  Sequential approaches are best used 

when the data observations occur over time and the model states also occur at more than one 

point in time.  Non-sequential approaches are powerful in that they use all of the available data at 

once to estimate the target values.  However, this approach can also be problematic from a 

computational capacity perspective with extremely large data sets.  Conversely, sequential 

approaches effectively break problems into smaller, more manageable pieces and allow for 

changing model states over time.   

 The summary of DA presented above is a broad overview of how this process works.  

One important aspect of DA is that the final estimates of the target values are largely determined 
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by the uncertainty associated with the model and the observations.  More certain quantities will 

be weighted more heavily and will therefore have more influence on the final outcome.  As noted 

above, the uncertainty of the observed data may be large but in most cases should be less than 

the uncertainties associated with the model.  In many cases, the model uncertainty can be highly 

subjective and is a subject of expert opinion and qualitative analysis.  Because the outcome of a 

DA is highly dependent on the uncertainties of the data sources used to constrain the model, it is 

important to accurately and consistently collect uncertainty data whenever possible. 

 Although the DA method has the potential to improve parameterizations of models and 

also improve the model’s estimates of ecosystem states, these approaches are not perfect and 

there are several caveats to consider when using DA:   

1. Fox et al. (2009) have shown that when DA methods were applied to synthetic results 

that had noise added to them, many DA results failed to adequately estimate model 

parameter values.  If DA cannot estimate parameters from a system where the true 

parameter values are known, it is possible that DA will fail to adequately capture the 

dynamics of natural systems.   

2. There is often a mismatch between the scale and intensity of observed data and the model 

outputs (Raupach et al. 2005).  Converting the observed data to equivalent scales (both 

spatial and temporal) is both a sampling problem and a modeling exercise and has the 

potential to introduce new and large uncertainties to the observed data (see Equation 5 

above).   

3. Most DA techniques assume unbiased error structures.  In the presence of biases, DA 

could result in biased estimates of the target values.   

 Despite these hurdles, DA has been used to successfully constrain ecosystem modeling 

exercises and informs current research efforts in this field.  For the purposes of land use change 

and carbon cycle modeling, these methods are particularly helpful because they allow the 

multiple observational data sources outlined above (forest inventory, flux towers, distributed 

sensor networks, and remote sensing data) to be effectively combined and used to constrain 

TECMs.  Another critical need these methods meet is the ability to automate some of these 

calibration processes so that researchers do not need to parameterize each model location 

individually but instead can use an automated process.  Using DA in multiple phases can also 

allow for many data sources to be successfully integrated into the final model structure (Zhu et 
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al. 2009).  Lastly, pairing process models with sequential DA approaches and remotely sensed 

disturbance indices could allow for real-time adjustments of model results to estimate carbon 

stocks and fluxes from parameterized models.   

 

4.2. Expanding Models across Space 

 As discussed above, process models can be important tools for constraining the impacts 

ecosystems can have in mitigating climate change.  However, to serve this purpose effectively, it 

is imperative that accurate and defensible estimates of both actual and potential ecosystem state 

can be generated across space and into the future.  This is a difficult task considering that there is 

still significant uncertainty in the estimates of current carbon stocks and fluxes at large scales 

(Van der Werf et al. 2009).  Despite the difficulties, there has been much progress in estimating 

current ecosystem stocks and fluxes by combining remotely sensed data, forest inventory data, 

and TECMs (Turner et al. 2004, 2007, Houghton et al. 2007, Potter et al. 2007a, 2008, Saatchi et 

al. 2007, Baccini et al. 2008, Blackard et al. 2008, Goetz et al. 2009, Paivinen et al. 2009).  The 

studies above show that using existing inventory paired with both remotely sensed data and 

TECMs, it is possible to generate estimates of current carbon stocks.   

There are several approaches that these studies use to generate spatially explicit estimates 

of ecosystem stocks and fluxes.  Some studies use an empirical approach that relates remotely 

sensed grid-cell level characteristics to the available estimates of stocks from scattered inventory 

estimates across the study region (Houghton et al. 2007, Muukkonen and Heiskanen 2007, 

Baccini et al. 2008, Paivinen et al. 2009, Powell et al. 2010).  Other approachs use simple 

allometric models that relate the remotely sensed leaf area to other structural ecosystem 

components (e.g. bole biomass) (Zhang and Kondragunta 2006).  Other approaches combine 

several remote sensing products and generate classes of cells.  These strata are then related to the 

inventory data found within them (Saatchi et al. 2007, Blackard et al. 2008, Wulder et al. 2008).  

The most complex approaches use process models that have been calibrated using remote 

sensing products and/or inventory and flux data to estimate ecosystem stocks and fluxes (Nemani 

et al. 2003, Potter et al. 2007a, 2008, Turner et al. 2007).  This last approach is most similar to 

the approach needed to estimate the potential productivity of a site as this potential can only be 

generated using process models.   
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 This automated modeling approach, while theoretically appealing, has several problems 

that must be addressed.  First, collecting and organizing all of the data that may help to constrain 

the results is no small feat as there is no central clearing house for this sort of data.  Second, the 

forcing data (e.g. climate data, soil data) may be sparse and have large uncertainties.  Third, the 

TECM chosen will have a large impact on the final estimates (Cramer et al. 1999, Randerson et 

al. 2009).  Given that these models produce representations of the true ecosystem structure, there 

may be large uncertainties in the final estimates generated from this approach.  Lastly, running 

TECMs at a grid-cell level across large spatial extents presents major computational demands 

and may in fact make such an effort difficult.  This last concern may be partially mitigated by 

using a stratification system as opposed to individual grid-cell level models.  

 

4.3.  Scale Flexibility 

 One benefit of using a DA approach (assuming its successful implementation) is the 

flexibility it provides in terms of the scale of the questions it allows to be addressed.  Some of the 

most difficult aspects of large scale estimates of ecosystem stocks and fluxes are the myriad 

different data resolutions along with the sparse availability of actual measurements.  As an 

example, MODIS reflectance data comes in 1km to 250m grid cell sizes for the entire globe.  

Annual NPP and 8 day GPP are calculated using a light use efficiency model at a 1km resolution 

(Running et al. 2004).  Flux towers or continuous forest inventory data would be the ideal 

calibration and/or validation data sets; however there are less than 500 flux towers world wide 

(FLUXNET,(“FLUXNET Integrating Worldwide CO2 Flux Measurements” 2010)) and most 

forest inventory datasets are not remeasured frequently enough to provide accurate data about 

year to year changes.  In addition to the MODIS datasets, Landsat data are available at 30m 

resolution but have much sparser temporal resolution.  For Landsat data, similar issues of the 

availability of calibration and validation data apply and because of the smaller grid cell size, 

some larger scale flux tower footprints may exceed the 30m Landsat grid cell size making 

inferences difficult.  In all of these cases, the flexibility of a DA approach and using a TECM 

allows for scaleable spatial products.  Once the TECM is calibrated using the available 

observations, it can then be regridded and run at multiple scales should the need arise.  

Furthermore, sparse flux and inventory data can be integrated to better constrain the model 

results. 
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5.  Conclusion 

 The need for spatially explicit estimates of forest biomass storage and CO2 sequestration 

and emissions has never been greater.  This is not a new field (Running et al. 1989, Tague and 

Band 2004), but impending and existing climate change mitigation and adaptation policies paired 

with a vibrant voluntary carbon market are driving the demand for high quality, credible, 

consistent, and accurate estimates of carbon stocks and fluxes in ecosystems around the globe.  

Fortunately, there are many sources of data that can help to constrain these estimates.  Field 

based measurements of stocks and fluxes include traditional forest inventory, flux towers, and 

distributed sensor networks.  Remote sensing technologies using both passive and active 

approaches like MODIS, Landsat, LIDAR, and RADAR can provide wall to wall spatial 

coverage over large areas to help estimate biomass accrual in areas with sparse ground data.   

Regardless of the specific datasets available, using a data assimilation approach to 

combine the available data maximizes the accuracy of the final estimates of ecosystem 

sequestration and storage.  The use of a model system to assimilate multiple data sources is a 

classic case of the sum of the data sets being greater than the parts.  Although each of the data 

sets mentioned above are valuable, taken alone they are not as effective at answering the 

questions and addressing the needs of policy makers and carbon project developers. Using a DA 

approach to calibrate a TECM from the available data allows for more flexibility in applying the 

TECM across different spatial scales calibrated based on observations.  A well calibrated TECM 

can then be used to estimate current stocks and fluxes as well as potential stocks and fluxes to 

further bracket the possible climate mitigation benefits associated with any given area.   

Despite the flexibility and power of this approach, there is still a high level of discomfort 

with using process models (or models of any sort) to establish policy baselines or to constrain the 

outcomes of climate mitigation projects.  Therefore, in the short term more work is needed to 

improve the accuracy and precision of process models and to thoroughly validate their results 

using trusted and well-understood data sources.  Once this is done in many diverse ecosystems, 

the potential to apply calibrated TECMs to policy questions will be possible, and will allow 

ecosystems to play a greater role in climate change mitigation and adaptation policy.  
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Chapter 3 

The Use of LiDAR and High-Resolution Imagery to Develop a Pixel-Based Stratification 

System to Estimate Carbon Stocks for a Verified Forest Carbon Offset Project 

Abstract 

 The voluntary carbon market is a new and growing market that is increasingly important 
to consider in managing forestland.  Monitoring, reporting, and verifying carbon stocks and 
fluxes at a project level is the single largest direct cost of a forest carbon offset project.  There 
are now many methods for estimating forest stocks with high accuracy that use both Airborne 
Laser Scanning (ALS) and high-resolution optical remote sensing data.  However, many of these 
methods are not appropriate for use under existing carbon offset standards and most have not 
been field tested.  To bridge this implementation gap, a new forest stratification and sampling 
method that meets the requirements of the Climate Action Reserve (CAR) Forest Project 
Protocol has been designed and applied to a verified and registered carbon project in California.  
This approach meets the requirements of the CAR standard while reducing the costs of inventory 
and increasing the accuracy of estimates of carbon stocks and basal area.   This method also 
applies a unique parametric and non-parametric application of ALS data to forest carbon 
estimation.   

The 3 goals of this paper are to 1) present a novel method that has been successfully 
verified and registered at the project level and can be easily understood by land managers 
and verifiers,  2)  present a method that can determine the optimum grid cell size to 
aggregate remote sensing data and that can be used to find the minimum sample size 
needed to meet given accuracy targets, and 3) explain how to leverage the inventory data 
collected in this way for future management, monitoring, and carbon verifications. 
 

 

1. Introduction 

The world’s forests are a critical sink of carbon dioxide (Denman et al. 2007).It is 

estimated that forest degradation or destruction results in 6 to 17% of total anthropogenic 

CO2 emissions annually (Van der Werf et al. 2009).  Because of the importance of forest 

ecosystems in adapting to and mitigating climate change, there are now many policy 

initiatives to preserve and restore forest ecosystems for a climate benefit (UNFCCC 1998, 

2009).  Despite years of discussion however, policies to reduce emissions from terrestrial 

ecosystems have generally not been adopted.  An exception to this is California’s cap and 
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trade system that will incorporate carbon offsets starting in 2012 (barring a legal challenge) – 

see (“Cap and Trade | California Air Resources Board” 2011).   

In part due to the dearth of climate change policies, a vibrant voluntary carbon offset 

market has sprung up centered around a suite of different carbon project standards (CCBA 

2008, VCS 2008, CAR 2010, Winrock International 2010), and managing forests for carbon 

offsets can provide an important income stream for landowners willing to undertake the costs 

and requirements of these standards.  These standards all have slightly different requirements 

regarding how to quantify the amount of carbon offsets generated, but generally all require 

periodic ground-based installation and measurement of plots to monitor project level carbon 

storage.  This paper will focus on the requirements of the Climate Action Reserve Forest 

Project Protocol as this protocol is substantially similar to what will likely be adopted by the 

state of California for their compliance carbon market system.  The ground based inventory 

described here, like most traditional forest monitoring, relies on tree measurement and 

conversion to volume, biomass, and carbon equivalents using established species-specific 

regressions developed through destructive sampling of trees (Jenkins et al. 2003, 2004, Smith 

et al. 2003, 2006).  These sample-based estimates of forest carbon storage are then 

extrapolated across the full project, often through a stratification approach, whereby 

unsampled areas receive estimates from areas with similar characteristics based on their 

remotely sensed attributes (McRoberts et al. 2002). 

This traditional approach to estimating forest parameters has recently been supplemented 

and improved upon with the use of remote sensing technologies like Light Detection and 

Ranging data (LiDAR) paired with high resolution multi-spectral imagery.  While these new 

technologies can accurately estimate forest carbon stocks and fluxes, some of the methods 
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are not easily applicable to forest carbon offset projects because of their complexity and 

expense. There is a need to apply these new remote sensing products in the context of the 

voluntary carbon market to show their usefulness at a project level in conformance with 

typical forest carbon project standards.  

2. Background 

2.1. ALS and Optical Remote Sensing  

Optical remote sensing products derived from airborne and satellite-borne sensors – 

Landsat Thematic Mapping Imagery (Hall et al. 2006, Demaeyer et al. 2007), IKONOS 

imagery (Song et al. 2010), Quickbird imagery (Johansen et al. 2007, Koutsias et al. 2008, 

Ghioca-Robrecht et al. 2008, Song et al. 2010), SPOT HRG imagery (Xiao et al. 2002), 

Moderate Resolution Imaging Spectroradiometer (MODIS) (Running et al. 2004, Grace et al. 

2007, Houghton et al. 2007, Potter et al. 2007b, Zheng et al. 2007, Baccini et al. 2008, 

Blackard et al. 2008), and others (Goetz et al. 2009, Paivinen et al. 2009) – have all been 

used to classify forest landscapes and in some cases to estimate standing carbon stocks. 

However, estimates of carbon stocks and classifications created using optical sensors alone 

usually have trouble differentiating areas with high carbon stocks (Lefsky et al. 2002, 2005).  

Synthetic Aperture Radar (SAR) sensors can help improve estimates of biomass but these 

sensors also saturate in high biomass systems (Balzter et al. 2007).  Because of these 

limitations, the estimation of forest carbon stocks is often greatly improved using forest 

structure data and specifically forest height.  Airborne Laser Scanning (ALS) provides a 

richer summary of forest conditions and more accurate estimates of volume and biomass due 

to its ability to accurately capture forest heights (LiDAR intensity values can also be used to 

improve estimates).  
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ALS paired with other optical remote sensing data is a well-established approach to 

spatially estimating forest attributes (Wallerman and Holmgren 2007, Hilker et al. 2008, Ioki 

et al. 2009, Gonzalez et al. 2010, Takahashi et al. 2010, Breidenbach et al. 2010a, Straub et 

al. 2010).   The use of optical remote sensing data in conjunction with LiDAR data is helpful 

in both delineating crown boundaries and in differentiating between species (Lefsky et al. 

2005, Hilker et al. 2008, Gonzalez et al. 2010, Takahashi et al. 2010, Breidenbach et al. 

2010a, Straub et al. 2010).  The ability to make species level distinctions is especially 

important when estimating merchantable timber volumes and biomass, as these parameters 

differ between species in trees that are the same size. 

ALS data is collected from an instrument that is flown over the forest on an airplane or 

helicopter.  Laser pulses emitted from an airborne instrument reflect off of terrain and 

vegetation revealing both forest structure (e.g. – height, sub-canopy elements) and a detailed 

digital elevation model (Magnussen and Boudewyn 1998, Akay et al. 2009).  Individual laser 

returns can be discrete or continuous (waveform).  The spatial resolution can vary from many 

returns per square meter to sparser returns. The coverage of the ALS can range between full 

coverage of a given area with no gaps to a sample of the area based on transects below the 

flight lines to spot samples within transects (i.e. GLAS) (Ståhl et al. 2011, Maltamo et al. 

2011). 

There are two broad categories of ALS data analysis approaches:  area-based approaches 

(ABA) / statistical canopy height distribution approaches, and individual tree crown 

approaches (ITC).  Many individual tree approaches use the cloud of LiDAR point data and 

their relationship to neighborhood points to build individual crown polygons and/or 3-

dimensional tree profiles (Coops et al. 2004, Wang et al. 2008, Akay et al. 2009).   These 
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individual tree records can then be aggregated to any scale required to create stand level 

estimates. These ITC approaches use both parametric and non-parametric approaches 

(Maltamo et al. 2009). 

In area-based approaches, plot level data is related to remote sensing data that has been 

aggregated to pixel, plot, or polygon (e.g. stand) units to estimate volume, biomass, or other 

area based metrics.  Area based approaches fall broadly into two main categories:   

1)  The first category relates grid-cell or stand level remote sensing data to measured plot 

characteristics to build parametric models to represent forest data.  These models have been 

shown to explain the vast majority of the variation in tree height, diameter at breast height, 

volume, biomass, basal area, and a suite of other variables (Næsset 1997a, 1997b, 2002, 

Magnussen and Boudewyn 1998, Hudak et al. 2006, Ioki et al. 2009, Gonzalez et al. 2010, 

Takahashi et al. 2010) 

2)  The second broad category uses non-parametric classification or nearest neighbor 

methods to stratify the forest into similar groups (Packalén and Maltamo 2006, Hudak et al. 

2008a, 2008b, Nothdurft et al. 2009, Breidenbach et al. 2010b, Latifi et al. 2010, Jaskierniak 

et al. 2011).  Non-parametric approaches include k-nearest neighbor techniques (Moeur and 

Stage 1995) and classification algorithms such as Random Forests (Hudak et al. 2008b). 

Area-based approaches and individual tree approaches to estimating forest parameters are 

not mutually exclusive however, and several authors have shown how area-based systems 

can be combined with individual tree methods (Lindberg et al. 2010, Breidenbach et al. 

2010a) 

2.2. ALS and Optical Remote Sensing for a Forest Carbon Offset Project 
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The methods outlined above all provide different approaches to using ALS data and other 

data sources to estimate forest parameters.  There are two main hurdles in using these 

methods for forest carbon offset projects.  First, the method must be cost-effective and must 

also fit within the existing management framework of the project.  Second, the estimation 

method must meet the monitoring and verification requirements of the carbon offset protocol.  

These protocols require periodic inventory of the forest and the application of species-level 

biomass and carbon conversion equations to all inventory estimates (Aalde et al. 2006, VCS 

2008, CAR 2010).  For example, the Climate Action Reserve Forest Project Protocol v3.2 

requires that the United States Forest Service biomass conversions are used for all trees in the 

project area.  Using a stratified inventory approach provides an easily understandable way to 

generate strata-level tree lists simply from plot data and because of this is more easily 

verified (CAR 2010).  Although it may be possible to use some of the existing approaches 

within a forest carbon project framework, their complexity makes them difficult to 

understand and potentially challenging to verify. Some approaches do not generate species 

specific estimates of tree size that can then be used to expand to volume and/or biomass 

using approved biomass regressions (e.g. - (Ioki et al. 2009)).  The primary objective of 

this paper will be to describe how the ALS and optical remote sensing stratification 

system adequately meets the requirements of forest carbon protocols while improving 

the accuracy of forest inventory estimates. 

In addition to describing a method for ALS and optical remote sensing data to stratify a 

forest ownership to meet the requirements of a carbon project protocol, this paper will also 

detail how and where sampling should occur.  ALS and optical remote sensing data provide a 

wealth of information that can be used to increase the efficiency of sampling a forest.  A 
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secondary objective of this paper then, is to provide a method to choose the optimal size 

for the units of analysis (grid-cell size) and to locate plots across the project once the 

grid is established. Past research has used LiDAR data to stratify an area and locate field 

plots but these studies have not combined both LiDAR and optical data in the stratification 

and plot location. These studies have shown that using LiDAR data to first stratify an area 

and then to locate field plots based on initial strata reduced the root mean squared error 

(RMSE) of predicted volume  (Hawbaker et al. 2009, Maltamo et al. 2011).  

The question of the optimal grid-cell size has been addressed from the opposite direction 

by Gobakken and Næsset (2008).  They examined the optimum plot size to use to best 

correlate the remote sensing data with the inventory data; however their analysis only used 

fixed area plot designs and did not examine at what scale to aggregate the remote sensing 

data (i.e. – how big should the grid cells be?).  Van Aardt et al. (2006) examined various 

sizes of stands using variable radius plots but their analysis involved the best fit when a stand 

could contain multiple plots and did not use a regular grid system.  Therefore, this new 

approach will show how to find the most appropriate grid cell size that relates variable radius 

prism plots to remotely sensed data where each grid cell receives no more than one plot. 

Although there has been ample discussion of the technical nature of ALS-assisted forest 

estimation, few studies move beyond the initial analysis and results with an eye to future 

management and monitoring.  The third and final objective of this study is to examine 

how to best leverage data generated by this stratification and modeling exercise for 

typical management purposes and how to perform inventory updates assuming regular 

remote sensing data acquisition is not feasible (given cost constraints).   
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Using an ALS and optical remote sensing stratification system, a verified and registered 

carbon project in Mendocino County, California, the Garcia River Forest (GRF), was 

inventoried in 2010 to meet the requirements of the California Climate Action Reserve 

(CAR) Forest Project Protocol.  Three remotely sensed image datasets – color infrared data 

(CIR), Red, Green, and Blue true color imagery (RGB), and LiDAR data – were used to 

create a canopy segment layer, a canopy height model, and a digital elevation model.  These 

data were summarized to 20m (1/10 acre) grid cells over the property.  An initial systematic 

random sample was then installed over the full property.  The remotely sensed variables were 

collapsed using a principal components analysis, and combined with the canopy segment 

summary variables and topographic descriptors, and field survey data to explain the variation 

in the initial sample of basal area (BA) using a regression model (models to predict trees per 

hectare (TPH) and percent conifer BA were also developed).  The BA model was then used 

to estimate the basal area for each grid-cell on the property.  The BA modeled estimates were 

then combined with average canopy height derived from the LiDAR canopy height model 

and the product of basal area and canopy height was calculated as a proxy of volume.  This 

proxy was then divided into classes using an optimal binning heuristic, to define the strata.  

After this final stratification was completed, a second set of plots were installed to fully 

inventory each strata, with the number of plots based on the variability of each strata (see 

Figure 1 below). 
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management was used in the past.  Stand boundaries are easily seen and delineated when 

they correspond to past management and management history can inform the typing of 

stands.  However, in forests managed with uneven-aged silvicultural systems or without a 

well maintained history of past management, it can be difficult to create a stand map that 

accurately partitions the variability of a forest due to the relative homogeneity of the forest 

when observed from aerial photos.  In this study, the field site fits within the second of these 

categories: the past management was well-documented but the uneven-aged harvests have 

left a forest that does not have many clear stand boundaries (see Figure 2), thus rendering the 

traditional stratification approach less accurate. 

Using an ALS and optical remote sensing stratification (ORS) system, the 9,623 ha 

(23,780 acre) GRF property was divided into 36 strata (35 forested and 1 non-forested) 

across the property.  Each stratum is at least 4.05 ha (10 acres) in size.  Strata with higher 

numbers generally represent better stocked forest areas that have larger trees with more 

volume and carbon.  This approach to forest stratification produces inventory estimates with 

more statistical confidence relative to the traditionally stand-based inventory approach using 

about half as many plots (see Table 1 and Table 4). Figure 2 shows a map of the strata 

generated by this new approach with the old stand boundaries shown in black.  Except for the 

green areas that correspond with grassland, brush-fields, true oak woodlands, or stands 

treated to reduce tanoak competition most of the property has unclear stand boundaries in a 

traditional sense, with a high degree of variability within stands. 
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where Y is the transformed response, X is a matrix of transformed predictors identified by 

the Lasso method and β is the vector of least squares coefficients.  The predictor variables 

used in these regressions are several topographic and LiDAR tree crown variables and the 

principle components of the color-infrared (CIR) and RGB imagery data sets as well as the 

PCA rotations for a suite of variables derived from the LiDAR data (the PCA rotations were 

used to reduce the number of parameters to analyze when building these regressions – see the 

Appendix for a full list of the predictor variables considered).  The components of the β 

vector and the predictor variables (X) for the BA model are listed in Table 2.  The variables 

are arranged such that those explaining most of the variation are listed first and those 

explaining the least are last.  Regression relationships for trees per hectare and percent 

conifer BA are also shown below.  These relationships were used when joining strata with 

less than 10 acres into other larger strata in the last step of the stratification process.  A 

logistic model form was used for % Conifer BA as this model form results in outputs 

between zero and one. 

As has been found in previous crown-based inventory projects, the LiDAR and CIR 

based variables predict the BA and TPH components best, while LiDAR and RGB variables 

are more helpful in predicting species composition (Lefsky et al. 2005, Gonzalez et al. 2010, 

Takahashi et al. 2010, Breidenbach et al. 2010a, Straub et al. 2010).  The dominance of the 

color variables in predicting species composition is likely due to the realized species 

composition of the property being better represented by the image spatial domain than the 

image frequency domain.   The spatial domain treats the image plane as a spatially related 

database and summarizes the pixel information in context to its neighbors.  The frequency 
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domain works on the Fourier transformation of the pixel information.  In this case texture, 

characterized by both grain size and arrangement was more important in discerning species 

composition than were the absolute color values (Clark et al. 2005).  In other environments 

where the leaf color differs more profoundly, color has been more important than texture. 

Table 2:  Final Model Form and Coefficients (all coefficients are significantly different from 0 at the 95% 
confidence level) 

BA TPA % Conifer BA 

Intercept 3.079788313 Intercept 6.19851 Intercept -0.04949619
CIR3 -0.11917071 Crown 

closure 
0.0006754 LI1 0.161971603

Average crown 
segment height 

0.00519755 LI6 -0.19544 RGB4 0.81924046 

Crown closure 0.017182801 LI7 0.05154 LI2 0.09321113 
LI7 0.07755464 LI4 0.02984 LI6 -0.19769152

    CIR6 -0.11007 RGB5 -0.50907623
    LI2 -0.20571 LI7 0.294606256
    LI1 0.18478 RGB1 0.824221728
        RGB6 -0.42129326
        LI5 -0.50907623

 
Table 3:  Initial Model Fit Statistics 

Model MSE R2 
Correlation of Predicted 

vs Me6asured  
Number of 
variables 

BA 0.21687 0.635 0.647 4 
TPA 1.46939 0.568 0.284 7 

%ConBA 1.95837 NA 0.474 10 
 

The coefficient of determination is not reported for the percent conifer BA as this statistic 

is not appropriate for logistic regression.  Figure 3 shows the modeled versus measured BA 

in the original and final plots.  An examination of the model fit with the original 199 plots 

(blue) showed that there weren’t any strong trends in the residuals.   
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statistical confidence in the inventory using this method due to the high resolution 

stratification derived from the remotely sensed imagery (Table 1).  Second, this new 

stratification approach has shown that past samples most likely averaged more highly stocked 

riparian areas with non-riparian areas and therefore showed less volume on this property.  

Third, this new strata system allows for a flexible approach that can be easily leveraged when 

designing timber harvest plans or trying to understand the habitat of a given area.  For 

example, accurate inventory estimates can now be made for any polygon across the full 

ownership simply by aggregating a set of grid cells. 

Table 4:  Summary and Comparison of 2009 and 2010 Stratification Systems.  The 2010 “stands” are called 
stands as that is their closest analogue when thinking about a traditional stand-based stratified forest 

inventory.  However, these “stands” do not correspond to management units and are therefore better thought 
of as pixels. 

    2009 2010 

Plot 
Data 

Total Plots 1579 810 
Max Plots/Strata 394 40 
Min Plots/Strata 4 15 
Median Plots/Strata 45 22 

Average Plots/Strata 75 23 

Stand 
Data 

Total Stands (Pixels) 278 240,410 
Sampled Stands (Pixels) 170 810 
Max Stand (Pixel) Area 
(ha) 1,023 0.04 
Min Stand (Pixel) Area 
(ha) 0.8 0.04 
Median Stand (Pixel) Area 
(ha) 14 0.04 
Mean Stand (Pixel) Area 
(ha) 33 0.04 

Strata 
Data 

Forested Strata # 21 35 
Max Strata (ha) 1,704 1,816 
Min Strata (ha) 7.3 3.9 
Median Strata (ha) 230 76 

Average Strata (ha) 444 255 
 

3.1.3. Old Stand Level Comparison 
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dead) 

DR1M 2 53 2009 4 47.3 739.8 35,031 174.5 26 45.7 824.8 28,938 157.6 

GX2D 115 7 2009 4 25.4 339.7 6,169 123.6 16 38.2 709.6 17,104 132.8 

MH2D 171 35 2008 4 32.7 1,255.6 32,564 127.8 23 44.0 822.0 24,558 150.9 

DR2D 239 13 2008 4 19.0 219.0 26,084 93.7 23 42.0 695.5 28,769 145.5 

DR3D 265 54 2008 4 43.2 883.1 55,819 217.8 29 44.6 737.9 32,592 154.5 

CH2M 269 183 2008 20 43.1 1,404.7 35,222 156.2 30 48.5 839.4 34,417 169.5 

CH2M 270 138 2008 16 47.5 1,646.9 28,088 170.3 30 48.3 842.1 34,136 168.2 

CH2M 271 131 2008 16 40.0 1,745.1 22,248 140.2 29 46.7 808.5 32,671 163.1 

 

Another way to compare the current strata system to the prior system is to look at 

some well sampled stands in the prior inventory and compare those estimates to the 

current strata-based estimates (Table 5).  Quantitatively the differences between mean 

estimates of stand variables are not statistically significant (except for BA – this result 

was also found in Hudak et al. (2008a) and they postulate that this bias is a result of the 

natural logarithm transformations and back transformations).  These results therefore are 

an indication that the current stratification system, though much different than the 

previous system, produces estimates of stand level parameters that are similar to a 

traditional forest inventory (but more accurate).  The advantage is that these estimates can 

now be found for any arbitrary polygon across the forest by grouping cells of interest and 

generating estimates for this group (Hudak et al. 2008a).  This approach therefore 

presents a much more flexible set of data from which to gauge forest conditions. 

4. Discussion 

4.1. Selection of Grid Size 

The first step in partitioning the variability of the GRF was to establish a grid across the 

whole property.  Many LiDAR driven forest inventories in past studies have used stem-
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mapped plots to correlate ground data with remote sensing data by using the actual location 

of trees and their crowns to build models that relate to the remotely sensed crown polygons 

and crown heights (Gonzalez et al. 2010).  In this application however, variable radius plots 

were used to correlate the vegetation and the cell variability recognized by the LiDAR 

imagery.  Stem mapping was not chosen because it would have been prohibitively expensive 

due to the high number of stems per ha and the steep terrain.   However, because variable 

radius plots were used it is difficult to know the optimal size for grid-cells given that the size 

of the plots is variable (Avery and Burkhart 2002). 

The exercise of choosing the size of the grid cells is dependent on several factors.  The 

first consideration is the ability to accurately locate sample plots using handheld GPS units.  

The GPS units used by the inventory cruisers have accuracies that exceed 10m (33 feet) 95% 

of the time (GPSMAP 76CSx Owner’s Manual n.d.).  The second factor when choosing the 

grid size is finding the optimal cell size to reduce the variability between the remote sensing 

data and the measured plot data.  Past studies have shown that it is important to choose a grid 

size that best matches the size of the plots installed (Magnussen and Boudewyn 1998, Næsset 

2002).  van Aardt et al. (2006) also explored this question using an object based approach (as 

opposed to pixels, objects are non-uniform areas of similar characteristics) and found only a 

small loss of accuracy with increasing object size.  Pesonen et al. (2010) have also examined 

the optimal fixed area grid cell size but for that study focused on finding the optimum grid 

cell size when estimating coarse woody debris as opposed to standing trees.   

Approaching the question of the optimum size to best relate plot data to remote sensing 

data, Gobokken and Næsset(2008) used a Monte Carlo analysis to explore the optimal size of 

fixed area plots in developing accurate forest inventory estimates. This analysis is similar to 



 134

our current question but may be difficult to implement in practice as the plots may already be 

measured or it may not be appropriate to change the plot design mid-sample.   

In this case, a 4.6m2/ha (20 ft2/acre) basal area factor (BAF) prism was used on each plot.  

Generally, a 4.6 BAF prism samples about 0.04 ha but this will change depending on the size 

of the trees.  To test this, the average of the limiting distances of each tree measured in all of 

the variable radius plots was calculated and the median plot size based on this analysis was 

determined to be 0.036 ha.  However, larger trees would likely be outside of grid cells that 

are 0.4 ha or smaller.  In addition, there is a greater chance that the location of the plot in the 

field would fall outside of the target grid cell due to the variability in the estimates of 

location made by the handheld GPS units.  Therefore, grid cells less than 0.4 ha (1/10th acre) 

were deemed too small.  

As the grid cell size increases to sizes larger than 0.4 ha, the variability of the forest 

within the cell (and hence the remote sensing data) increases.  Because of this, it was 

hypothesized that any model that relates plot metrics to summarized grid cell remote sensing 

data will theoretically perform worse as the size of the cell increases to sizes larger than the 

plot.  For these reasons, a 0.04 ha cell size was used as it was deemed to be the smallest cell 

size that would contain a 4.6 BAF plot and the location error associated with the handheld 

GPS units, and result in minimal within cell variability. 

After further analysis following the completion of the inventory, the 0.04 ha grid cell size 

may have been slightly too small to create the strongest relationship between plot values (e.g. 

– BA, TPH, volume, carbon, etc) , topographical data (elevation, slope, aspect), and remotely 

sensed data (e.g. –orthophoto band intensity).  The optimal grid cell analysis was undertaken 

after the inventory was completed as a means to assess if the pixel size used was the best size 
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and to inform future projects.  The approach outlined below is one method that could be used 

to decide on the size of pixels to divide a forested area into and would ideally be used prior to 

the final sample. To determine the optimal grid cell size, a sample of the remotely sensed 

data was taken at each field plot point with a series of increasing circular areas (see figure 

5a).  The mean and standard deviation of all remotely sensed variables for each circular 

region for each data set was then calculated for each size circle.  Once the remote sensing 

derived data had been summarized to each sample size, an exhaustive model selection routine 

was run to find the best model assuming the best model was defined using Bayes Information 

Criteria (BIC) (Lumley and Miller 2009, R Development Core Team 2011).  The BIC was 

used as the metric of model performance because it does not assume that a relationship 

between explanatory and predictor values exists and has a larger penalty with larger data sets 

(Ramsey and Schafer 2002).  Once the model with the lowest BIC was chosen for each 

circular area the amount of variation explained was graphed relative to each other sample 

size (figure 5b).  In this way, an objective approach to model selection can provide a metric 

to judge which size grid-cell is optimal.  Based on the results seen here, it seems the optimal 

cell size was about 0.08 ha (1/5 acre).  This would be slightly larger than the cell size actually 

used. 

 



 

Figure 5: 
BIC mod
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Using this new approach will be a significant departure from how forest planning 

traditionally proceeds using a stand-based approach.  Using a grid-based stratification, 

analysis of given forest areas in these small units can provide more fine-grained 

information about any given area.  For example, when laying out timber harvest plan 

boundaries, these forest strata can be used to more accurately understand current stocking 

and forest conditions and allow for better layout of plan boundaries and a better 

description of pre-harvest conditions and habitat. 

Although this stratification approach provides much higher resolution data in terms of 

understanding current forest conditions, there are several challenges to using this 

approach.  To begin, this grid system does not lend itself to easy modeling of future 

management because the stand structure (20 m2 pixels) does not yield logical 

management units. Secondly, although we have more confidence in the total volume of 

any given cell across the property, there may be more variation in the species 

composition within a stratum type.  This is a result of the fact that total volume, not 

merchantable volume, was the variable whose variation was optimized during the 

creation of strata. In future efforts, both total volume and merchantable volume should be 

considered when creating strata boundaries. 

4.3.2. Sampling of Harvest or Disturbance 

As mentioned above, this strata system provides a highly flexible and accurate picture 

of current forest conditions.  Moving forward, as areas are harvested or undergo natural 

disturbance, however, sampling will revert back to a more traditional harvest area (stand) 

based approach.  The reason for this is twofold.  First, the cost of collecting new remote 

sensing data annually prevents the collection of the necessary data to drive this 
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stratification process.  Second, the known THP boundaries or disturbance events can be 

used to generate more accurate stand boundaries.  Therefore, future sampling will 

proceed by first delineating the disturbed area and then sampling within this area to 

estimate the standing forest stocks post disturbance. 

 

4.3.3. Ecological Monitoring 

We anticipate that the canopy height model will be used in the future to generate a 

revised Northern Spotted Owl (NSO) habitat model to assist in management of the NSO.   

One of the benefits of this small grid system is that the final plot data can also be used to 

develop full parametric models for any variable of interest.  In some cases (e.g. canopy 

cover), models are not required as the variable in question is measured directly by the 

LiDAR data.  In this case, the canopy cover found in trees greater than 28cm (11in) DBH 

will be modeled to inform the classification of NSO habitat (California Department of 

Forestry and Fire Protectiton 2008) (traditionally this classification was based on lower 

resolution ocular estimates). 

 

4.3.4. Pre-Aggregation for Process Modeling 

Hawbaker et al. (2009) show that there is a need for ALS to be leveraged across 

larger landscapes and that ALS can help to create more accurate estimates of biophysical 

variables at a landscape scale by helping to better define the sampling design used.  The 

method of sampling and stratification outlined in the following section can also be used 

to both validate process models and to serve as a pre-aggregation framework across a 

large landscape.  Although this method uses ALS and optical remote sensing data with 
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continuous coverage across the landscape it could also be applied to larger scales using a 

variety of data sources with or without full coverage.  Specifically, by running models 

based on a small set of strata instead of in each grid-cell across a region much more 

efficient and rapid estimates of ecosystem state can be generated. 

Lefsky et al. (2005) have shown the value of using ALS combined with Landsat data 

to construct independent estimates of landscape net primary productivity and net 

ecosystem productivity to compare with light-use efficiency models or biogeochemistry 

models.  Their work used remote sensing data collected over time to detect change.  The 

strata system developed here will serve as the basis for future biogeochemistry model 

runs that will also attempt to better estimate ecosystem carbon fluxes at the GRF. 

 

4.4. Conclusion 

The method described below not only provides a cost effective and flexible approach to 

stratifying a forest but also has been designed and applied in the context of the requirements 

of existing  forest carbon project protocols.  This is highly valuable given that monitoring, 

reporting, and verifying carbon stocks and fluxes at a project level is the single largest 

external cost of a forest carbon offset project.  Although currently the use of LiDAR 

approaches for smaller scales still is not cost effective, using a method like this one at scales 

larger than 10,000 ha (25,000 acres) may pay for themselves by reducing the cost of the field 

inventory required. 

Additionally, the use of both parametric approaches (to develop models from the initial 

sample) and non-parametric approaches (to partition the variables of interest into strata) 

provide more power to determine the optimum sampling intensity and location across a large 
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ownership.  Furthermore, the two-stage sample allows for the optimum grid cell size to be 

found. 

For management decisions, this ALS and optical remote sensing stratification design and 

high-resolution grid allows for more accurate estimates of volume at any scale larger than a 

0.04 ha grid cell (1/10 acre).  This new strata layer and the data associated with it will serve 

as a baseline of forest conditions against which future management at the Garcia River Forest 

can be compared and assessed.  Additionally, because of the flexibility built into this method, 

it can be scaled to much larger or smaller spatial extents.  This is valuable for planning both 

local and larger scale ongoing management and monitoring activities.     

5. Methods 

5.1. Study Site 

The Garcia River Forest (GRF) project is a 9,623 ha (23,780 acre) forest located in 

Mendocino County, California northwest of the town of Boonville.  This forest is owned by 

The Conservation Fund (TCF) and is protected by a conservation easement held by the 

Nature Conservancy (TNC).  The goals of the project are to conserve and restore highly 

productive and biologically diverse forests and streams, and to implement sustainable forest 

management practices that support the local economy (The Conservation Fund 2006). This 

region is historically dominated by a mix of redwood (Sequoia sempivirens)and Douglas-fir 

(Pseudotsuga menziesii) trees but due to decades of industrial timber management and 

intensive harvesting of this forest there is now a higher than natural amount of Tanoak 

(Lithocarpus densiflorus) in traditionally conifer dominated stands.   

Due to the past management of the GRF, most stands have a mix of young 2nd or 3rd 

growth redwood and Douglas-fir trees with high proportions of tanoak.  Most areas are 
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heterogeneous within stand boundaries and these conditions are the norm across the full 

ownership.  Past management consisted mostly of “thinning from above” – removing the 

larger, better trees from most stands – and as a result most stands are made up of small, 

young trees.   

Because of the state of the forest today, it is difficult to use a traditional stand mapping 

approach to delineate areas that are substantially similar.  The result of applying the 

traditional air photo interpretation approach to stand mapping in this forest resulted in the 

creation of large stands that have high degrees of within stand variability and don’t always 

relate to logical management units (see figure 2).   

5.2. Field Data 

5.2.1. 2009 Data (used for comparison to 2010 stratification results) 

The existing inventory consisted of plots installed over several years using several 

different cruising protocols.  Both variable radius plots and fixed area plots were installed 

across the property from 1999 to 2009.  Most recently (2006 to 2008), all cruising 

occurred on a 400 by 400 meter (20 by 20 chain) grid that covered the full ownership 

using 4.6 Basal Area Factor prisms (Table 4).  The complete inventory from 1999 to 

2009 was grown forward to 2009 using the Forest Projection and Planning System 

growth and yield model to compare property level estimates in 2009 to the new 

stratification method in 2010.  However, only plot data from 2008 and 2009 was used to 

compare individual stand level estimates to aggregated pixel estimates (see table 5). 

The old stand layer was a traditional timber stand typing done by head’s up digitizing 

stand boundaries using color imagery (acquired in 2004) of the forest.  Each stand was 

then placed within a strata that described the dominant tree size and species based on the 
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professional judgment of the land manager.  The old strata types had 3 fields:  a 2 digit 

species code that described the dominant species or species mix, a 1 digit size-class code 

that described the dominant tree size, and a 1 digit canopy density code that described the 

degree of canopy closure. 

 

5.2.2. 2010 Data (used for stratification) 

The 2010 inventory data was collected between June and September of 2010.  It 

consists of 810 variable radius plots that use a 4.6 m2/ha (20 ft2/acre)basal area factor 

(BAF) prism to measure trees at least 14 cm (5.5 inches) DBH.  All plots have height 

measured on all trees (both live and dead) that are tallied in the variable radius plot.  In 

addition to the trees measured in the prism plot, there is a 0.04 ha (1/10th acre) circular 

plot for understory vegetation, a 0.004 ha (1/100th acre) plot to measure regeneration 

(trees less than 14 cm DBH), and a 30.5 m (100 ft) transect to measure down woody 

debris.  Table 4 summarizes the current inventory data and the past inventory data.  The 

past 2009 inventory and stand layer was used as a baseline against which to compare the 

new 2010 ALS based stratification and inventory system. 

The field sampled plots for the preliminary sample (199 plots) were a random 

selection of a 400m by 400m (20 by 20 chain) grid.  The following table lists the 

summary statistics for this sample. 

Table 6:  Initial 199 Plot Summary Statistics 

Variable Min Mean Max 

BA (m2/ha) 0 40.73 116.1 
TPH (Trees Per ha) 2 2,339 14,944 

% conifer BA 0 56.6 100 
Average height (m) 7 29 62 
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5.3. Remote Sensing Data 

Both color-infrared imagery and LiDAR data were collected for the full property (Table 

4).  The color-infrared imagery has 0.6 meter (2 foot) resolution with horizontal accuracy less 

than 1 meter.  The raw LiDAR returns range from 2.5 to 27 returns per square meter with at 

least 5 returns per square meter for forested areas.  The LiDAR data exceeds 15cm of vertical 

accuracy and 50cm of horizontal accuracy.  The LiDAR returns were summarized to make a 

1 square meter digital elevation map and a 0.5 square meter canopy height model.  The CHM 

is gridded to 0.5 m2 and based on the interpolated "highest" return within each pixel.  In 

addition to these grids, the LiDAR data were used to generated a crown polygon layer for the 

full GRF.  The crown polygon layer was created using a watershed transformation algorithm 

applied to the CHM that segmented individual tree crowns that are isolated in height from 

adjacent regions. 

Table 4:  Summary of  Remote Sensing Data Collected in 2009 

 Color Infrared Light Detection And Ranging 
Acronym CIR LiDAR 

Date 
Collected 7/1/2009 

Source Fixed-wing aircraft 

Instrument 
Digital Mapping Camera from 

Zeiss/Intergraph Imaging ALTM Gemini from Optech Incorporated
Scale Full ownership 

Projection North American Datum 1983 UTM zone 10N 

Resolution 0.6 meter 
5 returns / square meter, 24° field of view, 
0.44 postings/square meter.  

Spectrum 
visible and near-infrared 

(380 nm to 2500nm) 
near-infrared  

(760nm to 2500nm) 

Accuracy Horizontal accuracy sub 1 meter 
Horizontal accuracy sub 50cm  
Vertical accuracy sub 15cm  

Data Form 
4 bands:  red, blue, green, and 

near-infrared 
Discrete Waveform with classified returns 

(ground, mid-canopy, upper-canopy) 
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Products Ortho-rectified 4 band CIR 

All and first return LiDAR (raw data)  
1m2 Digital Elevation Model (DEM)  
0.5m2 Canopy Height Model 
(CHM)Crown Polygon Layer 

 
 

 

5.4. Technical Description of the Method 

5.4.1. Data Summarization to 400 m2 pixels 

The first step before any analysis, inventory, or stratification could occur was to 

summarize all of the remote sensing data to the 400 m2 grid cells.  This involved finding 

the average and variance of all of the remote sensing data sets (e.g. CIR, RGB, , canopy 

height, crown polygons, topography variables – slope, aspect, elevation, and a whole 

suite of other variables derived from the remote sensing data in both the spatial and 

frequency domains). The complete set of variables used for the analysis and a brief 

description of them are listed in the appendix.   

The source data for the cell summaries used in the stratification come from two 

passive image datasets and summarized LiDAR.   The three image sets (CIR, RGB and 

CHM) were processed with MATLAB's image processing toolbox(MATLAB Image 

Processing Toolbox 2011). The image processing routines work in two domains; the 

spatial, and the frequency (Gonzalez et al. 2009).  The pixels from the image data sets are 

about 0.6 meters on a side.  The CHM is treated as a gray scale image where height above 

the ground is scaled to the gray scale.   

5.4.2. Initial Plot Installation 

To develop the final stratification, a set of “training” field plots were installed to find 

the relationships between plot data and the cell data (e.g. volume, carbon, basal area).  To 
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do this, an initial set of 199 plots were installed across the GRF.  A random sample of 

points located at the intersections of a 400 m by 400 m (20 by 20 chain) grid was chose to 

cover a broad spatial area. 

5.4.3. Variable Reduction using Principle Component Analysis (PCA) 

The 400 m2cell data was summarized using principle component analysis to reduce 

the number of variables.  Factor analysis was used to determine how many of the 

principle components should be retained (Jolliffe 2002).  Table 8 lists the amount of 

variation explained by the first eight and the next eight principal components in the each 

of the image datasets.  

 
Table 5:  Principle Component Decomposition of the Imagery Datasets 

Image set 
Variance explained by first 

eight 
Variance explained next 

eight 
RGB 76.00% 13.40% 
CIR 75.10% 13.70% 

CHM 72.60% 14.70% 

 

Based upon the reduction in explained variance and the need to keep the preliminary 

sample small, the first eight component vectors were selected to represent the data sets in 

the preliminary sample.   

The original optical data consisted of 4 bands of data:  blue, red, green, and NIR 

reflectance values.  Although it would be possible to analyze this data by combining all 4 

bands into one image, instead this optical data was used to create two images:  a color-

infrared (CIR) image and a Red-Green-Blue (RGB) image.  The CIR image combines the 

red, green, and NIR values.  There are two reasons why the red and green bands were 

included in both the CIR and RGB datasets:  1) to check that the atmospheric correction 
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was applied correctly and 2) to have finer control of the linear combination of the data 

when conducting the analysis.   

Since two of the color bands (red and green) are present in both the CIR and RGB 

image data, a correlation analysis was conducted to determine the amount of overlap 

between the principal components of the two datasets.  The following table charts the 

Pearson correlations with those having p-values less than 0.05 having an asterisk. 

Table 6:  Correlation Analysis between the CIR and RGB Principle Component Datasets 
PrinComp RGB1 RGB2 RGB3 RGB4 RGB5 RGB6 RGB7 RGB8 

CIR1 0.925* -0.128 -0.418* 0.137 -0.144* -0.282* -0.011 -0.08 

CIR2 -0.072 0.977* 0.091 -0.067 0.064 -0.237* -0.034 -0.048 

CIR3 -0.09 -0.243* 0.158* 0.736* -0.1 0.029 -0.252* 0.068 

CIR4 -0.273* 0.068 0.891* -0.185* -0.189* 0.382* -0.328* -0.018 

CIR5 -0.249* 0.101 0.371* -0.254* 0.931* 0.123* -0.11 0.0002 

CIR6 -0.226* -0.201* -0.079 -0.237* -0.206* 0.840* -0.056 0.087 

CIR7 0.052* -0.019 -0.378* -0.041 -0.009 -0.319* 0.890* -0.084 

CIR8 -0.170* -0.008 0.066 -0.051 0.06 -0.177* 0.337* 0.880* 

 

A quick scan of the table shows that as expected some of the principal components 

are highly correlated.  This correlation reduces the efficiency of variable screening 

methods applied to this data, meaning that more plots will be required to achieve the 

same level of certainty.  The impact of the correlations was examined by repeating the 

parameterization of the models described below with both data sets separately and then 

both together. 

 

5.4.4. Parameterization of Models to Relate Remote Sensing Data to Initial Inventory 

The data collected in the first 199 plots was then correlated to the reduced set of 

remotely sensed variables found using the PCA.  Several models were built that related 

remotely sensed data to the measured plot data in each sampled 400 m2cell.  However, 
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only the BA regression model, multiplied by each cell’s average canopy height, was used 

by the Tabu Search Algorithm to develop the initial strata.  The BA model was then used 

to predict the BA in all of the 240,410 400 m2 cells across the full ownership.  The .5m2 

resolution Canopy Height Model (CHM) was averaged across each 20 by 20m pixel and 

used to estimate the average canopy height in each pixel (no model was required as this is 

directly measured by the LiDAR data). 

Stepwise procedures have been found to produce poor variable screens (Harrell 

2001).  This is partially due to the repeated comparisons not representing the proper 

elimination probabilities (Derksen and Keselman 1992).  However there are other 

problems with the method such as the parameter estimates being biased high, and the 

standard error of the estimates being too low.  This results in F and chi-squared statistics 

not having the desired distributions (Altman and Andersen 1989).  Based upon this the 

Lasso method (Tibshirani 1996) was used for the variable screening of the predictive 

models. The Lasso is a penalized least squares method which selects a set of regression 

coefficients (βLasso) as the coefficients that minimize the following equation: 
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In the above equation, y is an n-length vector of the response variables, X is an n by p 

matrix of predictor variables.  β0 and βj are the standard regression intercept and 

coefficient vectors while the last term is a penalty term applied to each coefficient – 

lambda is the penalty multiplier that is applied to each estimated coefficient. 

To ensure that no single predictor swamps the effects of others, the matrix of 

predictors(X) is centered and scaled, and then λ is chosen by cross-validation.  This 
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means that a portion of the plots are held back from the regression and these plots are 

then predicted by the resulting regression.  The Lambda value is iteratively adjusted to 

produce the lowest prediction error of this cross-validation.  The Lasso serves as a 

variable selection methodology by selecting few predictors thus alleviating problems 

attendant to having many potential predictors compared to the number of observations.  

Furthermore, since the Lasso tends to select only a few of a set of correlated predictors, it 

also helps reduce problems with spatial correlation (Tibshirani 1996). 

5.4.5. Final Stratification Using Supervised Classification 

Based on the predictions of the BA model described above, an optimal binning 

process (Glover 1990, Glover et al. 1993) was used to create bins (strata) for each cell 

based on the product of BA and height.  The strata for each cell was determined by 

minimizing the amount of variation of the product of BA and height in each strata.  The 

product of BA and height is highly correlated to volume and therefore cells within a 

given strata have similar volume totals.  This classification method is considered 

supervised since it is driven by the initial inventory data collected across the GRF. 

Once the supervised classification was completed, to prevent any strata from being 

less than 4.05 ha (10 acres) in size, an algorithm was applied to swap grid cells that were 

on the “edge” of each strata into neighboring strata (considering the nearness according 

to BA, height, Trees Per Hectare (TPH), and % conifer BA).  The goal of this algorithm 

was to minimize the variation covered within a given strata while reducing the total 

number of strata. 

5.4.6. Selection of Remaining 611 Sample Plots Based on Final Stratification 
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The final 611 plots were randomly placed within each final strata in proportion to the 

variability in product of BA and height. This sampling design is a classic post-

stratification design and therefore uses stratified random sampling estimators (Shiver and 

Borders 1996, Thompson 2002).  

 

6. Abbreviations 

ALS – Airborne Laser Scanning 
BA – Basal Area  
BF – Board Foot Volume using the USFS board foot volume calculations (United States Forest 
Service Pacific Northwest Research Station 2010) 
CHM – Canopy Height Model 
CIR – Color Infrared optical data 
GRF – Garcia River Forest 
ha – hectare = 10,000 m2 

LiDAR – Light Detection and Ranging 
PCA - Principle Component Analysis 
RGB – Red, Green, and Blue optical data 
THP - Timber Harvest Plan 
TNC – The Nature Conservancy 
TCF – The Conservation Fund 
TPH – Trees Per Hectare 
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9. Appendix 

This is a listing of the variables used in the described analysis. 
 

9.1. Topographic  Variables: 
9.1.1. Average elevation  
9.1.2. Variance of the elevation of the cell. 
9.1.3. Average aspect 
9.1.4. Variance of the aspect of the cell. 
9.1.5. Average slope 
9.1.6. Variance of the slope of the cell. 
9.1.7. A measure of the difference between the actual topography of the cell and a 

plane joining its corners. 
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9.2. Crown Segment Variables: 

9.2.1. Number of polygon centroids within a cell (pcount). 
9.2.2. Average of the maximum height above the ground for the polygons (cell 

height). 
9.2.3. Variance of the maximum height above ground for the polygons. 
9.2.4. Crown closure as the percentage of the cell area covered by polygons. 
9.2.5. Curvature of the cell in relation to the eight nearest neighbor cells (NLN). 
9.2.6. Average LiDAR first return intensity for the cell. 
9.2.7. Variance of the LiDAR first return intensity for the cell. 
9.2.8. Average intensity of the infrared band of the CIR data fused to the polygons. 
9.2.9. Variance of the intensity of the infrared band of the CIR data fused to the 

polygons. 
9.2.10. Average intensity of the red band of the RGB data fused to the polygons. 
9.2.11. Variance of the intensity of the red band of the RGB data fused to the 

polygons. 
9.2.12. Average intensity of the green band of the RGB data fused to the polygons. 
9.2.13. Variance of the intensity of the green band of the RGB data fused to the 

polygons. 
9.2.14. Average intensity of the blue band of the RGB data fused to the polygons. 
9.2.15. Variance of the intensity of the blue band of the RGB data fused to the 

polygons. 
9.2.16. Ratio of the infra-red to red bands. 
9.2.17. Normalized difference vegetation index(NDVI = (IR - red) / (IR + red)). 
 

9.3. Image Variables 
Image set variables consist of two types of analysis; spatial and frequency.  

Spatial analysis quantified the relationships between the pixels based upon their 
location with respect to one another.  Frequency analysis characterizes the spectral 
characteristics of the pixels both in relation to one another and to standard frequency 
distributions. 

There are no known relationships between these summary variables and the 
structural characteristics of the vegetation from which the light was reflected.  This is 
an intriguing line of research but time has not yet been allotted for its pursuit.  The 
CHM was treated as a greyscale image for this analysis. 

9.3.1. Spatial Domain 
9.3.1.1.Image profile analysis consisting of summaries of the eight vectors originating 

at the center of the image and radiating to each corner and the middle of 
each edge.   This includes the mean, variance, median, skewness, 
kurtosis, entropy, mean absolute deviation, median absolute deviation of 
the pixels on the profile. 
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9.3.1.2.Image pixel analysis, the pixel based mean, variance, median, entropy, mean 
and median absolute deviation from a unit vector. 

9.3.1.3.Histogram analysis of the image. 
9.3.1.4.Sum of the Hough lines within the image.  This has been used to identify 

plantations, and roads. 
9.3.1.5.K-mean clustering of the color bands in the image. 
9.3.1.6.Quadrant analysis to yield the ratio of the number of pixels two groups based 

upon color in each quadrant. 
9.3.1.7.Number of cluster centers arising from the first group from the quadrant 

analysis. 
9.3.1.8.The fraction of shadow. 
9.3.1.9.The values of a three parameter Weibul fit to the image intensity histogram.  

The number of local maximum points and the location of the first three 
local maximums in a three dimensional histogram constructed in l, a, b 
color space. 

9.3.1.10. The correlation, contrast, busyness, and texture strength of a 
neighborhood grey level difference matrix. 

9.3.1.11. Neighborhood occurrence test based on eight offsets and compared with 
SID. 

9.3.1.12. Contiguous region analysis including the average area, eccentricity, 
extent, orientation, and solidity of two size classes of blobs. 

9.3.2. Frequency Domain 
9.3.2.1.The ratio of the geometric mean to the arithmetic mean of the frequency space 

image. 
9.3.2.2.Comparison of a vector of texture based properties such as contrast 

homogeneity correlation and energy using the gray scale co-occurrence 
matrix for a fixed diagonal offset on an image to a spectral information 
divergence. 

9.3.2.3.Comparison of a vector of texture based properties such as contrast 
homogeneity correlation and energy using the gray scale co-occurrence 
matrix for a fixed diagonal offset on an image to a spectral angle 
measure. 

9.3.3. Reduced variable set 
9.3.3.1.CIR1-CIR8 the first eight principle components of the color infrared image 
9.3.3.2.RGB1-RBG8 the first eight principle components of the true color image 
9.3.3.3.LI1-LI8 the first eight principle components of the canopy height image 
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Chapter 4 

Area Dependent Region Merging: A Novel, User-Customizable Method to Create Forest 

Stands and Strata.  

 
Abstract:  
 

Remotely sensed high-resolution imagery and LiDAR data can be used to develop stand 
delineations and stratifications for forest inventory and management purposes. A new Area 
Dependent Region Merging method is introduced that uses LiDAR data and expert knowledge to 
develop forest stands and strata based on user-supplied constraints. This method uses an area-
dependent scale parameter that allows for different merging criteria based on the size of the 
objects being merged. This method was used to develop a new forest inventory that showed 
improved accuracy with significantly fewer field plots. Compared to non-area-dependent region 
merging approaches, this method more effectively reduced within stand variability and more 
closely matched a manual stand delineation. 
 

1. Introduction 

Global products acquired from satellites, such as the Moderate Resolution Imaging 

Spectroradiometer (MODIS – 250m to 1km pixels), Landsat (30m), Quickbird (1m pixels) and 

IKONOS (1m pixels) have all been used to make inferences about forest stocks, fluxes, and 

structure across both large and small scales (Running et al. 2004, Hall et al. 2006, Heinsch et al. 

2006, Zhang and Kondragunta 2006, Potter et al. 2007b, Mildrexler et al. 2009, Song et al. 

2010). In recent years, Light Detection and Ranging (LiDAR) data products as well as higher 

resolution imagery products acquired from airplanes rather than satellites have been used to 

make inferences about forest ecosystems at smaller spatial scales and higher resolutions (Akay et 

al. 2009, Asner et al. 2011). Some scientists have combined multiple remote sensing data 

products to generate wall-to-wall estimates (Potter et al. 2007a, Gonzalez et al. 2010, Ke et al. 

2010, Golinkoff et al. 2011) or have used small samples of higher resolution remote sensing 
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products combined with lower resolution data to reduce costs and improve the accuracy of 

estimates (Næsset 2002, Wulder and Seemann 2003, Wulder et al. 2012).  

As higher resolution remote sensing data products become available, it is possible and 

necessary to group small pixels into meaningful objects. The need to use objects as opposed to 

pixels arises when individual pixels are smaller than the features of interest (e.g. stands or 

individual tree crowns) in an image (Johansen et al. 2010). The aggregation of pixels into objects 

allows object level properties to be summarized efficiently while reducing the amount of data 

required to be stored about the image (Hofmann et al. 2011, Ali et al. 2009, Sasaki et al. 2012). 

Object-based analysis has also been shown to perform better than using pixel-based approaches 

in classifying images (Blaschke 2010). This improvement in classification using objects as 

opposed to pixels (the current approach) may also translate to improved performance of 

predictive models of future ecosystem state as well and may provide a better platform on which 

to run these models (Maselli et al. 2009, Golinkoff and Running 2013) 

Geographic Object Based Image Analysis (GEOBIA) is a relatively new field that uses 

objects as the fundamental unit of analysis when interacting with geographic imagery (Hay and 

Castilla 2008, Blaschke 2010, Addink et al. 2012). How to best partition a landscape into objects 

and some of the implications of the segmentation chosen were first discussed within the context 

of the Modifiable Areal Unit Problem (Openshaw 1984). Openshaw explained that the location 

and boundaries of objects within a given area are in many cases arbitrary and that there are 

infinite possible combinations of non-overlapping objects, some more suitable than others, in 

defining reasonable divisions within the landscape. Many methods to optimally segment a 

landscape have been proposed to address this issue. These methods build upon years of image 
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segmentation work in the computer vision and medical imaging fields (Fu and Mui 1981, Pal and 

Pal 1993). 

Many authors have reviewed segmentation methods and discussed specific forestry 

applications of these methods. Cheng et al. (2001) provided a general overview of the many 

different approaches that can be used to segment a color image. Dey et al. (2010) related these 

techniques to the remote sensing field and reviewed the most commonly applied methods. 

Broadly, the results of image segmentation can be considered to fall on a spectrum from over to 

under segmented. Over-segmented images have too many segments and break objects into their 

component parts. Under segmented images have grouped relevant objects together and image 

fidelity and resolution is lost as a result (Möller et al. 2007, Marpu et al. 2010). Segmentation 

methods can also be distinguished by those that create final objects by grouping similar pixels 

and/or sub-objects together versus those that create final objects by splitting larger objects apart 

based on discontinuities (Addink et al. 2012). This concept is similar to agglomerative and 

divisive hierarchical methods of cluster analysis (Mardia et al. 1979). Segmentation methods also 

vary based on the input data considered: spectral intensities or digital numbers of pixels, spatial 

attributes such as neighborhood relationships and texture, object shape and size, and prior 

knowledge of the image (Dey et al. 2010). Segmentation can also vary based on the degree of 

user guidance or supervision versus automation as well as whether a model driven versus image 

driven approach is used (Baatz and Schäpe 2000, Hay and Castilla 2008, Dey et al. 2010). In 

model driven approaches, an underlying image structure is assumed and used as a model that 

then drives the image segmentation.  

Because of the myriad options available to segment images and the inherent subjectivity 

of the final segments, the method chosen depends heavily on the goals of the segmentation and 
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the spatial characteristics of the forest. In forestry operations, the final object of interest is often a 

stand. The definition of a stand may vary but in general it refers to a contiguous area of forest 

that is managed as a unit and that has trees that are homogenous relative to surrounding stands 

(Sullivan et al. 2009). Traditionally, forest stands were defined by human photo interpreters. 

However, as high-resolution remote sensing data and powerful microprocessors have become 

ubiquitous, it has become possible to remove some of the human labor and subjectivity from the 

stand delineation process by developing repeatable algorithms to complete this task (Leckie et al. 

2003). Generally, when devising forest segmentation, it is preferable to have some limits on the 

sizes of polygons. Forest stands are used to manage for inventory and harvest operations and 

stands that are too large or too small become difficult from a data management perspective and 

impractical for operations. 

Forest stands have been delineated using many different approaches and the method 

described here is an extension of some of the work that has already been done in this field. One 

of the most widely used approaches to the creation of objects is the eCognition program (see 

http://www.ecognition.com/). This commercially available software uses fuzzy logic and 

incorporates user-defined variables to define the importance of object shape as well as a merge 

stopping criteria (scale parameter) (Baatz and Schäpe 2000, Benz et al. 2004). This software has 

been used in many studies and has been show to be a powerful tool to segment forests into stands 

and into individual tree polygons (Van Aardt et al. 2006, Pascual et al. 2008, Riggins et al. 2009, 

Ke et al. 2010). Although powerful, this program is not freely available and requires users to 

iteratively choose the scale parameter that is optimal for their work. This scale parameter is a 

constant that will change the sizes of polygons. However, this parameter is not directly a 

constraint on forest stand size and instead defines a degree of dissimilarity that causes merging to 
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stop. This is problematic, as many managers would like area constraints to limit the results of a 

stand delineation method more directly. 

Other researchers have designed and used different approaches to segmentation. Leckie et 

al. (2003) built individual tree crown polygons from high resolution multi-spectral imagery and 

then combined these individual crown polygons into larger stands based on crown closure, stem 

density, and species composition. This approach smoothed individual tree crown data and used a 

minimum size constraint to guide stand creation. Another approach designed by Haywood and 

Stone (2011) for Eucalyptus stands in Australia uses a single minimum area constraint but also 

included a similarity metric that can incorporate data from a user specified number of remote 

sensing layers. Other approaches to forest segmentation use an iterative nearest-neighbor 

approach that selects regions to merge in several iterations based on relaxing the difference 

constraint. These algorithms proceed by increasing the amount of difference between neighbors 

that will trigger merging to occur until either a final mean polygon size is reached or until a 

maximum difference in feature space is reached (Hay et al. 2005, Castilla et al. 2008, Wang et al. 

2010). By using single global targets for mean polygon size and/or a constraint on minimum 

size, there may be small stands that are quite different from their neighbors that are merged 

instead of retained. For example, if a stand is smaller than the minimum size constraint and much 

different from its neighbors, these algorithms will force this polygon to be merged. Similarly, if a 

stand is larger than the minimum size constraint but more different than the feature space 

difference constraint, this polygon will be merged with its neighbors.  

 All of these methods show varying levels of success in defining stands that accurately 

partition forest systems. However, a forest manager or inventory planner may need more control 

over the final stand delineation and how important stand area should be in determining when 
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objects are merged. An increase in control should allow managers to specify both minimum and 

maximum stand sizes, stand shape, the variables used to define stand boundaries, and the 

differences between objects that allow for objects to remain as distinct stands. In particular, 

unlike existing region merging area controlled segmentation methods, an area-dependent region 

merging approach allows for more control over final stand size. To address these needs, an area-

dependent, region-merging (ADRM) method is proposed that allows users to select relevant real 

world sub-object characteristics (as opposed to spectral or textural properties) and specify 

polygon sizes given user-defined feature space distances. To evaluate the success of this result, a 

novel, scaled-variability metric is introduced to compare stand delineation outcomes. This 

evaluation method is a fast and intuitive approach that can allow analysts to understand the 

effectiveness of any given stand delineation model run compared to other model runs or against a 

reference case. 

 

2. Study Site / Data 

2.1. Study Site 

The Big River and Salmon Creek Forests are located in Mendocino County, CA near Ft. 

Bragg and owned by The Conservation Fund (TCF) (see location map Figure 1). TCF is a non-

profit organization whose mission is to conserve threatened and important ecosystems and 

promote rural economies across the United States of America (see 

http://www.conservationfund.org). Both forests are dominated by Redwood (Sequoia 

sempivirens) and Douglas Fir (Pseudotsuga menziesii). The Big River forest is ~4,700ha and the 

Salmon Creek forest is ~1,700ha. These forests are currently managed as a unit and together are 

a verified and registered forest carbon offset project under the Climate Action Reserve Forest 
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altitude with at least 10% overlap between flight lines. The LiDAR data was collected using an 

ALTM Gemini from Optech Incorporated sensor with up to 4 returns per point and on average 4 

points per square meter. The data was binned into 1m2 pixels to create a digital elevation model 

(DEM) and a canopy height model (CHM). The CHM bins were based on the highest hit within 

the 1m2 pixels and the DEM was created using the ground point returns. The CHM is the total 

height of each pixel minus the bare earth DEM elevation and represents the top of the tree 

canopies. The stand delineation method described here relied primarily on the LiDAR data but 

could also incorporate imagery as well. 

2.3. Ground Inventory Data 

2.3.1. Existing Inventory 

The existing inventory on the BRSC forests prior to the acquisition of the remote sensing 

data contained plots collected over the previous 11 years. The initial inventory sampling design 

was a multi-staged probability proportional to stand area list sample within a broader stratified 

inventory. This means that stands within each stratum were selected with replacement with 

probability proportional to their area (Borders et al. 2005). The plots in this inventory were 

variable radius basal area factor prism plots. The prism factor varied depending on the age and 

stocking of the stand with the target of 4 to 8 count trees included in each plot (Shiver and 

Borders 1996, Bell and Dilworth 2007). In 2011, the existing inventory relied on 2597 plots and 

resulted in 3.43% estimated inventory accuracy at the 90% confidence level (estimated inventory 

accuracy = (z-statistic * SE) / mean where the z-statistic for the 90% confidence level = 1.645). 

Estimates of carbon density are calculated using the approved biomass and carbon equations 

required by the CAR FPP v2.1 and most are based on national scale biomass estimators 

developed by the US Forest Service (Jenkins et al. 2004, CAR 2007). The stands were stratified 
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using three variables: dominant species (by the percentage basal area), dominant size class (by 

percentage basal area), and canopy closure.  

As areas of the forest were harvested, these locations were delineated by hand on the 

stand map and re-inventoried as new stratum. Table 1 shows the summary of the plot data used. 

As can be seen, the majority of plots are at least 8-years-old and this, paired with changing on-

the-ground conditions due to harvest and forest growth, created a need for a complete re-

inventory of the entire forest area. 

Table 1: Existing inventory plots used by year. As is often the case in forest inventories, plots are collected on 
a rolling basis in between full forest re-inventory efforts. In this case, data from plots collected over 11 years 

were considered for the original inventory estimates. All plot data has been grown forward for final inventory 
results. 

Year 2011 Plots used % of Total 
2000 21 4.7% 
2001 59 2.3% 
2002 1271 48.9% 
2003 26 1.0% 
2004 371 14.3% 
2005 73 2.8% 
2006 0 0.0% 
2007 336 12.9% 
2008 102 3.9% 
2009 80 3.1% 
2010 146 5.6% 
2011 12 0.5% 

Total: 2597  

 

2.3.2.  2012 Inventory 

The updated 2012 inventory was installed after the final stand delineation and stand 

stratification was completed. The sampling design used was exactly the same as the prior 

inventory – a multi-stage probability proportional to area within strata list design (Borders et al. 

2005). All inventory plots were installed with variable radius basal area prisms as in the previous 

inventory. A total of 677 plots were installed in 2012. 
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3. Method 

The method proceeds in four steps (Figure 2). In the first step, the CHM of the forest is 

partitioned into management compartments. By first partitioning the property in this way, the 

final results can be controlled more easily and will more closely relate to the management 

constraints of the forest (see (Leckie et al. 2003)). This step was done by a local forester and 

divided the forest along major roads and streams to create large areas that would share logging 

infrastructure. Within each compartment, small objects – microstands – are then created using an 

appropriate method (a watershed algorithm applied to a smoothed CHM, as detailed in section 

3.1). This step is designed to create sub-objects that correspond to similarly sized clumps of trees 

but are smaller than stands. The third step involves the user iteratively selecting the optimal 

constraints for stand creation. This involves selecting and weighting the variables adopted in the 

region merging algorithm and selecting the stand shape and size constraints. In the final step, the 

stands within each compartment are merged together and stratified to create a full property level 

stand delineation and stratification. The input and output formats for this method are shape files 

and the program is written in Perl using the GDAL/OGR module (GDAL Development Team 

2012) . Please contact the author for access to the source code. 

 
Figure 2: Broad method outline. 

3.1. Microstand Creation 

The first step in creating stand polygons requires creating small regions across the full 

forest extent. There are many methods that have been put forward to move from an initial set of 
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pixel-based layers to small microstand objects. For this particular case, microstands consisting of 

clumps of similarly sized trees were desired. To build these microstands, the 1m2 resolution 

CHM was first up-sampled to 4m2 cells. A 5 by 5 median filter was applied, to preserve the 

edges in the image, as median filters have been shown to be edge preserving smoothers (Hay et 

al. 2005). A morphological gradient image was then created from this up-sampled, smoothed 

CHM layer. The morphological gradient is a measure of local variation in an image and has edge 

enhancing effects. The morphological gradient image was then further smoothed using a 3 by 3 

median filter. The smoothed morphological gradient image was converted to a microstand map 

using the watershed algorithm (Figure 3). The watershed algorithm finds areas of pixels within 

contours (analogous to how a watershed is defined in nature using the flow of water) (Gonzalez 

et al. 2009). Microstand creation was done using the MATLAB Image Processing Toolbox and 

ArcGis software (MATLAB Image Processing Toolbox 2011, ArcMap 10.1 2012). 
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3.2. Area-Dependent Region Merging (ADRM) 

Once microstands are created, these regions can be merged together based on a set of user 

specified constraints. Regions are labeled using characteristics of importance to forest managers. 

Using this approach, managers have a better understanding of the factors that drive the final 

stand delineation and more control over the outcome. For example, using LiDAR data, each 

region was assigned an average canopy height defined as the mean of the maximum heights of 

trees based on a tree crown segmentation. The tree crown segmentation was done using the 

watershed method on the inverted, unsmoothed CHM layer for areas taller than 3m. Each 

microstand was also assigned a percent canopy cover metric defined as the percentage of LiDAR 

returns occurring above 2m in height. These metrics closely relate to volume and stand vigor and 

are therefore important when trying to map merchantable timber and carbon stocks (Nilsson 

1996, Popescu et al. 2003, Ioki et al. 2009, Latifi et al. 2010). Additional metrics (e.g. species 

composition) can be considered on an as needed basis. However, it is recommended that at most 

three variables are used to avoid problems associated with high-dimensional neighborhood 

calculations. This “curse of dimensionality” leads to excessively large neighborhoods for each 

individual variable and reduces the skill of the results in predictions and classifications (Hastie et 

al. 2009). 

Once a set of attributes is assigned to each microstand, the manager weights each 

attribute depending on the importance of the attribute for the final stand delineation. The 

manager also chooses an optimal shape weight as well. In this case, the shape constraint used 

was the ratio of polygon perimeter to the square root of the polygon area. This is equivalent to 

the compactness variable as defined by Benz et al. (2004). Other possible shape constraints that 

have been discussed in the literature are the simple perimeter to area ratio, the object smoothness 
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defined as the ratio of the polygon perimeter to the bounding box perimeter, or the object 

rectangularity defined as the ratio of object area to the bounding box area (Turner et al. 2001, 

Benz et al. 2004, Wang et al. 2010).  

The next step in the ADRM process is to define the area constraints that should limit the 

stand creation results. The size of stand polygons is important to forest managers for several 

reasons. First, from an operational perspective, stands should be units that fit practical harvesting 

requirements, such as large enough to meet certain economies of scale (typically at least 2ha) 

while at the same time not being too large to be operationally infeasible to manage. Second, from 

a sampling perspective, variability is introduced if there is a wide range of variability in stand 

size. Therefore, it is important that most stands are similarly sized (Shiver and Borders 1996). 

The most suitable stand areas are often well known by forest managers with experience in the 

field. Thus, this method enables managers more control over the outcome of the stand 

delineation process to meet these needs. 

The final user-defined parameters to set is/are the scale parameter(s) that will define the 

difference thresholds that drive polygon merging, as well as the type of scale parameter to use. 

There are three types of scale parameters that can be chosen: 1) a standard, non-area-dependent 

scale parameter (ADSP), 2) a stepwise, discontinuous area-dependent scale parameter, or 3) a 

continuous area-dependent scale parameter. A standard, non-ADSP uses one difference for all 

merging regardless of polygon size. A stepwise ADSP uses one or more area / scale parameter 

pairs to define different merging criteria given different area limits. A continuous ADSP uses a 

smooth boundary to define different merging criteria given different areas. A continuous ADSP 

is any equation that connects the points (areaMin, maxDiff) and (areaMax, minDiff) (see Figure 

4 for a set of example ADSPs). Figure 5 shows a comparison between traditional region merging 



 178

approaches and the ADRM method. All microstand attributes and the shape attribute are 

standardized using a range standardization approach as this has been shown to result in better 

outcomes during clustering (Milligan and Cooper 1988). Variable standardization was used to 

insure that the absolute variable size was normalized so all variables might have equal weight in 

the analysis, allowing user defined weights to be applied appropriately. 

 
Figure 4: Example of area-dependent scale parameter for 5 different types. Any polygon and neighbor pair 

whose difference in feature and shape space is below these lines would be merged. 
 

After all user-defined parameters have been chosen, the ADRM process can begin. The 

order of merging affects the final merging outcome and several region merging algorithms and 

optimizations have been discussed in the literature (Castilla et al. 2008, Wang et al. 2010, 

Haywood and Stone 2011). The region merging approach used in this method was an iterative 

relaxation of the difference constraint similar to that described in Wang et al. (2010). Merging of 

regions proceeds by first choosing the best neighbor if the best neighbor is less than the ADSP. A 
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neighbor is considered “best” if for two polygons pi and ni, ni is the least different from pi for all 

neighbors n1 to nn and pi is the least different from ni for all of ni’s neighbors p1 to pn (where 

difference is calculated as the sum of the weighted attribute and shape differences). “Best” 

merging continues until no further merges can occur. At that point, the constraint is relaxed from 

the best constraint to a difference criterion that is some fraction of the maximum scale parameter 

allowed. The fraction is defined by a user selected number of iterations that by default is 5. For 

each potential merge, each polygon is first checked to see if the difference between itself and its 

neighbor is less than the tolerance of the current iteration and that the difference is less than the 

ADSP. Only if both constraints are met and both polygons are smaller than the maximum area is 

the polygon merged with its neighbor. A random ordered list (Fisher and Yates 1948) of merge 

polygons is used at every iteration to avoid problems with clumping during the merging process.  

 
Figure 5: Conceptual framework of proposed area-dependent scale parameter to control region merging. 

Difference represents the scale parameter constraint. 
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Stratification is a well-known method to reduce sampling effort and improve inventory 

accuracy when estimating population characteristics (Thompson 2002). The last step in the 

method to develop stand delineations for a forest is to stratify these stands into similar forest 

types. The stratification is again user driven and is supplied by the user before running the 

merging tool. The strata are defined by listing the variables that will be the basis of the strata and 

the breaks that define the different bins within each stratum. In this way, a full set of strata can 

be used to partition all the stands once they are made. The strata are applied based on the 

attributes of each final stand polygon and these attributes are based on the original microstand 

polygon attributes. In the example case where canopy height and canopy cover are used as the 

variables of interest, the strata were defined as 7.62 m (25ft) height bins and 20% canopy cover 

bins (Open: <20%, Low: 20% to 40%, Medium: 40% to 60%, Dense: 60% to 80%, Extremely 

Dense: >80%).  

A series of model runs using different parameters were experimented with to define a set 

of potential stand delineations. Table 2 summarizes the parameters chosen for each model run. 

To assess how these stand delineations and stratifications performed they were compared to a 

photo interpretation done by hand by the forest manager on a small portion of the Salmon Creek 

property. Even for a trained forester with experience in this geographic region, creating a stand 

map is difficult and subjective given the variability across the forest. A stratification accuracy 

assessment of the hand-done stratification versus a series of region merging processes was then 

conducted. Each model run with different input constraints was visually examined. The results 

were also compared to the number and the mean variability of the hand-created stand 

delineation.  

Table 2: Summary of stand creation model runs. “None” means no area-dependent scale parameter was used, 
“stepwise” used a discontinuous approach, “linear” used a form diff = -a(area) + b, “exponential” used a 

form diff = a*exp(-b(area)), “Neg. Parab” is a downward opening parabola and “Pos. Parab” is an upward 
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opening parabola with equation form y = (area – a)^2/4b + c. “ShapeWt” is the user defined weight that 
shape parameters are given relative to the attribute similarity. “maxDiff” is the limit above which no merging 
between features occurs (unless the features are less than minArea). The (“areaN”,”diffN”) pairs are used to 

define either stepwise or continuous ADSPs.  
Run ADSP used maxDiff maxArea minArea shapeWt area1 diff1 area2 diff2 iters

1 None 30 50 3 0%         5 
2 None 20 50 3 0%         5 
3 None 10 50 3 0%         5 
4 None 15 50 3 10%         5 
5 None 15 50 3 5%         5 
6 Stepwise 20 50 3 5% 10 15     5 
7 Stepwise 15 50 3 5% 10 10     5 
8 Stepwise 20 50 3 5% 30 5 10 15 5 
9 linear 20 50 3 5% 10 15     5 

10 linear 15 50 3 5% 10 10     5 
11 linear 20 50 3 5% 10 5     5 
12 exponential 20 50 3 5% 10 15     5 
13 exponential 15 50 3 5% 10 10     5 
14 exponential 20 50 3 5% 10 5     5 
15 Neg. Parab 20 50 3 5% 10 15     5 
16 Neg. Parab 15 50 3 5% 10 10     5 
17 Neg. Parab 20 50 3 5% 10 5     5 
18 Pos. Parab 20 50 3 5% 10 15     5 
19 Pos. Parab 15 50 3 5% 10 10     5 
20 Pos. Parab 20 50 3 5% 10 5     5 

 

4. Results 

The stratification accuracy of each stand delineation outcome was calculated by 

examining the area within each strata intersection of the manually delineated stands and the 

automatically delineated stands (Congalton 1991). This accuracy calculation is not a sample of 

classes but rather looks at the full forest area to see how many pixels were placed into the same 

class as the hand-delineated stand layer. It should be noted that because the hand stand 

delineation is highly subjective, this manual delineation serves as a benchmark to compare the 

performance of the ADRM method. The strata were derived for both the hand delineation and the 

automated delineation based on the average characteristics of all of the combined microstand 

polygons. In this way, these are more subjective classes rather than true forest types. Although 

different than a classical classification accuracy assessment, the classes of managed forests are 
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difficult to define and subjective themselves so this was deemed an unbiased approach to assess 

the similarity of the results. Lastly, it should be noted that the stratification accuracy relates only 

to the stratification and not the forest segmentation stand boundaries. 

In addition to the stratification accuracy results calculated, a new metric was designed to 

provide an estimate of the average variability within the created stands. The weighted, scaled 

total variance (WSTV) describes the skill of the stand creation routine based on the degree to 

which the stands minimize within stand variability. The WSTV was calculated for each model 

run. This metric is based on the original microstand objects. Each microstand has attributes of 

interest based on the needs of the manager. These attributes are also given importance weights by 

the manager. Using these weights, the linear combination of the attributes is calculated for each 

microstand. Once final stands have been created, these linear combinations are aggregated to 

calculate the mean and variance of the microstands within the final stand delineations. Weighted, 

scaled total variance is defined as:  
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where n is the total number of stands created, mi is the number of microstands within each final 

stand i, p is the number of user-chosen merge parameters, and wk is the user-defined weight of 

attribute ak. lcVari is the variance of the linearly combined, user-specific attributes. In this way, 

the WSTV represents the variability across all variables of interest and all final stands.  

The estimates of stand level variability are area weighted by the stand area and summed 

across all stands to calculate a final metric of mean forest variability. This estimate of forest level 

within stand variability is highly dependent on the size of the stands. Larger stands will tend to 

have larger variability as they typically have more types of sub-objects. Because of this, stand 

creation routines that create more stands will necessarily have lower variability within stands 

(see Figure 6). Therefore, to assess the skill of the stand creation routine it is necessary to 

remove the impact of the stand number on the estimate of within stand variability. This is done 

by multiplying the area weighted forest variability by the number of stands and results in the 

scaled, area weighted estimate of forest variability. The results of each stand creation run can be 

seen in Table 3 and Figure 7.  

 
Figure 6: Forest level variance as a function of the number of stands created. The orange square is the 

manual reference stand layer. 
 

Table 3: Summary of model run results. The three colored models represent some potential results with 
optimal stratification accuracy and weighted, scaled total variance. Please refer to figure 7 for a graphical 

explanation of why the three colored models were chosen. 

y = ‐1.7493x + 218.72
R² = 0.6051

125

135

145

155

165

175

185

195

205

215

225

20 25 30 35 40 45

To
ta
l V

ar
ia
n
ce
 E
st
im

at
e

Stand Number



 184

Run Type 
Stratification

Accuracy 
Mean 

Variance 
Stand 

Number 
Scaled 

Variance 
Reference by hand NA 167 35 5,838 

Run1 None 44.1% 192 21 4,042  
Run2 None 50.6% 167 24 4,009  
Run3 None 50.4% 148 40  5,902  
Run4 None 47.0% 152 28  4,256  
Run5 None 53.6% 169 31 5,254  
Run6 Stepwise 58.4% 160 30 4,811  
Run7 Stepwise 55.7% 164 34 5,583  
Run8 Stepwise 50.3% 169 30 5,071  
Run9 linear 45.3% 173 27 4,663  

Run10 linear 48.9% 156 36 5,611  
Run11 linear 53.3% 166 28 4,640  
Run12 exponential 49.4% 176 28 4,916  
Run13 exponential 52.2% 171 28  4,778  
Run14 exponential 54.9% 163 28  4,565  
Run15 Pos. Parab 52.3% 185 22 4,080  
Run16 Neg. Parab 48.3% 158 30 4,749  
Run17 Neg. Parab 51.6% 173 28 4,837  
Run18 Pos. Parab 53.3% 173 30  5,186  
Run19 upParab 50.6% 151 38  5,725  
Run20 upParab 55.1% 158 34  5,387  

 

The horizontal black line in Figure 7 is the scaled variability metric for the hand 

delineated stands. As can be seen, the manual stand layer did not perform as well in terms of 

reducing within stand variability as the computer generated stands. For this reason, the 

stratification accuracy percentage should be viewed as a guide but not a definitive metric of the 

success of the stand delineation. Manual stand creation is highly subjective and may or may not 

represent the best partitioning of variability. The accuracy statistic does, however, allow for a 

comparison between the outcomes and how closely the automatic results match the manual 

results in terms of classification accuracy. 
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Figure 7: Scaled, area-weighted forest level variability estimate versus the stratificaiton accuracy of 20 
different stand creation model runs (see table 1 for a description of the model runs). The orange square 

(run6), the red circle (run14), and yellow triangle (run15) represent some of the best outcomes as they show 
the least variability but have the greatest accuracy when compared to the reference layer. The horizontal 
black line shows the weighted scaled forest variability estimate calculated for the manual reference stand 

layer. 
Figure 8 shows the manual stand delineation compared to the three highlighted runs in 

Figure 7. It is interesting to note that the best performing stand creation runs all used an ADSP. 

This speaks to the importance of area dependency in stand creation. The final stand delineations 

also show less compactness of stands and more complicated boundaries as they more closely 

follow forest features than they would in a manual delineation. This difference is due to the 

nature of the region merging algorithm as well as the preference of this photo-interpreter to build 

smoother stand boundaries. 
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Figure 8: Comparison of manual stand layer and three automated stand creation runs. 

 
Based on these results, a stepwise ADSP was chosen for the full forest stand delineations. 

The results of the estimated inventory accuracy using the new stand layer were compared with 

the original estimated inventory accuracy. The new inventory achieved an estimated inventory 

accuracy of 3.81% at the 90% confidence level using a total of 677 plots. The prior inventory 

had an estimated inventory accuracy of 3.43% at the 90% confidence level but used 2597 plots – 

almost 4 times as many.  

 

5. Discussion 

A flexible, user-customizable, area-dependent region merging stand creation method has 

been described above. This method allows for fine grain control of the stand delineation process 

using real-world attributes that forest managers can understand. At the same time, it provides 
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powerful, area-based merging criteria that can serve to better partition the variability of a forest. 

A stratification approach that allows for on-the-fly forest classification was also introduced to 

allow managers’ input both into the stand creation process and the final stratification results. 

This method was compared to a manually delineated stand map used as a reference and was also 

evaluated using an area-weighted, scaled metric of within-stand variability that can be easily 

generated and provides an accessible and rapid means of assessing the skill of a given stand 

creation model run. A large improvement in sampling efficiency was observed using this 

method. Over large areas, these improvements can result in substantial cost savings as field 

inventory is one of the most expensive elements of forest management.  

The ADRM method described here was developed for use in an active working forest to 

meet the needs of forest managers to create reasonable stands for operations. There are several 

issues managers should consider when using this method. First, from an operational perspective, 

the boundaries created by the ADRM method are complicated than stands created by humans. 

The more complicated boundaries may lead to difficulties in locating stand boundaries in the 

field. In general, boundaries created in an automated, rule-driven way will be more complicated 

that boundaries created by human interpreters. Photo-interpreters, especially those with 

experience managing timber harvests, are more likely to group dissimilar areas together to create 

smoother stand boundaries. The automated approach, even when shape constraints are imposed, 

is less likely to do this. In practice, this is not a major problem as the inventory estimates can be 

used to inform management even if the stand boundaries do not exactly line up with how a forest 

may be harvested in the future.  

This issue of complicated boundaries may also make it difficult to be sure a given plot 

falls in the correct stand. For this work, it was found that plots should be located with GPS 
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coordinates using handheld GPS receivers to remove bias and cruiser subjectivity when locating 

plots. Although in some cases plots may fall in neighboring stands using this method, most plots 

will fall in the correct stand and the resulting inventory is still much more accurate than a 

traditional heads-up digitized stand layer. To further constrain the final stand layer, it may be 

beneficial for large forest ownerships to first manually delineate logical management 

compartments and then run this stand delineation within those compartments to constrain the 

outcome. Even with the best stand delineation (from the perspective of variability reduction), one 

stand may fall into multiple areas that in reality would never be managed simultaneously. To 

control for this, the use of management compartments to constrain the results is a critical step in 

this process. The use of logical management units will also reduce the complexity of stand 

boundaries in many areas. 

In the example developed here, the stand delineation was applied first, a stratification was 

developed, and a field sample then proceeded within the delineated stands. However, it may be 

preferable to stratify and sample within microstands and then merge these microstands into 

larger stand units after sampling. By reversing the order, sampling may be conducted first, 

allowing the user to generate any number of post-sample stand layers. The inventory data may 

then be used to both inform the microstand attributes for merging purposes and to populate the 

final stand layer, which may be useful depending on monitoring or management goals. Sampling 

microstands first allows for flexibility in creating stand layers to meet these objectives. Any 

microstand layer can be used, although microstands should be at least as big as the plots that 

would be installed within them (see Golinkoff et al. (2011) for a discussion of finding the 

optimal microstand size). 
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This reversed order approach was done using square microstands in a pixel-based 

stratification done by Golinkoff et al. (2011). The original inventory was designed to minimize 

field effort while at the same time achieving a highly accurate inventory. However, future 

harvest planning was not considered during the design of this pixel-based inventory. For harvest 

planning, the square microstands were merged into larger stands that can now be used for 

management planning.  

The models used in this work were chosen to illustrate some of the differences that 

different ADSPs produce when creating stand delinieations and stratifications. This process of 

iterative variable selection and ADSP parameter tuning is time consuming but is important to 

provide managers more control of the final stand layer that is created. The area constraints 

chosen will vary based on management objectives and this may be the first variables that are 

experimented with to determine the spatial scale of the final forest segmentation. After this step, 

a series of maximum attribute differences and shape constraints can be examined to further 

constrain the outputs. The final step in this process is to experiment with different ADSP forms 

and parameterizations. This general framework for stand layer creation was followed for this 

work and can be seen in the ordering of models in Tables 2 and 3. Generally, exponential and 

positive parabolic forms will result in more stands. The linear ADSP form will result in slightly 

more stands created. The negative parabolic ADSP form will result in the fewest stands. The 

stepwise ADSP is more easily understood and was chosen in this case.  

ADSPs provide finer grained control for managers in determining the final outcome of 

stand delineation. In some senses, this can be considered a model-based segmentation as it 

assumes a structure to the forest variability that varies with the stand area. Results show that this 

area-dependent approach performed better than a single non-area-dependent scale factor. 
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However, it is still difficult for a forest manager to choose the optimal parameters for this 

method and as a result many parameters must be examined before deciding on the best parameter 

set and area dependency to use. Because of this, more work is needed to develop a system that 

automates some of the variable selection and tuning.  

Another future direction for this work may be to examine the area-dependent nature of 

the forest as a whole and how this might provide a model of forest variability. Woodcock (1988) 

proposed the use of variograms to model the spatial structure of remote sensing data but this 

assumes that the same variogram results apply to the full forest extent. Using this area-based 

approach, it may be possible to generate separate variogram models for different regions of a 

forest that correspond to the area-dependent differences observed in the stand creation process. 

This would have value in partitioning an ecosystem for process-modeling purposes particularly 

for future predictions (see Golinkoff and Running (2013)).  

The ADRM method presented here provides several improvements to existing forest 

segmentation results. This method also builds upon much of the work that has already been done 

in this field. This method has incorporated many components of other object creation algorithms 

(e.g. – shape constraints, size constraints, iterative merging criteria relaxation, random seed 

regions, weighted attributes) but it has added to these methods in several key ways. First, by 

defining management compartments, assigning real-world attributes to each initial microstand, 

allowing managers to weight these attributes and define the forest stratification classes, this stand 

delineation and stratification method can be better controlled and understood by the managers 

who will actually use the results. Second, a new, scaled, within-stand variability metric has been 

proposed and used to provide a measure of how well a given stand delineation model run 

performs. This metric, when used in combination with a reference stand delineation and 
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stratification, can be used to select the optimal merging parameters and structure. Last, the use of 

an ADSP to control the region-merging has been shown to improve the outcome of forest stand 

delineation. The improvement is seen in the stratification accuracy when compared to a reference 

stand delineation and stratification, in the scaled, within-stand variability metric, and in the 

drastic improvement in sampling efficiency when using this approach to guide a new forest 

inventory. 
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Summary and Conclusions 

 
The work discussed above details several approaches to estimate current forest stocks and 

fluxes.  Chapter one summarizes the theoretical basis of the BiomeBGC process model and how 

it compares to other model types.  Chapter two uses this model along with field inventory data to 

make predictions about forest productivity for a forest in northern California.  Chapter three 

incorporates high-resolution optical remote sensing data and LiDAR data with field inventory 

data to generate a pixel-based stratification of a forest.  This work served as the basis for a new 

forest inventory and will be the basis of future forest modeling.  The final chapter improved upon 

this work by instead developing a system to create stands and strata from remote sensing and 

field data.  This work also is the basis for a new forest inventory and future modeling but is a 

more easily understandable, fits within more traditional conceptions of how forest stands are 

defined, and creates a more efficient platform to model future forest growth and management.   

All of the work detailed above is done to help demonstrate efficient and accurate methods to 

estimate the carbon stocks and fluxes of forests so that they may be more easily incorporated into 

climate change mitigation efforts.  Although the pace of policy developments to address climate 

change and deforestation at a global scale is slow, there are already several new developments 

that place a value on the carbon stored in forests – most notably the California cap and trade 

legislation.  This state level policy, along with several voluntary forest carbon offset standards, 

has created a need for reliable data about current and future forest conditions across large spatial 

scales.  Policy makers are generally more interested in large scale estimates across states, 

nations, and the globe.  Conversely, landowners are often more interested in estimates of their 
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individual ownership or region.  Because of these different focuses, scaleable and flexible 

methods to estimate stocks and model future conditions are needed. 

 The work presented in this dissertation is motivated by this and explores scaleable 

methods to estimate current and future forest conditions.  The Biome-BGC model was first 

examined as a candidate for this type of work.  It was calibrated to match current conditions at a 

forest in northern California and run into the future to estimate Net Primary Productivity.  

However, after extensive work using a inversion software package (PEST:  Model-Independent 

Parameter Estimation and Uncertainty Analysis 2013), it was determined that Biome-BGC may 

be a poorly constrained inversion problem.  That is, there are more parameters than observations 

and therefore there are many possible solutions that would satisfy the inversion.  Furthermore, 

Biome-BGC is not optimally suited to model extensively managed forest systems as it is 

designed to estimate steady-state ecosystem dynamics.  New research has attempted to bridge 

this gap as there is still a need for a process model like Biome-BGC when trying to answer 

questions about future ecosystem state given different future climate scenarios.  

Because of the limitations of Biome-BGC, a different approach was explored that uses the 

high resolution remote sensing data and LiDAR data.  These new approaches also attempt to 

stratify a landscape into a set of similar types and by so doing allow for more efficient modeling 

work to be done.  The first approach discussed in Chapter 3 used a pixel-based framework and 

classified 400 m2 pixels into a set of 40 strata.  Although this method showed great promise in 

reducing inventory cost while improving inventory accuracy, it is difficult to use for forest 

management planning.  Additionally, pixel-based classification efforts have been shown to be 

less effective at partitioning landscape variability than object-based methods – especially when 
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the objects of interest are larger than the size of the pixels.  The limitations of a pixel-based 

approach spurred the development of the object-based approach described in Chapter 4. 

The work outlined in these chapters can be considered to fall along a spectrum of methods to 

best estimate and model forest conditions.  The Biome-BGC model was first explored to 

understand if this model could be applied at an ownership scale to accurately estimate current 

carbon stocks and fluxes.  This model was then applied using a pixel-based approach where each 

pixel had unique soil and climate driving variables.  Because of the processing intensive nature 

of this approach across larger scales and the difficulty in calibrating this model, new methods 

were needed.  The next step was to develop a method using a pixel-based approach that 

leveraged the data found in both remote sensing products and ground inventory.  After 

developing this method, an object-based approach was explored as this provides a more flexible, 

user-friendly, and powerful way to segment a forest landscape.   

At each stage in this process, the products from the prior stage can be inserted into the 

current stage and better results obtained.  For example, Biome-BGC would optimally be run at 

the strata level instead of the individual pixel level using either a pixel-based or object-based 

stratification.  Furthermore, the pixel-based stratification results can be used as an input layer for 

the object-based region merging algorithm and will result in a new map of similar regions across 

a forest.  The use of a pixel layer as the input to an object-based segmentation algorithm is a 

powerful and scaleable extension of this work.  Large-scale, pixel-based, remote sensing 

products like MODIS or Landsat imagery can be used to generate landscape segments at the 

state, regional, or national scale.  With these new tools, more appropriate and efficient forest 

modeling can occur and the results of this modeling can be used to inform individual landowner 

decisions or forest policies. 
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