The Time of spawning age and secondary sex character of adult chubs (Mylocheilus caurinum) from Flathead Lake Montana as correlated with histological changes in their testes

Ruth Navarre Scott
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Scott, Ruth Navarre, "The Time of spawning age and secondary sex character of adult chubs (Mylocheilus caurinum) from Flathead Lake Montana as correlated with histological changes in their testes" (1952). Graduate Student Theses, Dissertations, \& Professional Papers. 4654.
https://scholarworks.umt.edu/etd/4654

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

THE TIME OF SPAWHIMG, AGE, AND SECONDARI SEX CHARACTERS OF ADULT CHOBS (MYLOCHETLUS CAORIMUM) FROM FLATHEAD LAKE, MONTARA, AS CORRELATTO WITH HISTOLOGICAL CHANGES IE THEIR TESTES

by

Ruth Navarre geott B.A. Betes College, Lewiston, Maine, 1950

Presented in partisl fulfillment of the requirementis for the degree of Master of Arta

All rights reserved

INFORMATION TO ALL USERS

The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

$$
\frac{\mathbf{T M} \mathbf{I}^{*}}{\text { Dissertation Publishng }}
$$

UMI EP40118
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis hes been approved by the Board of Examiners in pertial fulfillment of the requirements for the degree of Master of Arts in Zoology.

ACX1OWLEDGHZENTE

I wish to express $\overline{H y}$ gratitude to Dr. G. F. Welsel for his Id and sdvice throughout this investigation, most particularly during the actusl writing of the theais. Without the assistence of Dr. R. B. Brunson and Blehard Bjorklund in gthering the material at Fathead lake, this wort would have been inposelible. The help which Dre. R. B. Brunson and J. Charaan gave made poesible the photomierogrephs of the testes. The eervicen offered by Mr. Sumaer Dow wes invaluable in making photostate of the graphs, Dr. L. G. Brownan vas ever a comasel, with concrete sugestions and needed encouragement.

TARLE OF COMTETS

CHAPTER page
I. IATEODUCTIOM 1
II. A REVIEW OF THE LITERATURE CONCERNIMG
MLOCHBTLUS CAURUMDA 6
III. MATERLALS ADD METHODS 10
IV. RESULTS 14
Description of the Testes 24
Description of Secondary Sex Characters 24
Coloration 25
Tuberoular Developant 25
Relative Size 26
Age and Condttion of Adult Chubs 30
Faeding Activities 32
Parabitisam 33
V. COMCLUSIOMS 35
Tine of Spewing 35
Age, Growth, and Condition 10
Age at Spawning 42
Secondary Sex Characters 42
Coloration 42
mabercular Developaent 43
Relative Sise 44
Feeding 44
VI. SUMMARY 46
LITERATURE CITRD 49

LIST OF TABLES

TABLE PAES
I. Weights and Leng ths of Male Mylochailus 11
II. Weighte and Lengths of Female Mylocheilus 12
III. Numbers and Relative Height of Tubercles 27
IV. Age and Lengths of Male Kylacheilug 31
V. Hoter on Feeding Activity 34

LIST OF FIGURES

FIGURE PAGE

1. Condition of testes of sdult Mydochoilus et different times in the year 22 and 232. The average mubers of tubercles of male andimale ixyochoilug in different seasons ofthe year 28 and 29
2. The ratio of gonad weight to total weight ofmale and female Minlocheilus in differentmonths of the year.................. 38 and 39
3. The immature testis 52 and 53
4. Testis in primary spermstocyte stage 52 and 53
5. Testis in secondary spermatocyte atage 54 and 55
6. Testis half to threequarters filled with spermatozoa 54 and 55
7. Testia fully ripened 56 and 57
8. Testis fully apent 56 and 57

CHAPTER I

IMTEODUCTION

Aside from taxonomic descriptions, the Colwabia River chub (Kylocheilus canminum) bsis received little attention, although it is one of the largest and most abundant cyprinids in the Horthwest. ${ }^{l}$ It is the purpose of this investigation to add to the general knowledge concerning MyLou choilus by describing its breeding cycle in terms of histologicel changes occurring in its testes and macroscopical changes in its overias. hlso, secondary sex oharacters which possibly might serve as indicators of sexual maturity are discussed and correlated with the testicular eycle, and dimorphic characters which might be used to distinguish males from females are evaluated. The sge of the spawing fish is noted as well as such miscellaneous itens as feoding activities and parasitigu.

It is aifficult to observe spaning activities of certain species of fish and so determine their breeding seeson. However, cyclic changes occurring in gonads of mature spedzens usually can be used as a reliable criterion to determine the time of breeding. For ingtance, the histological changes which take place in the spermeries of ferca favescens have been shown to conform with the breeding cycle (Iurner, 1919). As aperwatogenesis progressea to its final stage in Perce, the tostes increase in else and welght so that the ratio of gonad weight ean also be

[^0]used as an indicator of sexual maturity.
Another fish which axhibits a definite cycle in the tissue strue ture of the gonade is Cotins beirdii (Hann, 1927). The primordiel germ calls of both sexes of this sculpin oventually give rise to the final sex products, there bolig no transition from somatic cells to germ cella at any time. Sfter Cottur spams, mumber of spermatogonis lying dormant along the margins of the tubules comence to divide and fill up the tubules in preparation for the next spawing period.

Mathews (1936) deterzaned the condition of the goneds of Fundulus at intervals during one year. He concluded that the differences in weight and in gross and nicroscopic appearance of both testes and ovariee at different periods are great enough to afford definite index to the time of breeding.

A Buropean oyprinid, phoximue sp. has an early production of primary spermatocytes during October and November, followed by a period of quiescence which is abruptiy anded by rapid apermatogenesis just bem fore apewning in May (Bullough, 1939).

Oncorhynchas nexka, a salnon which dies shortly after breeding, has obvious changes occurring in its testes precesding spawning (Weisel, 1943). The histological appearance of this nalmonte teates is similar to that of the reinbow trout, except that pyenosis and Tameliestion occur in the germ cells and connective tiasue of the salmon within a day or two after it has spawned.

There is a definite correlation between the breeding season of Levenia mecrochirus, 玉s deternined by field observations, and the cyclic
alterations which appear in the atructure of the testes (James, 1946). Lepomis has a sexies of milt diacharges during May, June, and July. The Lobules of the testes correspondingly contain maturing oyats of spermatom cytes throughout this period which maintain a prolonged source of sperwatoson.

Semanal variations are not striking in the testes of Gililehtivys mirabilitya gobild flsh of Culifornia. This is undoubtecily due to the fact thst this marine teleost lives in an area of equitable climate and breeds over a long period - Jamary to July. However, during the protracted spawning season the testen are packed with mpermatozon axcept when they are partially mptied during mating; in August and September the testea have few spermatosom but the spermatocytes and spernatids in creasey and by November the spermetocyten and spermatids are largely converted into ppermatoza. There is practically no seasonal variation in the sige of the testes of Gilliohthys (Neisel, 1949).

Secondary sex characters are an interestiag adjunct to the sexusl cyole of fish. Some characters appear and disappear, apparentiy controlled by beasonal changes which take place in the gonads, and can be used as indicators of sexual activity.

Freeding feakle Gabterosteus Eculeatas devolop a pinkish throat and belly, whereas ireeding males have cermine throat and belly, blue eyea, and greenimh fins. By correlating the appearance and disappearance of these secondary sex charweters with the varying degree of development of interstitial tiague within the testes, Courrier (1922) claimed that apasonal changes in coloration were dependent upon hormone sem
creted by the ixterstitial cells. He further likened the role of the intergtitial cell. in fish to that in mammis. As support for his contention, he claimed no seoomary mex charaters mpeared in fish which have se developed interstitial cells bat do possess spermatogonia and pormatocytes.

Completely denying Courrier's conclusions, Chamy (1923) clained that some spucimens of Gasterogten in which no interstitial tissue could be seen histologically atill exhibit the appearance of secondary sox characters. Impressed with the indirect indicetions that sexual dimorphism was deprendent upon testicular hormones as clained for Geg teronten量 by Courrier and by the works of Aida (1921) on Haplochoinhs 1atipes and of Wiage (1923) on Inbisteg retricplatag, Hacher (1926) demonetrated that upon atrophy of the testes, Lebistes lost its male mex colors. Prom this observation, he concluded that the intemsiveness, shape, and developent of the black and especially the red and yellow pigmeat spots depend upon hormones produced in the testis.

One of the most striking examples of secondery sex charactere assumed just prior to the spaving period is that exhibited by the Pacific pink salmon, (Davidson and Shontrom, 1936). The moles increane in length, hamp appears on their backs, they increase 19.11 per cent in haight above the lateral line and their heads beeome gratiy elongate and grotesque.

The black hase affected by Gillichthys during its mating is probably due to a nervous control of the chromatophorea, as it appears and disappers in a few seconds (Weisal, 1949). This type of breeding color

Ia not the sane as those that are sosuned gradually and are more or less permanent duriag the breeding aesoon.

CHAFTER II

A REVLEM OF THE LITERETURE CONCEPAIMG MYLOCHELLUS CAURIMOM

The known range of the Columbia River chab in continental North America is in the Fraser and Skeena rivers of British Columbia, and in the Columbia River system of British Columbia, Ideho, Montana, Oregon, and Washington, It is limited in its distribation up the Snake River by Show shone Falls (Miller, personal communication). With the exception of one Japanese cyprinid, Mylocheilus is the only member of its family known to onter the sea. It is this fact which probably explains,its presence on Vancouver and Nelson Islands (Carl and Clemens, 1948).

Mylocheilus is one of the few Morth $\operatorname{mmerican}$ cyprinids that attains a size suitable for a pen fisk. The largest specimen taken from Nestern Montana has atandard length of 28.5 cm . It wh taken from Saeley Lake, Clearmater drainage, Montane. Chube were frequently eeten by the Flethead Indians, although they were not considered as good as selmon or trout and had to be fried until orisp because of their many bones (Weisel, 1952). Lower down the Columbia Fiver, where salnon were abundant, the Indians did not favor the chub for food. An early survey party at Fort Steilacoon reported them as being bony and insipid (Rept. Explor, ete., 1860). How ever, they have been served in hotels along the Columbis River as "whitem Ifin" and have been peddied over the country as "trout" and "Iresh-kster herring" (Jordan and Evermann, 1934). At Flathead Lake, Mylocheilus has been called "whitefish" and has been served at hotels, while the true whitefish, which is not uncomon in the lake, did not seen to attract the
attention of the local fishermen (Evermann, 1891). More recently, the chab was described as food fish of some inportance in Whshington and Oregon, but as rarely utilised in Britimh Columbis (Cori and Glomens, 1948).

The amb poasesses considerable game qualities, rising to the ily and fighting vigorously for a time. Jndoubtedly, as our neturel resources In fish keep rapialy duindilng, the chub will becone more veluable as a food and gport fish.

In spite of its use as food and its much greater potential fox this use, practicelly nothing is lnown about the naturel hiatory of the Columbia fiver chab. Schuite (2935) geve some observations on its spawing behavior in a bxief paper. Chabs in Lake Washington, Washington, vere observed to spaw In 1935 st two times, on May 20 and on June L. Daring the second spswimg, the fish were distributed along 30 to 40 feet of the beach and within g feet of the shoreline. Severvi hundred Ifsh, miling about, semed to be concentreted in several mein groupe surrounding close assemblages of rosting malec. Distinguishing between the highly colored wiles and femsles by back coloration, the former dark green; the letter dark brown; Schults observed thet 4 to 8 males; upon spying a fomale, would persistently ohase her until she was forced high up on the rocky rubble, about one foot from shore, and then would press their bodies hard sgaingt hers. Males aligned themselves so their vants were opposite the fenslets vent. As the meles were aproximetely 2.8 cm shorter than the fenoles, their mouths were evoa with her operculum. Now with the males' tails arched over the female's caudal peduncle, all Pish being more than half ont of water, there occurred at once rapld vibrations or
tremblings of the bodies in unison for about 1.5 seconds, followed by an equal peried of rest, after which the trembling resumed. This spawing act took place about three tiaes in succession. Ench time the water around the fishes' tails became tillky from milt and contained any pale greenish-gray eggs which were suspended for second or two before settilag to the bottom to attach in clumps or singly to the sides of rocke. The spawned female swam avay and the spawned males refoined the close assemblage of other males.

From his observation, Scimult concluded that deposition of eggs in such shallow water two feet from the shoreline ie edventageous, although so far as known of fresbweter fish of northwest United Staten, it is peculiar to yylochetlug. Some advantages listed werer wave action insures oxygenction and keeps eggs free from silt, but is not atrong enough to turn rocks and thue expose the eses; the egge cre fixmy attsched and ao avoid dsinger of being swept away; auckers do not forage into such shallow water; upon hatching, the young fish are afforded ideal protection among the stones. However, there are these dissdvantages: the egge and larvae are aubject to the attack from acuatic insect larves the eggs may be destroyed by a change in water level; and the spaming adults are exposea to danger from land predatora.

In addition to the report on the spaming activity of the chub, the knoviedge of its natural history has been supplemented by a study of its feeding habite and a study of the agemgrowth relationahip of the chmb.

The food of adult Mylocheilus differs essentially only in sise from that of the young chub, Young chubs feed chiefly on water-ileas, copem
pods, midge larvae, and other mall inswets. The food of larger fish is composed largely of aquatic and terrestrial insects, water-fleas, and oce cesionally molluscs, and rarely fishon such as suall sculpins (Carl and Clemens, 1948). Jordan and Evermann (1934) note that Mylocheilus preys to some extent upon saluon egge.

The largest individual chab hitherto recorded in the literature was one from Okanogan Lake, British Columbia, in its 6th season measuring in fork leagth 24.4 en. (Clemens, 1939). The growth of Myiocheling in Okanogan Lake is rapld during the first two years of life, 5.0 and 5.5 cm. increase in fork leagth respectively, then tapers off so that in the 4th and 5th yeare it increases approximately 2.75 cm . per year in fork length.

MATERALS AND METHODS

The chubs were taken in Fiathead Läke, Montana, with a graded gill net. The majority of settings were made on a line south-southwest off the shallow rocky point which protects Iellow Bey from the northwest. Due to the large size of the amallest mesh, eyprinids under 12.5 cm . were not captured. One mundred and two male chubs ranging from 16.9 to 22.4 cm . in standard length and ninety-eight famales ranging from 14.0 to 25.5 em . were netted and used in this study. Three msiles vere taken on May 20, one on May 28, ten every week between the 16th of June to the 10th of August with the exception of the weaks of July 12 and 27 snd August 4 when nine, eight, and eight were taken respectively, one on September 6, ten on October 13, four on November 3, one on Hovember 24, end one on December 8 (Table I). Three females were netted on May 20, two on May 28, ten every week between June 16 and Auguat 10 with the exception of the weeks of June 16, July 27 and August 4 when nine, eight, and nine were taken respectively, five on October 13, six on November 3, and two on November 24 (Table II).

Trmedietely after removal from the net, such fish was slit the length of its belly and placed in 10% formailn. This proceedure insured fresh fixation. Stwadard lengths were recorded to the nearest millimeter on a standard measuring board. Totil body weights were taken on arga acele accurate to one-tenth gram. Preserved gonads were weighe to the nearsat hundreth of a gram on an analytical baiance. The quality and dism

TABLE I

WEIGHTS AED LEAGTHS OF MALE MYLOCHEILISS, 1952

Date of captrar:	Number of fish	Total body weight in gins			Standard length in em*			Weight of gonad in gre		
		mean	nin.	max.	mean	ain.	max.	mean	min.	
5/20	3	112.0	95.5	128.5	19.1	18.2	19.6	0.66	0.2	1.3
5/28	1	118.5			19.1			3.7		
6/16	12.	128.4	101.0	146.0	20.1	18.8	22.0	2.95	2.2	5.9
6/20	10	120.3	91.0	172.5	19.4	17.4	22.1	3.23	1.25	5.16
$6 / 23$ $6 / 28$	3 10	90.8 127.9	7.0	128.7	18.0	16.5	20.7	1.76	0.4	3.9
$6 / 28$	10	127.9	91.5	175.5	20.1	17.7	22.2	3.44	1.8	5.4
7/5	12	120.2	92.0	134.5	20.2	18.0	22.2	2.20	0.5	4.0
7/12	9	113.2	92.0	134.5	19.2	18.3	20.3	1.9	0.7	3.0
7/19	10	129.8	114.5	169.0	20.1	19.3	22.4	1.3	0.65	3.0
7/27	8	124.0	108.6	141.6	20.1	18.9	21.2	0.85	0.55	2.3
8/4	8	128.6	1220	140.2	20.4	19.3	21.6	0.6	0.2	0.8
9/6	10	81.5			16.5			0.75		
10/13	20	96.8	42.7	117.8	17.7	13.4		0.42		2.12
$11 / 3$ $11 / 24$	4	122.7 134.3	98.3	140.0	19.2 19.7	18.0	20.3	0.91	0.5	1.15
12/8	1	120.0			19.3			1.6 0.8		

table II
WELGHTS AND LesGTHS OF PRALE MYLOCHEILES, 2951

Date of capture	Ihaber of fich	Total body weight in gric			Stendard leagth in me			Veight of gonsd in gme		
		3008		max.	mean	$\underline{m i n}$.	max.	mems	min.	max.
5/20	3	188.9	129.8	243.5	22.0	19.9	23.3	13.4	8.7	17.5
5/28	2	163.8	157.6	170.8	20.5	20.5	20.5	16.4	21.9	20.6
$6 / 16$	9	230.3	187.0	305.0	23.3	21.3	25.5	33.3	28.5	51.6
6/20	10	160.0	108.0	228.0	2.12	18.7	23.3	17.5	1.3	31.8
6/23	4	70.2	44.0	90.0	16.4	14.0	18.2	0.7	0.2	1.0
6/28	10	154.0	108.0	264.0	20.9	18.5	24.2	20.3	3.8	49.2
$7 / 5$	11	153.0	99.5	240.0	23.4	18.7	24.6	13.5	1.9	38.2
7/12	10	260.5	125.0	205.5	22.5	20.2	23.2	8.0	1.9	29.0
7/19	10	143.0	65.5	204.5	21.5	16.3	23.2	5.9	1.95	24.4
7/27	8	148.4	13748	170.0	21.2	20.3	22.4	2.87	2.5	4.58
8/4	9	136.6	87.7	235.0	20.1	17.5	24.4	2.1	1.9	2.6
10/13	5	285.0	123.7	257.9	21.7	19.0	24.8	8.5	4.4	12.2
11/3	6	172.6	131.0	217.0	21.1	19.5	22.4	7.37	5.6	8.6
11/24	2	182. 1	154.0	208.3	21.0	19.9	22.1	12.3	10.9	13.7

tribution of colora were noted on special field cards. The degree of tum bercle growth was deternined under a binocular scope, and reeorded acm cording to an arbitrarily set standard: tubercles sbove aurface of epiderpis, tubercles at surface of epidernis, tubercles below surface, tum bercles barely distinguishable, and tubercles absent. Feeding activity and parasites were determined by amoroscopic examination of the body cavity and of the atomach and inteatine. When feasible, the food organ imas and parasites were identified.

Scales for aging were removed from between the dorsal fin and the Lateral line. These were placed in Bouin's picro-formal along with the testes.

After the testes were removed and weighed, they were cut in crosg section and placed in Bouin*'s picro-formal for contimued preservation. Mot every testis wag examined microscopically, but testes from two fish in each of four length groups from each colleetion veek vere studied histologically. The four length groups into which the chubs were divided were 24.0 to 18.0 cm, , 18.0 to $20.0 \mathrm{~cm}, 20.0$ to 22.8 cm, and 22.0 to 22.4 cm . These leagth groupe correspond quite closely to the age groupt. Sections from the mid-region of those testes selected were embedded in perafin, cut at 5 to 7 micrane, stained in Erlich's acid hemetoxylin, and countermstained in sosin. A few tiskues were atained with Heidenhain's iron hematoxylin technieque as used by Moore (1937).

Rewnis

Deonrintion of the tester

The testes of Mylosheilus ceurimin are paired organs aitunted in the dorsal part of the body cavity ventro-laterval to the swin bladder. Bach teatis is covered with a comeotive tismae shoath, and is attached to the awim bladder by a short meporohium. The genital arteries and veins follov alamg the median dormel hilus of the gonad. The primary sperw ducts from each testia unite to form a short ecsmon genitai duet at the pesterior ventrel end of the eoalom. This duet, in tarn, leads to an opening in the geantril painhat

In cross section, the testes are triangular-shaped. They lack the central core of comective tissue from which septa of the lobules extend peripherally e described for perch by furter (1919). Instead, their histologiecil strueture more olosoly resembles that of the salmon (Weisel, 2943), which is in order, inasmach as malmonids are assumed to be more alosily ralatod phyiogenotieally to eyprinide than to centrarchids. The tostes are divided into lobales by connective tisnue strands which are continaros with the thicker comaetive tissue covering of the ontire gomad. The Lobules, or broad tubules, foxmed by the connective tiseue strande, contalin the germ cells and lead, presuanbly, by tor tuous coils to the doranily loceted sperm dnct.

In order to evaluate the degree of maturity during different periods
of the year, a series of arbitrary stages was established to describe the succeseive changes which occur in the testem. These stages are used in Figure 1 and in the disenssion of the time of spewaing.

1. Imenture Testest Imature testes contain long threeds of spermatogonia which are partitioned into lobules by thin connective tissue strands. The spermetogonia are large with a darix steining meleolus, or occassionally two or mor mucleoll, surrounded by very dispersed threads and granules of nucleoplas and a distinct nuclear membrane. The cell membrane is difficult to note, the cell limits being discernible only when vioved in its reletion to the burrounding eells. There are only a fov mall lumena in the lobules (Fig. 4). It is by this last characteristic that an imanture testis can be distinguished from testis which is being reconstituted after spavning.

The only immature fish ceught was netted in Polson Bay on June 23. The standard leagth of this fish was 16.9 cmel its total body weight, 72.2 gm. 3 its gonad weight, 0.98 gn*; and the ratio of its gonsd weight to total body wieight, .00574.
2. Festes in Primayy Spermatocyte Stage: Apparentiy, each spermatogonium madergoes reposted division before the firet maturation diviaion takes place since there are, on the avergge, 12 primary spem matocytes to each cyat. A cybt consists of a group of gemin cells surm rounded by a delicate menbrane of connective tiasue, the qomealled follicle cells. The primary spermatocytes are distinguished from the spermatogonia by their smaller size and by the greater concentration of the nuciear material. At this stage of development, many spermatogonia are
present aloag the lobules of the toptis, for not all of then develop cysts of apermatocytes. Ther is no atage in apermatogenesis later than primary spermatocytes in the testes at this time (His. ©).

Three fish nettea on October 13 possessed testes at this degree of development. The measurements reeorded on these fish were reapectivelys standard leagthe, 19.5, 17.4, 18.1 em.; total body weights, 216.7, 89.2, 97.0 eng conad weighty, $0.45,0.09,0.25 \mathrm{ga} .5$ ratios of gonad weight to total body weight, .00386, .00102, .00257. One fish out of the three netted on November 3 also shown this stage of testicular development. It was 20.3 ow. In standard leagth; 140.0 gm. in totell body velght; 1.15 gm , in gonad waight; and the ratio of gonad velght to total body weight was.,00824.
3. Teates in Secondary Spermatocyte Stager At this stage, cysta of both primary and seoondaty aparmatocyten are present, but no apermatosos have developed. Each cyst contains cells which are all in the same stace of maration. One cyot may have primery apermatocytes only while an adjacent oyst may be all mecomdary apenatocytes. This oomdition has alwo been obeerved in Cotitus boindis (Hann, 1927), in Laponit nacrochixug (James, 1946), and ia Peras Ravesigne (Trrner, 1919). The chromatin of the nualeus staing more doeply as it becomes more condenaed and the sise of the cells diminish with maon phase of maturatione. (Ig. 6).

The earliest date at whioh the saocndury spermatocyte stage was reached in 1953 was October 13. On this date ome fish out of the four studied had tester in this stage of develogaent. Nur fist out of the
three taken on Novamber 3; the one fish netted on Noventer 24; and the one fish netted on December 8 also had teater in this stage. The measuremente of these flah weres range in total body weight, 216.8 to 135.7 ge, the average, $124.9 \mathrm{gm}_{\mathrm{w}} 1$ the range if stendard length, 18.3 to 20.1 cm. the average, $19.3 \mathrm{~cm} ;$; the renge in gonad weight, 0.8 to 1.6 grot the average, 1.1 gro: and the range in the ratios of gonad weight to total body weisht, .00667 to .0119, the averege, .00s87. The tester eppear to remain in this condition throughout the rinter as the testes of two fish notted on May 20 had not developed bem youd this atage. The atanderd lengths of these fish were $\mathbf{1 8 . 2}$ and 19.5
 1.3 and 0.5 gats and the ratios of gonad weight to total body veight, .0236 and .00420.
4. Testes One-Guarter Filled with Spermatosoa: In a eross sectional view of testes in this stage, approximately $1 / 4$ of the area Is filled with spermatozoz the other $3 / 4$ of the area contains cysts of spermatooytes in the various stages of develepment. The clusters of apermatosoa appear as dark masses in the center of the lumena of the lobules, surrounded by the cysts of apermatedytes and spermatida. The apermatosoa are readily distinguished by thal mall size, their dark condensed nuclei, and teil. There is mo avidonce that the first sper matomom developed nove to the duct for storage as described for Phoximpe by Boilough (1939).

Testes which had reached this degree of developaeat were possessed by two fish studied, the Pirst netted on May 28; the second on June 28.

The measurements reoorded on these fish are respectively, 29.1 and 18.8 an. in standerd leagth, 118.5 and 101.0 gan. in total body weight, 3.7 and 1.9 gan. in gonad weight, .0310 and .0188 for the ratios of gonad weight to totel body weight.
5. Testes Half to Threo-Guarters Filled with Spermatosoan A iftle iater in development, the tertes have the ame general sppearance those deseribed above, except that more cysts beve completed matm uration so that about half to three quarters of the totel cross-seetionsl area of the testes comtain spermanom. Dense masses of spernatom sou are contained in many of the lobules which are bordered only by thin stranda of connective tisme as all their eysta have undergone maturation so that only apermatozoa are preent. However, approximately $1 / 2$ to $1 / 4$ of the lobole atill contain eysta which are not completely matured bat contain mpermatocytes. Aleo, within the conaective tissue stranda delimiting the lobales, apermatogonia may be sean - representing a reserve buppily of serm oelle potentially capable of replenishing the testes for another spavaing period (Fig; 7).

Fioh that had approximatiely $1 / 2$ te $3 / 4$ the cross-sectional erea of their testes filled with spexntomsa were netted in late Juno or early Julys four on the 26th of Juse, five on the 20th of June, two on the 28th of June, and one on July 5. The meacurements of these fish considered as a group are as followat the range in standard lagth, 17.4 to 21.7 cm : the average, $29.6 \mathrm{cm.3}$ the range in total body weight was 91.0 to 172.5 gme, the average, 125.8 gan ; the range in gonad weight, 5.16 to 2.25 gre, the average, 3.22 gmoi the range in ratio of gonad
weight to total body weight, .0111 to . 0362 , the average, . 0258 .
6. Tostes Fuliy wiperieds Testes in this condition are composed of large lobules completely filled with large messes of compact syer matosoa. The large sise of the lobales is probably due to their dise cmasion by numbert of sperm, allowed by the distribution of elastie tiasue throughout the gonad. At this stage, thare are no cyste undexgoing mataration and oniy resting apermatogonia are seen lying along the connective tissue strande (Fig. 8). Some fish apparentiy commence sparming before this degree of development has been remened.

Wish having reached this ultimate atage in mataration were eaught in late June and Juiys ine fiah on June 20, one fish on June 28, one on July 5, three on July 12, and one on July 19. Their combined measuremeate are: the range in total body weight was 104.0 to 175.5 gm , the average, 130.3 gm. 3 the range in atandard length, 18.3 to 22.2 em., the trerege, 20.1 em . F the range in gonad weight, 2.60 to 4.0 gm. , the average, 2.88 gn. $\}$ the range in ratio of goned weight to total body veight, . 0120 to .0310 , the average, .0223.
7. Testas Partially Spent: these tertes look flaceid, many of their lobules bave a mber of cyets undergoing maturation, but they still contain a large number of spermatesoa, the fish may be partially atripped when pressure is necesaarily exerted to remove thee from the gill nety it ia inpassible to say whether the chab apamas a nuber of times durisg ite breeding seasom, or whother the partially spent testes are ertiricially induced.

Relatively fow fish possessed testes oniy partially spawaed.

Three fish of six studied from July 5 and two fish of five from July 19 dia have tortes at this atage. The range in total body waight of these
 dard leagth, 18.4 to $22.4 \mathrm{cm}$. , the average, 20.7 en.; the range in gonad weight, 2.6 to $3.0 \mathrm{gr}$. . the average, 2.19 gm ; the range in the ratio of gonad weight to total body weight, . 00949 to .0260, the averm age, .0177.
8. Testes Fully Spent: Even in fully spent testes all of the sperm are not extruded, Some spermatosos remain in the goned to be resorbed. Also, not all cysts complete maration, the spermatocytes beiag resorbed as well. Imediately after apawing, the testes are flaceid. Threads of spermatogonia begin to form, but spermatomoa and cysta of degenerating apermatocytes are still in ovidence (Mig. 9). The gonad begins to resume sallor sise as the elastie tiague of the goned conatriets.

The first completely spent fish in 1951 vae netted on July 5. Then the muibere of completely spent fish increased throughout late July and early August. One fish of four atadied taken on July 12, two fish of five examined from July 19, thet Figh of four from July 27, and three IIsh of aix from August 4 all are in this catogory. Their momarements combined ares range in total body weight, 108,6 to 140.0 gre, the average, 121.4 gm. 3 the range in standard length, 18.9 to $21.6 \mathrm{~cm} .$, the average, 19.9 cm. ; the range in gowad weight, 0.55 to $0.9 \mathrm{gm} . \mathrm{g}_{\text {the }}$ therage, 0.72 gan ; the range in the ratio of gonad weight to total body weight, . 00486 to . 00860 , the average, . 00598 .
9. Reconstituted Testen: Within two weeks, completely spent testes can not be distinguished from inmature teates, so complete is the reconstitution of the gonad. Macroscopically the gonad is a thin thread of tiasue mostily covered by fat. Microscopical inspection of the gonsd revesls that the apermatogonia have formed in threeds along the conneotive tiscue strands by division and that the luwam are again constrieted. Thie general condition of recongtitution agrees with that deadribed for heponile (James, 1946), and Ghoxinas (Mnlough, 1939).

Ome fish netted on July 27, three fish netted on duguet 4, and one fish eaught on Soptember 6 bad teates that prosumbly were being rew constituted after spawime. Their combined measurements weret range in total body weight, 81.5 to 14.6 gm, , the average, $111.3 \mathrm{gm} ;$; the range in standard leagth, 16.9 to 21.2 cm. , the average, 19.6 cm.; the range in gonad veight, 0.5 to $0.8 \mathrm{gr} .$, the average, 0.7 g. 3 the range in the ratio of gonad veight to total body weight, .00417 to . 00920 , the average, .00623.

The chronolocical occurrance of these nine phases in testioular devalopment have a fairiy definite pattern (IIg. 1). On May 20, the two chubs atudied histologically had only progressed am far as the secondary mpermatocyte stage. A chub from a Hay 28 setting whoved further maturation so that approximately $1 / 4$ of the tentes contained spermatoson. On June 16, belf the volume of two paire of testes consisted of spermatoson and two otherw were $3 / 4$ filled with sperm. On June 20 , one peir of testes contained $1 / 2$ spermatozoa, four pairs $3 / 4$ spermatozoz, and one pair was fully matared. By June 28, there semed to be no further genoral progress in

Figure 1.-Comation of teatea of adult Mylocholing at different times in the year. Eeck dot represente one fish exemined.

dates of capture
maturation, one fish having testes $1 / 4$ filled with spernatosos, one $1 / 2$ filled, one $3 / 4$ rilled, and one fouly matured. However, by July 5, maturation was complete in the majority of the finh etudied, one out of aix being fully spent, three partially spent, one fully matured, and on $3 / 4$ filled with spermatosoa. On July 12, one fish out of four studied was fully speat, the other three being fully matured, This saie sitastion contimed for at least a week as on July 19, two out of five fish were fully spent, two partially spent, and one fully metured. Bat by July 27, ahift bed occurred - all the fish were completely opent, owe alresdy having recenstituted ite teetes oo that thrende of spermatogonia trere present in abondance thronghout the lobules. On August 4 there vas fux thor diviation of germ celle. Three out of the s申x fiah examined vere completely spent, the other three vere raconstituted. Msturation in the testod from aish nettod on September 6 had progressed no further than the spermatogonia stage. However, by October 13, three of the four paire of testies contained eysts of primary epermatogytes, the fourth pair of testes having matured to the stage containing eysts of secondmry eyten as wall as cyate of primary spermatooytes. By Movember 3, one fish had tested containing oysts of primary spermatocytes, but two others had gonsis which hed metared to the secondary spermatocyte stage. Both fish netted on Xovember 24 and December 8 had testen developed to eysts of secondary apermatooytes, the same stage in development that the testes from fish caught on May 20 had attuined.

Deseription of Secondery Sax Characters

Bome cyprinids demonstrate striking sexual dimorphism. The most usual sexas dimorphime are thowe of color, tubercular develogmant, and ralative aise. These charucters are used to distinguish between the males and femies of some specien.

Coloration: Myloghellug is one of the most brilliantly colored minnows in the Morthwent. Dorseliy, it is dark alivaceous, its eides are washed with yellowish ailver, and its belly flashes white, Upon thia matrix of coler, ventral to the lateral line, oxtends a reddish stripe, which thin tomaxds the vent, then thiokens towards the tail. The fins, lips, and oparculum are tinged with red. Gold extende the length of the body in two stripes dorsal to the red line and blotohes the opereulum.

The quality of coloration was the factor meagured, and in this quality the Iish did not vary throaghout the time of eapture more than they varied from individuel to individual in ome metting. Intensity of ooloration is a ralative factor which can be varied by anch artificial factors as the diffonty lengths of time the fish are in the nets. However, if there is ina inorease in intonaity previous to spavaing, it is not marted and cannot be used as a reliable oriterion for time of apman ing. Alwe wallie many cypriaids, the male chubi cennot be distinguished from the females on the besie of this character, as both are highly colored. Therefore, coloration in Xrigehoilug is not in the full implication of the term secual dinorphic charrater.

Tabarcular gexelornent: Tabercular development as well is not
pernilar to ane sex of Mylochating. Eoth males and feanlee may have tue barelep on the head, along the pectoral fin ray, over the dorsal murm Iace of the back, in scme cases on the operculum. Counts of tuberw eles were made on the recteagular surface between the fiah" oyes and nontrila. Male Mriceheliug have highar total average of tubercles (39.1) them the fuale (25.0), and their average for may one date is consietantly highor. However, there is a great deal of overlap between the Individuele of the different sewnes, so that the mubers of tuberoles can not be used as a relisble oriterion to distinguish ser (Table III).

On the other hadd, tubercular development exhiblts cyelic ohanges which correapond to the degree of maturity of the testes. The mambers and relative height of the tubereles in relation to the opldormal surface atarts to increase in October when the first stages of maration commence in the testes, reaches poak in June just when the testea are becoming fully matured, and falls rather mharply in July when the testes beecme rpent (1ig. 2).

Belatixs Slage The embs exhibit their greatest sexual dimorphim in the relative sise of the eexes (Tables I and II). Tortymone adult femalea and forty-one adult males caught between Jupe 28 and July 19 have the followidg measurements

Sex	Total body yeitht in me			Stiendaxile		
	range	meam	maan	ramge	-max	mean deriation
Pemale	65.5 to	154.8	32.7	26.3 to	21.2	2.46
malo	$\begin{gathered} 86.5 \text { to } \\ 175.5 \end{gathered}$	123.5	17.9	$\begin{gathered} 24.6 \\ 17.7 \text { to } \\ 22.4 \end{gathered}$	19.9	2.08

HOMBERS AND FZALTIVE GEIGET OF TOBERCLES

	MALES				TMMELES			
Date of capture	Number of figh	Range in numbers of tubercles	Average numbers of tubercles	iverage height of tubercles to epidernis	部mber of fish	Range in numbers of tubercles	Average numbers of tuberelas	Average height of tubereles to epidermis
5/20	3	-	-	barely visible	3	0	0	none
5/28	1	57	57	belon	2	- to 97	48	below
6/16	11	63 to 134	100	above	9	0 to 133	50.8	below
6/20	10	53 to 132	95.5	at surface	10	0 to 102	44.7	below
6/28	10	54 to 111	83.2	above	10	43 to 79	62	at surfae
$7 / 5$	12	0 to 94	68	at surface	11	0 to 107	43	belov
7/12	9	0 to 123	77.8	at surface	10	0 to 81	14.8	below
7/19	10	0 to 142	46.9	below	10	0 to 135	22.5	berely visible
7/27	8	0 to 34	4.2	Barely visible	8	0 to 25	3	barely vialble
$8 / 4$	8		0	none	9	0	0	nowe
9/6	1	0	0	nowe	0	-	-	-
10/13	10	0 to 80	25	barely visible	5	0 to 55	11	barely visible
11/3	4	-	-	barely visible	6	-	-	barely visible
11/24	1	-	-	below	2	-	-	below
12/8	1	-	-	below	0	-	-	-
Average of totals			39.1		25.0			

Pigure 2.-The average mumbers of tubercles of male and female mylogheilye
in differsant seasone of the year.
Saperimposed on thie Iigure is the relative maturity of the testee as shown on Figure 1 .

Thus, females average 1.3 em. longer than the malea end are 31.3 gm . more in veight.

Ase and condition of Acholt chmbe

The anmuli on the scales of most hriochedins are difficult to determine. The circuli are ovenly spaced, and in this respeet resemble
 by Lagler (1950). The anmill are marked off from one another most obFiously by differences in the angle of the formation of the cireulif for each successive year. On some scales, the angular demarkation is quite ovident, on others it is not dorinite. This difference in circuli formation if considered valid for aging studies (Lagler, 1950).

To help ovareome discrepsacies in aging, the soales were firat interpreted by the author and then, without knowledge of the author's oplnions, by Dr. G. F. Weisel. If there was disagreement on the age of a fish, that gpecimen was not included in the diath. The oge deterninations agree quite well with the lengtha even though they represent fish taken over a aix month period.

The poprulation of sexually matrive male chube eaught in Fiathend Lake in 1952 was represented by P1sh in their 3 rd 4 th , and 5 th seasom, the majority boing in the first two clessos (Table IV). One male in his 3xd season was imatare, which indicates that not all fish opewn upon reaching their 3nd weason, but that is the firat probable age at which apmaing can be achieved. Oniy one two pear old fish ras aged, an imature femele of 25.7 cm . in standard length.

TABLE IV

LAE AND LEMGTHS OF MALE MYLOCHETLUE

Age	Date of capture	Standard leagth in $\mathrm{cma}_{\mathrm{F}}$.	Total weight in gm,	Condition factor
III	$\int \begin{aligned} & \text { June } \\ & \text { (imanture) } \end{aligned}$	16.9	72.1	1.49
III	October	17.4	89.2	2.68
III	June	27.7	92.5	2.64
IV	October	28.1	97.0	1.63
III	July	18.3	104.0	1.69
III	Juny	18.4	92.0	1.47
III	June	18.8	101.0	1.52
III	October	18.9	117.8	1.74
III	December	19.3	120.0	1.67
III	July	19.3	111.5	1.54
III	October	19.5	116.7	1.56
IV	July	19.8	123.0	1.58
IV	June	19.9	119.5	1.51
IV	July	20.3	134.5	1.61
IV	July	20.4	129.0	1.52
IV	June	20.7	138.5	1.56
IV	July	21.4	133.5	1.35
V	June	22.2	175.5	1.60
v	July	22.4	169.0	1.50

The condition factor, K , a comstant in the relationship betwoen form (atandard leagth in millimeters) and spocific gravity (total body weight in grams) is used widaly by finhery investigators to express the *degree of vell-being" of fiahes (Lagler, 1950). Sharp changes in the value of I may be expected at spaming as the expulition of spawn auddenily deereases. the weight. In order to diseover if the condition of Mxpochailus variol juat prior to and after spmaing, it is neeassary to: keap other facters as conatant as possible. Therafore, the fiah for whioh the eosdition factor was calculated were all adult males. These are listed aeperetely on Table IV. Considered colleetively by the morth, the condition factors ares

Whember of figh	Month of eaptare	Average condition factor	Age
6	Jane	2.55	$\begin{aligned} & 3 \text { in } 3 n d \\ & 2 \text { in } 4 \text { th } \end{aligned}$
			1 in 5th
8	Juls	1.53	3 in 3nd 4 in 4th
			4 in 5 th
4	October	1.65	3 in 3nd
1	Desember	2.67	1 1

The trend in condition of Beigntailus from Fiathead Lake in 1951 shows a alight ducrease in relative robustmas durist the apanning period with a gradual inoreare in "degree of well-belng" in the period which corw reaponds to the initiation of the first atages of spermatogenesis.

Yedinn Aetindtine

The feeding aotivities of the ohabs during the epring and spomer

Parantin
Fourtean por cent of the adult chubs studied wore parasitised by intertinal cestodes and numatodes. Plerocercold larvae of Lhgala gp. (ideatified by Edmand Jeffern) were found around the gut in the body cavities of three of the two kundred fish examined. It is known that many fish including minmows, nuokers, pike, and perch act as intermediate hosts of this parasite, the final hoat being gulls and otber water binds (hunter and hanter, 1932). The life cyale of the parasite is not known, nor its effeots on its bosts. However, if the sample taken was reprem sentative of the Myigcheilue pogulation in Flathead Lake, 1.5\% of the
chabe are paraitised by Ligure.

TABLE V

HOTES ON TREDING ACTIVITY

	MALES			FEMALES		
Date of capture	Humber of fish	Range in foeding activity	Average feeding activity	Nunber of fish	Range in feeding activity	Average feeding activity
5/28	1	none	none	2	very active to cotive	active
6/16	11	none to very active	slight	9	none to very active	slight
6/20	10	slight to vary sctive	moderate	10	none to very active	slight
6/28	10	none to active	alnost none	10	none to very uctive	slight
7/5	12	none to active	moderate	11	none to active	moderate
7/12	9	none to moderste	almost none	10	noxe to very active	nocerate
7/19	10	none to very active	slight	10	none to aetive	slight
7/27	8	alight to moderate	slight	8	none to maderate	saight
$8 / 4$	8	none to very active	slight	9	none to very active	moderate
9/6	1	slight	slight	0	---	\longrightarrow
10/13	10	none to slight	slight	5	none to very active	alight
11/3	4	noze to very active	moderate	6	slight to very active	moderate
11/24	1	moderete	moderate	2	slight	slight
12/8	1	active	active	0		-

COMCLUSIOMS

Ther of Spouning

The testes of the Columbia River chab undorgo dafinite cyclic alteratioas which reveal the the of year in which this fish breede in Hathead Lake (Fig. 1). In early Kay of 1951, cyats of germ cells whioh had developed to secondsry spormatocytes during the previous rall and viater months comenced their final mataration division. There was a period of quiescone dariag late winter and early aprim since the oyat had reached the secomdary spernatocyte stage by Deoember; This period of quiescence is not peculiar to the chab, In Phosimpas there is a slow conversion of sperintogonia into primary menatooytes during the winter, followed by a dormant period, and then in the apring - just before spawing there is rapld formation of apermatoson (Buliough, 1939). However, there is one principle differeace between these two cyprinids, which is that the sex celle pass thoir period of formancy in Mivhocheilus as seeondary spen matocytes, whereas they remain as primary cytes in Phoximus.

Ay the last of May, waretion in the testes of the chubs had progreaned to far that appyoxdmately $1 / 4$ of the germ cellis in the gonad were spematosoa. In the middle of June, approximately half the fish had thoir testes $1 / 2$ filled with sperm and the other helf $3 / 4$ finled. Towards the last of this month, quarter of the fish exemined had fully astared teates, packed with spermatosoa, In the first week of July, half the fish had partially spavaed, one was speat, one was fully matured
 - โ.
-xəquman

 च

 9
sise of Pish. However, the proportion between the total body weight, and the weight of the testes is deened relisble as it is fairiy constant for a large number of individuals in any given season (furner, 1919). By applying Turner!s proceedure, it is evident thet the average proportional weight of the testes increased in late May, reached climax in late June, and graduolly declined during July, several months after which the weight bagan to increase agein (Fig. 3). The ovaries undervent more apectacular proportional weight variation which, as expected, conformed to the male cycle. The gravimetric anclysis agrees with the histologicel chanfea which oecurred in the testes.

From the above evidence, apaming undoubtedly took piace from July 5 to July 19 during 1951. However, 1951 had an exceptionally late spring. March was the coldest since state wide records began in 1895, having an average temperature of $27.2^{\circ} F_{0}, 6.4$ degrees below the normal expected average teaperature. During April there was an extensive cold wave which, however, did not lower the average temperature of 41.30 F. more than 2.2 degree below the normal. Mey was a more typiesl month, having an average of 49.8°. only 1.4 degrees below normal. June was the coldest since 2895 with an avarage temperature of 53.0° F., 4.9 dom - greea below normai (Climetological Deta-Montana, 1951). As warmer water temperature might hasten the time of apaning in other years (Bullough, 1939), it is very posaible that Mylocheilug often breeds earlier, However, it may be wafely stated that the chub spawns in the very late spring or eariy sumer in Flathead Leke. This agrees with Schnits's fiadings that ohubs spawn during late May and early June in

Figure 3.-The ratio of gonsd weight to total veight of male and female siloghoinns in different months of the year. Superimposed on this Ilgare is the relative maturity of the testes as shown on Figare 1.

RATIOS OF GONAD WEIGHT

TO TOTAL WEIGHT

Lake Washington, Weshington.
From histological axamination of testes taken during the period of spawing, it cannot be definitely stated that a fish spams completely in one act. The tester of Leponis, a fish that mpans throughout the sumar months, is daseribed as having loosely packed spermatonoa present in the lobules during this whole period (James, 2946). In genes. 2., the partially spamaed tenten of kypoaneilus correspond to the described condition of Lapomis, but the partially spawned comdition oould have besp caused by the strugilipy of the fish in the net or by the partial atripping when handed in taking the from the not. If pertially spawned testes are not artificially induced, some testes taken from fish in July indicate that the chubs spawn a number of times within approximately a two week period.

Ares Groyth and Condition

Fish in their 1st, 2nd, 3rd, 4th, and 5th seasons vere taken from Flathead Lake in 1951. The seven yeariings were seined in Fellow Bay, Nathead Lake, in July, 1951. With this yeariing material added to the data on mature Iish, Fable IV, the age and growth of Mathead chube may be sumarised:

Age	Wumber of fish	Range in standard length in cen.	Average atandard length is em.	Average Growth per year in am.
1	7	4.4 to 5.5	5.11	5.11
II	0	-	-	-
III	20	16.9 to 19.5	18,50	-
IV	7	18.1 to 21.4	20.40	1.90
V	2	22.2 to 22.4	22.30	1.90

There mast be rapid growth in the second year, after which it tapers off to a slow increase when sexual maturity is reached.

M* anvimpe from Oknnogen Loke, British Columble, were measured sad aged by Clemens (1939). Using fork length rather than standsid length he determined the following ralationship of age, sise, and growthe

Age	Average fork length in cam.	Average growth per year in cas
II	5.00	5.00
III	10.50	5.50
IV	14.00	3.50
V	16.75	2.75
	19.50	2.75

Wo direct correlation is made with his findings and those for chabs from Thathead Lake, as the Montana fish were teken over a half-year period and their lengths were taken to the caudal base rather than to the caum del fork. No conversion factor to equalize standard length to fork length has been calculated for Mylocheilus. However, in comparieon with the Ocanogan fish, it would seem that there is faster growth in Nathoed Lake for the first two years, but afterwards that growth is slower.

The condition of kyochoilus varies alighty during the time of spawning and after spawning; in June the everage condition factor is 2.55; in July, 2.53; in October, 1.65; and in December, 1.67. Prom bablif beeause Mylocheiling apparentily feeds throughout the year (Table V), it's condition is not as extremely affected by spawning as is the concition of Sish such as galmo galar that cease feeding during the breeding time (Belding, 1934).

Axe at Spavaing

The age at which the testes probably first ripen in Mylocheilug 1s 3 years. Although one male in his third seamon wes not yet mature, over a third of the fish in opswning condition were in their 3rd aeanon. Ho two year old males were known to apawn - nome were eaught with the spaming population. One fenale aged at two years wes show histologically to be imanture which is further evidence that maturation ususily occurs in the third yoar. Fish from 22.2 to 22.4 cm . longy the fevest in mamber, were aged at five years and were spawning or had spavned. The rapid reconstruction of the teates after apanaing coupied with the fact that chube in their 3rd, 4th, and 5th seasons were in the spamaing condition indicates thet they spava in successive years.

Sepondary Sex Characturar

Coloration: Many eyprinids exhibit a definite difference in coloration between the sexes, particulariy during the spawning season. In Richarcinoniug balteatag (Weisel and Merman, 1951), Hrbornathus
 gorrontar (Buany; 1940) the males are more brightly hued than the females. Howevex, the quality of coloration of Hyhoheilng did not vary from season to menmom or from sex to sex more than it varied from individual to individual. Coloration hes been attributid to ehromosimal Inheritance in finistas (耳9acher, 1926) transaitted by the I- and Ichromonomes. The Loblitas fmales, even if poseessing known ganes for color on the X-ohromosine, deen not phenotypically exhibit the color
eharacter, It is thas hypothesked that the presence of the male hormones elaborated by the tentis is necessary for the phenotypic expression of color. Othar Investigators (7ahl and Devis; 1932) observed the ffects of gonadectory on the secondery gexnal eharacters of Arga calva and stated that the caudal ocellus in maleo Is primarily independont of the testioular prinaiple, but is oecondarily Intensified by it unxiag the breeding seanom, asi that the endel. ocelias is potentially preseat in imales but that its ppeamange is inhibited by some principle, pronumbly manderino secretion oluborated by the ovaries. Although no breeding or gonadectony experimats were performen on kioehoilus, it is probuble that the inherited color characters are relatively unaffected differentially by teaticalar or ovarian secretiong, fmamah ws there is littie or no seasomal Tariation man 1ithte or no sex aifierontiabion.

Tinbereular Development: On the other hwod, there is a seasomal eyole oxinibited my the appearance and distppenrance of tuberclos which ear be corralated dotantrily with hestological changea in the teaten and with waight changes In the ovaries (PLg. 3). With the early start of mataration of the testia in the fall, the tabercle development vas initiated. The tabereles increasod In haight and in manber until the end of Jwne During and aiter spaving there was a rather rapla dem Cline in both manber and holght antil mone were visible (Table III). Hot only is the breeding cycle broadly indicated by tubercle growth. but alse there is an averege difference in mabers between anes and fomalen. However, thert is an overlap in the range of numbers in ages
and fanles so that it is not a reliable point upon whioh to distia guish sex. It is posaible that the tabersle dovelopment is initiated by gonadal secrotiona of both sexes bat that there is a greater phen otyple response to the presence of the testicular prineiple.

Holative Siget It is in aise that the greatest extexmal difo forence between male and female yylocholigs is inluatreted. The fomelea tworage 1.3 ang longer and 31.3 gin, hoavier than males. The following is a summary from Tablee I and II:

Sext	Wumber of fish	Average velght in	Average standard leagth in en.
males Pencies	41	$\begin{aligned} & 123.5 \\ & 154.8 \end{aligned}$	$\begin{aligned} & 19.9 \\ & 21,2 \end{aligned}$

Solvalte (1935) in hla observations of apavaing obnbs on June 1 , 2935; reported the following measuremonte of spawing chimbs

Sex	What ber of tivh	Average veight is zer	Aversge gtandard length in cm .
fales	$\begin{aligned} & 25 \\ & 34 \end{aligned}$	$\begin{aligned} & 123.8 \\ & 203.6 \end{aligned}$	$\begin{aligned} & 19.7 \\ & 22.4 \end{aligned}$

A comparison of these two groupe of data shows that spavning males Iram bath areas are similar in both leagth and weight, but that there is comsiderable difference between the femeles. However, they both illustrate that the spawing females are largor in both weight and leagth than the mpuniag malea.

Yending

In generel, the stomach contents of the chabs from Flathead

Lake coineide with the findings of Carl and Clemens (1948). These authors found the chabs feeding largely on aquatic and terrestrial insects, water-Reas, occessionsl molluscs and rarely on small fish auch ss sculpin. Although no fish remins were found in the stomechs of enviochoilus examiaed by the author, one chab out of 87 examined from Fhathead Lake by Dr. R. B. Brunson and Pichard Bjoriklund Aid have unidentifiad Iish reaina in its digestive tract (personal coxanication).

Jordan and Evermann (1896) state that the Mylocheilns "from
quent the spanning beds of salmon where it devours their ogga." ilthough same chabs were netted during the salmon spawing seazon in October, Hovember, and December there is no evidence of their eating Balmon eggs.

SUNMARI

1. One handred and two male and ninety-eight femele Columbie River chibs (Mylocheilng caurima) were gill netted in Flathesd Lake, Montene, duriog May 20 to December 8, 1951. 2. Histologicully, their teates undergo a cyolic change. In early May the testes were packed with eysts of secondary apermatoeytes. Iowards the widdle of this month spermatogenesis oceurred rapidly and a Lew spermatosoa appested. The spermatozon increaded in mumber through June so that $\mathrm{b} y$ the and of Jume many of the testes were fully matured. From the first to the midde of July most of the cysts of apermatocytes disappeared, the tester either being packed with spernatosoa or epent. Spent testes were raplaly reconstructed in August and September by sperw watogonia which had reasined dormant within the connective tissue strands during the previous maturstion of the testes. Corresponding to the recoastitution of the testes by spermatogonis wes the reabsorption of spenmatozoa and apermatocytes which had not been axtruded during spavaing. By lovember the reconstructed testes contained cysts of primary and secondary spermatocytes. There is evidentiy period of quiescmet Irom December to Kay, after which a flurry of apermatogenesi. comancas anew.
2. The cytological changes in the testes firmiy imply that in 1951 the majority of the chubs spamed from July 5 to Juiy 19. It wa: not detersined whether they spawned onoe or several timas during this
period. The spring of 1951 was exceptionally late, so in other years breeding may occur earlier. But, in general, it may be said that the chub is a late spring or an early numer spmaer.
3. The grose appearance of the ovaries and the ratio of gonad welght to total body weight in both sexes, tigured for ach fish over the entire period of study, confirmed this time of spawing.
4. The majority of Mylochoilus spawned in their 3rd and 4th years, 4 for epmped in their 5th. Ho male chubs were netted thet were over 5 years old.
5. The rapid reconstruction of the testes in evidence that the males, at lemst, spam in auccessive years.
6. There is no accurate means of identifying the sexes by ex. termal characters. The color of the males and femies vas similar and they both possessed tabercles during the breeding season. The only prom nounced sexual dimorphism was in the comarative lengths and weights. Adult fearles averaged 1.3 cm. longer and 31.3 gan heavier than the malea.
7. The colors were only slightly heightened during the spawning season and cannot be used as an indicator of sexual maturity. The tubercles, however, appeared in the late fall when the teates were undergoing the firat stages in maturation, then commenced to disappear after the testes were fully matured. On the whole, the meles were more heavily tuberculated than the famsles.
8. Food was taken during the spawning season. Molluses, Coleopu tora, larve of DLptera, some plant meterial, and a few Eymenoptera constituted the buik of the diet. There was no evidence of chubs eating
galmon egga, although they were taken when salnon wore spawning, Also, no fish remaina were fownd in their stomachs.
9. Fourteen par cent of the chubs were parabitised by intes
tinal ceatodes and nematodes, and 1.5 per cent by the plarocercold 2arvae of Licula.

LITHRATDE CITKD

Aida, T. 1921. On the inheritance of Color in a Freshwater Fish, Aplochethis 1atipes. Geneties 6: 554-572.

Belding, D. L. 1934. The aase of the high mortality in the Atlantic *almon after apuming. Trana. Amer. Fish. Soc. 64: 219-222.

Blachor, L. J. 1926. The dependence of sex charactere upon testicular hormones in Lebistes. Bicl. Bull. 50: 374-381.

Bullough, W. Be 1939, 4 strady of the reproductive cyele of the minnow in rolatica to the enviroment. Proc, Zoal. Soc. London, Ser. A. 109: 79-102.

Carl, G. C. and W. A. Clemens. 1948, the Fresh-water Pishes of British Coivmbia. Brit. Col. Prox. Muscern, Dopt. of lde, Hand book no. 5. p. 76-77. Victoria, B, C.

Champy, C. 1923. Obenrvations sur les carmeterea sexuels ches les poissoms. Compt. Rend. Soo. Biol., Paris. S6: 414-417.

Clamens, W. A. 1939, The flimes of Ocanogan Lake and neariby water. Bull. Fish. Ros. Bd. Camen 56: 27-38.

Couryier, R. 1921. Sur 10 conditionmenent des caracteres bespe lex seconduires ches lee poissons. Cempt. Rend. Soe. Biol. Paris. 858 426-489.

Bavidsom, F. A. and O. E. Shostrem. 1936. Physical and chanicel changes in the plink almon during the spavaing migration. U. S_{*} Dept. of Commoree, Bur. of Mish., Invent. Rept. No. 33. II: 1-37.

Evermann, B. W. 189, A reoonmaissance of the streas and lakes of Vostern Montana and Morthonetern Wyoming. Enll. U. S. Fish. Com. XI: 3-60.

Hznn; A. W. 1927. The history of the germ-calls of cottus beirdit. J. Norph. 43: 427-497.

Hhnter, G. U. and Wanda S. Hunter. 1932, Studies on parasites of Iish and of fich-eating birds. Suppl. 21st. Ann. Rept. F. I. St. Cons. Bepte, Bial. Shav, Oavegatchis and hlack Mivor systram. 1931: 252-27.

James, M. F. 1946. Histology of gomadal obanges in the bluegill,
 taingteg (bacepede). J. Morph. 79t 63-89.

Jordan, D. S. and B, W. Evermann. 1934. American Food and Game Fishes. Garden City, New York. p. 72-73.

Latler, K. F. 1950. Studies in Freahweter Fishery Biology. Ann Arbor, Miohigan. p. 52-80.

Matthews, 5. A. 1938. The seasomal cycle in the gonads of Pundulus. Bial. Bull. 75: 66-74.

Moore, G. A. 2937. The gem celle of the trout (Salmo Iridgns Gibbons). Trame. Amer. Mic. Soc. LVI (1): 205-212.

Haney. . . C. 1939. The breeding habits of the silvery minnow, Hybornathas gexine Girard. Amer. Midand Fifaralist. 21: 674-680.

Rshey, I. C. 1940a, The breeding behavior of the common shiner, Hotronis cormatag (Mitchin1). I. Y. 2o01. Soe. XXV 1-20.

Handy, E. C. 1940b. Comparison of the breeding habits of two sabm apecies of black-mosed dace, Rhiniohthyre atratrilus (Hermann). Ambr. Midland Maturaliet. 23! 399-403.

Rept, Haplor, and Survey to Ascertein the post Practicable and Economisal fonte for a Railroad from the Mississippi River to the Pacifie Ocean - 1853-1855. Vol, 12 out of 12 vole. pert 2, p. 359. Washington, D. C.

Sotults, L. P. 1935. The spawning habite of the chub, Mxlochelius camrimis - a forage fish of somo value. Trans. Amer. Fish. Soc. 651 143-147.

Turner, C. 5. 1919. The seasonal cyele in the spermary of the perch. J. Morph. $32:$ 681-711.
E. S. Dept. of Commorce, Weathor Barean. Merch, 1951. Climatologieal Deta - Moxtana. ITV (3). San Francisco, California.
U. S. Dopt. of Comerc ${ }^{\prime}$, Weather Bureau. April, 1951. Climatological Dati - Momtama. LIV (4). Sen Franaiseo, California.
U. S. Dept. of Comaerce, Weather Bureau. May, 1951. Climatologieal Data - Montana, LIV (5). San Francibeo, California.
U. S. Dept. of Comerce, Weather Bureau. June, 1951. Climatologicel Beta - Montana, LIV (6). San Pranciaco, Californis.

Neisel. G. F. 1943. A histological study of the testes of the soak-eye salmon (Oncoribrachos merta). J. Morph. 73: 207-230.

Weisel, G. F. 1949. The seminal vesicles and tester of Gillichthys a marine teleost. Copeia 1949 (2): 101-110.

Weisel, G. F. 1952. hnimal nmes, enatomical terms, sid some ethnosoology of the Flathead Indians. Jour. Wash. Acad. Sci. (in press).

Weisel, G. F. and H. W. Nevamn. 1951. Breeding habits, development, and early life history of Bichardsonius baltestas, a Northyestern minnow. Copeia 1951 (3): 187-194.

Vinge, 0 . 1923. Crossing over between X - and Y-chromosomes in Lebistes. Jour. of Geneties 23: 254-276.

2shl. F. A. and D. D. Davis. 1932. Effecte of gonadectomy on the secondary sexual characters in the genoid fish Amia celve. J. Exp. zool. 63: 291-304.

Figure 4.-The immature teatis (margificition 400x)

Pigure 5-Testis in primary apermatocyte stage
(nagnifiention 400x)

Pigure 6 -Tontip is asondary apornatocyte stage (mepification 400x)

Tigure 7,-Fentis balf to throo-quarters filled with spermatosom (magnifiantio 400X)

Figure 8.-Testis fully ripened (magnifieation 400X)

Figure 9.-Testis fully spent

(magnification 400x)

[^0]: 27rs.C. L. Mibba and R. R. Miller advise that the spelling of the specific name caurimus be changed to caurimun to conform with the nouter gender of Mrlooheilug.

