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High-intensity wildfires have resulted in large financial, social, and environmental costs 

in the western U.S.  This trend is not expected to decline soon, as there are millions of 

overstocked hectares at medium to high risk of catastrophic wildfires.  Thinning is being 

widely used to restore different types of overstocked forest stands.  Typically, thinning 

prescriptions are derived from average stand attributes and applied to landscapes 

containing a large number of stands.  Stand-level thinning prescriptions have thus 

limitations when applied for reducing the risk of high-intensity wildfires.  They use 

indicators of crown fire potential (e.g., canopy base height and canopy bulk density) that 

ignore variability of fuels within stands, location of individual cut- and leave-trees after 

treatments, and the temporal effects of these prescriptions for reducing crown fire 

potential over time.  To address the limitations of current stand-level thinning 

prescriptions, a computerized approach to optimize individual tree removal and produce 

site-specific thinning prescriptions was designed.  Based on stem maps and tree attributes 

derived from light detection and technology (LiDAR), the approach predicts individual 

tree growth over time, quantifies tree-level fuel connectivity, and estimates skidding costs 

for individual trees.  The approach then selects the spatial combination of cut-trees that 

most efficiently reduces crown fire potential over time while ensuring cost efficiency of 

the thinning treatment. 
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GENERAL INTRODUCTION 

 

Historically, low-intensity fires burned frequently in the western United States 

(US) maintaining open forest structures and reducing forest fuel loads (Hessl et al. 2004, 

Allen et al. 2002).  Over the last decades, successful fire exclusion has contributed to the 

accumulation of understory vegetation and increased forest stand density, creating greater 

continuity of fuels in stand structures and increasing the potential for high-intensity 

wildfires (Mutch 1994, Arno and Brown 1991).  As a result, wildfires have burned more 

severely causing considerable financial, social, and environmental losses.  In the last five 

years alone, high-intensity wildfires burned more than eight million hectares in the 

western US (NIFC 2010).  Wildfires are expected to continue burning severely; some 

estimates indicate that more than 27 million hectares of forestlands have departed 

significantly from natural wildland fire conditions and are at medium to high risk of 

catastrophic wildfires (Schmidt et al. 2002).   

Thinning is one of the most common silvicultural treatments used to reduce the 

risk of high-intensity wildfire (O’Hara et al. 1994).  It has been widely applied to many 

types of forest stands to reduce fire intensity by changing stand structures and reducing 

fuel loads (Graham et al. 2004, Graham et al. 1999). Typically, thinning prescriptions are 

derived from average stand attributes and applied to landscapes containing a large 

number of stands.  However, treating stands with varying site potentials and vegetation 

structures under similar thinning prescriptions is often inefficient for achieving fuel 

reduction goals throughout the treatment area (Parsons 2007, Graetz et al. 2007, Keyes 

and O’Hara 2002).  Forest managers need tools to develop site-specific thinning 
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prescriptions for individual forest stands based on their current vegetation structures and 

wildfire potential.  Such tools can improve the effectiveness of thinning practices for 

reducing stands’ susceptibility to high-intensity wildfires, while considering cost 

efficiency of thinning operations and other forest management goals such as wildlife 

habitat and water conservation.  Developing site-specific thinning prescriptions for 

individual stands requires tree-level forest inventory data as well as analytical approaches 

to guide the selection of cut-trees to best modify vegetation structures to efficiently and 

effectively reduce the risk of high-intensity wildfires. 

Traditionally, decision-making in forest management is based on stand attribute 

information collected using stand examination.  As field based inventory data are 

expensive and labor intensive to acquire, sampling intensity is limited providing average 

stand characteristics while ignoring large variability in vegetation and terrain within 

stands.  Recent advances in remote sensing and geographic information systems 

technologies have drastically changed forest data acquisition by providing tree-level 

inventory data for large landscapes.  These unprecedented high-resolution forest 

inventory data can be used to facilitate the transition of forest management from stand-

level to a more detailed tree-level.  Although these tree-level datasets are becoming more 

widely available, there is a need for decision support systems that integrate such data into 

decision-making to improve current forest management practices. 
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LIMITATIONS OF STAND-LEVEL THINNING PRESCRIPTIONS 

 

Development and evaluation of thinning prescriptions for reducing the risk of 

crown fire using the existing fire management tools have four limitations.  These tools 

use indicators of crown fire potential (i.e., canopy base height and canopy bulk density) 

that ignore the following four important factors:  

i) Variability in tree sizes within a stand – Stand-level thinning prescriptions are designed 

to reduce the likelihood of crown fire initiation by increasing canopy base height.  Crown 

base height, measured on an individual tree, is relatively easy to obtain; however, due to 

variability in tree sizes within a stand, it is difficult to represent an entire stand with a 

single canopy base height value (Scott and Reinhardt 2001).  Stand-level thinning 

prescriptions are also designed to reduce the likelihood of crown fire propagation by 

decreasing canopy bulk density.  Again, canopy depth is difficult to estimate for an entire 

stand and the calculation of canopy bulk density assumes that canopy fuels are distributed 

uniformly within a stand, which is unlikely the case even in stands with simple structures 

(Scott and Reinhardt 2001). 

ii) Spatial distribution of leave-trees after treatment – Stand-level thinning prescriptions 

usually specify percentage of total tree removal or per size class in terms of number of 

trees and/or basal area.  Hence, there are a countless number of combinations of cut-trees 

that meet the same thinning prescription for a given stand.  Individual foresters, who 

select and mark the actual cut-trees on the ground, are likely unable to evaluate the 

effects on each cut-tree combination on reducing crown fire potential.  However, the 

effectiveness of thinning treatments to mitigate the chance of fire transitioning to and 
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spreading through canopy fuels can vary widely depending on the spatial distribution of 

leave-trees after treatment (Parsons 2007). 

iii) Spatial distribution of selected cut-trees – Estimation of harvesting costs for a 

thinning treatment is often simplified using average stand attributes such as skidding 

distance, ground slope, and harvestable timber volume, while ignoring the location of 

individual cut-trees relative to extraction points (either landing or road side) and detailed 

terrain conditions within a stand.  For example, although two alternative combinations of 

cut-trees might have the same effect on reducing crown fire potential, the combination 

with cut-trees closer to the extraction points might be less costly than the other 

combination. 

iv) Future tree growth and treatment longevity – Current thinning prescriptions rarely 

consider the longevity of treatments in terms of their effectiveness in altering fire 

behavior.  Decisions on cut-tree selection affect micro conditions and future competition 

levels of remaining leave-trees, thus influencing tree growth and future stand conditions.  

However, individual tree growth and the associated temporal effects of cut-tree selection 

on the reduction of crown fire potential over time have not been incorporated into the 

development of thinning prescriptions.   

Despite the limitations mentioned above, stand-level thinning prescriptions are 

still being considered for restoring different types of overstocked forest stands in need of 

fuel reduction treatments without being evaluated for their effectiveness at an individual 

tree level.  This is mainly because of the way forest inventory data have been collected, 

which is through field-based sampling plots.  Collecting more detailed tree-level data to 

quantify forest resources has been deemed impractical and economically infeasible.  
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However, in recent years, the Light Detection and Ranging (LiDAR) technology has been 

widely used to provide tree locations and attributes – tree height, crown width and 

derivative parameters such as diameter at breast height (DBH), volume, and crown base 

height over large landscapes (Maltamo et al 2006; Packalén and Maltamo 2006; Maltamo 

et al 2004).  These tree-level data can be used to capture spatial variability in tree sizes 

and locations within a stand and develop more detailed tree-level thinning prescriptions 

to improve the efficiency and effectiveness of the current thinning practices for given 

forest management goals. 

 

 

PREVIOUS WORK 

 

Fire Behavior Modeling 

 

Land managers have been using fire behavior models to predict fire intensity, 

identify stands with high risk of wildfire, and allocate resources for thinning treatments 

(Ager et al. 2006, Finney 2006).  Available fire behavior models can be classified as 

empirical, semi-empirical, and physics-based models (Pastor et al. 2003).  Empirical 

models are based on relationships between a response variable and explanatory variables 

without considering the controlling physical processes (Cheney et al. 1998, Cruz et al. 

2004).  These models usually predict spread rate of fire (and other quantities derived 

from spread rate) as a function of wind speed, terrain slope, and fuel characteristics (Mell 

et al. 2007).  Semi-empirical models are based on conservation of energy theory, but 
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usually consider only one mode of heat transfer – conductive, convective, or radiative 

(Sullivan 2007).  By assuming fuels homogeneity, most of these models can model fire 

behavior in two-dimensions (i.e., Van Wagner 1977, Alexander 1998, Butler et al. 2004, 

and Cruz et al. 2006a).  Lastly, physics-based models are able to predict fine-scale time 

dependent fire behavior, fire-fuel, and fire-atmosphere interactions in three-dimensions 

by solving equations governing fluid dynamics, combustion, and heat transfer.  All 

modes of heat transfer present in both fire-fuel and fire-atmosphere interactions are 

modeled (Sullivan 2007, Mell et al. 2005). 

Several fire behavior models have been integrated into fire management tools 

developed to predict the risk of high-intensity wildfires on forest stands such as the 

FARSITE (Finney 1998), NEXUS (Scott 1999, Scott and Reinhardt 2001), FFE-FVS 

(Reinhardt and Crookston 2003), BehavePlus (Andrews et al. 2005), FMAplus (Carlton 

2005), CFIS (Crown Fire Initiation and Spread; Cruz et al. 2005), and FlamMap (Finney 

2006).  These tools use different empirical and semi-empirical fire behavior models, but 

they are based on a common set of models including Rothermel’s (1972) surface fire 

spread, Van Wagner’s (1977) crown fire initiation, and Rothermel’s (1991) crown fire 

spread models.  Scott (2006) compared three widely-used fire management tools (i.e., 

NEXUS, FlamMap, and CFIS) in terms of their predictions of crown fire potential.  

Crown fires are of particular concern because they are difficult to control and have more 

lethal effects than other types of fires (Scott and Reinhardt 2001, Rothermel 1991).  Scott 

(2006) found significant differences in crown fire potential under the same vegetation and 

weather conditions, but the relative risk of high-intensity wildfires was similar in all 

forest stands considered in his study.  Although managers can rely on the relative crown 
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fire potential from any of these three tools, absolute crown fire potential is important to 

determine acceptable levels of fuels accumulation, prioritize areas for fuel treatments, 

and evaluate the benefits of such treatments for reducing crown fire potential (Scott 

2006). 

Several models are available to predict crown fire initiation, the transition of fire 

from surface fuels to the elevated canopy fuels (i.e., Van Wagner 1977, Cruz et al. 2004, 

and Cruz et al. 2006a).  Van Wagner’s (1977) is one of the oldest and most used models.  

It identifies the minimum amount of heat from a surface fire required to ignite canopy 

fuels as a function of canopy base height, fuel moisture, and an empirical constant 

derived from a single experimental fire conducted in a red plantation stand (Alexander 

1998).  Cruz et al. (2004) developed a logistic regression model to predict the probability 

of crown fire occurrence, which is the chance of observing a crown fire given certain fire 

burning conditions.  Predictive variables include wind speed, fuel moisture, canopy base 

height, and available surface fuels.  Cruz et al. (2006a and 2006b) later developed a semi-

empirical model for predicting crown fire initiation based on heat transfer theory.  In their 

model, surface fire characteristics (i.e., rate of spread, flame depth and height) and 

canopy fuels characteristics (area-to-volume ratio, density, specific heat, and fuel 

moisture) are used to determine fuel temperature at the base of the canopy considering 

radiative and convective heat transfer from the surface fire.  Crown fire initiation is 

predicted to occur when estimated fuel temperature exceeds 600 K, at which piloted 

ignition occurs and fire propagates vertically into the canopy (Cruz et al. 2006a). 

There are also several models available for predicting crown fire propagation, the 

spread of fire throughout canopy fuels.  Van Wagner (1977) empirically determined from 
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a single fire experiment that solid flames would form and propagate through the canopy 

when the horizontal mass-flow rate of fuels exceeds 3.0 kg·m-2·min-1.  Based on the 

stand’s canopy bulk density, the minimal rate of spread required to sustain crown fire 

propagation is then determined.  Rothermel (1991) developed an empirical model for 

predicting the spread rate of crown fires based on eight crown fires in the northern Rocky 

Mountains.  Crown fire spread rate is estimated to be 3.34 times faster than surface fire 

spread rate predicted with the Rothermel’s (1972) model considering surface fuels 

described by fuel model 10 (Anderson 1982) and a midflame wind speed of 40% of the 

observed wind speed at 6.1 meters above ground.  Cruz et al. (2005) developed another 

empirical model for predicting crown fire spread rate using data from 25 small-scale 

experimental crown fires in plantations of three different conifer species.  In their model, 

crown fire spread rate is predicted based on wind speed, canopy bulk density, and fuel 

moisture content.  Butler et al. (2004) developed a semi-empirical model for predicting 

the spread rate of crown fires based on radiative heat transfer theory.  Considering 

radiative heat transfer from free flame above the canopy, burning zone below the canopy, 

and available canopy fuels (i.e., canopy bulk density) ahead of the flaming front, the 

model iteratively describes an ignition isotherm (set at 600 K) from which spread rate is 

computed.  

For given surface fuel and weather conditions, existing models predict crown fire 

initiation solely based on crown base height, which represents the vertical distance from 

the top of the surface fuels to the lower limit of canopy fuels that can sustain and 

vertically propagate fire.  Similarly, crown fire propagation is predicted only based on 

canopy bulk density, which is usually computed as the available canopy fuels divided by 
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canopy depth (Keane et al. 1998).  Consequently, existing fire management tools use 

average attributes values of forest stands for stand-level predictions of crown fire 

potential, and forest managers rely on such tools to design stand-level thinning 

prescription for reducing crown fire potential over large areas containing multiple forest 

stands. 

 

Fire Behavior Models Considering Spatial Variability of Fuels 

 

As mentioned above, the widely-used existing fire behavior and simulation 

models have limitations in properly modeling crown fire initiation and propagation at an 

individual tree or stand level.  However, recent research efforts have focused on the 

development of advanced physics-based numerical fire behavior models capable of 

considering spatial variability of fuels within a forest stand.  Examples of such models 

include FIRETECH (Linn et al. 2002) and the wildland-urban interface fire dynamics 

simulator (WFDS) (Mell et al. 2005), developed by the Los Alamos National Laboratory 

and the National Institute for Standards and Technology, respectively.  These models 

have received considerable research attention because of their potential to provide more 

reliable and detailed predictions over a wider range of conditions than the existing 

models (Mell et al. 2007, Linn et al. 2005).  For example, WFDS is a model able to 

predict fine-scale, time-dependent fire behavior, fire-fuel, and fire-atmosphere 

interactions in three dimensions (Mell et al. 2005).  The use of voxels to represent fuels 

distribution allows taking into account size, shape composition and spatial arrangement 
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of fuels (Parsons 2006).  Fluid dynamics, combustion, and heat transfer equations are 

solved for each voxel to simulate fire behavior over the entire simulation domain.   

This advanced fire behavior modeling approach can be a promising method to 

properly model crown fire initiation and propagation at a fine scale and can be used to 

evaluate stand level effects of fuel treatments.  However, practical applications of the 

fine-scale fire behavior models to an entire stand have been limited due to the large 

amount of data and computation time required to represent detailed variability of fuels 

and model the time-dependent fine scale fire-fuel and fire-atmosphere interactions for an 

entire stand (Mell et al. 2007).   

 

Tree-Level Thinning Prescriptions 

 

Although there are a few fire behavior and simulation models capable of 

considering fuels variability within a stand, they have not been specifically used in 

developing tree-level thinning prescriptions for reducing crown fire potential.  There are; 

however, two approaches developed to optimize the tree selection and design tree-level 

thinning prescriptions for the purpose of timber production.  One approach formulates the 

tree selection process as a non-linear problem and solves it using the Hooke and Jeeve 

(1961) algorithm (Pukkala and Miina 1998).  Based on decision variables such as 

minimum spacing between trees and target basal area per size class, the approach selects 

cut-trees based on their competitive status (trees facing the most competition are removed 

first).  This approach has been used to generate tree-level thinning prescription based on 

sample plot data.  Trees outside the plots are assigned arbitrary x- and y-coordinates 
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assuming sample plots are surrounded by trees in the same spatial pattern.  Consequently, 

tree-level information is used to generate tree-level prescriptions that are extrapolated to 

entire stands and applied at the stand-level with no specific identification of cut- and 

leave-trees.  Studies using this approach show that solution quality is largely sensitive to 

the number and type of decision variables, indicating that the correct set of decision 

variables (i.e., locations of individual trees) is critical to solution quality (Rautiainen et al. 

2000).  

The second approach uses integer programming to optimize the selection of cut- 

and leave-trees (Hof and Bevers 2000).  A grid and grid cells are used to represent, 

respectively, a stand and individual trees within the stand.  Each grid cell is then assigned 

an integer decision variable (i.e., 1 or 0) indicating a cut- or leave tree, and the tree 

selection problem is solved using integer programming to maximize the net present value 

of timber production over a planning horizon.  Because individual trees are used as 

decision variables, spatially sensitive components of stand management (e.g., 

regeneration) can be incorporated into the problem formulation, yet extremely large 

combinatorial problems result.  Due to the inefficient solving process of integer 

programming, this approach has been applied only to a hypothetical problem set with a 

maximum of 40 x 40 grid cells. 

 

Estimation of Harvesting Costs 

 

Thinning costs have been typically estimated per acre using average stand 

attributes such as average skidding distance, ground slope, and timber volume (Rummer 
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2008).  There are several cost models developed to estimate cost of thinning operations 

for a harvest unit.  For example the Fuel Reduction Cost Simulator (FRCS) (Hartsough et 

al. 2001) is currently used as a timber harvesting cost estimator for multiple MS Excel-

based tools such as STHARVEST (Fight et al. 2003) and My Fuel Treatment Planner 

(Biesecker and Fight 2006).  FRCS consists of a collection of published machine cost and 

productivity studies for different harvesting systems operating in western U.S. (i.e., 

Johnson 1998, Gardner 1979, Gebhardt 1977).  FRCS considers average tree size (DBH 

and volume), tree removal per acre, harvest unit size, machine rental rate, and site 

variables such as average skidding distance and ground slope.  Skog et al. (2006) used 

FRCS to estimate the alternative thinning prescription for reducing fire hazard in western 

U.S. states.  Arriagada et al. (2008) also used FRCS to estimate thinning costs per acre, 

based on the number of trees removed per acre in two diameter classes (below and above 

32.8 cm) and average ground slope for forest stands in 12 states in the western U.S.  

However, in the application tools of such models, target removable timber volume is 

assumed to be evenly distributed within stands and cut-tree locations are not considered.  

Similarly, skidding is assumed feasible throughout the harvest unit and an average 

skidding distance is used for cost estimation.  Skidding obstacles presented by 

inaccessible areas such as stand boundaries, steep terrain, riparian zones, and leave-trees 

are not usually considered in the existing modelsalthough these obstacles could 

substantially increase skidding distances and thus skidding costs (Contreras and Chung 

2007). 
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Tree-Level Growth Models 

 

By removing trees, thinning treatments change competition levels of remaining 

trees, which is one of the most important factors conditioning tree growth.  Competition 

measures described in the literature include distance-independent measures which use 

non-spatial information about the average tree size within a given area and distance-

dependent measures which incorporate the relative locations of neighboring trees.  

Several tree-level growth models including different measures of competition have been 

developed (De Luis et al. 1998, Biging and Dobbertin 1992, Holmes and Reed 1991, 

Tomé and Burkhart 1989, Moore et al. 1973, Bella 1971).  However, competition 

measures perform differently according to tree species and forest conditions (Biging and 

Dobbertin 1995, Daniels et al 1986).  Currently, there are a few models available to 

predict individual tree growth for tree species in western Montana.  Wykoff (1990) 

developed a basal area increment model for several conifer species in the northern Rocky 

Mountains as a function of tree size (DBH), site conditions (i.e., site index, slope, and 

aspect), and competition.  Wykoff’s (1990) growth model is included in the Northern 

Idaho/Inland Empire variant of the Forest Vegetation Simulator (Keyser 2008) and has 

been widely used to predict tree growth for several species western Montana.  Uzoh and 

Oliver (2008) developed a diameter increment model that is also based on site conditions, 

tree size and competition for ponderosa pine trees throughout the western U.S.  These 

models were developed from large scale studies that included various forest conditions 

found in various western states.  In addition, these models use distance-independent 

competition measures (i.e, stand density and basal area of trees larger than the subject 
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tree) that have not been evaluated in western Montana forests.  Developing tree growth 

models that incorporate appropriate competition measures for the specific species and 

conditions found in western Montana is still needed to increase accuracy of growth 

predictions. 

 

 

STUDY OBJECTIVES 

 

To address the limitations of current thinning practices, the main objective of this 

dissertation was to develop a computerized approach that optimizes individual tree 

removal for thinning treatments while considering spatial variability of fuels within a 

stand.  The approach is designed to generate site-specific thinning prescriptions for 

individual stands that can most efficiently reduce crown fire potential over time while 

ensuring the economic efficiency of the thinning treatment.  Based on LiDAR-derived 

stem map and tree attributes, the approach quantifies fuel connectivity among individual 

trees and makes a spatial selection of cut- and leave-trees to reduce the risk of crown fire 

initiation and propagation to and through the stand canopy.  The approach design 

includes functional models covering four specific research objectives: 

i) Select the most effective competition index for predicting radial increment and develop 

an individual tree distance-dependent growth model for three common tree species in 

western Montana; 

ii) Design a model for estimating location-specific skidding costs of individual trees for 

thinning treatments; 
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iii) Develop regression models to predict crown fire initiation and propagation and 

quantify tree-level vertical and horizontal fuel connectivity, and; 

iv) Design an algorithm to optimize tree removal for reducing crown fire potential by 

minimizing both tree-level fuel connectivity among leave-trees over time and skidding 

costs of selected cut-trees. 

 

 

OUTLINE 

 

This dissertation is composed of four additional chapters covering each of the 

specific objectives described above.  Chapters 1 through 4 are in the format of 

manuscripts for submission to scientific journals.  Chapter 1 covers the evaluation of 

different tree-level competition indices by their effectiveness as predictors of radial 

growth and the development of an individual tree growth model for three common tree 

species in western Montana.  Chapter 2 describes a modeling approach developed to 

estimate skidding costs for individual tree for thinning operations.  Chapter 3 presents the 

procedures developed to model tree-level fuel connectivity and evaluate the effectiveness 

of thinning treatments for reducing crown fire potential.  Lastly, chapter 4 explains the 

computerized approach designed for optimizing individual tree removal for the purpose 

of reducing crown fire potential. 
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1.0 ABSTRACT 

Inter-tree competition is commonly one of the most important predictors of 

individual tree growth.  Numerous studies have developed indices to quantify the level of 

competition an individual tree experiences and evaluated how these indices condition tree 

growth.  Results from these studies suggest that neither a single competition index nor a 

single class of indices is universally superior; indices perform differently according to 

tree species and forest conditions.  We chose several widely used distance-independent 

and distance-dependent competition indices, and also developed distance- and 

orientation-dependent competition indices from estimates of light reception by tree 

crowns.  We evaluated these measures of tree competition by their effectiveness as 

growth predictors for three common tree species in western Montana, USA.  It was found 

that the best distance-dependent competition indices were more strongly correlated with 

tree growth and could explain a larger amount of growth variation than the best distance-

independent indices (64% versus 56%).  Our results suggest that competition is important 

and intense in these forests.  Further, weak correlations between light values and basal 

area growth suggest that trees in this study region are competing primarily for resources 

other than light.  To accommodate a log-linear relationship between radial growth and the 

growth predictors as well as a positive mean-variance relationship we used a gamma 

regression model that incorporated the best competition index to predict individual tree 

basal area increment. 

 

Keywords: individual-tree growth, gamma regression, Montana, Douglas-fir, ponderosa 

pine, western larch. 
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1.1 INTRODUCTION 

 

Traditionally, decision-making in forest management has been based on stand 

attribute information collected using sample-based stand examination.  Because field-

based inventory data are expensive and labor-intensive to acquire, sampling intensity is 

usually limited.  However, new technologies in remote sensing and geographic 

information systems such as Light Detection and Ranging (LiDAR) are becoming more 

available and can provide inventory data at the tree level for entire stands.  LiDAR has 

been widely used to estimate tree locations and dimensions such as height, crown width, 

diameter at breast height (DBH), and volume (Packalén and Maltamo 2006, Maltamo et 

al. 2006, Maltamo et al. 2004).  The complete spatial coverage of these more-detailed 

inventory data can better capture variability in vegetation within natural stands.  The tree 

location and dimension information that comprise these data also offer the potential for 

more efficient planning and management of forest resources.  However, to realize that 

potential more accurate individual tree growth models are needed to assess the effects of 

management actions over time. 

Tree competition is one of the most important growth predictors commonly used 

in individual tree growth models.  Competition can be defined as the negative effect of 

one tree on another by consuming, or controlling access to, limiting resources such as 

light, water, and nutrients (Keedy 1989).  Numerous studies have developed indices to 

quantify the level of competition an individual tree experiences and have evaluated how 

these indices condition tree growth (De Luis et al. 1998, Biging and Dobbertin 1992, 

Holmes and Reed 1991, Tomé and Burkhart 1989, Moore et al. 1973, Bella 1971).  
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Traditionally, competition indices described in the literature can be divided into two main 

classes: i) distance-independent that use only non-spatial information about the average 

tree size within a given area (e.g., a plot or stand), and ii) distance-dependent that also 

incorporate the relative locations of neighboring trees within the area.  Recently, a new 

class of competition measures called semi-distance-independent has been developed 

(Lederman 2010, Stage and Lederman 2008).  Broadly, these measures apply distance-

independent index calculations to a spatially-defined group of trees centered around the 

subject tree but also within the confines of an inventory plot.  The motivation for semi-

distance-independent indices stems from the fact that sample-based inventory data are 

typically populated from sets of trees in plots and include no information on off-plot trees 

that are competing with subject trees.  Yet when the inventory data include the locations 

and dimensions of all trees in the stand, distance-dependent and -independent indices can 

be evaluated for every tree using a true tree-centered spatial neighborhood. 

Comparisons of different competition indices in terms of their effectiveness as 

predictors of growth in individual tree models have been conducted for several species 

and forest conditions.  Martin and Ek (1984) found that including distance-independent 

competition indices considerably improved the fit of a diameter growth model for red 

pine (Pinus resinosa Ait.) plantations in northern Wisconsin.  After comparing several 

competition indices, Daniels et al. (1986) reported that the best distance-dependent 

indices showed slightly higher R2 values associated with basal area growth regression 

models than the best distance-independent indices for loblolly pine (Pinus taeda L.) 

plantations in northern Louisiana.  Pukkala and Kolström (1987) evaluated several 

distance-dependent competition indices and found that the best indices could explain 
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about 50% of the variation of radial growth for Scots pine (Pinus sylvestris L.) in 

Finland.  Working with mixed hardwood species in upper Michigan, Holmes and Reed 

(1991) also evaluated various competition indices of both main types and, based on their 

correlation with annual diameter growth, found that size ratio distance-independent 

indices performed as well or better than distance-dependent indices.  Biging and 

Dobbertin (1995) evaluated various competition indices for mixed conifer species of 

northern California.  They found that distance-independent indices considering crown 

cross-sectional area, crown volume, and crown surface area performed slightly better 

than the best distance-dependent indices.  Rivas et al. (2005) evaluated different 

competition indices for mature even-aged stand of Pinus cooperi Blanco in Mexico and 

found that both types of competition indices performed similarly in terms of mean 

squared error reduction in basal area growth models.  Lederman (2010) compared several 

distance-dependent and semi-distance-independent competition indices on an even-aged 

110-year-old mixed conifer and hardwood species, and a 150-year-old mixed conifer 

stand Vienna, Austria.  He found that the best competition indices of both types could 

explain similar levels of variation in basal area increment.  Results from these various 

studies suggest that neither a single competition index nor a single class of indices is 

universally superior; indices perform differently according to tree species, forest 

conditions and sites (Biging and Dobbertin 1995, Daniels et al 1986).   

Most competition indices are independent of the directional distribution of 

competitors and only a few attempts have been made to consider the orientation of 

competitor trees from a subject tree (i.e., Miina and Pukkala 2002, Newton and Jolliffe 

1998).  However, these attempts do not account for the position of the sun, which directly 
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affects light availability and potentially growth.  A number of models have been 

developed to simulate the amount of light received by individual trees in spatially-explicit 

stand representations (Groot 2004, Brunner 1998, Korzukhin et al. 1995).  Nevertheless, 

only a few studies have evaluated the relationship between light availability, in addition 

to competition indices, and tree growth (Stadt et al. 2007, Mailly et al. 2003). 

The studies mentioned above have developed competition indices for individual 

tree growth models for many distinct species and forest conditions.  However, to our 

knowledge, no previous study has evaluated the utility of distance-dependent and -

independent competition indices for the commercial tree species and forest conditions of 

western Montana, nor have light availability indices been evaluated in this context.  

Currently, there are few models available to predict individual tree growth for tree 

species in western Montana (but see Uzoh and Oliver 2008, Wykoff 1990, Dixon 1989).  

The existing models were developed from regional studies or studies in nearby states, and 

use competition measures that have not been evaluated in western Montana forests.  

Therefore, developing a tree growth model that incorporates a competition measure 

appropriate for the species and conditions of western Montana has the potential to 

increase the accuracy of growth predictions. 

The main objective in this study was to select the competition index most 

effective for predicting radial growth in three common conifer species in western 

Montana.  For this purpose, we chose several widely used distance-independent and 

distance-dependent indices.  We also characterized light reception by individual tree 

crowns and used derived light values as competition indices.  A total of 16 different 

competition indices were evaluated based on their relationship with basal area increment, 
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and on the goodness of fit of log-transformed linear models incorporating competition 

and other growth predictors.  Additionally, we developed a growth model incorporating 

the selected competition index to predict individual tree basal area increment.  Owing to a 

log-linear relationship between radial growth and the predictors, as well as to a positive 

mean-variance relationship in the growth measurements, this objective was addressed 

using a log-link gamma regression model. 

 

 

1.2 METHODOLOGY 

 

1.2.1 Study Area 

 

The study was conducted in the University of Montana’s Lubrecht Experimental 

Forest (LEF), located approximately 48 km northeast of Missoula, Montana in the 

Blackfoot River drainage.  Across this 8,500-ha forest, sample points were located 

systematically on a square grid of approximately 1,000 meters.  Tree growth 

measurements were completed at 57 of these points.  Within a 17.8 m search radius of 

each point, the first tree of each species in each of the diameter classes in Table 1.1 was 

selected and an increment core sample was taken at breast height.   
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Table 1.1. Diameter classes for selecting cored trees. 

Diameter 
Class 

Minimum 
Diameter (cm) 

Maximum 
Diameter (cm) 

1 12 (5 in.) 25 (9.9 in.) 
2 26 (10 in.) 37 (14.9 in.) 
3 38 (15 in.) 50 (19.9 in.) 
4 51 (20 in.) 62 (24.9 in.) 
5 63 (25 in.) N/A 

 

In the summer of 2008, neighborhood information was collected in 11 m fixed-

radius competition plots centered on each cored tree.  This plot radius is approximately 

3.5 times the average estimated radius of the tree crowns, as recommended by Lorimer 

(1983).  Other studies have used similar plot dimensions for quantifying inter-tree 

competition in Montana (Woodall et al. 2003).  Inside these competition plots, DBH, 

height, species, and azimuth and horizontal distance from the cored tree were collected 

on all neighbor trees above 10 cm DBH.  Figure 1.1 shows an example of a sample point 

with three competition plots centered at each cored tree: neighbor trees were always 

within 11 m of the cored tree but potentially more than 17.8 m from the sample point.  

Additionally, site information (i.e., average slope, aspect, and elevation) was collected at 

each sample point location. 
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Figure 1.1. Sample point with three cored trees (solid dots) and their respective 

competition plots. 

 

In this study, we considered the three most abundant species at LEF: Douglas-fir 

(Pseudotsuga menziesii), ponderosa pine (Pinus ponderosa) and western larch (Larix 

occidentalis).  The tree growth measurements dataset consisted of 285 cored trees; 145 

Douglas-fir (DF), 99 ponderosa pine (PP), and 41 western larch (WL).  Figure 1.2 shows 

the DBH distribution for each species.  Annual radial increments over the last 10 years 

was measured on the increment cores to the nearest 0.001 mm, using a microscope 

mounted on a dendrochronometer with a Velmex sliding stage and Accurite measuring 

system.  From the radial increments we computed the average annual basal area 

increment (cm2/year) of the last 10 years (BAI_10), which was used in this study as the 

response variable.  
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Figure 1.2. Diameter at breast height (DBH) distribution of cored trees at Lubrecht 

Experimental Forest. 

 

1.2.2 Competition Indices 

 

In this study, we describe the competition level experienced by each of the 285 

individual cored trees using 16 different competition indices (see Table 1.2).  The first 

four indices (CI1-CI4) are distance-independent, nine are distance-dependent (CI5-CI13), 

and three are light values used as competition indices (CI14-CI16). 
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Table 1.2. Competition indices evaluated in this study. 

Index Source Equation 
Distance-independent competition indices: 
CI1 Reineke (1933) ( )605.1  log  605.1log10 −×+ dgN  

CI2 
Referred as canopy closure in 
Rivas et al. (2005) ( )( ) Scw

n

i i / 4/   
1

2∑ =
×π  

CI3 Wykoff et al. (1982) ( )( ) BALd
n

j j   4/   
1

2
max =×∑ =

π  

CI4 Schröder and Gadow (1999) ( )[ ]( ) RSGBAL  /   /  1  1 −−  

Distance-dependent competition indices: 
CI5 Number of neighbors n  

CI6 Gerrard (1969) ∑ =

n

i i ZO
1

/  

CI7 Bella (1971) ( ) ( )∑ =
××

n

i ii dZdO
1

   /    

CI8 Hegyi (1974)  ( )∑ =
×

n

i ii distdd
1

  /  

CI9 
Baathe (1980), cited in Pukkala 
and Kolström (1987)   

( )∑ =
×

n

i ii disthh
1

  /  

CI10 
Rouvinen and Kuuluvainen 
(1997) 

( )∑ =

n

i ii distd
1

/arctan  

CI11 
Rouvinen and Kuuluvainen 
(1997) 

( ) ( )∑ =
×

n

i iii distddd
1

/arctan  /  

CI12 
Rouvinen and Kuuluvainen 
(1997) 

( )∑ =

n

i ii disth
1

/arctan  

CI13 
Rouvinen and Kuuluvainen 
(1997) 

( ) ( )∑ =
×

n

i iii disthhh
1

/arctan  /  

Light values: 

CI14 Sky’s hemisphere ( ) 2160 / 
2160

1∑ =i iB  

CI15 
Sky’s hemisphere / Sun 
position 

( ) ( ) 1803 /   2  
1080

1  

1080

1  ∑∑ ==
×+

i iSi iN BB  

CI16 Sun position ( ) 108 / 
63

1∑ =i iB  

N trees per ha in the plot; dg quadratic mean diameter (cm); n number of neighbors within the 11 meter 
radius competition plot; cwi crown width of the ith neighbor tree (m); S plot size (m2); dmax j DBH of the jth 
neighbor tree larger than the cored tree (m); BAL basal area of neighbor trees larger than the cored tree (m2 
ha-1); G total basal area of the trees within the 11 meter radius plot (m2 ha-1); RS relative spacing index of 
the plot; Oi area of the influence-zone overlap between the ith neighbor tree and the cored tree (m2); Z area 
of the influence-zone of the cored tree (m2); di DBH of the ith neighbor tree (cm); d DBH of the cored tree 
(cm); disti horizontal distance from the ith neighbor tree to the cored tree (m); hi height of the ith neighbor 

tree (m); h height of the cored tree (m); Bi binary variable that is 1 if the ith light ray is blocked, or 0 
otherwise; BN i binary variable associated with north-oriented light rays (azimuths from 270° to 90°), 1 if 
blocked and 0 otherwise; BS i binary variable associated with south-oriented light rays (azimuths from 90° 

to 270°), 1 if blocked and 0 otherwise. 
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The four distance-independent indices are some of the most widely used measures 

found in the literature.  CI1 is Reineke’s (1933) stand density index, which is based on the 

number of trees per ha in the competition plot (N) and their quadratic mean diameter.  CI2 

is the canopy closure which represents the area of the crowns projected on the horizontal 

plane as a fraction of the competition plot area. CI3 is the sum of basal areas of neighbor 

trees larger than the cored tree (BAL) as proposed by Wykoff et al. (1982).  CI4 is a 

modification of the previous index, proposed by Schröder and Gadow (1999), which 

incorporates the relative spacing index (RS) calculated as follows: 

[1.1] 
H

N 000,10
RS

×
=  

where, H is the dominant height (m) in the plot, considered in this study as the average 

height of the 20% tallest trees.  It should be noted that these distance-independent indices 

were calculated from the dimensions of the distinct sets of trees within 11 m of each 

cored tree – some neighbor trees were further than 17.8 m from a sample point, and some 

trees within 17.8 m of a cored tree’s sample point were not considered (see Figure 1.1). 

The 9 distance-dependent competition indices were selected due to their observed 

utility in previous studies.  CI5 is a simple measure of competition calculated as the 

number of neighbor trees inside the competition plot.  CI6 (Gerrard 1969) and CI7 (Bella 

1971) are widely used influence-zone overlap indices which assume that the area 

(projected on the horizontal plane) over which trees compete for resources can be 

represented by a circle (Figure 1.3).  The radius of the circle is usually a function of tree 

size and is thought to be equal to the expected growing space of open-grown trees (Rivas 

et al. 2005).  To estimate the latter, we used species-specific maximum crown width 

equations from the Northern Idaho / Inland Empire variant of the Forest Vegetation 
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Simulator (Dixon 1989 – revised version, June 2009).  CI8 (Hegyi 1974) and CI9 (Baathe 

1980) are size-ratio competition indices which are based on the hypothesis that the 

competition effect of a neighbor tree increases with increasing size and decreasing 

distance (Tomé and Burkhart 1989).  These two indices use DBH and height as indicators 

of size, respectively. CI10 through CI13 are also size-ratio indices but employ sums of 

subtended angles (Rouvinen and Kuuluvainen 1997).  CI10 is the sum of horizontal angles 

originating from the cored tree center and spanning the DBH of each neighbor tree within 

the competition plot (Figure 1.4). CI11 is the sum of the horizontal angles multiplied by 

the ratio of the DBHs of the neighbor and the cored tree.  CI12 is the sum of vertical 

angles from the cored tree base to the top of each neighbor tree within the competition 

plot (Figure 1.5).  Similar to CI11, CI13 includes the ratio of the heights between the 

neighbor and the cored tree.  All 9 distance-dependent indices were calculated from the 

full set of trees within 11 m of each cored tree. 

 

Figure 1.3. Area of influence-zone of a cored tree (Z) and areas of influence-zone overlap 

between the cored tree and each neighbor tree (Oi). 
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Figure 1.4. Schematic of horizontal angles from the cored tree center to the DBH of each 

neighbor tree within the competition plot used to compute CI10 and CI11. 

 

 

Figure 1.5. Schematic of the vertical angles from the base of the cored tree to the top of 

each neighbor within the competition plot used to compute CI12 and CI13. 

 

CI14 through CI16 are derived from models that estimate the amount of light 

intercepted by tree crowns (Groot 2004, Brunner 1998, Korzukhin et al. 1995).  The 

portion of the sky’s hemisphere directly above the cored tree was discretized by 

generating light rays from a focal point at 60% of the cored tree’s height to the sky with 
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vertical angles running from 60° to 85° at intervals of 5° (Figure 1.6).  These six light 

rays were generated in 360 directions (at every 1° azimuth from 0° to 359°) resulting in a 

total of 2160 light rays.  We assume that neighbor tree crowns are completely opaque and 

cone-shaped with basal crown widths estimated from the crown width equations in Dixon 

(1989).  CI14 was then computed as the percentage of total light rays blocked by neighbor 

tree crowns.  Because the study area is located at latitude of approximately 46° north, the 

position of the sun is generally south of any given tree, thus CI15 indirectly incorporates 

the position of the sun by giving twice as much weight to those blocked light rays in 

directions between azimuths 90° to 270°.  To compute CI16, we used the average position 

of the sun at different dates within a typical growing season in LEF. We considered the 

sun position every 15 days starting from the May 1st to the September 1st (9 dates) at 12 

different hours of the day from 7am to 6pm.  A total of 108 sun position estimations 

consisting of azimuth and elevation were obtained from charts generated by the Solar 

Radiation Monitoring Laboratory of the University of Oregon1.   

                                                 
1 http://solardat.uoregon.edu/SunChartProgram.html 
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Figure 1.6. Discretization of a portion of the sky’s hemisphere directly above the cored 

tree into 2160 light rays generated from a focal point at 60% of the cored tree’s height. 

 

1.2.3 Evaluation of Competition Indices 

 

As mentioned above, we collected neighborhood information for the 285 cored 

trees using competition plots centered at each cored tree.  Competition indices were then 

computed based on the tree-centered competition plot data.  Although distance-

independent competition indices are typically plot-centered, we believe that using a tree-

centered measure can better represent the competition level experienced by a particular 

tree and thus make comparisons with distance-dependent measures more appropriate.  In 

addition, having tree-centered competition plots for each cored tree avoided edge effect 

problems when computing distance-dependent competition indices.  Furthermore, we 
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plan to use these indices with stem-mapped inventory data with complete stand coverage, 

not with mapped plot data. 

After the 16 competition indices were computed for the 285 cored trees, we 

calculated the Pearson correlation coefficients (r) between all pairs of indices to examine 

the overall dependence structure and determine species-specific relationships among 

indices.  We also calculated the correlation between each competition index and 

ln(BAI_10) to identify the indices’ pairwise linear relationships and potential 

effectiveness as growth predictors.  We fit several log-transformed linear models 

considering each individual competition index along with other potential growth 

predictors.  The latter included the two tree variables DBH (d) and tree height (h) at 

present time (year 2008), as well as the 4 average site characteristics slope (S), aspect 

(A), elevation (E), and dominant height (H).  For model selection purposes, we started 

with all potential predictors and through a backward selection method we removed all 

insignificant variables (α = 0.05).  Models were compared using the adjusted coefficient 

of determination (adj-R2). 

 

1.2.4 Basal Area Increment Growth Model 

 

These models described above were used as an exploratory analysis to select the 

competition index that, along with other significant growth predictors, provided the best 

fit for all three species.  However, instead of using these log-transformed linear models, 

we used generalized linear models (GLM) to fit the individual tree basal area increment 

growth models.  GLMs are able to accommodate mean functions that are linear in the 
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predictors on a transformed scale and can be applied to data that conform to any 

probability distribution in the exponential family such as the normal, gamma, or inverse 

Gaussian functions (McCullagh and Nelder 1989).  GLMs directly describe the mean of 

the dependent variable, thus avoiding the biases introduced by log-transformed models 

that require subsequent correction using elements of the error structure (McCullagh and 

Nelder 1989).  Because our data exhibited increasing variance with increasing scores of 

our dependent variable (BAI_10), we used a GLM with a gamma distribution, which is a 

flexible 2-parameter probability density function able to model heteroscedastic 

continuous data (see also Gea-Izquierdo and Cañellas 2009).   

 

 

1.3 RESULTS AND DISCUSSION 

 

1.3.1 Competition Indices 

 

The correlation structure of the 16 competition indices is presented in Figure 1.7.  

The correlation matrix shows global correlations on the lower diagonal and species-

specific correlations on the upper diagonal.  Each panel on the upper diagonal runs from -

1 to 1 (left to right) with a vertical line in the middle at zero.  In viewing these results, we 

can notice a broad range of correlation values among the different indices but, in general, 

correlation values seem to be consistent for all three species.  Most competition indices of 

the same class present stronger correlations among themselves than with indices of 

different classes.  For example, distance-independent indices CI1-CI2 and CI3-CI4; 
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distance-dependent indices CI6-CI7, CI10-CI11, CI10-CI12, and CI11-CI13; and light value 

pairs CI14-CI15, and CI15-CI16, are all strongly correlated regardless of species.  These 

results are expected because of the similarities in the formulations (see Table 1.2).  

Although certain pairings of distance-dependent and distance-independent indices are 

strongly correlated (i.e. CI3-CI11 and CI4-CI11), correlations are stronger within than 

across classes.   

The light values are poorly correlated with competition indices of other classes.  

The low (|r| < 0.38) and sometimes negative correlations suggest that these light values 

describe competition differently than the other indices.  Most distance-dependent and 

distance-independent competition indices utilize tree size (i.e. DBH, crown width, height) 

as a measure current growth, with overall size being the result of all factors affecting 

growth (i.e. availability of light, water, and nutrients).  In contrast, light values only 

capture one of these factors, light availability, which might partially explain the low 

correlations.  This distinction between light values and other competition indices was also 

apparent from a principal component analysis of the 16 indices (not shown).  For all 

species, the first component effectively averaged all the distance-dependent and distance-

independent indices, with slightly heavier weights given to the distance-dependent 

indices.  On the other hand, the second component was primarily composed of the three 

light values, with only small contributions from other indices.  
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Correlations between each competition index and growth are also shown in Figure 

1.7 (right-most column).  As expected, for all three species most competition indices are 

negatively correlated with basal area increment.  Thus, trees under high levels of 

competition exhibit low growth rates.  Consistently, for all species CI3 and CI4 are the 

distance-independent indices most strongly correlated with growth (-0.75 < r < -0.71).  

The distance-dependent indices with strongest correlations are CI8 and CI11 (-0.82 < r < -

0.72).  Overall, light-values are the least correlated with growth (-0.38 < r < 0.09).  This 

poor correlation suggests that light is less of a limiting factor and that trees may be 

competing primarily for soil resources such as water and nutrients.  We also evaluated 

light availability at other height percentiles.  However, we selected 60% of the height 

because we wanted to measure light availability at some point within the trees’ crowns 

and, when evaluating light-values at higher focal points, most trees yielded zero values 

(100% light availability). 

Figure 1.8 shows the relationships between growth and competition indices of 

each class for the three species.  These plots show the negative growth response to 

increasing competition as measured by CI3 (distance-independent index of Wykoff et al. 

1982) and CI11 (sum of horizontal angles distance-dependent index of Rouvinen and 

Kuuluvainen 1997).  As evidenced by the correlation values in Figure 1.7, CI11 can 

explain a larger amount of the observed variation in growth than CI3, with across-species 

R2 values of 0.52 and 0.64, respectively.  On the other hand, there is no discernible 

pattern between growth and competition as measured by CI16.  As suggested by Weldon 

et al. (1988), the relatively flat slope and low R2 value of this relationship indicates that 

competition for light is neither intense nor important.  Similar results have been found in 
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other forest conditions (Stadt et al. 2007, Mailly et al. 2003).  Interestingly, our data show 

only minor differences in growth rates among different species, with all three having 

similar slopes and intercepts. 

 

 
Figure 1.8. Scatter plots and least squares fit of growth versus three competition indices. 

 

Selected log-transformed linear models are given in Table 1.3.  In general, for 

Douglas-fir and western larch, DBH and competition were the only significant growth 

predictors.  However, site variables such as E and H were also significant predictors of 

growth for ponderosa pine.  This indicates that growth rates of ponderosa pine are more 

variable across LEF, thus site variables also explain growth variability.  For the three 
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species, all 4 distance-independent indices (CI1 through CI4) and most distance-

dependent indices (CI5 through CI13), except for CI6 and CI9 for ponderosa pine and 

western larch, were significant growth predictors.  As expected because of the low 

correlations, light values (CI14 through CI16) were insignificant predictors and were 

dropped from models for Douglas-fir, western larch, and ponderosa pine.  

Based on the adj-R2 values, some of the best distance-dependent indices (i.e. CI8, 

CI11, and CI13) performed better across all species than the best distance-independent 

indices (i.e. CI2 and CI3).  However, these latter indices have higher adj-R2 values than 

some widely known distance-dependent indices (i.e. Gerrard’s (1969) CI6 and Bella’s 

(1971) CI7).  Among the distance-dependent indices, those including sums of angles (CI10 

through CI13) explained a larger proportion of growth variation than most of the other 

size-ratio and influence-zone overlap competition indices, with the exception of Hegyi 

(1974)’s competition index, CI8.  The log-transformed linear model with CI11 provided 

the best fit for all three species.  For Douglas-fir and western larch, DBH and CI11 

together could explain about 70% and 72% of the total variation in annual growth.  For 

ponderosa pine, DBH, CI11 and H explained approximately 71% of the total growth 

variation.   
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1.3.2 Individual Tree Growth Model 

 

Although the best log-transformed linear model for ponderosa pine growth 

included H as a significant predictor, the contribution of this variable to the overall 

predictive quality of that model was marginal.  By removing H from the model the 

amount of variation explained is reduced by only 1%.  Therefore, we used DBH and CI11 

as the only two predictors of growth to fit a more parsimonious GLM for all species.  

Figure 1.9 shows the relationships between BAI_10 and the predictors where in both 

plots we can see an increasing variance for increasing scores of BAI_10.  This 

heterogeneous variance was addressed by using a gamma GLM.  We initially included 

species-specific intercepts, DBH, and competition terms in this model.  However, as 

suggested by Figures 1.7 and 1.8 where no appreciable differences in growth rates among 

species are evident, deviance partitioning tests showed that these species-specific terms 

were insignificant (α = 0.05).  Thus, only one intercept and one global coefficient for 

each of DBH and CI11 were retained.  Also, there was no evidence of a significant 

interaction between CI11 and DBH so only additive effects were retained. 

The final individual tree growth model 

[1.2] [ ])CI  (a  d)  (a   a 11321expBAI_10 ×+×+=  

had a scale parameter estimate of 0.2736, a mean bias of 0.0645 cm2/year, and a root 

mean square error (RMSE) of 6.418 cm2/year.  The model coefficient estimates are 

presented in Table 1.4.  A plot of the deviance residuals against fitted values from the 

model (Figure 1.10) shows no appreciable structure; however, a loess smooth through the 

plot shows that the model slightly underestimates growth.  The mean bias and RMSE 
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associated with the model that included the insignificant species-specific DBH and CI11 

terms were 0.0532 cm2/year and 6.0145 cm2/year, respectively, which indicates only a 

marginal improvement in accuracy associated with this use of four additional degrees of 

freedom.  In addition, we anticipate applying this model to stem-mapped data derived 

from LiDAR acquisitions for LEF.  Initial analyses of these stem maps indicate that tree 

location and dimension attributes are relatively reliable but that species identification is 

weak or lacking.  Thus, the inclusion of species-specific terms in the basal area increment 

model [Eq. 2] would be of no practical advantage. 

 

 
Figure 1.9. BAI_10 as a function of DBH and CI11 for all species. 

 

 

 

 

 

 



 50

Table 1.4. Coefficients (a1, a2, a3) and estimated variance parameter (s) from the final 

GLM with gamma distribution and log link fitted for individual tree growth. 

Coefficients 
 Estimate Std. Error Pr(>|t|) 
a1 - (Intercept) 1.974503 0.132216 < 2.00 e-16 
a2 - DBH 0.022768 0.002846  3.23 e-14 
a3 - CI11 -0.361392 0.028753 < 2.00 e-16 
S 0.273628 
Bias 0.064474 
RMSE 6.418001 

 

 
Figure 1.10. Residuals from the final GLM with gamma distribution and log link fitted 

for individual tree growth. 

 

Typically, growth models are built to condition on the state of the forest at the 

beginning of a growth period and to project that state forward.  In this study, we 

examined the relationship between competition indices based on state variables measured 

in 2008 and annualized radial growth over the period 1998-2007.  It was not possible to 

estimate competition levels in LEF in 1998 because of the lack of a permanent plot 

database.  Furthermore, where permanent plots have been established elsewhere in 
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western Montana requisite information on the locations and dimensions of neighbor trees 

outside the permanent plot boundaries is lacking.  Regarding our primary objective of 

assessing the relative predictive power of the 16 competition indices in Table 1.2, we 

believe our retrospective modeling approach is sound.  Approaches both prospective and 

retrospective that estimate the effects of competition on multi-year growth will suffer a 

comparable lack of precision due to changes in the competitive regime throughout the 

growth period.  Yet it is necessary to study growth over several years to distinguish 

between competitive effects and the effects of annual climatic fluctuations.  Evaluation of 

the competition indices for each cored tree using 1998 neighborhood data would produce 

values different from those used in this study, but the tree growth and tree mortality 

processes that produce this difference have continuously changed the competition regime 

of each tree throughout the period.  Thus, we believe that the relative magnitudes of the 

correlations of the 16 competition indices against basal area increment would be similar 

to those observed if 1998 neighborhood data had been available.  In contrast, we 

recognize that our retrospective approach to quantifying competitive effects in model 

(Eq. 1.2) will likely bias downwards the estimates of future periodic growth if the model 

is applied in a prospective manner (i.e., if values for CI11 are obtained from state 

variables at the start of the projection period).  The imputation of 1998 values for CI11 

using 2007 neighborhood data can be viewed as an introduction of measurement error 

into the competition predictor.  This type of measurement error generally leads to 

attenuation biases in parameter estimation (Carroll et al. 2006).  Bias notwithstanding, 

there is a need for individual tree growth models for these commercial species in western 

Montana and model (Eq. 1.2) provides a provisionary instrument.  The sample points 
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used in this study were selected to establish a permanent plot network, and in time will 

supply data for modeling growth prospectively and assessing the accuracy of the model 

developed above.   

Finally, when applying model (Eq. 1.2) to project the growth of trees measured in 

a plot-based inventory, edge correction procedures will need to be applied unless off-plot 

data are available.  As our competition measures and basal area growth model are based 

on tree-centered definitions of competition intensity, the model is best suited for growing 

trees in stands with complete spatial inventory information derived from technologies 

such as LiDAR. 

 

 

1.4 CONCLUSIONS 

 

In this study, we evaluated several measures of tree competition by their 

effectiveness as growth predictors for three common tree species in western Montana.  It 

was found that for all species the best distance-dependent competition indices were more 

strongly correlated with tree growth and could explain a larger amount of growth 

variation than the best distance-independent indices.  Our results suggest that competition 

exists and that it is important and intense for all three species, as measured by several 

competition indices.  However, the low correlations between light values and growth 

suggest that trees might not be competing primarily for light.  These results are in 

concordance with other studies reporting soil moisture as the most important growth 
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limiting factor for tree species in western Montana (Littell et al. 2008, Sala et al. 2005, 

Nagel and O’Hara 2002). 

Based on the goodness of fit of a series of log-transformed linear models, 

Rouvinen and Kuuluvainen’s (1997) distance-dependent competition index based on the 

sum of horizontal angles (CI11) performed the best.  Together with DBH this competition 

index explained approximately 70% of the total growth variation in all three species.  

Consequently, to predict the growth of an individual tree, the basal area growth model 

ultimately uses only the subject tree’s DBH as well as the DBHs and distances of trees 

within 11 m.  This enhances the practicality of the model because DBHs are commonly 

available and between-tree distances can be easily obtained from stem maps.  

Additionally, the use of a gamma GLM allowed us to directly model the mean annual 

basal area increment, thus avoiding biases associated with transformations, and to 

account for the increasing variance in growth rates among larger or more open-grown 

trees.  

Although CI11 performed the best for all three species considered in this study, the 

log-transformed linear model including CI13, which is based on tree heights and between-

tree distances, provided the second best fit.  This is particularly important for estimating 

individual tree growth across entire stands using LiDAR-derived stem maps and tree 

dimensions because tree height is the native measure obtained from LiDAR data.  In 

those applications, because of the unexplained variation associated with height-DBH 

allometries, it would be of interest to examine a growth model considering CI13 and 

evaluate whether the quality of the model improves. 
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Finally, in this study we were interested primarily in modeling short-term tree 

growth and we ignored other more complex processes such as mortality and regeneration.  

These processes as well as other events such as fire occurrence and insect attack alter tree 

density and consequently inter-tree competition levels.  For these reasons and the 

potential for changing climatic conditions moving forward, the model developed here 

from past growth records is not suited to long-term growth estimations. 
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CHAPTER 2: 

 

A MODELING APPROACH TO ESTIMATING SKIDDING COSTS OF INDIVIDUAL 

TREES FOR THINNING OPERATIONS 
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2.0 ABSTRACT 

Thinning is a common silvicultural treatment used for different forest 

management purposes.  Traditionally, thinning prescriptions are derived from sample 

plots and applied to stands with various vegetation conditions.  A few studies have 

optimized cut-tree selection to create site-specific thinning prescriptions.  However, these 

studies greatly simplify the estimation of harvesting costs by ignoring the location of the 

cut-trees relative to the extraction point.  Consequently, resulting tree-level thinning 

prescriptions might not provide the most economically efficient selection of cut-trees.  In 

this paper, we developed a model to estimate skidding costs of individual cut-trees based 

on size, location, and spatial distribution of selected cut-trees.  The model uses a log-

bunching algorithm to identify log-pile locations and then creates a skid-trail network that 

connects log-piles to the extraction point at a minimum skidding cost.  We applied the 

model to a treatment unit, where LiDAR data was used to obtain terrain and tree data, 

considering two thinning scenarios with target densities of 400 and 300 leave-trees per 

hectare, respectively.  Comparison of the model results with those obtained from the 

existing cost models indicates that our model results are within the reasonable range for 

skidding costs.  As our model considers terrain slope to create skid-trails, it can be 

effectively used to delineate non-accessible or difficult terrain areas for skidding 

operations.  The model can also be used to automatically generate optimal skid-trail 

networks connecting multiple log-piles to the extraction point.   

 

Key words: selective harvesting, skid-trail networks, forest operations, forest 

management, LiDAR. 
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2.1 INTRODUCTION 

 

Thinning is a common silvicultural treatment used for different purposes in forest 

management.  It has been used for many decades to increase tree growth for timber 

production (Bailey and Tappeiner 1998, Barbour et al. 1994, Brodie et al. 1978), to lower 

the risk of high-intensity wildfires by reducing fuel loads (Agree and Skinner 2005, Pollet 

and Omi 2002, Graham et al. 1999), and increasingly in the last decade, to modify stand 

structure and introduce spatial heterogeneity for wildlife habitat improvement (Carey 

2001, Hayes et al. 1997).   

Independent of treatment objectives, thinning prescriptions are traditionally 

developed from ground sample plots.  However, because sample plots do not usually 

capture the full range of variability in terrain and vegetation within each stand, thinning 

prescriptions might not produce the most desirable results when extrapolated and applied 

to multiple stands with different site potentials and vegetation structures (Pukkala and 

Miina 2005).  Efforts to develop site-specific thinning prescriptions by optimizing cut-

tree selection at the individual-tree level have yielded two approaches: the first one 

formulates the cut-tree selection process as a non-linear problem and solves it using the 

Hooke and Jeeve (1961) algorithm (Pukkala and Miina 1998, Valsta 1992), while the 

other approach uses an integer-programming model (Hof and Bevers 2000).  Several 

studies have used the former approach to develop thinning prescriptions that maximize 

the economic return on different forest types (Cao et al. 2006, Hyytiäinen et al. 2005, 

Palahí and Pukkala. 2003, Rautiainen et al. 2000).  However, when considering the 

economics of thinning operations, all of these studies greatly simplify the estimation of 
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harvesting costs by using average values of stand attributes, such as skidding distance, 

ground slope, and harvest volume, while ignoring the location of the individual cut-trees 

relative to extraction points (either road side or log landing).  Consequently, tree-level 

thinning prescriptions developed by these past studies might not provide the most 

economically efficient selection of cut-trees.  Additionally, these approaches for optimal 

tree-selection have only been applied to sample plots.  Their application to entire stands 

has been limited due to a lack of individual tree-level information.   

Recently, new remote sensing and geographic information systems (GIS) 

technologies such as light detection and ranging (LiDAR) have been used to provide 

inventory data at the individual tree-level.  For example, tree heights, crown widths, and 

derivative parameters such as diameter at breast height (dbh) and volume are some of the 

tree characteristics that have been derived from LiDAR data (Packalén and Maltamo 

2006, Maltamo et al. 2006, Maltamo et al. 2004).  As this type of high-resolution spatial 

data becomes more available, there is increasing potential to use optimal tree selection 

algorithms to develop site-specific, tree-level thinning prescriptions that can be applied to 

an entire stand (Shao and Reynolds 2006).  However, harvesting cost models that provide 

estimates for individual cut-trees still need to be developed and implemented into optimal 

tree selection algorithms to ensure cost efficiency of thinning operations for given 

management purposes. 

In this paper, we present a computerized model to develop skid trail networks and 

estimate tree-level timber harvesting costs.  The model considers size, location, and 

spatial distribution of individual cut-trees and is designed for ground-based harvesting 
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operations.  If coupled with optimal cut-tree selection algorithms, this model is expected 

to develop cost-efficient thinning guidelines for given treatment objectives. 

 

 

2.2 METHODOLOGY 

 

A treatment unit is defined in this study as an area to be thinned by a ground-

based harvesting system.  All logs are assumed to be brought into one extraction point 

(log landing), where they are loaded onto log trucks for further transportation.  A whole-

tree harvesting is further assumed for this study as follows: i) cut-trees are felled at the 

stump location, ii) a cable skidder is used to bunch and skid nearby cut-trees within a 

maximum winching radius (MWR) to a given log landing, and iii) trees are then 

delimbed and topped at the landing.   

This study is based on the availability of a stem map, pre-selected cut- and leave-

tree locations, and terrain information within the entire treatment unit.  For this study, a 

stem map and a DEM derived from LiDAR data by Rowell et al. (2009) was used.  In 

their study, the LiDAR raw data was processed to produce a high resolution 1-meter 

digital elevation model (DEM) and a canopy height model (CHM).  Tree locations were 

obtained using a stem identification algorithm based on a combination of variable 

window local maxima filtering (Popescu and Wynne 2004) and neighborhood canopy 

height variance and return density (Rowell et al. 2006).  Individual tree DBH were 

estimated using a log-linear model (n = 1555, R2 = 0.76, Error = 7.6%) (Rowell et al. 

2009).  
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[2.1] ( ) ( ) ( )sd  007.0  rh  798.0  h  041.0  732.1 dbh  ln ×−×+×+=  

where h is the height of the tree (m), rh is the relative height (m) calculated as the tree 

height divided by the mean height of dominant and co-dominant trees in a 20 m × 20 m 

neighborhood, and sd is stem density of dominant and co-dominant stems in the 

neighborhood.  Tree volumes were estimated using an equation from the Northern Idaho / 

Inland Empire of the Forest Vegetation Simulation (Keyser 2008). 

[2.2] ( ){ } ( ){ }[ ] 0.02831    h  d2.54  00171.0  h  d2.54  00171.0   Vol 2 ××××+×××=  

where, vol is the tree volume (m3), and d is the tree DBH (cm).  These LiDAR-derived 

DEM and stem map, as well as the location of the extraction point for the treatment unit 

are the main input datasets for our cost model.  

To estimate the harvesting cost for individual trees, the model first uses a log-

bunching algorithm to identify log-pile locations and volumes.  The algorithm simulates a 

cable skidder operation which collects nearby cut-trees through a cable winch to 

complete a full load and skids trees together to a landing.  The target maximum loading 

capacity (MLC) of the skidder was used to limit the volume of a log-pile that the skidder 

can carry during its travel to the landing, assuming log volume is the limiting factor on 

skidding capacity, not the number of log pieces.  The model then designs the skid-trail 

network that connects each log-pile location to the extraction point while minimizing the 

total skidding cost.  The model estimates the skidding cost for a given ith log-pile (PSCi) 

using the following equation: 

[2.3] RR
60

CT
PSC i

i ×






=  
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where, CTi is the skidding cycle time in minutes for a round trip between the extraction 

point and the ith log-pile location and RR is the rental rate of the skidder in $/hr.  Cycle 

times can be estimated using regression models that appropriately capture the interaction 

between the skidding equipment and the terrain conditions such as slope and distance.  

However, there exist no regression models that accurately provide estimations of cycle 

time for short distances such as those obtained from a high-resolution DEM.  Therefore, 

for demonstration purposes we modified the skidding cycle time models introduced by 

Han and Renzie (2005) and used them in our model applications to estimate downhill and 

uphill skidding cycle times that are proportional to skidding distances (Eqs. 2.4 and 2.5).  

We also assumed that the uphill skidding cycle time is 20% larger than downhill cycle 

time for equal skidding distance.  

[2.4] ( )D  0215.0  9537.3CTds ×+=  

[2.5] ( )D  0258.0  9537.3CTus ×+=  

where, CTds is the cycle time for downhill skidding, CTus is the cycle time (min) for 

uphill skidding, and D is the skidding slope distance (m) from a given log-pile location to 

the treatment unit extraction point. 

To estimate the skidding cost of an individual tree, the model prorates the 

skidding cost based on the volume ratio of the individual tree to the entire log-pile (Eq. 

2.6).  Thus, bigger cut-trees entail a larger skidding cost than smaller cut-trees in the 

same pile.   

[2.6] 






 ×
=
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where, TSCj is the skidding cost of the jth individual cut-tree, volj is the volume of the jth 

cut-tree, PSCi is the skidding cost of the ith log-pile containing cut-tree j, and Pvoli is the 

volume of the ith log-pile. 

 

2.2.1 Log-Bunching Algorithm 

 

The log-bunching algorithm identifies the number, volume, and location of log-

piles based on the three-dimensional coordinates of each cut-tree provided by the DEM 

and stem map.  Figure 2.1 shows a flowchart describing the log-bunching process.  The 

process begins with sorting all cut-trees based on their slope distance from the treatment 

unit extraction point.  Starting with the first log-pile (i=1), the algorithm selects the 

closest cut-tree to the extraction point.  This closest cut-tree is identified as the ith log-pile 

location (Figure 2.1), assigned to the log-pile, and its volume is added to the ith log-pile.  

After the ith log-pile location has been identified, the algorithm re-sorts all remaining 

unassigned cut-trees based on their slope distance from the ith log-pile.  The closest cut-

tree to the ith log-pile is selected and labeled as a candidate neighbor (CN) cut-tree to be 

added to the log-pile.  If the CN cut-tree is beyond the MWR, the algorithm stops 

assigning cut-trees to the ith log-pile, the current CN cut-tree is unlabeled, and the process 

continues for the next pile (i = i +1).  If the CN cut-tree is within the MRW, the algorithm 

checks whether the current volume of the ith log-pile plus the CN cut-tree volume exceeds 

the MLC of the skidder.  If the combined volume is greater than the MLC, the current CN 

cut-tree is unlabeled and the next closest cut-tree to the ith log-pile is selected and labeled 

as a CN cut-tree.  On the other hand, when the combined volume is less than the MLC of 
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the skidder, the CN tree is assigned to the ith log-pile and the pile volume is updated.  

When no more cut-trees can be assigned to the ith log-pile because of MLC, the algorithm 

moves to the next (i = i +1) log-pile location.  Figure 2.2 shows a log-bunching example 

for a log-pile including five cut-trees with a combined volume of 2.1 m3, when the MLC 

is 2.5 m3.  The algorithm stops the log-bunching process when all cut-trees in the 

treatment unit have been assigned to a log-pile. 

 
Figure 2.1. Flowchart of the log-bunching algorithm developed in this study. 
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Figure 2.2. Log-bunching simulation to identify log-pile locations. 

 

2.2.2 Skid-Trail Network 

 

To estimate the skidding cycle time for a given log-pile, it is necessary to know 

the route the skidder will follow between the log-pile location and the treatment unit 

extraction point.  Our model identifies the route that connects each log-pile to the 

extraction point at a minimum cycle time.  To determine the least cycle time route 

location, the model creates a skid-trail network consisting of a set of nodes and links.  

Nodes represent the center of DEM grid cells, log-pile locations, and the treatment unit 

extraction point, and links represent connections to adjacent nodes (Figure 2.3).  In our 

model, each node is connected to its eight adjacent neighbors.  A skid-trail network 

generated from all possible nodes in the 1-meter DEM has a very large number of nodes 

and links even for a small treatment unit.  To reduce the size of the problem of finding 

minimum cycle time routes, we created a skid-trail network with nodes spaced at 5 

meters. 
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Figure 2.3. Links connecting a cell with its eight adjacent cells. 

 

Before creating a link, the model checks whether skidder traffic is feasible over 

the link representing a skid-trail segment.  Typically, because of safety and productivity 

reasons, skidder operations are limited to areas with gentle slopes.  Therefore, a link is 

only created when the link gradient and side slopes are both below a pre-defined 

maximum skid-trail gradient (MSTG) and maximum skid-trail side slope (MSTSS).  

Skid-trail gradient is calculated based on the elevation difference of the two cells forming 

the link (solid line in Figure 2.4).  Side slope is calculated based on the elevation 

difference and horizontal distance between the two grid cells of the front grid cell of a 

link (shaded line in Figure 2.4).   

 
Figure 2.4. Grid cells used to calculate the side slope and skid-trail gradient for a given 

skid-trail link. 
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To avoid damage to the residual stand, we set a safety buffer distance (SBD) for 

each leave-tree in the treatment unit where no skid-trails are allowed to pass through.  

Figure 5 shows an example of a skid-trail network on an area with three pile locations, 

steep terrain (shaded grid cells in Figure 2.5), and obstacles presented by leave-trees.  

Any other zones where heavy machinery traffic should be limited such as wetlands or 

unstable soils, can be specified and included in the model. 

 

 
Figure 2.5. Example of the skid-trail network created over an area with steep terrain and 

obstacles presented by two leave-tree buffers. 

 

After the skid-trail network has been created, the model estimates the variable 

cycle time associated to each link.  We assumed the first term in Equations 2.4 and 2.5 is 

an estimate of the fixed cycle time due to activities such as hooking and unhooking logs 

to the winch line, and the second term estimates the skidder travel time on a skid-trail.  
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Thus, because the fixed cycle time is independent of the skid-trail route location, the 

model estimates the variable cycle time for each link using only the second term in 

Equations 2.4 and 2.5. 

Once the variable cycle time is calculated for each link, a network problem is 

formulated to find a set of routes that has the least variable cycle time from each log-pile 

location to the treatment unit extraction point.  The variable cycle time per link is used as 

the link attribute value, and the objective function is to minimize the total variable cycle 

time.  The model uses Dijkstra’s shortest path algorithm (Dijkstra 1959) to find the set of 

routes connecting each log-pile to the extraction point with the least variable cycle time, 

and then estimate the total variable cycle time for each log-pile.  The shortest path 

algorithm used in the model is known to be efficient and is widely used to determine the 

shortest paths between a destination node and a set of origin nodes in a given network 

(Chung et al. 2004, Anderson and Nelson 2004, Tan 1999;). 

Once the minimum variable cycle time route has been found for a given log-pile, 

the model adds the fixed cycle time (first term in Equations 2.4 and 2.5) to obtain the 

total cycle time for the log-pile (CT in Equations 2.4 and 2.5).  CT is then used to 

compute the skidding cost for the pile, and estimate skidding cost of individual cut-trees 

included in the log-pile. 
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2.3 MODEL APPLICATION – A CASE STUDY 

 

We applied our model to a treatment unit in the University of Montana’s Lubrecht 

Experimental Forest (LEF), located approximately 48 km northeast of Missoula, Montana 

in the Blackfoot River drainage.  The treatment unit is 4.6 ha in size with elevations 

ranging from 1,270 to 1,310 m. and an average slope of 13.5% (0.0 - 36.3% slope range) 

(Figure 2.6a).  For the purpose of fuel reduction, we considered a thinning prescription 

that cuts, piles and burns all trees with DBH less than 12.7 cm (5 inches), and selects and 

harvests some merchantable trees for cost recovery.  The LiDAR-derived stem map 

identified 2,645 individual stems with a DBH larger than 12.7 cm.  Figure 2.6b shows the 

locations of these trees in the treatment unit. 

 

 
Figure 2.6. LiDAR-derived digital elevation model (a) and stem map (b) for the treatment 

unit selected for the model application area in the Lubrecht Experimental Forest. 
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The selection of leave-trees (and thus cut-trees) in the treatment unit was done 

manually simulating the marking process carried out by markers on the ground based on 

tree sizes and spacing between trees.  Because of residual stand protection requirements, 

skid trails within the SBD of any leave-tree are not allowed.  Thus, depending on the 

number and location of leave-trees, the resulting skid-trail network might not be fully 

connected, leaving piles isolated from the extraction point.  In this situation, we assumed 

the isolated piles are left on the site without being skidded to the landing 

We considered two thinning intensities scenarios to explore the performance of 

our cost model.  For scenario I, cut-trees were selected from the treatment unit (see 

Figure 2.6b) until a target tree density of 400 leave-trees per hectare was met.  For 

scenario II, additional cut-trees were selected among the trees left by scenario I until a 

target tree density of 300 leave-trees per hectare was met.  Figures 2.7a and 2.7b show 

the locations of the leave-tree for scenarios I and II, respectively.  Table 2.1 shows the 

number of cut- and leave-trees, average spacing between trees, and target cut and leave 

volume on the treatment unit after both selective harvesting scenarios are simulated. 

The cost model was applied to the treatment unit for both scenarios considering 

the following link feasibility parameters; SBD = 1.5 m, MSTG = 35%, and MSTSS = 35 

%.  The model also considered the following harvesting equipment parameters; MLC = 

2.5 m3, RR = 85 $/hr, and MWR = 10 m, which approximately correspond with a small-

sized cable skidder used in thinning operations (Bustos-Letelier 2010).  The extraction 

point was located on the lower elevation part of the treatment unit (see Figure 2.6a).  
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Table 2.1. Target thinning intensities under each thinning scenario considered in the 

study. 

Target conditions Scenario I 
(400 trees per ha) 

Scenario II 
(300 trees per ha) 

Number of leave-trees 1,840 1,380 
Number of cut-trees 805 1,265 

Average tree spacing (m) 5.0 5.8 
Leave volume (m3) 573.74 406.58 
Cut volume (m3) 200.32 367.48 

 

 
Figure 2.7. Selected leave-trees locations under the two thinning scenarios with a target 

density of 400 and 300 trees per hectare, (a) and (b) respectively. 

 

 

2.4 RESULTS AND DISCUSSION 

 

The model identified log-pile locations as well as the optimal skid-trail network 

connecting log-piles to the treatment unit extraction point for both simulated selective 
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harvesting scenarios.  For scenario I, based on the location of the 805 selected cut-trees 

(Figure 2.8a), the log-bunching algorithm identified a total of 215 log-pile locations 

(Figure 2.8b).  Then, based on the location of the 1,840 leave-trees and the identified log-

piles, the model created a skid-trail network composed of 2,710 feasible skid-trail links 

between nodes.  Figure 2.9a shows the skid-trail network, where the model identified 11 

of the 215 log-piles as isolated without a way out to the extraction point, and considered 

the cut-trees belonging to these log-piles as non-harvestable.  These isolated log-piles are 

caused mainly by the leave-tree buffers where no skidder access is allowed.  For the 

remaining 204 connected piles, the model determined the optimal skid-trail network that 

minimized the variable cycle time from each log-pile to the extraction point (Figure 

2.9b).  Figures 2.10a and 2.10b present the optimal skid-trail network with traffic levels 

on each skid-trail link in terms of timber volume and number of passes (turns).  The 

model estimated the skidding costs for each connected log-pile using the variable cycle 

time obtained from the optimal skid-trail network.  Figure 2.11a shows range of skidding 

costs per log-pile, where log-piles located farther away from the extraction point have 

larger harvesting costs.  The model also estimated skidding costs for individual cut-trees 

(Figure 2.11b).  Cut-trees with large cost can be found throughout the treatment unit 

because cost is a function of both distance from the extraction point and individual cut-

tree volume.   
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Figure 2.8. Cut-tree locations under thinning scenario I (a), and the corresponding log-

pile locations identified by the log bunching algorithm (b). 

 

 
Figure 2.9. Feasible skid-trail links created by the model for thinning scenario I (a), and 

the optimal skid-trail network identified by the model (b). 
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Figure 2.10. Optimal skid-trail network for thinning scenario I showing traffic levels in 

terms of volume traveled (a), and number of passes (b) over a given link. 

 
Figure 2.11. Model results showing skidding cost per pile (a) and per individual cut-tree 

(b) for thinning scenario I. 
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For scenario II, which considered 1,265 cut-trees (Figure 2.12a), the log-bunching 

algorithm identified 278 log-pile locations (Figure 2.12b).  The model created a skid-trail 

network composed of 3,414 feasible skid-trail links (Figure 2.13a).  Because of the 

smaller number of obstacles presented by fewer leave-trees, there were no isolated log-

piles identified by the model.  Using the variable cycle time of each link, the model 

determined the optimal skid-trail network connecting each log-pile to the extraction point 

at a minimum cycle time (Figure 2.13b).  The optimal skid-trail network showing traffic 

levels in terms of volume traveled, and the number of passes is presented in Figures 2.14a 

and 2.14b, respectively.  The model also estimated the skidding costs of the 278 log-piles, 

as well as skidding costs of the 1,265 individual cut-trees in the treatment unit (Figures 

2.15a and 2.15b).  Similar to scenario I, log-piles located closer to the extraction point 

have smaller skidding costs than distant log-piles. 
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Figure 2.12. Cut-tree locations under thinning scenario II (a), and the corresponding log-

pile locations identified by the log bunching algorithm (b). 

 

 
Figure 2.13. Feasible skid-trail links created by the model for thinning scenario II (a), and 

the optimal skid-trail network identified by the model (b). 
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Figure 2.14. Optimal skid-trail network for thinning scenario II showing traffic levels in 

terms of volume traveled (a), and number of passes (b) over a given link. 

 
Figure 2.15. Model results showing skidding cost per pile (a) and per individual cut-tree 

(b) for thinning scenario II. 
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Table 2.2 summarizes the model results for both harvesting scenarios.  As 

mentioned above, a total of 55 cut-trees (6.8% of the total selected cut-trees) were 

identified as non-harvestable in scenario I mainly because of leave-tree buffers.  

However, the combination of other factors related to the harvesting equipment and skid-

trail network design can also affect the number and location of isolated log-piles.  For 

example, MLC and MWR influence the number of cut-trees included in a log-pile, thus 

affecting the number and location of log-piles.  Likewise, the spacing between nodes can 

also determine if a log-pile is either connected to the network or isolated.  In our model, a 

log-pile location is defined as the location of the closest available cut-tree to the 

extraction point, and if its location is within a leave-tree SBD then the log-pile and all 

cut-tree forming it are considered isolated.  However, in practice cut-trees inside a leave-

tree SBD can be winched out of the no-traffic zone and the log-pile location can be 

shifted allowing these isolated trees to be extracted.  Our model will need to be further 

refined to reflect this practical aspect of log piling.  Additionally, leave-trees were 

selected based on tree sizes and spacing; however, if access is considered when selecting 

leave-trees, the number of isolated log-piles identified by the model in this study can be 

significantly reduced thus increasing timber recovery.   

 

 

 

 

 

 



 83

Table 2.2. Results of the individual tree skidding cost model. 

Model Results Scenario I 
(400 trees per ha) 

Scenario II 
(300 trees per ha) 

Harvesting Feasibility   
Harvestable Piles 204 278 
Harvestable Cut-trees 750 1265 
Harvestable Volume (m3) 188 367 
Non-Harvestable Piles 11 --- 
Non-Harvestable Cut-trees 55 --- 
Non-Harvestable Volume (m3) 12.3 --- 

Harvestable Piles   
Minimum Number of Trees per Pile 1.00 1.00 
Average Number of Trees per Pile 3.70 4.60 
Maximum Number of Trees per Pile 11.00 15.00 
Minimum Pile Volume (m3) 0.05 0.05 
Average Pile Volume (m3) 0.92 1.32 
Maximum Pile Volume (m3) 2.48 2.64 
Minimum Pile Distance (m) 11.11 11.11 
Average Pile Distance (m) 259.13 225.15 
Maximum Pile Distance (m) 443.59 395.64 
Minimum Pile Cost ($) 5.94 5.94 
Average Pile Cost ($) 13.64 12.53 
Maximum Pile Cost ($) 19.57 17.95 

Harvestable Cut-trees   
Minimum Tree Volume (m3) 0.05 0.05 
Average Tree Volume (m3) 0.25 0.29 
Maximum Tree Volume (m3) 1.71 2.64 
Minimum Tree Cost ($) 0.20 0.24 
Average Tree Cost ($) 3.71 2.75 
Maximum Tree Cost ($) 18.07 17.95 

 

Log-pile characteristics between the two scenarios were slightly different.  The 

average number of trees per log-pile is smaller for scenario I than for scenario II (3.7 

versus 4.6) because fewer trees are available within the MWR to complete a full load.  

For the same reason, scenario I had a smaller average volume per log-pile than scenario II 

(0.92 m3 versus 1.32 m3).  The maximum number of trees per log-pile is relatively high in 

both scenarios (i.e., 11 and 15 trees) because of the large number of small trees in the 

treatment unit.  In this study, we did not restrict the number of trees per log-pile, which 
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could be included as another limiting factor on the carrying capacity of cable skidders.  

Additionally, because tree size was not considered in the cycle time equations (Eqs 2.4 

and 2.5), our skidding cost estimates are independent of tree size.  However, because 

small trees require more piling time than large trees to complete a full load, reducing tree 

sizes typically results in increases skidding costs per m3.  Further research should 

consider evaluating skidding cycle time equations that account for such factors to obtain 

more realistic skidding cost estimates.  The average distance from a log-pile to the 

extraction point was approximately 260 m and 225 m for scenarios I and II, respectively.  

The higher average distance for scenario I was caused by the presence of more leave-

trees, which present obstacles to skidding paths.  Due to this longer skidding distance in 

scenario I, the average skidding cost in scenario I is slightly higher than scenario II 

($13.6 versus $12.5).  Likewise, the average skidding cost for individual cut-trees is 

higher in scenario I than scenario II ($3.46 versus $2.75). 

To ensure that our model results are comparable to those that can be obtained 

from the existing skidding cost models, we first aggregated the individual tree skidding 

costs estimated from the application results described above to calculate the average 

skidding cost per unit of timber volume ($/m3).  The average cost was then compared 

with average skidding costs estimated by conventional cost regression models that use 

average values of stand attributes (i.e. harvest volume per ha, average skidding distance, 

etc.) as explanatory variables.   

For this comparison, we selected the Fuel Reduction Cost Simulator (FRCS) 

(Hartsough et al. 2001) that is currently used as timber harvest cost estimator for multiple 

MS Excel-based tools such as STHARVEST (Fight et al. 2003) and My Fuel Treatment 
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Planner (Biesecker and Fight 2006).  We compared our model results with the skidding 

cost component of FRCS, which is calculated as a weighted average of skidding costs 

estimated by six published regression models.  These regression models were developed 

for cable skidders of various sizes operating in different areas of the western US such as 

western Montana, Idaho, Oregon, and Washington (Johnson 1998, Gardner 1979, 

Gebhardt 1977).  The skidder rental rate, cut-tree characteristics, and thinning intensities 

entered into FRCS as input parameters were the same as those used in our model 

applications.  The average skidding distance (ASD) calculated as the slope distance from 

the centroid of the treatment unit to extraction point.  Other characteristics of the 

treatment unit, such as size and average slope were also entered into FRCS (Table 2.3).  

 

Table 2.3. Parameters used in the Fuel Reduction Cost Simulator (FRCS) to calculate 

skidding costs under each thinning scenarios. 

FRCS parameters Scenario I Scenario II 
Skidder rental rate ($/hr) 85.00 85.00 
Average slope (%) 13.50 13.50 
Average skidding slope distance (m) 184.17 184.17 
Area (ha) 4.60 4.60 
Removal (trees per ha) 164.13 275.00 
Average cut-tree volume (m3) 0.25 0.29 
Average cut-tree dbh (cm) 20.57 21.64 
Maximum cut-tree volume (m3) 1.71 2.64 

 

Table 2.4 summarizes cost estimates resulted from our individual tree skidding 

cost model, FRCS, and the six cost regression models used in FRCS for both thinning 

scenarios.  The skidding costs from our model are about 33% higher and 5% lower than 

the FRCS cost estimates for scenarios I and II, respectively.  However, our model results 

are within the range of estimates produced by the six regression models.  All models 
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estimated skidding costs of scenario I higher than scenario II, but the difference between 

the two scenarios was larger in the results of our model than in those of the existing 

models, which indicates that our cost model in more sensitive to thinning intensities than 

the existing models.  This is mainly because thinning intensity does not affect ASD used 

in the existing models considered, while in our model ASD is calculated as the average 

distance from all log-piles to the extraction point along the optimal skid-trail network.  

However, modern skidding cost models should consider thinning prescriptions to better 

capture the interactions between thinning intensity and skidding operations and obtain 

more realistic estimates of the associated skidding costs. 

 

Table 2.4. Comparison of average skidding cost results among various cost 

models including our individual-tree cost model, the Fuel Reduction Cost Simulator 

(FRCS), and six published regression models used in the FRCS for both thinning 

scenarios. 

Skidding cost models Skidding Cost (US$/m3) 
Scenario I Scenario II 

Individual-tree cost model  14.80 9.48 
FRCS (Hartsough et al. 2001) 11.12 9.93 

Gebhardt (1977) 5.99 5.21 
Johnson (1988) 12.59 11.49 
Anderson and Young (1998)  10.46 9.70 
Gardner (1979) 17.16 15.33 
Gibson and Egging (1973) 13.38 11.94 
Johnson and Lee (1988) 14.72 13.51 

 

Although our model provides reasonable average cost estimates ($/m3) compared 

with traditional methods, the accuracy of individual tree cost estimates largely depends 

on the accuracy of the input tree locations.  There are several ways to obtain stem map 

information varying from traditional field measurements to advanced remote sensing and 
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GIS technologies such as high-resolution aerial photo (Hirschmugl et al. 2007), 

multispectral imaging (Popescu and Wynne 2004), and LiDAR (Maltamo et al. 2004).  

The algorithms used to derive LiDAR-derived stem maps in our study area have provided 

stem detection accuracies of approximately 53 % when considering all forest types 

(Suratno et al. 2009).  However, stem detection accuracy increases significantly on 

dominant trees.  In similar forest conditions to those of our treatment unit, the stem 

detection algorithm provided an accuracy of about 90% when considering only dominant 

trees (Rowell et al. 2006).  In this study, we considered only dominant trees with DBH 

larger than 12.7 cm, thus we expect the stem map used for our study has a high stem 

detection accuracy level.   

As our model considers terrain slope to create feasible skid-trail links, it can be 

effectively used to delineate non-accessible or difficult terrain areas for skidding 

operations.  Our model can also be used to automatically generate optimal skid-trail 

networks connecting multiple log-piles to the extraction point.  Additionally, soil 

recovery costs associated with amelioration of soil disturbances caused by skidder traffic 

can also be incorporated into our model to generate skid-trail networks that minimize 

both skidding costs and soil disturbances (Contreras and Chung 2009).   

 

 

2.5 CONCLUSIONS 

 

Due to advanced remote sensing and GIS technologies that have brought us to an 

unprecedented level of precision in terrain and vegetation mapping, high resolution 
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DEMs and individual tree stem maps are now available for forest resources management 

applications.  With such stem maps, silvicultural prescriptions can be developed and 

implemented at the individual tree level, which can potentially help meet desired 

management goals more effectively than the conventional way of developing and 

applying prescriptions.  To facilitate individual tree-level decision-making, we have 

developed a cost model that estimates skidding costs for individual cut-trees for thinning 

operations based on tree volume and locations. 

The model was applied to a treatment unit where merchantable trees were to be 

selectively harvested under two hypothetical thinning scenarios.  Comparison of the 

model results with those obtained from the existing cost models indicates that our model 

results are within the reasonable range for skidding costs but more sensitive to thinning 

intensities than the existing models.  In addition, our model can be potentially used as a 

tool to develop skidding trail networks and delineate difficult terrain areas for skidding 

operations. 

The model should be further validated through field tests to ensure that the results 

are applicable on the ground.  There is also a need to develop appropriate cycle time 

regression equations for the model.  The model currently employs two regression 

equations for uphill and downhill skidding cycle times, but they do not directly account 

for the effects of ground slopes, number of logs, log-pile volume, and wide range of 

skidding distances, on cycle times.  The simple skid-trail network design is another 

limitation of the model.  Many sharp turns and skid-trail crossings exist in the optimal 

skid-trail because only the second-order neighborhood system (eight adjacent grid cells) 

was considered.  More realistic skid-trails can be obtained by reducing node spacing, 
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increasing the number of neighbor cells considered, or both.  However, other skid trail 

designs factors such as the skidder’s minimum turning radius should also be considered 

for link feasibility to ensure the skid-trails identified by the model can be implemented on 

the ground.  
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3.0 ABSTRACT 

Land managers have been using fire behavior and simulation models to assist in 

several fire management tasks.  These widely-used models use average attributes to make 

stand-level predictions without considering spatial variability of fuels within a stand.  

Consequently, as the existing models have limitations in adequately modeling crown fire 

initiation and propagation, the effects of fuel treatments can only be evaluated based on 

average conditions, where the effects of thinning design (e.g., cut-tree locations) on 

changing fire behavior are largely ignored.  To overcome these limitations, we coupled 

an advanced physics-based fire behavior model with light detection and ranging (LiDAR) 

technology to capture spatial variability of fuels within stands and properly model crown 

fire initiation and propagation.  Advanced physics-based fire behavior models are 

computationally demanding, and it is not currently feasible to run such models for large 

landscapes (thousands of hectares) at which fuel treatments are often considered.  Thus, 

to extend the capabilities of these fine scale models to larger landscapes, we developed 

logistic regression models based on tree data and fire behavior model output to predict 

crown fire initiation and propagation for given tree locations and attributes for two 

weather scenarios, representing average and severe conditions, for our study area.  We 

applied these regression models and used tree-level fuel connectivity prediction as 

measures to evaluate the effectiveness of thinning treatments for reducing crown fire 

potential.  We demonstrate this method using LiDAR-derived stem map and tree 

attributes developed for a 4.6-ha forest stand in western Montana, USA. 

 

Keywords: Fire behavior, fire simulation modeling, WFDS, LiDAR, thinning treatments. 
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3.1 INTRODUCTION 

 

Historically, low intensity fires burned frequently in the western U.S., with 

ignitions caused by lighting and humans (Hessl et al. 2004, Allen et al. 2002).  These 

fires functioned to control regeneration of fire sensitive species, promote fire tolerant 

species, maintain open forest structures, and reduce forest fuel loads (Arno and Allison-

Bunnell 2002, Swetnam et al. 1999).  Over the last decades, successful fire exclusion has 

contributed to the accumulation of understory vegetation and increased stand densities, 

creating a greater vertical and horizontal continuity of fuels in stand structures, which has 

increased the potential for high-intensity wildfires in the western U.S. (Mutch 1994, Arno 

and Brown 1991).  Some estimates suggest that more than 27 million ha of forestland in 

the western U.S. have departed significantly from natural wildland fire conditions and are 

at medium to high risk of catastrophic wildfires (Schmidt et al. 2002).  In response to the 

continuing threat of severe wildfires, the National Fire Plan (USDA and USDI 2001) and 

the Healthy Forest Restoration Act (2003) mandate that land managers restore forest 

habitats and reduce the risk of wildfires in federal forests. 

Land managers and decision makers have been using fire behavior and simulation 

models as a tool to predict fire potential, identify stands with high risk of wildfires, and 

allocate resources for fuel treatments (Chung et al. 2009, Ager et al. 2006, Finney 2006, 

Cruz 2004)  However, the widely-used existing fire behavior and simulation models, such 

as FARSITE (Finney 1998), NEXUS (Scott 1999), FFE-FVS (Reinhardt and Crookston 

2003), BehavePlus (Andrews et al. 2005), and FlamMap (Finney 2006) use the average 

attribute values of a forest stand for stand-level predictions without considering spatial 
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variability in fuels and vegetation within a stand.  For example, the existing models for 

predicting crown fire initiation (i.e., Van Wagner 1977, Cruz et al. 2006a, and Cruz et al. 

2006b) and crown fire occurrence (Cruz et al. 2004) are based solely on the stand canopy 

base height that represents the vertical distance from the top of the surface fuels to the 

lower limit of canopy fuels that can sustain and vertically propagate fire.  However, due 

to variability within a stand, it is difficult to represent an entire stand with a single canopy 

base height value (Scott and Reinhardt 2001).  In addition, the existing models predict 

crown fire propagation through canopy fuels (i.e., Van Wagner 1977) based only on the 

stand canopy bulk density (CBD).  The calculation of CBD assumes that canopy fuels are 

distributed uniformly throughout the stand, but this is unlikely the case even in stands 

with simple structures (Scott and Reinhardt 2001).  Consequently, the widely-used 

existing fire behavior models have limitations in properly modeling crown fire initiation 

and propagation, as well as assessing fire-atmosphere interactions that influence the 

initiation and cessation of rapid and intense fires within a stand (Rothermel 1991, Potter 

2002).  Furthermore, the effects of fuels treatments, such as fuel reduction thinning, can 

only be evaluated based on average conditions (Van Wagtendonk 1996), where the 

effects of thinning design (e.g., cut-tree locations) on changes in fire behavior are largely 

ignored.   

To overcome the limitations of the existing fire behavior models, recent effort has 

been put into the development of advanced physics-based numerical fire behavior models 

capable of considering spatial variability of fuels within forest stands as well as fire-fuel 

and fire-atmosphere interactions (Mell et al. 2007).  The wildland-urban interface fire 

dynamics simulator (WFDS) developed by the National Institute for Standards and 
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Technology is one of the models that simulate crown fire initiation and propagation as a 

fine-scale, physics-based process that takes into account size, shape, composition and 

spatial arrangement of fuel particles (Mell et al. 2005).  WFDS can be coupled with the 

Light Detection and Ranging (LiDAR) technology, which has been widely used to obtain 

tree locations and attributes (Maltamo et al. 2004, Packalén and Maltamo 2006, Maltamo 

et al. 2006), to provide spatial arrangement and characteristics of fuels within stands.  

The advanced, fine-scale fire behavior modeling approach can be a promising method to 

properly model crown fire initiation and spread, as well as evaluate stand level effects of 

fuel treatments.  However, practical applications of the fine-scale fire behavior models 

have been limited due to the large amount of data and computation time required to 

represent detailed variability of fuels within a stand and model the time-dependent fine 

scale fire-fuel and fire-atmosphere interactions (Mell et al. 2007). 

In this study, we developed an alternative method to use a fine-scale fire behavior 

model (i.e., WFDS) for the purpose of improving evaluation of fuel treatment effects on 

changes in fire behavior.  Instead of running WFDS on an entire forest stand, which is a 

very computationally intensive process, we run the model on different combinations of 

tree arrangements to represent various spatial distributions of trees and tree attributes.  

We then developed logistic regression models to predict crown fire initiation and 

propagation for given tree locations (spacing) and attributes.  If crown fire initiation is 

predicted for given tree location and weather condition, then the tree crown fuels are 

considered vertically connected with surface fuels under the same weather condition.  If 

fire is predicted to propagate from a burning tree crown to an adjacent tree crown, then 

both trees are considered horizontally connected.  We apply these regression models and 
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use tree-level fuel connectivity predictions as a measure to evaluate the effectiveness of 

thinning treatments for reducing crown fire potential.  We demonstrated this method 

using LiDAR-derived stem map and tree attributes developed for a 4.6-ha forest stand in 

the University of Montana’s Lubrecht Experimental Forest (LEF) in western Montana, 

USA.   

 

 

3.2 METHODOLOGY 

 

3.2.1 LiDAR-Derived Stem Map and Tree Attributes  

 

In the summer of 2005, the National Center for Landscape Fire Analysis 

(NCLFA) acquired LiDAR data over the LEF located approximately 48 km northeast of 

Missoula, Montana in the Blackfoot River drainage (N 46º53’30”, W -113º26’3”) (Figure 

3.1).  Table 3.1 shows the LiDAR data acquisition parameters used for LEF.  These 

parameters provided an average return density of ~ 1 return per 2.29 m2 on the ground 

with a vertical accuracy of 0.15 m and a horizontal accuracy 0.25 m (Suratno et al. 2009). 

 

Table 3.1. LiDAR data acquisition parameters used for Lubrecht Experimental Forest1. 

Elevation 1100 – 1900 m 
Average flight height above surface 1900 m 
Average flight speed 70.76 ms-1 
Scan frequency 25.5 
Laser pulse frequency 36200 Hz 
Scan angle ±35° 
Sidelap 50% 
Average swath width 1150 m 
Average return density 0.44 m2 
Average footprint 1 m2 

1 Taken from Suratno et al. (2009) 
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Figure 3.1. University of Montana’s Lubrecht Experimental Forest boundary and the 

selected forest stand for the study area. 

 

Researchers at the NCLFA separated the raw three-dimensional LiDAR points 

into vegetation (aboveground) and bare earth points using a triangulated irregular 

network densification method available in the TerraScan software suite (Terrasolid 

2004).  Ground points were used to create a digital elevation model (DEM) using inverse 

distance weighted interpolation at 1 m resolution.  The DEM and aboveground points 

were used to calculate the canopy height model (CHM) using the spot elevation method 
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(Daniels 2001).  This approach computed the canopy height (elevation above ground 

level) at each point by subtracting the DEM height from the CHM (Suratno et al. 2009). 

NCLFA researchers delineated individual trees using a stem identification 

algorithm based on a combination of variable window local maxima filtering (Popescu 

and Wynne 2004) and neighborhood canopy height variance and return density (Rowell 

et al. 2006).  This approach anticipated crown width (CW) as a function of canopy height 

and stand structure, and searched for a circle with dimensions of expected CW for points 

higher than the candidate point.  If no circles are found, the candidate point was assumed 

to be a tree top.  This process was conducted for every point in the CHM to produce a 

stem map (Suratno et al. 2009).  For trees species at LEF, CW was expected to be 33% of 

the tree height for trees in stands with canopy cover less than 35%, 16% of tree height for 

trees in stands with moderately closed canopy cover ranging between 35% and 65%, and 

11% of tree height for trees in stands with closed canopy cover greater than 65%.  After a 

tree location and expected CW were estimated, crown base height (CBH) was estimated 

using a square search window of 2×CW m centered at the tree location.  CBH was then 

estimated as the mean height of all CHM points inside the search window divided by the 

associated standard deviation of the heights.  Individual tree diameter at breast height 

(DBH) were estimated using the following log-linear model (n=1555, R2= 0.76, Error = 

7.6%) (Rowell et al. 2009). 

[3.1] ( ) ( ) ( )SD  007.0  RH  798.0  HT  041.0  732.1  DBH ln ×−×+×+=  

where, HT is the height of the tree (m), RH is the relative height (m) calculated as the tree 

height divided by the mean height of dominant and co-dominant trees in a 20 m × 20 m 
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neighborhood, and SD is stem density of dominant and co-dominant stems in the 

neighborhood.  

For the applications of this study, we selected a forest stand in LEF (see Figure 

3.1).  The stand is 4.6 ha in size with elevations ranging from 1,270 to 1,310 m, on a 

north-facing aspect, and an average slope of 13.5% (0.0 – 36.3% slope range).  Douglas-

fir is the dominant species with a small amount of ponderosa pine.  The stand has an 

established under- and middle-story creating continuous canopy fuels from the ground to 

the top of the canopy, resulting from logging in the mid-1940s and thinning in the mid-

1970s.  The LiDAR-derived stem map identified 11,213 stems, most of which are small, 

suppressed trees (Figure 3.2). 

 

 
Figure 3.2. Histogram and summary statistics of DBH distribution of LiDAR-derived 

trees in the study area. 
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3.2.2 Wildland-urban interface Fire Dynamics Simulator (WFDS) 

 

WFDS is an extended version of the Fire Dynamics Simulator developed by the Building 

and Fire Research Laboratory at the National Institute of Standards and Technology 

designed to include fire spread in vegetative fuels (Mell et al. 2007).  WFDS is a fully 

three-dimensional model that, in recent years, has received considerable research 

attention because it can provide more reliable and detailed predictions of fire behavior 

and its effect over a wider range of conditions than existing widely-used models (Mell et 

al. 2005, Linn et al. 2002).  WFDS is a physics-based computational fire model able to 

predict fine-scale time-dependent fire behavior, fire-fuel, and fire-atmosphere interactions 

in three dimensions (Mell et al. 2005).  WFDS attempts to solve in some approximation 

equations governing fluid dynamics, combustion, and heat transfer, where all modes of 

heat transfer (conduction, convection, and radiation) present in both fire-fuel and fire-

atmosphere interactions are modeled (Mell et al. 2005).  WFDS uses voxels to represent 

the spatial distribution of fuels.  Voxel dimensions might vary from centimeters to meter 

based on the scale of the fire simulation and level of detail.  Fluid dynamics, combustion, 

and heat transfer equations are solved for each voxel to simulate fire behavior over the 

entire simulation domain. 

 

3.2.2.1 Tree-level fuel representation 

We used LiDAR-derived stem map and tree attribute inputs to represent the 

spatial distribution of canopy fuels in WFDS fire simulations.  Each tree is defined by its 

x-, y-, and z-coordinates as well as DBH (cm), HT (m), CBH (m), crown length (m), and 
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CW (m).  Tree crowns are represented as frusta of right circular cones where the bottom 

(larger) diameter equals the crown width at CBH and the top (smaller) diameter equals a 

single voxel size.  WFDS can then determine the three-dimensional location and volume 

of each tree crown, identify all voxels inside tree crowns, and assign them canopy fuels 

characteristics such as bulk density and fuel moisture content (FMC).  Although fuel 

density is likely to change within a tree crown, we assumed a homogeneous fuel density 

that is sufficient to initiate and sustain fire propagation within the crown.  Additionally, 

moisture content is also likely to vary according to the fuels position inside the crown.  

For simplicity, we assumed a constant FMC throughout the tree crown volume.  Amount 

and arrangement of surface fuels can have a significant effect on fire behavior.  Although 

field sampling can be used to estimate the amount and type of surface fuels, detailed 

spatial distribution is rarely available.  Typically, for the purpose of modeling fire 

behavior, surface fuels are classified according to fuels models (Anderson 1982) and 

assumed to be homogeneously distributed over the study area (Scott 2006).  In this study, 

we assumed a homogeneous surface fuel bed represented by fuel model 10 (FBFM10), 

which we believe best describes the surface fuel conditions present in the study area at 

LEF. 

 

3.2.2.2 Weather scenarios and input data 

Weather conditions can have a significant effect on fire behavior (Cruz et al. 

2006b, Scott and Reinhardt 2001, Rothermel 1972).  For the purpose of evaluating the 

effects of fuel removal on fire behavior, either a range of values for weather parameters 

such as wind speed and FMC or values representing some condition of interest are 
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usually considered (Scott 2006, Scott and Reinhardt 2001).  In this study, we considered 

two cases representing the average and severe weather conditions of a typical fire season 

in western Montana (June to September), defined by the 50th and 90th percentiles, 

respectively.  More extreme weather conditions were not considered in this study because 

most fuel treatments are not likely effective in changing fire behavior under such 

conditions (Finney and Cohen 2003).  In WFDS, weather conditions are defined by wind 

speed (m/s), ambient temperature (ºC), ambient relative humidity (%), and FMC (%).  

We used historical observation data from the Seeley Lake (N 47º10’58”, W -113º26’50”) 

weather station, located approximately 30 km north of LEF, obtained from the National 

Fire and Aviation Management web application (http://famtest.nwcg.gov/fam-web/).  

Weather records consist of daily observations recorded at 13:00 hrs from July 1st 1954 to 

January 4th 2010.  From these observations, we selected weather parameter values 

associated with the average and severe weather conditions.   

In the WFDS model, the complex dynamics of a fire burning in crown fuels can 

produce significant fluctuations in the rate of spread and energy released in the surface 

fire, particularly at fine scales. As this highly dynamic (although realistic) behavior made 

it difficult to produce consistent surface fire conditions at the individual tree scales of our 

simulations, we chose to use a less dynamic, but more predictable, approach for 

characterizing the surface fire behavior. This can be accomplished in WFDS with a user-

assigned surface fire, in which, the  rate of spread (ROS) in m/s, heat release rate per unit 

area (HRRPUA) in kW/m2, and residence time in seconds are all set as model inputs.  

Residence time is the time required for the flame to pass a stationary point at the top of 

the surface fuel (Anderson 1969).  The same residence time was used for both weather 

http://famtest.nwcg.gov/fam-web/
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scenarios because it is a function only of the characteristic surface-area-to-volume ratio 

of the fuel particles (Anderson 1969).  We used a residence time of 20 seconds based on 

Rothermel (1983) fuel particle sizes and residence time relationship for FBFM10.  We 

adapted Rothermel’s (1991) fuel moisture values typical of normal and late summer in 

the Northern Rocky Mountains (Table 3.2) and used NEXUS (Scott 1999) to obtain 

expected surface fire burning characteristics for FBFM10 surface fuels corresponding to 

our average and severe weather conditions, respectively.  Table 3.3 shows the weather 

and surface fire inputs for the two weather conditions used in WFDS fire simulations.  

The intent of the user-assigned surface fire burning conditions was to provide consistent 

surface fire burning conditions for our fine scale crown fire initiation and tree-to-tree 

propagation simulations. This consistency facilitated our statistical modeling approach 

for prediction of crown fire initiation and propagation because the surface fire conditions 

could be described as a single set of conditions, rather than a complex and variable, time 

and space dependent evolution of surface fire conditions.   

 

Table 3.2. Fuel moisture percentage values used to obtain surface fire intensity 

parameters. 

Fuel type Average conditions 
(normal summer) 

Severe conditions 
(late summer) 

1-h 4 2 
10-h 5 3 
100-h 6 4 

Live woody 100 75 
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Table 3.3. Weather and surface fire inputs used in WFDS fire simulations. 

 Average conditions 
(50th percentile) 

Severe conditions 
(90th percentile) 

Wind speed 2.22 (m/s) 3.56 (m/s) 
Adjusted wind speed1 0.66 (m/s) 1.07 (m/s) 
Max. ambient temperature 26.1 ºC 32.1 ºC 
Ambient relative humidity 26 % 14 % 
FMC 100 % 100 % 
ROS 0.05 (m/s) 0.1 (m/s) 
HRRPUA 650 (kW/m2) 700 (kW/m2) 
Residence time 20 (s) 20 (s) 

1 After applying a wind reduction factor of 0.3, the ratio of midflame to open windspeeds (Rothermel 1983) 

 

3.2.3 Tree-Level Fuel Connectivity 

 

We designed WFDS simulations to model crown fire ignition and propagation 

independently because the transition of fire from surface to crown fuels and the 

propagation of fire through adjacent tree crowns are separate processes influenced by 

different tree and fuel characteristics. (i.e., CBH and tree spacing, respectively).   

 

3.2.3.1 Vertical fuel connectivity – crown fire initiation 

WFDS simulations were designed to determine a critical CBH that allows crown 

fire initiation given the burning characteristics of each weather condition.  A simulation 

domain was set up within a small area of 0.24 ha, 60 m long × 40 m wide × 30 m high 

(Figure 3.3).  For fire computations this area was divided into 120 × 80 × 60 voxels of 0.5 

m resolution.  Surface fuels that burn with the characteristics defined by HRRPUA, ROS, 

and residence time were simulated within the spatial domain.  A fire ignition point was 

placed in the middle of the left edge of the simulation domain.  Nine trees were placed 

systematically in a grid starting at 20 m from the left edge of the simulation domain.  We 
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arbitrarily selected 15-meter spacing between trees to avoid the propagation of fire 

through adjacent crowns.  Figure 3.3 shows an example of a WFDS simulation for crown 

fire initiation.  Trees in a given simulation were set to have varying sizes (i.e., DBH, HT) 

but a similar CBH.  For a given WFDS simulation, a target CBH was determined, and 

nine trees with CBH within 0.25 m from the target CBH were randomly selected from the 

LiDAR dataset and placed in the simulation domain.  Fourteen different CBH values 

were considered in this study, ranging from 0 m to 6.5 m at intervals of 0.5 m.  For each 

target CBH value, we developed 10 repetitions resulting in a total of 140 crown fire 

initiation simulations under each weather condition. 

 

 

Figure 3.3. WFDS simulation design for crown fire initiation showing nine trees with 

different dimensions but similar CBH (i.e., 2 m). 

 

3.2.3.2 Horizontal fuel connectivity – crown fire propagation 

WFDS simulations were designed to predict crown fire propagation from a 

burning tree crown to an adjacent tree crown in front of the flaming front.  A simulation 

domain was set to 30 m long × 20 m wide × 30 m high, which resulted in 60 × 40 × 60 

voxels with a 0.5 m resolution.  As in the crown fire ignition simulations, surface fuels 
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burning with the characteristics defined by HRRPUA, ROS, and residence time were 

simulated within the spatial domain, and a fire ignition point was located in the middle of 

the left edge.  One source tree representing the flaming front with crown fuels expected to 

ignite was placed at the center of the domain and a target tree ahead of the flaming front 

was placed to the right (Figure 3.4).  Spacing between these two trees (SP) was defined as 

the horizontal gap distance between their crown projections (edge to edge).  We 

simulated crown fire propagation with several SP values ranging from 0 m to 3.5 m at 

intervals of 0.5 m.  To account for wider flaming fronts formed by more than one tree, we 

also considered one and two additional source trees.  When considering two trees forming 

the flaming front, one additional source tree was placed next to the first source tree on a 

randomly selected side.  The horizontal distance between both source trees was set to 

provide a crown overlap at 10% of the distance between the tree centers to ensure a 

continuous flaming front.  When considering a flaming front formed by three trees, one 

additional source tree was placed on each side of the first source tree located at the center 

of the simulation domain also with a crown overlap of 10% of the tree spacing.  Tree 

sizes were randomly selected from the LiDAR dataset for tree attributes.  However, a low 

CBH (i.e., 0.5 m) was assigned to the source trees to ensure tree crown ignition, while the 

target tree’s CBH was kept relatively high (i.e., 3.0 m) to avoid crown fire initiation from 

a surface fire.  Ten repetitions of each fire simulation were developed, resulting in a total 

of 240 crown fire propagation simulations under each weather condition. 
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Figure 3.4. WFDS simulation design for crown fire propagation.  Examples show three, 

one, and two trees forming the flaming front (a, b, and c) and increasing spacing between 

the source and target tree. 
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3.2.4 Regression Models 

 

We calculated the percentage of dry mass loss (DML) for each tree at the end of 

all WFDS fire simulations to quantify the extent of tree-level burning (Murray et al. 

1971).  Percent DML was then converted into a binary variable to represent whether or 

not tree burning occurred (1 if percent DML > 0.5 and 0 otherwise), and used as a 

response variable.   

Logistic regression analysis was used to model the percent DML because of the 

nature of our response variable (i.e., the occurrence or not of tree burning).  The multiple 

logistic regression model has the following form: 

[3.2] 
( )

( )xg

xg

e1
e

 P
+

=  

with the logit function given by the equation, 

[3.3] ( ) ii22110 x...xx xg β++β+β+β=  

where, P is the probability that tree burning will occur, ix are the independent variables, 

and iβ are coefficients estimated through the maximum likelihood method, which will 

select coefficient values that maximize the probability density as a function of the 

original dataset (Hosmer and Lemeshow 2000). 

In the R software platform (The R development team http://www.R-project.org), 

we fit a binomial generalized linear model specified by giving a two-column response 

using the glm function.  To predict crown fire initiation, we considered three tree 

dimensions – DBH, HT and CBH – as potential independent variables.  Because CW and 

crown length can be obtained from HT and CBH, they were not considered as potential 

http://www.r-project.org/
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predictors.  For crown fire propagation, in addition to the three tree dimensions, we 

included SP as well as measures of tree density as surrogates of the flaming front size 

approaching the target tree (see Figure 3.4) and considered them as potential predictors.   

For measures of tree density, we used six distance-dependent competition indices 

to include trees forming the flaming front (i.e., one, two, or three source trees – see 

Figure 3.4).  Table 3.4 shows the distance-dependent competition indices considered in 

this study.  CI1 (Hegyi 1974) and CI2 (Baathe 1980, as cited in Pukkala and Kolström 

1987) are size-ratio competition indices using DBH and HT as indicators of tree size, 

respectively.  CI3 through CI6 are size-ratio indices employing sums of subtended angles 

(Rouvinen and Kuuluvainen 1997).  CI3 is the sum of horizontal angles originating from 

the target tree center and spanning the DBH of the each source tree.  CI4 is the sum of the 

horizontal angles multiplied by the ratio of the DBH of the source trees and the target 

tree.  CI5 is the sum of vertical angles from the target tree base to the top of the source 

trees.  CI6 includes the ratio of the HT between the source trees and the target trees.  

These indices were developed to measure the competition level experienced by a given 

tree.  However, their formulations effectively capture proximity and size of the flaming 

front by incorporating size and location of trees forming the flaming front which is 

related to the amount of heat released from the approaching fire and transferred to the 

target tree. 
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Table 3.4. Distance-dependent competition indices used to obtain measures of partial tree 

density. 

Index Source Equation 

CI1 Hegyi (1974)  ( )∑ =
×

n

i ii distdd
1

  /  

CI2 
Baathe (1980), cited in 
Pukkala and Kolström (1987)   

( )∑ =
×

n

i ii disthh
1

  /  

CI3 
Rouvinen and Kuuluvainen 
(1997) 

( )∑ =

n

i ii distd
1

/arctan  

CI4 
Rouvinen and Kuuluvainen 
(1997) 

( ) ( )∑ =
×

n

i iii distddd
1

/arctan  /  

CI5 
Rouvinen and Kuuluvainen 
(1997) 

( )∑ =

n

i ii disth
1

/arctan  

CI6 
Rouvinen and Kuuluvainen 
(1997) 

( ) ( )∑ =
×

n

i iii disthhh
1

/arctan  /  

n number of source trees forming the flaming front (i.e., one, two, three); di DBH of the ith source tree (cm); 
d DBH of the target tree ahead of the flaming front (cm); disti horizontal distance from the ith source tree to 

the target tree (m); hi height of the ith source tree (m); h height of the target tree (m). 
 

We calculated three model performance measures: sensitivity (proportion of 

ignited trees correctly predicted as such), specificity (proportion of not-ignited trees 

correctly predicted), and overall accuracy.  For model selection purposes, we started with 

all potential predictors, and then removed insignificant variables (α = 0.05) to obtain a 

parsimonious model with high predictive quality in terms of these three performance 

measures. 

 

3.2.5 Thinning Scenarios 

 

We considered three thinning scenarios to evaluate their effects on reducing 

crown fire potential.  Figure 3.5 shows the location of all LiDAR-derived trees, and the 

locations of leave-trees considered in each thinning scenario in the study area.  Thinning 

scenario I (Figure 3.5b) represents the case of applying a thinning from below where 
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primarily small suppressed and intermediate trees are removed to reduce the vertical 

continuity of fuels and total fuel availability.  Under this thinning prescription, all small 

trees with a DBH less than 12.7 cm (5 inches) were assumed to be cut, piled and burned.  

Larger trees were considered merchantable and to be extracted for sale.  Tree selection 

(location of cut- and leave-trees) was done manually simulating the marking process 

carried out by markers on the ground based on spacing between trees and tree sizes.  For 

scenario II, cut-trees were manually selected until a target tree density of 400 leave-trees 

per hectare was met (Figure 3.5c).  For scenario III, additional cut-trees were selected 

among the leave-trees used in scenario II until a target tree density of 300 leave-trees per 

hectare was met (Figure 3.5d). 

We applied the crown fire initiation models to predict vertical fuel connections for 

each leave-tree in each thinning scenario based on model selected tree dimensions (i.e., 

HT, CBH).  Horizontal fuel connections among adjacent trees were predicted by applying 

the crown fire propagation models based on model selected predictors (i.e., tree 

dimensions, SP and partial tree density).  A flaming front area of 1.5 m × 10 m centered 

at the first source tree location was used to search for additional source trees.  Trees 

inside the flaming front area were then considered as additional source trees.  Figure 3.6 

shows an example of a flaming front formed by three trees, a source trees and two 

additional source trees (dashed crown projections), used to predict crown fire propagation 

between the source tree and the target tree (solid crown projections).  We predicted 

horizontal fuel connections for each pair of leave-trees in each thinning scenario. 
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Figure 3.5. LiDAR-derived stem map of trees in the study area (a), and location of leave-

tree under thinning scenarios I through III, b) through d) respectively. 
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Figure 3.6. Schematic of the flaming front area used to estimate crown fire propagation 

between a source tree and a target tree. 

 

After predicting tree-level fuel connectivity among leave-trees in the study area, 

we evaluated the three thinning scenarios in terms of the number of predicted vertical and 

horizontal fuel connections.  The number of vertical connections represents the number 

of trees that would ignited under a given weather condition.  Similarly, for a given 

weather conditions, the number of horizontal fuel connections represents the amount of 

trees that would burn after fire reaches crown fuels through vertical fuel connections. 
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3.3 RESULTS AND DISCUSSION 

 

3.3.1 Regression Models 

 

3.3.1.1 Crown fire initiation – vertical fuel connectivity 

WFDS simulation results for predicting crown fire initiation indicate that the 

range of CBH values that allow crown fire initiation varies with weather conditions.  

Table 3.5 shows the proportion of trees that ignited at different CBH values analyzed in 

this study under each weather condition.  Based on these results, we limited the range of 

CBH values considered in the development of regression models to emphasize modeling 

efforts on effective tree CBH values and avoid over-estimation of models predictive 

quality.  We considered trees with CBH from 1.5 m to 4.5 m and from 3.5 m to 6.5 m for 

the average and severe weather conditions, respectively.   

 

Table 3.5. Proportion of trees expected to ignite for each target CBH value considered in 

the crown fire initiation simulations under both weather conditions. 

CBH Average 
conditions 

Severe 
conditions 

0.0 1.00 1.00 
0.5 1.00 1.00 
1.0 1.00 1.00 
1.5 1.00 1.00 
2.0 0.93 1.00 
2.5 0.89 1.00 
3.0 0.33 1.00 
3.5 0.15 1.00 
4.0 0.11 0.89 
4.5 0.00 0.78 
5.0 0.00 0.44 
5.5 0.00 0.19 
6.0 0.00 0.19 
6.5 0.00 0.00 
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The distribution of percent DML for trees considered in the crown fire initiation 

simulations (Figure 3.7), under both weather scenarios, indicates that most trees either 

ignited burning crown fuels completely or did not ignite.  This also justifies the 0.5 

arbitrary threshold selected to determine the binary nature of vertical fuel connections. 

 

 
Figure 3.7. Percent dry mass lost distribution from trees in the WFDS crown fire 

initiation simulations for average (a) and severe conditions (b). 

 

Tree height is the tree attribute directly measured using LiDAR data and because 

it was used to estimate DBH (Eq. 1), HT and DBH present a strong correlation (Table 

3.6).  On the other hand, CBH is not well correlated with either DBH or HT.  CBH is the 

tree attribute most strongly correlated with percent DML (r = -0.723).  This negative 

correlation indicates that as CBH increases, the probability of crown tree ignition 

decreases. 
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Table 3.6. Correlation matrix showing the relationship between the three tree attributes 

and their relationship with percent DML. 

 DBH HT CBH % DML 
DBH – 0.828 0.187 0.054 
HT  – 0.195 0.085 

CBH   – -0.727 
 

For both weather conditions, the selected logistic regression model included HT 

and CBH as independent variables.  As CBH directly affects the amount of heat transfer 

from the surface fire to crown fuels, it is a significant predictor of crown fire initiation.  

Although, HT is not strongly correlated with percent DML, its inclusion in the logistic 

model indicates it is a significant variable for predicting the binary response of crown fire 

initiation.  This could be explained because HT is directly proportional to CW, which is 

related to the crown base area being heated from the surface fire.  Thus, trees with larger 

crown base areas absorb radiative and convective heat from the surface fires for longer 

periods of time than trees with smaller crown base areas.  Interaction between CBH and 

HT was also tested but it was insignificant for both weather scenarios. 

The logit function associated with the final crown fire initiation prediction models 

for the average and severe weather conditions are presented in Equations 3.4 and 3.5 

respectively. 

[3.4] ( ) ( ) ( )CBH  86137.2  HT  19224.0  98838.5   ×−×+=xg  

[3.5] ( ) ( ) ( )CBH  84814.2  HT  24285.0  93897.10  ×−×+=xg  

The difference in the intercept coefficient value between both models reflects the 

difference in the surface fire burning conditions, where a tree is less likely to ignite under 

the average weather conditions than the severe conditions.  In concordance with our 
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assumption of crown fire ignition (percent DML > 0.5), we also assumed ignition will 

occur when the predicted probability P > 0.5.  The resulting performance measures for 

both crown fire initiation models have similar prediction quality with overall accuracy 

levels of approximately 87% and 86% for the average and severe conditions, respectively 

(Table 3.7).  Sensitivity and specificity indicate similar ability to predict ignited and not-

ignited trees in both weather conditions. 

 

Table 3.7. Logistic regression model predictive quality for crown fire initiation under 

average and severe weather conditions. 

Average weather conditions 

 Predicted 
Not-ignited 

Predicted 
Ignited Accuracy = 0.8714 

Observed Not-ignited 331 41 Sensitivity = 0.8450 
Observed Ignited 40 218 Specificity = 0.8898 

Severe weather conditions 

 Predicted 
Not-ignited 

Predicted 
Ignited Accuracy = 0.8619 

Observed Not-ignited 270 47 Sensitivity = 0.8722 
Observed Ignited 40 273 Specificity = 0.8517 

 

3.3.1.2 Horizontal fuel connectivity – crown fire propagation 

WFDS simulation results for crown fire propagation show that weather conditions 

largely affect the ranges of SP values that allow fire propagation between adjacent trees.  

Under the average weather conditions, fire did not propagate when SP between trees was 

larger than 1.0 m (Table 3.8).  This is mainly because of the relatively low wind speed 

used in these weather conditions (see Table 3.3).  On the other hand, under the severe 

weather scenario where wind speed is about 60% higher than the average condition, fire 

propagated in some cases where SP was 3.0 m.  These results are in concordance with 

literature indicating that wind speed is one of the most important drivers of crown fire 
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propagation (Rothermel 1983, Rothermel 1972).  We considered SP from 0.0 m to 1.5 m 

and from 0.5 m to 3.5 m for average and severe weather conditions, respectively, to 

emphasize modeling efforts on effective tree spacing in fire propagation and avoid over-

estimating the models predictive quality.  Although less clear than crown fire initiation, 

the distribution of percent DML of trees considered in the crown fire propagation 

simulations (Figure 3.8), under both weather scenarios, also justify the 0.5 arbitrary 

threshold selected to determine the binary nature of horizontal fuel connections.  These 

results indicate that when fire propagates from an ignited tree(s) to an adjacent tree, most 

adjacent trees completely burn. 

 

Table 3.8. Proportion of adjacent trees burned through crown fire propagation for each 

target spacing under both weather conditions. 

Spacing Average 
conditions 

Severe 
conditions 

0.0 0.55 1.00 
0.5 0.40 1.00 
1.0 0.20 0.89 
1.5 0.00 0.67 
2.0 0.00 0.56 
2.5 0.00 0.22 
3.0 0.00 0.33 
3.5 0.00 0.00 
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Figure 3.8. Percent dry mass lost distribution from trees in the WFDS crown fire 

propagation simulations for average (a) and severe conditions (b). 

 

The six measures of partial tree density present strong correlation among each 

other because of the similarities in their formulation (Table 3.9).  These competition 

indices were evaluated individually along with the other potential predictors to avoid 

colinearity issues.  In general, competition indices are not strongly correlated with 

percent DML.  The indices more correlated with the response variable presented r values 

of about 0.49.   

 

Table 3.9. Correlation matrix of the six competition indices and their relationship with 

percent DML. 

 CI1 CI2 CI3 CI4 CI5 CI6 % DML 
CI1 – 0.936 0.828 0.912 0.794 0.896 0.298 
CI2  – 0.815 0.804 0.836 0.932 0.350 
CI3   – 0.819 0.969 0.829 0.486 
CI4    – 0.726 0.902 0.275 
CI5     – 0.825 0.494 
CI6      – 0.343 
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For the average weather conditions, the selected logistic regression model 

included HT, SP, and CI1 as independent variables.  For the severe conditions, HT and SP 

were also included; however, CI3 was the best competition index selected as independent 

variable.  The logit functions associated with the final crown fire propagation prediction 

models for the average and severe weather conditions are presented in Equations 3.6 and 

3.7 respectively. 

[3.6] ( ) ( ) ( ) ( )1CI  2222.2  SP  1397.2  HT  2855.0  3475.5 -   xg ×+×−×+=  

[3.7] ( ) ( ) ( ) ( )3CI  4118.69  SP  2356.3  HT  3194.0  9064.6 -   xg ×+×−×+=  

Based on the models’ coefficients, the probability of crown fire propagating from 

a source tree to a target tree increases as the target tree’s height increases.  As expected, 

the probability of crown fire propagation decreases with increasing spacing between 

trees.  The larger the flaming front, as measured by CI1 and CI3, the larger the probability 

of crown fire propagation.  The resulting performance measures for the crown fire 

propagation model under the average conditions show an overall predictive quality of 

80% (Table 3.10).  Sensitivity and specificity measures show that the model better 

predicts cases where fire does not propagate through adjacent trees than when fire 

propagates (85% vs. 71%).  For the severe weather conditions, the model has an overall 

predictive quality of about 93% and similar sensitivity and specificity levels (Table 3.10).  

The lower predictive quality of the model for average weather conditions might be 

explained by the fact that even with zero spacing between trees, fire propagated only to 

55% of target trees (see Table 3.8).  If trees with overlapping crowns (negative SP 

values) where included in the analysis to obtain fire propagation to 100% of target trees, 

predictive quality is likely to increase. 
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Table 3.10. Logistic regression model predictive quality for crown fire propagation under 

average and severe weather conditions. 

Average weather conditions 

 Predicted 
Not-ignited 

Predicted 
Ignited Accuracy = 0.8000 

Observed Not-ignited 64 11 Sensitivity = 0.7111 
Observed Ignited 13 32 Specificity = 0.8533 

Severe weather conditions 

 Predicted 
Not-ignited 

Predicted 
Ignited Accuracy = 0.9381 

Observed Not-ignited 93 7 Sensitivity = 0.9369 
Observed Ignited 7 104 Specificity = 0.9300 

 

From the results of WFDS fire simulations for both weather conditions, we 

observed variability in crown fire propagation among trees with similar dimensions as 

well as trees with an approaching crown fire of similar size (represented by the number 

and size of trees forming the flaming front).  Similarly, fire simulation results present 

variability in crown fire initiation among trees of similar sizes (i.e., HT and CBH).  This 

variability is likely to be explained by micro fire-fuel, fire-atmosphere interactions 

considered and modeled in WFDS simulations.  Although we could theoretically extract 

measures of these interactions from the WFDS simulation results (such as resulting flame 

height, and wind profile) and include them as predictors in our logistical regression 

models, it would be impractical to obtain this type of information on the ground. 

 

3.3.2 Evaluation of Alternative Thinning Scenarios 

 

The tree-level fuel connectivity results from applying the logistic regression 

models to each of the three thinning scenarios are presented in Table 3.11.  For all 

thinning scenarios, the number of trees expected to ignite under the average weather 
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conditions is smaller than under the severe weather conditions because of the less intense 

surface fire.  About five times more trees are expected to ignite under the severe weather 

conditions than the average conditions.  As thinning intensity increases, fewer small trees 

with low CBH are left in the forest stand, and thus the number of trees expected to ignite 

decreases under both weather conditions. 

 

Table 3.11. Tree-level fuel connectivity results from the logistic regression models under 

both weather conditions for each thinning scenario. 

Thinning 
scenario 

Weather 
conditions 

Number of 
trees 

Crown fire initiation Crown fire propagation 
Number  
of trees 
ignited 

Percentage 
of trees 
ignited 

Number of 
connected 
clusters 

Average 
connection 

per tree 

Average 
trees per 
cluster 

I Average 2645 99 3.75 82 7.28 32.26 
Severe 536 20.26 38 10.49 69.60 

II Average 1840 76 4.13 109 4.29 16.88 
Severe 393 21.36 73 5.27 25.20 

III Average 1380 66 4.78 211 2.63 6.54 
Severe 289 20.94 158 3.09 8.73 

 

Fuel connections between pairs of adjacent trees were also predicted by applying 

the crown fire propagation prediction models.  As crown fire propagates only through 

nearby adjacent tree crowns (i.e., SP ≤ 1 m and 3 m under the average and severe weather 

conditions, respectively), the models predicted clusters of connected trees throughout the 

forest stand.  Figures 3.9 through 3.11 show the spatial distribution and size of clusters 

formed by tree-level fuel connections among adjacent trees under each weather condition 

for thinning scenarios I through III, respectively. 
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Figure 3.9. Location and size of clusters formed by predicted tree-level fuel connections 

for thinning scenario I under average (a) and severe (b) weather conditions. 
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Figure 3.10. Location and size of clusters formed by predicted tree-level fuel connections 

for thinning scenario II under average (a) and severe (b) weather conditions. 
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Figure 3.11. Location and size of clusters formed by predicted tree-level fuel connections 

for thinning scenario III under average (a) and severe (b) weather conditions. 
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For thinning scenario I, applying the crown fire propagation prediction model for 

each tree in the stand under the average weather conditions resulted in 82 clusters of 

connected tree crown fuels (Figure 3.9).  Each cluster is formed by an average of 32.26 

trees and each tree’s crown fuels are connected to an average of about seven adjacent 

trees.  When severe weather conditions are considered, crown fire can propagates over a 

larger distance between adjacent trees.  The model thus predicted fewer clusters of 

connected trees, and a larger number of average fuel connections per tree compared with 

the average conditions (Table 3.11).  The number of clusters predicted under the severe 

weather conditions is about 30% of those predicted under the average conditions, and the 

average cluster is formed by about 2.5 times as many trees, where trees are connected to 

about 30%  more adjacent trees.  Under both weather scenarios, most clusters are formed 

by less than 20 connected trees, but there are a few large clusters connecting a large 

number of trees.  For example, 5% of the clusters connect about 95% of the entire trees in 

the stand (see Figure 3.9), and the largest cluster connects about 60% and 90% of trees 

under the average and severe weather conditions, respectively. 

For thinning scenario II, the crown fire propagation models predicted a larger 

number of smaller clusters than those predicted for thinning scenario I because the more 

intensive thinning intensity left fewer, larger and sparser trees in the stand.  Under the 

average weather conditions there are almost 30% more clusters as those predicted under 

the severe conditions; however, clusters under severe conditions are much larger and 

trees are connected to more adjacent trees (Table 3.11).  The same pattern of few clusters 

connecting most trees in the stand observed in thinning scenario I appears in thinning 

scenario II under both weather conditions (Figure 3.10).  The largest cluster connects 
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approximately 55% and 70% of the trees under the average and severe weather 

conditions, respectively.  For thinning scenario III, the number of clusters under both 

weather conditions is about twice as many as those predicted for thinning scenario II.  

However, cluster size is about one third of those in scenario II averaging 6.54 and 8.73 

trees under the average and severe weather conditions, respectively (Table 3.11).  The 

largest cluster is also much smaller than those for the previous thinning scenarios 

connecting about 36% and 59% of the remaining trees under the average and severe 

weather conditions (Figure 3.11). 

 

3.3.3 Capturing Spatial Variability of Fuels 

 

The results of the tree-level fuel connectivity prediction models from the three 

thinning scenarios suggest that as thinning intensity increases crown fire potential 

decreases, as represented by the number of vertical and horizontal fuel connections.  

Same results can be obtained using the widely-used existing fire behavior model such as 

FlamMap (Finney 2006) to predict crown fire potential for the study unit.  However, as 

mentioned before, existing models are designed for stand-level predictions and ignore 

spatial variability of fuels within stands, which can have a significant effect on changing 

fire behavior.  For example, for the same thinning prescription, a given combination of 

cut-trees might result in minimal crown fire propagation through adjacent tree crowns 

because of relatively large spacing among leave-trees (i.e., SP larger than 3.5 m), while 

an alternative combination of cut-trees might lead to fire propagating through most leave-

trees because of small trees spacing.   
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To illustrate the importance of capturing the spatial variability of fuels (i.e., tree 

locations) within stands, we compared alternative combinations of leave-tree locations 

under the same thinning intensity.  We applied the fuel connectivity predictive models 

under the severe weather conditions to the manually selected leave-tree locations 

considered in thinning scenario III, as well as five alternative combinations of randomly 

selected leave-trees.  The results of the predicted fuel connectivity show that the spatial 

distribution of leave-trees can have a considerable effect on crown fire potential.  Tree-

level fuel connectivity among the five combinations of random leave-tree locations is 

relatively similar.  However, all these combinations of random leave-trees have a larger 

number of fuel connections than the combination of manually selected leave-tree 

locations (Table 3.12).  The number of fuel connections in combinations of randomly 

selected leave-trees is about 50% larger than in combination of manually selected leave-

trees.  Additionally, all combinations of randomly selected trees have fewer and larger 

clusters with more fuel connection per tree than in the case of manual leave-tree 

locations. 

 

Table 3.12. Tree-level fuel connectivity results under the severe weather conditions for 

six alternative combinations of leave-trees under the same thinning intensity. 

Leave-tree 
selection 

Crown fire 
initiation Crown fire propagation 

Number 
of trees 
ignited 

Percentage 
of trees 
ignited 

Horizontal 
fuel 

connections 

Number of 
connected 
clusters 

Average 
connections 
per cluster 

Average 
connection 

per tree 

Average 
trees per 
cluster 

Manual 289 20.94 4259 158 26.96 3.09 8.73 
Random 1 297 21.52 6302 140 45.01 4.56 9.86 
Random 2 291 21.09 6326 137 46.18 4.58 10.07 
Random 3 292 21.16 6532 145 45.04 4.73 9.52 
Random 4 265 19.20 6438 150 42.92 4.67 9.20 
Random 5 283 20.51 6214 152 40.88 4.50 9.08 
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All these alternative combinations of leave-trees have practically the same 

aggregated stand values (Table 3.13).  Consequently, predictions of crown fire potential 

using existing fire behavior models will also be very similar.  Determining crown fire 

potential by predicting tree-level fuel connectivity can provide more a detailed 

assessment of fire hazard than existing fire behavior models which can improve the 

evaluation of alternative fuel treatments effects on changing fire behavior. 

 

Table 3.13. Summary statistics for average stand attributes obtained after six alternative 

combinations of leave-trees. 

Leave-tree 
selection 

Tree 
attribute 

Range of values 
Min. 1st Qu. Median Mean 3rd Qu. Max. 

Manual 

HT 

7.79 12.20 15.02 15.49 17.94 33.05 
Random 1 7.93 12.32 14.95 15.50 18.13 32.09 
Random 2 7.93 12.33 14.96 15.48 18.09 32.09 
Random 3 7.79 12.44 15.04 15.62 18.14 33.05 
Random 4 7.79 12.44 15.15 15.56 18.10 33.05 
Random 5 7.79 12.45 15.06 15.55 18.11 29.59 

Manual 

DBH 

12.70 15.39 19.35 21.53 25.13 60.85 
Random 1 12.70 15.57 19.19 21.54 25.38 60.85 
Random 2 12.70 15.57 19.24 21.51 25.36 60.85 
Random 3 12.70 15.86 19.43 21.79 25.75 60.85 
Random 4 12.70 15.68 19.40 21.67 25.48 60.85 
Random 5 12.70 15.63 19.37 21.58 25.46 58.07 

Manual 

CBH 

0.00 5.35 6.96 7.05 9.03 15.08 
Random 1 0.00 5.50 7.16 7.11 8.93 15.08 
Random 2 0.00 5.54 7.16 7.12 8.93 15.08 
Random 3 0.00 5.51 7.23 7.18 9.08 15.08 
Random 4 0.00 5.61 7.22 7.23 9.12 14.81 
Random 5 0.00 5.61 7.27 7.28 9.11 15.08 

Manual 

CW 

2.34 3.66 4.51 4.65 5.38 9.91 
Random 1 2.38 3.70 4.48 4.65 5.44 9.63 
Random 2 2.38 3.70 4.49 4.65 5.43 9.63 
Random 3 2.34 3.73 4.51 4.69 5.44 9.91 
Random 4 2.34 3.73 4.54 4.67 5.43 9.91 
Random 5 2.34 3.73 4.52 4.67 5.43 8.78 
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Although the models for predicting tree-level crown fire initiation and 

propagation have relatively high predictive quality, their accuracy depends largely on the 

accuracy of the input tree locations and sizes.  There are a number of ways to obtain tree 

locations varying from traditional field measurements and GPS devises to advanced 

remote sensing technologies such as high-resolution aerial photos (Hirschmugl et al. 

2007), multispectral imaging (Popescu and Wynne 2004), and LiDAR (Maltamo et al. 

2004).  The algorithms used to develop LiDAR-derived stem maps in our study area have 

provided stem detection accuracies of approximately 53 % when considering all tree 

classes (Suratno et al. 2009).  However, stem detection accuracy increases significantly 

on dominant trees.  In similar forest conditions to those of our study area, the stem 

detection algorithm provided an accuracy of about 90% when considering only dominant 

trees (Rowell et al. 2006).  In this study, we considered only dominant trees with DBH 

larger than 12.7 cm, thus we expect the stem map used for our study has a high stem 

detection accuracy level.   

Additionally, the relatively high predictive quality of the developed regression 

models is measured based on tree-level fire behavior as modeled by WFDS and not on 

the observation of real fires.  Therefore, the models’ ability to predict tree-level fire 

behavior on real fires is likely to differ.  Although it is theoretically possible to measure 

fire behavior at the tree-level on the ground, the inability to predict the exact location of 

fire beforehand makes obtaining this type of data practically impossible.  As a result, we 

need to rely on advanced physics-based numerical fire behavior model such as WFDS to 

simulate tree-level fire initiation and propagation. 
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3.4 CONCLUSIONS 

 

Advanced physics-based numerical fire behavior models coupled with high 

precision vegetation mapping technologies have enabled us to consider individual tree-

level fuel characteristics in understanding fire behavior and evaluating thinning regimes 

to maximize fuel treatment effects in reducing crown fire hazards.   

To facilitate practical application of the three-dimension, fine-scale fire behavior 

model, such as WFDS, we demonstrated methods to develop regression models to predict 

crown fire initiation and propagation using a fire simulation domain with tree 

arrangements.  We also applied the regression models to evaluating various thinning 

treatments in terms of the number of trees that can ignite and the number of trees through 

which fire can propagate after reaching canopy fuels under a given weather condition.  

The developed regression models should be applied to areas with weather parameters 

similar to the weather conditions considered in this study.  Applying these models to 

drier, hotter and windier areas would likely result in underestimating the number of trees 

that would ignite and the distance over which fire can propagate through adjacent crowns.  

We evaluated the effectiveness of alternative thinning treatments for reducing 

crown fire potential more precisely than existing fire behavior models by applying tree-

level fuel connectivity predictive regression models.  These regression models can also 

be implemented into algorithms to optimize the selection of individual tree removal at the 

stand level, so the combination of leave-trees with the most efficient reduction of crown 

fire potential is selected for a given thinning intensity.  The number of tree-level fuel 

connections, or other measures of fuel connectivity such as the average number of fuel 



 136

connections per tree or average trees forming a cluster of connected tree fuels, can be 

used as indices to optimize the allocation of thinning treatments for altering fire behavior 

and reducing fire spread at the landscape level. 

Further research needs to be conducted to expand the applicability of our 

approach.  A more exhaustive set of WFDS fire simulation should be designed to include 

additional weather factor and vegetation characteristics.  Tree-level fire behavior should 

be simulated for a range of values of FMC, ambient temperature and wind speed to better 

account for variability existing in the real environment.  Regression models including 

these additional factors as predictors of crown fire initiation and propagation can then be 

applied to different areas under any weather conditions.  
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CHAPTER 4: 

 

DEVELOPING A COMPUTERIZED APPROACH FOR OPTIMIZING INDIVIDUAL 

TREE REMOVAL TO EFFICIENTLY REDUCE CROWN FIRE POTENTIAL 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 144

4.0 ABSTRACT 

Thinning is being widely used to restore different types of overstocked forest 

stands because of its effect on changing fire behavior.  Typically, thinning is applied at 

the stand level using prescriptions derived from sample plots that ignore variability in 

tree sizes and location within stands.  Thinning prescriptions usually specify tree removal 

in terms of number of trees or basal area, resulting in a large number of cut-tree spatial 

patterns that meet the same prescription.  However, the effect of each pattern on reducing 

crown fire potential can vary widely depending on the resulting spatial distribution of 

leave-trees.  Additionally, thinning prescriptions ignore cut-tree location, which influence 

economic efficiency and also affect future competition levels of remaining trees.  To 

address the limitations of current thinning practices, we designed a computerized 

approach to optimize individual tree removal and produce site specific thinning 

prescriptions that efficiently reduce crown fire potential.  Based on stem map and tree 

attributes derived from light detection and ranging (LiDAR) technology and an individual 

tree growth, current and future tree-level fuel connectivity is predicted.  The approach 

makes the spatial selection of cut- and leave-trees that most efficiently reduces crown fire 

initiation and propagation over time while ensuring cost efficiency of the thinning 

treatment.  Application results on a forest stand in western Montana show that the 

computerized approach tree selection can reduce crown fire potential more efficiently 

than current thinning practices represented by the manual selection of tree removal. 

 

Keywords: tree growth model, skidding trail network, fire modeling and simulation 
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4.1 INTRODUCTION 

 

High intensity wildfires have resulted in large financial, social, and environmental 

costs in western U.S.  This trend is not likely to abate soon; some estimates suggest that 

more than 27 million ha of forestland in the western U.S. have departed significantly 

from natural wildland fire conditions and are at medium to high risk of catastrophic 

wildfires (Schmidt et al. 2002).  In response to the continuing threat of severe wildfires, 

the National Fire Plan (USDA and USDI 2001) and the Healthy Forest Restoration Act 

(2003) mandated forest managers to restore forest habitats and reduce the risk of wildfire 

on federal lands.   

Thinning has been widely used for restoring different types of overstocked forest 

stands (O’Hara et al. 1994) because it can change stand structures and alter fire behavior 

(Graham et al. 1999, Graham et al. 2004, Agee and Skinner 2005).  Typically, thinning 

treatments are applied at the stand-level using prescriptions developed from field sample 

plots, and cut-trees are subjectively selected by forest practitioners according to given 

prescriptions.  However, the efficiency and effectiveness of these stand-level thinning 

practices are hardly evaluated when applied for reducing crown fire potential due to the 

following reasons.  First, it is difficult to estimate the effects of thinning on altering fire 

behavior within a stand using the average stand attributes.  Stand-level thinning 

prescriptions are designed to reduce the likelihood of crown fire initiation by increasing 

canopy base height, and reduce crown fire propagation by decreasing canopy bulk 

density (Keyes and O’Hara 2002, Graetz et al. 2007).  However, due to variability within 

stands, canopy base height is difficult to estimate and neither the lowest nor the average 
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crown base height (measured on an individual tree) is likely to be representative of the 

stand as a whole (Scott and Reinhardt 2001).  Moreover, the calculation of canopy bulk 

density assumes canopy fuels are distributed uniformly throughout the stand, which is 

unlikely the case even in stands with simple structures (Scott and Reinhardt 2001).  

Secondly, current thinning prescriptions usually specify percentages of total tree removal 

or per size class in terms of number of trees or basal area, resulting in a large number of 

spatial patterns of cut-trees that meet the same thinning prescription for a stand.  

Individual foresters who select and mark cut-trees are unable to evaluate the effects of 

each pattern on reducing crown fire potential, which can vary widely depending on the 

resulting spatial distribution of remaining trees after treatment.  Thirdly, stand-level 

thinning prescriptions often ignore the location of cut-trees relative to extraction points 

(i.e., road side or log landings), and thus forest practitioners often pursue “easy” trees to 

extract as long as it meets the thinning prescription without considering the effects on 

altering fire behavior.  Lastly, decisions on cut-tree selection also affect micro conditions 

and competition levels of remaining trees, thus influencing tree growth and fire behavior 

within a stand over time.  However, spatial and temporal effects of remaining trees on 

individual tree growth and crown fire potential over time have not been considered in 

developing thinning prescriptions. 

The limitations described above are mainly due to the lack of individual tree-level 

information available for development and evaluation of detailed and site-specific 

thinning prescriptions.  However, LiDAR technology, which has been widely used in 

recent years to obtain individual tree locations and attributes (Maltamo et al. 2006, 

Packalén and Maltamo 2006, Maltamo et al. 2004), can be used to capture spatial 
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variability of individual trees within a stand and produce a stem map with tree attributes.  

To address the limitations of current stand-level thinning practices, we designed a 

computerized approach to optimize selection of tree removal for an individual stand that 

can most efficiently reduce the susceptibility to high intensity crown fires over time while 

ensuring the economic efficiency of thinning operations.  Using LiDAR-derived stem 

map and tree attributes, we characterize fuels by quantifying fuel connections among 

individual trees and make spatial selection of cut- and leave-trees to reduce the risk of 

crown fire initiation and propagation to and through the stand canopy.  Our approach 

design includes four functional modules: 1) quantifying vertical and horizontal fuel 

connectivity of individual trees in a stand, 2) predicting individual tree growth over time 

using a distance-dependent growth model, 3) estimating location-specific costs of timber 

harvesting for individual trees, and 4) optimizing selection of cut-trees to maximize and 

maintain discontinuities in fuel connectivity over time while ensuring cost efficiency.  

We applied our computerized approach to a 4.6-ha forest stand located in the University 

of Montana’s Lubrecht Experimental Forest (LEF) in western Montana.  We considered 

an initial thinning prescription that removed all trees with diameter at breast height less 

than 12.5 cm (5 in.).  Cut- and leave-tree selection was then optimized for the remaining 

trees to meet a target tree density of 300 leave-trees per ha after the initial thinning 

prescription. 

 

 

 

 



 148

4.2 METHODOLOGY 

 

4.2.1 LiDAR Data and Tree Attributes 

 

In this study, we used LiDAR data acquired by the National Center for Landscape 

Fire Analysis (NCLFA) over the LEF located approximately 48 km northeast of 

Missoula, Montana in the Blackfoot River drainage (N 46º53’30”, W -113º26’3”) (Figure 

4.1).  LiDAR data acquisition parameters used for LEF (Table 4.1) provided an average 

return density of about 1 return per 2.29 m2 on the ground with a vertical and horizontal 

accuracy of 0.15 m and 0.25 m, respectively (Suratno et al. 2009). 

 
Table 4.1. LiDAR data acquisition parameters used for Lubrecht Experimental Forest1. 

Date of acquisition June 2005 
Elevation 1100 – 1900 m 
LiDAR system Leica geosystems ALS50 
Average flight height above surface 1900 m 
Average flight speed 70.76 ms-1 
Number of strips 54 
Scan frequency 25.5 
Laser pulse frequency 36200 Hz 
Scan angle ±35° 
Sidelap 50% 
Average swath width 1150 m 
Average return density 0.44 m2 
Average footprint 1 m2 

1 Taken from Suratno et al. (2009) 
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Figure 4.1. University of Montana’s Lubrecht Experimental Forest. 

 

Researchers at the NCLFA separated the raw three-dimensional LiDAR points 

into vegetation (aboveground) and bare earth points using a triangulated irregular 

network densification method available in the TerraScan software suite (Terrasolid 

2004).  Ground points were used to create a digital elevation model (DEM) using inverse 

distance weighted interpolation at 1 m resolution.  The DEM and aboveground points 

were used to calculate the canopy height model (CHM) using the spot elevation method 

(Daniels 2001).  This approach computed the canopy height (elevation above ground 

level) at each point by subtracting the DEM height from the CHM (Suratno et al. 2009).  
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Individual trees were delineated using a stem identification algorithm based on a variable 

window local maxima filtering and neighborhood canopy height variance (Rowell et al. 

2006, Popescu and Wynne 2004).  Tree heights (HT) were then obtained from the CHM 

at each tree location.  Crown width (CW) for individual trees was obtained as a function 

of tree height and stand structure.  For trees species at LEF, CW was expected to be 33% 

of the tree height for trees in stands with canopy cover less than 35%, 16% of tree height 

for trees in stands with moderately closed canopy cover ranging between 35% and 65%, 

and 11% of tree height for trees in stands with closed canopy cover greater than 65%.  

Tree crown base height (CBH) was estimated using a square search window of 2×CW 

meters centered at the tree location.  CBH was then estimated as the mean height of all 

CHM points inside the search window divided by the associated standard deviation of the 

heights.  Individual tree diameter at breast height (DBH) were estimated using the 

following log-linear model (n=1555, R2= 0.76, Error = 7.6%) (Rowell et al. 2009). 

[4.1] ( ) ( ) ( )SD  007.0  RH  798.0  HT  041.0  732.1  DBH ln ×−×+×+=  

where, HT is the height of the tree (m), RH is the relative height calculated as the tree 

height divided by the mean height of dominant and co-dominant trees in a 20 m × 20 m 

neighborhood, and SD is stem density of dominant and co-dominant stems in the 

neighborhood.  Tree volumes were estimated using an equation from the Northern Idaho / 

Inland Empire of the Forest Vegetation Simulation (Keyser 2008). 

[4.2] ( ){ } ( ){ }[ ] 0.02831    HT  d2.54  00171.0  HT  d2.54  00171.0    vol 2 ××××+×××=  

where, vol is the tree volume (m3), and d is the tree DBH (cm). 
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4.2.2 Individual Tree Fuel Connectivity 

 

To quantify fuel connections among individual trees in a stand, we used logistic 

regression models developed to predict tree-level crown fire initiation and propagation 

(for detailed description of the models development, see Chapter 3).  These regression 

models predict tree-level fuel connectivity under severe weather conditions defined by 

the 90th percentile of historical observation data from the Seeley Lake (N 47º10’58”, W -

113º26’50”) weather station located approximately 30 km north of LEF.  They are based 

on expected surface fire burning conditions considering fuel moisture values typical of 

late summer in the Northern Rocky Mountains (Table 4.2) and surface fuels described by 

the fuel model 10 (Anderson 1982).  Table 4.3 shows the weather and surface fire inputs 

considered for the development of the regression models. 

 

Table 4.2. Typical late summer surface fuel moisture values used in the development of 

tree-level fire crown initiation and propagation. 

Fuel type Severe conditions 
(late summer) 

1-h 2 
10-h 3 
100-h 4 

Live woody 75 
1 Adapted from Rothermel (1991) standardized fuel moisture values characteristic of late summer in the 

Northern Rocky Mountains.  
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Table 4.3. Weather and surface fire input parameters used in the development of tree-

level fire crown initiation and propagation. 

 Severe conditions 
(90th percentile) 

Wind speed 3.56 (m/s)  
Adjusted wind speed1 1.07 (m/s) 
Max. ambient temperature 32.1 ºC 
Ambient relative humidity 14 % 
Fuel moisture content 100 % 
Rate or spread 0.1 (m/s) 
Heat release per unit area 700 (kW/m2) 
Residence time 20 (s) 

1 After applying a wind reduction factor of 0.3, the ratio of midflame to open windspeeds (Rothermel 1983) 

 

Crown fire initiation and propagation are predicted by the following logistic 

regression models (Eqs. 4.3 and 4.4): 

[4.3] 
( )

( )xg

xg

CFI e1
e

  P
+

= , ( ) ( ) ( )CBH  84814.2  HT  24285.0  93897.10  ×−×+=xg  

[4.4] 
( )

( )xg

xg

CFP e1
e

  P
+

= , ( ) ( ) ( ) ( )1CI  4118.69  SP  2356.3  HT  3194.0  9064.6 -   ×+×−×+=xg  

where, PCFI is the probability that crown fire initiation will occur at a given tree location, 

PCFP is the probability that fire will propagate crown-to-crown from a source tree 

representing the flaming front and a target tree ahead of the flaming front.  SP is the 

distance (m) between the horizontal crown projections (edge to edge) of the source and 

target trees.  CI1 is a modified distance-dependent competition index (Rouvinen and 

Kuuluvainen 1997) used as a surrogate of size and proximity of the flaming front 

approaching the target tree.  It is calculated as the sum of the horizontal angles 

originating from the center of the target tree and spanning the DBH of each tree forming 

the flaming front (Eq. 4.5).  The model uses a flaming front area of 1.5 m × 10 m 
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centered on the source tree to search for additional trees forming the flaming front 

(Figure 4.2). 

[4.5] ( )∑
=

=
n

1
1 dist/darctanCI

i
ii  

where, n is the number of trees forming the approaching flaming front, di is the DBH 

(cm) of the ith tree forming the flaming front, and disti is the horizontal distance (m) from 

the center of the ith source tree to the center of the target. 

 

 

Figure 4.2. Schematic of the flaming front area used to search additional source trees 

(dashed lines) showing spacing between a source tree and a target tree (solid lines) (a) 

and the calculation of CI1 (b) to estimate fuel connectivity. 

 

To use these regression models deterministically, we applied a threshold 

probability of 0.5.  Therefore, when PCFI > 0.5, crown fire initiation is expected to occur 

and the tree’s crown fuels are considered vertically connected with surface fuels. 

Similarly, fire is expected to propagate from the source tree to the target tree when PCFP > 

0.5, considering both tree crown fuels horizontally connected.  
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4.2.3 Individual Tree Distance-Dependent Growth Model 

 

We used an individual tree distance-dependent growth model developed to predict 

average annual basal area increment (BAI) for three common tree species in LEF; 

Douglas-fir (DF) (Pseudotsuga menziesii), ponderosa pine (PP) (Pinus ponderosa), and 

western larch (WL) (Larix occidentalis) (see Chapter 1 for more detailed descriptions 

about the growth model).  The model is based on neighboring tree data collected for 285 

cored trees (145 of which are DF, 99 are ponderosa pine PP, and 41 are WL) within an 

11-meter plot radius.  Tree cores were measured and average BAI (cm2/year) was 

computed for a ten year period from 1998 to 2007.  

The individual tree growth model has the expression: 

[4.6] [ ])CI  (0.361392 - d)  (0.022768   1.974503 2BAI ××+= e  

where, d is the DBH (cm) of the subject tree and CI2 is a distance-dependent competition 

index calculated similar to CI1.  It is calculated as the sum of the horizontal angles 

originating from the subject tree center and spanning the DBH of each neighbor tree 

inside the 11-meter plot radius (Eq. 4.7) (Rouvinen and Kuuluvainen 1997). 

[4.7] ( ) ( )∑
=

×=
ng

1j
jjj2 /distdarctan  /ddCI  

where, dj is the DBH (cm) of the jth neighbor tree, distj is the horizontal distance (m) from 

the subject tree center to jth neighbor tree center , and ng is the number of neighbor trees 

inside the 11-meter radius plot. 

After the average annual BAI was estimated for a given tree (Eq. 4.6), expected 

future DBH was calculated.  Future HT was then obtained using a logistic height-
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diameter equation from the Northern Idaho / Inland Empire of the Forest Vegetation 

Simulation (Eq. 4.8) (Keyser 2008). 

[4.8] ( )( ){ }[ ] 0.3048     5.4   HT  0.1  2.54 / d  /7.29306 -  4.81519 ××= + e  

Expected future CW was estimated as 16% of tree height assuming a future stand 

structure would have moderately closed canopy.  Future CBH was estimated assuming it 

increases proportionally to HT.  We made these assumptions because of the lack of future 

vegetation data necessary for projecting CHM over 20 years (Rowell 2010, Personal 

communication). 

 

4.2.4 Individual Tree Timber Harvesting Cost 

 

We used a computerized model developed to estimate skidding costs of individual 

trees for ground-based harvesting operations (see Chapter 2).  The model considers size 

and spatial distribution of individual cut-trees and detailed terrain information obtained 

from a LiDAR-derived stem map and DEM, respectively.  First, the model uses a log-

bunching algorithm to identify the location and volume of log-piles.  A cable skidder 

operation, which collects nearby cut-trees within a maximum winching radius (MWR) 

through a cable winch, is simulated to complete a full load close to a target loading 

capacity (TLC) and skid the load to an extraction point (landing or road side).  The log-

bunching algorithm begins with sorting all cut-trees based on their slope distance from 

the extraction point.  The algorithm selects the closest cut-tree as the first log-pile 

location, and all cut-trees within the MWR from the log-pile with a combined volume 

lower than the TLC are assigned to the first log-pile.  Then, the algorithm selects the next 
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closest non-assigned cut-tree as the second log-pile location, and assigns nearby cut-trees 

within the MWR to the second log-pile.  The process continues until all cut-trees have 

been assigned to a log-pile.  The model then determines least-cost routes connecting each 

log-pile to the extraction point by developing a skid-trail network formed by vertices and 

edges.  Each vertex, which represents the center of a DEM cell evenly spaced at a five-

meter interval is connected to its eight adjacent vertices.  Edges represent the connection 

(skid-trail links) between a vertex and its adjacent neighboring vertices.  The model then 

creates feasible skid-trail links over areas with gentle to moderate slope (i.e., lower than 

35%).  To avoid damage to remaining tree, no skid-trail links are allowed within 1.5 

meters of each leave-tree. 

After the skid-trail network has been created, the model determines the skidding 

cycle time associated with each link based on its distance and slope, using the skidding 

cycle time models presented in Equations 4.9 and 4.10 (Contreras and Chung 2007).  

[4.9] ( )D  0215.0  9537.3CTds ×+=  

[4.10] ( )D  0258.0  9537.3CTus ×+=  

where, CTds is the cycle time (min) for downhill skidding, CTus is the cycle time (min) 

for uphill skidding, and D is the slope distance of the skid-trail link (m).   

Skidding cycle time is used as an edge attribute to formulate a network problem.  

The Dijkstra’s shortest path algorithm (Dijkstra 1959) is used to find the set of least-cycle 

time routes connecting each log-pile to the extraction point.  The skidding cost for a 

given ith log-pile (PSCi) is estimated using the following equation: 

[4.11] RR
60

CT
PSC i

i ×






=  
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where, CTi is the least skidding cycle time (min) for a round trip between the extraction 

point and the ith log-pile location and RR is the rental rate of the skidder ($/hr).  Skidding 

cost of individual trees is estimated by prorating the log-pile’s skidding cost based on the 

volume ratio of the individual tree to the entire log-pile (Eq. 4.12).  Thus, bigger cut-trees 

entail a larger skidding cost than smaller cut-trees in the same pile.   

[4.12] 






 ×
=

i

ij
j Pvol

PSC  vol
TSC  

where, TSCj is the skidding cost ($) of the jth individual cut-tree, volj is the volume (m3) 

of the jth cut-tree, PSCi is the skidding cost ($) of the ith log-pile containing cut-tree j, and 

Pvoli is the volume (m3) of the ith log-pile. 

 

4.2.5 Individual Tree Removal Optimization 

 

To ensure the effectiveness and efficiency of thinning treatment on reducing 

crown fire potential over time, we considered a period of 20 years and applied the tree-

level growth model to estimate future tree sizes as well as future tree-level fuel 

connections.  The approach for optimizing the selection of individual cut-trees considers 

current fuel connections among all trees, expected future fuel connections after removing 

the cut-trees and growing the remaining leave-trees for 20 years, and the cost associated 

with skidding the selected cut-trees.   

The tree removal optimization problem is formulated as follows:   

[4.13] Min. { }( ) ( )[ ]
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subject to 

[4.14] { }∑
=

=−
NT

1i
i TCT I1   

where, Ii is a binary variable indicating whether the ith tree remains (leave-tree, Ii = 1) or 

is removed from the stand (cut-tree, Ii = 0), CHFCi, and CVFCi are constants representing 

the number of current horizontal and vertical fuel connections associated with the ith tree, 

FHFCi and FVFCi are constants representing the number of future horizontal and vertical 

fuel connections associated with the ith tree, TSCi is the skidding cost ($) associated with 

skidding the ith tree, and NT is the total number of trees.  The objective function (Eq. 

4.13) represent an index set to minimize the skidding cost (first term) and number of fuel 

connections (second term).  Equation 4.14 is a constraint ensuring that the target thinning 

intensity in terms of the number of trees is met, where TCT is the target number of cut-

trees. 

We used a network to model fuel connectivity and solve the tree removal 

optimization problem.  A fuel connectivity network consists of a set of vertices V, which 

represent tree locations, and a set of edges E representing fuel connections between pairs 

of adjacent trees.  Our approach starts with applying the crown fire initiation and 

propagation regression models to estimate current fuel connections among trees and form 

the fuel connectivity network.  Clusters of connected trees are identified in the fuel 

connectivity network and characterized in terms of number of trees forming each cluster 

(ρ).  Figure 4.3 shows an example of a fuel connectivity network formed by 43 trees, 

resulting in nine clusters of connected trees with sizes ranging from 1 to 16.  Each cluster 

represents the extent fire would propagate and the number of trees that would burn after 

fire reaches crown fuels through vertical fuel connections.   
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Figure 4.3. Example of fuel connectivity network formed by 43 vertices and 9 clusters of 

connected trees. 

 

For the purpose of reducing crown fire potential by breaking fuel connectivity 

throughout a given forest stand, we determine a minimal combination of cut-trees 

required to remove all horizontal fuel connections within each cluster of connected trees.  

This is achieved by using an algorithm to identify a minimal vertex cover (MVC) in a 

graph G.  A vertex cover C of G is a set of vertices such that for each edge {u,v} in G, at 

least one of its vertices u or v is in C.  Given a vertex cover C of G and a vertex v in G, v 

is removable if the set C-{v} is still a vertex cover of G.  A MVC is then a vertex cover 

with no removable vertices.  In our context, a MVC represents a minimal combination of 

cut-trees required to remove all fuel connections. 

 

4.2.5.1 MVC algorithm 

Given a graph G, all vertices are labeled consecutively from 1, 2,…, p.  Starting 

with the first vertex (i = 1), the vertex cover is initialized as Ci = V-{i}.  If Ci has no more 

removable vertices, we stop and store the size φ(Ci) of the vertex cover Ci.  Otherwise for 
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each removable vertex v of Ci, we find the number ψ(Ci-{v}) of additional removable 

vertices of the vertex cover Ci-{v}.  We denote the vmax as the removable vertex such that 

ψ(Ci-{v}) is maximum, and then update the vertex cover as Ci = Ci-{vmax}.  When 

multiple vertices with the same ψ(Ci-{v}) value exist, we arbitrarily select the first one.  

Thereafter, vertex vmax is selected and removed from Ci (Ci = Ci-{vmax}).  The process of 

removing vmax vertices and updating the vertex cover Ci is repeated until no more 

removable vertices exit.  When the process is finished, a MVC initialized with Ci is 

obtained.  Now we move to the next vertex (i = i+1) and initialize the vertex cover Ci = 

V-{i} and obtain the associated MVC.  We stop when a MVC is obtained for all vertices 

in G.  All resulting MVC are stored and ordered by ascending sizes φ(Ci).  A MVC with 

minimum size is selected as the final MVC of G.  Table 4 shows the steps required to 

obtain the MVC initialized with the first vertex in a graph with nine vertices.  
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Table 4.4. Steps required to obtain the MVC initialized with vertex number one. 

Step 1: We initialize the vertex cover as C1 = V-{1}={2,3,4,5,6,7,8,9}, size φ(C1) = 8 

 

Removable 
vertex v of C1 

Removable vertices 
of C1-{v} ψ(C1-{v}) 

3 
5 
6 
7 
8 
9 

5,7,8,9 
3,6,7,9 
5,7,8 

3,5,6,9 
3,6 

3,5,7 

4 
4 
3 
4 
2 
3 

Maximum ψ(C1-{v}) = 4 for v = 3,5,7. We arbitrarily remove vertex 3 from C1 
Step 2: Vertex cove C1 = {2,4,5,6,7,8,9}, size φ(C1) = 7 

 

Removable 
vertex v of C1 

Removable vertices 
of C1-{v} ψ(C1-{v}) 

5 
7 
8 
9 

7,9 
5,9 

none 
5,7 

2 
2 
0 
2 

Maximum ψ(C1-{v}) = 2 for v = 5,7,9. We arbitrarily remove vertex 5 from C1 
Step 3: Vertex cove C1 = {2,4,6,7,8,9}, size φ(C1) = 6 

 

Removable 
vertex v of C1 

Removable vertices 
of C1-{v} 

ψ(C1-{v}) 

7 
9 

9 
7 

1 
1 

Maximum ψ(C1-{v}) = 1 for v = 7,9. We arbitrarily remove vertex 7 from C1 
Step 4: Vertex cove C1 = {2,4,6,8,9}, size φ(C1) = 5 

 

Removable 
vertex v of C1 

Removable vertices 
of C1-{v} ψ(C1-{v}) 

9 none 0 

Maximum ψ(C1-{v}) = 0 for v = 9. We remove vertex 9 from C1 
Step 5: Vertex cove C1 = {2,4,6,8}, size φ(C1) = 4 

 

Removable 
vertex v of C1 

Removable vertices 
of C1-{v} ψ(C1-{v}) 

None -- -- 

Step 6: We stop and obtain a MVC C1 of size φ(C1) = 4 
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The total number of cut-trees required to remove all fuel connections (RCT) is 

then determined by summing up the size of the final MVC for each cluster (Eq. 4.15). 

[4.15] ∑
ω

=

ϕ=
1i

i RCT  

where, ω is total number of clusters in the fuel connectivity network. 

Three cases arise when evaluating the thinning intensity constraint (Eq. 4.14).  In 

case I, the target number of cut-trees is equal to the number of trees required to remove 

all fuel connections (RCT = TCT).  There are a large number of combinations of cut-trees 

that remove all fuel connections because most clusters have multiple final MVC of same 

size.  We select final MVC based on their proximity to the extraction point, measured as 

the average slope distance (AD_MVC) from all forming vertices to the extraction point.  

The jth final MVC of the kth cluster in the fuel connectivity network is then selected based 

on a random number and a selection probability calculated by Equation 4.16. 

[4.16] 
∑
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−
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1
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1
j

k j

AD_MVC

AD_MVC
SP_MVC  

where, SP_MVCjk is the selection probability that the jth final MVC of the kth cluster is 

selected, and cn is the number of final MVC of the same size associated to the kth cluster 

in the fuel connectivity network. 

Case II represents the case where the target number of cut-trees is smaller than the 

number of trees required to remove all fuel connections (TCT < RCT).  In this case, 

additional leave-trees (ALT) need to remain to meet the thinning intensity constrain.  The 

number of additional leave-trees is calculated (ALT = RCT – TCT), and leave-trees are 

selected based on both their proximity to the extraction point and the number of 
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remaining fuel connections.  After selecting a final MVC for each cluster in the fuel 

connectivity network (Eq. 4.16), additional leave-trees are selected based on the selection 

probability calculated as follows: 

[4.17] 
Pj   

SFC_T)SAD_T-(1

SFC_T)SAD_T-(1
SP_LT ALT
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ii

jj
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+

+
=

∑
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where, SP_LTj is the selection probability that the jth tree is selected to remain, SAD_Tj is 

the standardized slope distance from the jth tree to the extraction point, SFC_Tj is the 

standardized number of fuel connections between the jth tree and other already selected 

leave-trees, and P is the set of trees forming the selected final MVC for all clusters.  

Standardized values were used to reduce slope distance and the number of fuel 

connections to the same scale.  The equal weight was given to both factors for calculating 

the tree selection probability. 

For case III, the target number of cut-trees is larger than the number of trees 

required to remove all fuel connections (RCT < TCT).  Here, additional cut-trees need to 

be selected for removal.  The number of additional cut-trees is calculated (ACT = TCT – 

RCT), and cut-trees are selected based on their proximity to the extraction point (Eq. 

4.18).   

[4.18] 
Sj   

AD_T

AD_T
SP_CT ACT

1i

1
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∑
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where, SP_CTj is the selection probability that the jth tree is selected to be removed, 

AD_Tj is the slope distance from the jth tree to the extraction point, and S is the set of 

trees not belonging to the selected MVC for all clusters in the fuel connectivity network  

(originally selected leave-trees). 
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As mentioned above, our computerized approach starts with applying the crown 

fire initiation and propagation regression models to estimating current fuel connections 

among all trees.  Then, the number of fuel connections for each tree and the size of 

clusters of connected trees are calculated.  At iteration one, a randomly selected 

combination of cut-trees is generated, and then MVC for each cluster and additional cut-

or leave-trees are identified based on the number of fuel connections and proximity to the 

extraction point (Eqs. 4.16 – 4.18).  Skidding cost of each cut-tree is estimated and the 

number of fuel connections among leave-trees is determined.  The individual tree growth 

model is then employed to estimate future tree sizes, and the crown fire initiation and 

propagation models are applied again to estimate future tree-level fuel connections 

among the leave-trees.  The objective function is then evaluated (Eq. 4.13) and stored.  

For the next iteration, a different random combination of cut-and leave-trees is generated, 

and the objective function is evaluated and compared with the previous solution.  If the 

current solution is better than the previous one (lower total skidding cost and lower 

number of current and future fuel connections), it is stored and save as the best solution 

found.  Otherwise, the current solution is ignored and the next iteration starts.  This 

iterative process to generate and evaluate alternative combinations of cut- and leave-trees 

continues until a stopping criterion is met.  We used a maximum number of iteration, 

Imax, to stop the process in a reasonable amount of time.  When the process stops the best 

solution found is reported.  For the model application presented in this study, we set Imax 

at 15,000 iterations. 
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4.2.6 Model Application – A Case Study 

 

The study area for this investigation is a forest stand in the LEF (Figure 4.4).  The 

stand is 4.6 ha in size with elevations ranging from 1,270 to 1,310 m, on a north-facing 

aspect, and an average slope of 13.5% (0.0 – 36.3% slope range).  Douglas-fir is the 

dominant species with a small amount of ponderosa pine trees. The stand has established 

under- and middle-story vegetation creating continuous canopy fuels from the ground to 

the top of the canopy, resulting from logging in the mid-1940s and thinning in the mid-

1970s.  The LiDAR stem detection algorithm identified over 11,000 trees in the stand, 

most of which are small, suppressed trees.  For the purpose of reducing crown fire 

potential, we first considered an initial thinning prescription that cuts, piles, and burns 

small trees with DBH less than 12.5 cm (5 in.).  Figure 4.4b presents the LIDAR-derived 

stem map showing the remaining 2,645 individual tress in the study area after the initial 

thinning prescription was applied.  Cut-tree selection was then optimized for the 

remaining trees to meet a target tree density of 300 leave-trees per ha or TCT = 1,265 

trees. 
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Figure 4.4. LiDAR-derived digital elevation model (a) and stem map (b) for the 4.6-ha 

study area in LEF. 

 

 

4.3 RESULTS AND DISCUSSION 

 

Based on the current LiDAR-derived tree locations and attributes, the tree-level 

fuel connectivity logistic regression models predicted crown fire ignition at 536 tree 

locations which is over 20% of trees in the study area (Table 4.5).  Additionally, due to 

the relatively large number of trees and dense stand structure under the current 

conditions, over 27,700 horizontal fuel connections were predicted between adjacent 

pairs of trees in the study area.  These predicted horizontal fuel connections formed a fuel 

connectivity network consisting of 38 clusters of connected trees.  Clusters are formed by 

an average of 70 trees and crown fuels of each tree are connected to an average of over 
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ten adjacent trees.  Most clusters are formed by less than 15 connected trees, but there are 

a few large clusters that connect most trees in the study area (Figure 4.5).  For example, 

only two clusters connect almost 95% of trees and the largest cluster connects over 92% 

of trees.  These results suggest that, after reaching crown fuels through vertical fuel 

connections, fire can propagate throughout the stand burning most trees in the study area.  

Additionally, the large number of fuel connections, average connections per tree, and 

average connections per cluster indicate a relatively high crown fire potential under the 

current stand structure. 

 

Table 4.5. Tree-level fuel connectivity results from the logistic regression models for 

trees under the current stand condition and the projected future condition after a 20-year 

growing period. 

Stand 
Condition 

Crown fire 
initiation Crown fire propagation 

Number 
of trees 
ignited 

Percentage 
of trees 
ignited 

Horizontal 
fuel 

connections 

Number of 
connected 
clusters 

Average 
connections 
per cluster 

Average 
connection 

per tree 

Average 
trees per 
cluster 

Current 536 20.26 27755 38 730.39 10.49 69.60 
After 

thinning 315 22.68 4051 173 23.41 2.94 7.98 

Future 189 17.68 5648 56 100.86 4.09 24.64 
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Figure 4.5. Location, size, and summary statistics of clusters formed by predicted tree-

level fuel connections under the current conditions in the study area. 

 

The MVC algorithm was applied to the clusters in the fuel connectivity network 

to identify all possible final MVC associated with each cluster.  After adding the size of 

the final MVC for each cluster, a total of 1,996 cut-trees were required to remove all fuel 

connections in the study area (over 75% of total trees) resulting in only 649 leave-trees.  

Consequently, 673 additional leave-trees were required to meet the thinning intensity 

constraint of 300 leave-trees per ha.  The computerized approach generated and evaluated 

alternative combinations of leave-trees.  The best solution, yielding the minimum tree-

level fuel connections as well as skidding cost, was found at iteration 12,023, and no 

better solution was found for next 3,000 iterations (Figure 4.6).  The objective function 

value of the best solution was 13,706, consisting of 4,366 remaining fuel connections 
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(315 vertical and 4,051 horizontal), 5,837 future fuel connections (189 and 5,648 vertical 

and horizontal, respectively) among the selected leave-trees, and a skidding cost of 

$3,503 associated with the selected cut-trees.   

 

 
Figure 4.6. Changes in objective function value over 15,000 iterations.  The best solution 

was found at iteration 12,023. 

 

Fuel connectivity throughout the study area was largely reduced by removing 

about 48% of the total number of trees in the study area (1265 cut-trees).  The best 

solution found by our tree removal optimization approach identified a combination of 

leave-trees that reduced fuel connectivity by almost 85% from over 28,000 current fuel 

connections to about 4,365 remaining fuel connections (Figure 4.7).  The number of trees 

expected to ignite decreased by about 41% from 536 to 315 trees.  Fuel discontinuity was 

largely introduced as indicated by the increase in the number of clusters of connected 

leave-trees from 38 to 173 clusters.  The average cluster size dropped from 69.6 trees to 8 
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trees, the average fuel connections per tree decreased from over 10 to about 4 (Table 4.5).  

Similarly to the current conditions before treatment, most clusters are formed by less than 

15 connected trees.  However, 5 % of clusters now connect about 72% of leave-trees after 

treatment and the largest cluster connects only about 59% of leave-trees. 

 

 
Figure 4.7. Leave-tree locations and summary statistics of clusters formed by remaining 

fuel connections found by the best solution. 

 

The individual distance-dependent tree growth model was applied to the selected 

leave-trees based on their locations and sizes to estimate tree growth under the new stand 

conditions after the thinning treatment.  Average periodic increment in DBH of leave-

trees was 5.08 cm for a 20-year period (Table 4.6).  Future tree HT estimated by the 

height-diameter relationship (Eq. 4.8) shows that HT increases by 34%.  Future average 
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tree CBH was estimated to increase by the same proportion as tree HT, and future CW 

was expected to increase by an average of 0.47 m (Table 4.6).   

 

Table 4.6. Current and future tree attributes predicted using the individual tree growth 

model over a 20 year period. 

Time  Tree 
attribute 

Range of values Periodic 
increment 

over 20 years Min. 1st Qu. Median 3rd Qu. Max. 

Current HT 8.79 12.23 14.96 17.93 33.05 5.27 m 
(33.98%) Future 15.77 18.41 20.31 22.68 35.79 

Current DBH 12.70 15.46 19.40 25.18 60.85 5.08 cm 
(23.53%) Future 16.76 20.86 24.48 30.09 66.00 

Current CBH 0.00 5.33 6.99 9.03 15.08 2.48 m 
(34.18%) Future 0.11 7.47 10.45 11.81 19.00 

Current CW 2.34 3.67 4.49 5.38 9.91 0.47 m 
(9.92%) Future 2.64 4.04 4.94 5.92 10.90 

 

The total number of tree-level fuel connections among the selected leave-trees 

was predicted to increase over 20 years because of growth in tree size.  The number of 

trees expected to ignite under the future stand conditions is smaller than the number of 

ignitable trees under the current conditions (Table 4.5).  As future tree size gets larger 

and tree spacing gets smaller compared with the current conditions, the number of future 

horizontal fuel connections between adjacent pairs of leave-trees increase by about 39% 

(Table 4.5).  The number of clusters of connected trees decreases by more than 68%.  The 

average cluster size almost triples, and the average fuel connections per tree increase 

from 2.94 to 4.09 (Table 4.5).  Figure 4.8 shows the location and sizes of clusters formed 

by future fuel connections among leave-trees.  Although future fuel connectivity 

increases throughout the study area compared with the stand conditions right after 

thinning, crown fire potential remains still low after 20 years.  The number of future tree-
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level fuel connections is about 20%, the average cluster size is one third, and the average 

connections per tree is about 40% compared with the stand conditions before thinning.  

 

 
Figure 4.8. Leave-tree locations and summary statistics of clusters formed by future fuel 

connections after a 20-year growth period. 

 

The individual tree skidding cost model identified log-pile locations and the 

optimal skid-trail network connecting each log-pile to the extraction point that ensures 

the cost efficiency of thinning treatment (Figure 4.9).  Based on the location and sizes of 

the 1,245 cut-trees (Figure 4.9a), the log-bunching algorithm identified 275 log-piles 

(Figure 4.9b).  A skid-trail network composed of almost 3,450 feasible skid-trail links 

was created over the study area based on the location of the 275 log-piles and the 

remaining 1,380 leave-trees (Figure 4.9c).  The optimal skid-trail network that minimizes 

the skidding cost from each log-pile to the extraction point was developed.  The optimal 
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network is formed by about 1,080 ski-trail links.  Figure 4.9d shows the optimal skid-trail 

network with traffic level on each skid-trail link in terms of the number of passes (turns).  

The average skidding cost per log-pile is about $12.5 and the average skidding distance 

from a log-pile to the exit point is about 224 m (Table 4.7).  Figure 4.10a shows the range 

of skidding costs per log-pile.  Log-piles located farther away from the exit point have 

larger skidding costs.  Skidding costs of individual cut-trees ranged from $0.19 to about 

$17 with an average of $2.8 (Table 4.7).  Cut-trees with large skidding costs can be found 

throughout the study area because cost is a function of both tree size and distance from 

the extraction point (Figure 4.10b). 

 

Table 4.7. Statistics on individual tree skidding costs estimated for the selected cut-trees 

in the study area. 

Total  Log-piles  
Total Skidding Cost ($) 3,503 Min. Number of Trees per Pile 1.00
Number of Log-piles 275 Aver. Number of Trees per Pile 4.52
Number of Cut-trees 1,265 Max. Number of Trees per Pile 16.00
Harvestable Volume (m3) 36.6 Min. Pile Volume (m3) 0.05

  Aver. Pile Volume (m3) 1.31
Cut-trees  Max. Pile Volume (m3) 2.79

Minimum Tree Volume (m3) 0.05 Min. Pile Distance (m) 14.21
Average Tree Volume (m3) 0.29 Aver. Pile Distance (m) 224.37
Maximum Tree Volume (m3) 3.02 Max. Pile Distance (m) 391.38
Minimum Tree Cost ($) 0.19 Min. Pile Cost ($) 6.05
Average Tree Cost ($) 2.77 Aver. Pile Cost ($) 12.52
Maximum Tree Cost ($) 17.27 Max. Pile Cost ($) 17.27
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Figure 4.9. Cut-tree locations (a) and log-piles (b), feasible skid-trail links (c), and 

optimal skid-trail network (d) for the selected cut-trees in the best solution found. 
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Figure 4.10. Distribution of skidding costs over the study area showing cost per log-pile 

(a) and cost per individual cut-tree (b). 

 

As mentioned above, the best tree removal selection found by the computerized 

approach appears to largely reduce crown fire potential as measured by the tree-level fuel 

connectivity.  However, it is difficult to prove solution quality due to the lack of efficient 

optimization algorithms (i.e., mixed-integer programming) capable of solving the tree 

removal problem to optimality within a reasonable amount of computing time.  

Therefore, we compared the best solution found with two alternative combinations of cut- 

and leave-trees under the same thinning intensity (a total of 1,380 leave-trees).  One 

combination consists of cut-trees selected manually simulating the marking process 

carried out by markers on the ground based on spacing between trees and tree sizes, while 
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the other combination selects cut-trees randomly.  Then, we obtained the number of 

remaining and expected future fuel connection among the selected leave-trees, and 

determined the skidding costs associated with the selected cut-trees for both alternative 

tree selections.  The manual and random cut- and leave-tree selection resulted in 

objective function values about 5% and 34% higher, respectively, than the objective 

function value of the best solution found by the computerized approach (Table 4.8).  The 

number of remaining and future tree-level fuel connections among the selected leave-

trees as well as the skidding cost of the selected cut-trees from our computerized model 

solution is lower than those from the manual and random solutions.  The number of 

remaining tree-level fuel connections from the manual selection is about 4.2% higher 

than the number of remaining fuel connections from the model solution, whereas the 

random cut-tree selection resulted in 51% more remaining fuel connections than those 

from the best solution (Table 4.8).  This indicates that there is large variability in tree-

level fuel connectivity among alternative combinations of trees.  Our approach, besides 

optimizing the cut- and leave-tree selection, provides a more consistent and objective 

method to evaluate alternative cut-tree patterns and improve the efficiency of thinning 

treatments for reducing crown fire potential. 

 

Table 4.8. Comparisons on solution quality between the best tree selection found by the 

computerized approach and two alternative selections of cut- and leave-trees.  

Tree selection 
method 

Objective 
function 

value 

Skidding 
cost ($) 

Remaining 
tree-level fuel 
connections 

Future tree-
level fuel 

connections 

Computerized model 13,706 3,503 4,366 5,837 
Manual 14,327 3,483 4,548 6,296 
Random 18,379 3,654 6,599 8,126 



 177

Our computerized approach to optimize the selection of tree removal can 

efficiently break fuel connectivity throughout a forest stand to reduce crown fire 

potential.  However, the results of the computerized approach depend heavily on the 

accuracy of input data such as tree locations, and current and projected future tree 

attributes.  There are several forms to acquire tree locations varying from traditional field 

measurements and GPS devises to advanced remote sensing and GIS technologies such 

as high-resolution aerial photos (Hirschmugl et al. 2007), multispectral imaging (Popescu 

and Wynne 2004), and LIDAR (Maltamo et al. 2004).  The algorithm used to obtain 

LiDAR-derived stem maps by NCLFA researchers provided stem detection accuracies of 

approximately 53% when considering all tree classes at LEF (Suratno et al. 2009).  

However, stem detection accuracy increases significantly on dominant trees.  In similar 

forest conditions to those of our study area, the stem detection algorithm provided an 

accuracy of about 90% when considering only dominant trees (Rowell et al. 2006).  In 

this study, we considered only dominant trees with DBH > 12.7 cm, thus we expect the 

stem map used for our study has a high stem detection accuracy level.   

Appropriate tree-level growth models are also required to accurately predict 

future tree dimensions and consequently tree-level fuel connectivity.  We predicted future 

tree diameters using a basal area increment model parameterized for species commonly 

found at LEF.  However, for CBH and CW, we assumed that CBH and CW increments 

are proportional to HT which was derived from DBH.  These assumptions may introduce 

uncertainty to the accuracy of projected tree sizes and future tree-level fuel connections.  

Underestimation of future CBH could result in overestimating the number of ignitable 
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trees.  Similarly, underestimating future CW could result in underestimation of the 

number of fuel connections among adjacent pairs of trees. 

 

 

4.4 CONCLUSIONS 

 

Our computerized approach for optimizing individual tree removal provides an 

analytical method to evaluate spatial and temporal effects of thinning on reducing crown 

fire potential within a stand, and thus can help forest managers develop more effective 

and efficient thinning prescriptions that are site-specific to given stands.  Our approach 

considers spatial variability of fuels within a stand, the effects of cut-tree selection on 

future tree growth and stand conditions, and skidding costs of individual trees into the 

development of thinning prescriptions. 

The application results show that crown fire potential can be effectively reduced 

over time while ensuring the cost efficiency of thinning treatments.  Fuel connectivity 

throughout forest stands can be largely reduced in terms of the number of tree-level fuel 

connections as well as number of clusters of connected trees, average number of trees 

forming a cluster, and average fuel connections per tree.  By selecting the combination of 

cut-trees that removes the most tree-level fuel connections, our approach can reduce fuel 

connectivity over time more effectively than existing thinning practices.  In addition to 

reducing crown fire potential, our approach can potentially be modified and used for 

other forest management objectives.  Tree growth can be included in the objective 

function to increase timber production as well as reducing crown fire potential.  Our 
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approach can also be applied with a modification to develop tree-level thinning 

prescriptions for the purpose of efficiently increasing carbon sequestration or improving 

wildlife habitat for given species upon availability of tree level measures of carbon 

sequestration and wildlife habitat quality. 

Further research needs to be conducted to enhance the performance of the 

computerized approach and evaluate the feasibility of implementing the results on the 

ground.  Widely used heuristic optimization techniques such as simulated annealing 

(Kirkpatrick et al. 1983), tabu search (Glover 1989, 1990), and ant colony (Dorigo et al. 

1996) can be applied to solve the optimal tree removal selection problem and compared 

with the current random search techniques.  Time required to locate and mark selected 

cut-trees should also be measured and compared with conventional tree marking practices 

to evaluate the cost efficiency of implementing the model results.  

Despite the imitations, our approach has the potential to enable forest managers to 

customize site-specific thinning guidelines for individual stands and to implement cost-

efficient fuel treatments to reduce the risk of high-intensity wildfires.  Given that high 

resolution vegetation mapping technology such as LiDAR is becoming more widely 

available, our approach can be a useful tool when thinning is applied to restore 

overstocked forested lands in need of fuel treatments. 
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