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Murphy, Mary-Margaret, M.A., Fall 2015     Anthropology 

 

Validity of landmark selection given different 3D scan processing parameters: landmark 

location on 3D models of Yacchi crania. 

 

Chairperson:  Dr. Anna M. Prentiss 

 

This project tests the validity of the use of models generated with 3-D technology for the 

purposes of advancing craniometric methods in anthropology. The literature describing 

this technology as it is being incorporated and applied is focused on the classification of 

crania within population structure and evolutionary development. 3-D modeling methods 

create data that are static over time - as long as the collection and processing has a 

statistically insignificant impact on deviation from the original "true" sample. 

This thesis is interested in the questions of data collection given variations between 

processing and metadata of 3-D models and uses data from crania recovered from cave 

burials discovered on Kume Island, Okinawa Japan. The collection has been captured in 

surface scans and by 3-D coordinate digitizer at different times by different researchers.  

Adapting 3-D scanning and 3-D medical imaging technology into anthropology is highly 

advantageous in terms of the quality and quantity of data that can be collected and shared. 

Models generated from surface imaging are an excellent tool for research that serves to 

transmit the information encoded in the skull. Recent surface imaging technology is very 

user friendly from a novice perspective. However, there are different capture and 

processing specifications between equipment and software, which have the potential to 

create error due to variation caused by the data capture processes.  A review of recent 

research working to capitalize on 3-D models belies the variation in standards of imaging 

and model processing. These projects tend to be preferential to data that are collected 

from samples with a low error rate. Error could be due to deviation of symmetry or 

damage. However, recovered human crania in historic and archaeological contexts are 

unlikely to have low rates of damage. 

In spite of the potential variations introduced by the applications of process parameters, 

there was no convincing degree of non-correspondence in correlation tests to two 

comparison approaches. 

The ultimate goal is to develop guidelines for data collection and processing that are 

capable of capitalizing 3-D data from any of the available technologies and processing 

output that is computationally efficient as well as statistically correspondent.
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Chapter One 

Chapter Outlines 

 

 This research sets out to address methodology issues regarding the 

correlative quality of direct captured Microscribe® (Revware, Raleigh, NC, USA) 

digitized craniometric data with that of data derived from processed digital mesh 

models1 of crania. Specifically, this thesis will test the validity of landmark points 

collected from models processed under two parameters against landmark point data 

collected from the original cranial materials using a standard for direct digital 

landmark point collection; the Microscribe® (Revware, Raleigh, NC, USA). The 

chapters in this thesis will explore the potential differences in methods and 

processing and the validity with which they can be expected to perform with the 

type of sample selected for this project. 

In theory, the differences in landmark points selected among 3-D models 

processed with different resolution should have statistically negligible differences 

among them and from landmark points collected using a 3-D digitizer. If this proves 

to be accurate, it would support the use of a data conservative processing method 

for 3-D mesh models, meaning one that results in a smaller file size for improved 

utility for users and computers. The rational for a smaller, more conservative file 

size comes down to the processing power, graphics hardware, and software 

                                       

 

1 Terms in bold italics are included in Appendix 6: Definition of Terms, for clarification and 

definitions that apply to the context of this thesis. 
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rendering that working with 3-D graphics requires. This must be considered 

concurrently with the importance of maintaining congruence with the original 

physical materials. Statistically significant differences that might occur between the 

landmark points for processing and selection methods based on 3-D models of 

various sizes and resolutions would indicate the need for further research into 

methodological processes for the future application of 3-D scan data. This is 

especially important in terms of the kind of archaeological sample presented in this 

project which has by its nature a small sample size.  

The first chapter (Introduction) will continue after the chapter outlines to 

discuss the motivation for this thesis in consideration of osteometric methodology 

and 3-D technology. 

The second chapter (Background) will characterize the type of sample, and 

the technology applications to be reviewed and summarize of the recent and 

current research applications of 3-D data capture technology. Within the scope of 

the second chapter the utility of virtual models and methods of collecting the data 

represented by a 3-D digital model is discussed in the context of explicit 

experimental design and standards of collection and processing to maximize the 

interchangeability of data from the different three dimensional methods in use. 

Further, the theoretical background of validity testing is outlined to provide the 

framework in which the statistical models of testing are applied. 

The treatments applied to the preparation of the 3-D coordinate data and 3-

D models from their raw state to the fully processed models are described in the 

third chapter (Materials and methods). Methods as applied to this test of the 
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validity of landmark data collected from historic human remains will assume that 

there is no statistically significant difference, between the landmark locations and 

ILD measured for each individual in the sample for all levels; direct digitizer, and 

four models representing the combinations of the processing parameters selected 

to represent variable mesh process states based on previous research. To test if the 

landmark locations should all yield the same - or convergent- result as the 

hypothesis, the sample will be compared for differences between the direct digitizer 

sample landmarks and the data collected from the 3-D digital models at the 

different processing levels. 

The fourth chapter (Results) will provide the output of the statistical analysis 

undertaken in the third chapter and investigate the impact that the different levels 

of processing have on the landmark locations. Individual observers will typically 

have a consistent bias in choices made to determine the location of a landmark. 

Further, chosen locations for landmarks collected from the models could vary in 

spatial location or observation between different process parameter combinations 

as a result of the processes applied to the model. The scans are influenced by 

technological considerations and interactions between the scanner and target 

surface. The above described interpretive considerations must be included in the 

total interpretations of the results.  

I will use the fifth chapter (Discussions) to clarify the implications that 

processing method variability has on the utility of 3-D crania models for osteometric 

research. The utility refers to the usefulness in terms of the interoperability of 3-D 

data; scan data and medical imaging, with direct data as collected using the 
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traditional craniometric measurements and three dimensional landmarks. Ideally, 

as proposed by the hypothesis of convergence, there is no convincing degree of 

statistical difference between landmarks collected either directly or from a 3-D 

model invariant of the processing methods as applied in this project. 

The closing chapter of this thesis will return to the practice of 3-D data 

collection and the practical issues of application of 3-D models in research under 

evolutionary and development theoretical models as outlined in the introduction 

and literature review and discuss the state of current and future research and 

transmission of indirect data from human bones remains. This sixth chapter 

(Conclusions) will consider the methods as applied in the third, fourth, and fifth 

chapters and the types of craniometric data represented by the sample and models. 

This will be the opportunity for considerations about methodology for applied 3-D 

research. These considerations will review aspects of data collection best practices, 

baselines, and meta-data reporting that the results of this analysis would indicate 

as most appropriate for application to further extend this research.  

Introduction  

Anthropometric research is the study of measurements in human biology. 

Throughout the history of anthropology, a constant thread has been the desire to 

define or refute demarcation in the variation of the human form. The osteometric 

branch of anthropometrics studies the bone structures of the human body. The 

human cranium is a complex bone structure of the body and the result of formation 

and function - designed to house the large brain, organs of four specialized senses, 

and the functions of mastication and breathing (White and Folkens 2000). The 
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cranial structures develop in response to a genetic template influenced by 

environmental, mechanical, and hormonal factors during the development and adult 

life of a human. The forms of cranial structures are of particular interest to 

anthropology and medical sciences, which makes the ability to capture and identify 

details of the human crania one of particular importance (Slice et al. 2005; Ross et 

al. 2010; Williams and Slice 2010). 

Tests of 3-D technology for the purposes of advancing osteometric 

understanding in anthropology are focused on the classification of crania within 

population structure and evolution (Ross and Williams 2008; Ross et al. 2010; 

Williams and Slice 2010; Saso et al. 2011; Jantz et al. 2013; Pinto et al. 2013; 

Abdel Fatah et al. 2014; Hale et al. 2014). Data collection and hypothesis testing is 

done with a particular research question in mind. This project is more interested in 

the sensitivity of data collection methods with regards to landmarks, preservation 

and different capture technologies. As with the statistics that are applied to 

craniometric and geometric morphometrics, there is an assumption that the tools 

are appropriate and capable of collecting the necessary information to answer the 

research questions that are applied (Cignoni and Scopigno 2008). 

This project is interested in data correspondence of landmarks collection 

using multiple 3-D representations of a historic sample that differ in processing 

parameters. Computational differences between technologies and differences in 

processing could create variations within synonymous samples. That alone would be 

a concern for a sample in perfect condition (Cignoni and Scopigno 2008). Cranial 

samples are rarely in perfect condition. In many cases, especially as research 
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considers further back in the human timeline, that the greater the significance of a 

sample to our knowledge about the represented population is inversely correlated 

with the completeness and preservation of that sample (Saso et al. 2011; Shearer 

et al. 2012).  

Sample preservation is a contributor to uncontrolled error found within the 

sample. Crania can experience taphonomic damage at the time of recovery ranging 

from slight - such as deformation of symmetry that might be due to burial position, 

to severe - resulting from post-mortem ritual or unstable burial conditions. After 

recovery, preparation and curation are critical to maintain the integrity of bone 

remains, but even the most well-intentioned practices can fail, resulting in 

compromised preservation. Incomplete preservation is a problem when research 

methods do not consider and account for damage. But given the inconsistent nature 

of the preservation of human remains, incomplete does not devalue the importance 

of materials that constitute the best available representative sample of a population 

(Saso et al. 2011; Shearer et al. 2012). 

Validity analysis is useful to assess whether the variability between the 

different processing methods is introducing systematic error, resulting in 

significantly different metric data. Application of Microscribe® (Revware, Raleigh, 

NC, USA) Digitizer landmarks is applied as the "gold-standard" metric against the 

collected sample coordinates is a criterion validity experiment that serves to 

evaluate the agreement between the samples under the differing processing 

conditions with the criterion method (Carmines and Zeller 1979).  
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Scanned data, technology and processing resolution and history within 

Medical Sciences and Biological Anthropology 

Scanned data (Surface scan, CT, MRI) encompasses a broad range of digital 

capture and processing techniques that import real objects into a 3-D virtual 

environment. Theoretically, scanning technologies are capable of a very high 

degree of image resolution. However, all scanning methods still have limitations 

owing to the potential for variation and error at the various stages of capture, 

alignment, and reconstruction. Capture error in terms of 3-D scanning has to do 

with any interaction during the scanning process that interferes with accurate 

reproduction of the surface. Movement can cause error in all forms of surface 

scanning. Medical Imaging formats are sensitive to high density materials and 

metallic elements. Alignment and reconstruction are capable of moderating the 

degree of error found in a scan based model, however that moderation can be 

either positive or negative depending on the execution of the scan collection and 

the processes applied to the raw data to output mesh models. 

Medical imaging has available many modes of data collection. Computed 

Tomography (CT) is used with a high frequency for both direct patient data 

collection as well as for the collection of research samples. This owes to the balance 

of factors of cost, availability, and the available variation of the technology that are 

available to medical researchers. The slices of a CT scan to be converted into a 3-D 

representation of a model, processed by separating the areas by the voxel density-

which refers to the light or dark pixels produced on a sensor surface (x-ray film is 

an example of a sensor surface) converted to three-dimension by including the 
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depth of the slice. The amounts of radioactive particles that pass through a given 

sample are reflected on the resulting image as light areas for fewer transmitted 

particles to darker areas for more transmitted particles. Bone tends to appear 

lighter than soft tissue due to a greater density which prevents most of the particles 

from reaching the detector. Observers must rely on training and experience to 

determine the settings that are most appropriate as to the sample. Slice thickness, 

voxel density, and the radiographic tool are variable. Slices used could range from 

less than one to several mm thick. Features whose details fall between thicker 

slices will be difficult to interpret clearly and can carry high rates of error (Kim et al. 

2012; Hale et al. 2014). 

Laser and white-light 3-D surface scanning are non-invasive and non-

radiologic methods of capturing an object in three-dimensions. Time-of-Flight laser 

triangulation and fringe projection pattern are the primary capture methods used to 

recreate a 3-D model of a real object. During a 3-D surface scan, the object causes 

an interference with the laser light or fringe pattern projected from a primary 

origin. The interference is observed by the optical sensors of the scanner which are 

offset from the projection origin and the interference is interpreted into a set of 3-D 

coordinates. The density of coordinates captured is dependent upon the instrument 

and the settings selected by the observer.  

A laser 3-D surface scanner with an array of fine-tuned linear laser 

projections will capture a surface with a greater degree of detail than a single 

narrow-beam linear projection, which would have greater sensitivity than a wide-
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beam laser projection. The array also capitalizes on multiple projection angles, 

which offer a larger geometric sample from which to calculate triangulated distance.  

Fringe pattern, or white-light 3-D surface scans vary in color, pattern, and 

complexity. A single stationary surface capture involves the projection of one or 

more fringe patterns over a surface to calculate the surface shape by analysis of 

the deformation of the projected pattern. Increasing the number of patterns 

projected per stationary position increases the sample used to calculate the surface 

model. Multiple offset optical sensors are also a common feature of white-light 

systems. Multiple optical sensors at offset angles from the projection origin increase 

the density of capture of complex surfaces by observing the projection from 

different angles determined by the offset. 

Holes, cavities, and curvature can interfere with surface scans due to the 

nature of projection and observation methods that are used to determine the 

surface. A cavity, such as the eye orbits will typically exhibit internal reflection that 

distorts the laser or pattern projection. The geometric properties of a void result in 

a difficulty for the optic sensor when determining the dimensions and boundaries of 

these forms. Voids are characterized by edges and undercut dimensions that 

confound surfaces scanners. Some problems can be overcome with careful capture 

and post processing. However, some problems in capture of surface variations are 

simply limitations of the technology. Multiple projections, and acute sensor offset 

can improve the sensitivity with which borders and edges of a void are calculated, 

but do not tend to improve the problems with internal reflection of a cavity. 
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Objects often cause problems with the accurate interpretation of their surface 

resulting from problems with the manner of interaction between the surface 

characteristics. Surface scanners have problems with high reflecting, and 

transmitting surfaces (translucent or dark, in both instances, allowing light to pass 

through rather than be reflected back). Dental enamel is a good example of a 

surface that is difficult to capture with benchmark resolution. The characteristics of 

reflection and transmission (translucence) found in dental enamel cause the optic 

sensor to see defects and holes in the surface that do not exist on the real object.  

Benefits of this project 

 The benefits and importance of this project is driven by the growth and 

innovations in current biometric research. Many researchers have recently 

published methods in which qualitative osteological features are treated in a 

quantitative statistical methodology using digital surface data (Williams and Slice 

2010; Sholts et al. 2011a; Garvin and Ruff 2012; Jantz et al. 2013; Pinto et al. 

2013; Abdel Fatah et al. 2014). What many of these studies overlook is the 

importance of standards of practice.  Creating a new pseudo-landmark or outline of 

a structure of interest (Athreya 2006; Thayer and Dobson 2010; Williams and Slice 

2010; Saso et al. 2011; Fukase et al. 2012; Garvin and Ruff 2012; Shearer et al. 

2012) is not unprecedented, but is arbitrary and risks increasing observer bias (and 

inter-observer error). Also, references for landmark definitions vary in documented 

research. Several important structural landmarks are the subject of debate as to 

their definition and real location. Prosthion location varies in definition and in the 

interpretation of definition between William W. Howells 1973 publication and that of 

Paul Martin from 1928 (White and Folkens 2000). The exact definitions and 
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utilizations of dacryon and maxillofrontale are often not clear or well rationalized 

when defining the interior of the eye orbit (Howells 1973). The research referenced 

above has been undertaken primarily to answer specific research questions about 

the sample population or biological theory, and therefore represents a challenge for 

generalization across populations and samples.   

Biological characteristics such as species, age, and sex are categorical in 

nature, but for measurement and classification are difficult due to variation on a 

continuum. Scoring systems make use of identifiable traits generalized to a system. 

Making use of 3-D models for adapting a qualitative system to a quantitative 

measurement less bound by the subjective perspective of the observer is a strong 

argument for the use of the available scanning technologies. 

 Development and testing of robust statistical methods as defined by Huber 

(1981) to apply to analysis of 3-D surface data are under way  (Mahfouz et al. 

2007; Jantz et al. 2013; Abdel Fatah et al. 2014). In the future, these methods 

could be as well accepted as the two dimensional metric statistics traditionally 

applied to 2D data. For now, an imposing challenge is the consideration of the 

source and the consistency with which 3-D surface data is collected, processed, and 

applied. To ignore consistency creates problems for reproducing results, an integral 

part of the scientific method necessary to expand qualitative-to-quantitative 

morphometric theories from the initial test samples (typically either forensic or 

academic collections) to the medico-legal fields and historical and archaeological 

samples where data are rarely complete and often suffers small sample size and 

high variability (no clear correlation or high proportion of outliers). A forensic or 
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academic collection - hand-picked for use in the types of studies referred to above - 

typically rejects individuals from the sample for having some kind of preservation 

defect. But a sample drawn from a burial context or contemporary forensic context 

would have a strong chance of suffering defects that could compromise application 

of certain methods. 
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Chapter Two 

Background 

Digital data collection creates a data sample that is static over time. As long 

as collection and processing of the sample has a statistically insignificant impact on 

deviation from the original "true" sample, these data are very valuable to the 

advancement of the study of the human cranium. At the current time, it is possible 

to choose from several methods to capture information from a skull. Depending on 

the selected technology, scanning methods theoretically permit the most complete 

capture of cranial data currently possible; shape, scale, variations in coloration, 

physical texture of the surface, bone density, even the ability to reproduce physical 

models of scanned crania without the risks associated with casting.  

The development of models for analysis is preferential to data that are 

collected from samples with a low error rate. Error could be due to deviation of 

symmetry or damage, however recovery of human crania in historic and 

archaeological contexts are more likely to have high rates of damage.  

 Two primary research tracks are invested in this type of cranial study; 

anthropology for biological and forensic purposes (Muramatsu et al. 2008; Ross and 

Williams 2008; Ross et al. 2010; Jantz et al. 2013; Hale et al. 2014), and medicine 

for the purposes of pathology and surgical study (Olszewski et al. 2006; Olszewski 

et al. 2007; Olszewski et al. 2010; Olszewski et al. 2013; Hale et al. 2014). While 

the outcome of interest is significantly different, the technologies and need for 

accuracy are similar. Medical research is more often able to make use of 

radiological medical imaging, such as CT and X-ray. However this is not always the 
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case, as there are times when soft tissue morphology is the subject of study (Wong 

et al. 2008). 

 Anthropology has traditionally applied straightforward tools for measurement 

that can be just as ready and reliable in the field as in the lab and relied heavily on 

the experience and training of the observer to qualify samples (Bass 2005; Hale et 

al. 2014). Developments in the field of anthropology in the previous decades have 

introduced new methods adapting technology that have become institutional. These 

methods include 3-D landmark point data collection as the first and now most 

common multidimensional method, up to surface and medical imaging scanning. 

The sensitivity of advanced technological methods arguably makes up for the 

increased data complexity in the light of the better, cheaper, faster, and readily 

available computational power to handle them. However, that is assuming that 

advanced methods in practice offer significant improvements in accuracy 

commensurate to stated benchmarks. 

 In recent years technology with the capacity to sense, collect, and process 

large scale data and render three-dimensional information has expanded. The push 

has been fueled as greater processing and computational powers have become 

more ubiquitous and less expensive in modern computers. The result is greater 

research access to advanced data collection technologies with the potential to 

change the ways researchers collect and interact with samples (Smith and Strait 

2008). 

 To assume that advanced data collection technologies offer an improvement 

over their predecessors assumes that advanced methods collect data at a high 
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degree of resolution and accuracy (Smith and Strait 2008). The Z-Corp 3-D scanner  

used to collect the sample in this study has a benchmark capture resolution of 50 

microns (= 0.05 millimeters), which should be more than sufficient to capture all 

but the finest foramina and surface irregularities expected to be found on the 

surface of a dry skull. This is not the case in practice. The human cranium is a 

complex object with surface characteristics that confound the optical sensors of 

surface scanners. In practice, the quality and accuracy of the surface that can be 

captured by 3-D surface scanners will be reduced. Weinberg and Kolar (2005) 

highlight the differences between the engineering and materials sciences applied to 

the testing and design of tools such as digitizers and 3-D scanners. When these 

tools are adopted by medical and anthropological sciences, with biological subjects 

and samples, the differences become a potential source of error, misuse, and 

misinterpretation. The set of facts outlined is a significant, but not an 

insurmountable consideration for biological sciences. 

 The report produced by Jantz et al. (2013) is a test of the biological 

classification power of 3-D data. The researchers implemented a systematic study 

of crania from a large, controlled forensic sample. The sample profile was made up 

entirely of known ethnicity and sex from modern North American individuals. The 

study set out to improve upon established and experimental methods of 

establishing the sex of an individual from characteristics of the cranium. Study 

samples were captured using CT scans and converted into 3-D models to continue 

the analysis in a digital environment. As part of the systematic experimental 

design, the authors tested multiple comparative mesh resolutions to determine the 

balance between precise models and computational efficiency. It is important to 
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point out that this study was designed with a controlled sample that rejected 

samples with evidence of pathology, peri- and post mortem damage or defects. 

Since the sample studied in Jantz et al. (2013) was controlled for many types of 

random variation, such that are common to a historical or archaeological sample, 

the application of their findings became important for this analysis. 

Established qualitative methods for the determination of the sex for a set of 

human remains have a heavy reliance on post-cranial elements, training, and 

experience with the target populations. The authors of Jantz et al. (2013) focused 

on the cranium under the justification that forensic identification has to do with 

identifiable features and the cranium is not only the most complex bony region of 

the body, it is also the most individualized. The relative success of non-metric 

techniques is at least some degree attributable to the simple fact the skull reminds 

us of the human face which is a structure that a significant portion of our brain is 

dedicated to recognizing and differentiating. 

 Another significant contribution of the Jantz et al. (2013) paper is the 

introduction of a systematic study of "global analysis" of 3-D representations of 

cranial dimensions. It is not the first attempt at 3-D characterization and 

comparison of cranial features, but follows examples such as Saso et al. (2011), 

and Pinto et al. (2013). The authors developed a sample atlas, which involved the 

creation of a model based the averages of the dimensions of the cranial sample. 

 Jantz et al. (2013) studied modern crania from a forensic collection using CT 

scans for capture and outlining a novel method of model reconstruction, alignment, 

statistical atlas creation for cranial analysis, and further developing a landmarking 



 

24 

 

method used by Hsiao et al. (1996; 2010) which used lateral cranial x-rays of 

subjects. The application of this process was to compare 'global' models (the 3-D 

reconstruction from CT scans of individual crania in contrast to their further study 

of linear inter-landmark distances) to each other and to the statistical atlas to look 

for areas of sex-specific variation. This identified areas of greater of lesser variation 

in relationship with the full cranial structure. When compared, they found that the 

areas of highest 'global' variation correlated to the highest ILD variation (PCA). In 

this project, the authors were able to further develop on the success of Hsiao et al. 

(1996; 2010) in seriating a sample of crania along known sex by using cranial 

variation from a CT scan data set instead of lateral cranial x-ray images. 

 Using a segmented region of interest – the central nasal-frontal area of the 

cranium, Saso et al. (2011) experimented with comparison between topographic 

segments of samples and a reference model. The reference model was a selected 

specimen from the sample, so no modifications were made. This contrasts the atlas 

method employed by Jantz et al. (2013).  The segmentation was developed to 

characterize the supra-orbital structures medially and laterally and applied to 

questions regarding population structure the authors hoped could be inferred from 

the development of the frontal bone. The study undertaken is of particular interest 

to this project because the authors included samples in the data set that were 

incomplete and suffered varied degrees of taphonomic damage. The experimental 

design was explicit in describing the scanning details, such as the average number 

of faces, the segmentation steps applied, and the use of an individual from the 

sample as the base model for comparison. The method of segmentation utilized a 

topographic effect based on the calculated heights of the points, perpendicular to a 
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reference grid generated during the segmentation process. The models were 

rendered from capture scans set to a very high resolution, which may have been 

greater than necessary. This may have been one of the reasons the authors chose 

to use a segmentation method to simplify the area of study. However, it is 

significant that the authors reported this type of meta-data and did so in 

terminology rational to the type of 3-D mesh that was captured and studied. The 

segmentation and application of the topographical system becomes a data 

reduction from the whole cranium to the region of interest, then from 3-D 

dimensional surface data to two-dimensional points and outlines which were more 

conducive with the applied statistical tests. 

 Pinto et al. (2013) is a unique study of the classification power of multi-

dimensional structures. The paper presents the authors attempt to solve the 

difficult problems of homology and allometry of form, as well as accurately 

characterizing small structural details. Like other research into 3-D cranial data 

analysis, this research is testing the suitability of 3-D surface data for determining 

the sex of an individual by introducing a method of direct measurement to quantify 

a method that has been successfully applied as a qualified craniometric assessment 

of sex (Graw et al. 1999; Walker 2008; Shearer et al. 2012), specifically the upper 

lateral orbital margin. Previous work has shown that the mid-facial area that 

includes the left and right orbital torus, orbital margins, superior orbital plates and 

the lateral structures of the frontal and zygomatic bones is sufficiently dimorphic in 

adult crania to classify individuals in a sample population by sex. Of the traits of the 

structures described above, the transition of the upper orbital margin between the 

orbital torus and superior orbital plate is measured qualitatively for the purposes of 
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coordinate and linear craniometrics (Walker 2008). Qualitative measurements, such 

as Walker (2008), are subjective to the observer. Although a trained and 

experienced observer would be expected to produce consistent observations, two or 

more observers could still produce observations that differ. As long as the aspects 

and dimensions measured are consistent and homologous, directly measuring traits 

quantitatively should result in less subjectivity and inter-observer bias. Digital 

environments should prove beneficial for the development of quantitative 

measurements once challenges that stem from the segmentation of complex and 

variable biological structures can be consistently controlled. Pinto et al. (2013) 

approach the problem by segmenting an area of the orbital margin by proportional 

functions of height and entropy that this region is suited to by structural nature. 

That is to say the area is separated from the cranium and quantified by the degree 

of deviation from a flat plane that divides the section and bases the calculation of 

height as difference from the flat plane. The surface variation of the region 

separated by the plane (entropy) is quantified by the degree of deviation of normal 

vectors from the singular direction of a geometrically defined flat plane. 

 The negative aspect to the method employed by Pinto et al. (2013) has to do 

with an unclear definition of the segmentation of the sampled region of interest and 

disassociation with the global homology of the remaining cranium. The method 

used has problems with uniformity in application and replication of the 

segmentation of the ROI for other researchers. Segmenting out a lateral structure 

and aligning all individual observations from a sample runs the risk of obscuring 

variations that are due to the orientation of the structure within the greater super-

structure. Since they apply an alignment on the ROI that changes the orientation of 
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each sample to minimize the variation Generalized Procrustes Alignment (GPA) 

each sample can be disassociated with the original cranial orientation. Some 

variation intrinsic to the individual could be lost by the application of this type of 

alignment 

 Ross and Williams (2008) disagreed with the application of GPA to analyze 

the differences in sample orientation that were a factor of the inter-observer 

differences in the orientation of sampled crania. Rather than align the models using 

GPA, the authors determined to use inter-observation inter-landmark distances to 

characterize each individual in the sample. This did essentially discretize the skull 

into a series of linear measurements, but it prevented the loss of information about 

the observer differences in the sample that would have been factored out as a 

process of GPA. The use of all distances between all points was also employed by 

Ercan et al. (2008) to assess observer variation in landmark position. 

 Ross and Williams (2008) tested the significance of the between observation 

variation under mixed ANOVA applied to data collected with the criterion method 

used for this analysis. Application of this method to this experiment uses the error, 

defined as the proportional difference (REL) between the process ILD observation 

and the criterion ILD observation factored by the process, the primary terminal 

point, and the ILD. This test indicates the variation overall by process and subject 

to noise from particular ILD. 

 It is possible, as shown by Ross & Williams (2008) and Ercan (2008) to align 

a series of multi-dimensional measurements without the scaling and rotation that 

takes place with GPA. The method that will be applied in this thesis is described by 
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Morpheus et al. (Slice 2013) software and documentation as a Bookstein 

Alignment. This method requires two starting points to be aligned to the x-axis. 

The first will be set by translation - shifting the values of the y- and z-coordinates 

to zero (0) and subtracting the original value of the y- and z-coordinates from the 

values of all other y-and z-coordinates for all points in the model (this can be done 

with mesh vertices as well). The second starting point is aligned to the x-axis next, 

which involves rotation around the first point, which shifts the values of the y- and 

z- coordinates to zero (0). The actual geometric distance that all other points in the 

model will move by rotation varies by distance from the origin, but the degrees of 

rotation in the y- and z-planes do not. Applying rotation to all points does not 

disrupt the relationship of the points to each other. The last step is for three 

dimensional data and involves a second rotation step that uses a third point which 

is rotated onto the x-plane and causing the x-coordinate value to shift to zero (0). 

The transformation matrix is the map of the process of this re-orientation that 

indicates the translation and rotation of the origin into the new spatial orientation. 

Once all models have applied the transformation matrix that orients them to the 

same x-axis and z-plane, they can be translated to a common origin by selecting 

any coordinate (origin') and subtracting the x-, y-, and z-coordinate values of the 

selected coordinate common (origin') from the x-, y-, and z-coordinate values of all 

other coordinates for each model. This will result in all models in a sample sharing 

origin and alignment in three dimensions without any change to individual model 

geometric relationship. This method accomplishes a type of model registration. 

Although other methods exist to accomplish an aligned registration of data or 
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models for analysis, the above described method is selected for the purposes of 

transparency.  

The general system under which Geometric Morphometrics (GM) has 

developed is influenced by the work of Lele and Richtsmeier (2001), which outlines 

challenges of researching structural data. The authors propose that process in 

which the original orientation of data points is modified, the statistical validity of the 

variance of the distribution of the data is made unreliable. With few landmarks 

having an undefined or unstable relationship between them, orientation creates a 

definition that supplies a stability so long as it is either not changed, or all changes 

are applied universally to all subjects. As this concern is related to the maintenance 

of the original orientation of a sampled object as part of the definition of the 

location of a point and to permit the continuous identification of a landmark, it is 

considered and set aside as a strict interpretation. The cranial landmarks selected 

for the purposes of this study are individually, and as much as possible, 

sequentially identified. The labels and sequence conserve the spatial relationship of 

the points so long as any transformations are equally applied. For the purposes of 

assessing the statistical relationship, this project does adopt the use of Euclidean 

distances to address similarity for the sake of having an orientation insensitive 

factor for analysis. This addresses the concern over loss of comparative statistical 

validity of translated data having an unstructured or contrived geometry such as a 

set of triangles or a small number of landmarks in a multiple species sample. The 

sample here represent multi-dimensional coordinates of a single species sample 

with identified landmarks and as such will be presumed to overcome this issue for 

the purposes of this project where it would present a potential challenge. To study 



 

30 

 

the relationship of the landmarks derived from the four processed models without 

reducing the comparison values to their Euclidean distances would be preferred, if it 

was computationally practical. As it is not, the landmark variation is considered by 

two separate analysis; the ILD distances between all unique pairs of landmarks for 

each sampled crania, and the Point Variation of each sampled point from the 

processed models and Microscribe® (Revware, Raleigh, NC, USA) digital sample. If 

this project were to only consider the variation of the landmarks individually, the 

conclusions might be subject to the unreliability Lele and Richtsmeier (2001) 

specifically coach against, having a lack of spatial coordinate conservation and not 

accounting for causes of variability between the individuals of the sample and the 

impact on variation between processing methods. 

 Reporting on 3-D modeling technology for paleontology, Smith and Strait 

(2008) undertook testing of systematic scan data collection of mammal dental 

materials. A focus of the project was to examine error between materials and 

models, and models between cast generations. The authors introduced an error 

factor to their digital models by using a surface treatment of chemical whiting 

ammonium chloride, which is a well-documented technique used first to improve 

photographic capture of objects. The process adds slightly to the volume of the 

surface, but overwhelmingly improves the capture quality of laser scans on 

refractive surface by reducing the amount of noise incorrectly processed by the 

sensor. This is the type of consideration to be made for the utility of 3-D capture 

and analysis for anthropology discussed by Cignoni et al. (2008) in a cultural 

heritage context. The authors point out the necessity for careful consideration of 

scan preparation, acquisition and processing parameters. This speaks to the 
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importance of having researchers who have a good background to understand the 

factors that impact the collection and processing of 3-D scans.  

 Descriptive systems have been used due to the complexity of biological 

forms, and the difficulties presented with direct quantification. These methods 

include those of Walker (2008), Buikstra and Ubalaker, and Suchy and Brooks 

(white and Folkens 2000). 3-D modeling has the potential to offer quantification 

and systematized measurement of complex traits and forms. This fact has not been 

ignored by researchers. Garvin and Ruff (2012) considered quantitative adaptations 

of methods of sex determination based on multi-dimensional morphologies of the 

chin and browridge. Their study of the chin built on the approach of Thayer and 

Dobson (2010) using mathematical principles that result in statistically testable 

results. Sholts et al. (2011b) went further by testing group affinity, which is 

derived, for their purposes, from a suite of mid-facial structures.  

 In an earlier study, Sholts, et al. (2010) considered aspects of 3-D model 

resolution for the impact on surface area and volume rending of meshes with 

different sizes of "triangles". The cranial models under investigation were processed 

to have resolution by triangle area of 0.34 cm and 0.11 cm. While the study 

concluded that there were detectable differences between the two different 

renderings, these differences were not significantly different for the purposes of 

craniometric study. The authors also concluded that computational constraint 

prevented the use of models having the highest possible resolution given the 

scanning equipment employed.  
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Digitizer data, technology and history within biological anthropology 

Human observation and landmark recording of digital models has a variable 

margin of error that can be influenced by differences in visual presentation that 

could vary with hardware and software and experience. These potential sources of 

variability contribute to the differences between handling actual bone remains, and 

remote study. Thus far, the accepted assumption is that the error from digital 

capture methods is mathematically small, but differences could increase in 

magnitude at every stage between capture and final model (Ross and Williams 

2008; Smith and Strait 2008; Sholts et al. 2010). 

The methods undertaken in this project do not discount the arguments 

presented by Lele and Richtsmeier (2001), or the methods of Ross and Williams 

(2008) and Ercan et al. (2008) those arguments influenced. The two samples used 

in this thesis allow this project to be considerate of the influence that the location of 

an individual landmark point or definition of a landmark point might have on the 

variation between multiple observations and further on the influence variation 

between observations could have on the measure of the linear relationship between 

landmark points singularly and throughout the coordinate system. As an example, 

Type III landmarks are defined in terms of a structural or geometric dependency. 

Variation in the dependency would result in variations in the terminal definition of 

the landmark location. When a highly variable landmark is a terminal point of an 

inter-landmark distance, that variation will have an influence on the ILD variation 

for all distances that include the Type III landmark (Ross and Williams 2008). At 

the same landmark, an experienced observer would be expected to show 

consistency in selection of a landmark even in the case of a highly variable 
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landmark. If that consistency prevents the conclusion of statistically significant 

differences, then such a variable landmark would not contribute to a rejection of 

the null hypothesis.  

 All the traits under study in the research described here are difficult to 

measure directly, and therefore the successful application of quantification 

procedures allows for conclusions that should not vary based on the scale or 

experience of the researcher.  3-D Landmark data (Microscribe® (Revware, 

Raleigh, NC, USA) and Polhemus digitizers) have a history and are accepted tools of 

applied 3-D coordinate analysis within biological anthropology (Ousley and 

McKeown, 1999 (Ousley and McKeown 2001)). This was the first technology to 

allow for the retention of relative landmark relationships in 3-D in addition to ILD 

and chords which characterize traditional craniometric analysis. Data collected with 

a digitizer can be composed of individual points and scribed curves (or arcs as 

referenced in 3Skull 2.0.171(Ousley, 2010) (Ousley 2010) and applied by Williams 

and Slice, 2010 (2010)). Comparatively, digitized data is dimensionally advanced 

over two-dimensional craniometrics; however it is still a reductive method of data 

collection, simplifying the crania into a series of homologous landmarks and/or 

curves. Areas lacking in homologous landmarks are poorly represented by this 

simplification (Klingenberg 2010). Euclidean distances calculated from 3-D digitized 

point data do have the advantage of being proximate to the caliper-based two-

dimensional craniometrics that were used before the advent of digitized methods 

and continue to be taught and used to date where equipment for scanning and 

digitizing are not available. Training and experience have an impact on the relative 

accuracy of the collected data, and a trained observer should be sensitive to 
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variations in homology between individuals and populations. Reliability of digitized 

landmarks, and comparing landmark selection in direct and digital environments 

have been addressed by researchers in medical and anthropological fields (Slice et 

al. 2005; Olszewski et al. 2006; Olszewski et al. 2007; Olszewski et al. 2008; Ross 

and Williams 2008; Wong et al. 2008; Olszewski et al. 2010; Ross et al. 2010; 

Sholts et al. 2010; Sholts et al. 2011a; Sholts et al. 2011b; Shearer et al. 2012; 

Jantz et al. 2013; Olszewski et al. 2013; Abdel Fatah et al. 2014; Hale et al. 2014). 

For these experiments, collection samples are selected to attempt to control for 

learning and observer bias, and the authors have employed multiple observers and 

multiple collection sessions. Experimentally, this is an accepted framework. 

However, this selective process fails to address the limited and random nature of 

data. 

 Both caliper-based two-dimensional craniometric data and digitized point 

data have proven validity in the field of anthropometric study. However, the nature 

of the data they convey is limited by the reductive sample nature of landmark data. 

When applied to the experiments in which they are the designated data collection 

method, the landmarks and distances are valid. Having only the landmarks and 

distances, a researcher could not return to the data and ask questions about shapes 

and curves and features that are not represented by the collected points. Having 3-

D models from which to collect simple and complex data for analysis is of greater 

flexibility and advantage to the researcher. 

  



 

35 

 

Chapter Three 

Materials and methods 

 The primary research materials under study are three dimensional mesh 

models produced from 3-D laser surface scans of a sample of the crania from the 

18th century burials found in the Yacchi-no-gama (Yacchi cave) site on Kumejima 

(Kume Island) in the Okinawa Prefecture. Scan data from the 3-D laser surface 

scans were managed via software into the models used in the landmarking 

procedure to extract data examined under the primary test of Correlation 

Coefficient test and the secondary tests of Analysis of Variance and Similarity of 

Means. 

 Materials 

Description of the sample  

 The proposed data set for this project consists of digitized cranial landmarks 

collected via Microscribe® (Revware, Raleigh, NC, USA) and 3Skull Software 

(Ousley 2010) by Beatrix Dudzik (2012) and 3-D surface scans collected via Z-

Scanner 800 (3DSystems, Rock Hill, SC, USA) by Noriko Seguchi (2010). The 

collected crania represent 18th century burials found in the Yacchi-no-gama (Yacchi 

cave) site on Kumejima (Kume Island) in the Okinawa Prefecture and housed at the 

Okinawa Prefectural Archaeology Center, Okinawa Japan. This sample has not had 

any selection criteria applied to eliminate individuals based on preservation, age, or 

sex. Individuals have only been excluded if the original scan data is corrupted. 
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 The two sample data from this collection were drawn at different times. Not 

only was the technology used for the collecting of the samples different, the 

collection protocol required of the researchers was different. Seguchi (2010) applied 

a data collection method that required minimal contact and handling of the 

materials and reported few restrictions on data collection. Dudzik (2012) later 

reported that due to continued deterioration of the materials the collection 

management required the use of a thin sheet of vinyl between the sample surface 

and the Microscribe® (Revware, Raleigh, NC, USA) probe. 

 The sample under study is chosen to represent some of the important 

considerations for craniometric study that can be facilitated by the use of 3-D 

models. The full sample includes both Microscribe® (Revware, Raleigh, NC, USA) 

data points collected directly from the crania and 3-D scan data that has been used 

to produce virtual digital models. With these two types of samples, correspondence 

by correlation of virtual digital models with direct measurements can be tested. 

 The depositional environment of the southernmost islands of Japan is 

tropical, which is regarded as highly destructive with regards to bone preservation. 

This climatic consideration makes cave burials a valuable resource for the study of 

past populations. This collection is cared for under the auspices of a foreign 

government agency, which is effectively a gatekeeper to data collection as well as 

the future of the collection in terms of curation and preservation. To have a digital 

collection of materials in reasonably good condition overcomes many barriers to the 

study and understanding for the human history of Asia. 
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 It has been suggested since the first part of the 19th century that the 

populations inhabiting the Okinawa Island chain are distinct from the populations of 

the Japanese Archipelago and the other regions surrounding the East China Sea to 

which it is adjacent - the Central China Coast, the Southern Korean Peninsula, and 

Taiwan (Fukumine et al. 2006; Moiseyev 2009; Consortium et al. 2012; Fukase et 

al. 2012). These suggestions propose that the particular characteristics of the 

Okinawa Island populations - and the Ryukyu Kingdom that was the recorded 

historical culture of the southern Okinawa Islands - were attributes connecting the 

populations to the pre-Yayoi (Iron Age) Jomon Culture. Over the intervening time, 

various investigators have undertaken research to bolster or refute the suggestion 

of a Jomon ancestry (Fukumine et al. 2006; Koganebuchi et al. 2012). Before the 

advent of ancient DNA studies, and in the absence of sufficient ancient DNA 

samples, studies of cranio facial and dental characteristics have relied heavily on 

qualitative analysis of scarce samples. Saso et al. (2011) is an exception to the 

qualitative trend as discussed in a previous section. 

It is rare that a researcher in the field would collect and average more than 

one or two repetitions of landmark collection on the same individual. There is also 

no way to control for the conditional nature of human crania that have survived the 

circumstance of their taphonomic environment. The result is important typological 

and reference materials that can be severely compromised compared to large 

forensic collections. Envisioning a future of anthropometric research in which it is 

more common to study materials remotely in a purely digital or a digital 

reproduction form, the chances that all research pertaining to a sample will be 

undertaken by an original observer would be unlikely. There are many advantages 
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to the use of digital models to be explored, but importantly, such methods permit 

the study of materials to be undertaken regardless of distances between collections 

and researchers without putting the preservation of materials to further risk of 

damage due to handling.  

Methods 

 Two processing parameters are used crosswise to produce four models; two 

with a large number of vertices and faces distributed over the whole model, and 

two contrasting models with fewer vertices distributed to concentrate points and 

faces to areas of greater complexity, each pair differing by manifold state, an open 

or closed geometric state of a mesh model (Cignoni and Scopigno 2008;Jantz et al. 

2013; Abdel Fatah et al. 2014). 

Validity of the 3-D coordinates for Landmark Point Variability; the 

landmark variation for each processing method, is assessed as the degree of 

correlation between the Criterion landmark point and the corresponding point of 

each of four processing models 

Validity of the linear distances for Paired Inter-Landmark distances 

(ILD) of coordinates for each processing method is evaluated as to how closely the 

linear distance selected from 3-D surface scans indicate statistical correlation with 

the linear distances of the digitized point data for the distance between all unique 

pairs of landmarks. 

In this case, the directly collected landmarks and original 3-D scans have 

been collected essentially blind. The scans and landmarks were collected by two 
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outside contributors offering very limited feedback and sample description of the 

crania of the original direct samples. 

 The measurement construct of craniometrics derived from Cartesian 

landmarks directly collected in three dimensions represents an established criterion 

method against which the validity of the use of craniometric Cartesian landmarks 

derived from multi-dimensional models in a digital environment can be tested. 

Assessing the correlation of the landmark variation under the processing levels 

proposed here establishes the presence or absence of concurrent validity of the 

data collected and processed in the digital environment to the data collected 

directly from a physical specimen.  

 The processing methods result in four models that represent all combinations 

of each of the two levels of process parameters. The first set of process parameters 

is analogous to resolution of an image. 3-D mesh models are built from vertices 

interconnected to form faces. As the number of faces increases, as with image 

resolution, the mesh of a 3-D model appears smoother. Two levels of resolution 

have been chosen to represent the potential impact of the number of faces (and 

vertices) on the selection and location of landmark points. The second set of 

process parameters involves possible geometric states that virtual models can exist 

in so long as they are in an exclusively digital environment. A mesh model built 

from a 3-D surface scan is not a true geometric solid. As an example, a sheet of 

paper represents a true geometric solid. It could be thought of in general as having 

a front and a back, from the perspective of 3-D geometry a sheet of paper has an 

outside surface and internal material in between. Even if a hole is punched through 
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a sheet of paper, walls of the hole will maintain the outside surface and the solid 

state of the sheet. In virtual 3-D rendering of a mesh model, a mesh will have an 

outer surface and an inner surface. The outer surface need not be complete or 

continuous to be rendered in a digital environment. Such a mesh model is defined 

as non-manifold and can include models having overlapping, non-coincident 

(surfaces that overlap but do not touch or meet smoothly). Most software used for 

the manipulation of 3-D mesh includes protocols to make a mesh model continuous 

and remove or repair any overlapping surfaces. Depending on the settings used, 

the mesh can be further made watertight, which repairs any places an incomplete 

mesh has a hole that exposes the inner faces. The results of the application of a 

watertight manifold process is an effectively solid model and the process is a 

requirement for a mesh model that will be used in and additive reproduction - such 

as 3-D printing, or Computer Aided Manufacture (CAM). The 3-D mesh models used 

in this thesis were processed to result in sets of models that were non-manifold and 

sets that were watertight manifold.  

 The two levels of each process parameter applied to the sample results in 

four sets of 3-D mesh models referred to by the combination of process parameters 

each set represents. 

Strong correlation of one or more processing parameters should indicate that 

the landmarks derived from strongly correlated process models are valid as 

representations of the criterion direct digital landmarks and further, the physical 

crania.  
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Weak correlation of one or more processing parameters should indicate poor 

convergence and suggest that the process model whose landmarks have low 

correlation vary from the criterion method in some significant way. 

Although the results of this validity testing will apply specifically to the 

sample under examination, the experiment was designed to take into consideration 

generalization to different 3-D and traditional data collection methods as samples 

become available. The processed Yacchi 3-D sample (Seguchi 2010) will be made 

available for analysis to future researchers. The unique nature of the sample is 

significant, but practical concerns to collecting a new sample from the skeletal 

materials onsite would prove prohibitive. The amount of complexity that can be 

imparted to data by making use of 3-D scans informs the utility of a thesis such as 

this. It is a concern for the purposes of future applications of this type of data set 

that uniform processing methods are tested against known standards of analytical 

metrics. This type of study is a primary step in understanding the consequences of 

digital data collection and processing on samples that are traditionally only studied 

directly.  

Model Processing 

 Preparation 

 

 The raw scan data for each cranium contributed by Seguchi (2010) must be 

processed to clean, align, and merge the superior and inferior views taken during 

scanning. Once merged, the scans can be further processed to remove extraneous 

data and correct scanning errors. At this point, the manifold version of the model 

will be made which will produce a geometrically solid (or watertight) object. 
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Although the non-manifold models could not be rendered to a physical reproduction 

method, such as 3-D printing, the landmarking process does not require that a 

model be manifold. Further, each landmark collected will have a normalized 

vector perpendicular to the surface it defines.  

 From the manifold and non-manifold scan models, tertiary processing will be 

applied to create a sample set from each cranium of a research model for each of 

two processing criteria: high-face count, and low face count. The target number for 

faces is 150,000, determined by the mean number of faces of the primary models 

after the manifold step.  The target number of faces used for the low face count 

models is 50,000 faces (Jantz et al. 2013). Landmark collection follows the 

suggestions of  Jantz et al. (2013) and Hsiao (1996) using selection planes that 

orient with the Frankfurt Horizontal Plane, and the Mid-Sagittal Plane to determine 

midline and lateral landmarks by their geometric description. The location of 

remaining landmarks lacking a geometric location will be determined and refined by 

visual assessment.  

 Initial Cleaning 

 

The Z-Scanner 800 is a handheld surface scanner. With this application of 

scanning technology, the scanner is moved by the operator over the surface of 

interest which is ideally static in position throughout the capture pass. The Yacchi-

no-gama crania were placed on a calibration surface and scanned in two passes 

(superior and inferior) for each of the cranial and mandibular elements. Original 

scans include some areas within the scan environment that were not part of the 

skulls which were captured in the scan passes. This is a normal by-product of 
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scanner interaction with the immediate scanning environment and can be 

advantageous when the extra scanned areas serve to calibrate and improve the 

alignment of the scan model. After a scan is captured, the unwanted areas can be 

removed from the mesh  file produced by the scanner. 

Meshlab software (Cignoni et al. 2008) was used to select and delete the 

unwanted areas from mesh files of the superior and inferior cranial scans. The 

resulting mesh files were reformatted into *.ply (polygon file) format. 

 Merged Models 

 

The superior and inferior components of the models were aligned by common 

geometry manually selected by the observer. After this initial alignment, the 

Meshlab software (Cignoni et al. 2008) is directed to process the two components 

into an alignment with as small a distance squared error (d2) between overlapping 

components. Low d2 is preferred. After alignment the d2 average for all models was 

0.062127. The d2 for individual models in listed in Table: 4.  

With the maximum alignment of the two mesh achieved, the two files can be 

flattened into a single mesh file. The flattened file retains the locations of all faces 

and vertices of the parent files. This can result in the retention of mesh defects. 

Defects can include isolated faces, unreferenced vertices, faces with inverted 

normals, and layers of mesh that overlap but do not intersect. These are problems 

that can result in a greater computational expense for analytical purposes and 

errors for placement of landmarks should the location intersect with a defect. 

Working with a large model file also affects research design by imparting a higher 

computational expense due to the file size. The rendering process used to project 
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the visual equivalent of a 3-D model in a digital environment must process large 

subsets of data within a single file as rapidly as possible, and without processing 

conflicting or corrupted data (Jantz et al. 2013).  
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Table 1: Computational Characteristics of Raw Models. 

Model (*.STL) 

Original Pre-Process 

File size (MB) Faces Vertices Aligned (d²) 

1 2go-2-2_male.stl 7.1 135697 70418   

1 2go-2-2_male_bottom.stl 6.5 147960 79540 0.057746 

2 6go-6-6-male.stl 6.4 134594 70825   

2 6go-6-6-male_bottom.stl Does Not Exist - Scanning Error  

3 8-14_female.stl 6.2 123650 64925   

3 8-14_female_bottom.stl 5.9 129667 69775 0.076798 

4 11-5_male.stl 6.6 136570 71262   

4 11-5_male_bottom.stl 6.5 137711 74563 0.07672 

5 11-14_female.stl 6.6 130134 67908   

5 11-14_female_bottom.stl 6.2 137400 73444 0.050739 

6 11-15_male.stl 6.8 144021 75325   

6 11-15_male_bottom.stl 6.9 141576 75868 0.056846 

7 11-42 female.stl 7 132567 69385   

7 11-42 female_bottom.stl 6.3 147235 79105 0.068469 

8 2go-2-30_male.stl 7.1 139009 72261   

8 2go-2-30_male_bottom.stl 6.6 148492 79542 0.048818 

9 2go-2-32_male.stl 7.4 140304 73605   

9 2go-2-32_male_bottom.stl 6.7 155535 83869 0.078066 

10 7-12-male.stl 7.5 147997 77974   

10 7-12-male_bottom.stl 7.1 158047 84722 0.075532 

11 9-15_female.stl 6.2 122513 64651   

11 9-15_female_bottom.stl 5.8 130734 70120 0.047501 

12 11-34_male.stl 6.4 129156 67650   

12 11-34_male_bottom.stl 6.2 134123 72795 0.063547 

13 11-42 male.stl 6.7 139581 72888   

13 11-42 male_bottom.stl Does Not Exist - Scanning Error 

* 11-19_female.stl 6.5 133777 69530   

* 11-19_female_bottom.stl 6.4 136790 73952 0.06423 

* 2-13_male.stl 6.5 135489 70927   

* 2-13_male_bottom.stl 6.5 136831 74041 0.053619 

* 2-16_female.stl 6.6 135939 71035   

* 2-16_female_bottom.stl 6.5 138288 74570 0.051141 

  
 

File size (MB) Faces Vertices Aligned (d²) 

Mean for sample 6.58 138046.2 73215.83 0.062127 
 

* Some Model files failed to resolve during this stage of processing due to indeterminate file 
corruption of the source file. 
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 Refining and aligning the raw scan files results in pre-process models which 

have large areas of overlap that is redundant to the model and keeps the mesh file 

size large. The average files size for each half of the raw scan files is 6.58 MB. 

Large files are undesirable because they slow down rendering and the application of 

any selection or analysis.  

Processing the models produced two sets of two mesh models each. The processed 

models a reduced in size compared to the original raw scan files. The average size 

for the merged and processed mesh file is 2.3 MB, which is a reduction of at least 

25% for each cranium. The high face count models for each cranium are larger on 

average, but still within a reasonable range for maintenance of detail contrasted to 

computational expense.  

 Process Levels 

 

 After the superior and inferior views have been merged, the resulting file 

retains the raw information of both parent files. While working with a scan that 

exactly reflects the surface of the source would be considered a conservative 

approach, to use the size of files that result from raw data models is prohibitive due 

to the necessary computational thresholds and added time required by thresholds.  

 To mitigate the issue of file size and computational efficiency, it is sensible to 

consider the application of mesh processing methods that uniformly reduce the file 

size in a trade-off that minimally impacts the retention of accuracy. 
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 Table 2: Codes for Processes 

Process Code Description Parameters 

hf: 1 
high face count, 
manifold High Face count models are processed to re-distribute 

the faces and vertices of the raw, aligned scans to 
approximately 150,000 faces and 75,000 vertices. hfnm: 2 

high face count, non-
manifold 

lf: 3 
low face count, 
manifold Low Face count models are processed to re-distribute 

the faces and vertices of the raw, aligned scans to 
approximately 50,000 faces and 25,000 vertices. lfnm: 4 

low face count, non-
manifold 

dd: 5 
Microscribe® 
digitizer data 

Landmark sample captured from the physical specimens 
with a Microscribe® (Revware, Raleigh, NC, USA)) 

3-D Digitizer 

 

Figure 1: Examples of Processed Models 

Examples of the mesh models at each of the levels of the processing parameters. a) 

low-face count manifold. b) low-face count non-manifold. c) high-face count 

manifold. d) high-face count non-manifold. Differences between the manifold and 

non-manifold process models can be observed in the orbital and nasal cavities and 

in the dental elements. 
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Figure 2: Examples of Stages of Processing Models 

Examples of mesh models emphasizing the vertices. a) high-face count mesh. b) 

low-face count mesh. c) aligned, unprocessed superior and inferior mesh including 

the faces. d)  aligned, unprocessed superior and inferior mesh. The examples c & d 

indicated the areas of overlap and excessive point density resulting from the 

scanning procedure. 

 

 Methods I use in this thesis are designed to process a 3-D mesh for 

optimization of file size and accuracy under either a random sampling of the surface 

(Kazhdan et al. 2006), or by evaluating the redundancy of the number of faces and 

vertices over a given area and reducing the density of both in areas and directions 

of low variation and maximizing the sampled density in areas of greater complexity 

(Hoppe 2010*). 

 Based on previous 3-D cranial studies of CT scans (Saso et al. 2011; Jantz et 

al. 2013) and surface scans (Sholts et al. 2010; Sholts et al. 2011a; Shearer et al. 
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2012) the processing levels analogous to resolution were set at 150,000 faces (~ 

75,000 vertices) for the high resolution models, and 50,000 faces (~ 25,000 

vertices) for the low resolution models.  

 

Figure 3: Meshlab (Cignoni et al. 2008) Simplification Settings 

The settings applied to the aligned and joined hemispheres of the unprocessed 

models to effect the (a) high face count and (b) low face count process models 

  

 Since the time Sholts, et al. (2010) was written, processes for accurately 

rendering 3-D meshes have improved. One such process, applied for this project 

applies the decimation of the mesh to the low face count mesh models to render 

the number of faces and vertices of complex areas more densely and non-complex 

areas with less density. Decimation involves the use of a quadric model that 

compares a single vertex or edge to those nearest and records the variation, this 

step is then repeated for the next nearest points, resulting in a set of points that 

meets the criteria of a set target number of faces and distribution to vary based on 

the actual variation and convolution of different areas of the mesh. Differences in 

the variation between a starting point and the next nearest points indicates a high 
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probability of surface complexity – such as bending or curving of the surface - and 

therefore indicates an area that would require a greater density of faces and 

vertices to characterize the shape of the original mesh model. Conversely, very low 

or no difference in the variation between the starting point and the closest points 

indicate a low probability of surface variation – a flat face of a cube, for example - 

and suggest that the area can be accurately rendered with fewer faces and vertices. 

The procedures for decimation implemented by the Meshlab software (Cignoni et al. 

2008) as applied for this study use this quadric method with multiple iterations to 

develop a best fit representation of the original mesh model with a specified target 

number of faces. There is an advantage of multiple iterations in that the potential 

for every seed, or initial starting point used for each iteration, having a very high or 

low complexity relative to the overall mesh and exerting a strong influence that 

introduces bias to more distance parts of the mesh is minimized. (Hoppe 1999). 

Once this has been applied, the areas of the "triangles" over the mesh vary greatly 

depending on the degree of change over the surface at a given area of the mesh.  

 

 Standard Alignment 

 

Orientation differences between 3-D digitizer coordinates, CT Scans, and 

surface scanning technology present an issue regarding inter-operability is the 

capturing orientation. It is possible to orient a subject object for 3-D scanning in 

any way, although consistency is recommended for multiple scans if for no other 

reason than the researcher’s a priori knowledge about the object. Orientation is 

important to geometric of data because significant differences in orientation can 
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lead to weak statistical conclusions at the time of analysis if they have not been 

accounted for. Lele and Richtsmeier (2001) suggest this to be due to any 

presumptive alignment taking place to the coordinate matrix of any set of 

coordinate data. This serves as a good warning against the possibility of spurious 

conclusions made from poorly understood or poorly aligned models. This study 

must be concerned with data collected by different means, each of those having 

slight differences in orientation. Therefore, this project must rely on the relationship 

between the coordinates of each set of points and each model to appropriately 

orient all data for the multiple process models and the Microscribe® (Revware, 

Raleigh, NC, USA) digitized data. 

CT scans are built from 2 dimensional layers, each oriented as (X, Y) and 

building the Z-plane by stacking each successive layer. This is the global capturing 

orientation, which is parallel to the slices of a CT scan, and independent from the 

resting orientation of the object undergoing scans.  Surface scanning and 

coordinate digitization both take in data in all dimensions simultaneously either 

dynamically or rotationally for most scanning systems. If a cranium were to be 

placed on a single basal resting orientation and subjected to a CT scan and a 

surface scan, the resulting data would produce models that divided the X, Y, and Z 

planes differently.  

Anthropological training in the use of coordinate digitizer collection usually 

specifies a resting orientation of individual samples on the Frankfurt Horizontal 

plane (Figure 5) or resting on the basal portion of the skull. Protocol for use of a 

secondary orientation is documented by Morpheus, et al. (Slice 2013) to make for 
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an easier capture of basal or lateral landmarks within the work area of the digitizer 

arm. The alternative for cranial point sampling involves a flexible pedestal and 

mirror (Ousley 2010). Uniformity of orientation is usually considered globally 

consistent enough to permit comparisons of samples collected by the same or 

multiple identically trained observers. Observers using different resting orientations 

have problems making direct comparisons of landmark coordinates, as discussed in 

Ross and Williams (2008).  

With a few exceptions, surface scanners create a dynamic orientation based 

on the object. Complex objects like a skull necessitate capture of multiple 

orientations that are stitched together as described above. If the models were to be 

used for direct comparison or having coordinates collected without a standard 

alignment, the dynamic nature of scan collection can create problems.  

To solve the problems with orientation with all methods, it is practical to 

apply as near as possible the same alignment to all methods. Some degree of 

variation will still occur, as it would for different observers or on different days, so it 

is expected that the variation would be within an acceptable threshold. Software 

used to manipulate and generate 3-D models uses an x, y, z virtual environment to 

render the models. If a model is moved in the environment, the changes in linear 

position (translation), rotation, or scale are recorded in a transformation matrix. 

Models built from surface scans or CT scans can be visually oriented to the 

Frankfurt Horizontal plane by aligning the site of porion on the left and right lateral 

aspects of the cranium with the lowest point of the inferior orbital margin. From 

here, the mid-line can be estimated for orientation from multiple structures.  
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Standard alignment is applied to the cranial models by transformation matrix 

generated from manually transforming a primary merged model (Alpha) in 

CloudCompare software (Girardeau-Montaut 2014) as described above. The 

transformation matrix is saved as it can be re-applied to models of that specimen 

generated from the primary merged model. 

Landmark Sample 

 Placement and recording of landmark points in a digital environment can be 

accomplished by any one of several available of methods.  Software designed for 

manipulation and rendering of 3-D models typically would have some associated 

function for placing a reference point on a model and recording the location of that 

point relative to the 3-D environment to assist in registration of objects in the 3-D 

coordinate space. For the purposes of this project, Stratovan Checkpoint© software 

(Stratovan Corporation, Davis, CA) was selected because the viewing options are 

more advanced than other options for digital landmark point collection. This 

commercial software allows selection and placement of points, landmark labels, and 

export of the collected landmark points to several file formats. For general 

versatility, the *.CSV (Comma separated values) have been used to export the 

landmark point coordinates from Stratovan Checkpoint© software (Stratovan 

Corporation, Davis, CA). The use of this software for this project was granted by 

the makers under an extended trial directly to the author. 
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Figure 4: Landmark Map 

Visual map of the location of the landmarks sampled. 

 

 Landmarks selected for collection and analysis for this test were required to 

meet several criteria (Ross and Williams 2008; Sholts et al. 2010; Saitou et al. 

2011). First, it was necessary to select landmarks that had been part of the direct 

Microscribe® (Revware, Raleigh, NC, USA) data collection which was the derived 

from the ThreeSkull v.2.0 software (Ousley 2010). ThreeSkull v.2.0 is an interface 

used to direct the collection of digitizer points systematically and maintain 

consistent identification of landmarks as they are collected. The list of landmarks 

was reduced from this first list to satisfy several further requirements: (1) each 

landmark must exist on most or all crania in the sample; (2) each landmark must 

be visible either directly or accurate to estimate based on the 3-D mesh models 

with the highest resolution (high face count models). The latter requirement 
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disqualifies landmarks with particular definitions that require visualization of sutural 

intersections either smoothed (obscured) or non-smooth (bumpy) areas; or may 

lack adequate scan capture due to size, complexity or fragility (damage).  Examples 

of landmarks that cannot be accurately estimated without direct visualization are 

asterion, and superior and inferior zygotemporale. The mesh models under study 

here were captured without texture, which prevents the visualization of these areas 

for selection of landmark locations. Asterion is an intersection that is found within 

an area of convoluted sutures between the temporal and occipital bones. The 

zygotemporale landmarks are not only dependent on visualization of the suture 

between the zygomatic arch and the temporal arch, they are also dependent upon 

accurate capture of the small, fragile structure.  

 The process of elimination based on the requirements determined above 

resulted in the final list of landmarks selected for the 3-D digital data collection. 
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Table 3: Landmarks for 3-D Comparison 

 Abbrev. Landmark Type Definition 

1 prosH prosthion-Howells 
Most anterior point of the midline inter-dental, between 
central incisors. 

2 ssp subspinale 
Deepest point directly inferior to the projection of the nasal 
spine.  

3 prosM prosthion-Martin 
Most inferior point of the maxilla on the midline, between the 
central incisors. 

4 nas nasion 
The intersection determined by the sutures between the 
frontal and nasal bones. 

5 glb glabella 
Anterior projecting extrema of the midline of the frontal bone 
proximal to the orbital torus.  

6 spglb supraglabellare 
Convex midline point superior to glabella on the midline of the 
frontal bone. 

7 brg bregma 
Intersection of the coronal and sagittal sutures between the 
frontal and parietal bones. 

8 lam lambda 
Intersection of the sagittal and lambdoidal sutures between 
the parietal and occipital bones. 

9 opg 
opisthocranion 

(GOL) 
Posterior extrema of the crania on the midline. 

10 ops opisthion Most posterior point of the foramen magnum on the midline. 

11 bas basion Most anterior point of the foramen magnum on the midline. 

12 zygomr zygomaxilare R 
Inferior extrema of the suture between the zyogmatic and 
maxillary bones 

13 jugr jugale R 
Deepest point (anterior) of the transition between the frontal 
and zygomatic processes. 

14 fmtr 
frontomalare 
temporale R 

Posterior extrema of the suture between the frontal and 
maxillary bones. 

15 fmar 
frontomalare 

anterior R 
Anterior extrema of the suture between the frontal and 
maxillary bones. 

16 ectr ectoconchion R Most lateral point of the margin of the ocular orbit. 

17 zygoor zygoorbitale R 
Location of the zygomaxillare suture crossing the margin of the 
ocular orbit and the inferior orbital plate. 

18 dacr dacryon R Alternate definitions place at the sutural intersection of the 
lacrimal, maxillary, and frontal bones -or- the apex of the 
lacrimal fossa. The definitions may be concurrent, or 
indeterminate depending on the individual. 19 dacl dacryon L 

20 obhi 
lower orbital 

border L 
The most inferior point of the margin of the ocular orbit. 
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21 obhs 
upper orbital 

border L 
The most superior point of the margin of the ocular orbit. 

22 ectl ectoconchion L Most lateral point of the margin of the ocular orbit. 

23 zygool zygoorbitale L 
Location of the zygomaxillare suture crossing the margin of the 
ocular orbit and the inferior orbital plate. 

24 fmal 
frontomalare 

anterior L 
Anterior extrema of the suture between the frontal and 
maxillary bones. 

25 fmtl 
frontomalare 
temporale L 

Posterior extrema of the suture between the frontal and 
maxillary bones. 

26 jugl jugale L 
Deepest point (anterior) of the transition between the frontal 
and zygomatic processes. 

27 zygoml zygomaxilare L 
Inferior extrema of the suture between the zyogmatic and 
maxillary bones 

28 zygl zygion L 

The lateral extrema of the zygomatic arches. 

29 zygr zygion R 

30 eurr eurion R 

The lateral extrema of the greatest cranial breadth. 

31 eurl eurion L 

32 stpl stephanion L 
Intersection of the coronal suture and the superior temporal 
line (ridge caused by the temporal fascia attachment). 

33 stpr stephanion R 

34 porr porion R 
Point superior to the external auditory meatus, also may be 
determined by the posterior root of the zygomatic arch. 

35 porl porion L 

36 mastr mastoideale R 

Inferior extrema of the mastiod process. 

37 mastl mastoideale L 

See Figure 4 for locations. Colors are used as visual cues to group the lateral 

landmarks for data collection and maintain the collection index. See Appendix 4 for 

data collection protocol. (Howells 1973; Howells 1996; Bookstein 1997; White and 

Folkens 2000). In the text; landmark refers to a definition of a location, point refers 

to a sample coordinate of a landmark. 
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Figure 5: Example of Landmark Point Sample 

This figure shows the scatter of the landmark points from all process models. In the 

inset, a plane indicates the Frankfurt Horizontal intersecting the left and right 

porion landmark points and the left zygoorbitale landmark point. 

 

The final 37 landmarks are present on most crania in the sample and remain 

after the application of processing parameters for all models. These landmarks 

primarily characterize the global structures of the crania and structures of the 

cranio-facial area that are stable. Stable in this context refers to structures being 

present in high frequency and exhibiting low frequency of damage. The term is 

chosen here because in this test, non-exclusion of crania due to taphonomic 
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damage has been determined to be an important factor for the application of 3-D 

research methods using historical specimens. There is an increasing risk of error 

when the sample under study is small and experiences damage or deterioration. 

However, given the significance of historical samples in the record of the moments 

and the eras of human history, that risk should be considered and accepted. One 

advantage to the use of 3-D models is the ability to virtually reconstruct damage 

and deformation. Once we have a solid grasp on the potential impacts of these 

types of error, we can inform the methods by which reconstructed forms are 

imputed from the available data (Weinberg and Kolar 2005; Jantz et al. 2013). 

Landmark Data Format 

 

 Landmark points for the observations of the 3-D models of that sample 

crania at all levels of processing was collected using Stratovan Checkpoint©  

software (Stratovan Corporation, Davis, CA). The output of listed and landmark 

labeled point locations was exported to comma-separated values (*.csv) format 

text files using the internal functions of the program. Due to the differences in the 

technologies used to collect the experimental and criterion data, the sets of points 

representing each cranium have different orientations in the coordinate system.  

For testing the correlation of the Inter-landmark Distances (ILD), the 

orientation within the coordinate system is immaterial once EDMA is applied to the 

samples. For the purposes of the Landmark Point Variation (LPV), the differences in 

orientation and alignment of the samples for each cranium add a significant degree 

of noise and error that are best minimized. To account for the differences in original 

coordinate orientations between the collected 3-D model samples and the direct 
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collected sample, the models were aligned to a standard alignment within the 

coordinate system by the Frankfurt Horizontal Plane (FH).  

 The FH was operationally defined as the plane intersecting the right and left 

porion landmark points and the left zygoorbitale in accordance with the standard 

accepted definition. For registration to a common origin, standard coordinate 

system, and to the coronal and sagittal planes, which define the Y and Z planes 

respectively, the points must be translated and rotated to orient the left and right 

porion landmark points to Y and Z values of zero (0) and X values that equilaterally 

split the Euclidean distance between the two points. It must be stated that there is 

a consequence of this registration for the landmark points used to define the 

orientation. The multi-dimensional variation of the three is reduced such that left 

and right porion points only vary in X values, and zygoorbitale only varies in X and 

Z values. This does not significantly reduce the analytical validity of the data as the 

changes to the vector matrix of the points do not lose orientation relative to each 

other. 

 To effect the aligned orientation between the landmark points collected in the 

Stratovan Checkpoint© software (Stratovan Corporation, Davis, CA) and those 

collected using the Microscribe® (Revware, Raleigh, NC, USA) each set of landmark 

points for each crania in the sample were entered into a text file formatted for use 

with Morpheus et al. (Slice 2013) software with each point matched for serial 

position in the list of landmarks for each example.  

 Within Morpheus et al. (Slice 2013) software the points are processed with a 

three-dimension Bookstein alignment, setting an origin (porion left), translating and 
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rotating a secondary point (porion right) to zero for each the Y and Z directions, 

then lastly rotating the third point (zygoorbitale) around the X vector to zero for the 

Y direction. To bring the points back to the correct orientation in the XYZ coordinate 

plane, the sign (+/-) of the X coordinates is reversed and the Y and Z coordinates 

are reversed. 

Figure 6: Stages of Bookstein Alignment 

Bookstein Alignment of landmark point data allows for a set of points to be aligned 

to a specific subset of points, rather than a derived data centroid as with GPA. a.) 

The original orientation of the landmark point data imported into Morpheus, et al. 

(2013). Facial landmarks are highlighted. b.) The orientation after the application 

the Bookstein Alignment. The scatter of the points has been reduced, but the data 

is not aligned to the correct axes. Facial landmarks are highlighted. c.) 

Transposition of the data of the Y and Z axes corrects the alignment to the default 

3-D orientation, but results in a mirroring effect on the data of the X axis. Left 

Porion landmark point cluster is highlighted. d.) Inversion of the sign (+/-) of the 

data corrects for the mirroring effect and completes the process. Left Porion 

landmark point cluster is highlighted. 
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Equation 1: Bookstein Superimposition Transformation - Unit - Scale (Lele 

2001) 

         

            

            

   
      

  

Obs =  observation, the set of collected landmarks  (n=37) from a crania in the 

sample 

Prc = processing, the type and level of processing applied to the crania before 

landmarks are collected 

n = the landmarks collected on each observation, also indicated by abbreviations of 

the location name (See Appendix) 

                                                  
               

               
  

Scale Factor is the Inter-Landmark (Euclidean) distance value calculated between the first 

(porl) and second (porl) landmarks selected from an observation for Bookstein 

Superimposition. This process is reversed post superimposition to conserve the differences 

in scale between the sampled land marks for all processes and Microscribe® (Revware, 

Raleigh, NC, USA) digital landmarks. 

      

    

    

    

 

              

     
     
     
    

    

    

    

    

 

   

        

        

        

 

  

 

Equation 2: Bookstein Superimposition Transformation - Plane - Rotation 

(Lele and Richtsmeier 2001) 

Rotation factor is the degrees of rotation around the origin necessary on the x, y and z 

coordinate system planes to bring the second landmark (porl) into coincidence with the first 

landmark (porl) on the x plane and reduce difference of the y and z values between the first 

and second landmarks to zero.  
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Equation 3: Bookstein Superimposition Transformation - Root – Translation 

(Lele and Richtsmeier 2001) 

Translation factor is the linear shift required to root the first landmark (porl) to the origin of 

the coordinate system, which results in x, y, and z values of zero 

       

     

     

     

 

                    

     

     

     

 

    

     

     

     

 

    

     

     

     

 

  

 

Equation 4: Bookstein Superimposition Transformation – Correction for 

Standard Coordinate System 

Reverse scale, swap Y and X, inverse sign for X 

           

   

            

            

   
      

  
                     

 
 
 
 
              

               
   

          
 
 
 

 

 

 At this stage, the sets of landmark points are subjected to Euclidean Distance 

Matrix Analysis (EDMA) using PAST v2.17 (Hammer et al. 2001) to output the 

Euclidean distances to tables of each the unique pair of points for Inter-Landmark 

Distance (ILD) analysis and for each process for Landmark Point Variability (LPV) 

analysis. Missing data is imputed by column average substitution by the software.  

Equation 5: Euclidean Distance Matrix Analysis Formula (Lele and 

Richtsmeier 2001) 

                                       
               

               
  

Note, that this equation is the same equation applied in the first step of the 

Bookstein Superimposition Transformation.  
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 For the purposes of visualizing the distribution of the LPV sample, a plot of 

the process model samples compared to the criterion direct digital sample was 

created from values derived from pooled landmark point values of the average 

difference between a primary process model landmark point and the remaining 

process model landmark points against the difference between the primary process 

landmark point and the criterion direct digital landmark point.  
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Figure 7: Landmark Point Variation Distribution 

Plot of the Landmark Point Variation of all points (n=37) groups within colored 

polygons. Further grouped by landmark point Type (I, II, III). X-axis represents the 

values of the LPV for each process landmark point derived from the average of the 

distances of the mean of the primary landmark point to the mean of all other 

process landmark points. The y-axis represents the difference between the mean of 

each process landmark point and the criterion direct digital landmark point. 

Together, the axes of this plot show the relationship of the differences of the 

landmark point variation of the processes and the criterion direct digital landmark 

point selection. Those points with the least variance between the Process landmark 

point selection and the criterion direct digital landmark point selection are plotted 

most closely to the diagonal (x = y).  
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Missing data 

 Coordinate points were missing from the process models sample data from 

eight landmark points. Missing points were the result of insufficient scan capture 

problems or file corruption occurring between scanning and the refinement, 

alignment and processing steps.  

Table 4: Missing Coordinates Summary 

  1. prosH   10. ops 11. bas 13. jugr 28. zygl 29. zygr 36. mastr 37. mastl 

total 4 16 8 4 8 8 20 8 

hf 1 4 2 1 2 2 5 2 

hfnm 1 4 2 1 2 2 5 2 

lf 1 4 2 1 2 2 5 2 

lfnm 1 4 2 1 2 2 5 2 

dd 0 0 0 0 0 0 0 0 

Missing values influence rank order correlation methods. If not removed, average 

values are substituted with a central tendency value, resulting in an artificially high 
or low correlation depending on the central tendency of the sample subset. 

 

Table 4 lists the landmark points with missing coordinates. Missing data were 

imputed by column substitution by the EDMA process for the ILD sample in PAST 

v1.93 (Hammer et al. 2001). For the LPV test, the missing values were removed for 

each landmark and the Mantel correlation test was applied to the reduced sample. 

Statistical Analysis 

 For the ILD analysis, the points are tabulated by crania and unique pairs of 

landmark points for all processes, including the Microscribe® (Revware, Raleigh, 

NC, USA) digital landmark points against which the process ILD data will be 

compared for correlation.  

 Correlation is assessed for the ILD by either Pearson's product-moment 

coefficient of correlation r, or Spearman's rank order correlation coefficient rs*, 
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dependent upon evaluation of the set of inter-landmarks distance by group (crania) 

for each process and for the Microscribe® (Revware, Raleigh, NC, USA) digital 

inter-landmark distance for normal distribution. Preliminary testing of the 

distribution of the sets was evaluated with the Shapiro-Wilk's W indicating a mix of 

normally and non-normally distributed inter-landmark distances. 

 For Landmark Point Variability analysis, the points are tabulated by landmark 

for each cranium for all processes. A plot of the landmark coordinate data indicated 

that a substantial number of the Type III Landmarks were problematic for the 

purposes of the analysis of correlation to the criterion direct digital landmark points. 

Since these problems could be examined and attributed to either observation or 

alignment, all Type III landmarks have been excluded from the LPV sample 

analysis. 

Sets of coordinates are tabulated for the output for: 1.) each point for each 

process for all points for all crania; and 2.) the Microscribe® (Revware, Raleigh, 

NC, USA) digital landmark point for all landmarks for all crania. The resulting sets 

(n = 37 for four process models)  The distance between each process point and the 

remaining processes were averaged to a mean value of each point by cranium for 

use to compare with the log distance between each process point and the 

Microscribe® (Revware, Raleigh, NC, USA) digital point. 

 The correlation of LPV was evaluated exclusively by Mantel’s test (Hammer et 

al. 2001; Sokal and Rohlf 2011) of the correlation of the Euclidean Distance 

between the selected landmark points for each landmark over all sampled crania 

and the corresponding criterion direct digital landmark points. 
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The permutation method of the Mantel test method relaxes the statistical 

distribution requirements usually necessary to apply the Pearson’s correlation 

coefficient used within the Mantel’s test. This also overcomes concerns outlined by 

other studies of individual landmark point variation. These studies found alternative 

ways to transform the data, specifically the application of log transforms. The use of 

log transforms was intended to address concerns of the effect the size of 

differences between the landmark points selected by an observer could have on the 

analysis of this type of data (Olszewski et al. 2006; Olszewski et al. 2007; 

Olszewski et al. 2008; Olszewski et al. 2010; Olszewski et al. 2013) and to address 

heteroscedasticity (Wong et al. 2008).  

 The ILD and LPV sample sets were evaluated for random error, defined as a 

low degree of predictability of the values of the process model landmark points and 

interlandmark distances from the known criterion direct digitized landmark points 

and interlandmark distances. The definition of landmark points, as discussed earlier 

in this section in reference to the exclusion of Type III landmarks from the LPV 

sample analysis, is a factor that is considered as having some potential impact on 

correlation (Bookstein 1997).  The process parameters applied to the models from 

which the landmark point samples are derived are considered for potential 

contribution to overall error. 

For the ILD sample, random error was tested with the application of ANOVA, 

using a general linear model to indicate those points in the analysis that are highly 

variable to compare to the types described by Bookstein (1997) and evaluate for a 

the presence of error. Random error was evaluated by analysis of the distribution of 
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the Coefficient of Determination (r2). This ANOVA test was done using R software 

and packages for ANOVA tests with a general linear model for correlation 

coefficients. 

LPV sample was tested for the effects of random error for the same rationale 

as above for the ILD sample with the analysis of the Coefficient of determination 

(covariance, R2) of the significant correlation of the LPV sample. Random error due 

to landmark point Type was less of a concern, after the removal of the Type III 

landmarks from the LPV sample analysis. This means the possibility of random error 

can be evaluated on the basis of individual landmarks impacted by correlation as 

either not significant or substantially low or negative. 

Validity testing 

The analysis will consider the following to determine the validity of the metric 

samples from the four processing methods: (1) If the metrics resulting from each 

processing method indicate high or low correlation overall; (2) If the landmark 

correlation values are similar for both the Paired Inter-Landmark (ILD) variation 

and the Landmark Point Variation (LPV) analysis; (3) If patterns in the correlation 

of the data be explained by the influence of factors within the sample; (4) If 

variations in correlation are due to random error that can be evaluated by 

examination of the coefficient of determination (covariance, R2); and (5) Is 

systematic error present in the differences between the criterion direct digital 

landmark points and the landmark points of each process and confounding the 

findings of validity (Nance and Ball 1986; Carmines and Zeller 1979). 
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 Camines and Zeller (1979) informs the levels of validity coefficients that are 

considered to reflect validity. For this study, the levels of correlation necessary are 

set to a moderate level - conservative to avoid validating data that is too variable 

to be really useful and moderate to account for the variability in terms of 

observation bias and individual cranial variations (size, sex, etc.) which represent 

variability in the resulting measurements under all landmark sample conditions. In 

cases of testing the validity of a new metric, the level of correlation need not be set 

at a highly conservative level. This reflects the instance that even moderate 

correlations suggest a probable improvement with the use of the new metric or 

method (Carmines and Zeller 1979). 

 The choice of criterion-related validity test also divides the collected samples 

for comparison between the Microscribe® (Revware, Raleigh, NC, USA) digitizer 

sample and the samples collected from the 3-D models. For a criterion-related test 

of validity, the rejection of validity is influenced by the presences of systematic 

error which does not necessarily reflect on the reliability of the test method. 

 Reliability is often tested concurrently with validity when this type of testing 

is undertaken. This is not applied to the current experimental design of this thesis. 

Justification for not applying reliability testing stems from the impact of multiple 

observers, and the testing of combinations of multiple process parameters. When 

multiple observers are involved in the collection of a sample of any time of 

observed metric, error and bias are increased and may not always be simple to 

pinpoint and account for in research design. For the research design of this thesis it 

was necessary to consider this and apply a test of validity that could inform the 
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results for trends that could be related to the differences in the measurements 

derived from the process models.  

Repeating the data collection would have overcome the concerns created by 

the multiple original observers. However, for the purposes for testing multiple 

processing methods as applied here, it was not practical for a single observer to 

collect the landmarks samples from each of the four process models for each of the 

13 crania in the sample more than once. 
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Chapter Four 

Results 

 For nine crania of the sample, the non-manifold model is larger in size than 

the manifold counterpart. This suggests that some models contain components that 

were not removed at the higher face count during the processing steps. The 

observable results could be irregular face or vertex normals, or non-incident faces 

(Hoppe et al. 1993). The problems that could be caused in terms of the landmark 

selection process for the software and the observer using a mesh model with such 

defects are both real and subjective. The real problems arise when a point cannot 

connect with the observed surface at the coordinate it is being placed on.  The 

subjective consequence for the observer it to either change the selection coordinate 

or note the point as missing for that landmark on the defective sample.   
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Table 5: Computational Characteristics of Processed Models 

Model (*.PLY)  Model (*.PLY) 

Crania 
Code 

Proc 
Code Crania 

File size 
(MB) 

 Crania 
Code 

Proc 
Code Crania 

File size 
(MB) 

1 1 2go-2-2_m_hf.ply 2.9  8 1 2go-2-30_m_hf.ply 2.9 
1 2 2go-2-2_m_hfnm.ply 4.9  8 2 2go-2-30_m_hfnm.ply 4.9 
1 3 2go-2-2_m_lf.ply 1.0  8 3 2go-2-30_m_lf.ply 1.0 
1 4 2go-2-2_m_lfnm.ply 1.8  8 4 2go-2-30_m_lfnm.ply 1.8 
2 1 6go-6-6_m_hf.ply 2.9  9 1 2go-2-32_m_hf.ply 2.9 
2 2 6go-6-6_m_hfnm.ply 2.6  9 2 2go-2-32_m_hfnm.ply 4.9 
2 3 6go-6-6_m_lf.ply 1.0  9 3 2go-2-32_m_lf.ply 1.0 
2 4 6go-6-6_m_lfnm.ply 1.0  9 4 2go-2-32_m_lfnm.ply 1.8 
3 1 8-14_f_hf.ply 2.8  10 1 7-12_m_hf.ply 2.9 
3 2 8-14_f_hfnm.ply 4.9  10 2 7-12_m_hfnm.ply 4.9 
3 3 8-14_f_lf.ply 0.9  10 3 7-12_m_lf.ply 1.0 
3 4 8-14_f_lfnm.ply 1.8  10 4 7-12_m_lfnm.ply 1.8 
4 1 11-5_m_hf.ply 2.9  11 1 9-15_f_hf.ply 2.9 
4 2 11-5_m_hfnm.ply 3.0  11 2 9-15_f_hfnm.ply 2.9 
4 3 11-5_m_lf.ply 1.0  11 3 9-15_f_lf.ply 1.0 
4 4 11-5_m_lfnm.ply 1.1  11 4 9-15_f_lfnm.ply 1.0 
5 1 11-14_f_hf.ply 2.9  12 1 11-34_m_hf.ply 2.8 
5 2 11-14_f_hfnm.ply 2.9  12 2 11-34_m_hfnm.ply 3.1 
5 3 11-14_f_lf.ply 1.0  12 3 11-34_m_lf.ply 0.9 
5 4 11-14_f_lfnm.ply 1.0  12 4 11-34_m_lfnm.ply 1.2 
6 1 11-15_m_hf.ply 2.9  13 1 11-42_m_hf.ply 2.7 
6 2 11-15_m_hfnm.ply 3.0  13 2 11-42_m_hfnm.ply 2.7 
6 3 11-15_m_lf.ply 1.0  13 3 11-42_m_lf.ply 2.7 
6 4 11-15_m_lfnm.ply 1.1  13 4 11-42_m_lfnm.ply 2.7 
7 1 11-42_f_hf.ply 2.9      

7 2 11-42_f_hfnm.ply 3.0    Mean 2.3 

7 3 11-42_f_lf.ply 1.0    Min 0.9 

7 4 11-42_f_lfnm.ply 1.1    Max 4.9 

Table 5 indicates a mean files size of 6.58 MB for one clean hemisphere. 

This would indicate a high likelihood a merged, unprocessed mesh could 

average greater than 13 MB. The size of a file becomes an issue for 3-D 

rendering as the file is dynamically read to reflect dimensions and 

movement in a semi-realistic digital environment. 

This shows the file size reduction post processing for merged hemispheres 

for each processing parameter (HF, HFNM, LF, LFNM). Of note is the 

reduction in files size to a maximum files size that is less than the smallest 

files size for a single hemisphere of the raw models 
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Landmark Sample 

 During landmark selection, several non-manifold models for both processing 

resolutions were found to have defects that had a slight impact on the observation 

and selection of landmarks. For this sample, the defects were found to be non-

incident faces that created defective geometry and caused the selected coordinate 

of a point to appear to exist below the surface to the crania. Wherever possible, 

selection coordinates for points were adjusted to reflect the observed surface of the 

cranial model. 

Correlation analysis  

 Paired Inter-Landmark Distance 

 

 Correlation of the ILD with all unique paired landmarks characterizes the 

sensitivity of the measurements taken from the process models to the criterion 

distances from the Microscribe® (Revware, Raleigh, NC, USA) digitizer sample. 

Table 6 lists the ILD by process and a summary for the correlation of each 

point. Tables 7-8 list ILD Correlations by landmark listing for all possible unique 

paired distances and the correlation coefficient.  

There are landmarks with characteristics that result in a higher variability 

even when selected by the same observer in the same or different sessions. Such 

landmarks are classified by Bookstein (1997) as Type III. These landmarks have a 

very loosely bound definition and often are difficult to locate by definition using the 

Microscribe® (Revware, Raleigh, NC, USA) (Ross and Williams 2008; Sholts et al. 

2011a). ANOVA GLM was applied with R software (Team 2014) and suggests the 
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relative distance differences from the paired ILD of the highlighted eight out of the 

37 total sampled landmarks as having a higher relative variability.  

Figure 8: ILD Summary of Correlation (r) and COD (r2) by Process 

Correlation histograms are indicated by the darker filled regions. Three out of the 

four appear very similar, the correlation for the high face non-manifold differs being 

less constrained. The same pattern can be observed in the histograms of the 

covariance (lighter filled regions). This table summarizes the correlation and 

coefficient of determination tests of all ~666 non-repeating comparisons for each of 

the four sets of process parameters. Outliers are predominantly the result of and 

ILD with a Type III landmark point at one or both terminus of the distance. 
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Table 6: Summary of Inter-Landmark Distance Correlation by Process 

Correlation Distribution 

For All Points 

Process Mean 
Std 
Error 

Std 
Deviation 

s 
Variance Max Min 

hf 0.8607 0.0057 0.1478 0.0218 0.9992 -0.0166 

hfnm 0.8356 0.0064 0.1654 0.0274 0.9991 0.0464 

lf 0.8681 0.0059 0.1524 0.0232 0.9980 -0.1818 

lfnm 0.8602 0.0066 0.1690 0.0286 0.9987 -0.1833 

 

Table 7: ILD Correlation by Point (hf & hfnm) 

Correlation Coefficient (Pearson's r / Spearman's rs) 

  Type Point  Process Coef. COD Min Max Process Coef. COD Min Max 

1 2 prosH hf 0.8671 0.7519 0.3960 0.9874 hfnm 0.8310 0.6906 0.3031 0.9848 
2 2 ssp hf 0.8950 0.8010 0.3486 0.9924 hfnm 0.7728 0.5972 0.4432 0.9655 
3 2 prosM hf 0.8003 0.6405 0.3960 0.9474 hfnm 0.7210 0.5198 0.2765 0.9202 
4 1 nas hf 0.8564 0.7334 -0.0166 0.9944 hfnm 0.8496 0.7218 0.3120 0.9940 
5 3 glb hf 0.8242 0.6793 0.1671 0.9917 hfnm 0.7974 0.6358 0.2234 0.9917 
6 3 spglb hf 0.6467 0.4182 0.1671 0.9803 hfnm 0.7936 0.6298 0.0464 0.9752 
7 1 brg hf 0.8969 0.8044 0.2201 0.9883 hfnm 0.8673 0.7522 0.0464 0.9876 
8 1 lam hf 0.9099 0.8279 0.3731 0.9946 hfnm 0.8715 0.7595 0.2290 0.9961 
9 3 opg hf 0.8948 0.8007 0.3731 0.9965 hfnm 0.8640 0.7465 0.3425 0.9987 

10 2 ops hf 0.9100 0.8281 0.2757 0.9917 hfnm 0.8866 0.7861 0.4160 0.9940 
11 2 bas hf 0.8710 0.7586 0.4564 0.9806 hfnm 0.8653 0.7487 0.5661 0.9939 
12 3 zygomr hf 0.8906 0.7932 0.2782 0.9874 hfnm 0.8485 0.7200 0.3923 0.9825 
13 2 jugr hf 0.8659 0.7498 0.2467 0.9967 hfnm 0.8689 0.7550 0.3923 0.9981 
14 3 fmtr hf 0.8565 0.7336 0.4398 0.9733 hfnm 0.8630 0.7448 0.3847 0.9908 
15 3 fmar hf 0.9079 0.8243 0.5975 0.9840 hfnm 0.9049 0.8188 0.1311 0.9914 
16 3 ectr hf 0.8774 0.7698 0.6071 0.9839 hfnm 0.8864 0.7857 0.5380 0.9821 
17 2 zygoor hf 0.7965 0.6344 0.3944 0.9777 hfnm 0.8182 0.6695 0.3878 0.9908 
18 2 dacr hf 0.8580 0.7362 0.4914 0.9942 hfnm 0.8003 0.6405 0.0995 0.9988 
19 2 dacl hf 0.8410 0.7073 0.2467 0.9934 hfnm 0.8386 0.7032 0.4994 0.9936 
20 3 obhi hf 0.8682 0.7538 0.4622 0.9976 hfnm 0.8503 0.7230 0.5300 0.9988 
21 3 obhs hf 0.8114 0.6584 -0.0166 0.9918 hfnm 0.8021 0.6434 0.2234 0.9967 
22 3 ectl hf 0.8992 0.8086 0.5252 0.9976 hfnm 0.8997 0.8095 0.5387 0.9988 
23 2 zygool hf 0.8617 0.7425 0.5524 0.9796 hfnm 0.7152 0.5115 0.1190 0.9904 
24 3 fmal hf 0.8608 0.7410 0.4648 0.9836 hfnm 0.8411 0.7074 0.1190 0.9914 
25 3 fmtl hf 0.8658 0.7496 0.5914 0.9699 hfnm 0.8072 0.6516 0.3738 0.9932 
26 2 jugl hf 0.8705 0.7578 0.1410 0.9731 hfnm 0.8493 0.7213 0.2202 0.9922 
27 3 zygoml hf 0.8643 0.7470 0.3486 0.9897 hfnm 0.8301 0.6891 0.1033 0.9925 
28 3 zygl hf 0.8070 0.6512 0.3944 0.9936 hfnm 0.7618 0.5803 0.2202 0.9970 
29 3 zygr hf 0.8200 0.6724 0.1410 0.9902 hfnm 0.8124 0.6600 0.1033 0.9962 
30 3 eurr hf 0.8461 0.7159 0.5252 0.9922 hfnm 0.8074 0.6519 0.4705 0.9970 
31 3 eurl hf 0.8587 0.7374 0.4971 0.9951 hfnm 0.8023 0.6437 0.0995 0.9821 
32 1 stpl hf 0.8481 0.7193 0.4670 0.9946 hfnm 0.8470 0.7174 0.5028 0.9961 
33 1 stpr hf 0.8361 0.6991 0.2658 0.9967 hfnm 0.8362 0.6992 0.5085 0.9987 
34 3 porr hf 0.9047 0.8185 0.2782 0.9992 hfnm 0.8357 0.6984 0.1311 0.9991 
35 3 porl hf 0.9169 0.8407 0.4734 0.9967 hfnm 0.8705 0.7578 0.3847 0.9981 
36 2 mastr hf 0.9236 0.8530 0.7186 0.9992 hfnm 0.9035 0.8163 0.6078 0.9991 
37 2 mastl hf 0.9173 0.8414 0.6731 0.9967 hfnm 0.8966 0.8039 0.5984 0.9945 

Highlight indicates points with lowest correlations across all process methods. 
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Table 8: ILD Correlation by Point (lf & lfnm) 

Correlation Coefficient (Pearson's r / Spearman's rs) (cont.) 

  Type Point Process Coef. COD Min Max Process Coef. COD Min Max 

1 2 prosH lf 0.8767 0.7686 0.2203 0.9903 lfnm 0.8806 0.7755 0.4688 0.9853 
2 2 ssp lf 0.8792 0.7730 0.5930 0.9927 lfnm 0.8853 0.7838 0.5823 0.9868 
3 2 prosM lf 0.7954 0.6327 0.2203 0.9544 lfnm 0.7998 0.6397 0.4688 0.9694 
4 1 nas lf 0.8598 0.7393 -0.0379 0.9930 lfnm 0.8562 0.7331 0.0920 0.9875 
5 3 glb lf 0.7994 0.6390 0.1981 0.9942 lfnm 0.8039 0.6463 0.1195 0.9895 
6 3 spglb lf 0.7640 0.5837 -0.1818 0.9790 lfnm 0.6284 0.3949 -0.0105 0.9775 
7 1 brg lf 0.8483 0.7196 -0.1818 0.9891 lfnm 0.9036 0.8165 -0.0105 0.9828 
8 1 lam lf 0.9155 0.8381 0.4108 0.9940 lfnm 0.8989 0.8080 0.0987 0.9962 
9 3 opg lf 0.8998 0.8096 0.4108 0.9983 lfnm 0.9005 0.8109 0.0987 0.9987 

10 2 ops lf 0.9295 0.8640 0.5601 0.9955 lfnm 0.9334 0.8712 0.7245 0.9924 
11 2 bas lf 0.8994 0.8089 0.5008 0.9946 lfnm 0.8855 0.7841 0.6501 0.9910 
12 3 zygomr lf 0.8894 0.7910 0.3960 0.9885 lfnm 0.8685 0.7543 0.4285 0.9828 
13 2 jugr lf 0.8986 0.8075 0.5028 0.9981 lfnm 0.8915 0.7948 0.1955 0.9969 
14 3 fmtr lf 0.8829 0.7795 0.6037 0.9931 lfnm 0.8802 0.7748 0.5357 0.9839 
15 3 fmar lf 0.9319 0.8684 0.7628 0.9923 lfnm 0.9177 0.8422 0.3222 0.9833 
16 3 ectr lf 0.8862 0.7854 0.5965 0.9895 lfnm 0.8789 0.7725 0.4764 0.9847 
17 2 zygoor lf 0.8213 0.6745 0.3455 0.9855 lfnm 0.8076 0.6522 -0.1833 0.9876 
18 2 dacr lf 0.8800 0.7744 0.6586 0.9966 lfnm 0.8731 0.7623 0.5310 0.9976 
19 2 dacl lf 0.8570 0.7344 0.5028 0.9927 lfnm 0.8709 0.7585 0.3228 0.9924 
20 3 obhi lf 0.8945 0.8001 0.4082 0.9962 lfnm 0.8826 0.7790 0.4398 0.9959 
21 3 obhs lf 0.8377 0.7017 -0.0379 0.9938 lfnm 0.8176 0.6685 0.0097 0.9941 
22 3 ectl lf 0.8965 0.8037 0.4370 0.9966 lfnm 0.9062 0.8212 0.4092 0.9976 
23 2 zygool lf 0.8240 0.6790 0.2128 0.9927 lfnm 0.8199 0.6722 0.1776 0.9849 
24 3 fmal lf 0.8693 0.7557 0.1999 0.9860 lfnm 0.8637 0.7460 0.5108 0.9822 
25 3 fmtl lf 0.8424 0.7096 0.4521 0.9802 lfnm 0.7993 0.6389 0.1148 0.9872 
26 2 jugl lf 0.8557 0.7322 0.0309 0.9831 lfnm 0.8728 0.7618 0.1322 0.9875 
27 3 zygoml lf 0.8451 0.7142 0.0234 0.9923 lfnm 0.8289 0.6871 -0.0925 0.9908 
28 3 zygl lf 0.7954 0.6327 0.0309 0.9969 lfnm 0.7783 0.6058 -0.1833 0.9940 
29 3 zygr lf 0.8301 0.6891 0.0234 0.9943 lfnm 0.8174 0.6681 -0.0925 0.9908 
30 3 eurr lf 0.8411 0.7074 0.1999 0.9973 lfnm 0.8406 0.7066 0.4092 0.9923 
31 3 eurl lf 0.8711 0.7588 0.3178 0.9916 lfnm 0.8646 0.7475 0.3284 0.9815 
32 1 stpl lf 0.8629 0.7446 0.5561 0.9981 lfnm 0.8772 0.7695 0.5481 0.9962 
33 1 stpr lf 0.8691 0.7553 0.5114 0.9983 lfnm 0.8318 0.6919 0.2109 0.9987 
34 3 porr lf 0.9036 0.8165 0.3960 0.9990 lfnm 0.9039 0.8170 0.4285 0.9984 
35 3 porl lf 0.9162 0.8394 0.4906 0.9979 lfnm 0.9190 0.8446 0.6173 0.9969 
36 2 mastr lf 0.9245 0.8547 0.6586 0.9990 lfnm 0.9241 0.8540 0.5854 0.9984 
37 2 mastl lf 0.9269 0.8591 0.6992 0.9962 lfnm 0.9136 0.8347 0.6485 0.9969 

Highlight indicates points with lowest correlations across all process methods. 
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Table 9: ILD ANOVA GLM (High Face Count, Manifold) 

      HF       F-statistic:     

  Point Type Mtpl R
2
: R: Adj  R

2
: R:   DF DF p-value: 

1 prosH 2 0.8144 0.9024 0.8140 0.9022 2050 2 934 <2.2e-16 

2 ssp 2 0.7927 0.8903 0.7922 0.8901 1786 2 934 <2.2e-16 

3 prosM 2 0.8094 0.8997 0.8090 0.8994 1983 2 934 <2.2e-16 

4 nas 1 0.7773 0.8816 0.7768 0.8814 1630 2 934 <2.2e-16 

5 glb 3 0.7987 0.8937 0.7983 0.8935 1853 2 934 <2.2e-16 

6 spglb 3 0.8339 0.9132 0.8336 0.9130 2345 2 934 <2.2e-16 

7 brg 1 0.9661 0.9829 0.9660 0.9829 1.33E+04 2 934 <2.2e-16 

8 lam 1 0.9480 0.9737 0.9479 0.9736 8516 2 934 <2.2e-16 

9 opg 3 0.9451 0.9722 0.9450 0.9721 8046 2 934 <2.2e-16 

10 ops 2 0.9500 0.9747 0.9499 0.9746 8880 2 934 <2.2e-16 

11 bas 2 0.9548 0.9771 0.9547 0.9771 9870 2 934 <2.2e-16 

12 zygomr 3 0.8354 0.9140 0.8350 0.9138 2370 2 934 <2.2e-16 

13 jugr 2 0.8373 0.9150 0.8370 0.9149 2404 2 934 <2.2e-16 

14 fmtr 3 0.8319 0.9121 0.8316 0.9119 2311 2 934 <2.2e-16 

15 fmar 3 0.8198 0.9054 0.8194 0.9052 2125 2 934 <2.2e-16 

16 ectr 3 0.8118 0.9010 0.8114 0.9008 2015 2 934 <2.2e-16 

17 zygoor 2 0.7948 0.8915 0.7944 0.8913 1809 2 934 <2.2e-16 

18 dacr 2 0.7893 0.8884 0.7888 0.8881 1749 2 934 <2.2e-16 

19 dacl 2 0.7731 0.8793 0.7727 0.8790 1592 2 934 <2.2e-16 

20 obhi 3 0.7666 0.8756 0.7661 0.8753 1534 2 934 <2.2e-16 

21 obhs 3 0.7935 0.8908 0.793 0.8905 1794 2 934 <2.2e-16 

22 ectl 3 0.7811 0.8838 0.7806 0.8835 1666 2 934 <2.2e-16 

23 zygool 2 0.7632 0.8736 0.7627 0.8733 1506 2 934 <2.2e-16 

24 fmal 3 0.7888 0.8881 0.7884 0.8879 1744 2 934 <2.2e-16 

25 fmtl 3 0.8050 0.8972 0.8046 0.8970 1928 2 934 <2.2e-16 

26 jugl 2 0.8131 0.9017 0.8127 0.9015 2032 2 934 <2.2e-16 

27 zygoml 3 0.8126 0.9014 0.8122 0.9012 2025 2 934 <2.2e-16 

28 zygl 3 0.8685 0.9319 0.8682 0.9318 3085 2 934 <2.2e-16 

29 zygr 3 0.8788 0.9374 0.8785 0.9373 3385 2 934 <2.2e-16 

30 eurr 3 0.9397 0.9694 0.9395 0.9693 7273 2 934 <2.2e-16 

31 eurl 3 0.9408 0.9699 0.9406 0.9698 7417 2 934 <2.2e-16 

32 stpl 1 0.9297 0.9642 0.9295 0.9641 6172 2 934 <2.2e-16 

33 stpr 1 0.9340 0.9664 0.9338 0.9663 6604 2 934 <2.2e-16 

34 porr 3 0.9180 0.9581 0.9179 0.9581 5230 2 934 <2.2e-16 

35 porl 3 0.9171 0.9577 0.9169 0.9575 5167 2 934 <2.2e-16 

36 mastr 2 0.9318 0.9653 0.9317 0.9652 6381 2 934 <2.2e-16 

37 mastl 2 0.9337 0.9663 0.9335 0.9662 6575 2 934 <2.2e-16 

Bold landmark names indicate landmarks with missing values. 
Highlight indicates points with higher variation. 
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Table 10: ILD ANOVA GLM (High Face Count, Non-manifold) 

      HFNM       F-statistic:     

  Point Type Mtpl R
2
 R: Adj  R

2
: R:   DF DF p-value: 

1 prosH 2 0.8141 0.9023 0.8137 0.9021 2046 2 934 <2.2e-16 

2 ssp 2 0.7942 0.8912 0.7938 0.8910 1802 2 934 <2.2e-16 

3 prosM 2 0.8097 0.8998 0.8093 0.8996 1987 2 934 <2.2e-16 

4 nas 1 0.7768 0.8814 0.7763 0.8811 1625 2 934 <2.2e-16 

5 glb 3 0.7973 0.8929 0.7969 0.8927 1837 2 934 <2.2e-16 

6 spglb 3 0.8319 0.9121 0.8315 0.9119 2311 2 934 <2.2e-16 

7 brg 1 0.9664 0.9831 0.9663 0.9830 1.34E+04 2 934 <2.2e-16 

8 lam 1 0.9479 0.9736 0.9478 0.9736 8504 2 934 <2.2e-16 

9 opg 3 0.9451 0.9722 0.9450 0.9721 8040 2 934 <2.2e-16 

10 ops 2 0.9502 0.9748 0.9501 0.9747 8911 2 934 <2.2e-16 

11 bas 2 0.9556 0.9775 0.9555 0.9775 1.01E+04 2 934 <2.2e-16 

12 zygomr 3 0.8355 0.9141 0.8351 0.9138 2371 2 934 <2.2e-16 

13 jugr 2 0.8363 0.9145 0.8360 0.9143 2386 2 934 <2.2e-16 

14 fmtr 3 0.8316 0.9119 0.8312 0.9117 2306 2 934 <2.2e-16 

15 fmar 3 0.8197 0.9054 0.8193 0.9052 2123 2 934 <2.2e-16 

16 ectr 3 0.8114 0.9008 0.8110 0.9006 2009 2 934 <2.2e-16 

17 zygoor 2 0.7947 0.8915 0.7942 0.8912 1807 2 934 <2.2e-16 

18 dacr 2 0.7898 0.8887 0.7893 0.8884 1755 2 934 <2.2e-16 

19 dacl 2 0.7721 0.8787 0.7716 0.8784 1582 2 934 <2.2e-16 

20 obhi 3 0.7668 0.8757 0.7663 0.8754 1535 2 934 <2.2e-16 

21 obhs 3 0.7928 0.8904 0.7924 0.8902 1787 2 934 <2.2e-16 

22 ectl 3 0.7812 0.8839 0.7807 0.8836 1667 2 934 <2.2e-16 

23 zygool 2 0.7636 0.8738 0.7631 0.8736 1509 2 934 <2.2e-16 

24 fmal 3 0.7886 0.8880 0.7881 0.8877 1742 2 934 <2.2e-16 

25 fmtl 3 0.8053 0.8974 0.8049 0.8972 1932 2 934 <2.2e-16 

26 jugl 2 0.8143 0.9024 0.8139 0.9022 2048 2 934 <2.2e-16 

27 zygoml 3 0.8133 0.9018 0.8129 0.9016 2035 2 934 <2.2e-16 

28 zygl 3 0.8679 0.9316 0.8676 0.9315 3067 2 934 <2.2e-16 

29 zygr 3 0.8775 0.9367 0.8772 0.9366 3344 2 934 <2.2e-16 

30 eurr 3 0.9402 0.9696 0.9401 0.9696 7344 2 934 <2.2e-16 

31 eurl 3 0.9408 0.9699 0.9407 0.9699 7419 2 934 <2.2e-16 

32 stpl 1 0.9281 0.9634 0.9279 0.9633 6025 2 934 <2.2e-16 

33 stpr 1 0.9331 0.9660 0.9330 0.9659 6514 2 934 <2.2e-16 

34 porr 3 0.9183 0.9583 0.9182 0.9582 5251 2 934 <2.2e-16 

35 porl 3 0.9176 0.9579 0.9175 0.9579 5203 2 934 <2.2e-16 

36 mastr 2 0.9323 0.9656 0.9322 0.9655 6432 2 934 <2.2e-16 

37 mastl 2 0.9343 0.9666 0.9342 0.9665 6643 2 934 <2.2e-16 

Bold landmark names indicate landmarks with missing values. 
Highlight indicates points with higher variation. 
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Table 11: ILD ANOVA GLM (Low Face Count, Manifold) 

      LF       F-statistic:     

  Point Type Mtpl R
2
 R: Adj  R

2
: R:   DF DF p-value: 

1 prosH 2 0.8142 0.9023 0.8138 0.9021 2046 2 934 <2.2e-16 

2 ssp 2 0.7924 0.8902 0.7920 0.8899 1783 2 934 <2.2e-16 

3 prosM 2 0.8092 0.8996 0.8088 0.8993 1981 2 934 <2.2e-16 

4 nas 1 0.7769 0.8814 0.7764 0.8811 1626 2 934 <2.2e-16 

5 glb 3 0.7985 0.8936 0.7980 0.8933 1850 2 934 <2.2e-16 

6 spglb 3 0.8331 0.9127 0.8328 0.9126 2331 2 934 <2.2e-16 

7 brg 1 0.9662 0.9830 0.9661 0.9829 1.34E+04 2 934 <2.2e-16 

8 lam 1 0.9478 0.9736 0.9477 0.9735 8486 2 934 <2.2e-16 

9 opg 3 0.9451 0.9722 0.9450 0.9721 8045 2 934 <2.2e-16 

10 ops 2 0.9502 0.9748 0.9501 0.9747 8915 2 934 <2.2e-16 

11 bas 2 0.9550 0.9772 0.9549 0.9772 9917 2 934 <2.2e-16 

12 zygomr 3 0.8347 0.9136 0.8344 0.9135 2359 2 934 <2.2e-16 

13 jugr 2 0.8367 0.9147 0.8363 0.9145 2392 2 934 <2.2e-16 

14 fmtr 3 0.8319 0.9121 0.8316 0.9119 2312 2 934 <2.2e-16 

15 fmar 3 0.8199 0.9055 0.8195 0.9053 2126 2 934 <2.2e-16 

16 ectr 3 0.8114 0.9008 0.8110 0.9006 2009 2 934 <2.2e-16 

17 zygoor 2 0.7943 0.8912 0.7938 0.8910 1803 2 934 <2.2e-16 

18 dacr 2 0.7886 0.8880 0.7881 0.8877 1742 2 934 <2.2e-16 

19 dacl 2 0.7726 0.8790 0.7721 0.8787 1587 2 934 <2.2e-16 

20 obhi 3 0.7666 0.8756 0.7661 0.8753 1534 2 934 <2.2e-16 

21 obhs 3 0.7933 0.8907 0.7929 0.8904 1792 2 934 <2.2e-16 

22 ectl 3 0.7812 0.8839 0.7807 0.8836 1667 2 934 <2.2e-16 

23 zygool 2 0.7634 0.8737 0.7629 0.8734 1507 2 934 <2.2e-16 

24 fmal 3 0.7890 0.8883 0.7886 0.8880 1747 2 934 <2.2e-16 

25 fmtl 3 0.8051 0.8973 0.8047 0.8971 1929 2 934 <2.2e-16 

26 jugl 2 0.8135 0.9019 0.8131 0.9017 2037 2 934 <2.2e-16 

27 zygoml 3 0.8126 0.9014 0.8122 0.9012 2025 2 934 <2.2e-16 

28 zygl 3 0.8684 0.9319 0.8681 0.9317 3081 2 934 <2.2e-16 

29 zygr 3 0.8784 0.9372 0.8781 0.9371 3374 2 934 <2.2e-16 

30 eurr 3 0.9403 0.9697 0.9402 0.9696 7354 2 934 <2.2e-16 

31 eurl 3 0.9413 0.9702 0.9411 0.9701 7485 2 934 <2.2e-16 

32 stpl 1 0.9290 0.9638 0.9289 0.9638 6113 2 934 <2.2e-16 

33 stpr 1 0.9337 0.9663 0.9336 0.9662 6581 2 934 <2.2e-16 

34 porr 3 0.9186 0.9584 0.9184 0.9583 5271 2 934 <2.2e-16 

35 porl 3 0.9174 0.9578 0.9172 0.9577 5184 2 934 <2.2e-16 

36 mastr 2 0.9323 0.9656 0.9321 0.9655 6428 2 934 <2.2e-16 

37 mastl 2 0.9338 0.9663 0.9337 0.9663 6592 2 934 <2.2e-16 

Bold landmark names indicate landmarks with missing values. 
Highlight indicates points with higher variation. 
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Table 12: ILD ANOVA GLM (Low Face Count, Non-manifold) 

      LFNM       F-statistic:     

  Point Type Mtpl R
2
 R: Adj  R

2
: R:   DF DF p-value: 

1 prosH 2 0.8137 0.9021 0.8133 0.9018 2040 2 934 <2.2e-16 

2 ssp 2 0.7933 0.8907 0.7928 0.8904 1792 2 934 <2.2e-16 

3 prosM 2 0.8091 0.8995 0.8087 0.8993 1979 2 934 <2.2e-16 

4 nas 1 0.7773 0.8816 0.7768 0.8814 1630 2 934 <2.2e-16 

5 glb 3 0.7991 0.8939 0.7986 0.8936 1857 2 934 <2.2e-16 

6 spglb 3 0.8332 0.9128 0.8328 0.9126 2332 2 934 <2.2e-16 

7 brg 1 0.9658 0.9828 0.9658 0.9828 1.32E+04 2 934 <2.2e-16 

8 lam 1 0.9477 0.9735 0.9476 0.9734 8469 2 934 <2.2e-16 

9 opg 3 0.9450 0.9721 0.9449 0.9721 8029 2 934 <2.2e-16 

10 ops 2 0.9502 0.9748 0.9501 0.9747 8905 2 934 <2.2e-16 

11 bas 2 0.9554 0.9774 0.9553 0.9774 1.00E+04 2 934 <2.2e-16 

12 zygomr 3 0.8353 0.9139 0.8350 0.9138 2369 2 934 <2.2e-16 

13 jugr 2 0.8370 0.9149 0.8366 0.9147 2398 2 934 <2.2e-16 

14 fmtr 3 0.8323 0.9123 0.8319 0.9121 2317 2 934 <2.2e-16 

15 fmar 3 0.8201 0.9056 0.8198 0.9054 2130 2 934 <2.2e-16 

16 ectr 3 0.8117 0.9009 0.8113 0.9007 2013 2 934 <2.2e-16 

17 zygoor 2 0.7949 0.8916 0.7945 0.8913 1810 2 934 <2.2e-16 

18 dacr 2 0.7886 0.8880 0.7881 0.8877 1742 2 934 <2.2e-16 

19 dacl 2 0.7725 0.8789 0.7720 0.8786 1585 2 934 <2.2e-16 

20 obhi 3 0.7665 0.8755 0.7660 0.8752 1533 2 934 <2.2e-16 

21 obhs 3 0.7945 0.8913 0.7941 0.8911 1806 2 934 <2.2e-16 

22 ectl 3 0.7807 0.8836 0.7803 0.8833 1663 2 934 <2.2e-16 

23 zygool 2 0.7634 0.8737 0.7629 0.8734 1507 2 934 <2.2e-16 

24 fmal 3 0.7885 0.8880 0.7880 0.8877 1741 2 934 <2.2e-16 

25 fmtl 3 0.8051 0.8973 0.8047 0.8971 1930 2 934 <2.2e-16 

26 jugl 2 0.8134 0.9019 0.8130 0.9017 2036 2 934 <2.2e-16 

27 zygoml 3 0.8130 0.9017 0.8126 0.9014 2031 2 934 <2.2e-16 

28 zygl 3 0.8670 0.9311 0.8667 0.9310 3044 2 934 <2.2e-16 

29 zygr 3 0.8786 0.9373 0.8783 0.9372 3378 2 934 <2.2e-16 

30 eurr 3 0.9404 0.9697 0.9402 0.9696 7365 2 934 <2.2e-16 

31 eurl 3 0.9411 0.9701 0.9410 0.9701 7463 2 934 <2.2e-16 

32 stpl 1 0.9289 0.9638 0.9287 0.9637 6100 2 934 <2.2e-16 

33 stpr 1 0.9338 0.9663 0.9336 0.9662 6586 2 934 <2.2e-16 

34 porr 3 0.9185 0.9584 0.9183 0.9583 5261 2 934 <2.2e-16 

35 porl 3 0.9176 0.9579 0.9174 0.9578 5197 2 934 <2.2e-16 

36 mastr 2 0.9325 0.9657 0.9323 0.9656 6450 2 934 <2.2e-16 

37 mastl 2 0.9344 0.9666 0.9342 0.9665 6649 2 934 <2.2e-16 

Bold landmark names indicate landmarks with missing values. 
Highlight indicates points with higher variation. 

 

 



 

9 

 

 Landmark Point Variation 

 

 Considering the plot of the LPV distribution, several effects of expected 

random error can be observed at this stage. Differentiating the landmarks based on 

type, groupings emerge. Clusters of Type I landmark points are expected given the 

constrained definition of Type I landmarks. Type II landmarks are vertically 

clustered on the plot, this is the result of greater distances to the Microscribe® 

(Revware, Raleigh, NC, USA) digitizer points than between the point coordinates of 

the process models.   

The outliers on the plot of the distribution of the LPV sample differences are 

porion left and right, and supraglabellare. The porion landmarks are expected to be 

outliers because they are used in the application of the alignment procedure to the 

Frankfurt Horizontal. The reason for supraglabellare to be an outlier is likely due to 

definition and selection difference between observers. However, for these reasons, 

as well as the relatively high variation of several other Type III Landmarks, they 

are excluded from the LPV Mantel tests. 

 As a group, the Type I landmarks tested in the LPV sample have sufficient 

correlation and significance to conclude the validity for all process parameters for 

the selection of landmark points. For the high-face manifold subsample, all tests are 

significant as having a p-value of less than 0.005, the correlation range is 0.5691-

0.9470, and the COD (R2) range is 0.3239-0.8968. This indicates that for the 

landmark point with the lowest COD, approximately 32% of the variation can be 

attributed to the model, but 68% may be attributed to confounding or unknown 

variability. The results for the low-face non-manifold process are very similar to the 
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high-face manifold for correlation (0.6933-0.9093) and COD (0.4807-0.8268), 

having the same landmark points indicating lower correlations and lower COD 

values. The high-face non-manifold and low-face manifold processes both only have 

a single landmark point with a COD less than 0.5, and those points are different. 

The high-face non-manifold result for correlation range is 0.6873-0.9425, and the 

range for this process COD is 0.4724-0.8883. The low-face non-manifold result for 

correlation range is 0.5671-0.8820, and the range for COD is 0.3216-0.7779. Both 

non-manifold processes have a reduced maximum correlation and COD than the 

manifold process for the resolution group to which they belong. 

Table 13: Landmark Point Variation Mantel Test by Point by Process 

  
R 

p-
value R

2
 R 

p-
value R

3
 R 

p-
value R

4
 R 

p-
value R

5
 

Point Type HF HF HF HFNM HFNM HFNM LF LF LF LFNM LFNM LFNM 

nas  1 0.9470 0.0001 0.8968 0.9425 0.0001 0.8883 0.9093 0.0001 0.8268 0.8659 0.0001 0.7498 

brg  1 0.7965 0.0001 0.6344 0.6873 0.0003 0.4724 0.7853 0.0001 0.6167 0.8820 0.0001 0.7779 

lam  1 0.6582 0.0001 0.4332 0.8020 0.0001 0.6432 0.6933 0.0001 0.4807 0.5671 0.0001 0.3216 

stpl  1 0.5975 0.0010 0.3570 0.7581 0.0001 0.5747 0.7383 0.0001 0.5451 0.6861 0.0001 0.4707 

stpr  1 0.5691 0.0002 0.3239 0.7787 0.0001 0.6064 0.8157 0.0001 0.6654 0.6221 0.0001 0.3870 

prosH  2 0.9186 0.0001 0.8438 0.8016 0.0001 0.6426 0.8947 0.0001 0.8005 0.8800 0.0001 0.7744 

ssp  2 0.9106 0.0001 0.8292 0.2418 0.0469 0.0585 0.9155 0.0001 0.8381 0.9095 0.0001 0.8272 

prosM  2 0.9279 0.0001 0.8610 0.8492 0.0001 0.7211 0.9144 0.0001 0.8361 0.8778 0.0001 0.7705 

ops  2 0.8007 0.0001 0.6411 0.8837 0.0001 0.7809 0.8372 0.0001 0.7009 0.8732 0.0001 0.7625 

bas  2 0.6453 0.0005 0.4164 0.6344 0.0004 0.4025 0.6645 0.0001 0.4416 0.6516 0.0001 0.4246 

jugr  2 0.4564 0.0045 0.2083 0.7359 0.0001 0.5415 0.7188 0.0001 0.5167 0.5428 0.0003 0.2946 

zygoor  2 0.8266 0.0001 0.6833 0.8859 0.0001 0.7848 0.8808 0.0001 0.7758 0.8913 0.0001 0.7944 

dacr  2 0.8820 0.0001 0.7779 0.3944 0.0007 0.1556 0.7895 0.0001 0.6233 0.7762 0.0001 0.6025 

dacl  2 0.8794 0.0001 0.7733 0.7954 0.0001 0.6327 0.7773 0.0001 0.6042 0.7538 0.0001 0.5682 

zygool  2 0.8816 0.0001 0.7772 0.7472 0.0001 0.5583 0.8441 0.0001 0.7125 0.8910 0.0001 0.7939 

jugl  2 0.8754 0.0001 0.7663 0.8324 0.0001 0.6929 0.8857 0.0001 0.7845 0.8847 0.0001 0.7827 

mastr  2 0.9439 0.0001 0.8909 0.9520 0.0001 0.9063 0.9363 0.0001 0.8767 0.9407 0.0001 0.8849 

mastl  2 0.9718 0.0001 0.9444 0.9497 0.0001 0.9019 0.9363 0.0001 0.8767 0.9055 0.0001 0.8199 

  
Highlighting indicates an R^2 value below 0.5. Italics indicate a p-value greater than .005. 
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Table 14: Summary of Range of LVP Mantel Test by Type by Process 

  
HF HFNM LF LFNM 

  
R R2 R R3 R R4 R R5 

Type 1 max 0.9470 0.8968 0.9425 0.8883 0.9093 0.8268 0.8820 0.7779 

 
min 0.5691 0.3239 0.6873 0.4724 0.6933 0.4807 0.5671 0.3216 

Type 2 max 0.9718 0.9444 0.9520 0.9063 0.9363 0.8767 0.9407 0.8849 

 
min 0.4564 0.2083 0.2418 0.0585 0.6645 0.4416 0.5428 0.2946 

All avg 0.8049 0.6699 0.6699 0.0028 0.0028 0.8298 0.8298 0.6957 

 

 

Figure 9: LPV Mantel Correlation (r) and COD (r2) by Process 

Correlation histograms are indicated by the darker filled regions. These histograms 

indicate wide variation and a tendency of positive skew. The correlation for the low 

face manifold landmark points has the last spread and skew, as well as the most 

overall constraint. A similar, but less constrained pattern can be observed in the 

histograms of the covariance (lighter filled regions). 
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Figure 10: Plot of LPV Mantel COD (r²)  by Point for All Processes 

Circled areas indicate lateral paired landmarks with more highly constrained 

correlation for the left point than the right point (stephanion (l, r), jugale (l, r), and 

dacryon (l, r)). The exception in this plot is the mastoideale lateral paired landmark 

points. 

 

 Attempting to determine the presence or likelihood of systematic error in the 

landmark point selection for each type of process model is to determine whether a 

process model landmark points have a consistent bias from the criterion method. 

Figure 10 is a plot of the Coefficient of Determination for the Type I and II points 

for all models for the LPV sample. The interaction of the lines across the plot 

indicates the lack of a systematic error or bias by either the Type I (nas, brg, lam, 

stpl, stpr) or the Type II (prosH, ssp, prosM, ops, bas, jugr, zygoor, dacr, dacl, 

zygool, jugl, mastr, mastl) point over any model type. The use of the Coefficient of 

Determination (COD) reflects the estimation of predictability of the direct digital 

landmark points by the selection of landmarks using the process models. The COD 

values indicate that there is variation in the estimation of the predictive quality of 
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landmark points selected from process models for the direct digital landmark 

points. 
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Chapter Five 

Discussion 

The results of these tests of processing parameters and correlation are 

positive in indicating the overall correspondence by correlation of the landmark 

points selected from the process parameter models with that of the criterion direct 

digitizer landmark point selections. 

Model processing 

 The processing procedures applied to the raw mesh models all accomplished 

the goal of reducing the computational parameters of the models. This reduction 

had the effect of not only improving the access and utility of the models for 

research and analysis in a typical computer environment, but also of equalizing the 

models for face and vertex counts for all models within each set of process 

parameters. 

 Subjective observer experience working with the models from each of the 

four processes found the visual representation of the original raw models to be best 

represented by the high-face count models. However, the non-manifold processes 

were more of a challenge to make use of for the landmark selection procedure. 

Validity 

 The validity of the model under study in this research is based on the theory 

that positive correlation can be determined between the criterion measurement and 

the measurements under examination if they are both measuring the same thing. 

This concept is applied to the sample of the Yacchi-no-gamma crania that have 

been subjected to 3-D data collection using 3-D surface scans and Microscribe® 
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(Revware, Raleigh, NC, USA) landmark point digitizing. Landmarks derived from 

digital models having undergone each one of two levels of processing parameters to 

result in four models were analyzed for correlation to the set of landmarks collected 

using the direct digitizing method using two analytical schemes. 

There is an expectation based on these definitions that Type I landmarks 

with have the most conservative variability between samples of the same point. 

Type II landmarks are slightly less conservative, and Type III landmarks are 

expected to show the most variation between point samples. If the correlations of 

the sampled landmark points and the Microscribe® (Revware, Raleigh, NC, USA) 

digitizer landmark points indicate any separation within the definitions of Type I, II, 

and III landmarks; such a pattern should not be classified as a type of random 

error because it is caused by documented effect of the definition of the landmark 

point.  

Paired Inter-Landmark Distance 

The use of Paired Inter-Landmark Distance (ILD) is applied here as a linear 

translation of the three dimensional data. This puts this research in line with both 

previous craniometric studies in both two and three dimensions.  

Fatah et al. (2014) determined that the differences between the mean of 

direct measurements and model measurements for the sample in their study were 

within a distance of 2mm. The authors defined this as within the acceptable range 

of variation for error of craniometric measurements.    

For ILD, the average distance between the direct digitizer inter-landmark 

distances and the process inter-landmark distance was less than 2 mm over all 
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landmarks over all processes for all Types. This is within the margin determined by 

Fatah et al. (2014). 

For the results of this analysis, validity is determined by the calculation of 

several correlation coefficients. With the agreement of the data for the two types of 

analysis with the findings of previous research, so long as our correlation is good 

and positive, we can consider it sufficient to validate the data collected for the 

process models. As we find our overall correlation of the Inter-Landmark Distances 

to be ~r=83 or better for all processes, it is reasonable to conclude for validity of 

the landmark points derived from all process models and consider all combinations 

of the processing parameters to be representative of the original physical materials 

they represent. 

There are landmarks with characteristics that result in a higher variability 

even when selected by the same observer in the same or different sessions. These 

landmarks have a very loosely bound definition and often are difficult to locate by 

definition using the Microscribe® (Revware, Raleigh, NC, USA) (Ross and Williams 

2008; Sholts et al. 2011a). ANOVA GLM was applied with R software (Team 2014) 

and suggests the relative distance differences from the paired ILD of the 

highlighted eight out of the 37 total sampled landmarks as having a higher relative 

variability. 

Applying a General Linear Model of an Analysis of Variance test to the ILD 

samples values allows for the consideration of whether the values are likely given 

the criterion values of the direct digital sample, or if they could have occurred 

randomly. The resulting high values of the F-Statistic and very low values of the p-
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value, it is reasonable to conclude that the values of the ILD sample are not due to 

chance. 

 Of those landmarks indicating a higher variability under ANOVA GLM, none 

were among the eight landmarks with missing values. Landmarks with missing 

values are listed in Table 6, and generally indicated high correlation. Removal and 

re-analysis of the correlation of ILD did not indicate a strong influence on 

correlation caused by the imputation of missing values.  

These eight landmarks are defined by Bookstein (1997) as Type II or Type 

III, and represent all the landmarks for any process correlation coefficient less than 

.8 for the ILD analysis.  This refutes a conclusion of random error for the 

measurement of these landmarks due to the noted definitional variation acting on 

the point samples of these landmarks. 

Landmark Point Variation 

 The use of Landmark Point Variation is applied here to evaluate the spatial 

relationship of individual point selection given the multiple processing methods. 

This portion of the analysis relies on the three dimensional relationship between the 

selected locations of each point for each processing method. 

 Although this is divergent from the types of craniometric study typically 

applied to craniometric studies within anthropology, such lines of inquiry are to be 

found in medical and surgical research. This is especially significant to the forensic 

aspects of biological anthropology and considers the importance of high dimension 

imaging technology applied to medical and surgical studies. 
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Olszewsk, et al. (2010) investigate the accuracy and reproducibility of 

landmarks given various methods of collection. These authors are investigating 

landmark collection in terms of the scatter introduced by repeated landmark 

selection by observers and using selection models that differed. This article forms 

the basis for the Landmark Point Variation study applied for this research. 

When examining the preliminary plot of distance data for correlation, the 

values for the Microscribe® (Revware, Raleigh, NC, USA) distance are higher than 

the values of the distances between processes for each process coordinate point for 

all but one landmark. This indicates that the distance between a process point and 

all other process points is less than the distance between the process point and the 

digitizer point for that landmark. 

The results of the Mantel's test of Correlation were strong enough to find in 

favor of validity by correlation for most landmarks of the LPV sample. It was 

notable, however, that for this analysis of the scatter of selected landmarks, the 

manifold processes had a higher correlation value than for the non-manifold 

processes. This would suggest that the processes that applied manifold adjustments 

did result in some calculable improvement to the surfaces of the models and 

resulted in landmark point selection that was slightly more correlated to the 

landmark point selection of the direct digitizer landmarks.  

Given that the collection of landmark points for all process models was 

randomized, and the selected points on the models could be reviewed in the digital 

selection software, learning is not likely to be a viable conclusion for the differences 

in correlation between the non-manifold and manifold process models. With this 

consideration, it is reasonable to conclude that the landmark point selection from 
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neither the manifold processes or the non-manifold models result in significant 

systematic bias or error.  

 Porion (porr, porl) is used as an alignment landmark, therefore variation 

between the process models and the digitizer landmarks might be artificially 

reduced. The plots of the values for the distances between processes for the porion 

landmark points (left and right) indicate very low variation. In the measurement 

scale applied here; the differences are less than one millimeter. The scatter of the 

sample observations of porion are actually distributed on a fairly wide field, 

especially when considered against the scatter distribution of the other points.   

 Supraglabellare (spglb) landmark points have significantly different 

coordinate locations between the process samples collected from the 3-D models 

from the Microscribe® (Revware, Raleigh, NC, USA) Digitizer observation. This is 

due to both the significantly different definitions applied by the observers and the 

difference in the observation of the landmark in cross-section. Supraglabellare is a 

significant in defining anterior projection of the frontal and nasal bones along the 

midline (Howells 1973). Variations are inherent to measures based off 

supraglabellare due to difficulties selecting directly by lateral observation, or on a 

lateral cephalograph (x-ray). Strictly defined as a midline structure, the point 

should be most accurately collected from a properly aligned cranium in cross-

section. If the crania is not perfectly aligned, or the observer is collecting point from 

a 2D image, the points will be much less likely to closely match between different  

observations, observers, or selection methods. 

 Prosthion (Howells) (prosH), subspinale (ssp), and prosthion (Martin) 

(prosM), are mid-line and all Type II (Ousley 2010). Located on fragile maxillary 



 

20 

 

Howells (1973) discusses the deferential definitions that have been historically 

applied to prosthion. The prosthion selections for both the Howells and Martin 

definition are included in the ThreeSkull software (Ousley 2010) apply slightly 

different definitions of the location of prosthion.), Points 4-11 are mid-line and can 

reflect differences in overall size. Three are Type III; glabella (glb), supraglabellare 

(spglb), and opisthicranion (ops)] - having measurements that are dependent upon 

the orientation of the crania during sample. Three are Type I; nasion (nas), bregma 

(brg), lambda (lam) and are dependent upon the visual evaluation of the 

intersection of cranial sutures (Bookstein 1997; Ousley and McKeown 2001). 

 Right and Left paired lateral craniofacial landmark points are both collected 

and with the exception of the orbital height landmarks (obhi, obhs) for all crania. 

When the lateral landmarks are considered separately, the left craniofacial 

landmarks are slightly more correlated to the digitizer landmarks than the right or 

all processes, which agrees with the findings of several previous studies (McKeown 

and Jantz 2005; Jantz et al. 2013). 

Interpretations 

 Based on the statistical analysis of validity applied to this sample, the 

hypothesis of convergence of Landmark Point Variation and Inter-Landmark 

Distance are retained. Insufficient evidence is found to reject convergence and 

conclude in favor of the null hypothesis, which would have required significant 

differences between the selected landmark points and inter-landmark distances for 

one or more processes. 

 The differences between processed models and the resulting variations 

accumulated from the selection of landmarks from processed models are consistent 
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with the expectations of the Bookstein Landmark Types for all methods of 

processing.  

 The evaluation of the Coefficient of Determination for the ILD sample 

suggests strongly that the use of all methods processing result in landmarks 

collected from digital models that are robust against landmark methods proposed 

by previous research in the medical and biological anthropology fields. 

 The evaluation of the LVP sample Coefficient of Determination suggests that 

the use of manifold methods of processing results in landmarks collected from 

digital models that are in agreement with previous research in the medical and 

biological anthropology fields. 

 The selection of a process parameter for future data collection, transmission, 

and research – based on the results and conclusions determined by this research 

indicate all of the process parameters are acceptable in reduction of file size and 

retention of data for the purposes of landmark point selection. When further 

considered in terms of the post-hoc, the LPV analysis indicates that manifold 

models present the best replication of landmark selection overall. 

Limitations and Possible Sources of Error 

This thesis has an experimental design for validity testing without reliability 

testing and without replication. The omission of those factors does not suggest they 

have been ignored or there was a failure to consider them. The notions of observer 

bias and error are significant. This thesis is less concerned with testing for these 

types of error for the fact that there is not test of a population or biological factor 

under examination. The tests here have examined the extensibility of the single 
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source sample analysis of Jantz et al. (2013), Williams and Slice (2010), Garvin and 

Ruff (2012), Saso et al. (Saso et al. 2011), Fukumine et al. (2006) and others to an 

archaeological sample and collaborative data collection. 

 A pair of potential sources of error which present for consideration are the 

temporal and preservation aspects of the physical data collection. At the time of 

collection of the Microscribe® digitized landmark points, the crania were reported to 

be in a marked state of physical decline, which the researchers – Beatrix Dudzik 

(2012), and Noriko Seguchi (2010) – attributed to the storage conditions of the 

collection. At the time the digitizer landmark points were collected, Dudzik was 

obliged to use a thin sheet of vinyl to protect the surface of the crania from contact 

with the Microscribe® (Revware, Raleigh, NC, USA) probe. This should have at 

most a nominal effect on the location of landmark points, but it should be 

considered for introducing the possibility of error. The two year time span between 

the collection of the two cranial samples may have also introduced a degree of 

error. If the collection is deteriorating in the present storage conditions, it is 

probable that deterioration would cause variable inconsistencies between the 

samples. When these possible sources of error are considered together, they 

become less likely to present a significant and directional source of error. First, the 

application of the vinyl between the crania and the probe would have most likely 

resulted in a slight dimensional increase in measurements derived from the 

digitized data. This would be in contrast the loss of material that would most likely 

accompany deterioration of the materials. 
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Chapter Six 

Conclusion 

 Findings of validity of the use of landmark points selected from 3-D mesh 

models derived using the process parameters applied in this thesis find in favor of 

the hypothesis of convergence. Findings are further in line with the expected 

variations that result from the definitions (Type I, II and III) of the landmarks 

points and the impact less constrained definitions have on the values of the 

correlation tests. Positive values of the tests of correlation indicate the validity of 

landmark points selected from all processes against the landmark points selected 

for the criterion direct digitizer point selection. The Paired Inter-Landmark Distance 

average distance between process landmark points and criterion direct digitizer 

landmark points is less than the margin suggested by previous research. Overall 

correlation is good and positive and ANOVA GLM results are in favor of a conclusion 

that the results found were unlikely to be due to chance. Reproducibility, 

represented by Landmark Point variation of landmark point selection for each 

process method against the criterion direct digitizer method landmark point 

selection is favorable for all processes indicated by the Mantel Tests of correlation. 

Also indicated was a stronger correlation of the manifold process parameter 

landmark points over the non-manifold process landmark points. This significantly 

suggests that an aspect of the manifold process parameter improves the 

reproducibility of landmark point selection on process models against the criterion 

direct digitizer landmark point selection on the physical materials.  

 This thesis is based in a methodological research framework. As such, it 

looks to validate solutions to the difficulties of performing research on materials 
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that are limited and fragile by nature. Selecting from one of the many data 

acquisition methods available in 3-D (CT, Surface scan, Photogrammetry, Point 

digitizing), the sheer amount of data that can be captured is staggering. However, 

a massive quantity of data must be rendered functional for the purposes of 

meaningful interpretation. With 3-D data specifically, it must be held to a level that 

is true to the original materials, but still functional for study in a digital 

environment. This means processing of raw data. 

 A further consideration for the design of this study was the nature of the 

acquisition and dissemination of the collected data. The data was collected using 

two different methods, at different times each by a single researcher. This kind of 

disparate data collection enables researchers to overcome difficulties of time and 

distance, opening avenues of research that would otherwise be closed. It is difficult 

to undertake studies of human remains in the simplest of circumstances. When 

negotiations with foreign governments, limited access, and preservation become 

roadblocks, little recourse is available to the researcher. To be able to study virtual 

materials is one solution to the problems described above. 

 There are problems remaining to be overcome for the purposes of future 

methodological development and applied research using 3-D models. Sutures 

represent significant features which can still be difficult to examine from 3-D 

models (Saitou et al. 2011). Scans are taken using medical imaging technology and 

monochromatic surface scans lack reference from the surface texture (digital 

imaging definition of texture, which would refer to the color variation of the real 

object). Dry skulls scanned with color sensitive equipment generally overcome this 

issue to a similar degree that the same features can be visually detected. The issue 
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of texture highlights the variation in samples that results from the use the different 

methods of craniometric data collection. However, testing new methods against the 

benchmark methods grants researchers the ability to move forward without 

sacrificing the work that has come before.  
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Appendices 

Appendix 1: Landmark Definitions and References 

The definitions of classifications of landmarks are derived from Bookstein 

 (1991) and describe the characteristics of each type: 

Type I landmark : Landmark defined at a structural location with strong 

homology. Sutural intersections are the most typical landmarks of this type 

related to craniometric measurements. 

Type II landmark: A geometric or non-dependent extremal point defined by 

a structure. This could mean an apex of a curve or the end of a bony 

process. 

Type III landmark:  A landmark with a location dependent upon 

orientation, distance, or structural development. Height and breadth 

measurements would fall under this category. This category would be 

expected to have the greatest variability between observations of the same 

subject, and between subjects due to the dependency factor and broad 

definitions. 
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Appendix 2: Cranial Sample 

 

 The Cranial Sample Consists of Materials Excavated from the Yacchi-no-

gamma (Yacchi Cave), Kumejima (Kume Island) in the Okinawa Prefecture and 

housed at the Okinawa Prefectural Archaeology Center, Okinawa Japan. The sex of 

the crania in the sample is presumed to be correct as noted within the collection. 

The demographic information for this sample does not include age estimation.  

  

3. 8‐14_f 4. 11‐5_m 

  

5. 11-14_f 6. 11-15_m 
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7. 11‐42_f 8. 2go‐2‐30_m 

  

9. 2go‐2‐32_m 10. 7‐12_m 

  

11. 9‐15_f 12. 11‐34_m 
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13. 11‐42_m  
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Appendix 3: Model Processing Protocol 

 

1. Merge superior and inferior hemispheres of cranial raw models and refine 

alignment to the overall d2 for overlapping regions. Flatten dual model mesh 

into a single model mesh file.  

2. Align to single mesh model to Frankfurt Horizontal Plane.  

3. Manifold Version High Face count  

4. Manifold Version Low Face count  

5. Non-Manifold Version High Face count   

6. Non-Manifold Version Low Face count  

Figure 1: Examples of Processed Models 

7. Save all versions to the appropriate naming convention and record the final 

file size for all versions.  

Table 5: Computational Characteristics of Processed Models 

  

 

Appendix 4: Data Collection Protocol 

 

1. Import processed meshes into Stratovan Checkpoint 

2. Collect landmark points in order as indexed  

Table 1: Landmarks for 3-D Comparison.  

Figure 4: Landmark Map 

Figure 5: Example of Landmark Point Sample 

3. Export landmark point coordinates as comma separated value (*.CSV) files. 
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Appendix 5: Direct Digitizer Landmark Point Processing  

 

Direct digitizer landmarks were collected by Beatrix Dudzik (2012) with the 

Microscribe® (Revware, Raleigh, NC, USA) G2 3-D Digitizer. Data was collected 

directly from crania of the Yacchi-no-gamma sample and indexed with 3Skull 

Software (Ousley 2010). Data was exported from the indexing software to Microsoft 

Excel © spreadsheet file format.  

 The landmark point data for each crania went through the following 

processing steps to prepare for the Landmark Point Variation and ILD comparison 

analyses.  

1. Align the set of landmark points for each crania to the Frankfurt Horizontal 

Plane using Bookstein Alignment method and correction (Slice 2013).  

Figure 6: Stages of Bookstein Alignment 

 

Equation 1: Bookstein Superimposition Transformation - Unit - 

Scale (Lele 2001) 

 

Equation 2: Bookstein Superimposition Transformation - Plane - 

Rotation (Lele and Richtsmeier 2001) 

 

Equation 3: Bookstein Superimposition Transformation - Root – 

Translation (Lele and Richtsmeier 2001) 

 

Equation 4: Bookstein Superimposition Transformation – 

Correction for Standard Coordinate System 
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Appendix 6: Statistical Analysis Methods 

 

Pearson’s product-moment correlation coefficient (Press 1992) 

To compute the sample correlation r:        
                

                    
  

   

       
   

And test the two-tailed significance t:  

     
   

     
 

 

Spearman's rank order correlation coefficient (Press 1992) 

To compute the non-parametric equivalent to the Pearson's r; converting the x and 

y values to a ranks (assuming no ties) rs: 

    
                  

                        

 

and calculating significance as before: 
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Analysis of Variance (GLM) 

R Sample Formula 

 ctl <- c ( prosH$dd ) 

 trt <- c ( prosH$hf ) 

group <- gl( 2, 468, 936, labels = c( "Criteria" , "High Face") ) 

weight <- c ( ctl, trt) 

lm.prosH <- lm ( weight ~ group ) 

lm.prosH0 <- lm ( weight ~ group - 1 ) 

 

anova(lm.prosH) 

summary(lm.prosH0) 

         

out.anova.lm.prosH    <-  capture.output(  anova( lm.prosH) )    

cat(out.anova.lm.prosH    ,file="1-Analysis/CID ANOVA.txt",sep="\n",append=TRUE) 

  

out.summary.lm.prosH0   <-  capture.output(  summary( lm.prosH0) )    

cat(out.summary.lm.prosH0   ,file="1-Analysis/CID ANOVA.txt",sep="\n",append=TRUE) 

An ANOVA Extension of the t-test using a correlation coefficient to describe the 

relationship of quantitative data. 

GLM is equivalent to a multiple regression analysis but suited to multiple variables. 

Use to “predict” variation of the dependent variable given the observed values of 

the independent 

Significance is tested as an F statistic with a p-value. The F statistic is compared to 

the critical value of F and the p-value is compared to the alpha level. The F statistic 

explains if the model (prediction) explains the observed values. The p-value 

indicates whether the strength of the prediction is statistically significant. 
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Mantel Test of Correlation (Hammer et al. 2001; Sokal and Rohlf 2011) 

The correlations of two matrices are evaluated by the Pearson's correlation 

coefficient (Equation 7) of the matrix elements. 

Process Model Euclidean Distances 

  

Criterion Direct Digital Euclidean 
Distances 

0 
       

0 
     

a 0 
      

A 0 
    

f b 0 
     

F B 0 
   

j g c 0 
    

J G C 0 
  

m k h d 0 
   

M K H D 0 
 

o n l i e 0 
  

O N L I E 0 

 

     
                

                    
  

   

       

   

This application of the Mantel's test of correlation used the Euclidean Distance 

values of each data elements from the origin to populate the matrices. 

       
   

     
  

Test of significance involves random permutation of the matrix elements an re-

evaluation of the Pearson's correlation coefficient r. Multiple replications of random 

permutations of the matrices (9999 permutations applied by default in PAST 3) give 

a series of computed r values to compare to the original calculation of the matrix 

correlation to determine the probability of the original correlation coefficient. The 

resulting p-value is a one-tailed. 
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Appendix 6: Definition of Terms (Glossary) 

 

Terms used in specific context for 3-D rendering, multi-dimensional processing, and 

biological metrology. 

Allometry: Term used to describe the variations in shape that follow changes in 

size in biological forms. 

Asterion: Intersection of the sutures between the posterior temporal, inferior 

parietal and lateral occipital bones (White and Folkens 2000) 

Atlas: A model based the averages of the dimensions of the model sample units. 

Bookstein (Shape) Alignment: Superimposition method that sets a primary 

coordinate as the forced origin and a secondary coordinate. 

Calibration Surface: A surface placed inside a scanning environment having one 

or more calibration marks used by the scanner optical processing to aid alignment 

and orientation calibration of the surfaces to be captured. Can be considered 

compared to photographic scales. 

Decimation: A process applied to a 3-D mesh to re-distribute vertices and faces. 

Depending on the desired outcome, the parameters can be uniform distribution, 

clustered distribution, and targeted control of the final number of vertices and 

faces. 

Discretization: the process of dividing geometry into finite elements to prepare for 

analysis. 

Euclidean Distance: The separation between two points in a 2 or 3-dimensional 

space represented by a vector the length of the square root of the sum of the 

squared differences of the values of x, y, (and z) of the two points. 

Face(s): flat polygons of a 3-D mesh defined by the intersection of vectors 

between vertices of the mesh. 

Frankfurt Horizontal: Orientation of the cranium attributed to Paul Broca in the 

19th century. Define as a plane transecting the left and right porion landmarks and 

the landmark defining the left lateral intersection of the orbital rim and the 

zygoorbital suture - for my purposes, zygoorbitale left. (White and Folkens 2000) 

Generalized Procrustes Alignment (GPA): Superimposition method that 

projects non-affine (no shear) transformation of shapes into the alignment which 

minimizes the distance squared (d2) between homologous points. 



 

36 

 

Homology: The similarity of structures that is due to relatedness, in this case the 

translation of genetic template shared by related individuals into the developed 

structures of the cranium.  

Landmark: In the text; landmark refers to a definition of a location, point refers to 

a sample coordinate of a landmark. 

Landmark Point Variability: Sample Subset composed of the distances between 

1) The process model and digitizer point coordinates of an individual landmark (four 

models and one digitizer observation), for 2) Each process (four processes), for 3) 

Each crania (n=13), and for 4) Each landmark (n=37). 

Manifold: In digital modeling terminology, manifold refers to rendering a model as 

solid and geometrically possible. This is necessary due to the need for an object to 

have consistent and defines sides or thickness to exist. As an example, in a 3-D 

model, it is possible for adjacent faces to be defines as being internal and external. 

That is not possible in a physical object. If you punched a hole through a piece of 

paper, the edges of the hole have a physical dimension between the flat sides of 

the paper. 

Mesh Model: A three dimensional model composed of inter-connected point-cloud 

vertices and surfaces defined between the interconnections of the vertices (faces). 

Meta-data: Information about a digital file that includes file dimensions and 

relevant parameters to the type of data in the file. 3-D mesh meta-data would 

include the total number of faces and vertices. 

Normalized Vector: A construct of 3-D digital geometry that orients perpendicular 

to a face or point in 3-D space and is used to base the definition of outer and inner 

directions of a face. 

Paired Inter-Landmark Distances: Sample subset composed of Euclidean 

distances derived from the distance between 1) A primary landmark and all other 

unique landmarks sampled (36 distances for each of 37 landmarks), for 2) Each 

process model (four), and for 3) Each crania (n=13). 

Registration: The alignment of a 3-D object (e.g., mesh, or point cloud, or point 

sample) to either a specific coordinate system, to another 3-D object, or other 

specific configuration. 

Texture: Defined in terms of 3-D modeling and rendering, refers to color images 

projected over the 3-D mesh rendered either per vertex or face (Cignoni, 2014) 
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Transformation matrix: An n+1dimensional matrix that records the mathematical 

translational, rotational, or scale change in the location of a point when it has been 

moved or superimposed.  

 

Figure 11: Transformation Matrix Structure (Rogers and Adams 1990; 

Mortenson 2007) 

Transformation matrix is represented in homogeneous coordinates which due 

to their nature of representing an infinite projection of a point from the origin 

can be more easily be applied to a coordinate than the Euclidean counterpart. 

This type of matrix can be used to represent all the necessary changes to the 

location of a point when transformation is applied. The changes to the 

location include translation, rotation, scale, and shear.  

Vertex (vertices):Points of a 3-D mesh that represent the geometry of the mesh 

in multi-dimensional space. 

Zygotemporale: The superior or inferior most point on the suture between the 

zygomatic and temporal bone on the zygomatic process.
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