
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2005

Transparent Line Integral Convolution: A new approach for Transparent Line Integral Convolution: A new approach for

visualizing vector fields in OpenDX visualizing vector fields in OpenDX

Alexander Petrov Petkov
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Petkov, Alexander Petrov, "Transparent Line Integral Convolution: A new approach for visualizing vector
fields in OpenDX" (2005). Graduate Student Theses, Dissertations, & Professional Papers. 5077.
https://scholarworks.umt.edu/etd/5077

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5077&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5077?utm_source=scholarworks.umt.edu%2Fetd%2F5077&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly
cited in published works and reports.

**Please check "Yes” or "No" and provide signature*1

Yes, I grant permission

No, I do not grant permission

Author's Signature: 7 ^ / ^ ^ T7 ‘

Any copying for commercial purposes or financial gain may be undertaken
only with the author's explicit consent.

8/98

Transparent Line Integral C onvolution:

a new approach for visualizing vector fields in O penD X

by

Alexander Petrov Petkov

B.M., The University of Arizona, 1996

presented in partial fulfillment of the requirements

for the degree of

Master Of Science

The University of Montana

Missoula, Montana

April, 2005

Approved by:

Chairperson

Dean, Graduate School

s-s-'or
Date

UMI Number: EP40541

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertation Pybfefeg

UMI EP40541

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Pctkov, Alexander P, M.S., April, 2005 Computer Science

Transparent Line Integral Convolution:

a new approach for visualizing vector fields in OpenDX

Director: Dr. Jesse V. Johnson

ABSTRACT

Traditional techniques for visualizing vector fields consist of using glyphs, stream
lines, or streaklines. The Line Integral Convolution method (LIC) is examined as an
alternative approach for vector field visualization. This method is based on integrat
ing a texture along computed flow lines, and creates a continuous texture representa
tion of the vector field. LIC eliminates some visualization difficulties, such as vector
glyphs using too much of the display and obscuring other elements of interest, and
has proven useful for representing large vector fields.

This thesis is focused on developing a LIC module for the OpenDX
(http://w w w .opendx.org) environment. The original algorithm is extended through
the use of transparency and animation. The module can create texturized vector field
flow, which can be studied simultaneously with other data elements, produced by the
visualization environment.

LIC is demonstrated here to provide a superior visualization alternative for both
“real world” and idealized data sets. The result of this thesis will benefit researchers
from various disciplines, who will be able to use the LIC module within OpenDX
for the visualization of large vector fields as continuous texture maps. Possible ap
plications include the modeling of weather systems, computational fluid dynamics,
electromagnetic fields, and ice sheets on Mars.

The LIC module for OpenDX will be released to the open source community.

http://www.opendx.org

ACKNOW LEDGM ENTS

I would like to take this opportunity to express my thanks to those who helped me

with various aspects of conducting research and the writing of this thesis.

First and foremost, Dr. Jesse Johnson for his guidance throughout this research

and the writing of this thesis. Moreover, he has continuously inspired me during the

course of my graduate education.

I would also like to thank my committee members for their efforts and contributions

to this work: Dr. Ray Ford and Dr. Andrew Ware.

I thank the employees at Vizsolutions Inc. for their continuous OpenDX develop

ment, my friend and colleague Jared Rapp for his constructive criticism, and my wife,

Phyllis for her ongoing support throughout the course of my graduate studies.

TABLE OF CONTENTS

A B S T R A C T ... ii

A C K N O W L E D G M E N T S ... iii

C H A P T E R 1 IN T R O D U C T IO N .. 1

In tro d u ctio n ... 1

M otivation.. 2

G o a l .. 3

B e n e f i ts .. 4

Thesis Organization ... 5

C H A P T E R 2 O V E R V I E W .. 6

Related Literature .. 6

I c o n s .. 6

Stream lines/Streaklines... 6

Spot-noise A lg o rith m ... 7

Line Integral Convolution .. 9

W hat is a V ector?.. 10

Ice V i e w ... 11

Vector Field Visualization in IceV iew .. 13

D ata Explorer (OpenDX) .. 13

iv

Execution M o d e l .. 15

Visual Programming Environm ent... 16

Application Program In te rface ... 17

D ata M o d e l .. 19

C H A P T E R 3 M E T H O D S ... 21

Line Integral Convolution .. 21

Random Noise T e x tu re .. 25

Computing the S tream lin e .. 26

Computing the Weight hi .. 26

Kernel F u n c tio n .. 27

Computing Output Pixel V a l u e .. 30

Euler M e th o d ... 30

Runge-Kutta M eth o d .. 31

Numerical Methods E v a lu a t io n .. 33

Alpha B le n d in g .. 34

C H A P T E R 4 IM P L E M E N T A T IO N A N D R E S U L T S 36

Implementation P l a n .. 36

Initial Prototype .. 36

Interface D esig n .. 36

Im plem enta tion .. 37

Test S u i t e ... 38

R esu lts .. 39

User C on tro l.. 42

Alpha B le n d in g .. 42

A n im a tio n .. 42

v

Invalid Positions .. 43

C H A P T E R 5 C O N C LU SIO N S A N D F U T U R E D IR E C T IO N S . . 46

C o nclusions... 46

Known L im ita tio n s ... 48

Future D irec tio n s ... 49

B IB L IO G R A P H Y ... 51

vi

LIST OF TA BLES

Table 2.1 Module types in OpenDX and their descriptions........................ 18

Table 2.2 Array types in OpenDX and their descriptions................. 20

Table 3.1 Accumulated error and number of function evaluations com

parison for the numerical methods... 34

Table 4.1 Interface design for the OpenDX LIC module................... 37

Table 4.2 Test suite for the OpenDX LIC module.............................. 39

vii

LIST OF F IG U R E S

Figure 1.1 The velocity of the ice field for a large dataset after resampling.

Although the underlying topography is easier to see, the num

ber of velocity points has been reduced, perhaps missing some

information of interest... 4

Figure 2.1 Icon-based representation for a vector field.................. 7

Figure 2.2 Streamline representation for a vector field..................... 8

Figure 2.3 The result from the spot-noise algorithm. Figure in [17]. . . . 9

Figure 2.4 LIC-based representation of circular and turbulent fluid dy

namics vector fields. Figure in [2] 10

Figure 2.5 IceView output, showing ice sheet and its velocity, continental

bed topography and temperature, and basal water conditions. 12

Figure 2.6 IceView output, showing velocity of the ice field for the same

time frame as in Figure 1.1 without resampling. The large

number of vectors obscures the topography................................. 14

Figure 2.7 The OpenDX execution hierarchy. Programs can be DX scripts,

standalone applications, as well as graphical user interfaces

tha t control the DX executive... 15

viii

Figure 2.8 The OpenDX visual programming environment. Modules are

“wired” into one another to create a program yielding visual

results.. 16

Figure 2.9 Using the OpenDX API: developing new modules, controlling

DX from a GUI, or writing a standalone application. Figure

in [4].. 17

Figure 3.1 The LIC algorithm operates on a vector field and a noise tex

ture. The result is a textured pattern for the flow of the vector

field.. 22

Figure 3.2 For each pixel in the input noise tex ture 23

Figure 3.3 ...compute the streamline for user-specified length I in positive

and negative direction... 23

Figure 3.4 For each point in the streamline, compute the weight h^. . . . 24

Figure 3.5 Compute the output pixel value by using the input pixel value

and the computed weights in Figure 3.4....................................... 24

Figure 3.6 A 2-dimensional array with randomly generated numbers. The

array has the same size as the vector field and will serve as a

white-noise texture input to the LIC module.............................. 25

Figure 3.7 A computer-generated graphic of a tree before (left) and after

applying Gaussian blur. The filtered version appears to have

less detail, especially around the edges of the tree. Image

courtesy of Jared D. Rapp, University of M ontana................ 28

ix

Figure 3.8 Phase-shifted Hanning ripple functions(top), a Hanning win

dowing function (middle), and their product (bottom). Figure

from [2]... 29

Figure 3.9 Accuracy for the numerical methods. The two Runge-Kutta

variants are closer than the Euler method to the exact solution. 33

Figure 3.10 An example of alpha blending with alpha values of 0, 0.5, and 1

respectively. Image courtesy of Duane Bong, visionengineer.com. 34

Figure 4.1 Inputs to the LIC module can be specified, as well as routed

from other modules.. 38

Figure 4.2 Gwenn Flowers’ glacial flood data. Shown are glyphs (top),

where arrows are scaled to velocity magnitude, streamlines

(middle), and the texturized LIC flow (bottom)........................ 40

Figure 4.3 M atlab Peaks: comparing glyphs (top), streamlines (middle),

and LIC (bottom)... 41

Figure 4.4 An electric field, visualized with the LIC module. The two

images differ as a result of altering the streamline length and

kernel function param eters... 42

Figure 4.5 The result from the LIC module for OpenDX , superimposed

over the magnitude of the vector field. The added opacity level

enables the viewer to see the color-coded magnitude, as well

as the flow of the vector field.. 43

Figure 4.6 Texturized velocity flow of an ice field, superimposed over the

topography of North America and Greenland, before and after

invalidating positions with zero vector values............................. 45

x

1

CH APTER 1 INTRODUCTION

Introduction

In our lives we have witnessed rapid advancements in the development of computer

storage, processing and graphics technologies. These developments have enabled the

scientific community to store data in larger quantities, to process it faster, and to

present findings by using data visualization:

“...data visualization becomes more and more widespread

in science, both because today’s computer hardware make

it easy to produce pictures, and because pictures have in

herent power to convey complex inform ation...” [10]

D ata visualization has proven to be an invaluable way of sharing knowledge and

ideas. Humans have the ability to analyze vast quantities of visual information very

quickly. D ata visualization uses this ability by engaging what is arguably the most

sophisticated sensory perception [19]1.

The benefits from data visualization are numerous. For example, the visual rep

resentation of data is very useful in presentation setting, as it helps to communicate

complex ideas quickly and effectively [12]. D ata visualization is also crucial for data

l A Model o f Perceptual Processing, pp. 25-27 in the text.

2

analysis, where overall data patterns are easily recognized, as well as identifying in

consistencies in the data. Furthermore, visualization is often the basis of forming

hypotheses for future research [19]2.

Software packages for data visualization are being actively developed and constantly

improved. One such software package is OpenDX3—originally from IBM, and later

released as open source software. The University of Montana takes an active part

in furthering OpenDX development, thanks to the efforts of Dr. Ray Ford, David

Thompson and Jeff Braun at Vizsolutions, Inc.

Very often we see the need to visually represent vector fields, since vectors are fre

quently used to describe motion. Traditional vector field visualization techniques are

restricted to icon-based symbols [16], and line (streamline, or streakline) representa

tion [6]. In the case of dynamical systems (e.g., fluid flow, magnetic fields), these

common approaches are often inadequate. They can provide only a rough overview

of the underlying dynamics, and often produce cluttered and confusing images [11].

To address these inadequacies, a number of new, texture-based methods to visualize

vector fields have been developed—originating with van W ijk’s spot-noise algorithm

[17], and later followed by Cabral and Leedom’s Line Integral Convolution method

[2]-

M otivation

The idea for an alternative approach to vector field visualization originated from

IceView development. IceView4 is an interactive program tha t models glaciation

(ice cover and other glaciation elements), developed for the OpenDX visualization

2See p. 2 in the text.
3See http ://w w w .opendx.org
4A detailed IceView com m entary follows in C hapter 2

http://www.opendx.org

3

environment.

During development, it was observed th a t the ice velocity field for large datasets

can be very dense. The traditional use of glyph icons for the velocity lead to crowding

the display, which presented difficulties for the viewer to extract visual information.

In addition, underlying data elements were obstructed by the ice velocity field.

It became evident tha t compromises need to be made. On a large scale (e.g.,

viewing North America), the vector field needs to be resampled so the user can view

overall velocity patterns (e.g., direction). One of the current resampling techniques

used in OpenDX is to reduce the number of vectors displayed on the screen (Figure

1.1). This is an imperfect solution, since information of interest (e.g., fast moving

ice formations) may be discarded as the result of resampling. Moreover, it is difficult

for the viewer to reconstruct the animated ice flow from discrete sample points while

visualizing time series data.

W ith respect to this problem, the Line Integral Convolution (LIC) method has

been studied as a texture-based alternative, capable of displaying large vector fields

without resampling. A complete analysis of the LIC method is given in Chapter 3.

Goal

Studying the LIC method lead to the idea of visualizing vector fields as a continuous

texture, such tha t overall patterns in the field are not lost as a result of resampling,

as well as to allow for the visual presence of other dataset elements by using alpha-

blending (transparency).

Therefore, the work in this thesis is focused on extending the LIC method to

use transparency. This concept is implemented as an OpenDX module, providing a

texture-based alternative for visualizing vector fields in OpenDX.

4

N o r t h A m e r i c a and G r e e n l a n d

Longitude

Ice V elocity fn -i /a)

Figure 1.1 The velocity of the ice field for a large dataset after resampling.
Although the underlying topography is easier to see, the num
ber of velocity points has been reduced, perhaps missing some
information of interest.

Benefits

Given OpenDX’s capabilities to overlay a multitude of elements, this implemen

tation is expected to prove beneficial to anyone using the OpenDX programming

environment for visualizing dense vector fields. Practical applications, include the

modeling of weather systems (such as hurricanes and cloud formations), magnetic

fields, as well as any other field where each data point is associated with more than

one value.

5

Thesis Organization

The rest of this thesis is organized as follows:

• C hapter 2 provides an overview of related literature, key concepts, and soft

ware elements used in this research.

• C hapter 3 addresses the methods used for developing the OpenDX LIC mod

ule.

• C hapter 4 describes the implementation, test data sets, and results.

• C hapter 5 contains conclusion remarks, as well as an outline for future work.

6

CHAPTER 2 OVERVIEW

Related Literature

Icons

Perhaps the most popular approach to vector field visualization is by using icons

([16], [19]1). These icons are most often in the form of arrows, and are generated for

each data point in the vector field. This approach can be very effective: the length

of the arrows is indicative of the magnitude, and their orientation shows direction

(Figure 2.1).

In the case of dense vector fields, however, the display becomes cluttered, since an

icon is generated for each data point (Figure 2.6). A solution is to reduce the number

of icons on the screen by sampling the data set {e.g., , consider every third point).

This is an imperfect solution, since potentially im portant data is not visualized.

Stream lines / Streaklines

Another traditional technique for vector field visualization is the drawing of curves.

These curves can be tangential to the vector field (streamlines, Figure 2.2), or they

can be line traces of particles in a changing vector field through time (streaklines,

[4])-

1Perceiving direction: Representing Vector Fields, p. 216.

velocity magnitude

Figure 2.1 Icon-based representation for a vector field.

Although streamlines can produce a coherent image of the flow pattern, the sense

of direction is lost [19]2. Moreover, streamline computation depends on placement of

arbitrary "seed points” [6], which can potentially lead to loss of subtle trends in the

data.

Spot-noise A lgorithm

Van Wijk [17] originated a technique for texture-based vector field representation.

The author uses a spot noise texture, which consists of randomly inserted “spots”

of arbitrary shape (e.g., squares, ellipses) and random intensity [17]. The spot noise

2Perceiving direction: Representing Vector Fields, p. 217.

8

Figure 2.2 Streamline representation for a vector field.

texture is convoluted to a straight line segment, parallel to the direction of each vector

(Figure 2.3).

This method depicts all parts of the vector field without competing for display

resolution. However, it is better suited for a particular class of vector data [2]. In

particular, details of highly-curved vector field flow may be lost as a result of the

straight line approximation of the local vector field, as well as the choice for the spot

shape in the noise texture.

9

Figure 2.3 The result from the spot-noise algorithm. Figure in [17].

Line Integral C onvolution

The Line Integral Convolution method (LIC, [2]) was originally authored by Cabral

and Leedom in 1993. It is known as a modern and highly effective texture-based

technique for visualizing dense vector fields, where the texture is an image with pixel

colors generated at random.3 W ith the help of an advection method, the result is an

image, showing the texturized flow of the vector field (Figure 2.4).

Unlike the spot-noise algorithm, LIC computes line segments which are tangential

to the flow of the vector field. As a result, the technique produces striking images,

capable of revealing intricacies of the vector field flow. A drawback for LIC is that

orientation cannot be perceived from a single image. For example, in the case of

circular flow, it cannot be observed if the direction is clockwise or counter clockwise.

A way to overcome this limitation is outlined further in Chapter 3.

3The tex ture is explained on p. 25

10

Figure 2.4 LIC-based representation of circular and turbulent fluid dynam
ics vector fields. Figure in [2].

W hat is a Vector?

In one of its simplest forms, a vector is used to describe the position and motion of

a particle in a 2-dimensional plane. Por our purposes, the following vector definition

is Used4:

“A vector is an entity that is specified by a magnitude

and d i r e c t i o n [8’

In particular, if a particle Inis a position described by x (t) and y(t) at time t , then

the vector v = (vx, vy) shows the displacement per unit tim e of the particle a t time t,

and can be used to describe the speed (the magnitude v of vector v) and the direction

of th a t particle.

As an example, consider the velocity vector, which is the rate of change in the

position of a particle, given th a t the position is a known function of time:

4Soe p. 549 in the text.

Once the vector elements are known, we can use the Pythagorean theorem and

trigonometric identities to find magnitude and direction. More specifically, the mag

nitude of a vector v = (vx,vy) is given by:

v vl + vl (2 .2)

and the direction can be found by calculating the angle 9:

6 = tan 1 — (2-3)

IceView

IceView is an interactive visualization program tha t models glaciation (ice cover),

and is developed in the OpenDX visual programming environment.

IceView was started based on demand to increase the understanding of ice sheet

dynamics over the last ice age, with relation to climatic and geological factors. As

an extension to the University of Maine Ice Sheet Model (UMISM), IceView pro

vides highly informative 3-dimensional ice flow visualizations as time series movies

at various scales and resolutions. Development efforts have resulted in the following

modeling features (Figure 2.5):

• Thickness of the ice cover

• Growth and decay of ice caps and ice sheets

• Velocity vectors and flow lines

12

• Temperature of the bed under the ice

• Bed topography during and after glaciation

• Wet and dry glacier bed conditions

• Other user-derived quantities

N o r t h A m e r i c a a n d G r e e n l a n d

Longitude
R

b ed tem p (deg C)
s s

Ice Velocfty f r n /a)

W a te r D ep th (m)

Figure 2.5 IceView output, showing ice sheet and its velocity, continental
bed topography and temperature, and basal water conditions.

54
0

13

V ector Field V isualization in IceV iew

Currently, ice velocity is shown with the help of traditional vector field visualization

techniques, therefore restricted to glyph5, streamline, or streakline representation

[15]. On a large scale (e.g., viewing North America), these common approaches

are often inadequate—the vector field needs to be resampled so the user can view

overall velocity patterns, such as the direction of the velocity. The current resampling

technique used in IceView is achieved by allowing the user to reduce the number of

vectors displayed on the screen (Figure 2.6). This is a less desirable solution, since

information such as fast moving ice formations ma} ̂ be discarded as the result of

resampling, and the resampling scheme often fails at the boundaries.

Data Explorer (OpenDX)

D ata Explorer from IBM (OpenDX) is a powerful and flexible software package,

utilized by users of all levels (programmers and novices alike) to visualize and an

alyze data. This is accomplished through the many sample programs available, as

well as the capability for others to write extensions (modules) for OpenDX. More

over, OpenDX can visualize data from all areas of knowledge—medicine, geology,

mechanics, and more. It is concisely described as follows:

“Data Explorer is a visualization system that can be used

in many application areas and with a variety of data rep

resentations to extract useful information from complex

data. ” [4]

5A few examples of glyph icons are arrows, needles, or spheres

14

N o r t h A m e r i c a a n d G r e e n l a n d

longitude
o o o o oO t - C \| ^to n K!, ?!

Ice Velocity f m / a)

Figure 2.6 IceView output, showing velocity of the ice field for the same
time frame as in Figure 1.1 without resampling. The large num
ber of vectors obscures the topography.

OpenDX contains a large set of visualization tools in the form of modules. A

module can be accessed and used in a variety of ways. For example, a module can be

used as [4]:

• a node through the use of its icon in a visual programming network

• a function call, available in the scripting language interface provided by the

executive layer

15

• a part of the OpenDX API

The remaining material in this chapter is a descriptive summary of OpenDX com

ponents, which are explained in greater detail in [4].

E xecu tion M odel

OpenDX has a client-server execution model, which is well suited for single and

multi- processor machines. As demonstrated in Figure 2.7, clients (programs) can

connect to a server in a variety of ways:

User Program Options:

(DXlink library) (I)XCallm library) (DXlitc library)

DX Distribution

Separate Program Standalone
Vis. Program

I)X Script Standalone
Data Program

DX Data Model

I)X Executive

DX Modules

DX User Interface

Figure 2.7 The OpenDX execution hierarchy. Programs can be DX scripts,
standalone applications, as well as graphical user interfaces tha t
control the DX executive.

16

V isual Program m ing Environm ent

OpenDX's Visual Programming Environment (VPE) helps users to easily create

programs via the point-and-click interface. Users can select any available operations

(modules), and place them on the canvas. Different modules are connected (or wired)

together, thus dictating the logic for the program execution (Figure 2.8):

Windows Connection Options

Tool*

(A L L)
A m b ie n tl J ijlit
Append
Arrange
ArranqeMnmher
Attribute
AutuAxes
Auto Cam era
iVitu Color
AuloGlyph
f lu to G r a y S c a le
A u to G n d
AutnScale

Rand
Band Colors
B arthart
Camera
Capped IsusurfareM a
Caption
Catcgorim
Category S ta tistics
Oi.uigeGruupMembe
di.ingeG ruiiplype
clip 11, is
d ip Mane
d ipSurfaceM arru
Clip Volume Macro
Collect
CollectMultiGrid
Coller'llained
CollectSenex
Color
CnlorBar
Culnm.ap
Compute
Computed
Connect
Construct
O o n v o rt
ConvcrtColorNaineU:
CopyContainer
n r r

Figure 2.8 The OpenDX visual programming environment. Modules are
“wired” into one another to create a program yielding visual
results.

17

A number of modules in OpenDX allow for program execution control and user

interaction via intuitive interfaces (e.g., the sequencer module, which functions like

a VCR). Advanced users seeking more control can also create program's by using the

scripting language capabilities in OpenDX .

A pplication Program Interface

OpenDX’s well-documented application program interface (API) facilitates the de

velopment, of stand-alone user programs, as well as additional OpenDX functions

(modules). Figure 2.9 shows the options for using the API:

Import DX

My Module

Image

parameter values

App
(e.g gui)

/
DX

pictures

Writing a Module Application Controlling DX
(one main: DX) (two mains: DX and App)

m ain() {
....read m ydatafile.J
....D XN ewField()
....DXNewArrayO
....DXExportDX()

}__________

or

main(){
...DXCalllVIodule(lmport)
...D X C allM odule(lsosurface)
...D X C allM odule(D isplay)

}

Standalone Application (one main: Your App)~ —■— —-——

Figure 2.9 Using the OpenDX API: developing new modules, controlling
DX from a GUI, or writing a standalone application. Figure in
W-

New modules can be either inboard, outboard, or a runtime-loadable [3]G. Table

^Section 11.3, as of Feb, 2005

18

2.1 shows their differences:

Module Type Description
inboard

• requires a separate version of
DX executive

• efficient

• runs as a single process

outboard

• separate user module execu
tive

• runs as a separate process

• less efficient

run-time loadable

• separate user module execu
tive

• linked in at runtime

• efficient

• runs as a single process

Table 2.1 Module types in OpenDX and their descriptions.

The D X m odule builder facilitates the writing of additional modules by pre

senting users with a graphical user interface for specifying inputs and outputs for

a new module, as well as placing the new component into an appropriate category

(transformation, realization, etc.). This interface can also build a C-code framework

file, a module description file, and a makefile for compiling the new module.

19

D a ta M odel

OpenDX has the ability to import and use data from a variety of formats: binary,

NetCDF, HDF, spreadsheet, ASCII, and more. The software also has its native data

model, which facilitates the process of describing data to a great extent. This data

model supports various types of simulation and observational data, and can represent

a variety of data structures [4]:

• D ata on a regular orthogonal grid.

• D ata on a deformed regular or curvilinear grid.

• D ata on irregular grids.

• Unstructured data with no regular connection between the data samples.

O bject T ypes

D ata are stored as Objects, which are used by OpenDX modules:

“An object is a data structure stored in memory, that

contains an indication of the Object’s type, as well as

other time-dependent information. ” [4]

In practice, much of the data is represented by Array objects. W hat follows is a

brief listing of the most common object types in OpenDX.

1. Fields

Field objects are the constitutive part in the OpenDX data model. A field rep

resents a set of data th a t is associated with positions and (usually) connections.

20

Thus, the data, positions, and connections are “components” of a field. The

data model allows for sharing of the same components between different fields.

2. Groups

The group objects are compound objects, used to collect members members

th a t themselves may be fields and/or groups. A group object is often used to

collect series (e.g., time series). It cannot collect components, where the field

object is most suitable. Each group member may be referenced either by name

or index.

3. Arrays

Array objects in OpenDX can hold the actual data, positions, connections,

and other field components. Table 2.2 lists the types of arrays in OpenDX, as

described in [4].

Array T ype D escription
Regular Array One-dimensional series of evenly spaced points
Irregular Array A general way to specify the contents of an array

by simply listing the values
Path Array One-dimensional series of connected line segments
Product Array Regular or semi-regular grid positions
Mesh Array Regular or semi-regular grid connections
Constant Array Array with a constant value

Table 2.2 Array types in OpenDX and their descriptions.

4. A ttributes

An attribute defines the association between an OpenDX object (array, compo

nent, field, or group) and a value (simple or compound). Typically, an attribute

associates an object with a data segment.

21

CH APTER 3 METHODS

Line Integral Convolution

The LIC algorithm is a way to represent a 2 or more dimensional vector held

as a continuous map. This is accomplished by using an image (noise texture) with

randomly-generated pixel colors and a vector held as inputs to the LIC method. Both

inputs have the same size (Figure 3.1).

The input texture is hltered along computed, curved streamline segments. LIC uses

a one-dimensional low-pass filter1 to convolute the input noise texture by following

the direction of the how lines in the vector held [13].

The following pseudocode describes how the LIC algorithm works:

1. For each pixel in the input noise texture (Figure 3.2):

(a) Compute the streamline for user-specihed length I in positive and negative

direction (Figure 3.3).

(b) For each point in the streamline, compute its convolution weight hi (Figure

3.4).

(c) Compute the output pixel value by using the input pixel values and the

computed weights in (b) (Figure 3.5).

1 Defined on p. 27

22

v
t
gmj - *’**'»- -
V '
i - V ; ': •

pff -

Figure 3.1 The LIC algorithm operates on a vector field and a noise texture.
The result is a textured pattern for the flow of the vector field.

23

■ -
Vt

Legend:
P— any noise texture pixel

Figure 3.2 For each pixel in the input noise texture...

Legend:
P -cu rren t pixel
1-streamliue length

Figure 3.3 ...compute the streamline for user-specified length I in positive
and negative direction.

24

Legend:
P -cu rren t pixel
h\..h i, h[..h[.—tc o m p u t e d weight,!

Figure 3.4 For each point in the streamline, compute the weight hi.

Legend:
h\..h i,h \../^-com puted weights
F n i • - F n / , F!nl --FL r c o lo r v a l u e s

Foui-output pixel color value

F1 111 i

Figure 3.5 Compute the output pixel value by using the input pixel value
and the computed weights in Figure 3.4.

25

R andom N oise T exture

The random noise texture is constructed by simply generating a 2-dimensional array

of random numbers. It is important to emphasize tha t this generated array is of the

same size as the input vector field, such tha t each pixel has a corresponding vector

element. The random number values are between a desired range (often between 0

and 255, standard in graphics packages), and represent the pixels in the input noise

texture:

'A -. -.,v.«% % V* * • -* ♦ * «• Vt s c V « '
■;* ■ •• v ••. •' • • - \ . ' ••••• 'it • ;■ v. ■ • :•

■ ' ' C . v > ■ • . . . '

-:y m -v
■: v .-V "; • %V̂ fc ’ * -* . X .tv , y £ >**** 7*>V ' ' *..• ̂V * * .l * •

,•«.,% vi *• : w . v v .'.V" .
. . . . • .

% ■.tv -'--- '.■■ • v fW -r?
>■-* v •• J • • ->>.• \ ■ '.••

Figure 3.6 A 2-dimensional array with randomly generated numbers. The
array has the same size as the vector field and will serve as a
white-noise texture input to the LIC module.

26

C om puting th e Stream line

Computing the streamline for each pixel can be done by using numerical-integration

schemes such as the Runge-Kutta variants. The authors use the adaptive step Euler

method for computing the streamline, where each consecutive point in the streamline

is found by using the position for the previously-found point and its velocity:

P0 = (a;+ 0.5, y + 0.5) (3.1)

1321

where Po is the pixel for which we want to compute the streamline, Pi is the next point

in the streamline, V(Pi-1) is the vector value at the previous point in the streamline,

Asi is the current step size2, and i goes from 1 to /, the desired streamline length

(Figure 3.3).

C om puting th e W eight hi

Computing the weight hi for each point in the streamline is done by finding the

exact integral of the convolution kernel k 3 at every numerical integration step in the

streamline:

hi = f k(io)dij (3-3)
J a

where the index i represent the index of the current point in the streamline, a is

the distance along the streamline from the point for which we want to compute the

2 At this tim e the LIC module uses As* = 1
3Defined later on p. 28

27

output value, and b equals a plus the current step size As* from Equation 3.1 (Figure

3.4).

K ernel Function

From Figure 3.1, it is evident tha t the result of the LIC algorithm shows details

of the vector field flow very well, while the sense of direction is lost. To overcome

this limitation, Cabral and Leedom use a periodic phase shift filter, known as the

Hanning function [2]:

- [1 + cos(du + ft)\ (3.4)

where d is a dilation constant and (3 is the phase shift value, given in radians.

The Hanning function has properties of a low-pass filter, and is frequently used

to reduce aliasing in Fourier transforms [21]. Low-pass filtering is a process used for

smoothing or blurring an image. A commonly known low-pass filter is the Gaussian

blur in graphics manipulation packages, the effects of which can be seen in Figure

3.7:

The result of using Equation 3.4 (the authors call it the ripple function) as a

periodic phase shift filter is tha t the input noise texture is blurred in the direction of

the vector field, simulating apparent motion [2].

Since the LIC algorithm is a local operation, Equation 3.4 must be limited to local

extent. The side effect of the localization, however, is observed in the form of abrupt

cutoffs in animations tha t vary the phase (3 as a function of time [2] (top row of Figure

3.8).

The solution is to multiply Equation 3.4 by a Gaussian window function, so the

ends of the ripple curve have zero heights. The authors point out tha t the Hanning

28

Figure 3.7 A computer-generated graphic of a tree before (left) and after
applying Gaussian blur. The filtered version appears to have less
detail, especially around the edges of the tree. Image courtesy
of Jared D. Rapp. University of Montana.

function itself has windowing properties similar to a Gaussian window function. They

define the Hanning windowing function as follows:

^ [1 + eos(cw)\ (3.5)

where c is a dilation constant.

The kernel function k is the product of Equations 3.5 and 3.4, and can be expressed

as:

7 f N 1 + cos(cw) 1 + cos(duj + (3)
*(“) = - x -

= j 1 + cos(ccu) -1- cos(djj + (3) + cos{cuj)cos(du; + (3)]
(3.6)

29

\ A

Figure 3.8 Phase-shifted Hanning ripple functions (top), a Hanning window
ing function (middle), and their product (bottom). Figure from
[2]-

The window function (Equation 3.5) has a fixed period of 27r when c — 1 [2].

As shown by the authors in [2], the exact integration of the kernel function k is

computed as follows:

f b 1
/ k(u>)du> — -

J a ^

f ^ I sin(bc) — sin(ac) \
c

, sin{bd-\-(3) — sin{ad-\-fd)_| _

, sin{b{c—d)—(3)—sin{a{c—d)—(3)
+ 2 (c -d)

. sin(b(c+d) -\ (3) - sm(a(c+(i)+/3)
H 2(c+d)

(3.7)

30

C om puting O utput P ix e l Value

Using the exact integration result for the weight h i , the convolution result is com

puted by using a summation technique:

where Fout(x,y) is the output value at pixel (x ,y), Fin(Pi) is the color value from

the noise texture at position Pi in the positive, or P[in the negative direction in

the streamline. I and V are the distances in the positive and negative direction

respectively, and hi and h' are the weighting variables [13].

In essence, the output value of each pixel is computed by the summation of the

product of each pixel Pi in the streamline by its weight hi. The denominator in

Equation 3.8 is used to normalize the output pixel value [2].

order differential equations. It is based on the notion tha t the velocity v(t) at time t

i v
Y ,F i« (P i)h i + ' p F in(P:)h'i

Fout(x,y) = — V (3.8)

Euler M ethod

The Euler method is a simple and popular method for numerical integration of first

is the result of the derivative of the position y(t) at time t:

(3.9)

where v(t) is the velocity, and y is the current position at time t. The next position

at time t + A t is estimated as follows:

31

y(t + At) = y(t) + v(t) A t (3.10)

The Euler method shows satisfactorily results as long as the time step A t is small

enough. As A t gets larger, the accuracy of the end result is lessened. The decreasing

accuracy of this method is explained by the following:

1. The Euler method computes the rate of change (or the slope) of y and assumes

tha t it is the same throughout the time interval t.

2. If, however, the slope changes during the time interval, the change is not taken

into account during computation, and discrepancy occurs between the numerical

estimate and the exact solution [5]4.

The strategy for minimizing the discrepancy is to choose a sufficiently small step

size. The accumulated error in one time step is of order (A t)2, making the Euler

method an example of first-order method. Furthermore, the Euler method is asym

metrical, since it uses derivative information only at the beginning of the time interval

[5]5-

Runge-K utta M ethod

A more accurate method for numerical evaluation of differential equations is the

Runge-Kutta method. This method is based on the Euler method in the sense tha t it

uses the derivative at the beginning of the interval. That derivative, however is used

to estimate the slope value at the midpoint of the interval. Finally, the estimated

midpoint value is then used to compute the new position yn+i, resulting in a better

estimate:
4Section 2.2, pp. 13-14
5 A ppendix 5A, pp. 120-125

32

h = f{ y n, t n)A t (3.11)

h = f { y n + y ^ n + ^ ") A t (3 -12)

2/n+l = 2/n + ^2 + 0 (A t3) (3.13)

The error term indicates tha t this method is of second order (a method is of n th

order if its error term is 0 (A tn+1) [9]).

An even more accurate variation of the Runge-Kutta method is the fourth-order

Runge-Kutta algorithm, where the derivative is computed at the beginning of the

interval, twice at the middle of the interval, and again at the end of the interval [5]:

h = f{ y n, tn)A t (3.14)

k2 = }{yn + y An + - y) (3-15)

h = f{ y n + y , tn + A t (3.16)

= f{ y n + k2, t n + “)A t (3.17)

2 /n + l = 2/n + g ^ 1 (3.18)

From Equation 3.18 is evident tha t the slope values estimated at the middle of the

interval are given twice the weight than the numerical estimates at the end of the

interval.

33

Numerical M ethods Evaluation

Each of the numerical methods has advantages, as well as shortcomings. That is

more true for the Euler method—the method is simple to understand and easy to

implement, but the accumulated error increases if the time step A t is not sufficiently

small. Moreover, it has been noted tha t this method is not stable enough in the case

of using LIC on circular flow data (the negative effect being th a t the Euler method

produces a spiral flow, rather than a circular pattern).

The Runge-Kutta method is proven to provide better numerical estimation, but it

comes at a higher computational cost—the second and fourth order variants perform

2 and 4 function evaluations respectively.

Figure 3.9 illustrates the fall of an object (particle), where air resistance is neglected

for simplicity. The Runge-Kutta variants are visibly more accurate than the Euler

method:

Position of a falling particle
(no air resistance, dt = 0.1)

position(m)

time (s)

0.5 1.20.7 0.8 0.9 1.0 1.10.6

Euler + exact
Runge-K utta 2nd order
Runge Kutta 4th order

Figure 3.9 Accuracy for the numerical methods. The two Runge-Kutta
variants are closer than the Euler method to the exact solution.

34

Summarized below are t-lie accumulated error and number of function evaluations

for each numerical method. It is evident th a t the Runge-Kutta variants are slower

than the Euler method, since they require a higher number of function evaluations.

Those additional function evaluations, however, result in better estimates (Figure

3.9).

M ethod Error Function evaluations
Euler o m f) 1
RK 2 o m y) 2
RK 4 0 ((A t) 6) 4

Table 3.1 Accumulated error and number of function evaluations compari
son for the numerical methods.

Alpha Blending

Alpha blending is a process of creating the effect of transparency, and is frequently

used in computer graphics [1]. The technique can be described as overlaying a translu

cent color layer on top of a background image, creating a blending effect:

Figure 3.10 An example of alpha blending with alpha values of 0, 0.5,
and 1 respectively. Image courtesy of Duane Bong, visionengi-
neer.com.

35

Its significance for data visualization is th a t it allows for the display of a multitude

of data components within the same image window.

In most computer graphics interfaces, there are 4 channels used to define color.

The first 3 channels are used to describe the red, green and blue colors, while the

fourth channel (the alpha channel) describes the level of transparency. Furthermore,

this channel specifies how the foreground colors should be merged with those in the

background when overlaying occurs [1].

As Bong describes in [1], the method for calculating alpha blending is:

[A 9 1 blended — \̂forergound T (l <a) [̂ , Q, ^background, (3.19)

36

CH APTER 4 IMPLEMENTATION AND RESULTS

Implementation Plan

In itia l P roto typ e

In the beginning phase of my research, I experimented with prototyping work,

and studied existing code to gain understanding for the LIC algorithm (Integrate and

Draw in [11], and a C + + implementation in [7]) The result of my early prototype was

simply an algorithm th a t averaged the color of all pixel values in a single line. Later,

the same averaging technique was restricted to a desired streamline length. Finally,

I experimented with computing a streamline (Formula 3.1), and the workings of the

kernel function (Equation 3.6). The result was a functioning prototype, written in

the Perl language. Perl was selected because it is a scripting language, and it runs on

different platforms. A LIC image produced by the Perl prototype is seen in Figure

3.1.

Interface D esign

Initial requirements for the OpenDX LIC module were derived from the general

description of the LIC algorithm, as described by Cabral and Leedom in [2]. There

fore, the module had to accept a noise field and a vector field, and had to produce a

field object, showing the flow lines of the vector field.

Consequently, it was determined tha t the user should also specify desired length,

37

as well as the method1 for computing the streamline. In addition, user-defined values

for the inputs kernel function would allow for greater control over the output image,

as well as the sense of animation. Another im portant aspect is to allow the user to

control the alpha channel for the color, thus defining the opacity level. As a result of

these observations, the user interface for the LIC module was defined as follows (see

also Figure 4.1):

Tab nam e T ype D ata typ e D escrip tion
noise input field the white noise texture
xy vector input vector list the vector field containing x and y

components
length input integer desired streamline length (default is

10)
method input string desired method for computing

streamlines (Euler or RK2)
opacity input scalar desired opacity level for the output

image (default is 0.75)
phase shift input scalar current kernel phase shift (default

is 3.14)
texturized flow output field the computed LIC image
opacity output scalar specified opacity level

Table 4.1 Interface design for the OpenDX LIC module.

Implementation

As most other OpenDX modules, the LIC module is written in the C program

ming language. The DX API was also used for error and type checking, memory

management, using existing data types and operations (e.g., Points and Vectors), as

well as defining new types suitable for the LIC algorithm (e.g., Pixel). The current

implementation is in the form of a runtime-loadable module (Table 2.1) for the Linux

1See Euler and R unge-K utta m ethods in C hapter 2.

38

LIC

lupote:
name Hide Type Source Value

J noise -J field '(none)

x y v e c to r -J vector list j(none)

length integer {10

method J string feuler"

opacity J scalar D.7S

phase_shift J scalar 3.14
. . \d

Outputs:
Name Type Destination Cache
texturized flow
opacity

..................................

field
scalar

All Results _> |

All Results j

OK W y Expand Colla ise Description... Help on Syntax Restore Cancel

Figure 4.1 Inputs to the LIC module can be specified, as well as routed
from other modules.

operating system. The module is not a part of the default OpenDX module list, but

it can be loaded from the command line, as well as the VPE window.

The module inputs are the same as defined in the previous section, as well as the

outputs (Table 4.1 and Figure 4.1). The LIC module has a similar wired tab interface

as all other DX modules, allowing the user to focus on visualization and reuse of the

module between DX applications (Figure 2.8).

Test Suite

In order to test the LIC module, various vector field matrices were used. To ensure

validity of the results and reliability of the LIC module, it was decided tha t matrices

should vary in their proportions (square vs. rectangular), majority order (row vs.

column), and sizes. As a result of these criteria, the list of test datasets was defined

39

as follows:

V ector D ata Grid size M ajority D escrip tion
Peaks 200x200 Column A vector field of equal size in the x

and y directions, generated by the
Peaks function in Mat lab.

IceView 101x101 Row The velocity of of an ice field.
Gwenn Flowers 150x107 Column Glacier flood analysis data, as a re

sult of volcanic activities in Iceland.

Table 4.2 Test suite for the OpenDX LIC module.

Results

In its current implementation, the LIC module can produce a texturized flow of an

arbitrary vector field. Streamlines are computed for a user-specified length, where the

optimal value is usually 10 — 15% of the width of the vector field. The LIC module

requires as inputs a noise field and a vector field of the same size in each dimension.

Other inputs, such as the streamline length, opacity level and a numerical integration

method for computing streamlines are optional. Comparison of the LIC module to

traditional vector visualization techniques can be seen in Figures 4.2 and 4.3:

40

Figure 4.2 Gwenn Flowers’ glacial flood data. Shown are glyphs (top),
where arrows are scaled to velocity magnitude, streamlines (mid
dle), and the texturized LIC flow (bottom).

41

Figure 4.3 M atlab Peaks: comparing glyphs (top), streamlines (middle),
and LIC (bottom).

42

U ser Control

The configuration panel of the LIC module (Figure 4.1) allows for further control

and finer adjustments to the resulting image. For example, altering the length of the

computed streamlines, as well as manipulating the phase shift (3 (Equation 3.6) can

lead to better results:

Figure 4.4 An electric field, visualized with the LIC module. The two im
ages differ as a result of altering the streamline length and kernel
function parameters.

A lpha B lending

Additional benefits of the LIC implementation for OpenDX include the ability to

overlay multiple data components. More specifically, the texturized vector flow can

accept a user-specified opacity level, so underlying elements remain visible (Figure

4.5).

A nim ation

The capability of OpenDX to visualize time series data can be used to build ani

mations. Even when time series data is not present, altering the values to the kernel

Figure 4.5 The result from the LIC module for OpenDX , superimposed
over the magnitude of the vector field. The added opacity level
enables the viewer to see the color-coded magnitude, as well as
the flow of the vector field.

function of the LIC module can create visual sense of movement. For example, when

coupled with a sequencer or a foreach module, LIC will display a series of texturized

images, in which lines seem to be flowing. As a result, the problem of directional loss

in static LIC images is remedied.

Invalid P ositions

The problem of white noise traces in the texturized flow is addressed by marking

positions with zero x and y vector values as invalid. The solution produces a better

44

overall image, one th a t shows only the visualized flow, without remnants of input

noise texture spots (Figure 4.6).

45

elevotlon(m)

8 8 8 8 8 8

eievotion(m)

Figure 4.6 Texturized velocity flow of an ice field, superimposed over the
topography of North America and Greenland, before and after
invalidating positions with zero vector values.

46

CH APTER 5 CONCLUSIONS A N D FUTURE

DIRECTIONS

Conclusions

W ith their LIC algorithm, Cabral and Leedom [2] have influenced many researchers.

For example, Wegenkittl, and Groller authored oriented LIC (OLIC) and fast oriented

LIC (FROLIC), which are variants with a directional component [20], Stalling and

Hege developed a fast and resolution independent LIC [14], and a pseudo-LIC algo

rithm (PLIC) by Verma, Kao, and Pang [18].

The work in this thesis has been similarly inspired by Cabral and Leedom. The

result, however, is new and unique, given the ability to generate transparent LIC

images and animate them. As an OpenDX module, the LIC implementation described

in this thesis has numerous advantages over standalone implementations, or those

included in graphics packages. The results of the OpenDX implementation include:

1. Integration w ith a large v isualization suite: The LIC module adds an

alternative for visualizing vector fields in OpenDX . The integration in itself

reveals additional benefits, some of which are:

(a) A w ell-defined user interface: Similar to all other OpenDX modules,

the LIC module has input/output tabs, which can be wired from or into

other modules (Figure 2.8). The LIC configuration panel allows the user to

47

have finer control over the module parameters, by changing default values

(Figure 4.1).

(b) Interaction w ith other m odules: The output from the LIC module

can be routed to other modules for further manipulation. For example,

modules such as Regrid can be used to change the number of data points.

(c) R apid expansion: LIC can be combined with any other visualization

method, for example:

i. R ubbersheet: Although the current LIC implementation is restricted

to two dimensions, the Rubbersheet module can create a 3-dimensional

view of the data (Figure 4.5).

ii. Colors and opacity: Various color modules (e.g., Color, or Auto-

GrayScale) can be used to add color to the LIC output.

iii. M ultip le superim posed data layers: Given OpenDX’s capability

to display multiple data elements and add opacity, the LIC output can

be superimposed on additional data layers (or vice versa).

iv. Traditionally displayed vector data: The LIC module can be used

in conjuction with existing methods of displaying vector data. For

example, a texturized flow can be combined with glyphs or streamlines.

v. A bility to anim ate: Given OpenDX’s facilities to represent time

series data as sequence of images, the LIC module can be used to

produce animations. In addition, altering parameters of the kernel

function k (Equation 3.6) can produce a realistic sense of movement

even when time series is not present.

2. O pen source m odule: The source code for the LIC module is freely available.

Unrestricted source code access has been given for a number of reasons. This

48

thesis has been based largely upon existing work. Thus, source code availability

conforms to long-standing traditions of unobstructed exchange of knowledge and

ideas amongst researchers. Another reason is tha t it allows others to offer their

collective insight by the means of improving or extending the source code. The

intended results are tha t the LIC module will be continuously updated in a

constantly-developing scientific environment, and tha t any derived work will

be made freely available. Lastly, binary versions can be compiled for other

platforms.

The LIC algorithm has proven suitable for dense vector fields. This method elim

inates the necessity to subsample data in order to reduce clutter (Figure 2.6). The

LIC module is a viable alternative to existing methods in OpenDX for visualizing

vector data—one tha t can be used to generate continuous flow and eliminate the loss

of data traits as a result of subsampling.

The LIC module can be used in IceView to produce a texture-based flow of the

velocity of ice masses. In addition, the ability to add opacity level to the velocity

layer will ensure tha t other layers, such as the continental bed or basal tem perature

conditions, remain visible.

Other possible applications include the modeling of weather systems, computational

fluid dynamics, and electro-magnetic fields.

Known Limitations

Currently the LIC module for OpenDX compiles only on the Linux platform. Due

to the limited availability of the most recent installed OpenDX version in the CS lab

at The University of Montana, the LIC module was developed on the Linux platform.

49

Besides its ability to show the flow for a vector field in great detail, the result might

be misleading to the user. More specifically, the one-tone color (e.g., gray scale) could

be misinterpreted to mean indication of field strength (magnitude). In fact, it simply

distinguishes between computed streamlines.

As in the original algorithm, this implementation is limited to two dimensions.

However, OpenDX does facilitate the creation of 3-dimensional images from

2-dimensional data (e.g., using the Rubbersheet module).

As described in the analysis of the LIC algorithm in Chapter 3, the module depends

on an input noise texture (see also Figure 4.1). In the case of visualizing time series

data, OpenDX program execution follows for each time frame. To prevent generating

a new noise texture with each execution, a noise texture for one time step is saved

first and later imported. The workaround insures tha t the same random texture is

used for executing the LIC module during each consecutive time step.

Future Directions

Perhaps the most logical improvement to the current version of the LIC module

is to add a color component to the generated flow. This could be in the form of

generating a discrete color for each streamline in the vector field, as described and

implemented by the author of Integrate and Draw [11]. Moreover, the Integrate

and Draw implementation eliminates random noise texture dependence. In the case

of time series data, a similar approach will simplify the visualization process and

improve usability.

The LIC module can be extended to produce 3-dimensional flow. Such improvement

will allow for true visual representation for some practical applications (e.g., weather

storms).

50

The objective evaluation of the effectiveness of this texture-based approach with

respect to icon-based and streamline techniques is currently absent. The conducting

of user evaluation studies is one way to quantify the usefulness of the convolution

method.

The LIC module does not have to be restricted to the brute-force approach for

computing streamlines, as in the original method. Experimenting with other variants

of the LIC algorithm, such as fast LIC [14] and FROLIC [20] will lead to speed

optimizations.

51

BIBLIOGRAPHY

[1] Duane Bong. Alpha blending. Vision Engineer, http://www.visionengineer.

com/comp/alpha_blending.shtml, 1999-2004.

[2] B. Cabral. Imaging vector fields using line integral convolution. In Computer

Graphics Proc., pages 263-270, 1993.

[3] IBM Corporation. IB M ’s Visualization Data Explorer Programmer’s Refer

ence. IBM Press, http://opendx.npaci.edu/docs/html/pages/progu344.

htm, 1996-2005.

[4] IBM Corporation. IB M ’s Visualization Data Explorer User’s Guide. IBM Press,

http://www.research.ibm.com/dx/docs/legacyhtml/usrguide.htm, seventh

edition, May 1997.

[5] Harvey Gould and Jan Tobochnik. An Introduction to Computer Simulation

Methods. Addison-Wesley, Reading, Massachusetts, second edition.

[6] David N. Kenwright and Gordon D. Mallinson. A 3-d streamline tracking algo

rithm using dual stream functions. In VIS ’92: Proceedings of the 3rd conference

on Visualization ’92, pages 62-68. IEEE Computer Society Press, 1992.

[7] Harper Langston. Fluid Dynamics Visualization. NYU Media Research Lab,

http://mrl.nyu.edu/~harper/stokes/index.html, 2002-2005.

http://www.visionengineer
http://opendx.npaci.edu/docs/html/pages/progu344
http://www.research.ibm.com/dx/docs/legacyhtml/usrguide.htm
http://mrl.nyu.edu/~harper/stokes/index.html

52

[8] Lynh II. Loomis. Calculus. Adison-Wesley, Reading, Massachusetts, third edi

tion, 1982.

[9] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flan

nery. Numerical Recipes in C: The Art of Scientific Computing, section 16.1,

pages 710-714. Cambridge University Press, 1992.

[10] Laurie Hodges Reuter, Paul Tukey, Laurence T. Maloney, John R. Pani, and

Stuart Smith. Human perception and visualization. In VIS ’90: Proceedings of

the 1st conference on Visualization ’90, pages 401-406. IEEE Computer Society

Press, 1990.

[11] Carlos Perez Risquet. Visualizing 2d flows: Integrate and draw. In Proceedings of

the 9th EUROGRAPHICS Workshop on Visualization in Scientific Computing,

1998.

[12] M atthew W. Rohrer. Seeing is believing: the importance of visualization in

manufacturing simulation. In Proceedings of the 32nd conference on Winter

simulation, pages 1211-1216. Society for Computer Simulation International,

2000 .

[13] H. Shen and S. Bryson. Using line-integral convolution to visualize dense vector

fields. Computers in Physics, ll(5):474-478, Sep/Oct 1997.

[14] Detlev Stalling and Hans-Christian Hege. Fast and resolution independent line

integral convolution. Computer Graphics, 29(Annual Conference Series):249-256,

1995.

[15] D. Thompson, J. Brown, and R. Ford. OpenDX Paths to Visualization. VIS,

Inc, Missoula, Montana, 2000.

53

[16] Edward R. Tufte. The visual display of quantitative information. Graphics Press,

Chesire, CT, 1986.

[17] Jarke J. van Wijk. Spot noise texture synthesis for data visualization. In Pro

ceedings o f the 18th annual conference on Computer graphics and interactive

techniques, pages 309-318. ACM Press, 1991.

[18] Vivek Verma, David Kao, and Alex Pang. PLIC: Bridging the gap between

streamlines and LIC. In David Ebert, Markus Gross, and Bernd Hamann, editors,

IEEE Visualization ’99, pages 341-348, San Francisco, 1999.

[19] Colin Ware. Information visualization: perception for design. Morgan Kaufmann

Publishers Inc., 2000.

[20] R. Wegenkitt and E. Groller. Fast oriented line integral convolution for vec

tor field visualization via the internet. In Proceedings of the 8th conference on

Visualization, pages 309-316, 1997.

[21] Eric W. Weisstein. Hanning Function. MathW orld-A Wolfram Web Resource,

h t t p : //m a th w o rld .w olfram . com /H anningFunction.h tm l, 1999-2005.

http://mathworld.wolfram.com/HanningFunction.html

	Transparent Line Integral Convolution: A new approach for visualizing vector fields in OpenDX
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.oVSYR

