
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1992

Spiral model approach to microprocessor laboratory system Spiral model approach to microprocessor laboratory system

design design

Tsu-i ChÊ»en
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
ChÊ»en, Tsu-i, "Spiral model approach to microprocessor laboratory system design" (1992). Graduate
Student Theses, Dissertations, & Professional Papers. 5509.
https://scholarworks.umt.edu/etd/5509

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5509?utm_source=scholarworks.umt.edu%2Fetd%2F5509&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

University of

A Spiral Model Approach to

Microprocessor Laboratory System Design

by

Zuyi Chen

B.A., Hangzhou University, 1983

M.A., University of Montana, 1989

Presented in Partial Fulfillment of the Requirements

for the Degree of

Master of Science

University of Montana

1992

Approved by:

Chairman, Board of Examiners

Dean, Graduate School

Dat

UMI Number: EP40973

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependen t upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete m anuscript
and there a re missing pages, th ese will be noted. Also, if material had to be rem oved,

a note will indicate the deletion.

JJMT_
UMI EP40973

Published by ProQ uest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United S ta tes C ode

ProQ uest LLC.
789 E ast E isenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

TABLE OF CONTENTS

Table of Contents 1

List of Illustration ii

1 Overview 1

2 The Spiral Model 2

2.1 Spiral Model Preview 2

2.2 Round One of Spiral Model 5

2.2.1 Requirements 5

2.2.2 Specifications 6

2.2.3 Development 8

2.2.4 Evaluation 10

3 Further Development 11

3.1 Development - Round Two 11

3.2 Evaluation - Round Two 13

3.3 Development - Round Three 13

3.4 Evaluation - Round Three 13

4 The Products 16

4.1 Lab Use Information 16

4.2 EVB Server Software 16

4.3 Lab Exercises and Instructor’s Notes 17

4.3.1 Output Ports 18

4.3.2 Input Port 20

4.3.3 Timing Control 20

4.3.4 Hardware Setup 21

4.3.5 Software Interrupt 21

4.3.6 Timer and Output Compare Functions 22

4.3.7 Polled and Single Interrupts 22

i

4.3.8 Inter-process Synchronization 23

4.3.9 Practical Application 23

5 Conclusion 24

Acknowledgement 27

Reference 28

Appendix A: EVB server source files

Appendix B: Lab Use Information Manual

Appendix C: Lab Assignment Manual

Appendix D: Lab Instructor’s Manual

Appendix E: Hardware Diagram Manual

Appendix F: Shell Program Listings

ii

List of Illustrations

Figure 1. Waterfall Model 3

Figure 2. Spiral Model 4

Figure 3. Spiral Model Round 1 7

Figure 4. Spiral Model Round 2 12

Figure 5. Spiral Model Round 3 14

Figure 6. Comparison between Assignments and Text Topics 25

Figure 7. Hardware Cost 25

iii

1 O verview

This graduate project treats and analyzes a system design problem involving hard

ware, software, interfacing, and instructional elements, as a software engineering prob

lem to be solved via the risk-driven spiral model described by Barry Boehm [1]. The

goal of the project is to create a lab environment that provides a student or working

engineer hands-on experience with microprocessors, computer architecture, simple

device interfaces and assembly software programming. It is anticipated that this

environment will be integrated with the revised University of Montana CS231-232

“Computer Architecture and Assembly Language” course sequence. The products of

the project include a set of “lab use” information, lab exercises, instructor’s notes,

hardware diagram manual, extra software to make lab procedures easier, and a sum

mary of the cost of setting up such a lab.

The discussion in Chapter 2 and 3 of this report focuses mainly on the process

used to complete this project, i.e., the system design activities. Chapter 4 describes

the lab use information and lab exercises, and Chapter 5 summarizes the lab costs.

The specific products resulting from the activities are also included as appendices.

1

2 T h e Spiral M odel

Looking at the history of software life-cycle process models, two important models

- waterfall development and spiral development - have been widely used to solve sys

tem design problems involving computer software. The waterfall model, developed

over years since the 1950’s, describes software system engineering as a fairly rigid

sequence of stages, including system feasibility, software plans and requirements,

product design, detailed design, code, integration, implementation, operations and

maintenance. The resulting one way flow, as shown in Figure 1, looks like a waterfall.

The spiral model has evolved from the waterfall model to describe a more flexible and

realistic approach to software and system engineering. It is described in more detail

below.

2.1 Spiral M od el P rev iew

The spiral model was developed from the waterfall model by Boehm[l]. It is

based on experience with use of the waterfall model in real project development. It

can accommodate most of the proposed variations on the waterfall model, and treats

them as special cases. As illustrated in Figure 2, the basic idea is that the quadrants

represent general types of activities. The flow through these activities is non-linear;

many activities are repeated several times, as indicated by the spiral, as a system is

refined. The spiral model is risk-driven in nature. The more cycles and steps of the

spiral model completed, the more cost, therefore, the more risks associated with the

system being developed.

Figure 2 shows the details of applying the spiral model in the Microprocessor Lab

System design. The cumulative cost for the steps accomplished to date is represented

2

3

/WX//1/7" £ MA/CB

Figure 1: Waterfall Model

C uom |«> .'on Cost

progress
+firow<jh
5+eps

cie+-e»'r>i'he objectives
A n d C o n s i- r x h i+ l

id ^ n f i f vj / resol i/e
r i s K

COmniJt/Md t

p«.r-K4ie>r\

r i s k
ancciuc,, i

a.na.1

p r-o-M-i/pe

3
r''SF-
And'/SiS pro+o+ŷ

COliCCted
/ MXJrK

rne/1+3af+«rr>^ve< i r&jU'rt'
a---.d ,

d t'/e .lo p m e n t
pl«.v\

w - * ' **

^ '> - '>* Ĥ
 o ' , 0W ̂ '^ ' /

pla. n -foi~

n e r t pha.se
D * v /e lc p y v e r . f y

next-lev*. | p r c d u C f -

Figure 2: Spiral Model

5

by the radial dimension, and the progress made in completing each cycle of the spiral

model is represented by the angular dimension in the figure. In the development of

any system there can be many cycles, or rounds, that represent different levels of

system elaborations. A typical round of the spiral model begins with the objectives

of the system product being elaborated, or re-evaluated, including such aspects as

functionality, performance and ability to suit the different requirements. The round

continues by identifying the constraints of the system being developed, estimating and

resolving the risks, developing and verifying the next-level products. The round ends

in planning the next phases of development. As shown in Figure 2, the Microprocessor

Lab System design has thus far involved -three rounds of development, which are

discussed in detail in the following sections.

2.2 R ound O ne o f Spiral M odel

Like any other design, the Microprocessor Lab System design starts with identi

fication of basic goals, requirements, and constraints. Another important part of the

first round is the accumulation of information related to the system being designed, or

target system , ranging from definitions and terminology to hardware and software

components. This round involved a single designer (me) working over a period of two

months. The goals and requirements are discussed in the following subsections; re

lated definitions and terminology, such as host, target, assembler vs. cross-assembler,

upload, download, etc., are given in the Lab Use Manual in Appendix B.

2.2.1 R equirem ents

This project involves designing a complete “lab experience” involving micropro

cessors, computer architecture, simple device interfaces, and assembly language pro

6

gramming. The experience is to be based on lab exercises that use hardware and

software in a microprocessor lab, operated with a small budget. The exercises are

assumed to be integrated with an instructional program, such as the architecture and

assembly language topics to be covered in the newly revised University of Montana

CS231-232 semester sequence, or a comparable independent study course. The lab

exercises should reinforce the “theory” covered in the instructional program. The

labs require “hands-on” experience, in which a student typically constructs a hard

ware circuit, connects it to the microcomputer system, and executes software on

the micro-system to produce tangible results on the circuit. Therefore, the labs em

phasize the practice and details of how to get a primitive microcomputer system, or

embedded system , to control external devices.

The mix of theory and practice is essential. In the advanced computer world,

there is a big difference between the students who read theory only and those who

can combine theory with practice. The former lack practical experience desired in the

real world, and are far less competent in the computer world. Even a pure teaching

job requires some practical experience in one field one or another. Although it is

impossible to offer practice in every computer course, it is feasible to add practice in

the computer architecture and assembly language class, and cheap enough for most

schools and students to afford. Being able to see the system working, by watching its

circuits in action, provides a tangible measure of success missing in other instructional

programs. This kind of activity will surely help increase students’ interest in the

related topics. All these above provide the basis for doing this project.

2.2 .2 Specification

If possible, the lab exercises are to be done on the Motorola M6800/68000 family

7

O bjectives Design a sequence of 6 or 7 lab exercises to provide experience with

microprocessors, computer architecture, simple device interfaces, and assembly

language programming.

Constraints The labs to be designed by one person in a period of 2-3 months;

minimum cost should be spent on the hardware for the labs.

Risk The products may not be useful, due to “cost” or failure to match instructional

goals; time and energy may be wasted.

Risk resolution Collect and analyze a set of existing assembly programs on existing

low-cost lab facilities.

Risk resolution results Most of the collected programs were not appropriate for

the microprocessor labs, but analysis helped in identifying the basic lab con

straints.

Plan for next phase Develop a new set of lab exercises and supporting lab infor

mation.

Com m itm ent Implement next phase.

Figure 3: Spiral Model Round 1

8

of microcomputers, using one of several low-cost evaluation boards available from

Motorola. The lab assignments are to cover both hardware and software aspects

of microprocessor systems, as recommended by both ACM and IEEE instructional

guidelines. A pure hardware focus may be appropriate for electronic engineering

students, but isn’t sufficient for those students with software engineering interests.

On the other hand, a pure software focus would miss key architecture and interfacing

details. Thus, it seems proper to combine topics of both hardware and software in

the lab assignments.

2.2 .3 D evelopm en t

The M68HC11EVB was selected for use as the microprocessor tool in Round 1,

based on its low cost and appropriateness for education purposes. A kit with the

M68HC11EVB board, manuals, and monitor software costs about $70. The layout

of the hardware, such as processor, memory and other chips, is simple and easy to

understand. The software required to interact with the board is compatible with

PCs, Macintoshes and Unix workstations. The monitor EPROM can be removed and

carried around. The board is small enough that a student can carry it around in a

back pack between home and labs. Finally, the board and related software are cheap

enough that each student can buy his or her own.

The features of the EVB include the following.

1. Low cost tool containing an MC68HC11 microcomputer (M6800 instruction set)

2. On-line assembler/disassembler

3. Support for host computer downloading

4. On-board monitor with debugging support

9

5. MC68HC24 Port Replacement Unit (PRU) for MCU I/O support (i.e., for de

vice interfacing)

6. MC6850 Asynchronous Communications Interface Adapter (ACIA) for host/target

communication support

7. Special hardware registers and signal pins to support device interfacing and

communication

To run a program on the EVB, a student can either use a terminal to enter and

assemble code directly on the EVB, or use a host machine to create the program,

cross-assemble it to create an S-record file, then download the S-records to the EVB.

In either case the student can use the BUFFALO monitor program to execute the

assembled program and monitor its execution. The project described here assumes

that all lab assignments will use the host machine approach, and that the host will

be a workstation or PC.

The starting point for the design of the lab exercises is the set of topics described

in the course on microprocessor interfacing and communication by the IEEE Com

puter Society Curriculum Committee. In general, the goal for the lab exercises is

to introduce students to modern microcomputer architecture, programming, and the

interaction of computer software and hardware to realize control of simple external

devices.

As stated in Figure 3, the primary risk in Round 1 of the spiral model is that

whatever lab exercises are developed might turn out to be inappropriate for actual

use. To minimize costs in Round 1 ,1 started with an existing set of assembly programs

and software for the 68HC11EVB, instead of starting from scratch.

10

The existing assembly programs and software came from various assignments and

student projects from advanced courses, such as Embedded Systems and Parallel

Processing. The plan was to modify these programs, to see if they could be used

as lab assignments. Several days were spent on studying the results of the existing

programs and modifying the programs to suit the new purposes.

2.2.4 E valuation

Roughly, the prototype lab Round 1 consists of a 68HC11EVB, the first set of lab

exercises, and the extra hardware required to build the circuits used by the EVB. The

EVB seemed adequate as a platform; the set of exercises and circuits needed more

careful analysis. After the programs were modified and potential lab assignments

defined, I started to match the labs with project requirements and specifications.

Four of these labs were considered valuable - their ideas were retained for subsequent

development. Most of the other labs were rejected because they didn’t match the

requirements and specifications, or they simply didn’t serve as good lab exercises.

For example, some labs were too hard or too long to fit as single units, focused on

material outside of the topics of interest, or used circuits too complex or expensive

for each student to duplicate. Therefore, this first system prototype had to be refined

and extended to include new labs. There were two alternatives: to collect and adapt

more assembly programs from other sources, or to design new labs from scratch. I

chose the latter, and planed for the next round of design and implementation. This

ended the first round of the spiral model, and started the second.

3 Further D evelopm ent

3.1 D evelopm ent - Round Two

The goal of the second phase of development was to create several new labs from

scratch, particularly to focus on the concept of interrupt handling and its hardware

and software details. In general, these labs must

1. provide students with hands-on experience in setting up input and output de

vices;

2. show students how microprocessor internal units and external chips relate to

each other; and

3. show students how low-level computer software interacts with computer hard

ware to produce internal state changes and externally visible results (e.g., via

lights, audio generators, character display, etc.).

Designing labs from scratch takes more time than designing labs based on the

existing programs. For example, low-level programs can yield unexpected results

with only subtle changes, so care must be taken to assure that the basic program

used by each lab was reliable and predictable. After many hours of development and

testing, a basic framework for key topics, such as interrupt handling, was developed,

permitting the development of several interrelated labs. This major job having been

done, I started to put together a second complete set of lab exercises, along with

the solutions and supporting software. The result is System Prototype 2. Figure 4

summarizes Round 2 of development.

11

12

O bjectives Start from scratch to design and implement 6 or 7 labs with emphasis

on interrupt handling; design support software.

Constraints Reliability of interrupt handling on the EVB; portability of support

software both to a UNIX workstation and to a PC; match between labs and

course topics.

Risk The interrupt handling techniques on 68HC11 may not be appropriate for lab

exercises for novices.

Risk resolution Read reference books; experience with interrupt techniques.

Risk resolution results Figured out how the interrupt technique works and a

scheme to use it in several labs.

Plan for next phase Include interrupt handling in several labs; decide other topics

for the labs; put together lab exercises, develop the solutions to the exercises.

Com m itm ent Develop project prototype.

Figure 4: Spiral Model Round 2

13

3.2 E valuation - R ound Two

Upon reflection the second system prototype was found to be too limited. Al

though all labs were pertinent to the study topics and could be assembled with rea

sonable cost, the set of the labs was too rigid. I asked myself the following questions:

What if some labs turn out to be too easy or too difficult for students? What if

the instructor of the course doesn’t like a particular lab? What if a particular lab

exercise doesn’t match any of the topics covered in a particular course? Does the

instructor have other choices? He is supposed to, right? Right! The development of

alternatives and instruction flexibility triggered the third round of the spiral model,

which is summarized in Figure 5 and described below.

3.3 D evelopm en t - R ound T hree

In addition to the base set of labs included in System 2 ,1 realized more labs should

be prepared to accommodate unexpected change. I decided to increase the number

of lab exercises. The goal was to double the number of labs, and 17 lab exercises were

eventually developed. The development problems and risks in this round were similar

to these in Round 2; the assignments had to be appropriate, the solutions had to be

accurate, and software had to be reliable. The result is described in Figure 5.

3.4 E valuation - R ound Three

Upon completion of Round 3 of system design and implementation, I found that

the products resulting from the activities of the system matched original goals quite

well. The products include the exercises on key instructional elements, such as timing

control, interrupt mechanisms, microprocessor internal circuits such as different I/O

14

O bjectives Design twice as many labs as in Round 2 to provide alternatives.

Constraints Limited development time.

Risk The interrupt handling techniques on 68HC11 may not be appropriate for lab

assignments.

Risk resolution Hard work, long hours.

Risk resolution results 17 labs designed without extending lab hardware/software

requirements.

Plan for next phase Obtain feedback from actual use, then revise accordingly.

Com m itm ent Revise the products; write documentation and the summary report

on lab system design.

Figure 5: Spiral Model Round 3

15

ports, MCU timers, and others. In most of the lab assignments, students are required

to understand how the “shell” of a given assembly language works, calculate things like

instruction cycle times, and then modify or extend the given code. Some labs require

students to set up specific circuits from examples or diagrams that are provided. The

collection of lab exercises is not perfect, but I assume this system will be further

evaluated and modified in subsequent phase of development. It is sufficiently well

developed to allow “prototype testing”, in the form of actual use in an instructional

context. The labs are expected to be used in CS231-232 in 1992/93, with feedback

being used to direct further development.

4 P rod u cts

The labs cover a variety of computer architecture topics, such as free-running

timer, output compare functions, single and polled interrupt mechanisms, software

interrupt mechanisms, real-time interrupts, various output ports, and timing control

via instruction cycles. Extra software and general lab use information designed to

complement all the labs are shown in Appendix A and B. The complete sequence of 17

labs is shown in Appendix C, along with an instructor’s manual containing rationale

and solution notes in Appendix D. Circuits used by the labs are given in Appendix

E, and the program shells for the labs are listed in Appendix F. Each of these parts

of the Microprocessor Lab System design is described briefly below.

4.1 Lab U se Inform ation

Lab use information and extra software (Appendices A and B) are provided to

make it easier for students to understand lab procedures and to master the required

topics. The information includes how to connect the EVB board to a host, how to use

the BUFFALO monitor, how to download S-records from the host to the EVB, how

to offload data from the EVB to the host, and how to use the EVB Server software

package.

4.2 E V B Server Software

It is assumed that course work will be hosted on PCs and Unix workstations. PC

and workstation versions of an “EVB Server” package have been implemented for this

purpose. EVB Server was derived from a version of such software that I implemented

earlier as a project for CS495 Embedded Systems, Fall 1991/92. EVB Server is an

16

17

interfacing package that helps an EVB board to interact with a host machine, which

can be either a PC or a Unix workstation. EVB Server is a menu driven system that

combines several useful functions. Menu options allow the user to download S-records

from the host to the EVB board, upload data (memory contents) from the EVB

board to the host, and connect from the host to the board. Besides these, the user

can also invoke the cross-assembler on the host to produce an S-record file, convert

a file with hexadecimal contents to the decimal contents, edit a file, and display

directory content. By combining these functions, EVB Server simplifies program

development, during which program assembly, downloading and data offloading are

performed again and again. EVB Server is written in C. Two slightly different versions

have been written to account for differences between PCs and workstations. The

major differences between the two versions are the communication port setup.

4.3 Lab E xercises and In stru ctor’s N otes

The labs are ordered in terms of topics and level of difficulty to match accompany

ing instruction. The lab exercises are described in detail in the lab manual (Appendix

C), the answers to the exercises plus comments are given in the instructor’s manual

(Appendix D), and the circuits diagrams for the labs are provided in the hardware

diagram manual (Appendix E). In the lab manual, each lab is described in a form

that includes a problem title, a list of topics required and reinforced by the lab, the

instructional purpose for the lab, and the lab problem specification. Typically the

specification also includes the shell of an assembly language program to be used in

the exercise. The instructor’s manual includes similar information for each lab, along

with a description of the background required by the lab and one or more programs

and/or circuits that implement a correct solution.

18

Each lab exercise utilizes external input and/or output device(s), such as lights,

buzzers, digit displays, character displays, etc. Each solution shows how the software

should interact with the hardware to produce the control specified by the lab.

Students experience the following in the collection of labs.

1. They “wire-up” connections for input and output devices.

2. They set up timing and external signal control to implement real-time hardware

control, via both interrupts and polling.

3. They observe an interface between the board and outside devices that produces

both audio and visual results.

4. They witness concurrent yet synchronized execution of programs on two differ

ent boards.

In addition, students must define and implement their own control project inde

pendently, as the final exercise. The details of the assignments are based on specific

68HC11EVB details explained below.

4.3.1 O utput P orts

There are five parallel input and output ports in the EVB: Port A, Port B, Port

C, Port D and Port E. Each bit in each port is connected to EVB header pins, making

external connections very easy. Ports A through D can be used for general-purpose

output. The 8-bit Port A is configured for general-purpose I/O or for timer or pulse

accumulator functions. Bits 0 - 2 are used for Input Compare, therefore, cannot be

used for output; bits 3 - 7 can be used for output compare in the timer architecture

or for general-purpose output. When used for the latter, bits 3 - 6 are used directly,

but bit 7 of the Port A data direction register must be written with 1.

19

The 8-bit Port B is an fixed-direction output port. It is used for general-purpose

output and for simple strobe output.

Port C is a complex port, because it involves the bi- directional I/O. Pins 9 - 1 6

correspond to bits 0 - 7 of Port C. In order for Port C to be used for output, an 8-bit

Port C data direction register must be first written with 1 on every bit.

Port D is a 6-bit bi-directional I/O port. Bits 0 - 5 of Port D correspond to the

EVB header pins 20 - 25. Bit 0 serves as receive data pin, and always reads; and bit 1

serves as transmit data pin, and always writes. They are usually not used as outputs.

Bits 2 - 5 are used either for general-purpose output or for the on-chip synchronous

SPI (Serial Peripheral Interface) system. When used for the former, bits 2 - 5 of the

corresponding Port D data direction register should be written with l ’s.

To let students get more familiar with the output port topics covered in the course,

Lab 1.0 covers output via each of Port A, B, C and D. The software drives data out

of the Port A, B, C and D to bar graph LEDs to control the state of the LEDs. Each

of the output pins of the ports are turned on in order of Port C, D, A, and B from the

most significant to the least significant bit. A program shell for the software driver

is provided to the student with details that must be filled in by the student to make

the program executable.

20

4.3 .2 Input P orts

The 8 pins of Port C can be used as general-purpose input, when the Port C data

direction register is written with 0 to change the data direction for input. Input is

more complex than output. In order to read in coming data on Port C, the parallel

I/O control register needs to be alerted as to the arrival of the data. On the EVB, a

control pin, STR-A, and a polling loop are usually set up to implement checking for

incoming data. Lab 2.0 sends data output from Port B as input to Port C. Again, a

program shell for the input driver is provided.

4.3 .3 T im ing C ontrol

Microcomputers are often used to control real time. Some real world electrical

devices are controlled by inputs by means of delay loop linked to real time intervals.

The speed at which assembly instructions are executed is measured in terms of cy

cles. The EVB MCU is a 2-Mhz CPU, which means that the CPU executes 2,000,000

instruction cycles per second. It takes several cycles to execute each instruction, typi

cally between 2 and 4, but ranging much higher for some complex instructions. Cycle

information can be obtained from the 68HC11 manual, and is also typically printed

on the assembly listing. A real-time execution interval is measured by summing the

number of cycles in a section of code, and multiplying that sum by seconds per cycle

on the MCU.

In software it is relatively easy to build code to delay N cycles, then to compute

the real-time delay M by the technique described above. This approach can be used

for simple timing control, such as to operate the lights in a traffic signal. In Labs

3.0 and 4.0, a “traffic light” is controlled for specified time intervals by software on

the EVB board. Given a program shell, appropriate time delays must be created by

21

the student for each of the green, yellow and red lights, (i.e., green, yellow and red

LEDs).

Lab 5.0 involves similar control of an audio device

demonstrates how the software can vary the “frequency”

to produce music tunes.

4.3 .4 H ardw are Setup

To have students gain hands-on experience, some hardware assignments are pre

pared. As part of Labs 6.0 and 7.0 students have a chance to set up wiring connec

tions between LED bar graph and the EVB. Lab 8.0 involves displaying digits on a

7-segment LED. Students are given the electronic schematic for an external 7-segment

display and a circuit in which the connections are scrambled deliberately; students

are required to determine the correct connection by trial and error. Hopefully, this

kind of activity will help students to understand how electricity is directed from the

EVB to the external circuit. Lab 9.0 is an alternative assignment using the 7-segment

LED.

4.3.5 Softw are Interrupt

Interrupt handling techniques are important ways to realize control. For example,

if an exception is detected, the regular routine must be interrupted to give way to

the interrupt routine, which handles the exception, then returns to the originally op

erating routine. Twenty types of vectored interrupts are described on M68HC11EVB

User’s Manual [10], including a “Software interrupt”. Lab 10.0 is designed to show

students how interrupt handling is implemented on the 68HC11, based on the software

- a buzzer. This exercise

of output to a piezo buzzer

22

interrupt.

4.3 .6 T im er and O utput Com pare Functions

The EVB’s MCU physical time is kept by a 16-bit free-running counter, which can

not be interrupted. This is the main element of the timer architecture of M68HC11,

and is one of the most flexible parts of a single-chip microprocessor. The timer can

produce a sine wave or other precisely timed pulses, which are used in touch-tone

telephones, tape recorders and so on.

The output compare function is also an important element of the timer architec

ture of M68HC11. The output compare function is used to set an action to happen at

specific time. The output compare register is compared to the free-running counter at

every execution cycle. When the current count of the free-running counter matches

the value held in the output compare register, an output is generated automatically.

There are five output compare registers used as vectored interrupts.

Other elements of the timer architecture include timer control registers, timer

interrupt masks, timer interrupt flag registers, timer output compare registers, etc.

Lab 11.0 involves use of the timer and output compare register 5 and other registers

described above.

4 .3 .7 P o lled and Single Interrupts

Timing control can be realized by a single interrupt or polled interrupt. For a

single interrupt, an interrupt service routine is set up so each time the interrupt

occurs the service routine is called automatically. In a polled interrupt, however,

there is no interrupt service routine set up. The way to find out if an interrupt

23

occurs is to set a polling loop to periodically check if the interrupt has occurred. To

give students a variety of assembly interrupt experience, polled interrupt with output

compare register 2 is used in Labs 12.0 and 14.0, and the single interrupt version with

output compare register 5 is used in Labs 13.0 and 15.0.

4.3 .8 IN T E R -P R O C E S S SY N C H R O N IZ A T IO N

Parallel processing and synchronization are very important techniques. Inter

processor communication is a form of synchronization used to allow one processor

to send/receive data to/from another processor. Between a sender processor and a

receiver processor, synchronization is required to assure that the sender will send

data only when the receiver is ready to receive. One way to achieve this kind of

synchronization is to calculate both processors’ execution speed, then estimate how

fast the receiver can receive data to determine how fast the sender can send data.

Lab 16.0 is an exercise on synchronization that demonstrates how the execution of

two EVB’s can be coordinated.

4 .3 .9 P ractica l A pplication

A big display screen posted by the road with current time or temperature displayed

on it, or a small one on a vending machine that asks customers to insert money by

displaying a string of characters moving from one end to another, are both controlled

by similar techniques. Lab 17.0 shows students how software can drive an external

multiple-character display device. The lab also gives students a chance to write

procedures that produce characters to be displayed on a LCD-II display screen.

5 C onclusion

The Microprocessor Lab System, Version 3, resulting from the third round of

development, is ready to be used in an instructional program. As a whole, the lab as

signments relate closely to the topics that would be covered in a course such as “Com

puter Architecture and Assembly Language”, or a comparable independent study. A

comparison of the collection of the labs with an example text book, “Microprocessor

System Design” [2], is given in Figure 6. The hardware controlled by the software is

interesting enough to draw students’ curiosity. The most fun moment in doing the

exercises is to see the devices working correctly. Watching devices being turned on

and off is attractive enough to lead students to experiment more on the related topics,

thus helping them understand the topics better.

A careful assessment of possible course and topic coverage reveals that some topics

in the typical text book are not covered in the current collection of labs. For example,

Chapter 3 of the text discusses program design, which is not addressed in the labs.

Testing of the collection of exercises in a specific course is required to indicate whether

such omissions are major design flaws that need to be corrected by the addition or

modification of lab exercises.

An assessment of the total cost for the hardware and external devices for the labs

is shown in Figure 7. In addition to his or her own EVB board, or access to “shared”

boards in a central lab, each student would need the hardware items listed in the

figure. If students are required to buy the complete set, including EVB, the total

cost for each student is estimated at $146.66 (not including the cost of a host). On

the other hand, the Computer Science Department could provide all these facilities,

including a set of hosts and EVB’s “dedicated” to support the lab, but shared various

students. For example, four host/EVB’s might serve a class of twenty-five students.

24

25

Text Book Chapter Assignments
2 j 7
2, 4 l’ 3, 4, 5, 8, 9, 17
5, 9 2, 16
6, 8 U , 12, 13, 14, 15, 16

Figure 6: Comparison between Assignments and Text Topics

1 EVB board $69.00
14 transistors $0.59*14 - $8.26
14 1-k resisters $0.08*14 - $1.12
2 330-ohm resisters $0.08*2 - $0.16
1 potentiometer (variable resister) $0.49
1 7-segment LED $1.79
1 MAN6610 (14-segment) LED $1.99
4 10-segment bar graph LED $2.99*4 - $5.98
1 red LED $0.40
1 green LED $0.40
1 yellow LED $0.40
1 piezo buzzer $1.75
1 LCD-II display (HD44100H/HD44780A00) $5.00
20 ft. of wire $3.49
30 ft. of thin wrap wire $1.43
1 straight through line $10.00
1 bread board $15.00
1 power supply (if it can't draw

electricity from host machine) $20.00

Figure 7: Hardware Cost

26

With this approach, the estimated hardware cost for the department is $586.64 (not

including the hosts). All prices shown are for individual retail purchase price (e.g.,

from Radio Shack); if components can be purchased in quantity, most of the prices

would be reduced dramatically.

The activities involved in this project - designing a collection of labs, creating the

supporting information and solutions, and creating the total lab environment - are

typical of those a teacher must experience in his teaching career. This has been a

precious experience to me. The teaching profession has always attracted my interest.

If some day I am lucky enough to have this profession as my career, the practical

activity that I have experienced in doing this project will serve as a wonderful exercise

for it.

27

A cknow ledgem ent

Special thanks go to Dr. Ray Ford of University of Montana, who supplied valuable

advice and suggestions to the project. I would also like to extend my thanks to Sixing

Gu of University of Montana, who supplied many suggestions.

28

R E F E R E N C E

1. Boehm, Barry W., “A Spiral Model of Software Development and Enhance
ment” , IEEE Computer, May 1988.

2. Clements, Alan, Microprocessor System Design (68000 Hardware, Software, and
Interfacing), 2nd ed., PWS-Kent Publishing Co., Boston, 1992.

3. Fan, Hong, Embedded System Project, CS495, Univ. of Montana, Fall 1991/92.

4. Ford, Ray, IPCsnd.asm/IPCrcv.asm Assignment, CS580, Univ. of Montana,
Spring 1990/91.

5. Gu, Sixing, Embedded System Project, CS495, Univ. of Montana, Fall 1991/92.

6. HCMOS Single-Chip Microcontroller, Motorola, Inc., 1988.

7. MC68HC11A8 Programming Reference Guide, Motorola, Inc., 1990.

8. M68HC11 Reference Manual, Prentice Hall, Englewood Cliffs, New Jersey, 1989.

9. Lipovski, G. J., Single- and Multiple-Chip Microcomputer Interfacing, Prentice
Hall, Inc. Englewood Cliffs, New Jersey, 1988.

10. M68HC11EVB Evaluation Board User’s Manual, Motorola, Inc., 1986.

A p p en dix A

C om puter A rchitecture and A ssem bly Language

EV B Server Program Listing

Z U Y I C H E N

July, 1992

C om puter Science D epartm ent

U niversity o f M ontana

TABLE OF CO NTENTS

Table of Contents j

EVBSERV.C 1

EVBWSERV.C 16

Ai

M

/* EVBSERV.C */
/ * * //* Zuyi Chen */
/* The Computer Science Department */
/* The University of Montana */
/* Missoula, Montana */
/ * * //* The package EVBSERV is designed to provide the EVB/Buffalo */
/* users with convenience in interacting a PC host with the * / '
j t t EVB board. It contains the following functions: */
fi t setup(); ready(); receive(); prompt(); menu(); downld(); */
/* offld(); edit(); show(); crossasm(); connect(); dir(); */
/* convert(). */
/ * * //* October 20, 1991 */
/ * modified in July, 1992 */
/ * * //* Version 2.0 */
/ * * /
/ * * * * * * * * * * * * * * * 6 * * * * * * * * * * * * * * * * * * * * * * ft * * * * * * * * * * * * * 6 * 6 * * 6 6 6 6 f t* j

j It it if 6 i t * * * * * * * * * * * * * * * * * * * * * * * * * ft * * * 6 * * * 6 6 6 * * * * * * * * * * * * 6 * * * AAA * * * * * /

/* You are welcome to copy and distribute unmodified source code */
/* to other parties provided you include this notice, together */
/* with the original file header, as a part of the file. You may */
/* modify the source code for your own purpose, but any modified */
/* code must carry the date of modification and indicated by whom*/
/* modified, with a general statement as to the purpose of the */
/* modification. */
^ * y

#include <stdlib.h>
i?include <stdio.h>
2?include <string.h>
#include <dos.h>
^include <conio.h>
2?include <bios.h>
i?include <mem.h>
#define CONF 0xE3
^define C0M1 0
^define BLOCK 2048
^define RS232 0x14
^define DATAR 0x100
^define DATAS 0x2000
^define B300 0x40
^define B1200 0x80
^define B2400 OxAO
^define B4800 OxCO
^define B9600 OxEO

A2

/define NOPARITY 0x00
/define EVEN 0x18
/define ODD 0x08
#define WORD7 0x02
/define WORD8 0x03
#define STOP1 0x00
/define STOP2 0x40
/define PORT 0
/* #define BAUD 2400 */
/define WORD 8
/define PARITY 0
/define STOP 1
int BAUD;
int Delay = 6000;
int uart_rbrl = 0x03f8;
char command[40];
char buf[50000];
char c, f ilename[20], edit__filename[30];
int i, j, k, n;
FILE *fp;
union REGS regs;
unsigned long staddr = OxBOOOOOOO;

/* setup() */
/ * * //* Zuyi Chen */
/ * * //* setup() will set up the communication port with */
/* port 0 */
/* baud rate 9600 */
/* word size 8 */
/* parity check 0 */
/* stop bit 1 */
/« The port setup is easily modified by changing the define */
/* statements at the beginning of the source code. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /

setup(int port, int baud, int word, int parity, int stop)
{unsigned char setup;
/* set up port */
setup = 0;

if(port != 0 && port 1= 1)
{ printf("\nPort inappropriate\n");
exit(1);

>

/* set up baud rate */
switch(baud){

case 300:
setup |= B300;
break;

case 1200:
setup J = B1200;
break;

case 2400:
setup j = B2400;
break;

case 4800:
setup j = B4800;
break;

case 9600:
setup j= B9600;
break;

default:
printf("\nBaud rate inappropriate\n");
exit(l);

>

/* set up word size */
if(word==7)

setup j = W0RD7;
else if(word«=8)

setup j= W0RD8;
else
{ printf("\nWORD bits inappropriate\nM);
exit(l);

>

/* set up parity check bit */
if (parity=0)

setup j= NOPARITY;
else if (parity=l)

setup j= EVEN;
else if(parity»2)

setup ODD;
else
{ printf("\nParity check inappropriate\n")

exit(l);
}
/* set up stop bit */
if(stop==l)

A 4

setup j= ST0P1;
else if(stop==2)

setup j = STOP2;
else
{ printf(M\nSTOP bit inappropriate\nM);
exit(l);

>

regs.h.ah = 0;
regs.x.dx = port;
regs.h.al = setup;
int86(RS232, ®s, ®s);
}

/* ready() */
/ * * //* Zuyi Chen */
/* * //* ready() will check if a receive or send is ready. */
/ * * //* October 20, 1991 */.
/ * * //* Version 1.0 */
/ * * /

int ready(int statusbit){
regs.h.ah=3;
regs.x .dx=COMl;
int86(RS232, & r e g s , ®s);
return (regs.x.ax & statusbit);

>

/*** /
/* receive() */
/ * * //* Zuyi Chen */
/ * ‘ */ /* receive() allows the host to receive a character from the */
/* EVB board. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /
/ * /

char receive(){
regs.h.ah=2;
regs.x .dx=C0Ml;
int86(RS232, ®s, ®s);

A 5

return(regs.h.al & 0x7F);
>

/**/
/* prompt() */
/ * * //* Zuyi Chen */
/ * * //* prompt() will set up the port by calling the function */
/* setup() and echo the prompt '>' on EVB/buffallo software. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /^** ̂

void prompt(){
char c;

/* call setup() */
setup(PORT, BAUD, WORD, PARITY, STOP);
/* send carriage return to EVB board */
outportb(uart_rbr1, '\r *);
for(k=0; k<Delay && 1 ready(DATAS); k++)

while(1){/* recieve char from EVB board * /
c=receive();
if(c=='>') break;

>

>

/*** /
/* menu() */
/ * * //* Zuyi Chen */
/ * * //* menu() will display the EVBSERV menu to the screen. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /

menu(){
/* display the EVBSERV package menu */
printf("\n\n\n\n\n\n WELCOME TO EVBSERV

A 6

PACKAGE\n\n\n");
p r i n t f ("
* * * * * * * * * * * * * * * * * f t * \ f | M J •

printf(" * A. Cross-assemble the assembly program
*\n");
printf(" * B. Download S-record from host to EVB board
*\n");
printf(" * C. Turn the host to a terminal for EVB board
*\n");
printf(» * D. Offload data from EVB board to the host
*\n");
printf(" * E. Edit a file using the existing editer

*\n") •
9printf(" * F. Show the file content

*\n");
printf(" * g . Convert hex data file to decimal file
*\n");
printf(" * H. Display the working directory
*\n");
printf(" * Q. Quit *\n");
p r i n t f ("
ft*****************************ftft******ft*********************\n");
printf("\n\n\n\n Enter your Choice > ");
>

/***/
f * downld() */
/ * * /
/* Zuyi Chen */
/* * /
/* downld() will download the S-record with the input record */
/* name from the host to the EVB board. It is important to */
/* reset EVB board as indicated. */
/* * /
/* October 20, 1991 */
/ * * /
/* Version 1.0 */
/* * /
/ A * /

downld(){
int i;
char cmd[40];
/* This while loop will exit upon the input 'N' or 'n1 */
while(1){

printf("\nM);
/* store 'type' to cmd */
strcpy(cmd, "type ");
/* accept the input */

A7

printf("\nReset EVB board; and \n");
printf("Enter the name of the S-record to be downloaded > ");
gets(filename);
/* store filename and 'C0M1' to cmd */
strcat(cmd, filename);
strcat(cmd, "> C0M1");
strcpy(command, "load t\r");
prompt();
i-0;
/* send char to EVB board */
outport(uart_rbr1,command[i]);
for(k=0; k<Delay && !ready(DATAS); k++)

9while(command[i] != '\r'){
/* send char to EVB board */

outport(uart_rbrl,command[++i]);
for(k=0; k<Delay && I ready(DATAS); k++)

9

>

/* call system utility 'system' */
system(cmd);
/* accept the input */
printf("\nDownload more S-record? (Y/N) > ");
if(toupper(getche()) I= 'Y ') break;

}
}

/* offld() *f
/ * * /
/ * Zuyi Chen */
/ * * //* offld() will offload data in the range of the addresses */
f * specified by user from EVB board to the host. It is */
/* important to reset EVB board as indicated. */
/ a * /
/* October 20, 1991 */
/ * * /
/* Version 1.0 */
/* * /
/ft /

offId(){
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* accept the input */
printf("\nGive a name for the output file > ");
gets(filename);
/* open file for write */

if((fp=fopen(filename, "w")) == NULL){
perror(filename);
exit(1);

>/* accept the input */
printf ("\nReset EVB board; then enter cmd xxxx xxxx> command
gets(command);
n=strlen(command);
command[n]='\r';
printf("\nData receiving ...");
prompt();
i=0;
/* send char to EVB board */
outport(uart_rbrl,command[i]);
for(k=0; kcDelay && iready(DATAS); k++)

/while(command[i] != '\r'){
/* send char to EVB board */

outport(uartjrbr1,command[++i]);
for(k=0; kcDelay && !ready(DATAS); k++)

$
>

i=0;
/* check if receive is ready */
while(Iready(DATAR))
while(1){

/* recieve char from EVB board */
c=receive();
if(c!=0){

buf[i]=c; /* put char to buffer */
}else{
f i t recieve char from EVB board */

c=receive();
if(c=='> 1){

break;
>else buffi^c;

>i++;
}j=0;
while(buf[j++] l='\n')
n=i-j;
j-i;do
{ /* write buffer to output file block by block */

if(n>=BLOCK) fwrite(&buf[j],1,BLOCK,fp);
else fwrite(fibuf[j] , l , n , f p) ;

A9

j=j+BLOCK;
n=n-BLOCK;

}while(n>0);
fclose(fp);
/* accept the input */
printf("\nOffload more data? (Y/N) > ");
if(toupper(getche()) ! = 'Y') break;

}
}

/***^
/* edit() */
/* * //* Zuyi Chen */
/* * //* edit() takes advantage of the existing editer installed in */
I * the host and allows the user to use the editer inside the */
/* package. */
/* October 2 0 , 1 9 9 1 * /
/* modified in July, 1992 */
/ * */./* Version 2.0 */
/ * * /y * j

edit(){
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* accept the input */
printf("\nUse the existing editor from here: ");
gets(edit_filename);
/* store edit_filename to command string */
strcpy(command, edit_filename);
/* call system utility */
system(command);
/* accept the input */
printf(M\nEdit another file? (Y/N) > ");
if(toupper(getche()) != 'Y ') break;

}
}

/*** /
/* show() */
/ * * /
/* Zuyi Chen */
/ * * /
/* show() will display the file content at the input of the */
/* file name. It takes advantage of the command 'type' in * /
/* the host. */
/* October 20, 1991 */

A 1 0

/ * * //* Version 1.0 */
/ * * /
/*** /

show(){
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* store 'type ' to command string */
strcpy(command, "type ");
/ * accept the input */
printf("\nEnter the filename to be shown > ");
gets(filename);
/* store filename to command string */
strcat(command, filename);
/* call system utility */
system(command);
/* accept the input */
printf("\n\nShow another file? (Y/N) > ");
if(toupper(getche()) i = 'Y ') break;

}
}

/* crossasm() */
/ * * //* Zuyi Chen */
/ * * //* crossasm() will assemble the assembly file specified by */
/* the input. It takes the advantage of the 'asll' */
/* executable installed in the host. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/* A/
/*** /

crossasm(){
char program[30];
char cmd[60];
char pgm[30];
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* accept the input */
printf("\nEnter the assembly program name to be cross-assembled

> ") ;
gets(program);
/* check if the filename is more than 4 chars */
if(strlen(program) <= 4) continue;

A ll

/* store 'asll <program>.asm -1 c > <program>.1st' to cmd string
* /strcpy(cmd, "asll ");
strcat(cmd, program);
/* strcat(cmd, " -1 c > ");
for(i=0;i<(strlen(program)-4);i++)

pgm[i] = program[i];
strcat(cmd, pgm);
strcat(cmd, ".1st");
* //* call system utility */
if(system(cmd) < 0) exit(l);
/* accept the input */
printf("Assemble another program? (Y/N) > ");
if(toupper(getche()) 1= 'Y') break;

}
>

/ A * /

/ * connect() * /
/ * * //* Zuyi Chen */
/* * //* connect() will turn the host to a dumb terminal for EVB */
/ * board. It takes the advantage of kermit 3.0 installed */
f * in the host. */
/* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /
j 1t h it h it •&-bit h h it h it it h it-h it it h it h it it it it it It h it 1t-kit h it 1t h it-b it* 1t It h i t 1t h i t h i t h i t h h it h i t h i t j

connect(){
printf("\n\nType 'c' at prompt MS-Kermit> to connect EVB
board;\n");
printf("type 'ctrl-]c' to exit EVB board; and \n");
printf("type 'q' at 'MS-Kermit> to return to main manual.\n\n");
system("kermit");
>

y * j
/* dir() */
/ * * /
/* zuyi Chen */
/ * * /
/* dir() will display the current working directory. It takes */
/* advantage of the command 'dir* in the host. */
/ * * /
/* October 20, 1991 */
/ * * /
/* Version 1.0 */

A l 2

/ * * /
/ * J

dir () {
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

system("dir");
/* accept the input */
printf("\nShow the directory again? (Y/N) > ");
if(toupper(getche()) != 'Y') break;

}
>

/•ft***/
/* convert() */
/ * * //* Zuyi Chen */
/ * * //* convert () will convert a hex data file into a decimal data * /
/* file. On a 16-bit PC it can only convert the hex number */
/* smaller than or equal to FFFF. */
/ * */■
/ * October 20, 1991 */
/* * //* Version 1.0 */
/ * * //**/

convert(){
FILE *ffp;
char infile[30], outfile(30];
char str[81];
unsigned long sum;
int current;
/ * This while loop will exit upon the input 'N' or 'n' */
while(1){

/ * this while loop will loop back if the input file doesn't exist
in the current directory */

while(1){
/ i t accept the input */

printf("\nlt only converts numbers smaller than or equal to
FFFF. ");

printf("\nEnter the hex file name to be converted > ");
gets(infile);
/* open input file */
if((fp=fopen(infile,"r")) — NULL){
perror(infile);
continue;

}else break;
>

A 13

/* accept the input */
printf(M\nGive a name to the new output file > ");
gets(outfile);
/* open ouput file */
if((ffp=fopen(outfile, "w")) == NULL){

perror(outfile);
exit(l);

}

/* loop to read one line of string at a time and do conversion */
while(1){

if(<fgets(str, 81, fp)) — NULL) /* if at end of file */
break;

/* check if the chars are within 1-9 or A-F */
if((str[0] >= 48 && str[0] <= 57) jj (str[0] >= 65 && str[0] <=

70)){
sum = 0 ;
/* convert the first 4 chars of each line to decimal numbers

* / for(i=0;i<4;i++){
if(str[i] >= 48 && str[i] <- 57){

sum = sum * 16 + str[i] - 48;
}else if(str[i] >= 65 && str[i] <= 70)

switch(toupper(str[i])){
case 'A*:

sum ■ sum * 16 + 10;
break;

case 'B1:
sum = sum * 1 6 + 11;
break;

case 'C *:
sum = sum * 1 6 + 1 2 ;
break;

case 'D':
sum * sum * 16 + 13;
break;

case 'E ':
sum » sum * 1 6 + 1 4 ;
break;

case 'F ':
sum * sum * 1 6 + 1 5 ;
break;

default:
break;

>
>fprintf(ffp, "%051d", sum);
/* convert the next 8 hex numbers, each with 6 digits,

to decimal numbers.
* /current = 4 ;
for(j=0;j<8;j++){

A14

svim = 0;
for(i=current;i<(current+6);i++){

if(str[i] >= 48 && str[i] <= 57)
sum = sum * 16 + str[i] - 48;

else if(str[i] >= 65 && str[i] <= 70){
switch(toupper(str[i])){

case 'A':
sum - sum * 16 + 10;
break;
case 'B ':

sum = sum * 16 + 11;break;
case 'C ':

sum = sum * 16 + 12;
break;
case 'D ':

sum = sum * 16 + 13;
break;
case 'E':

sum = sum * 16 + 14;
break;
case 'F ':

sum = sum * 16 + 15;
break;
default:

break;
>

}
>fprintf(ffp, " %051d", sum);
current = i;
if(j==7)

fprintf(ffp, “Xn");
}

>
>fclose(fp);
fclose(ffp);
printf("\nConvert another file? (Y/N) > ");
if(toupper(getche()) != 'Y ') break;

>
>

I Main program**************************/
main() {
char choice;
printf("Set baud rate (2400,9600, etc) > ");
scanf("%d", &BAUD);
fflush(stdin);
printf("%d\n", BAUD);

A15

while(1){
clrscr();
menu(); /*
choice = getche();
printf(M\n");
switch(toupper(choice)){

case 'A':
crossasm();
break;

case 'B ':
downld();
break;

case 'C':
connect();

/* clear the screen */
display the menu */

/* get input */

/* cross assemble a program */

/* download a S-record */

/* convert host to terminal for EVB
break;

case ‘D ’:
offld();
break;

case 'E':
edit();
break;

case ’F':
show();
break;

case 'G':
convert();
break;

case 'H':
d i r () ;
break;

case »Q 's
return;

default:
break;

/* offload data from EVB to host */

/* edit files */

/* display file content */

/* convert hex file to decimal file

/* display the current directory */

/* exit the menu */

A16

/ * j
/* EVBWSERV.C */
/ * */
/* Zuyi Chen */
/* The Computer Science Department */
/* The University of Montana */
/* Missoula, Montana */
/ * */
/* The package EVBSERV is designed to provide the EVB/Buffalo */
/* users with convenience in interacting a workstation host */
/* with the EVB board. It contains the following functions: */
/* init(), menu(), downld(), txtfile(), binfile(), offld(), */
/* edit(), show(), crossasm(), connect(), dir(), convert(), */
/* myhtoi(), and myahtoi(). */
/ * * /
/* Nov., 14, 1991 */
/* Version 1.0 */
/ * * /
/ * j

I * * * * /

/* You are welcome to copy and distribute unmodified source * /
/* code to other parties provided you include this notice, */
/* together with the original file header, as a part of the */
/* file. You are welcome to modify the source code for your */
/* own use. */
I * j

include <stdio.h>
include <sgtty.h>
include <sys/file.h>
include <sys/time.h>
include <sys/ttydev.h>
include <string.h>
// define BLOCK 4096
/* declarations */
char command[80];
char c, h, filename[80];
char ch[5], si[20], s2[20];
char buf[100000];
unsigned che|r s[64000];
unsigned cliar myahtoi (), myhtoi ();
int In, rbytes, wbytes, 1;
int i, j, k, m, n, rl, r2, count;
FILE *fp;
struct sgttyb stbuf;
struct sgttyb savea;
void txtfile();
void binfile();
void init();

A 17

^ * ^

menu()
Zuyi Chen
menu() will display the EVBSERV menu to the screen.
Nov., 14, 1991
Version 1.0

^ * 6 * * * ^

menu(){

/*
/*
/*
/*
/ *
/ * '
/*

./*
/*
/*

* /
* /
* /
* /
*/
* /
* /
* /
* /
* /

* A.
* B.
* C.
* D.
* E.
* F.
* G.
* H.
* Q.

WELCOME TO EVBSERV

Cross-assemble the assembly program
Download S-record from host to EVB board

/* display the EVBSERV package menu */
printf("\n\n\n\n\n\n
PACKAGE\n\n\n");
p r i n t f ("
* \ n n } J
printf("
*\n");
printf("
*\nM)?
printf(" * C. Turn the host to a terminal for EVB board
*\n");
printf("
*\n");
printf("
* \ n ") ;
printf("
*\n");
printf("
*\n");
printf("
*\n");
printf(”
P r n

Quit
t (

Offload data from EVB board to the host
Edit a file using vi editer

Show the file content
Convert hex data file to decimal file
Display the working directory

*\n");
90

#*********** it * * * * * * * * * * * * * * * A****************** \n M) j

printf("\n\n\n\n Enter your Choice > ");
>

/ * a * /

/* init() */
/ * * /
/* Zuyi Chen */
/ * * /
/* This function is adopted from the same function written by */
/* Li Zheng. It initialize the tty port. */
/ * * /
/* Nov., 14, 1991 V

A 18

/ * * /
/ * j

void init() {
if ((In = open ("/dev/ttya", 0_RDWR)) < 0) {

printf ("\nUnable to open port ttya");
exit(1);

}stbuf.sg_ispeed = B9600; /*set ttya speed B9600 */
stbuf.sg_ospeed = B9600;
stbuf.sg_flags = 0_RAW; /*set ttya port raw mode */
ioctl (In, TIOCGETP, &savea); /‘save ttya port mode */
ioctl (In, TIOCSETP, &stbuf); /* set ttya port mode */
/*no further opens are permitted */
ioctl (In, TIOCEXCL, (struct sgttyb *)NULL) ;
printf ("\nPlease hit the RESET key on the EVB.\n");
for (i = 1; i<=70; i++) {

read(In, &c, 1);
}write(ln, "\r", 1);
while (1) { /* get the BUFFALO prompt */

read(In, &c, 1);
if (c==1>')

break;
}

>

^** j
/ * myahtoi() */
/ * * //* Zuyi Chen */
/ * * //* This function is adopted from the same function written by */
/* Li Zheng. */
/ * * //* Nov., 14, 1991 */
/ * 1 * /
/ A * /

unsigned char myahtoi(byte)
char *byte;
{ return(myhtoi(byte[0])*16 + myhtoi(byte[l]));
>

/* myhtoi() */
/ * * //* Zuyi Chen */

A 19

/ * * //* This function is adopted from the same function written by */
/* Li Zheng. */
/ * * //* Nov., 14, 1991 */
/ * * //** ̂

unsigned char myhtoi(nibble)
char nibble;
{ if ((10•<= nibble) && (nibble<=*9'))

return (nibble - '0');
else if (('A'<=nibble) && (nibble<=,F'))

return (nibble - 'A'+IO);
else if (('a'c-nibble) && (nibble<='f'))

return (nibble - ’a'+lO);
else {

perror(N\nllligal data.\nM);
exit(l);

}
>

/* txtfile() */
/ * * //* Zuyi Chen .*/
/ * * //* This function is a modified version of the function written */
/* by Li Zheng. It sends command to EVB board; reads and * /
/ * writes the data from the EVB board to a printable format */
/* file in the workstation host. */
/ * * //* NOV., 14, 1991 */
/ * * //* Version 1.1 */
/ * * /
/ * * * * * * * * * * * * * * * * * j

void txtfile() {
printf (n\nGive a name for the file to store data > ");
gets(filename);
printf("\nEnter the EVB command <md xxxx xxxx> here > ");
gets(command);
n = strlen(command);
command[n] = 'Xr';
if ((fp=fopen(filename, "w")) = NULL) {

printf(M\nCan not open %s'', filename);
exit(1);

>init(); /*initialize the ttya port */
printf("Data receiving ...\n");
write(In, command, n+1);

A 20

i = 0;
while (1) { / * read data one by one until reach the */

read (In, &c, 1); /* BUFFALO prompt > */
if (c != 0) /* skip 0 value */

buf[i] = c; /* put data into the buffer */
else {

read (In, &c, 1);
if (c=='>') {

break;
}else
buf[i] = c; / * put data into the buffer */

>i++;
>

j - 0;while (buf[j++] != '\n') /* get the actual number of bytes we */
; /* want to store */

n - i-j;
do {

if (n >= BLOCK)
fwrite(6buf[j], 1, BLOCK, fp);

else
fwrite(&buf[jJ, 1, n, fp); /* write to the file */

j * j + BLOCK;
n = n - BLOCK;

>while(n > 0);
fclose(fp);
close (In);
ioctl (In, TIOCSETP, fisavea); /* reset the ttya */

/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * it it it* i t* * * * * * * * * * * * * * /

/* binfile() */
/ * * //* Zuyi Chen */
/ * * //* This function is a modified version of the function written */
/ * by Li Zheng. It sends the command to the EVB board; reads */
/* and writes the data from the EVB to a binary file in the */
/* workstation host. */
/ * * //* Nov., 14, 1991 */
/ * * //* Version 1.1 */
/ * * /j * ^

void binfile() {

A21

strcpy(command, "md ");
printf ("\nGive a name for the file to store binary data > ”);
gets(f ilename);
printf ("\nStarting memory address in HEX > ••) ;
gets (si);
printf ("\nEnding memory address in HEX > ");
gets (s2);
strcat (command, si);
1 = strlen(command);
command[1] = 1 ';
strcat (command, s2);
sscanf (si, "%x", &rl); /* get the start address value */
sscanf (s2, "tx", &r2); /* get the end address value */
count = r 2 - r l + l; /* get the actual number of bytes you

want */
1 = strlen(command);
command[1] = '\r';
if ((fp=fopen(filename, "w")) == NULL) {
printf("\nCan not open %s", filename);
exit(l);

>initQ; /* initialize ttya port */
printf("\nData receiving ... \n");
write(In, command, 1+1);
i = 0;
while (1) { /*read data one by one until reach the */

read (In, &c, 1); /*BUFFALO prompt */
if (c 1= 0) I * skip 0 value */

buf[i] * c;
else {

read (In, &c, 1);
if (c==•>') {

break;
>else
buf[i] = c;

}i++;

j = 0;while (buf[j++] != '\n')
while (buf[j++] i= '\n')
i i i - j ,m = 0;
while (j<i) {

j+-5; /* skip address column * /
for(k=0; k<16; k++) {

s[m++] * myahtoi (&buf [j]); /* convert this data to binary
value*/

j+=3; /* skip two characters and one space */
>

A 22

while(buf[j++]!='\n')
9

>k = 0;
m = count;
do { /* write these binary numbers to a file */

if (m >= BLOCK)
fwrite(&s[k], 1, BLOCK, fp) ;

else
fwrite(&s[k], l, m, fp);

k = k + BLOCK;
m = m - BLOCK;

}while(m > 0);
fclose(fp);
close (In);
ioctl (In, TIOCSETP, &savea); /* reset ttya port */

/* downld() */
/ * * //* Zuyi Chen */
/ * * //* downld() will download the S-record with the input record */
/* name from the host to the EVB board. It is important to*/
/* reset EVB board as indicated. */
/ * * //* Nov., 14, 1991 */
/ * * //* Version 1.0 */
/ * * /

downld(){
char *commandl=,! load t\rw;
/* This while loop will exit upon the input 'N* or 'n‘ */
while(1){

printf(w\nw);
strcpy(command, "dwnA ");
printf ("\nEnter file name you want to download: n);
gets(filename);
strcat(command, filename);
1 = strlen(commandl);
init(); /* initialize the ttya port */
printf("\nDownloading S-record ...\n");
write(In, commandl,l); /* send load t command to the EVB */
sleep(1);
close (In);
ioctl (In, TIOCSETP, &savea); /*reset ttya */

A23

/* call system utility 'system' */
system(command); /^execute dwnA command */
printf("\nDownload more S-record? (Y/N) > ");
/* accept the input */

if (toupper(ch[0])!='Y')
break;

>
>

/ * j
/* off ld() */
/* * //* Zuyi Chen */
/ * * //* offld() will offload data in the range of the addresses */
/* specified by user from EVB board to the host. It is */
/* important to reset EVB board as indicated. It calls */
/* txtfile() or binfile() as specified by the users. */

/**/

offld(){
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* accept the input */
printf("\nSpecify the file type for the offloaded data.\n");
printf("\nEnter 't' for text file, 'b' for binary file > ");
gets(ch);
if (toupper(ch[0]) = 'B')

binfile(); /* save data in binary format file */
else

txtfile(); /* save data in printable format file */
/* accept the input */
printf("\nOffload more data? (Y/N) > ");
gets(ch);
if(toupper(ch[0]) != 'Y') break;

}
}

^*** /
/* edit() */
/ * * //* Zuyi Chen */
/ * * //* edit() takes advantage of vi editer installed in the host;*/
/* and allows the users to use vi editer inside the package. */

/ *
/ * Nov., 14, 1991
/*/* Version 1.0
/ *

* /
* /
* /
<,/
* /

A24

/ * * //* Nov., 14, 1991 */
/ * * //* Version 1.0 */
/ * * //*** /

edit(){
/* This while loop will exit upon the input 'N' or 'n' */
printf(M\nThis is the vi editer\n");
while(1){

/* store 'vi' to command string */
strcpy(command, " vi ");
/ft accept the input */
printf("\nEnter the file name to be edited > ");
gets(filename);
/* store filename to command string */
strcat(command, filename);
/* call system utility */
system(command);
/* accept the input */
printf("\nEdit another file? (Y/N) > '•);
gets(ch);
if(toupper(ch[0]) != 'Y1) break;

>
>

/ * j

f * show() */
/ * * //* Zuyi Chen */
/ * * //* show() will display the file content at the input of the */

file name. It takes advantage of the command 'cat' in the */
/* host. * /
/* Nov., 14, 1991 */
/ * * //* Version 1.0 */
/ * * /

show() •{
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

f * store 'cat ' to command string */
strcpy(command, "cat ");
/* accept the input */
printf("\nEnter the filename to be shown > ");
gets(filename);
/* store filename to command string ft/
strcat(command, filename);

A25

/* call system utility */
system(command);
I * accept the input */
printf("\n\nShow another file? (Y/N) > ");
gets(ch);
if(toupper(ch[0]) 1= 'Y') break;

>
>

/ * y

/* crossasm() */
/ * * //* Zuyi Chen */
/ * * //* crossasm() will assemble the assembly file specified by the */
/* input. It takes the advantage of the 'asmll' executable */
/* installed in the host. */
/ * * //* October 20, 1991 */
/ * * //* Version 1.0 */
/ * * /
/***/

crossasm(){
char program[30];
char cmd[60];
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* accept the input */
printf(w\nEnter the assembly program name to be cross-assembled

> ") ;gets(program);
/* check if the filename is more than 4 chars */
if(strlen(program) <= 4) continue;
(* store 'asmll <program>.asm to cmd string */
strcpy(cmd, "asmll ");
strcat(cmd, program);
/* call system utility */
if(system(cmd) < 0) exit(l);
/* accept the input */
printf("Assemble another program? (Y/N) > ");
gets(ch);
if(toupper(ch[0]) != 'Y') break;

}
>

/* connect() */

A26

/ * * //* Zuyi Chen a/
/ * * //* connect() will turn the host to a dumb terminal for EVB */
/* board. It takes the advantage of command ’kermA1 */
/* installed in the host. */
/ * * /
/ * Nov., 14, 1991 */
/ * * //* Version 1.0 * /
/ * * /
/ * ^

connect(){
printf ("\n\nType 'c' at prompt C-Kermit> to connect EVB board;\n") ;
printf("... Remember to reset EVB board!\nH);
printf("type 'ctrl-\c' to exit EVB board; and \n");
printf("type 'q' at C-Kermit> to return to main manual.\n\n");
/* call system utility */
system("kermA");
>

j * j

I * 3ir() */
I * * //* Zuyi Chen */
/ * * /
/ * dir() will display the current working directory. It takes */
/ * advantage of the command 1 Is' in the host. */
/ * * //* Nov., 14, 1991 */
/ * * //* Version 1.0 */
/ * * /

dir () {
/* This while loop will exit upon the input 'N' or 'n* * /
while(1){

system(wlsra);
/* accept the input */
printf("\nShow the directory again? (Y/N) > ");
gets(ch);
if(toupper(ch[0]) 1* *Y •) break;

>

}

/* convert() *//a a/

A 27

/* Zuyi Chen */
/ * * //* convert() will convert a hex data file into a decimal data */
/* file. It can only convert the hex number smaller than or */
/* equal to FFFF. */
/ * * //* Nov., 14, 1991 */
/ * * //* Version 1.0 */
/ * * /

convert(){
FILE *ffp;
char infile[30], outfile[30];
char str[81];
unsigned long sum;
int current;
/* This while loop will exit upon the input 'N' or 'n' */
while(1){

/* this while loop will loop back if the input file doesn't exist
in the current directory */

while(1){
/* accept the input */
printf("\nlt only converts numbers smaller than or equal to

FFFF. ");
printf("\nEnter the hex file name to be converted > ");
gets(infile);
/ * open input file * f
if((fp=fopen(infile,"r")) == NULL){

perror(infile);
continue;

>else break;
>

/* accept the input */
printf(”\nGive a name to the new output file > ");
gets(outf ile);
/* open ouput file */
if((ffp=fopen(outfile, "w")) == NULL){
perror(outfile);
exit(l);

>

/* loop to read one line of string at a time and do conversion */
while(1){

if((fgets(str, 81, fp)) — NULL) /* if at end of file */
break;

/* check if the chars are within 1-9 or A-F */
if ((str[0] >= 48 && str[0] <» 57) j | (str[0] >= 65 && str[0] <*

70)){
sum = 0 ;

A 28

/* convert the first 4 chars of each line to decimal numbers
for(i=0;i<4;i++){

if(str[i] >= 48 && str[i] <= 57) {
sum = sum * 16 + str[i] - 48;

}else if(str[i] >= 65 && str[i] <= 70)
switch(toupper(str[i])){

case 'A*:
sum = sum * 16 + 10;
break;

case 'B*:
sum = sum * 1 6 + 1 1 ;
break;

case 'C':
stun = sum * 1 6 + 12;
break;

case 'D ':
sum = sum * 1 6 + 1 3 ;
break;

case 'E ':
sum » sum * 1 6 + 14;
break;

case 'F ':
sum = sum * 16 + 15;
break;

default:
break;

>
>fprintf(ffp, "%051dM, sum);
/* convert the next 8 hex numbers, each with 6 digits,

to decimal numbers.
* /current = 4 ;
for(j=0;j<8;j++){

sum = 0 ;
for(i=current;i<(current+6);i++){

if(str[i] >« 48 && str[i] <= 57)
sum * sum * 16 + str[i] - 48;

else if(str[i] >= 65 && str[i] <= 70){
switch(toupper(str[i])){

case ‘A*:
sum = sum * 1 6 + 1 0 ;
break;
case 'B ':

sum = sum * 16 + 11;
break;
case 1C ':

sum - sum * 1 6 + 1 2 ;
break;
case 'D ':

sum * sum * 1 6 + 1 3 ;

A 29

break;
case 'E ':

sum = sum * 16 + 14;
break;
case 'F ':

sum = sum * 1 6 + 1 5 ;
break;
default:

break;

}fprintf(ffp, " %051d", sum);
current = i;
if(j==7)

fprintf(ffp, "\n");
}

}
>fclose(fp);
fclose(ffp);
printf("\nConvert another file? (Y/N) > M);
gets(ch);
if (toupper (ch[0]) != 'Y') break;

> ‘

>

/ ********iSf***************Mainprogram******************* *********** /

}
>

main(){
char choice
while(1){

system("clear")
menu();
gets(ch);

/* display the menu */
/* get input */

switch(toupper(ch[0])){
case 'A':

crossasm();
break;

case 'B ’:
downld();
break;

case 'C ':
connect(); /* convert host to terminal for EVB

/* download a S-record */

/* cross assemble a program */

break;
case 'D 1:

offld()
break;

/* offload data from EVB to host */

edit();
break;

/* edit files */

A 3 0

case 'F ’:
show();
break;

case ‘G*
convert();

/* display file content */

/* convert hex file to decimal file
break;

case 'H':
d i r () ;
break;

case 'Q':
return;

default:
break;

/* display the current directory */

/* exit the menu */

>
>

A p p en dix B

C om puter A rch itecture and A ssem bly Language

LAB U SE IN FO R M A T IO N

ZU Y I C H E N

July, 1992

C om puter Science D epartm ent

U niversity o f M ontana

TABLE OF CO NTENTS

Table of Contents i

1.0: Operating the M68HC11EVB 1

2.0: Cross-assembler and Host/EVB Downloading 3

3.0: Offloading Data from EVB to Workstation Host 5

4.0: Using the M68HC11 EVB Server 7

B i

B 1

1 .0 : Operating the M 68HC11EVB

(W ritten by D r. R ay Ford of UM, and m odified by Zuyi Chen of UM)

M 68HC11EVB stan d s for M68HC11 E valuation B oard. It is a p roduct o f M otorola, Inc. T he
m ajo r com ponents of th e bo ard include a M C68HC11 m icrocom puter un it (M CU), a M C68HC24
p o rt rep lacem ent u n it (P R U), te rm in a l/h o s t I /O p o rts , a debugging/m onitor p rogram called B U F
FALO, w hich s tands for B it User F ast Friendly Aid to Logical O perations, and an optional 8-K RAM
chip. T h e m em ory of the EVB ranges from $0000 to S FFFF . T he user RAM is located betw een
$C000 and $D F F F w ith th e op tional RAM from $6000 to $7FFF. T he RAM p a rt is no t large since
th e EVB was designed for em bedded system , which typically does a fixed jo b again and again in its
life tim e, therefore requiring a sm all am ount of RAM .

A. E V B H ook-U p

T his lab assum es th a t th e EVB is connected for b o th power and com m unication to a dum b
te rm in a l (T T Y). T h a t is, there should be a serial fine running from the T T Y to the T T Y on the
E V B , an d a power connector runn ing from the T T Y to th e E V B ’s pow er inpu ts.

C heck o u t these connections. If they are no t correct, consult the EVB U ser’s M anual and m ake
th e p roper connections.

B. T T Y /E V B Power-Up

Sw itch the T T Y on - since th e EVB draw s pow er from the T T Y it too should pow er up. T he
T T Y will (p robably) display a sim ple p rom pt. T ype “carriage re tu rn ” (CR) to signal th e EVB - the
EV B should respond by displaying the BU FFA LO M onitor (B U FFA LO) header line. T ype ano ther
C R - th e E V B /B U F F A L O should in te rp re t th is as a “help” com m and, and display a list of available
com m ands.

F in d th e reset sw itch on th e EV B and press i t (these switches are flaky - you m ay have press it,
th en lift it up). T h is resets B U FFA LO , and should cause th e BU FFA LO header to displayed.

C. BUFFALO Com m ands

B U FFA L O su p p o rts a wide range of in teractive com m ands, including those describe briefly below
(and m ore).

1. m d: d isp lay th e conten ts o f specified m em ory cells

2. m m : change th e con ten ts of specified m em ory cells

3. rm : d isp lay an d se t the con ten ts o f registers

4. asm : en te r, assem ble, and load assem bly instructions (one by one)

5. go: in itia te th e execution o f a (assem bly) program

6. br: define b reak po in ts in th e execution of a program th rough a specified num ber o f in structions

7. load t : enable th e dow nloading of a p rogram in S-record form from the T T Y p o rt

B 2

P ractice using these com m ands (all E X C E P T “load t ”) by entering and executing the simple
assem bly language p rogram show n below. N ote th a t the program is show n in the form norm ally used
as in p u t o f a cross-assem bler; you m ay have to ad ap t th is form for use w ith the ra th e r rud im en tary
B U FFA LO assem bly capability . Be sure th a t you gain sufficient fam iliarity w ith th e BU FFA LO com
m ands and o u tp u ts so th a t you are ready to m onitor the execution of m ore com plex and in teresting
program s.

*********************************** *****************************
* Pgm : sim ple.asm
* Desc: load cu rren t tim e and save it to the m em ory SD000-SDFFF.
* T h e p rog ram is supposed to s ta r t a t m em ory address $0000.
* Note: $ sign is no t used when entering directly on the BU FFA LO
* A uthor: Zuyi C hen
* D ate: Ju n e , 1992
* *

ldx # 0 0 0 0 initialize d a ta
ldy #DOOO storage s ta rtin g address
ldd 100E get the cu rren t M CU tim e (pgm counter $0007)
std 0,Y save tim e to th e store
ldab # 2 load 2 to reg ister B
aby increase th e m em ory address by 2 bytes
cpy # D F F F check if cu rren t address is $D F F F
bio 0007 back to get cu rren t tim e if address no t SD FFF
nop no operation
b ra 0017 loop back to no operation instruction

References

1. M 68H C11-EV B U ser’s M anual. A descrip tion of the 68HC11-EVB system , on-board facilities,
and th e B U FFA L O M onitor.

2. M 68HC11 Reference M anual. A com plete description of the 68HC11 chip facilities, functional
un its , and assem bly language.

3. M 68HC11-A8 P rogram m ing Reference G uide. A “pocket” guide to 68HC11 chip facilities,
functional un its , and assem bly language.

B 3

2 .0 : Cross-assembler and H ost/E V B Downloading

(W ritten by Dr. R ay Ford of UM, m odified by Zuyi C hen of UM)

Purpose

To describe key elem ents in the opera tion of the h o st/E V B developm ent environm ent: the
M 68HC11 cross-assem bler, kerm it, te rm inal em ulator, dow nloader, and the S-record load m ode
on the EV B.

A. M 68H C 11 Cross-A ssem bly

A locally defined scrip t, called “a s m l l” invokes th e cross-assem bler w ith a s tan d a rd set o f options.
A ssem ble a p rog ram in a file nam ed “pgm .asm ” by sim ply executing th e cross-assem bler. T he s ta n
d a rd options produce a file contain ing a listing and sym bol cross-reference tab le in “pgm .asm .lst” .
For error-free program s a second file “p g m .sl9 ” is also created , w hich contains a pseudo-executable
form of th e program in a fo rm at called S-records. S-record details a re n ’t im p o rtan t here - w hat is
im p o rta n t is th a t they encode the executable AND the load inform ation in an A SC II file, i.e., in a
form su itab le for dow nloading to th e EVB via a sim ple term inal em ula to r such as kerm it.

D ocum enta tion on th e M68HC11 cross-assem bler is available in th e file “a s m ll .m a n ” . S-records
are described in deta il in th e EV B U ser’s M anual, A ppendix A.

B. D ow nloading A n A ssem bled Program to the EVB

O nce th e S-record file “p g m .sl9 ” has been produced, i t m ust be dow nloaded to the M68HC11-
EV B for final p rogram loading and execution. T his involves cabling th e host an d EV B together,
p u ttin g th e EV B in to a s ta te to accept incom ing S-records, g e tting th e host to send th e S-records,
th e n resto ring the EVB to norm al s ta te .

1. ST A R T -U P EVB: Pow er up th e EVB, w ith the E V B ’s “T T Y ” p o rt connected to a dum b-
te rm ina l v ia a “s tra ig h t th ro u g h ” RS-232 cable. Use the dum b-term inal to verify th a t the
EVB is w orking properly.

2. C A B LE C O N N E C T IO N : D isconnect the E V B /dum b-te rm ina l cable a t the EV B end. C onnect
a “s tra ig h t-th ro u g h ” serial cable betw een the E V B ’s “T T Y ” p o r t and th e “T T Y A ” p o rt on a
w orksta tion or “C O M 1” p o rt on a PC .

3. S O F T W A R E C O N N E C T IO N : Once th e cable connects the, host and EVB p o rts , in itia te the
softw are connection by executing “kerm it” on th e P C or w orkstation . A t th e kerm it p rom pt
sim ply ty p e “c” , th en C R to estab lish connection w ith the EV B. W ith a few m ore C R s you
should see th e B U FFA LO m onito r p rom pt and be able to en te r BU FFA LO com m ands from
th e host. If th e EV B fails to respond, press th e E V B ’s reset key un til it does respond. If
no th in g hap p en s after a few resets, check the cable connection and resta rt.

4. EV B L O A D /H O S T D O W NLOAD:

(a) W hen you are ready to dow nload a program from the host, p u t EV B in to “receive S-record
p rogram ” s ta te by en tering th e BUFFALO com m and “load t ” . T he EV B now expects
a sequence o f S-records to be tran sm itted over a serial connection to its “T T Y ” p o rt.
As S-records are received B U FFA LO decodes th em and loads th e app rop ria te executable
version o f the p rogram in to th e E V B ’s memory.

(b) E scape back to the h o s t’s kerm it session by typ ing the escape sequence < C T R L -],c> .
W hen you get the h o s t’s kerm it p rom pt, sim ply use “q u it” to qu it the h o s t’s cu rren t
kerm it session.

(c) (Back a t th e s tan d ard host com m and level) N ext, tran sm it the S-record file by executing
th e com m and “dwnA p g m .s l9 ” on the w orkstation or “type p gm .sl9 > c o m l” on a PC .
T hey “c a t” the specified file to the h o s t’s p o rt, th u s sending it to th e EVB.

(d) Following execution of the dow nloading com m and the host should give ano ther p rom pt,
w ithou t any visible sign th a t th e S-record transm ission has taken place. A ny o ther m es
sage suggests th a t th e dow nloading has probably failed. If you have problem s, check your
file nam e and the connections, th en try again.

(e) Even after the end of th e h o s t’s dow nloading th e EVB rem ains in “load t ” m ode, expecting
m ore incom ing S-records. You get the EVB ou t of “load t ” m ode by rese ttin g th e EV B.

EV B PR O G R A M E X E C U T IO N :

(a) O nce the p rogram is dow nloaded to th e EV B, you can in itia te and m onitor its execution
using e ither th e dum b-term inal o r the host as the EVB interface. To use the host, execute
an o th er kerm it com m and to in itia te a new kerm it session. N ote th a t when you execute
th e “c” to connect to the EVB you will generally have to reset the EVB to get it o u t of
“load t ” m ode. Following th e reset th e EV B should re tu rn to th e B U FFA LO m onitor,
an d th e h ost should display the BU FFA LO prom pt to indicate th a t it is connected as the
EVB interface.

(b) Verify th e S-record transm ission by using the BUFFALO m em ory display com m and (e.g.,
“m d cOOO” should show th e b inary version of th e program now loaded in to th e EVB
m em ory).

(c) If th e p rogram is dow nloaded correctly, it can be executed and m onitored using the
s ta n d a rd B U FFA LO com m ands. If th e program is not loaded correctly, re -try the dow n
loading.

B 5

3.0: Offloading Data from EYB to Workstation Host

(W ritten by Dr. Ray Ford of UM, and modified by Zuyi C hen of UM)

P u r p o s e

To describe approaches to offloading d a ta from the EVB to a w orkstation for post-processing.

P r e - c o n d i t io n s

I t is assum ed th a t an EV B program has stored d a ta in m em ory locations, and th a t a w orkstation
host is physically connected to the EVB via a serial line.

A . W o r k s t a t i o n S e t - u p

In itia te a scrip t session on th e w orkstation by executing the com m and “script data .file” . “sc rip t”
ac tually s ta r ts a new “shell” in which all characters sen t to the w orkstation display (for this window)
are also copied in to the file “data.file” , un til the shell is explicitly te rmina te d (eg ., w ith a “C T R L -
d”). Now, execute “kerm A ” to connect the w orkstation to the EVB, w ith the w orkstation em ula ting
a dum b-term inal.

B . D a t a C a p t u r e

O n th e EV B, execute th e BU FFA LO com m and “m d Sxxxx Sxxxx” (where Sxxxx are th e s ta rtin g
and ending address betw een which th e d a ta will be cap tu red). T he contents of these EVB m em ory
locations will be displayed, AND th u s will be cap tu red on th e w orkstation in “data.file” by th e scrip t
shell.

C . B U F F A L O F lu s h

T h e d a ta d isp lay /cap tu re is buffered, so you M U ST execute a few additional sim ple B U FFA LO
com m ands to add elem ents to th e display to guaran tee th a t the last o u tp u t buffer is flushed (i.e.,
th e buffer contain ing th e la s t few lines o f the $xxxx-$xxxx display). A com m and like “help” will
usually be sufficient, b u t you should experim ent w ith th is yourself.

D . End o f Capture

O nce you are sure th a t all th e desired d a ta has been cap tu red , escape back to the w orkstation
an d te rm in a te th e “kerm A ” session. N ext, te rm in a te the “sc rip t” session using “C T R L -d” .

E. Post-processing

“data .file” includes th e desired d a ta , plus extraneous inform ation a t the s ta r t and end o f th e
file associated w ith th e scrip ting activity . I t is essential th a t you ed it th e scrip t file to rem ove the
ex traneous inform ation . A lso, no te th a t th is cap tu re process has taken the hexadecim al d isplay of
EV B m em ory con ten ts and encoded it in “data.file” as a particu la r list o f ASCII characters, spaces,
lines, e tc . “C om p u ta tio n a l in te rp re ta tio n ” o f th e d a ta on the w orkstation m ust include read ing the

B 6

A SC II file, in te rp re tin g th e characters as the appropria te addresses, bytes, words, etc, and th en
tra n s la tin g th e ch arac ters in to a num erical form.

B 7

4.0: Using the M 68H C 11 EVB Server

P U R P O SE

To provide th e users o f th e EVB w ith convenience in EVB opera tions, and to allow th e users to
do EVB program m ing w ithou t having to w orry abo u t the detailed procedures in dow nloading and
offloading d a ta .

Versions of EVB Server are available for b o th the PC s and Unix w orkstations. T hey offer identical
functionality ; th ey differ only in th e ir com m unication handling.

T he following is a list o f the EV B Server m enu and functions:

**
* a. Cross-assem ble the assem bly program
* b. D ow nload S-record from host to EVB b o ard
* c. T u rn h ost to a te rm ina l for the EV B board
* d. Offload d a ta from EVB board to host
* e. E d it a file using an existing editor
* f. Show th e file conten t
* g. C onvert hex d a ta file to decim al d a ta file
* h. D isplay the working directory
* i. Q u it

U s a g e

T h e EV B Server m enu will be displayed on th e screen when th e com m and < ev b serv > or
< ev b w serv > is en tered on a P C or w orkstation , respectively (assum e the executable is already
in th e h o st). T h e following options are available for selection from th e m enu.

1. Function A serves as th e cross-assem bler. I t takes the assem bly p rogram nam e as inpu t; and
o u tp u ts th e S-record o f the program , along w ith an assem bly listing.

2. Function B provides th e dow nloading service. I t allows you to dow nload th e S-record from the
host to th e EV B board w ithou t having to go th ru all th e detailed procedures.

3. T h is op tion connects th e host w ith th e EV B. I t tu rn s the host to a dum b te rm ina l for the
EV B board .

4. T h is op tion provides th e offloading service. I t allows you to offload th e d a ta from the EVB
b o ard back to th e host, and sto re th e d a ta in a file you designated in th e working directory.

5. T h is function takes advantage o f th e existing ed iter on the host.

6. I t allows you to look a t the file con ten ts in th e w orking directory.

7. T h is op tion will take a file w ith hexadecim al con ten t, and convert it in to the decim al content.

8. C hoosing th is will allow you to see the w orking directory.

, Note: I t is im p o rta n t to reset th e EVB board w hen indicated .

A p p en dix C

C om puter A rch itectu re and A ssem bly Language

LAB M A N U A L

Z U Y I C H E N

July, 1992

C om puter Science D epartm ent

U n iversity o f M ontana

TABLE OF CONTENTS

Table of Contents i

Lab 1.0: Output Ports 1

Lab 2.0: Input Port 3

Lab 3.0: Traffic Signal at Port-C 4

Lab 4.0: Traffic Signal at Port-B 5

Lab 5.0: Music Tunes at Port-B 6

Lab 6.0: Traveling Light at Port-C 7

Lab 7.0: Traveling Light at Port-B 8

Lab 8.0: Modulo-9 Counter at Port-C 9

Lab 9.0: Modulo-9 Counter at Port-B 10

Lab 10.0: Software Interrupt Handling 11

Lab 11.0: Output Compare Function 12

Lab 12.0: Polling with OC2 13

Lab 13.0: OC5 Interrup 14

Lab 14.0: Timer Using Polling 15

Lab 15.0: Timer Using Interrupt Handling 16

Lab 16.o: Inter-Process Communication 17

Lab 17.0: Multi-Character Display 19

C i

C l

Lab 1.0 Output Ports

P R O B L E M : contro l o u tp u t pins a t Port-A . P ort-B , P o rt-C and P ort-D

T O P I C : pins for o u tp u t a t p o rts and tim ing control

P U R P O S E : To in troduce low-level device control achieved th rough th e EVB p o rt pins for o u tp u t
an d tim ing contro l achieved th ro u g h in struction cycles.

A S S I G N M E N T : S tudy the program -shell outporis.asm and hardw are connection, no ting specifi
cally

1. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t Port-A , Port-B P o rt-C and P o rt-D are used
to contro l th e 10-segment b ar graph LEDs as ex ternal devices (for M CU I /O p o r t connector
p in assignm ents see P6-2 o f M 68HC11EVB Evaluation B oard U ser’s M anual);

2. th a t P o rt-A o u tp u t pins are pin 3 - p in 7, and P ort-D o u tp u t pins are pin 2 -

p in 5;

3. how th e EVB o u tp u t pins are connected to particu la r devices (ie, w hat p rogram o u tp u ts control
w hat segm ents of th e b ar g rap h LEDs);

4. how th e p ro g ram ’s o u tp u ts control the ex ternal devices (i.e., when a pa rticu la r segm ent of the
b a r g rap h LED s is tu rn ed on and off);

5. how subrou tines LITE_A an d C LEA R -A contro l the o u tp u t p ins o f Port-A ;

6. th a t you m ust com plete portions of th e program code to m ake th e p rogram perform the desired
control function .

P a r t o f the “b a r g raph display hardw are” will be set up for you, and you are responsible for th e
rest. E ach b a r g raph LED consists o f 10 bars or segm ents. E ach o u tp u t p in should be connected
to a d is tin c t bar. T he po rt-A o u tp u t p ins are already connected for you. You need to connect the
o u tp u t p ins for P o rt-B , P o rt-C and P o rt-D .

To com plete the p rogram you m ust w rite som e subroutines sim ilar to LITE_A and C LEA R -A .
T hese sub rou tines are:

L IT E .B , C L E A R .B ,
L IT E .C , C L E A R .C ,
L IT E .D , C L E A R .D

Y ou m u st cross-assem ble th e com pleted program , download it, te s t it, analyze the program
resu lts , an d c rea te a rep o rt on your analysis.

B A R G R A P H C O N T R O L : o u tp u t p in connection of P o rt-C , Port-D , P ort-A and P o rt-B in
order:

1. tu rn on th e m ost significant b it of P ort-C ;

2. add th e nex t m ost significant b it w ithou t tu rn in g off the previous one;

3. rep ea t (2);

C 2

4. clear th e p o r t w hen all b its corresponding to o u tp u t pins o f a p o rt are tu rn ed on; go to the
nex t p o rt, an d do (1) - (4) in th a t p o rt; after port-B is lit, go back to port-C and s ta r t over
from (1).

C 3

Lab 2.0 Input Port

P R O B L E M : in p u t pins a t P o rt-C ; o u tp u t pins a t P ort-A and Port-B

T O P I C : pins for in p u t and o u tp u t a t various p o rts and cycle analysis

P U R P O S E : To in troduce contro l o f p o rt pins for inpu t and o u tp u t, and free-running counter.

A S S I G N M E N T : S tudy the program inport,asm, no ting specifically

1. th a t se ttin g up P o rt-C for in p u t is realized by w riting all 0 ’s to th e P o rt-C direction contro l
reg ister (D D R C);

2. how the m em ory-m apped free-running counter (T C N T) works.

T h is is a com plete p rogram . Cross-assem ble it, dow nload it, execute it several tim es. Offload tw o
sets o f d a ta com puted by th e p rogram in $D000 - S D FFF to the host m achine, and save them in tw o
different files. A nalyze th e d a ta carefully, especially those re la ted to cycles, and w rite a sum m ary of
your analysis results.

C 4

Lab 3.0 Traffic Signal at Port-C

P R O B L E M : T R A F F IC SIGNAL a t P o rt-C

T O P I C : P o rt-C pins for o u tp u t and tim ing control

P U R P O S E : To in troduce low-level device control achieved th rough the EVB P o rt-C pins, and
tim ing contro l achieved by counting instruction cycles.

A S S I G N M E N T : S tudy th e program -shell trafficC.asm carefully, noting specifically

1. th a t th e E V B ’s m em ory-m apped I /O P ort-C pins are used to control the ex ternal devices of
th e traffic light control (for M CU I /O p o rt connector p in assignm ents see P6-2 of

M 68HC11EVB E valuation B oard U ser’s M anual);

2. how the p ro g ram ’s P o rt-C o u tp u ts are connected to particu la r devices (i.e., w hat o u tp u ts
contro l the red, yellow and green lights);

3. how th e p rog ram ’s P o rt-C o u tp u ts control th e ex ternal devices (i.e., when a pa rticu la r light
should be tu rn e d on and off);

4. th a t you m ust add tim ing inform ation to m ake the program perform th e desired con tro l func
tion .

T he “traffic ligh t hardw are” will be se t up for you, and you d o n ’t need to m odify it to com plete
the assignm ent. T h e red, yellow and green LED s on the breadboard are used as th e red, yellow
an d green traffic lights. You need to u n d erstan d how th e EV B controls th e hardw are logically, no t
electronically.

T o com plete th e p rogram you m ust figure ou t the num ber of m achine cycles th a t need to be
delayed for each light signal. S im ply com pute th e num ber of DELAY loop ite ra tions, and replace
the question m arks in th e p rogram w ith those values, cross- assem ble the program , dow nload it, and
te s t it. W rite up an analysis th a t describes your tim ing com putation and th e way you m apped th is
to th e loop ite ra tions to give th e real-tim e delay desired.

T R A F F I C S IG N A L C O N T R O L : th e following num bers are ordered.

1. G R E E N ligh t ON for 10 seconds, then O F F

2. Y E L L O W ligh t ON for 1 second, th en O F F for 1 second

3. do (2) an o th er tw o tim es

4. R E D ligh t ON for 10 seconds, th en O F F

5. s ta r t from (1) again

C5

Lab 4.0 Traffic Signal at Port-B

P R O B L E M : T R A F F IC SIGNAL a t Port-B

T O P I C : P o rt-B pins for o u tp u t and tim ing control

P U R P O S E : To in troduce low-level device control achieved th rough the EVB P ort-B pins, and
tim ing contro l achieved by counting instruction cycles.

A S S I G N M E N T : S tudy th e program -shell trafficB.asm carefully, no ting specifically

1. th a t th e E V B ’s m em ory-m apped I /O Port-B pins are used to control the ex ternal devices o f the
traffic light control (for MCU I /O p o rt connector pin assignm ents see P6-2 of M 68HC11EVB
E valuation B oard U ser’s M anual);

2. how th e p ro g ram ’s P o rt-B o u tp u ts are connected to particu la r devices (i.e., w hat o u tp u ts
contro l the red, yellow and green lights);

3. how th e p ro g ram ’s P o rt-B o u tp u ts control the ex ternal devices (i.e., when a particu la r light
should be tu rn e d on an d off);

4. th a t you m u st add tim ing inform ation to m ake th e program perform the desired contro l func
tion.

T h e “traffic ligh t hardw are” will be set up for you, and you d o n ’t need to m odify it to com plete
the assignm ent. T h e red, yellow and green LED s on th e breadboard are used as the red, yellow
and green traffic lights. You need to u n d erstan d how the EVB controls the hardw are logically, no t
electronically .

T o com plete th e p rog ram you m ust figure ou t the num ber of m achine cycles th a t need to be
delayed for each light signal. Sim ply com pute th e num ber of DELAY loop ite ra tions, and replace
th e question m arks in th e p rogram w ith those values, cross-assem ble the program , dow nload it, and
te s t it. W rite up an analysis th a t describes your tim ing com putation and the way you m apped th is
to th e loop ite ra tio n s to give the real-tim e delay desired.

T R A F F I C S IG N A L C O N T R O L : th e following num bers are ordered.

1. G R E E N light ON for 10 seconds, th en O F F

2. Y E L L O W ligh t ON for 1 second, th en O F F for 1 second

3. do (2) an o th e r tw o tim es

4. R E D ligh t ON for 10 seconds, th en O F F

5. s ta r t from (1) again

c 6

Lab 5.0 Music Tunes at Port-B

PROBLEM : M usic no tes a t P o rt-B

TOPIC: tim ing control

P U R PO SE : T o in troduce low-level device control achieved th ru the EVB Port-B pins, and tim ing
contro l achieved by counting in struc tion cycles.

A SSIG N M E N T : S tudy th e program -shell music.asm, no ting specifically

1. th a t th e E V B ’s m em ory-m apped o u tp u t P o rt-B pins axe used to control the ex ternal devices
of th e m usic notes (for M CU I /O p o rt connector p in assignm ents see P6-2 of M 68HC11EVB
E valuation B oard U ser’s M anual);

2. how th e p ro g ram ’s P o rt-B o u tp u ts control th e ex ternal devices (i.e., when a sound of pa rticu la r
frequency should be tu rn ed on and off);

3. th a t you m ust add tim ing inform ation to m ake th e p rogram perform the desired control func
tion .

T h e “m usic no tes hardw are” will be set up for you, and you don ’t need to modify it to com plete •
the assignm ent. T h e p rogram is supposed to generate m usic no tes mee, rat, do, tee, la, so, fa, lower
mee, and then to w rap around , each stay ing on for 1 /2 second.

T o com plete th e p rogram you m ust figure ou t th e num ber of m achine cycles th a t need be delayed
for each sound signal to s tay on for 1 /2 second. Sim ply com pute th e num ber of ite ra tions R ESO
N A N T should loop for each frequency, and replace the question m arks in the program w ith those
values, cross-assem ble it, dow nload it, and te s t it. W rite up your tim ing analysis.

M USIC N O TES CONTROL: Real-tim e intervals betw een signals in th e following order.
1. ring mee for 1 /2 sec
2. ring rat for 1 /2 sec
3. ring do for 1 /2 sec
4. ring tee for 1 /2 sec
5. ring la for 1 /2 sec
6. ring so for 1 /2 sec
7. ring fa for 1 /2 sec
8. ring lower mee for 1 /2 sec
9. go back to (1) an d repeat

C7

Lab 6.0 Traveling Light at Port-C

P R O B L E M : Traveling light on P o rt-C o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-C and tim ing control

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t, and
tim ing control achieved by counting instruction cycles.

A S S I G N M E N T : S tudy th e program -shell travelC.asm, no ting specifically

1. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t P o rt-C are used to con tro l th e 10-segment
b a r graph LEDs as ex ternal devices (for M CU 1 /0 p o rt connector pin assignm ents see P6-2 of
M 68H C11EV B E valuation B oard U ser’s M anual);

2. how th e EVB o u tp u t pins are connected to particu lar devices (ie, w hat p rogram o u tp u ts control
w hat segm ent of th e b a r g rap h LED);

3. how th e p ro g ram ’s o u tp u ts control the ex ternal devices (i.e., when a pa rticu la r segm ent of the
bar g raph LED is tu rn ed on and off);

4. th a t you m ust add tim ing in form ation and one instruction to com plete the program , and to
m ake it perform th e desired control function .

You m ust set up th e “b a r g raph LED hardw are” for yourselves. Each o u tp u t pin should be
connected to a d istin c t b a r o f the b ar graph LED.

T o com plete th e program you m ust ad d tim ing inform ation, an d add one in struc tion to shift
a b it to th e righ t w ith th e previous b it tu rn ed off after the instruction “js r DELAY” in th e m ain
p rogram . C om plete th e program , cross-assem ble it, dow nload it, te s t it, and w rite up an analysis
th a t explains how your p rogram perform s th e desired function.

B A R G R A P H C O N T R O L : send a signal to the o u tp u t pins of th e P o rt-C one a t a tim e w ith
th e following order:

a. 1 /2 second for p in 7 ON only ’1000 0000’
b. 1 /2 second for p in 6 on only ’0100 0000’
c. 1 /2 second for p in 5 on only ’0010 0000’
d. 1 /2 second for p in 4 on only ’0001 0000’
e. 1 /2 second for p in 3 on only ’0000 1000’
f. 1 /2 second for p in 2 on only ’0000 0100’
g. 1 /2 second for p in 1 on only ’0000 0010’
h . 1 /2 second for p in 0 on only ’0000 0001’
i. go back to (a)

C8

Lab 7.0 Traveling Light at Port-B

P R O B L E M : Traveling light on P o rt-B o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-B and tim ing control

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t, and
tim ing contro l achieved by counting in struction cycles.

A S S I G N M E N T : S tudy th e program -shell traveffi.asm, noting specifically

1. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t P o rt-B are used to control th e 10-segm ent
b a r g rap h LED s as ex ternal devices (for M CU I /O p o rt connector pin assignm ents see P6-2 of
M 68H C11EV B E valuation B oard U ser’s M anual);

2. how the EVB o u tp u t pins are connected to p a rticu la r devices (ie, w hat p rogram o u tp u ts control
w hat segm ent of th e b ar graph LED);

3. how th e p ro g ram ’s o u tp u ts control the ex ternal devices (i.e., when a p a rticu la r segm ent of the
b ar g rap h LED is tu rn ed on and off);

4. th a t you m u st add tim ing inform ation and one in struction to com plete the program , and to
m ake it perfo rm th e desired control function.

Y ou m ust set up th e “b ar graph LED h ardw are” for yourselves. Each o u tp u t p in should be
connected to a d is tin c t b ar o f the b a r graph LED.

To com plete the p ro g ram you m ust add tim ing inform ation, and add one in stru c tio n to shift
a b it to th e rig h t w ith th e previous b it tu rn ed off after the in struction ‘(jsr DELAY” in th e m ain
p rogram . C om plete th e program , cross-assem ble it, dow nload it, te s t it, and w rite up an analysis
th a t explains how your program perform s th e desired function.

B A R G R A P H C O N T R O L : send a signal to th e o u tp u t pins of the P o rt-B one a t a tim e w ith
th e following order:

a. 1 /2 second for p in 7 ON only ’1000 0000’
b. 1 /2 second for p in 6 on only ’0100 0000’
c. 1 /2 second for p in 5 on only ’0010 0000’
d. 1 /2 second for p in 4 on only ’0001 0000’
e. 1 /2 second for p in 3 on only ’0000 1000’
f. 1 /2 second for p in 2 on only ’0000 0100’
g. 1 /2 second for p in 1 on only ’0000 0010’
h . 1 /2 second for p in 0 on only ’0000 0001’
i. go back to (a)

C 9

Lab 8.0 Modulo-9 Counter at Port-C

P R O B L E M : M odulo-9 coun ter using P o rt-C o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-C and tim ing control; hardw are

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t,
tim ing contro l achieved by counting instruction cycles, and simple electronic hardw are.

A S S I G N M E N T : S tudy the program moduloC.asm, no ting specifically

1. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t P o rt-C are used to control a 7-segm ent LED
as an ex te rn a l device (for M CU I /O p o rt connector pin assignm ents see P6-2 o f M 68HC11EVB
E valuation B oard U ser’s M anual);

2. how th e d a ta a t th e end of th e program are form ed;

3. E ach of th e P o rt-C pins except pin 4 controls one of th e 7 segm ents of th e display by connecting
to th e ou tle t for th a t segm ent;

4. how th e p ro g ram ’s o u tp u ts control th e ex ternal device (i.e., when a particu la r segm ent of
7-segm ent LED is tu rn e d on and off);

P a r tia l hardw are will be set up for you. T he + 5 v p in and GND pin of th e EVB are a lready con- •
nected to th e 7-segm ent LED. You m ust figure ou t which o u tp u t p in of P o rt-C should be connected
to w hich o u tle t o f th e 7-segm ent display.

C onnect th e P o rt-C pins to the correct ou tle ts of the 7-segm ent LED , cross-assemble th e program ,
dow nload it , te s t it, and w rite up a sum m ary.

H A R D W A R E C O N T R O L :
1. d isp lay 0 for 1 /2 sec; clear 0 for 1 /2 sec;
2. d isp lay 1 for 1 /2 sec; clear 1 for 1 /2 sec;
3. d isp lay 2 for 1 /2 sec; clear 2 for 1 /2 sec;
4. d isplay 3 for 1 /2 sec; clear 3 for 1 /2 sec;
5. d isp lay 4 for 1 /2 sec; clear 4 for 1 /2 sec;
6. d isp lay 5 for 1 /2 sec; clear 5 for 1 /2 sec;
7. d isplay 6 for 1 /2 sec; clear 6 for 1 /2 sec;
8. d isp lay 7 for 1 /2 sec; clear 7 for 1 /2 sec;
9. d isp lay 8 for 1 /2 sec; clear 8 for 1 /2 sec;
10. d isplay 9 for 1 /2 sec; clear 9 for 1/2 sec;
11. rep ea t from (1)

CIO

Lab 9.0 M odulo-9 Counter at Port-B

P R O B L E M : M odulo-9 counter using Port-B o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-B and tim ing control; hardw are

P U R P O S E : To in troduce low-level device control achieved th ru the EV B p o rt pins for o u tp u t,
tim ing contro l achieved th ru in struction cycles, and simple electronic hardw are.

A S S I G N M E N T : S tudy th e p rogram moduloB.asm, no ting specifically

1. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t P o rt-B are used to control a 7-segm ent LED
as an ex ternal device (for M CU I /O p o rt connector pin assignm ents see P6-2 of M 68HC11EVB
E valuation B oard U ser’s M anual);

2. how th e d a ta a t th e end of the program are formed;

3. E ach o f the P o rt-B pins except p in 4 controls one of the 7 segm ents of th e display by connecting
to th e ou tle t for th a t segm ent;

4. how th e p ro g ram ’s o u tp u ts contro l the ex ternal device (i.e., when a particu la r segm ent of
7-segm ent LED is tu rn ed on and off);

P a r tia l hardw are will be se t up for you. T he + 5 v pin and GND pin of th e EVB are already con- -
nec ted to th e 7-segm ent LED. You m ust figure ou t which o u tp u t pin of Port-B should be connected
to w hich ou tle t of th e 7-segm ent display.

C onnect th e P o rt-B pins to th e correct ou tle ts o f the 7-segm ent LED , cross-assem ble th e program ,
dow nload it, te s t it, and w rite up a sum m ary.

H A R D W A R E C O N T R O L :
1. display 0 for 1 /2 sec
2. display 1 for 1 /2 sec
3. d isp lay 2 for 1 /2 sec
4. d isp lay 3 for 1 /2 sec
5. d isp lay 4 for 1 /2 sec
6. d isp lay 5 for 1 /2 sec
7. d isplay 6 for 1 /2 sec
8. d isp lay 7 for 1 /2 sec

clear 0 for 1 /2 sec;
clear 1 for 1 /2 sec;
clear 2 for 1 /2 sec;
clear 3 for 1 /2 sec;
clear 4 for 1 /2 sec;
clear 5 for 1 /2 sec;
clear 6 for 1 /2 sec;
clear 7 for 1 /2 sec;
clear 8 for 1 /2 sec;9. d isp lay 8 for 1 /2 sec;

10. display 9 for 1 /2 sec; clear 9 for 1 /2 sec;
11. rep ea t from (1)

c i l

Lab 10.0 Software Interrupt Handling

PR O BLEM : M odulo-9 coun ter using softw are in te rru p t technique

TO PIC: softw are in te rru p t

PU R PO SE : To in troduce softw are in te rru p t handling techniques, in te rru p t vector ju m p tab le , and
low-level device control.

A SSIG N M E N T : Study the program swi.asm carefully, no ting specifically

1. PV S W I is th e pseudo vector address for softw are in te rru p t

2. th a t th e E V B ’s m em ory-m apped pins for o u tp u t a t P o rt-B are used to contro l a 7-segm ent LED
as ex te rn a l devices (for M CU I /O p o rt connector p in assignm ents see P6-2 o f M 68HC11EVB
E valuation B oard U ser’s M anual);

3. “fcb” m eans “form co n stan t b y te” ; “rm b” m eans “reserve m em ory by tes” ;

4. how th e d a ta a t th e end of the program are form ed;

5. each of th e P o rt-B pins except p in 4 controls one o f the 7 segm ents of the LED by connecting
to th e ou tle t for th a t segm ent;

6. how th e p ro g ram ’s o u tp u ts control the ex ternal devices (i.e., when a p a rticu la r segm ent of th e
7-segm ent LED is tu rn ed on and off);

T h e “7-segm ent LED hardw are” will be set up for you. You d o n ’t have to m odify the hardw are
in order to execute the program .

A nalyze th e p rogram , especially how th e contro l o f th e program flows in the L O O P loop. Cross-
assem ble the p rogram , dow nload it, te s t it, and w rite up a sum m ary th a t describes how the softw are
in te r ru p t works, and how th e contro l of th e p rog ram flows.

H A R D W A R E CONTROL:
1. display 0 for 1 sec;
2. d isp lay 1 for 1 sec;
3. d isp lay 2 for 1 sec;
4. d isp lay 3 for 1 sec;
5. d isp lay 4 for 1 sec;
6. d isp lay 5 for 1 sec;
7. d isp lay 6 for 1 sec;
8. d isp lay 7 for 1 sec;
9. d isp lay 8 for 1 sec;
10. display 9 for 1 sec;
11. rep ea t from (1)

C 12

Lab 11.0 O utput C om pare Function

P R O B L E M : output compare using interrupt technique

T O P IC : output compare register 5 (OC5) interrupt technique

P U R P O S E : T o in troduce in te rru p t handling using o u tp u t com pare register 5 (O C 5), in te rru p t
vector ju m p tab le and free-running counter.

A S S I G N M E N T : S tudy th e p rogram ocSint.asm carefully, no ting specifically

1. R E G -S T ($1000) is the s ta r tin g address of the register block. W ith ofFset specified in th e
“equ” directive, th e m em ory location for tim er control register 1 (T C T L 1), tim er in te rru p t
m ask (T M SK 1), tim er in te rru p t flag 1 (T F L G 1), tim er o u tp u t com pare register 5 (T O C 5),
and free-running counter (T C N T) can be found;

2. PV O C 5 is th e pseudo vector address for OC5 in te rru p t;

3. th a t th e p rog ram w rites d a ta to the m em ory s ta rtin g a t $D000, and stops a t $D F F F , since
$E000 and up are m onitor E PR O M , and canno t be w ritten to (see EV B M em ory M ap D iagram
on P5-3 o f M 68HC11EVB E valuation B oard U ser’s M anual);

4. th a t $D000 canno t be changed to $6000, since th e program doesn’t lim it the upper boundary ,
and will otherw ise overw rite the user program d a ta from $COOO;

5. th a t O C 5 contro ls pin 3 of Port-A ;

6. w hat the functions o f th e T FL G 1, T C N T , TM SK1 and T O C 5 in th e program are.

Cross-assem ble the program , download it, execute it several tim es, offload d a ta com puted by the
p rogram a t $DOOO- $D F F F to the host m achine, and save it in different files. Carefully analyze the
different d a ta files, an d the functions o f the TFL G 1, T M SK 1, T C N T , and TO C 5 in the program .
W rite up a sum m ary of your analysis.

C13

Lab 12.0 Polling w ith OC2

P R O B L E M : modulo-9 counter with output compare function and polling technique

T O P IC : output compare register 2 (OC2) and polling technique

PU R PO SE : To in troduce polling techniques using o u tp u t com pare register 2(O C2) and free-
runn ing counter.

A SSIG N M E N T : S tudy th e program -shell timepoll.asm carefully, noting specifically

1. th a t BA SE ($1000) is the base address of the register block. W ith offset specified in th e “equ”
d irective, the m em ory location for tim er in te rru p t flag 1 (T F L G 1), tim er o u tp u t com pare
reg ister 2 (T O C 2), and free-running counter (T C N T) can be found.

2. how the polling technique in T .L O O P works.

3. th a t you m ust add tim ing inform ation to com plete the program

T h e “m odulo-9 hardw are” will be set up for you. You don’t need to m odify th e hardw are in
order to com plete the p rogram . T h e function of th e program is to display digits on the 7-segm ent
LED . D igit 0 is initialized, an d should be displayed on the 7-segm ent LED for one second before it
is increm ented . A tic sound accom panies each display. E ach increm ented d ig it should be displayed
for one second. A fter d ig it 9 is displayed it is reset to 0, and then th e sam e procedure is rep ea ted .

C om pu te th e num ber o f ite ra tions T .L O O P should loop in order for each digit to be displayed
for one second. Replace th e question m arks in “ldy # ? ? ? ? ” w ith th e value you com puted, cross-
assem ble th e p rogram , dow nload it, and te s t it. Carefully analyze the PO L L IN G p a rt of the program ,
especially the instructions re la ted to free-running counter (T C N T) and o u tp u t com pare register 2
(T O C 2). W rite up a sum m ary o f your analysis.

H A R D W A R E CONTROL:
1. display 0 for 1 sec w ith a tic sound;
2. display 1 for 1 sec w ith a tic sound;
3. display 2 for 1 sec w ith a tic sound;
4. display 3 for 1 sec w ith a tic sound;
5. display 4 for 1 sec w ith a tic sound;
6. display 5 for 1 sec w ith a tic sound;
7. d isp lay 6 for 1 sec w ith a tic sound;
8. d isp lay 7 for 1 sec w ith a tic sound;
9. display 8 for 1 sec w ith a tic sound;
10. display 9 for 1 sec w ith a tic sound;
11. rep ea t from (1)

C 14

Lab 13.0 OC5 Interrupt

P R O B L E M : modulo-9 counter with output compare function and interrupt handling

T O P IC : output compare register 5 (OC5) interrupt technique

P U R P O S E : To in troduce in te rru p t handling using o u tp u t com pare register 5(O C5) and free-
run n in g counter.

A S S I G N M E N T : S tudy th e program -shell timeint.asm carefully, noting specifically

1. th a t BA SE ($1000) is th e s ta rtin g address of the register block. W ith offset specified in the
“equ” d irective, the m em ory location for tim er in te rru p t m ask (TM SK 1), tim er in te rru p t flag
1 (T F L G 1), tim er o u tp u t com pare register 5 (T O C 5), and free-running counter (T C N T) can
be found.

2. th a t PV O C 5 is th e pseudo vector address for OC5 in te rru p t

3. how in te rru p t service rou tine works

4. w h a t th e functions of th e T F L G 1, T C N T , TM SK1 and TO C 5 axe in th e program .

5. th a t you m u st add tim ing inform ation to com plete the program

T h e “m odulo-9 hardw are” will be set up for you. You d o n ’t need to m odify th e hardw are in
order to com plete th e assignm ent. T h e function of the program is to display digits on th e 7-segm ent
LED . D igit 0 is in itialized, and should be displayed on the 7-segment LED for one second before it
is increm ented . A tic sound accom panies each display. Each increm ented dig it should be displayed
for one second. A fter d ig it 9 is displayed it is reset to 0, and then the sam e procedure is rep ea ted .

C o m p u te th e num ber of ite ra tions T L P should loop in order for each digit to be tu rn ed on for one
second. R eplace the question m arks in “ldy # ? ? ? ? ” w ith the value you com puted, cross-assem ble the
p rogram , dow nload it, and te s t it . C arefully analyze th e in te rru p t service rou tine IN T E R R U P T of
th e p rogram , especially th e in struc tions re la ted to free-running counter (T C N T) an d o u tp u t com pare
reg ister 5 (T O C 5). W rite up a sum m ary of your analysis.

H A R D W A R E C O N T R O L :
1. display 0 for 1 sec w ith a tic sound;
2. d isp lay 1 for 1 sec w ith a tic sound;
3. d isp lay 2 for 1 sec w ith a tic sound;
4. display 3 for 1 sec w ith a tic sound;
5. d isp lay 4 for 1 sec w ith a tic sound;
6. d isp lay 5 for 1 sec w ith a tic sound;
7. d isp lay 6 for 1 sec w ith a tic sound;
8. d isplay 7 for 1 sec w ith a tic sound;
9. d isplay 8 for 1 sec w ith a tic sound;
10. display 9 for 1 sec w ith a tic sound;
11. rep ea t from (1)

C 15

Lab 14.0 T im er U sing Polling

P R O B L E M : alarm system with output compare function and polling techniques

T O P IC : output compare register 2 (0C 2) and polling technique

P U R P O S E : To in troduce polling techniques using o u tp u t com pare register 2(OC2) and free-
runn in g counter.

A S S I G N M E N T : S tudy the program -shell alarmpol.asm carefully, no ting specifically

1. th a t BA SE ($1000) is th e base address of the register block. W ith offset specified in th e “equ”
d irective, the m em ory location for tim er in te rru p t flag 1 (T F L G 1), tim er o u tp u t com pare
reg ister 2 (T O C 2), and free-running counter (T C N T) can be found.

2. how th e polling techn ique in T .L O O P works.

3. th a t you m ust add tim ing inform ation to com plete the program

T h e “a la rm system h ardw are” will be set up for you. You d o n ’t need to m odify th e hardw are in
order to com plete th e assignm ent. T he program drives a 14-segm ent LED and a piezo buzzer. D igit
99 is initialized , and should be displayed on the MAN6610 (14-segm ent) LED for 1 /4 second before
it is decreased, and th e n th e decreased num ber will be displayed for 1 /4 second. I t goes on u n til 0
is d isplayed. A tic sound accom panies each display. A fter the d ig it 0 is displayed i t generates beeps
u n til th e EVB reset b u tto n is pressed.

C om pute th e num ber of ite ra tions T .L O O P should loop in order for each digit to be on for
one second. R eplace th e question m arks in the “ldy # ? ? ? ? ” w ith th e value you com puted, cross-
assem ble th e p rogram , dow nload it, and te s t it. C arefully analyze the PO LLIN G p a rt of the program ,
especially th e in struc tions re la ted to free-running counter (T C N T) and o u tp u t com pare register
(T O C 2). W rite up a sum m ary o f your analysis.

H A R D W A R E C O N T R O L :
1. d isplay 99 for 1 /4 sec w ith a tic sound;
2. d isp lay 98 for 1 /4 sec w ith a tic sound;

99. display 1 for 1 /4 sec w ith a tic sound;
100. d isplay 0 for 1 /4 sec w ith a tic sound;
101. genera te beeps u n til th e R E S E T b u tto n is pressed

C 16

Lab 15.0 T im er U sing Interrupt H andling

P R O B L E M : alarm system with output compare function and interrupt handling

T O P IC : output compare register 5 (OC5) interrupt handling technique

P U R P O S E : T o in troduce in te rru p t handling using o u tp u t com pare reg ister 5(OC5) and free-
run n in g counter.

A S S I G N M E N T : S tudy th e program -shell alarmint.asm carefully, no ting specifically

1. th a t BASE ($1000) is th e s ta rtin g address of the register block. W ith offset specified in the
“equ” directive, th e m em ory location for tim er in te rru p t m ask (TM SK 1), tim er in te rru p t flag
1 (T F L G 1), tim er o u tp u t com pare register 5 (T O C 5), and free-running counter (T C N T) can
be found.

2. th a t PV O C 5 is th e pseudo vector address for OC5 in te rru p t

3. how in te rru p t service rou tine works

4. w h a t th e functions o f th e T F L G 1, T C N T , TM SK 1 and T O C 5 are in the program .

5. th a t you m ust add tim ing inform ation to com plete the program

T h e “a la rm system hardw are” will be set up for you. You don’t need to m odify th e hardw are in
o rder to com plete th e assignm ent. T h e p rogram drives a 14-segment LED and a piezo buzzer. Digit
99 is in itialized , and should be displayed on the MAN6610 (14-segm ent) LED for 1 /4 second before
it is decreased, an d th en th e decreased num ber will be displayed for 1 /4 second. I t goes on u n til 0
is displayed. A tic sound is accom panied to each display. A fter the digit 0 is displayed it generates
beeps u n til th e EV B reset b u tto n is pressed.

C om pu te th e num ber of ite ra tio n s T L P should loop in order for each d ig it to be tu rn ed on for 1 /4
second. Replace th e question m arks in “Idy # ? ? ? ? ” w ith the value you com puted, cross-assem ble the
p rogram , dow nload it, and te s t it. C arefully analyze th e in te rru p t service rou tine IN T E R R U P T of
th e p rogram , especially th e in stru c tio n s re la ted to free-running counter (T C N T) and o u tp u t com pare
reg ister 5 (T O C 5). W rite up a sum m ary of your analysis.

H A R D W A R E C O N T R O L :
1. d isp lay 99 for 1 /4 sec w ith a tic sound;
2. display 98 for 1 /4 sec w ith a tic sound;

99. d isp lay 1 for 1 /4 sec w ith a tic sound;
100. d isp lay 0 for 1 /4 sec w ith a tic sound;
101. generate beeps u n til th e R E S E T b u tto n is pressed

C17

Lab 16.0 Inter-Process Communication

P R O B L E M : in ter-process com m unication a t P o rt-B and Port-C

T O P I C : d is trib u ted program m ing; polling m echanism

P U R P O S E : To in troduce you to R EA L low-level d istribu ted program m ing m echanism s for in ter-
processor SEN D an d R E C E IV E R .

A S S I G N M E N T : S tudy the program -shell ipcsnd.asm and ipcrcv.asm, no ting specifically

1. th a t th e sender and receiver m ust be synchronized a t a very low level to assure th a t the receiver
is ready to accept incom ing d a ta w hen th e sender is ready to send it. T h is m eans the delay
betw een tw o sends m ust be larger th a n th e w orst case “receiver ready” delay.

2. th a t in th e subrou tine E V E N T betw een two sends, some delay value m ust be set on purpose
to w ait for the receiver to get ready to receive.

3. th a t you m ust add tim ing inform ation to m ake th e program s perform th e desired function w ith
th e m inim al cost.

To get th e sender and recevier synchronized, you m ust

1. determ ine th e m axim al num ber of in stru c tio n cycles in the receiver program th a t m ay lapse
betw een th e tim e th e receiver recognizes an a rb itra ry “send (n)” and the tim e it is ready to
recognize th e next “se n d (n + 1)” ;

2. com pute delay cycles in the sender program for each of the 4 atom ic sends in the subrou tine
E V E N T , assum ing th e 2nd in stru c tio n in th e subroutine IPC -PA U SE is “ldx # $ 0 1 ” ;

3. com pute th e m in im al ite ra tions of D JLO O P in th e sender’s subroutine IP C -PA U SE to g u aran
tee an app rop ria te delay betw een each of th e 4 atom ic sends, and replace the question m arks
???? w ith th e value you com puted.

Cross-assem ble the sender and receiver program s, download sender to one EV B b o ard and re
ceiver to ano ther, an d execute them . Check if there are m essage sending reliab ility problem s. If
th e re are , reca lcu late delay value, an d m odify i t if necessary. Execute th e program s twice, offloading
th e sto red d a ta from b o th th e sender and receiver following each execution to produce tw o sets of
d a ta for th e p rocess/processor m apping. Swap th e assignm ent o f sender and receiver processes (i.e.,
exchange th e boards the sender and receiver were dow nloaded), execute them ano ther two tim es, save
th e d a ta to p roduce an o th e r two sets o f d a ta for th e exchanged process/processor m apping. Note
th a t th e sw ap requires exchanging b o th th e softw are on boards and the hardw are connection o f the
boards. E d it th e files contain ing the sets o f offloaded d a ta to prepare them for post-processing anal
ysis. R un th e p ro g ram IP C proc w ith th ree argum ents: send-data-file, receive-data-file, outpu t-file .
IP C proc im plem ents a prelim inary analysis of the sender/receiver execution, and p u ts th e resu lts in
th e o u tp u t file. N ote th e difference betw een sender and receiver tim es shou ldn’t be co n stan t because
o f th e u n certa in ty o f th e polling n a tu re , b u t it should be bounded w ith a pred ictab le average.

W rite a w ritten sum m ary ab o u t your analysis. P o in t o u t any unexpected resu lts, especially those
su p p o rtin g th e hypotheses abou t the ideal behavior o f the system or those disagreeing w ith expected
behavior. S u p p o rt your sum m ary w ith d a ta .

IPCsnd.asm/IPCrcv.asm relies on th e following M 68HC11EVB facilities:

C18

1. each w rite to P o rt-B drives an 8-bit value ou t of the E V B ’s P o rt-B pins, and drives a ’1’ ou t
o f th e E V B ’s S T E -B pin;

2. an incom ing ’1’ on an E V B ’s STR-A pin causes the EVB to “la tch ” a d a ta value from its
P o rt-C L pins in to its P o rt-C L in ternal register;

3. an successful la tch on a P o rt-C L value is signalled to the receiver by a s ta tu s b it in E V B ’s
PIO C register.

T herefore, sender’s P o rt-B needs to be connected to receiver’s P ort-C , and sender’s ST R -B to
receiver’s STR -A . T h e connection of th e ir specific d a ta b its are listed below.

P o rt-B (SE N D E R) P ort-C (R E C E IV E R)
d a ta bit d a ta b it

0
1
2
3
4
5

0
1
2
3
4
5
6
7

6
7

ST R -A : header p in 4
STR -B : header p in 6

C19

Lab 17.0 Multi-Character Display

P R O B L E M : LC D -II display a t P o rt-B and Port-C

T O P I C : low-level device contro l

P U R P O S E : To in troduce device contro l of m ulti-character display hardw are.

A S S I G N M E N T : S tudy th e program -shell siring, asm, no ting specifically

1. th a t th e E V B ’s m em ory-m apped o u tp u t P o rt-B and P o rt-C pins are used to control th e ex
te rn a l devices o f the LC D -II display (for MCU I /O p o rt connector pin assignm ents see P6-2
of M 68H C I1E V B E valuation B oard U ser’s M anual);

2. th a t you m ust com plete some sub-program s to m ake th e p rogram perform the desired control
function.

T h e LC D -II is supposed to display th e message “H O W N O W , BR O W N C O W ?” com ing ou t
from th e righ t end o f th e screen. W hen all characters are displayed, th e m essage is cleared, and the
sam e procedure is rep ea ted again u n til the EVB R E SE T b u tto n is pressed.

T h e “LC D -II hardw are” will be set up for you, and you don’t need to m odify it to com plete
th e assignm ent. To com plete th e p rogram you m ust w rite the subrou tines m arked ???? in th e
p rogram sim ilar to th e subroutines B and C, which use A SCII to display th e characters ’B ’ and ’C ’,
respectively. T hese subrou tines are:

H, N, O , R , W , CO M M A , Q U ESTIO N -M A R K

C ross-assem ble the com pleted p rogram , dow nload it, te s t it, and w rite up a sum m ary of your
analysis.

A ppendix D

C om puter A rch itectu re and A ssem bly Language

IN S T R U C T O R ’S M A N U A L

ZU Y I CH EN

July, 1992

C om puter Science D epartm ent

U niversity o f M ontana

TABLE OF CONTENTS

Table of Contents i

1.0: Output Ports 1

2.0: Input Port 3

3.0: Traffic Signal at Port-C 5

4.0: Traffic Signal at Port-B 7

5.0: Music Tunes at Port-B 9

6.0: Traveling Light at Port-C 10

7.0: Traveling Light at Port-B 12

8.0: Modulo-9 Counter at Port-C 14

9.0: Modulo-9 Counter at Port-B 15

10.0: Software Interrupt Handling 16

11.0: Output Compare Function 18

12.0: Polling with OC2 20

13.0: OC5 Interrup 22

14.0: Timer Using Polling 24

15.0: Timer Using Interrupt Handling 26

16.0: Inter-Process Communication 28

17.0: Multi-Character Display 30

D1

Lab 1.0 Output Ports

P R O B L E M : o u tp u t pins a t P ort-A , P o rt-B , P o rt-C and P ort-D

T O P I C : pins for o u tp u t a t p o rts and tim ing control

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t, and
tim ing achieved by counting in struc tion cycles.

A S S I G N M E N T : see Lab 1.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped P ort-A , P o rt-B , P o rt-C and P ort-D pins

2. M em ory-m apped P ort-A , P o rt-C and P o rt-D direction control register

3. W hen d a ta T ’ is driven ou t of a p o rt pin, its voltage is high; when d a ta ’0’ is driven ou t o f a
p o rt p in , its voltage is low

4. To ligh t a b ar g raph LED , th e positive side of th e display should be connected to EV B p o rt
o u tp u t pins, and th e o th e r side connected to E V B ’s GND pin

H A R D W A R E D I A G R A M : see D iagram 1.0

S O L U T IO N : All pins o f P o rt-B and P o rt-C can be used for o u tp u t. In P o rt-A , however, p in 1 -
p in 3 are in p u t only, an d pin 7 can be used for o u tp u t if the corresponding b it in P o rt-A direction
contro l reg ister (D D R A) is set. In P o rt-D , only p in 2 - p in 5 are for o u tp u t. P in 1 always reads,
an d pin 2 always w rites, so its voltage is always high.

For th e h ardw are setup , connect each of th e o u tp u t pins o f th e p o rts to a d istinc t b ar o f the bar
g rap h LEDs on the positive side, usually, the side w ith serial num ber and o ther codes; connect the
o th e r side to th e G N D pin of the EVB. T he im plem ented subprogram s follow.

$ # $ if. a|c + $ # ♦ $ # $ $ + $ # $ $ $ $ # s |e s|e # : $ jc $ $ $ s |c $ # $ # # # $ $ $ $ + + + £ s|e $ $ $ j |c $ $ sje # £ # $ $ $ $ $ #

* Subpgm L IT E .B
* tu rn on th e b a r g raph display one b it a t a tim e connected to Port-B
* * % * * * * % * * ** * * * * * % * * * % * * 4= * * * * * * * % * * * * * * * * * * * * % * % * * * * * * * * * * * * * * * * * * **

L IT E .B ldab # 8
ld aa # $ 8 0
M ORE_B s ta a P O R T B
ldy # IN N E R
js r D ELAY
asra
decb
bne M O R E .B
rts
* *

* Subpgm C L E A R .B
* tu rn off the b a r g rap h display connected to Port-B

D 2

* *

C L E A R .B
ld aa # $ 0 0
s ta a P O R T B
r ts

* Subpgm L IT E .C
* tu rn on th e b ar g raph display one b it a t a tim e connected to
* P o rt-C

L IT E .C ldab # 8
ld aa # $ 8 0
M O R E .C s ta a P O R T C
ldy # IN N E R
js r DELAY
asra
decb
bne M O R E .C
rts
$ afe # * sjc afe afe * $ * # # * * * $ # * * * * * * * * * * * $ * * * * * s)e * s(e * * * * * * * * * * * # a|e * * * sfc

* S ubpgm C L E A R .C
* tu rn off the b a r g raph display connected to Port-C

C L E A R .C
ldaa # $ 0 0
s ta a P O R T C
rts

* Subpgm L IT E .D
* tu rn on th e b ar g rap h display one b it a t a tim e connected to
* P o rt-D
* *

L ITEJD ldab # 4
ld aa # $ E 0
M O R EJD s ta a P O R T D
ldy # IN N E R
js r D ELAY
asra
decb
bne M O R E .D
rts
* *

* S ubpgm C L E A R .D
* tu rn off th e b a r g rap h display connected to P ort-D

C L E A R .D
ld aa # $ 0 0
s ta a P O R T D
r ts

D3

Lab 2.0 Input Port

P R O B L E M : in p u t pins a t Port-C ; o u tp u t pins a t P ort-A and P o rt-B

T O P I C : pins for in p u t and o u tp u t a t various p o rts and cycle analysis

P U R P O S E : To in troduce p o rt pins for inpu t and o u tp u t, and to free-running counter.

A S S I G N M E N T : see Lab 2.0

B A C K G R O U N D R E Q U I R E D :

1. P o rt-C d irection control register

2. M em ory-m apped free-running counter

H A R D W A R E D I A G R A M : see D iagram 2.0

S O L U T IO N : “ldx T C N T ” cap tu res the curren t tim e. Let D elta be th e difference betw een the
c u rren t tim e s tam p and th e one in the n ex t ite ra tion of LO O P in th e program . T heoretically it
takes $54 = 84 cycles betw een tw o tim e stam ps. Here is how the value is obtained . T he cu rren t tim e
s tam p s ta r ts a fter th e in stru c tio n “ldx T C N T ” is executed in the subprogram S T O R E -O U T P U T .

S T O R E -O U T P U T
[5] s ta a 0,Y
[5] s ta a 1,Y
[5] ldx T C N T
[6] s tx 2,Y
[5] r ts

T h e in stru c tio n s after th is in th e subprogram takes 6 + 5 = 11 cycles, and le t th e 11 cycles be
A . T h e con tro l re tu rn s to th e in struc tion after the ‘j s r S T O R E -O U T P U T ” in the following.

LO O P
[4] ldab DATA
[4] s tab PO R T B
[6] j s r G E T -IN P U T
[6] js r S T O R E -O U T P U T
[2 3 incb
[4 j s ta b DATA
[2 j ld ab # $ 0 4
[4] aby
[5 3 cpy # E N D + 4
[3 3 bne L O O P

Let cycles b e B = 2 + 4 - f 2 - (- 4 - | - 5 - (- 3 + 4 + 4 - (- 6 -) - 6 = 40 cycles from th is po in t to the
p o in t “js r S T O R E -O U T P U T ” is executed. Now expand the subprog ram G E T JN P U T .

G E T J N P U T

D 4

[4] ld aa P IO C
[2] b ita # $ 8 0
[3] beq G E T J N P U T
[4] ldaa PO R T C L
[5] r ts

T h e subprog ram takes C = 4 + 2 + 3 + 4 + 5 = 1 8 cycles. F inally expand th e subprogram
S T O R E -O U T P U T to th e p o in t “ldx T C N T ” is executed. T he instructions there take D = 5 + 5 +
5 = 15 cycles. T h e contro l has traveled from the previous tim e stam p to the cu rren t tim e stam p .
T h e to ta l cycles D elta = A + B + C + D = 11 + 40 + 18 + 15 = 84.

Now check th e d a ta com puted by th e program in SDOOO - SD FFF. Between tw o consecutive tim e
s tam ps the difference is $54 = 85 cycles. Therefore the theore tica l d a ta m atches th e real o u tp u t.
N ote th e free-running counter is a 16-bit counter, it is a m odulo -$F F F F and w raps around after
$F F F F .

D 5

Lab 3.0 Traffic Signal at Port-C

P R O B L E M : T R A F F IC SIGNAL a t P o rt-C

T O P I C : P o rt-C pins for o u tp u t and tim ing control

P U R P O S E : To in troduce low-level device contro l achieved th rough the EVB P o rt-C pins, and
tim ing achieved by counting instruction cycles.

A S S I G N M E N T : see Lab 3.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped I /O P o rt-C pins

2. M em ory-m apped P o rt-C direction control register

3. W hen d a ta ’1’ is driven ou t o f a header p in , its voltage is high; when d a ta ’0’ is driven ou t of
a header pin, its voltage is low

4. T h e E V B ’s M CIJ in te rna l E clock is 2 M Hz = 2,000,000 m achine cycles

5. E ach in s tru c tio n ’s m achine cycle can be ob ta ined by cross-assem bling the program w ith sw itches
“-1 c” For exam ple: “a s l l pgm .asm -1 c > pgm .lst” on a P C T he cycles are enclosed in square
brackets []

H A R D W A R E D I A G R A M : see D iagram 3.0

S O L U T IO N : T heoretically , the num ber o f ite ra tions of DELA Y loop is com puted to be 68 to th e
n earest in teger for th e delay of 10 seconds, and 7 for th e delay of 1 second. Here is how the values are
ob ta ined . T he G R E E N light s ta r ts on after the in struction “s ta a P O R T C ” is executed in subrou tine
G R E E N , an d should s tay on u n til th e “s ta a P O R T C ” is executed in subroutine Y ELLO W . Between
these tw o po in ts , a rb itra rily including th e second “s ta a P O R T C ” , there are th e following instructions
following th e contro l flow:

[5] r ts
[4] ldy # 6 8 .
[6] js r D ELAY
[2] ldab # 3
B L IN K -L O O P
[6] js r Y E L L O W

Let these cycles be C , th ere are C = 23 m achine cycles in th e above. Now expand th e sub rou tine
D ELA Y in th e following:

D ELA Y
[3] ldx # D C O U N T
[3] D L O O P dex
[3] bne D L O O P

D6

[4] dey
[3] bne DELAY
[5] rts

D C O U N T = SC000 = 49152. T he D LO O P will repeat N = 6 * 49152 = 294912 tim es. T he
rest o f DELA Y (except rts , since r ts are no t repeated in the DELAY loop) take 10 m achine cycles.
A dding to N yields N = 294922, which will be repeated the num ber of tim es equal to the operand
in “ldy # ? ? ? ? ” . “r ts ” in DELAY takes 5 cycles, and is added to C above, m aking C = 23 + 5 = 28.
Now expand th e sub rou tine Y ELLO W to the p o in t o f “s ta a P O R T C ” :

[2] ld aa # 2
[4] s ta a P O R T C

A dding these 6 cycles to C above yields C = 34. In order to le t the light s tay on for 10 seconds
= 20,000,000 cycles, the following equation should hold.

20,000,000 = 294922 * N + C, where C is 34, and N is the ite ra tions of DELAY loop.

N is com puted to b e 68, rounding to the nearest integer from 67.81, for G R E E N light ON and
R E D ligh t ON. Likewise, for 1 second delay for Y E L L O W light N is com puted to be 7, rounding
from 6.78. T here are a few cycle deviations for C betw een different light signals, b u t they can be
ignored here.

The program runs correctly with the above values inserted in the appropriate places.

D ?

Lab 4.0 Traffic Signal at Port-B

P R O B L E M : T R A F F IC SIG N A L a t Port-B

T O P I C : P o rt-B pins for o u tp u t and tim ing control

P U R P O S E : To in troduce low-level device contro l achieved th rough the EV B Port-B pins, and
tim ing achieved by counting in struction cycles.

A S S I G N M E N T : see Lab 4.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped I /O P o rt-B pins

2. W hen d a ta T is driven o u t o f a header p in , its voltage is high; when d a ta ’O’ is driven ou t of
a header pin, its voltage is low

3. T h e E V B ’s M CU in te rn a l E clock is 2 M Hz = 2,000,000 m achine cycles

4. E ach in s tru c tio n ’s m achine cycle can be ob ta ined by cross-assem bling th e p rogram w ith sw itches
“-1 c” For exam ple: “a s l l pgm .asm -1 c > pgm .lst” on a PC T he cycles are enclosed in square •
b rackets []

H A R D W A R E D I A G R A M : see D iagram 4.0

S O L U T IO N : Theoretically , th e num ber of ite ra tions of DELAY loop is com puted to be 68 to the
n earest in teger for th e delay o f 10 seconds, and 7 for th e delay of 1 second. Here is how th e values are
o b ta ined . T h e G R E E N light s ta r ts on a fte r th e in struction “s ta a P O R T B ” is executed in subroutine
G R E E N , and should s tay on u n til th e “s ta a P O R T B ” is executed in sub rou tine Y ELLO W . Betw een
these tw o po in ts , a rb itra rily including th e second “s ta a P O R T B ” , there are the following instructions
following th e contro l flow:

[5] rts
[4] ldy # 6 8
[6] js r DELAY
[2] ldab # 3
B L IN K .L O O P
[6] js r Y E L L O W

Let these cycles be C , th e re are C = 23 m achine cycles in th e above. Now expand the subroutine
D ELA Y in th e following:

D ELAY
[3] ldx # D C O U N T
[3] D L O O P dex
[3] bne D L O O P
[4] dey

D 8

[3] bne DELAY
[5] r ts

D C O U N T = $COOO = 49152. T he D L O O P wiU repeat N = 6 * 49152 = 294912 tim es. T he
rest o f D ELA Y (except rts , since r ts are no t repeated in the DELAY loop) take 10 m achine cycles.
A dding to N yields N = 294922, which will be repeated th e num ber of tim es equal to th e operand
in “ldy # ? ? ? ? ” . “r ts ” in DELAY takes 5 cycles, and is added to C above, m aking C = 23 + 5 = 28.
Now expand th e subrou tine Y ELLO W to the p o in t of “s ta a P O R T B ” :

[2] ldaa # 2
[4] s ta a PO R T B

A dding these 6 cycles to C above yields C = 34. In order to let the light s tay on for 10 seconds
= 20,000,000 cycles, the following equation should hold.

20,000,000 = 294922 * N + C, where C is 34, and N is th e ite ra tions of DELAY loop.

N is com puted to be 68, rounding to th e nearest integer from 67.81, for G R EEN light ON and
R E D ligh t ON. Likewise, for 1 second delay for Y ELLO W light N is com puted to be 7, rounding
from 6.78. T here are a few cycle deviations for C betw een different light signals, b u t th ey can be
ignored here.

The program runs correctly with the above values inserted in the appropriate places.

D 9

Lab 5.0 M usic Tunes at Port-B

P R O B L E M : M usic no tes a t P o rt-B

T O P I C : tim ing contro l

P U R P O S E : T o in troduce low-level device control achieved th ru th e EVB Port-B pins, and tim ing
con tro l achieved by counting in stru c tio n cycles.

A S S I G N M E N T : see Lab 5.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped o u tp u t P o rt-B pins

2. W hen d a ta T is driven ou t o f a P o rt-B pin, its voltage is high; w hen d a ta ’0 ’ is driven ou t o f
a Port-B pin , its voltage is low

3. T h e E V B ’s M CU in te rn a l E clock is 2 MHz

4. E ach in s tru c tio n ’s m achine cycle can be ob tained by cross-assem bling th e p rogram w ith sw itches
“-1 c” For exam ple: “a s l l pgm .asm -1 c > pgm .lst” on a P C T h e cycles are enclosed in square
brackets []

H A R D W A R E D I A G R A M : see D iagram 5.0

S O L U T IO N : T here are 12 * F R E Q -f 32 cycles in R ESO N A N T subroutine. All except the 5 cycles
for r ts will be rep ea ted th e num ber of tim es equal to th e value of index register Y on th e subprogram
entry . To m ake each note s tay for ha lf sec, it should take th e nearest cycles to 1,000,000 for the 2
MHz EVB M CU. T he p a r t for each m usic no te takes 18 cycles plus 5 cycles for r ts o f R ESO N A N T
subrou tine , to ta llin g 23 cycles. Hence th e equation Y *(12*F R E Q + 27)+ 23 = 1,000,000, w here FR E Q
varies for each m usic no te, and Y is th e in teger value of th e index reg ister Y on R ESO N A N T en try
for each m usic tune . N ote th e m usic notes are no t s tan d ard .

For m usic tu n e “la” N*(12*392+27) + 23 = 1000000. N is com puted to be 211.

For m usic tu n e “so” N *(12*440+27) + 23 = 1000000. N is com puted to be 188.

For m usic tu n e “fa” N *(12*494+27) + 23 = 1000000. N is com puted to be 168.

For lower m usic tu n e “m ee” N *(12*523+27) + 23 = 1000000. N is com puted to be 159.

DIO

Lab 6.0 Traveling Light at Port-C

P R O B L E M : Traveling light on P o rt-C o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-C and tim ing control

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t, and
tim ing achieved by counting instruction cycles.

A S S I G N M E N T : see Lab 6.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped P o rt-C

2. M em ory-m apped P o rt-C direction control register

3. To light a b ar g raph LED , th e positive side o f the LED should be connected to EV B p o rt
o u tp u t pins, and the o ther side connected to E V B ’s GND pin

4. A ssem bly in stru c tio n logical shift r ig h t “lsr”

H A R D W A R E D I A G R A M : see D iagram 6.0

S O L U T IO N : All pins o f P o rt-C can be used for o u tp u t if the Port-C direction contro l register
has been w ritten w ith $FF . T h e in stru c tio n to be added after “js r DELAY” in th e m ain p rogram is
“lsrb” .

T h e num ber o f ite ra tio n s to th e nearest integer for DELAY loop is 42. Here is how it is ob tained .
In th e subprog ram DELAY

D ELAY
[3] ldx # D L O O P .C O U N T
[3] D L O O P dex
[3] bne D L O O P
[4] dey
[3] bne DELAY
[5] r ts

(3 + (3 + 3)* 4 0 0 0 + 4 + 3) cycles will be rep ea ted th e num ber of tim es equal to D E L A Y .C O U N T.
Let th e re su lt be A, A = (3+ (3+ 3)*4000+4+ 3)*D E L A Y -C O U N T = 24010 * D E L A Y .C O U N T.

T h e m iscellaneous p a r t includes 5 cycles for “r ts ” DELAY and for th e in struc tions in the m ain
program .

[2] P IN .P O S ld aa # 8
[2] ldab # $ 8 0
[4] L O O P s ta b P O R T C
[4] ldy #D E L A Y _C O U N T

Dl l

[6] js r DELAY
[2] lsrb
[2] deca
[3] bne L O O P
[3] b ra PIN _PO S

T hey tak e 2 + 2 + 4 + 4 + 6 + 2 + 2 + 3 + 3 cycles for one ite ra tion of P IN .P O S loop, and
4 + 4 + 6 4 - 2 + 2 + 3 cycles for one ite ra tio n of LO O P loop. T h e difference betw een th e tw o is
triv ia l, and can be ignored. So le t m iscellaneous p a r t be M, M = 5 + 2 + 2 + 4 + 4 + 6 + 2 + 2
+ 3 + 3 = 33.

To let each light s tay on for h a lf a second, the following equation holds.

1,000,000 = A + M = 24010 * D ELA Y .C O U N T + 33
D E L A Y .C O U N T is com puted to be 42, rounding from 41.65.

For the “h ard w are se tu p ” , connect each of the o u tp u t pins of th e p o rts to a d istinc t b a r of the
b a r g raph LED on th e positive side, usually, the side w ith serial num ber; connect the o ther side to
the GND pin of th e EV B.

D 12

Lab 7.0 Traveling Light at Port-B

P R O B L E M : Traveling light on P o rt-B o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-B and tim ing control

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t, and
tim ing achieved by counting in struction cycles.

A S S I G N M E N T : see Lab 7.0

B A C K G R O U N D R E Q U I R E D :

1. M em ory-m apped P ort-B

2. T o ligh t a b ar graph LED , th e positive side of th e LED should be connected to EVB p o rt
o u tp u t pins, and the o ther side connected to E V B ’s GND pin

3. A ssem bly in struction logical shift rig h t “lsr”

H A R D W A R E D I A G R A M : see D iagram 7.0

S O L U T IO N : T h e in stru c tio n to be added after “js r DELAY” in th e m ain program is “lsrb” .

T he num ber of ite ra tio n s to th e nearest integer for DELAY loop is 42. Here is how it is ob tained .
In th e subprogram DELAY

D ELA Y [3] ldx # D L O O P .C O U N T
[3] D L O O P dex
[3] bne D L O O P
[4 j dey
[3] bne DELAY
[5] r ts

(3 + (3 + 3)* 4 0 0 0 + 4 + 3) cycles will be rep ea ted th e num ber o f tim es equal to D ELA Y .C O U N T.
L et th e re su lt be A, A = (3+ (3+ 3)*4000+ 4+ 3)*D E L A Y .C O U N T = 24010 * D ELA Y .C O U N T.

T h e m iscellaneous p a r t includes 5 cycles for “r ts ” DELAY and for the in stru c tio n s in the m ain
program .

[2
[2
[4
[4
[6
[2
[2
[3
[3

P IN .P O S ld aa # 8
ldab # $ 8 0
L O O P s ta b PO R T B
ldy #D E L A Y _C O U N T
js r DELAY
lsrb
deca
bne L O O P
b ra P IN .P O S

D 13

T hey tak e 2 + 2 + 4 + 4 4 - 6 + 2 + 2 + 3 + 3 cycles for one ite ra tio n of P IN .P O S loop, and
4 + 4 + 6 + 2 + 2 + 3 cycles for one ite ra tio n of L O O P loop. T h e difference betw een the tw o is
triv ia l, an d can be ignored. So le t m iscellaneous p a r t b e M , M = 5 + 2 + 2 + 4 + 4 + 6 + 2 + 2
+ 3 + 3 = 33.

To le t each light s tay on for h a lf a second, the following equation holds.

1,000,000 = A + M = 24010 * D ELA Y .C O U N T + 33

D E L A Y .C O U N T is com puted to be 42, rounding from 41.65.

For th e h ardw are setup , connect each of the o u tp u t pins o f the po rts to a d istinc t b ar of the bar
g rap h LED on th e positive side, usually, the side w ith serial num ber; connect the o ther side to the
G N D pin of th e EVB.

D 14

Lab 8.0 Modulo-9 Counter at Port-C

P R O B L E M : M odulo-9 coun ter using P o rt-C o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-C and tim ing control; hardw are

P U R P O S E : To in troduce low-level device control achieved th ru the EVB p o rt pins for o u tp u t,
tim ing achieved by counting instruction cycles, and to simple electronic hardw are.

A S S I G N M E N T : see Lab 8.0

B A C K G R O U N D R E Q U I R E D :

FC B - form constan t by te

H A R D W A R E D I A G R A M : see D iagram 8.0

S O L U T IO N : T h e orders o f P o rt-C header pins are scram bled. S tuden ts need to figure ou t which
p in controls which segm ent by try and fail.

* DATA: Table of digit/Port-C pin mapping
★
* -bO----
* -bl----
* - [+5v]-
*
*

* -b2----
★
* Note: bO, bl, b2 .. indicates pin 0 , pin 1, pin 2 .. of PORT-C.
* Bit 4 of port-C is not used; [+ 5 v] indicates connecting +5v pin

to one of the. 3 outlets annotated by [+5v]

— [+ 5 v] -
 b6-----

D 15

Lab 9.0 M odulo-9 Counter at Port-B

P R O B L E M : M odulo-9 counter using Port-B o u tp u t pins

T O P I C : pins for o u tp u t a t P o rt-B and tim ing control; hardw are

P U R P O S E : To in troduce s tu d en ts to low-level device control achieved t h r u th e EVB p o rt pins for
o u tp u t, tim ing achieved by counting instruction cycles, and to simple electronic hardw are.

A S S I G N M E N T : see Lab 9.0

B A C K G R O U N D R E Q U I R E D :

FC B - form constan t by te

H A R D W A R E D IA G R A M : see D iagram 9.0

S O L U T IO N : T h e orders of P o rt-B header pins are scram bled. S tuden ts need to figure ou t w hich
p in contro ls which segm ent by try and fail.

* DATA: Table of digit/Port-B pin mapping
★
* -bO----
* -bl----
* - [+5v]-
*
★
★ ________
* - b 2 ---------
★
* Note: bO, bl, b 2 .. indicates pin 0 , pin 1, pin 2 ..'of PORT-B.
* Bit 4 of port-B is not used; [+5v] indicates connecting +5v pin

to one of the 3 outlets annotated by [+5v]

— [+ 5 v] -
 b 6 ------

D 16

Lab 10.0 Software Interrupt Handling

P R O B L E M : M odulo-9 counter using softw are in te rru p t handling

T O P I C : softw are in te rru p t handling

P U R P O S E : To in troduce softw are in te rru p t handling technique and in te rru p t vector ju m p tab le ,
to low-level device contro l achieved th ru the EVB p o rt pins for o u tp u t.

A S S I G N M E N T : see Lab 10.0

B A C K G R O U N D R E Q U I R E D :

1. In te r ru p t vector ju m p tab le

2. Softw are in te rru p t technique

3. In te r ru p t service rou tine

H A R D W A R E D I A G R A M : see D iagram 10.0

S O L U T IO N : T h e following four lines

ld aa # $ 7 E ; ex tended op code of ju m p instruction
s ta a PV S W I ; pseudo vector for SW I
ld x ^ IN T E R R U P T ; p u t address of In te rru p t R outine
s tx P V S W I+ 1 ; a fter th e address of jm p

Set th e in s tru c tio n for ju m p to in te rru p t service rou tine. Next look a t the m ain p rog ram and
th e in te rru p t service rou tine:

L O O P swi
b ra L O O P
IN T E R R U P T
ldy # 8 3
js r D ELAY
js r C L E A R
ldab C U R .D IG IT
js r O U T -D IG IT
incb
cm pb # 1 0
bne S K IP
ldab # 0
SK IP s ta b C U R -D IG IT
rti

W hen “swi” is executed, the softw are in te rru p t is enabled, and th e in te rru p t service rou tine
IN T E R R U P T is executed . In the rou tine, it sets delay tim e for abou t 1 second before a d ig it is sen t
to be d isplayed on a 7-segm ent LED. It th en increm ents th e d igit by 1, displays th a t d igit. I t resets

D 17

th e d ig it to 0 a fte r 9 is displayed. T here is a real tim e in te rru p t (rti) a t the end of th e rou tine; and
th e contro l of th e m ain program loops back to LO O P by “b ra L O O P ” . N ext tim e “swi” is executed,
it rep ea ts th e sam e procedure described above.

D 18

Lab 11.0 Output Compare Function

P R O B L E M : o u tp u t com pare using in te rru p t technique

T O P I C : o u tp u t com pare register 5 (O C5) in te rru p t technique

P U R P O S E : To in troduce in te rru p t technique using o u tp u t com pare register 5(O C 5), in te rru p t
vector ju m p tab le , an d free-running counter.

A S S I G N M E N T : see Lab 11.0

B A C K G R O U N D R E Q U I R E D :

1. T im er contro l reg ister 1 (T C T L 1),

2. T im er in te rru p t m ask (TM SK 1),

3. T im er in te rru p t flag 1 (T FL G 1),

4. T im er o u tp u t com pare register 5 (T O C 5), and

5. F ree-running counter (T C N T)

6. In te r ru p t vector ju m p tab le

7. Difference o f RAM and ROM

8. EV B m em ory m ap diagram

9. R elation betw een O C5 and pin 3 of P o rt-A

N O T E : $DOOO canno t be changed to $6000 in th e program , since the program doesn’t lim it the
u p p e r boundary , and will otherw ise overw rite th e user program d a ta from SC000.

H A R D W A R E D I A G R A M : see D iagram 11.0

S O L U T IO N : T he P o rt-A p in control block includes logic for tim er function beside for general-
purpose I /O . P in PA6-PA3 can used as ou tpu t-com pare pins. PA3 is used as ou tpu t-com pare 5
(O C 5) p in . So w henever the O C5 b it is se t in tim er control register (TC LT1) pin PA 3 is set.

For th e M CU , physical tim e is kep t by the count of th e 16-bit free-running counter, w hich can
no t b e in te rru p te d . O u tp u t com pare functions are used to se t an action to happen a t a specific tim e.
T h e o u tp u t com pare reg ister is com pared to th e free-running counter a t every bus-cycle. W hen the
cu rren t coun t o f th e free-running counter m atches th e value held in th e o u tp u t com pare reg ister, an
o u tp u t is g enera ted autom atically .

In th e p rog ram in itia lization , ju m p to in te rru p t service rou tine is realized by th e in structions

ld aa # $ 7 E
s ta a PV O C 5
ldx # IN T 5

D 19

s tx P V 0 C 5 + 1

0 L 5 b it is set in tim er con tro l register 1 T C T L 1 register to m ake O C5 pin toggle on successful
com pare. O C 5F b it in tim er in te rru p t flag register 1 (T FL G 1) is cleared to m ake sure in te rru p t
h asn ’t happened yet; O C 5I b it in tim er in te rru p t m ask reg ister 1 (T m sk l) is set to 1 so th a t th e O C5
in te rru p t is enabled , “cli” enables all in te rru p ts by clearing in te rru p t m ask b it in the register C C R .
O u tp u t com pare reg ister 5 (T O C 5) value is increm ented by $0100 = 256 cycles each tim e in te rru p t
service rou tine IN T5 is called. W hen TO C 5 value m atches th e cu rren t count of the free-running
counter (T C N T), the O C 5F b it in tim er in te rru p t flag 1 (T F L G 1) is au tom atically set to 1, and
an o u tp u t o f 1 is generates a t P A 3/O C 5 pin. Before leaving the in te rru p t service rou tine O C 5F b it
m ust be cleared in th e T FL G 1 in case there are o ther in te rru p t requests, otherw ise it will resu lt
in a system lockup w here the service routine is executed continuously to the exclusion of all o ther.
T h ere are tw o com m on ways to clear a flag in T FL G 1. In th is case:

1. ld aa # $ 0 8

s ta a T F L G 1

2. bclr T F L G 1 $7F

Since th e free-running counter is no t in te rru p ted when instructions are executed in th e B U FFA LO
m onitor; and since th e contro l flowing from the tim e stam p of “ldd T C N T ,X ” in the cu rren t service
rou tine to th e one in th e nex t service rou tine ceill (65 cycles to ta l including th e instruction “b ra *”)
takes fewer th a n $0100 = 256 cycles, the difference betw een th e tw o tim e stam ps should be always
$0100 = 256 cycles. C hecking th e d a ta offloaded from the $D 000-$D FFF, it is found to be true .

D 20

Lab 12.0 Polling w ith OC2

P R O B L E M : modulo-9 counter with output compare function and polling technique

T O P IC : output compare register 2 (OC2) and polling technique

P U R P O S E : To in troduce polling technique using o u tp u t com pare register 2(OC2) and free-running
counter.

A S S I G N M E N T : see Lab 12.0

B A C K G R O U N D R E Q U I R E D :

1. T im er in te rru p t flag 1 (T F L G 1),

2. T im er o u tp u t com pare reg ister 2 (T O C 2), and

3. F ree-running counter (T C N T)

4. Polling technique

H A R D W A R E DIA G R A M : see D iagram 12.0

NOTE: B it 4 of P o rt-C is connected to a piezo buzzer, and is used to generate a tic sound.

SO LUTION: T he num ber of ite ra tio n s for T_LO O P is 497 in decim al num ber. Here is how it is
ob ta ined . In th e T .L O O P below

D IG .L O O P
[6] js r C L E A R
[4] ldab C U R .D IG IT
[6] js r O U T -D IG IT
[2] incb
[2] cm pb # 1 0
[3] bne SK IP
[2] ldab # 0
[4] S K IP s ta b C U R -D IG IT

* PO L L IN G th e free-running counter
* * * * * * * * * * * * * * * # * * * * * * * * * * * * * * * * * ** * * * * * * ** * * * * * * * * * * * * * * * * # * * * *

[4] ldy # 4 9 7
T .L O O P
[5] ldd T C N T ,X
[4] ad d d # 4 0 0 0
[5] s td T O C 2,X
[7] b rclr T F L G 1.X $40 *
[7] bc lr T F L G 1.X $BF
[4] dey
[3] bne T .L O O P

D 21

[3] b ra D IG .L O O P

“ldd T C N T ,X ” takes 5 cycles. Since 4000 cycles are added to T O C 2, “brclr T FL G 1,X $40 * ” finds
O C 2F b it se t ab o u t 4000 cycles la te r, “b rc lr” in struc tion takes 7 cycles. T he in stru c tio n has been
executed m any tim es before O C 2F is set, b u t it took fewer th en 4000 cycles. Since the larger num ber
of cycles, in th is case 4000, should be calculated , th e cycles for th a t instruction are ignored. N ote
th e delay cycles for each T .L O O P should no t be constan t, because of the uncerta in ty of the polling
n a tu re , b u t th e difference is only a few cycles, and can be ignored here. T he rest of T .L O O P tak e
7 + 4 + 3 = 14 cycles. Let the to ta l cycles for the T .L O O P be A, A = 5 + 4 0 0 0+ 7+ 14 = 4026. For
T .L O O P to ite ra te N tim es, let the to ta l num ber of cycles for N iterations of T .L O O P be B, B =
N * A = N * 4026.

T h e delay, betw een the tim e one d ig it is tu rn ed on and the tim e the next d ig it is tu rn ed on, in
cludes in stru c tio n cycles in th e rest o f th e D IG JLO O P. Let th em be C, C = 6 + 4 + 6 + 2 + 2 + 3 + 4 + 4 + 3
= 34. 2 cycles for “ldab # 0 ” is skipped because in m ost of ite ra tions it is no t executed . N ext ex
p an d subp rog ram C L E A R and O U T .D IG IT , since they are called in D IG .L O O P. C L E A R takes D
= 2 + 4 + 5 = 11 cycles, and O U T .D IG IT takes E = 4 + 3 + 3 + 4 + 5 + 4 + 5 = 28 cycles. In order for each
d ig it s tay on for 1 second, th e following equation m ust hold.

2,000,000 = B + C + D + E = N * 4026 + 34 + 11 + 28 = N * 4026 + 73
N is com puted to be 497, rounding from 496.75

In the p rog ram in itia lization , O C 2F b it in tim er in te rru p t flag register 1 (T FL G 1) is cleared
to m ake sure o u tp u t com pare h a sn ’t happened yet; In th e T .L O O P , 4000 cycles are added to the
cu rren t count o f th e free-running counter (T C N T), and th en stored to T O C 2. T he program then
keeps polling to check if the o u tp u t com pare comes by executing th e instruction “brclr T F L G 1,X
$40 w hich m eans b ranching to itself if O C 2F b it is n o t set in T FL G 1. W hen th e value held in
T O C 2 m atches th e cu rren t count of T C N T finally, th e control exits th e branching, clears th e O C 2F
b it, an d goes on. Since it is a 16-bit T C N T , and the m axim al cycles are 65535, th e o u tp u t com pare
has to be rep ea ted a num ber o f tim es for a one-second (2000000 cycles for 2MHz M CU) delay.

D 22

Lab 13.0 OC5 Interrupt

P R O B L E M : modulo-9 counter with output compare function and interrupt handling

T O P IC : output compare register 5 (0C 5) interrupt technique

P U R P O S E : To in troduce in te rru p t technique using o u tp u t com pare register 5 (O C5) and free-
runn ing counter.

A S S I G N M E N T : see Lab 13.0

B A C K G R O U N D R E Q U I R E D :

1. T im er in te rru p t m ask (TM SK 1),

2. T im er in te rru p t flag 1 (T F L G 1),

3. T im er o u tp u t com pare reg ister 5 (T O C 5), and

4. F ree-running coun ter (T C N T)

5. In te rru p t vector ju m p tab le

6. In te r ru p t service rou tine

H A R D W A R E D I A G R A M : see D iagram 13.0

N O T E : B it 4 o f P o rt-C is connected to a piezo buzzer, and is used to generate a tic sound.

S O L U T IO N : For th e M CU, physical tim e is kept by the count o f th e 16-bit free-running counter,
which can no t be in te rru p ted . O u tp u t com pare functions are used to set an action to happen a t a
specific tim e. T h e o u tp u t com pare reg ister is com pared to th e free-running counter a t every bus-
cycle. W hen th e cu rren t coun t o f th e free-running counter m atches th e value held in th e o u tp u t
com pare reg ister, an in te rru p t occurs.

In th e p rog ram in itia liza tion , ju m p to in te rru p t service rou tine is realized by the following in
structions.

ld aa # $ 7 E
s ta a PV O C 5
ldx # IN T E R R U P T
s tx P V O C 5 + 1

O C 5F b it in tim er in te rru p t flag register 1 (T FL G 1) is cleared to m ake sure in te rru p t h a sn ’t
happened yet; O C 5I b it in tim er in te rru p t m ask register 1 (T m sk l) is set to 1 so th a t th e OC5
in te rru p t is enabled , “cli” clears th e in te rru p t m ask b it in C C R , and enables all in te rru p ts .

Each tim e the in te rru p t service rou tine IN T E R R U P T is called th e value $A000 is added to
th e cu rren t count o f free-running counter (T C N T), and th e resu lt is sto red to the o u tp u t com pare
reg ister 5 (T O C 5). W hen T O C 5 value m atches th e cu rren t count o f th e T C N T , the O C 5F b it in

D 23

tim er in te rru p t flag 1 (T FL G 1) is au tom atica lly set to 1, and the in te rru p t occurs. Before leaving
the in te rru p t service rou tine O C 5F b it m ust be cleared in the T FL G 1, in case there are o ther
in te rru p t requests, otherw ise it will resu lt in a system lockup w here th e service rou tine is executed
continuously to th e exclusion of all o ther. T here are tw o common ways to clear a flag in T FL G 1. In
th is case:

1. ld aa # $ 0 8

s ta a T FL G 1

2. bc lr T FL G 1 $7F

Since it is a 16-bit T C N T , and th e m axim al cycles are 65535, the o u tp u t com pare has to be
rep ea ted a num ber of tim es for a one-second (2000000 cycles for 2MHz M CU) delay.

T h e num ber o f ite ra tio n s T L P should loop is 49. Here is how it is ob tained . In th e in te rru p t
service rou tine , th e curren t coun t o f th e T C N T is added to the value $A000, and the result is
sto red to T O C 5. T here should b e an in te rru p t after $A000 = 40960 cycles from the p o in t the
cu rren t tim e s tam p is cap tu red . A fter th e in te rru p t, the num ber of ite ra tions decrem ent by 1, and
the in te rru p t service rou tine is called again. A fter N iterations or N*40960 cycles, th e num ber of
ite ra tio n s decrem ent to 0. T h a t is the m ajo r p a r t of the delay for a d ig it stay ing on for one second.
T h e m inor p a r t o f th e delay consists of the cycles for instructions in the D IG -LO O P, w hich are
4+7+44-3+6+4-1-6+2+2-1-3-1-4+3 = 48 cycles. 2 cycles for “ldab # 0 ” are om itted , since m ost of
tim e th e in stru c tio n is no t executed. T h e subprogram s C LE A R and O U T -D IG IT also need to be
expanded , since th ey are called in D IG -L O O P, and th ey take 2 + 4 + 5 = 11 and 4 + 3 + 3 + 4 + 5 + 4 + 5
= 28 cycles, repsectively, so th e equation for one-second delay is

2000000 = N * 40960 + 48 + 11 + 28 = N * 40960 + 87
N is com puted to be 49, rounding from 48.8

D 24

Lab 14.0 Tim er U sing Polling

P R O B L E M : alarm system with output compare function and polling technique

T O P IC : output compare register 2 (OC2) and polling technique

P U R P O S E : To in troduce polling technique using o u tp u t com pare register 2(O C2) and free-running
counter.

A S S I G N M E N T : see Lab 14.0

B A C K G R O U N D R E Q U I R E D :

1. T im er in te rru p t flag 1 (T F L G 1),

2. T im er o u tp u t com pare reg ister 2 (T O C 2), and

3. F ree-running counter (T C N T)

4. Polling technique

H A R D W A R E D I A G R A M : see D iagram 14.0

N O T E : B it 4 of P o rt-C and th a t P o rt-B are connected to a piezo buzzer, and are used to genera te
a tic sound.

S O L U T IO N : T h e num ber of ite ra tions for T -L O O P is 124 in decim al num ber. Here is how it is
ob ta ined . In th e T -L O O P below

D IG -L O O P
6 js r C L E A R
4 ldab B .D IG IT
6 js r G E T .D IG IT
4 s ta a P O R T B ,X
2 decb
2 cm pb # -1
3 bne SK IP1
2 ldab # 9
4 SK IP1 s ta b B .D IG IT
4 ld ab C .D IG IT
6 js r G E T .D IG IT
4 s ta a P O R T C ,X
4 ld aa B .D IG IT
2 cm pa # 9
3 bne SK IP2
2 decb
2 cm pb # -1
3 bne SK IP2
6 js r ALA RM
4 SK IP2 s ta b C -D IG IT

D 25

[4] ldy # 1 2 4
[5] T .L O O P ldd T C N T ,X
[4] addd # 4 0 0 0
[5] s td T O C 2,X
[7] brclr T F L G l,X $40 *
[7] bclr T F L G 1,X $BF
[4] dey
[3] bne T .L O O P
[3] b ra D IG -L O O P

“ldd T C N T ,X ” takes 5 cycles. Since 4000 cycles are added to T O C 2, “brclr T FL G 1.X $40 * ” finds
O C 2F b it set abou t 4000 cycles la ter, “b rclr” instruction takes 7 cycles. T he in struc tion has been
executed m any tim es before O C 2F is se t, b u t it took fewer then 4000 cycles. Since th e larger num ber
of cycles, in th is case 4000, should be calculated, th e cycles for th a t instruction are ignored. N ote
th e delay cycles for each T .L O O P should no t be constan t, because of the u n certa in ty of the polling
n a tu re , b u t th e difference is only a few cycles, and can be ignored here. T he rest of T -L O O P take
7 + 4 + 3 = 14 cycles. L et the to ta l cycles for the T .L O O P be A, A = 5 + 4 0 0 0+ 7+ 14 = 4026. For
T .L O O P to ite ra te N tim es, let th e to ta l num ber of cycles for N ite ra tio n s of T .L O O P be B, B =
N * A = N * 4026.

T he delay, betw een th e tim e the curren t value is tu rn ed on for display and the tim e next
value is tu rn ed on, includes in stru c tio n cycles in the rest o f the D IG .L O O P. Let them be C, C
= 6 + 4 + 6 + 4 + 2 + 2 + 3 + 4 + 4 + 6 + 4 + 4 + 2 + 3 + 4 = 58. T he cycles of

ldab # 0

decb
cm pb # -1
bne SK IP2
js r ALARM

are n o t calcu lated , since in m ost of ite ra tions they are no t executed. N ext expand subprogram
C L E A R and G E T .D IG IT , since th ey are called in th e D IG .L O O P. C L E A R takes D = 2 + 4 + 4 + 5
= 15 cycles, and G E T .D IG IT takes E = 4 + 4 + 5 + 5 = 18 cycles. In order for each num ber to be
d isplayed on th e MAN6610 LED for 1 /4 second, th e following equation m ust be true.

500,000 = B + C + D + 2E = N * 4026 + 58 + 15 + 2*18 = N * 4026 + 109

In th e equation E is calcu la ted tw ice because G E T .D IG IT is called tw ice in D IG -LO O P. N is
com puted to be 124, rounding from 124.16

In th e p rogram in itia lization , O C 2F b it in tim er in te rru p t flag register 1 (T FL G 1) is cleared
to m ake sure o u tp u t com pare h asn ’t happened yet; In th e T .L O O P , the curren t count o f the free-
runn ing coun ter (T C N T) is added to 4000 cycles, and the resu lt sto red to T O C 2. T h e program th en
keeps polling to check if the o u tp u t com pare comes by executing th e in struc tion “brclr T FL G 1,X
$40 w hich m eans b ranch ing to itself if O C 2F b it is no t se t in T F L G 1. W hen th e value held in
T O C 2 m atches th e cu rren t count of T C N T finally, th e contro l exits th e branching , clears th e O C2F
b it, and goes on. Since it is a 16-bit T C N T , and the m axim al cycles are 65535, th e o u tp u t com pare
has to be repea ted a num ber o f tim es for a 1 /4 second (500,000 cycles for 2MHz M CU) delay.

D 26

Lab 15.0 Tim er U sing Interrupt H andling

P R O B L E M : alarm system with output compare function and interrupt technique

T O P IC : output compare register 5 (OC5) interrupt technique

P U R P O S E : To in troduce in te rru p t handling technique using o u tp u t com pare register 5(O C 5) and
free-running counter.

A S S I G N M E N T : see Lab 15.0

B A C K G R O U N D R E Q U I R E D :

1. T im er in te rru p t m ask (TM SK 1),

2. T im er in te rru p t flag 1 (T FL G 1),

3. T im er o u tp u t com pare register 5 (T O C 5), and

4. F ree-running coun ter (T C N T)

5. In te r ru p t vector ju m p tab le

6. In te r ru p t service rou tine

H A R D W A R E D I A G R A M : see D iagram 15.0

N O T E : B it 4 o f P o rt-C and th a t P o rt-B are connected to a piezo buzzer, and are used to generate
a tic sound.

S O L U T IO N : For th e M CU, physical tim e is kep t by the count of the 16-bit free-running counter,
w hich can n o t be in te rru p ted . O u tp u t com pare functions are used to set an action to happen a t a
specific tim e. T he o u tp u t com pare register is com pared to the free-running counter a t every bus-
cycle. W hen the cu rren t count o f th e free-running coun ter m atches th e value held in th e o u tp u t
com pare register, an in te rru p t comes.

In th e p rog ram in itia lization , ju m p to in te rru p t service rou tine is realized by th e following in
s tru c tions.

ld aa # $ 7 E
s ta a PV O C 5
ld x # IN T E R R U P T
s tx P V O C 5+ 1

O C 5F b it in tim er in te rru p t flag reg ister 1 (T FL G 1) is cleared to m ake sure in te rru p t h a sn ’t
hap p en ed yet; O C 5I b it in tim er in te rru p t m ask reg ister 1 (TM SK 1) is se t to 1 so th a t th e O C5
in te rru p t is enabled , “cli” clears th e in te rru p t m ask b it in C C R , and enables all in te rru p ts . E ach tim e
th e in te rru p t service rou tine IN T E R R U P T is called th e value $A000 is added to the cu rren t count
o f free-running coun ter (T C N T), and th e resu lt is s to red to th e o u tp u t com pare reg ister 5 (T O C 5).
W hen T O C 5 value m atches the cu rren t count of th e T C N T , the O C 5F b it in tim er in te rru p t flag

D 27

1 (T F L G 1) is au tom atica lly set to 1, and an in te rru p t occurs. Before leaving th e in te rru p t service
rou tin e O C 5F b it m ust be cleared in the T F L G l, in case there are o ther in te rru p t requests, otherw ise
i t will resu lt in a system lockup where the service rou tine is executed continuously to th e exclusion
of all o ther. T here are two com m on ways to clear a flag in T F L G l. In th is case:

1. ld aa # $ 0 8 s ta a T F L G l

2. bc lr T F L G l $7F

Since it is a 16-bit T C N T , and th e m axim al cycles are 65535, the o u tp u t com pare has to be
rep ea ted a num ber of tim es for a 1/4-second (500000 cycles for 2MHz M CU) delay.

T h e num ber of ite ra tio n s T L P should loop is 12. Here is how it is obtained . In the in te rru p t
service rou tine , th e cu rren t coun t of the T C N T is added to the value $A000, and the resu lt is sto red
to T O C 5. T here should be an in te rru p t after $AOOO = 40960 cycles from the p o in t the cu rren t tim e
s tam p is cap tu red . A fter the in te rru p t, th e num ber o f ite ra tions decrem ent by 1, and th e in te rru p t
service rou tine is called again. A fter N ite ra tions or N*40960 cycles, the num ber o f ite ra tio n s
decrem ent to 0. T h a t is the m ajo r p a r t of the delay for a num ber stay ing on for 1 /4 second. Let
i t be A, A = N*40960. T he m inor p a r t of th e delay consists of th e cycles for instructions in the
D IG -L O O P, w hich are assigned to B, B — 4-1-7-4-4—(-3—f-6-1-4—f-O-t-dl-(-2-4-2—(-3-F-4—(-4-)—6-f-4-f-4—(-2—(-3-1—4—1-3
= 79 cycles. T he cycles for

ldab # 0

decb
cm pb # -1
bne SK IP2
js r ALA RM

are n o t ca lcu lated , since in m ost o f itera tions they are no t executed . N ext expand subrou tines
C L E A R an d G E T .D IG IT , since th ey are called in th e D IG -LO O P. C L EA R takes C = 2 + 4 + 4 + 5
= 15 cycles, and G E T -D IG IT takes D = 4 + 4 + 5 + 5 = 18 cycles. In order for each num ber to be
d isplayed on th e M AN6610 LED for 1 /4 second, th e following equation m ust be true.

500,000 = A + B + C + 2D = N * 40960 + 79 + 15 + 2*18 = N * 4026 + 130

In the equation D is calcu lated tw ice because G E T -D IG IT is called tw ice in D IG -LO O P. N is
com puted to be 12, round ing from 12.2.

D 28

Lab 16.0 Inter-process Communication

P R O B L E M : in ter-process com m unication a t Port-B and P o rt-C

T O P I C : d is trib u ted program m ing; polling m echanism

P U R P O S E : To in troduce R EA L low-level d is trib u ted program m ing m echanism s for inter-processor
SEN D and R E C E IV E R .

A S S I G N M E N T : see Lab 16.0

B A C K G R O U N D R E Q U I R E D :

1. P aralle l I /O contro l reg ister (P IO C)

2. F ree-running coun ter (T C N T)

3. P o rt-C L atched D a ta reg ister (P ort-C L)

4. Difference of RAM and ROM

5. EV B m em ory m ap d iagram

H A R D W A R E D I A G R A M : see D iagram 16.0

S O L U T IO N :

1. T he M AXIM AL num ber of in struc tion cycles in the receiver program th a t m ay lapse betw een
the tim e th e receiver recognizes an a rb itra ry “send(n)” and the tim e it is ready to recognize the
nex t “send(n-l-l)” is 43. T h is num ber is calculated after th e tim e th e G E T J N P T subrou tine finds
th e d a ta arrival (beq G E T J N P T) to th e tim e th e software is ready for new d a ta arrival. T he cycles
spen t in G E T J N P T include those for th e following instructions.

[4] ld aa PO R T C L
[5] Idx T C N T
[5] r ts

w hich am oun t to 14 cycles.

T h e w orst case for th e receiver to get ready to recognize new d a ta is a fter th e 4 th “js r G E T J N P T ” .
In o rd er to get to th e nex t “js r G E T J N P T ” , it has to go th ru

[5] s ta a 3,Y
[6] s tx 6,Y
[4] aby
[5] cpy #M E M _E N D
[3] bio M O R E JN P T
[6] js r M O R E JN P T

D 29

w hich am oun t to 29 cycles. Therefore th e M AXIM AL num ber of instructions cycles th a t m ay lapse
is 14+29 = 43.

2. T h e delay betw een th e first and second send is 34, because the sub rou tine IPC -PA U SE
con ta ins 24 cycles, plus 4 + 6 = 10 cycles for th e instructions

[4] s ta a PO R T B
[6] js r IPC -PA U SE

betw een th e 1st an d 2nd send. So the to ta l is 24+10 = 34 cycles. Likewise, the delay betw een the
2nd and 3rd send is 2 4 + 6 + 3 + 4 = 37 cycles, and th a t between the 3rd and 4 th is 2 4 + 6 + 4 = 34 cycles.
F rom th e 4 th send back to th e 1st one it takes 2 4 + 3 + 6 + 5 + 6 + 6 + 6 + 5 + 6 + 2 + 4 + 5 + 3 + 3 + 6 + 5 + 4 =
99 cycles.

3. T heoretically , in order for the receiver to be ready to receive, D .L O O P in IP C -P A U S E of the
sender p rog ram m ust ite ra te m ore th a n once. Since the M AXIM AL num ber of in struction cycles is
43 in (1), and th e M INIM AL num ber of cycles in (2) is 34, we m ust add delay of 43-34 = 9 cycles
or m ore betw een 2 sends in the sender program in order for receiver to get ready to receive. Since
each loop o f D .L O O P takes 6 cycles, and one loop o f it is a lready calculated in (2), we need to add
2 m ore loops (2*6 = 12 > 9). T herefore th e ite ra tio n s of the D .L O O P in IPC -PA U SE is 3.

T h e experim en ts, however, show th a t as few as 1 D .L O O P can be used w ithou t dam aging any
incom ing d a ta , as can be verified from the postprocessing o u tp u t. D E L .T S is 170 w hen 1 D .L O O P
is used, an d is 194 w hen 2 D JLO O P is used. T h e difference is 24 (194-170 = 24) because each
D .L O O P takes 6 cycles, and th e IP C -PA U SE is called 4 tim es in E V EN T, therefore D E L_TS(EV EN T
com pletion tim e - E V E N T in itia tion tim e) varies by 24 when the D -L O O P varies by 1. N ote the
difference betw een sender and receiver tim es is n o t constan t, since the polling loop is uncerta in , b u t
i t is bounded . T h e s tan d a rd range is 9.

D 30

Lab 17.0 M ulti-character Display

P R O B L E M : LC D -II display a t P o rt-B and Port-C

T O P I C : low-level device control

P U R P O S E : To in troduce low-level device control achieved th ru th e EVB Port-B and P o rt-C pins,
and use of m u lti-character display hardw are.

A S S I G N M E N T : see Lab 17.0

B A C K G R O U N D R E Q U I R E D :

U n d erstand A SC II code

H A R D W A R E D I A G R A M : see D iagram 17.0

N O T E : T u rn top p a r t of the variable resister to get the best vision of th e display. Once it is se t,
d o n ’t touch it, as i t can be easily d istu rbed .

S O L U T IO N :

J j e s f c * * jfc s f c s f c * * * * * * s f c s f e : * # # * * jje s je sfc a l e * * * * *

* Subpgm : H
* Desc: display ch a rac ter ’IT
sfc s(e jfc Up $ $ $ $ # 3(c s |c * : J t $ $ $ # $ $ $ # $ $ $ $ $ $ * $ $ afc * # $ $ * % $ $ sje$ # * $ 4 c $ # # # $ $ $ $ $ $: * # # * # $ *

H
ld aa # $ 4 8
js r O U T C H A R
rts
* *

* Subpgm : N
* Desc: display ch a rac ter ’N’

************* *******

N
ld aa # $ 4 E
js r O U T C H A R
rts
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* Subpgm : O
* Desc: d isplay ch arac ter ’O ’
* *

O
ld aa # $ 4 F
js r O U T C H A R
rts
* *

* Subpgm : R
* Desc: display ch a rac ter ’R ’

D31

R
ld aa # $ 5 2
js r O U T C H A R
rts

* Subpgm : W
* Desc: display charac ter ’W ’

W
ld aa # $ 5 7
js r O U T C H A R
rts

* Subpgm : COM M A
* Desc: display ch arac ter ’,’
* *

CO M M A
ld aa # $ 2 C
js r O U T C H A R
r ts
* * * * * * * * * * ♦ * * * ♦ ♦ ♦ ♦ % ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ % + ̂ ^ + ♦ ♦ ♦ * ̂ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ * ♦ % ♦ * * ♦ * * % * * * * * *

* Subpgm : Q U E STIO N -M A R K
* Desc: display ch a rac ter ’? ’
* *

Q U E ST IO N .M A R K
ldaa # $ 3 F
js r O U T C H A R
rts

A ppendix E

C om puter A rch itecture and A ssem bly Language

D iagram M anual

ZU Y I C H E N

July, 1992

C om puter Science D epartm ent

U niversity o f M ontana

TABLE OF CONTENTS

Table of Contents i

Diagram 1.0: outports.asm device 1

Diagram 2.0: inpport.asm hardware 2

Diagram 3.0: trafficC.asm device 3

Diagram 4.0: trafficB.asm device 4

Diagram 5.0: music.asm device 5

Diagram 6.0: travelc.asm device 6

Diagram 7.0: travelb.asm device 7

Diagram 8.0: ModuloC.asm device 8

Diagram 9.0: ModuloB.asm device 9

Diagram 10.0: swi.asm device 10

Diagram 11.0: oc5int.asm hardware 11

Diagram 12.0: timepoll.asm device 12

Diagram 13.0: timeint.asm device 13

Diagram 14.0: alarmpol.asm device 14

Diagram 15.0: alarmint.asm device 15

Diagram 16.o: IPCsnd.asm/IPCrcv.asm hardware 16

Diagram 17.0: string.asm device 17

DIAGRAM MANUAL 1.0
OUTPORTS.ASM SETUP

BAR GRAPH DISPLAYS EVB BOARD

PCO
 PCI

PC2 pc3
PC4

_ PC5
PORT-C

PC6

PC7

PD2

PD3
PORT-D

PD4

PD5

PA7

PA6

POER-APA5

PA4

PA3

PBO

PB1
PB2

PB3 PORT-B
PB4

PBS

PB7

GND

E2

DIAGRAM MANUAL2.0
INPORT.ASM SETUP

EVB BOARD

PCO PC1 PC2 PC3 PC4 PC5 PC6 PC7

PORT-C

PBO PB1 PB2 PB3 PB4 PB5 PBS PB7

PORT-B

STR-A CONNECTED TO STR-B

•E3

DIAGRAM MANUAL 3.0
TRAFFICC.ASM SETUP

.switching10 x

■tripods

■ + 5 v

GND 33D-DHM

res is te rs
/ k gnd

i led rc§)
W led

yenow red
led
green +5v

IHTE23ICTI0N
MOT CONNICTED

Bread Board

•GNDLpcO

— p c i

—pc2

+5v

EVB Board

E4

DIAGRAM MANUAL 4.0
TRAFFICB.ASM SETUP

tripods

/2(/*Sy
gnd

led
red

330-0HM

re s is te rsled
green

i led Jjj
ye llow +5v

IHTOSICTION
HOT CONHICTEII

Bread Board

L-pbo
— pbl

— pb2

■GND
+5v

EVB Board

DIAGRAM MANUAL 5 .0

GARDWARE SETUP FOR MUSIC.ASM

PIEZO BUZZER

EVB BOARD

(RED) DRIVE IN

(BLUE) FEEDBADK

(BLACK) COMMON

PBO

GND

DIAGRAM MANUAL 6.0

HARD SETUP FOR TRAVELC.ASM
CONEECT PORT-C PINS AND A BAR GRAPH DISPLAY

BAR GRAPH DISPLAY
EVB BOARD

PCO
— P C I

-PC2
— PC3
-PC4

— PC5
-PC6

— PC7

GND

E ?

DIAGRAM MANUAL 7.0

HARD SETUP FDR TRAVELB.ASM
CONEECT PORT-B PINS AND A BAR GRAPH DISPLAY

BAR GRAPH DISPLAY
EVB BOARD

PBO

— P B 1

-PB2
— PB3
-PB4

—PB5

-PB6
— PB7

GND

DIAGRAM MANUAL 8.0

M0DUL0C.ASM SETUP

GND

GND

GND

z d
GND

ZD-
GND

GND

ZD
GND

ZD

EVB BOARD

P P A

.............. P P 7" L /

p r n

p r o

<C Z:>

r L t

P P 7r r..............

P P Rr w J

.............. .p p 1

+5v

7-SEGMENT LED

c o l l e c t o r

> b a s e

emitter
TRANSISTOR

10 k resister

DIAGRAM MANUAL 9.0

MODULOB.ASM SETUP

EVB BOARD

7-SEGMENT LED

c o l l e c t o r

> b a s e

emitter
TRANSISTOR

10 k resister

e I O

DIAGRAM MANUAL 10.0

SWI.ASM SETUP

GND

GND

GND

GND

n >
GND

GND

_n>
GND

_□>

EVB BOARD

d p r n

d P R 1

d

— — ..- r u i

P R Or —

d “ ■»

r D Z

P R 7r “ c~

d

r □%}

, P R R...........

d z :>

....... T D j

_____ P R A.— ■■■■ r D Q

P R 7

+5v

7 -S E G M E N T LED

c o l l e c t o r

P — ba»
e m i t t e r 1 0 k r e s i s t e r

T R A N S IS T O R

E 11

DIAGRAM MANUAL 1 1.0

0C5INT.ASM HARDWARE SETUP

330 OHM RESISTERS

LED

□>
TRANS ISTER

1 K
RESISTER

EVB BOARD

EJ2

DIAGRAM MANUAL 12.0

TIMEPOLL.ASM SETUP

EVB BOARD

GND

ID PCO
GND

•PC1
GND

ID PC2
OND

PC3
PC4GND

ID
GND

PC5

PC6
GND

!!!> ■PC7
+5v

bO +5v
b6

(BLUE)

(RED)
(BLACK)
GND

b5

b2 b3

PIEZO BUZZER

7-SEGMENT LED

c o l l e c t o r

> b a s e

emitter
TRANSISTOR

10 k resister

' " E] 3

DIAGRAM MANUAL 13.0

TIMEINT.ASM SETUP

EVB BOARD
GND

□>
GND

ZD-
GND

ZD-
GND

PCO

P C I

■PC2

PC3
PC4GND

ZD •PC5
GND

■PC6
GND

ZD ,mmz> PC?

b O +5v
b 6

(BLUE)

(RED)
(BLACK)
GND

PIEZO BUZZER

7-SEGMENT LED

c o l l e c t o r

ZD— base -<=
e m i t t e r 1 0 k r e s i s t e r

TRANSISTOR

e !4

DIAGRAM MANUAL 14.0
ALARMPOL.ASM SETUP

>B6

PBO

PB1

+5V

4-5V

PC6

PCO

PC7

PC1

O

o

MAN6610
14-SEGMENT
LED_________

PB5

PB7

PB3

PB2

PCS

PC3

PC2

10 K RESISTER

CQLLECTER

□) -
EMITTER

TRANSISTOR

ASE

EVB BOARD

GND——t v

GND-

GND-

GND-

>
>
>

GND ^

GND

GND.
□ >
□>

^ Z D -

GND- >
GND— j* ^

(BLACK)

- O .

(BLUE)

(RED)

PIEZO BUZZER

■+5V

— PBO

-PB1

-PB2

-PB3

-PB5

-PB6

-PB7

-PCO

-PCI

-PC2

-PC3

-PC4

-PCS

-PC 7

-GND
-PB4

-PC4

-PA3

DIAGRAM MANUAL 15.0
ALARM INT. ASM SETUP EVB BOARD

GNI

3B6

PBO

PB1

+5V

*5V

PCS

PCO

PC7

PC1

O

o

MAN6610
14-SEGMENT
LED_________

PBS

PB7

PB3

PB2

PC5

PCS

PC2

10 K RESISTER

COLLECTER

□ > - * ASE
EMITTER

TRANSISTOR

GNI

GND-

!□>

!□>
D-

!□>
!□>
!□>

GNI

GNI

GNI

GND

GND.

GNI

□ >
^]>

GND"

GND......

GND ^

(BLACK)

(BLUE)

(RED)

PIEZO BUZZER

-PBO

-FBI
-PB2

-PB3

-PBS

-PBS

-PB7

-PCO

-PCI

-PC2

-PC3

-PC4

PC6

PC7

-GND
-PB4

PC4

PA3

DIAGRAM MANUAL 16.0

El 6

HARDWARE SETUP FOR IPCSND.ASM/IPCRCV.ASM

LED

P A 3 pN D EVB B O A R D FO R IP C S N D .A S M

P B O P B 1 P B 2 P B 3 P B 4 P B 5 P B 6 P B 7 S T R - B

PC O P C 1 P C 2 P C 3 P & 4 P (t 5 P C S P & 7 ^ x
S T R - A

P B O GND
EVB B O A R D FOR IP C R C V .A S M

LED

DIAGRAM MANUAL 17.0

HARDWARE SETUP FOR STRING.ASM
LCD-lI display
hardware: 1.MC68HC11EVB

2. LCD -1 1 display co n tro lle r
, 3. variable resistence (1 0)

variable
resistence

GND

line 1
(EVB GND>
.(EVB + 5 V)

PB1RS

R/W

enable

\ K DB0~DB7

PBO
enable on EVB

PC0~PC7

H D 44780
ch aracter
display

EVB board

A p p en dix F

C om puter A rch itecture and A ssem bly Language

Lab Program Shells

Z U Y I CH EN

July, 1992

C om puter Science D epartm ent

U niversity o f M ontana

TABLE OF CONTENTS

Table of Contents i

Shell 1.0: alarmint.asm 1

Shell 2.0: alarmpol.asm 5

Shell 3.0: input.asm 9

Shell 4.0: IPCsnd.asm 11

Shell 5.0: IPCrcv.asm 14

Shell 6.0: moduloB.asm 17

Shell 7.0: moduloC.asm 19

Shell 8.0: music, asm 21

Shell 9.0: oc5int.asm 23

Shell 10.0: outports.asm 25

Shell 11.0: string.asm 29

Shell 12.0: swi.asm 35

Shell 13.0: timeint.asm 38

Shell 14.0: timepoll.asm 41

Shell 15.0: trafficB.asm 44

Shell 16.o: trafficC.asm 47

Shell 17.0: travelB.asm 50

Shell 18.0: travelC .asm 52

F i

* * * * * * * * * * * * * if * * * * * * * * * ft ft * * * * * * * * * * * * * * * * ft ft * * * * * ft * * * * * * * f t* * * a * * * *

* Pgm: alarmint.asm
*

* Desc: use interrupt mechanism to mimic a count-down alarm.
* It reads the free-running counter, adds it to a delay time
* and stores the result to Output Compare Register 5 (T0C5).
* The Output Compare Flag will be set when T0C5 value
* equal to the value of free-running counter. Since the
* cycle range of the free-running counter is about 32 ms
* for the 2MHz CPU, a number of iterations for 0C5 is
* performed. The program initialize count to 99, decrements
* the digit to be displayed per 1/4 second, and sends
* digit to a MAN6610 LED from port-C and port-B. Meanwhile,
* it generates tic sound for each count thru port-B pin 4.
* When it counts down to "00", it blinks "00", and generate
* beeps in two different frequencies. It repeats the beeps
* until reset button is pressed.
*

* Author: ZUYI CHEN (University of Montana)
*

* Date: June, 1992
ft
PVOC5 equ $00D3 pseudo vector address of 0C5
BASE equ $1000 base address of register block
PORTA equ $00 (offset from base address) port-A
PORTB equ $04 (offset from base address) port-B
PORTC equ $03 (offset from base address) port-C
DDRC equ $07 (offset) port-C control reg
TCNT equ $0E (offset) free-running counter
TMSK1 equ $22 (offset) timer interrupt mask
TFLG1 equ $23 (offset) timer flag 1
TOC5 equ $1E (offset) output compare register 5

org $C000 } pgm start on 68HC11 - EVB
jsr INIT initialize the interrupt

DIG LOOP
ldy #???? number of iterations mapping 1/4*

TLP brclr TFLG1,X $08
sec

* ; wait until the interrupt comes
dey
bne
jsr

TLP
CLEAR

decrement 0C5 interrupt iteration
Clear the display

ldab B DIGIT get CUR_DIGIT
display the right-hand digitjsr GET DIGIT

staa PORTB,X
decb
cmpb #-1 ;

decrement the digit
if value smaller than 0 then reset

bne SKIP1 to 9
SKIP1

ldab
stab

n
B DIGIT store to memory

ldab C DIGIT get CUR_DIGIT
jsr GET DIGIT display the left-hand digit

/

F2

SKIP2

staa PORTC,X
ldaa B_DIGIT
cmpa #9
bne SKIP2
decb
cmpb #-1
bne SKIP2
jsr ALARM
stab C_DIGIT
bra DIG LOOP

; (multiple of 10)
; check if right-hand digit has been
; counted down to 0
; decrement the digit
; if value smaller than 0 then ring
; the alarm
; ring the alarm
; store to memory

ft
* Subpgm: INIT
* Desc: initialize digit to be displayed and OC5 interrupt
* a *

INIT

displayed

table
*

ldaa #9
staa C_DIGIT
staa B_DIGIT
ldaa #$7E
staa PVOC5
ldx INTERRUPT
stx PVOC5+1
ldx #BASE
ldaa #$FF
staa DDRC,X
ldaa #$08
staa TFLG1,X
staa TMSK1,X
cli
rts

; initialize the digit to be
; to "99"
get extended op code for jump
and store to pseudo vector OC5
get address of Interrupt Routine
and store after jump in vector

; get base address of the
; register block
set port-C for output only
get OC5F bit
set OC5F bit of timer flag
enable OC5F interrupt
enable interrupts

* ISR: INTERRUPT
* Desc: get the current free-running counter; add 4000 cycles,
* and store to OC5. Interrupt comes when the value in OC5
* equals to the free-running counter
ft ft ft 6 6 ft ft 6 ft 6 ft ft ft 6 & A A A & ft 6 ft A ft & ft ft & ft ft & 6 A A ft ft & ft ft 6 ft ft & ft ft A A ft 6 ft ft ft ft ft ft & ft ft A ft ft ft ft ft ft

INTERRUPT
ldd TCNT,X ; get free-running counter
addd #$A000 ; add $A000 cycles
std T0C5,X ; store to Output Compare register 5
bclr TFLG1,X $F7 ; clear the OC5F bit for next use
rti

ft
* Subpgm: GET_DIGIT
* Desc: Display the number on the MAN6610 display

F3

A *
GET_DIGIT

ldy #DIGITO ; load the address of DIGITO
aby ; add value of reg B to index reg X
ldaa 0,Y ; load digit/pin map
rts

* *

* Subpgm CLEAR
* Desc: clear the display
* * * ! & *

CLEAR
ldaa #$00 ; Clear the display
staa PORTC/X
staa PORTB,X
rts

* *

* There are 14 * FREQ + 39 cycles in RESONANT subroutine.
* All except the 5 cycles for rts will be repeated the number
* of times equal to the value of index register Y on the
* subprogram entry. To make each beep stay for half sec, it
* should take the nearest cycles to 1,000,000 for the 2MHz
* EVB CPU.
a *
ALARM

118*(RESONANT cycles)+misc
are nearest to 1/2 sec
blink Mo0" on display
blink "00" on display
frequency for music note 'dou'
store to the memory
produce the sound
blink "00" on display
166*(RESONANT cycles)+misc
are close to 1/2 sec
frequency for music note 'sou'
store to the memory
produce the sound

* *

* Subpgm: RESONANT
* Desc: produce the music note specified by the FREQ on the entry
RESONANT

stab PORTA,X ; turn on the sound
ldy FREQ ; get the frequency

LOOP_ON
dey ; decrement frequency
bne LOOP_ON ; back to LOOP_ON if frequency not 0
pshb ; push reg B to stack

ldaa #118
ldab #$7F
stab PORTB,X
stab PORTC,X
ldy #605
sty FREQ
jsr RESONANT
jsr CLEAR
ldaa #166
ldab #$7F
ldy #430
sty FREQ
jsr RESONANT
bra ALARM

F4

LOOP OFF

ldab #0
stab PORTA,X
pulb
ldy FREQ
dey
bne LOOP_OFF
deca
bne RESONANT
rts

; turn off the sound
; pop reg B off stack
; get the frequency
; decrease frequency
; back to L00P_0FF if frequency not
; 0
; decrement Y value
; back to RESONANT if Y not 0

* *

* DATA: Table of digit/Port-C/Port-B pin mapping
* * * * * * * * * * * * * * * * * * **
*

* -bO----
* -bl----
* -[+5v]-*
*
« ---------------
* - b 2 ---------
*

* Note: bit 4 of port-C and that of PORT-B are connected to a
* piezo buzzer, and are used to generate a tic sound;
* C+5v] indicates connecting +5v pin to one of the 3 outlets
* specified by [+5v]
* — — — — — — _ — - — - — -

* Port-C/Port-B bits 7 6 5 4 3 2 1 0 «---------------------------
DIGITO fcb
DIGIT1 fcb
DIGIT2 fcb
DIGIT3 fcb
DIGIT4 fcb
DIGITS fcb
DIGIT6 fcb
DIGIT7 fcb
DIGIT8 fcb
DIGIT9 fcb
C_DIGIT rmb
B_DIGIT rmb
FREQ rmb
f tf tf tf t f tf t f t f t f t f t f t f t f t i
* End of Pgm
ft

$7F
$70
$DD
$F9
$F2
$BB
$BF
$71
$FF
$F3

0
0
1
1
1
1
1
0
1
1

1
1
1
1
1
0
0
1
1
1

1
1
0
1
1
1
1
1
1
1

1
0
1
1
0
1
1
0
1
0

1
0
1
0
0
0
1
0
1
0

1
0
1
1
0
1
1
1
1
1

2

2

; reserve 2 bytes memory

ft

— [+ 5 V] -
 b6---
 b7---
 b5---
— [+ 5 V] -
 b3---

F5

* *
* Pgm: alarmpol.asm
*
* Desc: use polling mechanism to mimic a count-down alarm.
* It reads the free-running counter, add it to a delay time
* and stores the result to Output Compare Register 2 (T0C2).
* The Output Compare Flag will be set when T0C2 value
* equal to the value of free-running counter. Since the
* cycle range of the free-running counter is about 32 ms
* for the 2MHz CPU, a number of iterations for 0C2 is
* performed. The program initialize count to 99, decrements
* the digit to be displayed per 1/4 second, and sends
* digit to a MAN6610 LED from port-C and port-B. Meanwhile,
* it generates tic sound for each count thru port-B pin 4.
* When it counts down to H00", it blinks "00H, and generate
* beeps in two different frequencies. It repeats the beeps
* until reset button is pressed.
*
* Author: ZUYI CHEN (University of Montana)
*
* Date: June, 1992***
BASE equ $1000 ; base address of register block
PORTA equ $00 ; (offset from base address) port-A
PORTB equ $04 ; (offset from base address) port-B
PORTC equ $03 ; (offset from base address) port-C
DDRC equ $07 ; (offset) port-C control reg
TCNT equ $0E ; (offset) free-running counter
TFLG1 equ $23 ; (offset) timer flag 1
T0C2 equ $18 ; (offset) output compare register 2

org $C000 ; pgm start on 68HC11 - EVB
ldx #BASE ; get base address of the register* ; block
ldaa #$FF
staa DDRC,X ; set port-C for output only
ldaa #9
staa C_DIGIT ; initialize the digit to be* ; displayed
staa B DIGIT ; to "99"
ldaa ; get OC2F bit
staa TFLG1,X ; set OC2F bit of timer flag

DIG_LOOP
jsr CLEAR ; Clear the display
ldab B DIGIT ; get CUR_DIGIT
jsr GET DIGIT ; display the right-hand digit
staa PORTB,X
decb ; decrement the digit
cmpb #-1 ; if value smaller than 0 then reset
bne SKIP1 ; to 9
ldab #9

SKIP1 stab B DIGIT ; store to memory

F6

SKIP2

ldab C DIGIT
jsr GET DIGIT
staa PORTC,X
ldaa B DIGIT
cmpa #9
bne SKIP2
decb
cmpb #-1
bne SKIP2
jsr ALARM
stab C_DIGIT

get CUR_DIGIT
display the left-hand digit
(multiple of 10)

check if right-hand digit has been
counted down to 0
decrement the digit
if value smaller than 0 then ring
the alarm
ring the alarm
store to memory

* POLLING free-running counter

*
T LOOP

ldy #???? ; number of T_LOOP iteration
; mapping 1/4 sec

ldd TCNT,X ; get free-running counter
addd #4000 ; add 4000 cycles
std T0C2,X ; store to Output Compare Register
brclr TFLG1,X $40 * ; wait for output compare
bclr TFLG1,X $BF ; clear the OC2F bit for next

; use
dey ; decrement count of OC2

; iteration
bne T LOOP
bra DIG_LOOP ; start all over

* Subpgm: GET_DIGIT
* Desc: Display the number on the MAN6610 display
GET_DIGIT

ldy #DIGIT0 .; load the address of DIGITO
aby ; add value of reg B to index

* ; reg X
ldaa 0,Y ; load digit/pin map
rts

* Subpgm CLEAR
* Desc: clear the display
CLEAR

ldaa #$00 ; Clear the display
staa PORTC,X
staa PORTB,X
rts

* There are 14 * FREQ + 39 cycles in RESONANT subroutine.
* All except the 5 cycles for rts will be repeated the number
* of times equal to the value of index register Y on the

F7

* subprogram entry. To make each beep stay for half sec, it
* should take the nearest cycles to 1,000,000 for the 2MHz
* EVB CPU.
* * * *
ALARM

ldaa #118 118*(RESONANT cycles)+misc
ldab #$7F are nearest to 1/2 sec
stab PORTB,X blink "00" on display
stab PORTC,X blink "00" on display
ldy #605 frequency for music note 'dou'
sty FREQ store to the memory
jsr RESONANT produce the sound
jsr CLEAR blink "00" on display
ldaa #166 166*(RESONANT cycles)+misc
ldab #$7F are close to 1/2 sec
ldy #430 frequency for music note 'sou'
sty FREQ store to the memory
jsr RESONANT produce the sound
bra ALARM

* *
* Subpgm: RESONANT
* Desc: produce the music note specified by the FREQ on the entry
* *
RESONANT

; turn on the sound
; get the frequency

stab PORTA,X
ldy FREQ

LOOP ON

LOOP OFF

dey
bne LOOP_ON
pshb
ldab #0
stab PORTA,X
pulb
ldy FREQ
dey
bne LOOP OFF
deca
bne RESONANT
rts

; decrement frequency
; back to LOOP_ON if frequency not 0
; push reg B to stack
turn off the sound
pop reg B off stack
get the frequency
decrease frequency
back to LOOP_OFF if frequency not
0
decrement Y value
back to RESONANT if Y not 0

* *

F8

* DATA: Table of digit/Port-C/Port-B pin mapping
* *

■bO---
-bl---
- [+5v]

— [+5v]- b6—
*
*
*
*
*
*
*
*
*
* Note: bit 4 of PORT-C and that of PORT-B are connected
* to a piezo buzzer, and are used to generate a tic sound,
* [+5v] indicates connecting +5v pin to one of the 3
* outlets specified by [+5v]
 * —

*

— [+5V1

Port-C/Port-B bits 7 6 5 4 3 2 1 0*-------
DIGITO fcb $7F 0 1 1 1 1 1 1 1
DIGIT1 fcb $70 0 1 1 1 0 0 0 0
DIGIT2 fcb $DD 1 1 0 1 1 1 0 1
DIGIT3 fcb $F9 1 1 1 1 1 0 0 1
DIGIT4 fcb $F2 1 1 1 1 0 0 1 0
DIGIT5 fcb $BB 1 0 1 1 1 0 1 1
DIGIT6 fcb $BF 1 0 1 1 1 1 1 1
DIGIT7 fcb $71 0 1 1 1 0 0 0 1
DIGITS fcb $FF 1 1 1 1 1 1 1 1
DIGIT9 fcb $F3 1 1 1 1 0 0 1 1
C_DIGIT rmb 2 ; 2 bytes variable
B_DIGIT rmb 2
FREQ rmb 2
* *
* End of Pgm
* *

P 9

* *
* Pgm: input.asm
*
* Desc: This program outputs data from port-B, and inputs
* the data from port-C. Assume port-B and port-C pins
* are connected. No external devices are set for these
* ports, otherwise the devices draw voltage from outputs
* and the voltage of the latter may not be high enough to
* be input to port-C. When the data input is finished,
* port-A pin 3 is set. A LED is connected to that pin to
* check if the pin is set. The inputs are stored in memory
* location $DOOO-$DFFF.
*
* Author: ZUYI CHEN (University of Montana)
*
* Date: June, 1992
* *

PIOC equ $1002
PORTA equ $1000
PORTB equ $1004
PORTCL* equ $1005
DDRC* equ $1007
TCNT equ $100E
START equ $D000
END equ $DFFF

org $C000

Port-B/Port-C I/O control reg
memory location fo port-A
memory location of Port-B
location of Port-C latch
register
Port-C direction control
register
free-running counter
local memory $D000 - $DFFF
upper 4K of the user RAM

; pgm start on 68HC11 - EVB
*
* MAIN
* *

ldaa #$00
staa DDRC
staa PORTB
staa DATA
ldy #START

initial Port-C for input
all 8 bits
clear port-B
store in memory
get starting storage

LOOP
ldab DATA
stab PORTB
jsr GET_INPUT
jsr STOREJDUTPUT

*

incb
stab DATA
ldab #$04
aby
cpy #END+4

output a number to port-B
outputs thru port-B
inputs thru port-C
store data and current time
to memory
increment data
store to memory
increment memory address
by 1

if not passed over ending storage

FlO

bne LOOP
DONE

ldaa #$08 ; light port-A pin 3
staa PORTA
bra DONE

GET INPUT
ldaa PIOC
bita #$80
beq GET__INPUT
ldaa PORTCL
rts

load data arrival flag
bit 7 "on" => Z=0, "off" =>
Z=1
busy wait if Z=1 (no input)
capture inputs

STORE_OUTPUT
staa 0, Y ; store data to memory
staa 1,Y ; store data to memory
ldx TCNT ; get current time stamp
stx 2,Y ; store to memory
rts

DATA rmb 2
* *
* End of Pgm
* *

a * - *
* Pgm IPCsnd: 3/7/91 Version
*
* Experimental version of IPC Sender, with event
* descriptor transmission implemented as the explicit
* subpgm EVENT. EVENT uses dump-and-run protocol
* (Port-B/STR-B to Port-C/STR-A), and creates an event
* (sender) time stamp and an event_dump_complete (sender)
* time stamp. EVENT also guarantees a "safe" time
* interval between individual packet sends for the
* event descriptor.
*
* Author: Ray Ford (University of Montana)
*
* Modified by Zuyi Chen of UM in June, 1992
* * changed $6000 - $7FFF to $D000-$DFFF since the optional
* 8k memory does not come with the board;
* * changed PORT-D to PORT-A, and removed DDRD;
* * removed SIGNAL subroutine.
*
* Date: March 1991
*
* A. 4 byte Event Descriptor:
* 0,1: 16-bit time stamps TS_EI, captured at EVENT entry
* 2,3: 16-bit data computed by dummy main pgm
* B. Dump-And-Run Protocol
* 1. The event descriptor is driven out of Port-B
* in four 1-byte packets, in order:
* <TS_EI(HOB),TS_EI(LOB),Datal(HOB),Datal(LOB)>
* where HOB: high order byte and LOB: low order byte
* 2. Port-B is set to operate in simple strobe mode where
* a write to Port-B automatically pulses the STR-B pin.
* Sender/STR-B is assumed to be connected to Receiver/STR-A,
* so that the Sender/STR-B pulse signals a PORT-CL input
* capture by the Receiver. Simple strobe mode for Port-B is
* indicated by "0" in bit 4 of PIOC, at $1002. (Note: this
* is the default mode of operation for Port-B.]
* C. Local data storage, 8-byte packets:
* 0,1: 16-bit time stamps TS_EI
* 2,3: 16-bit data, in IND-X at EVENT entry
* 4,5: 16-bit data, copy of above (dummy)
* 6,7: 16-bit time stamp TS_EC ("event complete")
* A "done" signal is written out on Port-A when local
* memory is full.
*
* D. Implementation Notes
* Main Pgm
* IND__X: data IND_Y: memory index
* ACC_A,ACC_B,ACC_D: time stamps and misc
*
* *

PORTB equ $1004 ; Port-B (data output)
PORTA equ $1000 ; Port-A ("done" signal)
TCNT equ $100E ; Free Running Timer

; local memory $D000..$DFFF

; pgm start on 68HC11 - EVB
; temporary storage

* *

* MAIN PROGRAM: IPCsnd
* *
INIT

MEM ST equ $D000
MEMJEND equ $DFFF

org $C000
TEMP fdb $0000

CYCLE

ldx #$0000
ldy #MEM_ST

inx
j sr EVENT

; initialize Data
; initialize memory index

; "compute" Data
; generate "event"

std 0,Y
stx 2,Y
stx 4,Y
ldd TCNT
std 6,Y
ldab #$08
aby
cpy #MEM_END
bio CYCLE

save TS_EI
save Data
save Data (dummy extra copy)
capture TS_EC
save TS_EC
load memory increment
increment memory index
if IND_Y<$7FFF then C=1
branch if C=1

DONE
ldaa #$08
staa PORTA ; generate "done" signal
bra DONE

* *
* Subpgm EVENT
* At entry: IND_X=data IND_Y=memory index
* At exit: IND_X=data IND
* (a) capture TSJEI
* (b) send data and TS_EI
* *
EVENT

ldd TCNT
staa PORTB
jsr IPC_PAUSE
stab PORTB
jsr IPC_PAUSE
xgdx
staa PORTB
jsr IPC_PAUSE
stab PORTB
xgdx

*
jsr IPC_PAUSE

=memory index ACC_D=TS_EI

* * * * * * * * * * * * * * * * * * * *

; capture TS_EI in ACC_D
? send TS_EI(HOB)
; wait safe time interval
; send TS_EI(LOB)
; wait safe time interval
; SWAP: ACC_D=data, IND_X=TS_EI
; send Data(HOB)
; wait safe time interval
; send Data(LOB)
; swap back: ACC_D=TS_EI,
; IND_X=data
; wait safe time interval

F }3

rts
* *
* Subpgm IPC_PAUSE
* *

IPC_PAUSE
stx TEMP ; save IND_X value
ldx #$???? ; approx X cycle delay

D_LOOP
dex ; busy wait loop
bne D_LOOP
ldx TEMP ; restore value of IND_X
rts

* *
* End of Pgm
* *

F] 4

* *
* Pgm IPCrcv
*
* Experimental version of IPC Receiver, with dump-and-run
* protocol using Port-B/STR-B to Port-C/STR-A, with both
* sender and receiver time stamps, and with POLLED message
* receipt
*
* Author: Ray Ford (University of Montana)
*
* Modified by Zuyi Chen of UM in June, 1992
* Changed $6000 - $7FFF to $D000-$DFFF since the optional
* 8k memory does not come with the board.
*
* Date: March 1991
*
* Data/Dump-And-Run Protocol — Sender:
* (a) data is driven out of Port-B, in a 4-byte packet
* 1,2: <SenderTS(HOB),SenderTS(LOB)
* 3,4: Datal(HOB),Datal(HOB)
* where HOB: high order byte and LOB: low order byte
* (b) Port-B is set to operate in simple strobe mode
* so that a write to Port-B automatically pulses STR-B
* pin. This assumes that Sender/STR-B is connected to
* Receiver/STR-A, so that the pulse signals an input
* capture by the Receiver. Simple strobe mode for Port-B is
* indicated by "0" in bit 4 of PIOC, at $1002. [Note: this
* is the default mode of operation for Port-B.]
*
* *
*
* Data/Dump-And-Run Protocol — Receiver
* (a) Sender's STR-B is connected to receiver's STR-A, so that
* the incoming "send" signal on STR-A triggers a "receive"
* signal, i.e., a "latch incoming data" in P0RT-CL (note: not
* on Port-C).
* (b) Two local time stamps are captured to record the receipt
* of the event descriptor on the monitor processor
* (i) "IO_Initiated" (IOInitTS) is captured when the signal
* indicating the start Of a new message is received
* (ii) "IO_Complete" (IOCompTS) is captured when all 6 bytes
* of the incoming message have been received
* (c) data is stored locally in an 8-byte packet
* 1,2: <SenderTS(HOB),SenderTS(LOB)
* 3,4: Datal(HOB),Datal(HOB)
* 5,6: IOInitTS(HOB),IOInitTS(LOB)
* 7,8: IOCompTS(HOB),IOCompTS(LOB) >
*
* *

* This Implementation uses
*

* (a) POLLING to detect incoming messages
* (b) Normal Reg Use:
* ACC A: incoming data (from PORT-CL)

F] 5

* ACC_B: memory index increment value (8)
* IND_Y: memory index
* IND_X: local time stamp capture
* (c) output "done” signal via Port-B when local
* memory is full
* *

PIOC equ $1002 Port-B/Port-C I/O control
PORTB equ $1004 location of Port-B
PORTC equ $1003 location of Port-C
PORTCL equ $1005 location of Port-C
DDRC equ $1007 Port-C control register
TCNT equ $100E Free Running Timer
MEM ST equ $D000 $D000..$DFFF local
MEM END equ $DFFF data storage

org $C000 pgm start on 68HC11 - EVB
* *
* MAIN PROGRAM: IPCrcv
* *

INIT MEM

MORE INPT

DONE

ldaa #$00
staa DDRC
ldab #$08
ldy #MEM_ST
jsr GET INPT
staa 0,Y
stx 4,Y
jsr GET INPT
staa 1,Y
jsr GET :
staa 2,Y
jsr GET I
staa 3 / Y
stx 6,Y
aby
cpy #MEM
bio m o r e]

ldaa #$FF
stab PORTB

initial Port-C for input,
all 8 bits

load memory index increment value
load address of data storage area
ACC-A: SenderTS(HOB), IND-X: IOInitTS
store SenderTS(HOB)
store IOInitTS
ACC-A: SenderTS(LOB), IND-X: misc TS
store SenderTS(LOB) — discard misc TS

store Datal(HOB) — discard misc TS

store Datal(LOB)
store IOCompTS
increment memory index by 8
watch for full memory

load "done” signal
write "done" signal to Port-B

bra DONE
* *
* Subpgm GET_INPT:
* (a) data arrival indicated by value of bit 7 (STAF flag) in
* p i o c
* (b) at return:

F16

* ACC-A is captured input value
* IND-X is input arrival time stamp
* PIOC is cleared (automatically, by test and PORTCL load)
* *
GET__INPT

ldaa PIOC ; load data arrival flag
bita #$80 ; bit 7 "on" => Z=0, "off" => Z=1
beq GET_INPT ; busy wait if Z=1 (no input)
ldaa PORTCL ; capture data
ldx TCNT ; input => capture local time stamp
rts

* *

* End of Pgm
* *

F17

* *

* Pgm: moduloB.asm
*

* Desc: mimic a modulo-9 counter by driving signals out of
* port-B pins to a 7-segment display. It displays
* number 0 and keeps it on for 1/2 sec; then it clears
* the display for 1/2 sec. It increments the number by 1,
* displays it, clears it until 9 is displayed and cleared.
* It then resets the number to 0, repeats whole procedure.
*

* Author: ZUYI CHEN (University of Montana)
«
* Date: June, 1992
ft

PORTB equ $1004 •
9 memory location of "port B"

COUNT equ 42 m
9 number DELAY iterations about* •
9 sec

DCOUNT equ 4000 9 number of DLOOP iterations
org $C000 •

9 pgm start on 68HC11 - EVB
*
* MAIN
f t f t

jsr CLEAR
RESET
LOOP

ldab #0
jsr
ldy
jsr
incb

OUT DIGIT
#C0UNT
DELAY

jsr
cmpb
bgt

#9
CLEAR
RESET

bra LOOP

; Clear 7-segment display

; initialize the 7-segment display
; display the number

; set number of the DELAY iterations
wait
increment the number to be
displayed
Clear the display
compare current number with 9
back to RESET if number
larger than 9

* f t f t * f t * * f t f t * * f t * * f t * f t f t * f t f t f t f t f t f t* *
* Subpgm: OUT_DIGIT
* Desc: Display the number on the 7-segment display
* *
OUT DIGIT

ldx
abx

#DIGIT0

ldaa 0,x
staa PORTB
rts

load the address of DIGITO
add value of reg B to index
reg X
load digit/pin map
write to PORT B

F18

A A

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
entry.
A A

DELAY
ldx #DCOUNT

DLOOP dex
bne DLOOP
dey
bne DELAY
rts

set DLOOP iterations
decrement index register X value
back to DLOOP if X value not 0
decrement index register Y count
back to DELAY if Y count not 0
return to calling routine

A A

* Subpgm CLEAR
* Desc: clear the 7-segment display
A A

CLEAR
ldaa
staa
ldy
jsr
rts

$ 0 0
PORTB
#C0UNT
DELAY

Clear 7-segment display by sending
'0000 0000' to port-B
delay cycles

A A

* DATA: Table of Port-B pin assignments
A
A —------------------------------ - ----------- — ---

* Port-B bits 7 6 5 4 3 2 1 0
* — . . . — . . . ------------

DIGIT0 fcb $6F 0 1 1 A 1 1 1 1
DIGIT1 fcb $60 0 1 1 A 0 0 0 0
DIGIT2 fcb $CD 1 1 0 A 1 1 0 1
DIGIT3 fcb $E9 1 1 1 A 1 0 0 1
DIGIT4 fcb $E2 1 1 1 A 0 0 1 0
DIGITS fcb $AB 1 0 1 A 1 0 1 1
DIGITS fcb $AF 1 0 1 A 1 1 1 1
DIGIT7 fcb $61 0 1 1 A 0 0 0 1
DIGIT8 fcb $EF 1 1 1 A 1 1 1 1
DIGIT9 fcb $E3 1 1 1 A 0 0 1 1
A A

* End of Pgm
A A

F l 9

* *
* Pgm: moduloC.asm
*

* Desc: mimic a modulo-9 counter by driving signals out of
* port-C pins to a 7-segment display. It displays
* number 0, and keeps it on for 1/2 sec; then it clears
* the display for 1/2 sec. It increments the number by 1,
* displays it, clears it. After 9 is displayed, and cleared,
* it resets the number to 0, and repeats the whole
* procedure.
*

* Author: ZUYI CHEN (University of Montana)
*
* Date: June, 1992
* *

PORTC equ $1003 •
9 memory location of "port C"

DDRC equ $1007 m
9 port C I/O control

COUNT equ 42 •
9 number DELAY iterations* m
9 about 1/2 sec

DCOUNT equ 4000 •
9 number of DLOOP iterations

org $C000 •
9 pgm start on 68HC11 - EVB

ldaa #$FF •
9 set port-C to output only by

staa DDRC •
9 sending '1111 1111* to port-C

* * * * * * * * * *
* MAIN
* *

jsr CLEAR
RESET
LOOP

ldab #0
3 s r
ldy
jsr
incb
jsr
cmpb
bgt
bra

0UT_DIGIT
#C0UNT
DELAY

CLEAR
n
RESET

LOOP

; Clear 7-segment display

; initialize the 7-segment display
; display the number

; set number of the DELAY iterations
wait
increment the number to be
displayed
Clear the display
compare current number with 9
back to RESET if number
larger than 9

* *
* Subpgm: OUT_DIGIT
* Desc: Display the number on the 7-segment display
* *
0UT_DIGIT

ldx #DIGIT0 ; load the address of DIGITO

F20

abx
ldaa 0,x
staa PORTC
rts

; add value of reg B to index reg X
; load digit/pin map
; write to PORT C

* *

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
* entry.
* *

DELAY
ldx #DCOUNT ; set DLOOP iterations

DLOOP dex ; decrement index register X value
bne DLOOP ; back to DLOOP if X value not 0
dey ; decrement index register Y count
bne DELAY ; back to DELAY if Y count not 0
rts ; return to calling routine

* *

* Subpgm CLEAR
* Desc: clear the 7-segment display
* *

CLEAR
ldaa
staa
ldy
jsr
rts

$ 0 0
PORTC
#COUNT
DELAY

Clear 7-segment display by sending
*0000 0000' to port-C
delay cycles

* *

* DATA: Table of Port-C pin assignments
* *
* — — — —

* Port-C bits 7 6 5 4 3 2 1 0
* — — — —

DIGIT0 fcb $6F 0 1 1 * 1 1 1 1
DIGIT1 fcb $60 0 1 1 * 0 0 0 0
DIGIT2 fcb $CD 1 1 0 * 1 1 0 1
DIGIT3 fcb $E9 1 1 1 * 1 0 0 1
DIGIT4 fcb $E2 1 1 1 * 0 0 1 0
DIGITS fcb $AB 1 0 1 * 1 0 1 1
DIGIT6 fcb $AF 1 0 1 * 1 1 1 1
DIGIT7 fcb $61 0 1 1 * 0 0 0 1
DIGIT8 fcb $EF 1 1 1 * 1 1 1 1
DIGIT9 fcb $E3 1 1 1 * 0 0 1 1
* *

* End of Pgm
* *

* Pgm: music.asm
★
* Desc: mimics music notes by driving signals out of port-B pins

F21

to a piezo buzzer in following order:
1. ring music note 'mee' for 1/2 sec
2. ring music note ' rai' for 1/2 sec
3. ring music note 'do' for 1/2 sec
4. ring music note 'tee' for 1/2 sec
5. ring music note 'la' for 1/2 sec
6. ring music note 'so' for 1/2 sec
7. ring music note 'fa' for 1/2 sec
8. ring lower music note 'mee' for 1/2 sec
9. go back to (1) and repeat

Author: ZUYI CHEN (University of Montana)★
★
* Date: June, 1992

PORTB equ $1004
INNER equ 21

org $C000

; memory location of "port B"

; pgm start on 68HC11 - EVB

* Note: the music note is not standard.
ldab #$01 ; are nearest to 1/2 sec

START
ldy #315
ldx #262
Stx FREQ

; frequency for music note 'mee'
; store to the memory

jsr RESONANT ; produce the sound

ldy
ldx
stx
jsr

ldy
ldx
stx
jsr

#281
#2 94
FREQ
RESONANT

ldy #251
ldx #330
stx FREQ
jsr RESONANT
ldy #237
ldx #349
stx FREQ
jsr RESONANT
ldy #????
ldx #392
Stx FREQ
jsr RESONANT

ldy #????
ldx #440
stx FREQ
jsr RESONANT

*494
FREQ
RESONANT

; 150*(RESONANT cycles)+25
; frequency for music note ' rai'
; store to the memory
; produce the sound

164*(RESONANT cycles)+25
frequency for music note 'do'
store to the memory
produce the sound
173*(RESONANT cycles)+25
frequency for music note
store to the memory
produce the sound

’ tee'

; number of RESONANT iterations mapping 1/2 sec
; frequency for music note ' la'
; store to the memory
; produce the sound

number of RESONANT iterations mapping 1/2 sec
frequency for music note ' so'
store to the memory
produce the sound

; number of RESONANT iterations mapping 1/2 sec
; frequency for music note 'fa'
; store to the memory
; produce the sound

ldy #????
ldx #523

; number of RESONANT iterations mapping 1/2 sec
; frequency for lower music note 'mee'

stx FREQ ; store to the memory
jsr RESONANT ; produce the sound

bra START

* Subpgm: RESONANT
* Desc: produce the music note specified by the FREQ on the entry

RESONANT
stab PORTB ; turn on the sound
ldx FREQ ; get the frequency

LOOP_ON
dex ; decrement frequency
bne LOOP_ON ; back to LOOP_ON if frequency not 0
ldaa #0
staa PORTB ; turn off the sound
ldx FREQ ; get the frequency

LOOP_OFF
dex ; decrease frequency
bne LOOP_OFF ; back to LOOP_OFF if frequency not 0
dey ; decrement Y value
bne RESONANT ; back to RESONANT if Y not 0
rts

FREQ rmb 2
* End of Pgm

F22

F 2 3

* *

* Pgm: oc5int.asm
*

* Desc: use Output Compare 5 (OC5) interrupt to generate a square
* wave at the PA3 output pin. The program writes data to
* memory starting at the address $D000, and stops at $DFFF.
* $E000 and up are monitor EPROM, and can be written
* by user programs.
* Note: REG_ST ($1000) is the starting address of the register
* block. With offset specified in the "equ" directive,
* the memory location for Timer Control Register 1
* (TCTL1), Timer Interrupt Mask (TMSK1), Timer Interrupt
* Flag 1 (TFLG1), Timer Output Compare Register 5 (T0C5),
* and Free-running Counter (TCNT) can be found.
*

* Author: ZUYI CHEN (University of Montana)
* Date: June, 1992
ft

PVOC5 equ $OOD3 ; pseudo vector address for 0C5
REG ST equ $1000 ; starting address of register* ; block
TCTL1 equ $20 ; timer control register 1
TMSK1 equ $22 ; timer interrupt mask register
TFLG1 equ $23 ; timer interrupt flag
T0C5 equ $1E ; Output Compare register 5
TCNT equ $0E
MEM equ $D000

org $C000 ; pgm start on 68HC11 - EVB
ft
* MAIN***

ldaa #$7E ; extended op code of jump instruction
staa PVOC5 ; pseudo vector for OC5
ldx #INT5 ; put address of Interrupt Routine
stx PVOC5+1 ; after address of jmp
ldy #MEM ; get memory start to fill data
sty STORE
ldx #REG ST ; get register block start address
ldaa #$0l“ ; set OL5 bit on in TCTL1
staa TCTL1,X
ldaa #$08
staa TFLG1,X ; clear OC5F bit if it is set
staa TMSK1,X ; enable 0C5 interrupt
cli ; enable interrupts
bra * ; interrupt driven from here

F24

* *

* ISR: INT5
* Desc: 0C5 interrupt service routine to generate a square wave.
* called at each 0C5 interrupt
* *

INT5
ldy STORE
ldd TCNT,X
std 0, Y
ldab #$02
aby
sty STORE
ldd #$0100
addd TOC5,X
std TOC5,X
bclr TFLG1,X $F7
rti

; get address to fill data
; get current time stamp
; record the time in memory
; increment address by 2 bytes
; save the address
; cycle value
; add to last compare value
; update OC5
; clear 0C5F
; return from interrupt
; service routine

STORE rmb 2
* *

* End of Pgm
* *

F25

Pgm: outports.asm
Desc: The program checks the output pin connections by turning

on the bits of port-C port-D, port-A and port-B in order.
It first turns on the most significant bit, then add the
next bit without turning off the previous one. When all
the bits of a port are turned on, it clears the port, goes
to the next port, and does the same in that port. After
port-B is lit, it goes back to port-C and starts all over.

Note: the output pins for port-A are pin 3-7 and those for
port-D are pin 2-5

Author: ZUYI CHEN (University of Montana)
(based on che_output.asm by Sixing Gu of UM)

PORTC equ $1003
DDRC
A

equ $1007
PORTA equ $1000
DDRA
A

equ $1026
PORTB equ $1004
PORTD equ $1008
DDRD
A

equ $1009
INNER equ 3
INTER equ 7
DCOUNT equ $C000

org $C000

memory location of "port C"
memory location of port C control
reg
memory location of "port A"
memory location of port A pin 7
direction
memory location of "port B"
memory location of "port D"
memory location of port D control
reg

set count of DELAYS for inner ports
set count of DELAYS for inter ports
• set count of DLOOPs in DELAY
; pgm start on 68HC11 - EVB

*

* MAIN
* *

LOOP

ldaa #$FF
staa DDRC
ldaa #$3C
staa DDRD
ldaa #$80
staa DDRA

jsr CLEAR_ALL
jsr LITE C
ldy #INTER
jsr DELAY

; Set port A and C to output by sending
; '1111 1111' to Port-C control register
; Set Port-D pin 2-5 to output by sending
; '0011 1100' to Port-D control register
; Set Port-D pin 2-5 to output by sending
; '1000 0000' to Port-A control register

; clear all ports
; turn port-C ON, others OFF
; set delay cycles
check port-C

F26

jsr
jsr
ldy
jsr
jsr
jsr
ldy
jsr
jsr
jsr
ldy
jsr
jsr
bra

CLEAR_C
LITE_D
WINTER
DELAY
CLEAR_D
LITE_A
#INTER
DELAY
CLEAR_A
LITE_B
WINTER
DELAY
CLEAR_B
LOOP

clear port-C
turn port-D ON, others OFF
set delay cycles
check port-D
clear port-D
turn PORT-A ON, others OFF
set delay cycles
check port-A
clear port-A
turn PORT-B ON, others OFF
set delay cycles
check port-B
clear port-B

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
* entry.
* *

DELAY
hardcoded unit cycle delay
decrement index register X
value
back to DLOOP if X value not
0
decrement index register Y
count
back to DELAY if Y count not
0
return to calling routine

* *
* Subpgm CLEAR_ALL
* turn off all the bar graph displays
* *
CLEAR_ALL

ldaa #$00 ; Clear all signals by sending
staa PORTC ; '0000 0000' to Port-C, port-D
staa PORTD ; port-A and port-B
staa PORTA
staa PORTB
rts

ldx #DCOUNT
DLOOP dex*

bne DLOOP*
dey*
bne DELAY*
rts

P 2 7

* *

* Subpgm LITE_A
* turn on the bar graph display one bit at a time connected to
* PORT-A
*
LITE_A
MORE_A
iterations

ldab #5 •
9 set number of bits for

ldaa #$80 m
9 turn on port-A one bit

staa PORTA
ldy #INNER •

9 set count of DELAY
»

jsr DELAY m
9 pause

asra 9
9 extend 1 to the bit on

decb
bne M0RE_A
rts

* *

* Subpgm CLEAR_A
* turn off the bar graph display connected to PORT-A
* *

CLEAR_A
ldaa #$00 ; clear port-A by
staa PORTA ; sending '0000 0000' to port-A
rts

* *

* Subpgm LITE_B
* turn on the-bar graph display one bit at a time connected to
* PORT—B
* *

* * • •

* *

* Subpgm CLEAR_B
* turn off the bar graph display connected to PORT-B
* *
* • • •

* *

* Subpgm LITE_C
* turn on the-bar graph display one bit at a time connected to
* PORT-C
*
? ? ? ?

* *
* Subpgm CLEAR_C
* turn off the bar graph display connected to PORT-C
* *
* • • •

* *
* Subpgm LITE_D
* turn on the bar graph display one bit at a time connected to

F28

* PORT-D
* * * * * * * * * <r * a * * * * * <r <r * a * * * * * * a * * * * * * * * * * * * *

* « • •

* *
* Subpgm CLEAR_D
* turn off the bar graph display connected to PORT-D
* *
? ? ? ?

* *
* End of Pgm
* *

F29

* *
* Pgm: string.asm
*
* Desc: displays a string of characters on the LCD-II (HD44780).
* The characters show from the right end of the screen; travel
* to the left side; and disappear after the last character
* shows up. The procedure will then repeat. The string is
* "HOW NOW, BROWN COW?"
*
* Author: ZUYI CHEN (University of Montana)
* (based on mtxdis_dri.asm by Hong Fan of UM)
*
* Date: June, 1992
* *

PORTC equ $1003 ; memory location of "port C"
PORTB equ $1004 ; memory location of "port B"
DDCR equ $1007 ; memory location of port C control* ; reg
PAUSE equ 2
DCOUNT equ $E000 ; number of DLOOP iterations in DELAY

org $C000 ; pgm start on 68HC11 - EVB

* MAIN***

ldaa #$FF ; Set Port-C to output, by sending
staa DDCR ; '1111 1111' to Port-C control reg
jsr INIT ; initialization to HD44780

LOOP jsr ENTRY MODE ; set entry mode
jsr MV_CURSOR ; move cursor to the right of* ; screen
jsr DISP_SHIFT ; set mode to shift left when* ; display

* *
* Display the string "HOW NOW, BROWN COW?"
* *

jsr H
jsr 0
jsr W
jsr DISP_BLANK
jsr N
jsr O
jsr W
jsr COMMA
jsr DISP_BLANK
jsr B
jsr R
jsr O
jsr W
jsr N

display H
display O
display W
display a blank
display N
display O
display W
display •,1
display a blank
display B
display R
display O
display W
display N

F30

jsr DISP_BLANK
jsr C
jsr O
jsr W
jsr QUESTION_MARK
jsr DISP_BLANK
ldaa #PAUSE
jsr DELAY
j sr CLEAR
bra LOOP

display a blank
display C
display O
display W
display '?'
display a blank

wait a while
clear the screen
back and repeat

* Subpgm DELAY
* Desc: "busy waits" for the number of DELAY loop iterations
* specified by the value of register A at subpgm entry.
DELAY

Idx #DCOUNT ; get number DLOOP iterations
DLOOP dex ; decrement DLOOP count

bne DLOOP
deca ; decrement DELAY count
bne DELAY
rts

* Subpgm: INIT
* Desc: Initialization of the HD44780. This subpgm does the
* following:
* 1. turn the display off
* 2. set the interface data length and number of
* display lines
* 3. turn the display on
INIT

ldab #$00 ; set control mode
stab PORTB
ldaa #$01 ; clear display
staa PORTC
ldaa #PAUSE ; delay
jsr DELAY
jsr FUNSET ; function set to 8-bits
jsr
rts

DISPLAY_ON ; turn on display

* Subpgm: FUNSET
* Desc: This subpgm does the following
* sets to 8-bit operation and selects 1-line display lines
* and character fonts. (Number of display lines and
ft character fonts cannot be changed hereafter.)

F31

FUNSET
ldaa #$30 ; function set
staa PORTC
ldaa #PAUSE ; delay
jsr DELAY
rts

* *
* Subpgm: turn display on
* Desc: This subpgm will turn the display on
* *
DISPLAY_ON

ldaa #$0E ; turn the display on
staa PORTC
ldaa #PAUSE ; delay
jsr DELAY
rts

* * * *
ft Subpgm: Entry mode setting of the HD44780
ft Desc: This subpgm sets the entry mode to increment the address
* by one and to shift the display to the left at the time
* of write to the DD/DG RAM
* *
ENTRY MODE

ldab #$00 ; set the to control mode
stab PORTB
ldaa #$06 ; set entry mode described
staa PORTC
ldaa #PAUSE ; delay
jsr
rts

DELAY
*
ft Subpgm: Clear display
ft Desc: This subpgm clears the screen
* *
CLEAR

ldab #$00 •
9 instruction for the control

stab PORTB
ldaa #$01 •

9 instruction for clear screen
staa PORTC
ldaa #PAUSE •

9 delay
jsr DELAY
rts

* *
* Subpgm: DISP_BLANK
* Desc: This subpgm displays a blank by shifting the display to
ft the left by one position
* f t

DISP_BLANK
ldab #$02 ; data write mode
stab PORTB

f 32

ldaa #$14 ; shift display to left
staa PORTC
ldab #$01 ; set busy flag for internal* ; operation
stab PORTB
ldaa #PAUSE ; delay
jsr
rts

DELAY

* Subpgm: MV_CURSOR
* Desc: moves the cursor the right of screen so that it display
* from there***
MV CURSOR

ldx #$21 ; set the loop index
CLOOP ldab #$02 ; set to the data write mode

stab PORTB
ldaa #$14 ; instruction for the shift right
staa PORTC
ldab

operation
#$01 ; set busy flag for internal

stab PORTB
ldaa #PAUSE ; delay
staa
dex

DELAY
bne
rts

CLOOP ; CLOOP

* f t* * * * * * * * * * * * * * * * a * * * * * * * * * * * * a * * * * * * * * * *
* Subpgm: Set the mode to shift when display
* Desc: changes the mode the shift cursor when display
DISP SHIFT

above

ldab #$00 ; set the mode to control mode
stab PORTB
ldaa #$07 ; instruction for mode describe
staa PORTC
ldaa #PAUSE ; delay
jsr DELAY
rts

6 * * * * * * * * * * *
* Subpgm: OUTCHAR
* Desc: displays a character
* *

OUTCHAR
ldab #$02 ; set the mode to write data

mode
stab PORTB
staa PORTC
ldab #$01 ; set busy flag for internal

* ; operation

F33

stab PORTB
ldaa #PAUSE
jsr DELAY ; delay
rts

* *

* Subpgm: B
* Desc: display character 1B'
* *
B

ldaa #$42 ; character 'B'
jsr OUTCHAR
rts

* *
* Subpgm: C
* Desc: display character 'C*
* *
C

ldaa #$43 ; character 'C'
jsr OUTCHAR
rts

* *
* Subpgm: H
* Desc: display character 'H*
* *
* • • •

* *
* Subpgm: N
* Desc: display character 'N'
* *

* • • •

* *
* Subpgm: 0
* Desc: display character 'O'
* *
* • • •

* *
* Subpgm: R
* Desc: display character 'R*
* *
* • • •

* *
* Subpgm: W
* Desc: display character 'W'
* *

? ? ? ?

F34

* *
* Subpgm: COMMA
* Desc: display character
* *
* * • *

* *
* Subpgm: QUESTION_MARK
* Desc: display character '?'
* *
* • • •

* *
* End of Pgm
* *

P 3 5

a *
* Pgm: swi.asm
a
* Desc: use soft ware interrupt to mimic a modulo-9 counter. In
* the interrupt service routine it increments the digit
* to be displayed each second, and sends digit to a
* 7-segment LED from port-B. Software interrupt (SWI)
* from interrupt vector jump table is used here,
a
* Author: ZUYI CHEN (University of Montana)
a
* Date: June, 1992
aaa

PORTB equ $1004 ; memory location of "port
DCOUNT equ 4000
PVSWI equ $00F4 ; pseudo vector address of

org $C000 pgm starts on 68HC11 - EVB
aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
* MAIN
aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

ldaa #$7E
staa PVSWI
ldx #INTERRUPT
stx PVSWI+1
jsr CLEAR
clr CUR DIGIT

extended op code of jmp instruction
pseudo vector for SWI

? put address of Interrupt Routine
; after the address of jmp
; Clear the 7-segment display
; initialize CUR DIGIT to 0

LOOP
swi
bra LOOP

; software interrupt
; interrupt driven from here

aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
* ISR: INTERRUPT
* Desc: increments the number to be displayed on the 7-segment
* display, called at each interrupt
aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
INTERRUPT
iterations

ldy
jsr
jsr
ldab
jsr

8 3

DELAY
CLEAR
CUR__DIGIT
OUT DIGIT

SKIP

incb
cmpb #10
bne SKIP
ldab #0
stab CUR DIGIT
rti

; set number of DELAY
; wait
; Clear the display
; get CUR_DIGIT
; display it on 7-segment
; display
; increment the digit

if digit larger than 9 then reset
to 0

F36

* *
* Subpgm: OUT_DIGIT
* Desc: Display the number on the 7-segment display
* *
OUT DIGIT

ldx
abx
ldaa
staa
rts

#DIGITO

0,x
PORTB

load the address of DIGITO
add value of reg B to index
reg X
load digit/pin map
write to PORT B

* *
* Subpgm CLEAR
* Desc: clear the 7-segment display
* *
CLEAR

ldaa #$00 ; Clear 7-segment display
staa PORTB
rts

* *
* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at
subprogram entry.
* *
DELAY

ldx #DCOUNT ; set DLOOP iterations
DLOOP dex ; decrement index register X value

bne DLOOP ; back to DLOOP if X value not 0
dey ; decrement index register Y count
bne DELAY ; back to DELAY if Y count not 0
rts ; return to calling routine

* *
* DATA: Table of digit/Port-B pin mapping
* *
*
* -b0---- 1 J — [+5v] -
* -bl { | J } b6---
*
*
*
*
*
*
*
*

— r+5V] -
—b 2 --------

Note: bit 4 of port-B is not used; [+5v] indicates connecting
+5v pin to one of the 3 outlets annotated by [+5v]

*
* -------------

DIGITO
DIGIT1

Port-B bits 7 6 5 4 3 2 1 0
fcb
fcb

$6F
$60

; 0 1 1 * 1 1 1 1
; 0 1 1 * 0 0 0 0

F37

DIGIT2 fcb $CD 1 1 0 ft 1 1 0 1
DIGIT3 fcb $E9 1 1 1 ft 1 0 0 1
DIGIT4 fcb $E2 1 1 1 ft 0 0 1 0
DIGIT5 fcb $AB 1 0 1 ft 1 0 1 1
DIGIT6 fcb $AF 1 0 1 ft 1 1 1 1
DIGIT7 fcb $61 0 1 1 ft 0 0 0 1
DIGIT8 fcb $EF 1 1 1 ft 1 1 1 1
DIGIT9 fcb $E3 1 1 1 ft 0 0 1 1
CUR DIGIT rmb 2
* *
* End of Pgm
* a* *#*# * * * * * ** * * ** ** * * * * ** * *

F38

Pgm: timeint.asm
Desc: use interrupt mechanism to mimic a modulo-9 counter

incrementing digit each sec with a tic sound.
It reads the free-running counter, adds it to a delay time,
and stores the result to Output Compare Register 5 (T0C5).
The Output Compare Flag will be set when T0C5 value
equal to the value of free-running counter, and T0C5 is
interrupted. Since the cycle range of the free-running
counter is about 32 ms for the 2MHz CPU, a number of
iterations for 0C5 interrupt is performed. The program
sends the digit to be displayed to a 7-segment display
from port-C and the tic sound to a piezo buzzer out of
pin 4 of port-C.

Author: ZUYI CHEN (University of Montana)

PV0C5 equ $00D3 pseudo vector address of OC5
BASE equ $1000 base address of register block
PORTC equ $03 (offset from base address) port-C
DDRC equ $07 (offset) port-C control reg
TCNT equ $0E (offset) free-running counter
TMSK1 equ $22 (offset) timer interrupt mask
TFLG1 equ $23 (offset) timer flag 1
T0C5 equ $1E (offset) output compare register 5

org $C000 pgm start on 68HC11 - EVB
jsr INIT initialize the interrupt

* MAIN
A A

DIG_LOOP
ldy #???? ; number of TLP iterations

A ; mapping 1 sec
TLP brclr TFLG1,X $08 * ; wait until the interrupt comes

dey ; decrement 0C5 interrupt
A ; iteration

bne TLP
jsr CLEAR ; Clear the display
ldab CUR DIGIT ; get CUR_DIGIT
jsr OUT_DIGIT ; display it on 7-segment

A ; display
incb ; increment the digit
cmpb #10 ; if digit larger than 9 then

A ; reset
bne SKIP ; to 0
ldab #0

SKIP stab CUR DIGIT ; store to memory
bra DIG LOOP

F39

*
ldaa #$7E
staa PV0C5
ldx #INTERRUPT*
stx PV0C5+1*
ldx #BASE*
ldaa #$FF
staa DDRC,X
ldaa #$08
staa TFLG1,X
staa
cli
rts

TMSK1,X

; initialize the digit to be
; displayed

; get extended op code for jump
; and store to pseudo vector 0C5
; get address of Interrupt
; Routine

; and store after jump in vector
; table
; get base address of the
; register block
; set port-C for output only
; get 0C5F bit
; set 0C5F bit of timer flag
; enable 0C5F interrupt
; enable interrupts

* *
* Subpgm: INIT
* Desc: initialize digit to be displayed and 0C5 interrupt
* *
INIT

Clr CUR DIGIT

* *

* ISR: INTERRUPT
* Desc: get the current free-running counter; add 4000 cycles,
* and store to OC5. Interrupt comes when the value in 0C5
* equals to the free-running counter
A *

INTERRUPT
ldd TCNT,X ; get free-running counter
addd #$A000 ; add $A000 cycles
std T0C5,X ; store to Output Compare

* ; Register 2
bclr TFLG1, X $F7 ; clear the OC2F bit for next

* ; use
rti

* *
* Subpgm: OUT_DIGIT
* Desc: Display the number on the 7-segment display
* *
OUT_DIGIT

push register X contents to stack
load the address of DIGITO
add value of reg B to index reg X
load digit/pin map
pop register X contents off stack
write to PORT C

#DIGIT0
pshx
ldx
abx
ldaa 0,X
pulx
staa PORTC,X
rts

* *
* Subpgm CLEAR
* Desc: clear the 7-segment display

F40

* *
CLEAR

ldaa #$00 ; Clear 7-segment display
staa PORTC,X
rts

* *

* DATA: Table of digit/Port-C pin mapping
* *
*
* - b o ---------
* -bl----
* - [+5v]-
*
*
* -
* -b2----
*
* Note: bit 4 of port-C is connected a piezo buzzer, and is
* used generate tic sound;
* [+5v] indicates connecting +5v pin to one of
* the 3 outlets specified by [+5v]*— --- - - - - - - - - - - - - - - —

* Port-C bits 7 6 5 4 3 2 1 0
DIGITO fcb $7F 0 1 1 1 1 1 1 1
DIGIT1 fcb $70 0 1 1 1 0 0 0 0
DIGIT2 fcb $DD 1 1 0 1 1 1 0 1
DIGIT3 fcb $F9 1 1 1 1 1 0 0 1
DIGIT4 fcb $F2 1 1 1 1 0 0 1 0
DIGITS fcb $BB 1 0 1 1 1 0 1 1
DIGIT6 fcb $BF 1 0 1 1 1 1 1 1
DIGIT7 fcb $71 0 1 1 1 0 0 0 1
DIGIT8 fcb $FF 1 1 1 1 1 1 1 1
DIGIT9 fcb $F3 1 1 1 1 0 0 1 1
CUR DIGIT rmb 2
* *

* End of Pgm
* *

j — [+ 5 V] - | b6---
J b7---
j b5---
j— [+5v]-
! b3---

F4]

* *
* Pgm: timepoll.asm
*
* Desc: use polling mechanism to mimic a modulo-9 counter.
* It reads the free-running counter, adds it to a delay time,
* and stores the result to Output Compare Register 2 (T0C2).
* The Output Compare Flag will be set when T0C2 value
* equal to the value of free-running counter. Since the
* cycle range of the free-running counter is about 32 ms
* for the 2MHz MCU, a number of iterations for 0C2 is
* performed. The program increments the digit to be displayed
* each second, and sends digit to a 7-segment LED from port-C.
*
* Author: ZUYI CHEN (University of Montana)
ft
* Date: June, 1992
A *

BASE equ $1000 •# base address of register block
PORTC equ $03 •

9 (offset from base address) port-C
DDRC equ $07 •

9 (offset) port-C control reg
TCNT equ $0E •

9 (offset) free-running counter
TFLG1 equ $23 •

9 (offset) timer flag 1
TOC 2 equ $18 •

9 (offset) output compare register 2
org $C000 •

9 pgm start on 68HC11 - EVB
ft
* MAIN
f t f t

ldx #BASE •
9 get base address of the registerft •
9 block

ldaa #$FF
staa DDRC,X •

9 set port-C for output only
clr CUR_DIGIT •/ initialize the digit to beft •

9 displayed
ldaa #$40 •

9 get 0C2F bit
staa TFLG1,X •

9 set 0C2F bit of timer flag
DIG_LOOP

jsr CLEAR •
9 Clear the display

ldab CUR DIGIT m
9 get CUR_DIGIT

jsr 0UT_DIGIT •
9 display it on 7-segment display

incb •
9 increment the digit

cmpb #10 •
9 if digit larger than 9 then reset

bne SKIP m
9 to 0

ldab #0
SKIP stab CUR DIGIT •

9 store to memory

F42

* *
* POLLING the free-running counter
* *

ldy #???? ; number of T_LOOP iterations mapping
* ; 1 sec
T LOOP

*

*

ldd TCNT,X ; get free-running counter
addd #4000 ; add 4000 cycles
std TOC2,X ; store to Output Compare Register :
brclr TFLG1,X $40 * ; wait for output compare
bclr TFLG1,X $BF ; clear the OC2F bit for next

; use
dey ; decrement count of OC2

; iteration
bne T LOOP
bra DIG LOOP ; start all over

* *
* Subpgm: OUT_DIGIT
* Desc: Display the number on the 7-segment display
f t *
OUT DIGIT

pshx
ldx #DIGITO
abx
ldaa 0,X
pulx
staa PORTC,X
rts

push register X contents to stack
load the address of DIGITO
add value of reg B to index reg X
load digit/pin map
pop register X contents off stack
write to PORT C

* *
* Subpgm CLEAR
* Desc: clear the 7-segment display
* *
CLEAR

ldaa #$00 ; Clear 7-segment display
staa PORTC,X
rts

* *
* DATA: Table of digit/Port-C pin mapping
* *
*
*
*
*
*
*
*
*
*

* Note: bit 4 of port-C is connected to a piezo buzzer, and is
* used to generate tic sound;
* [+5v] indicates connecting +5v pin to one of

-bO---- ,
-bl---- i i
- [+ 5 V]- i i i t

i i

—b2----
i i i i • 1 1

— [+5v]-
— b e —

 b7—
- — b 5 —
— [+5v]-
 b3--

P43

* the 3 outlets specified by [+5v]
* Port-C bits 7 6 5 4 3 2 1 0
DIGITO fcb $7F 0 1 1 1 1 1 1 1
DIGIT1 fcb $70 0 1 1 1 0 0 0 0
DIGIT2 fcb $DD 1 1 0 1 1 1 0 1
DIGIT3 fcb $F9 1 1 1 1 1 0 0 1
DIGIT4 fcb $F2 1 1 1 1 0 0 1 0
DIGIT5 fcb $BB 1 0 1 1 1 0 1 1
DIGIT6 fcb $BF 1 0 1 1 1 1 1 1
DIGIT7 fcb $71 0 1 1 1 0 0 0 1
DIGIT8 fcb $FF 1 1 1 1 1 1 1 1
DIGIT9 fcb $F3 1 1 1 1 0 0 1 1
CUR DIGIT rmb 2
* *
* End of Pgm
* *

F44

* Pgm trafficB.asm
*
* Desc: Implement a simple LED display driver for 68HC11 using
* output PORT-B. The LED display mimics a traffic signal
* with following order:
* a. 10-sec GREEN light on only
* b. 1-sec YELLOW light on only, then 1-sec lights off
* c. do (b) another 2 times
* d. 10-sec RED light on only
a e. go back to (a)
*
* Author: ZUYI CHEN (University of Montana)
* (based on lightsC.asm by Dr. Ray Ford of UM)
*
* Date: June, 1992

PORTB
DCOUNT
DELAY

equ
equ

$1004
$C000

; memory location of "port B"
; iterations of DLOOP loop in

org $cooo ; pgm start on 68HC11 - EVB
*

* MAIN
jsr CLEAR LED ; clear to start

LOOP

light
jsr
ldy
jsr

GREEN
? ? ? ?

DELAY

; turn on green light only
; set delay value 10 sec for green
; wait — green

a *

ldab #3
BLINK LOOP

jsr YELLOW
ldy j?????

light
jsr DELAY
jsr CLEAR_LED
ldy #????
jsr DELAY
decb
bne BLINK LOOP

light
jsr
ldy
jsr

RED
#????

DELAY

set value to blink yellow light 3
times
turn on yellow light only
set delay value 1 sec for yellow
wait — yellow
clear yellow
set delay value 1 sec for "clear"
wait — "clear"
decrement the value in reg B

back to BLINK_L00P if not 0 in reg
B
turn on red light only
set delay value 10 sec for red
wait — red

F45

bra LOOP ; go back to LOOP
* *

* Subpgm CLEAR_LED
* Desc: Send bits '0000 0000' to "port B"
* *

CLEARJLED
ldaa #00 ; load 0 to register A
staa PORTB ; send '0000 0000' to PORT B
rts ; return to calling routine

* * * * * * * * * * * * * A *

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subroutine
* entry. Note the number DLOOP iterations is hard-coded
* *

DELAY
ldx #DCOUNT ; load the value of DELAY COUNT

DLOOP
dex
bne DLOOP
dey
bne DELAY
rts

decrement index register X value
back to DLOOP if X value not 0
decrement index register Y count
back to DELAY if Y count not 0
return to calling routine

* *

* Subpgm GREEN
* Desc: turn on the GREEN LED, assumed to be connected
* to "port B" pin 0
* *

GREEN
ldaa #01 ; GREEN mapped to pin 0
staa PORTB ; send '0000 0001' to PORT B
rts

* *

* Subpgm YELLOW
* Desc: turn on the YELLOW LED, assumed to be connected
* to "port B" pin 1
* *

YELLOW
ldaa #02 ; YELLOW mapped to pin 1
staa PORTB ; send '0000 0010' to PORT B
rts

* *

* Subpgm RED
* Desc: Light the RED LED, assumed to be connected
* to "port B" pin 2
* *
RED

ldaa #04 ; RED mapped to pin 2
staa PORTB ; send '0000 0100' to PORT B

F46

rts

* End of Pgm
* *

* Pgm trafficC.asm
*
* Desc: Implement a simple LED display driver for 68HC11 using
* output PORT-C. The LED display mimics a traffic signal
* with following order:
* a. 10-sec GREEN light on only
* b. 1-sec YELLOW light on only, then 1-sec lights off
* c. do (b) another 2 times
* d. 10-sec RED light on only
* e. go back to (a)
*
* Author: ZUYI CHEN (University of Montana)
* (based on lightsC.asm by Dr. Ray Ford of UM)
*
* Date: June, 1992
* *

PORTC equ $1003
DDRC equ $1007
DCOUNT equ $C000
DELAY

org $C000

; memory location of "port C"
; PORT C control register
; iterations of DLOOP loop in

; pgm start on 68HC11 - EVB
* *

* MAIN
* * * * * * * * * * * * * a * * * * * * * * * * * * * * * * a * * * * * * * * * *

ldaa #$FF ; load register A with '1111 1111'
staa DDRC ; initialize PORT C for output only
jsr CLEAR_LED ; clear to start

LOOP
jsr
ldy
jsr

GREEN
#????
DELAY

; turn on green light only
; delay value 10 sec for green LED
; wait — green

* *

; value to blink yellow light 3 times
turn on yellow light only
delay value 1 sec for yellow LED
wait — yellow
clear yellow
set delay value 1 sec for "clear"
wait — "clear"
decrement the value in reg B
back to BLINK^LOOP if reg B not 0
turn on red light only
delay value 10 sec for red LED
wait — red
go back to LOOP

ldab #3
: l o o p
5sr YELLOW
ldy j?????
jsr DELAY
jsr CLEAR LED
ldy #????
jsr DELAY
decb
bne BLINK LOOP
jsr RED
ldy 1?????
jsr DELAY
bra LOOP

F48

* *

* Subpgm CLEAR_LED
* Desc: Send bits '0000 0000* to "port C"
* *

CLEAR_LED
ldaa #00 ; load 0 to register A
staa PORTC ; send '0000 0000' to PORT C
rts ; return to calling routine

* *
*

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
* entry. Note the number DLOOP iterations is hard-coded
* *

DELAY
ldx #DC0UNT ; load the value of DELAY COUNT

DLOOP
dex
bne DLOOP
dey
bne DELAY
rts

decrement index register X value
back to DLOOP if X value not 0
decrement index register Y count
back to DELAY if Y count not 0
return to calling routine

* *

* Subpgm GREEN
* Desc: turn on the GREEN LED, assumed to be connected
* to "port C" pin 0
* *

GREEN
ldaa #01 ; GREEN mapped to pin 0
staa PORTC ; send '0000 0001' to PORT C
rts

* *

* Subpgm YELLOW
* Desc: turn on the YELLOW LED, assumed to be connected
* to "port C" pin 1
* *

YELLOW
ldaa #02 ; YELLOW mapped to pin 1
staa PORTC ; send '0000 0010' to PORT C
rts

* 6 *

* Subpgm RED
* Desc: Light the RED LED, assumed to be connected
* to "port C" pin 2
* *

RED
ldaa #04 ; RED mapped to pin 2
staa PORTC ; send *0000 0100' to PORT C
rts

F49

* *

* End of Pgm
* *

F50

* *

* PGM: travelb.asm
*

* DESC: Program sends a signal to the output pins of the PORT B
* one at a time with 1/2 second delay in the following order:
* a. pin 7 on only *1000 0000'
* b. pin 6 on only '0100 0000’
* c. pin 5 on only '0010 0000'
* d. pin 4 on only *0001 0000'
* e. pin 3 on only '0000 1000'
* f. pin 2 on only '0000 0100'
* g. pin 1 on only '0000 0010'
* h. pin 0 on only '0000 0001*
* i. go back to (a)
* port B: general purpose output lines
* pins 42-35 correspond to bits 0-7
*

* Author: ZUYI CHEN (University of Montana)
* Date: June, 1992
* *

DELAY_A ""_COUNT equ • • • •

DLOOP COUNT equ 4000
PORTB" equ $1004

org $c000

; mapping to the nearest to 1/2
; second
; set value for the DLOOP in DELA1

; memory location for port B

* *

* MAIN
* *

PIN_POS ldaa #8 ; set value for the # of pins of PORT B
ldab #$80 ; load '1000 0000' to register B

LOOP stab PORTB ; send '1000 0000' to PORT B
ldy #DELAY_COUNT ; load value of specified by

DELAY_COUNT
jsr DELAY ; wait
???? ? shift right by 1 bit with

* ; previous bit turned off
deca ; decrement register A value
bne LOOP ; go to LOOP if pin 0 hasn't been

* ; reached
bra PIN_P0S

* *

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
entry.
* *

DELAY
ldx #DLOOP_COUNT ; hardcoded unit cycle delay

DLOOP deX ; decrement index register X value

F5]

bne DLOOP
dey
bne DELAY
rts

; back to DLOOP if X value not 0
; decrement index register Y count
; back to DELAY if Y count not 0
; return to calling routine

* END OF PROGRAM

F52

* PGM: travelc.asm
*

* DESC: Program sends a signal to the output pins of the PORT C
* one at a time with 1/2 second delay in the following order:
* a. pin 7 on only '1000 0000*
* b. pin 6 on only *0100 0000’
* c. pin 5 on only '0010 0000'
* d. pin 4 on only '0001 0000'
* e. pin 3 on only '0000 1000'
* f. pin 2 on only '0000 0100'
* g. pin 1 on only '0000 0010'
* h. pin 0 on only '0000 0001'
* i. go back to (a)
* port C: general purpose i/o lines
* pins 9-16 correspond to bits 0-7
*

* Author: ZUYI CHEN (University of Montana)
* Date: June, 1992

DELAY_COUNT
second

equ • * • •

DLOOP COUNT equ 4000
DDRC equ $1007
PORTC equ $1003

org $C000

ldaa #$FF
staa DDRC

mapping to the nearest to 1/2
set value for the DLOOP in DELAY
port C I/O control register
memory location for port C

send '1111 1111' to DDRC to
set PORTC output only

* MAIN
* * * * * * * * * * <r * * a * * * * a * * * * * * * * a * * * * * * a a * * * a a a * * a a * * * * * a* * a* * * a * * * * * *

PIN_P0S
LOOP
*

ldaa
ldab
stab
ldy
jsr????
deca
bne
bra

8
$ 8 0
PORTC
#DELAY COUNT
DELAY

LOOP

set value for the # of pins of PORT
load '1000 0000' to register B
send *1000 0000* to PORT C

load value of specified by
DELAY_COUNT
wait
shift right by 1 bit with
previous bit turned off
decrement register A value
go to LOOP if pin 0 hasn't been
reached

PIN POS

P53

a a

* Subpgm DELAY
* Desc: "busy wait" for the number of DELAY loop iterations
* specified by the value of index register Y at subprogram
* entry.
aaa
DELAY

ldx #DLOOP_COUNT
DLOOP dex

bne DLOOP
dey
bne DELAY
rts

hardcoded unit cycle delay
decrement index register X value
back to DLOOP if X value not 0
decrement index register Y count
back to DELAY if Y count not 0
return to calling routine

aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
* END OF PROGRAM
aaaaaaaaaaaaaaaaaaaaaaaaaaa aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

	Spiral model approach to microprocessor laboratory system design
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

