
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2009

Integration of Higher-Order Physics in the Community Ice Sheet Integration of Higher-Order Physics in the Community Ice Sheet

Model: Scientific and Software Concerns Model: Scientific and Software Concerns

Timothy Joseph Bocek
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Bocek, Timothy Joseph, "Integration of Higher-Order Physics in the Community Ice Sheet Model: Scientific
and Software Concerns" (2009). Graduate Student Theses, Dissertations, & Professional Papers. 584.
https://scholarworks.umt.edu/etd/584

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267579178?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/584?utm_source=scholarworks.umt.edu%2Fetd%2F584&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

INTEGRATION OF HIGHER-ORDER PHYSICS IN THE

COMMUNITY ICE SHEET MODEL: SCIENTIFIC AND SOFTWARE

CONCERNS

By

Timothy J. Bocek

Bachelor of Science, Computer Science, Washington State University, Pullman, WA,

2007

Thesis

presented in partial fulfillment of the requirements
for the degree of

Master of Science
in Computer Science

The University of Montana
Missoula, MT

Summer 2009

Approved by:

Dr. Perry Brown, Dean
Graduate School

Dr. Jesse Johnson, Chair
Computer Science

Dr. Joel Henry
Computer Science

Dr. Emily Stone
Mathematical Sciences

Bocek, Timothy J., M.S., August 2009 Computer Science

Integration of Higher-Order Physics in the Community Ice Sheet Model: Scientific

and Software Concerns

Chairperson: Dr. Jesse Johnson

The Community Ice Sheet Model (CISM) is a next-generation land ice model that
is designed to answer important questions regarding the response of Earth’s land
ice to climate forcing. The program extends Glimmer, an ice sheet model based
on the shallow ice approximation. This thesis concerns a project to ready CISM
for these questions by integrating an ice velocity diagnostic based on a first-order
approximation of the Navier-Stokes equations. I present in detail the derivation of
the first-order momentum balance equations for both the interior of an ice sheet and
a variety of boundary conditions. I discuss the numerical techniques used to build
and solve a finite difference approximation of these equations, as well as the software
engineering process and design solutions used to integrate this model with the rest of
CISM. I then build a case for the correctness of the integrated model by presenting the
results of numerous experiments that compare this model to data, exact solutions, and
a collection of similar models. I find that in most cases the integrated model performs
favorably in model intercomparisons and in comparisons to exact solutions. I finally
present possible future directions for the CISM project with respect to higher-order
ice modeling, as well as lessons learned for future maintainers.

ii

TABLE OF CONTENTS

ABSTRACT . ii

CHAPTER 1 INTRODUCTION . 1

1.1 Motivation for ice sheet modeling . 1

1.2 A Taxonomy of Ice Sheet Models . 2

1.3 Introducing CISM . 4

1.4 Thesis Organization . 5

CHAPTER 2 THE FIRST ORDER MOMENTUM BALANCE FOR

ICE SHEET MODELS . 7

2.1 Momentum Balance in the Ice Sheet Interior 7

2.1.1 Conservation Equations . 7

2.1.2 Deviatoric Stresses . 10

2.1.3 The Constitutive Relationship 12

2.1.4 Stress and Velocity . 15

2.2 Boundary Conditions . 16

2.2.1 Stress-Free Surface . 17

2.2.2 Basal Boundary Conditions 18

2.2.3 Stress-Free Base Condition . 22

2.2.4 Ice Shelf Lateral Boundary Condition 23

iii

CHAPTER 3 NUMERICAL APPROXIMATION 27

3.1 Rescaled Vertical Coordinate . 27

3.1.1 Derivation of Rescaling Parameters 29

3.1.2 Transformation of Equations 30

3.2 Finite Difference Approximation . 32

3.3 Solving the Linear System . 37

3.4 Nonlinear Iteration . 39

CHAPTER 4 SOFTWARE INTEGRATION 41

4.1 Code Structure . 43

4.2 Engineering Process . 49

4.2.1 Preparation of standalone code 49

4.2.2 Initial diagnostic integration 50

4.2.3 Physics and numerics refinement 51

4.2.4 Software design refinement . 51

4.2.5 Initial prognostic integration 52

4.3 Testing Process . 52

CHAPTER 5 MODEL VERIFICATION 55

5.1 ISMIP-HOM Experiments . 56

5.1.1 Description of Experiments 56

5.1.2 Results . 60

5.1.3 ISMIP-HOM D . 65

5.1.4 Effects of grid selection . 66

5.2 Idealized ice shelf experiments . 67

5.2.1 Constant thickness . 68

5.2.2 Van der Veen Ice Tongue . 69

iv

5.3 Ross ice shelf experiment . 72

5.3.1 Description of Experiment . 72

5.3.2 Results . 73

CHAPTER 6 CONCLUSION . 77

6.1 Lessons Learned . 77

6.2 Towards a true community model . 79

APPENDIX A GLIDE CONFIGURATION WITH HIGHER-ORDER

OPTIONS . 82

A.1 Introduction . 82

A.2 Documentation . 82

APPENDIX B GLIDE NETCDF VARIABLES 91

B.1 Introduction . 91

B.2 Documentation . 91

APPENDIX C SPARSE MATRIX DOCUMENTATION 96

C.1 User documentation . 96

C.1.1 Modules . 96

C.1.2 Setting up a linear system . 96

C.1.3 Solving a linear system . 98

C.1.4 Handling errors . 101

C.2 Developer documentation . 102

BIBLIOGRAPHY . 102

v

LIST OF TABLES

Table 2.1 Physical constants in first-order ice sheet model 9

Table 5.1 ISMIP-HOM A Refinement Results 67

Table 5.2 ISMIP-HOM C Refinement Results 68

Table 5.3 Constants for ice tongue experiment 70

Table 5.4 ROSS error intercomparison 76

vi

LIST OF FIGURES

Figure 3.1 Sigma coordinate system . 28

Figure 3.2 Mask field . 35

Figure 3.3 Numeric discretization at shelf front 36

Figure 4.1 Illustration of staggered and nonstaggered grids. 42

Figure 4.2 Conceptual static code structure 45

Figure 4.3 Implemented static code structure 47

Figure 5.1 Results for ISMIP-HOM A 61

Figure 5.2 Results for ISMIP-HOM B 63

Figure 5.3 Results for ISMIP-HOM C 64

Figure 5.4 Van der Veen ice tongue velocity comparison 71

Figure 5.5 Map of velocities computed for EISMINT-Ross 74

Figure 5.6 EISMINT-Ross RIGGS station comparisons 75

vii

1

CHAPTER 1 INTRODUCTION

1.1 Motivation for Ice Sheet Modeling

Within the last several years, the causes and effects of climate change have become

a central issue. Investigating this issue poses two broad questions: what climate

change scenarios are likely given different levels of anthropogenic climate forcing, and

given a scenario, what will be the ecological and economic impact? Ten percent of

the world’s population lives less than one meter above sea level, and even a relatively

small change in sea level could have very destructive effects. Therefore, central to the

latter question is the issue of sea level rise.

It is thought that the change in sea level over the next century will be caused

by two factors: melting ice, and thermal expansion of the oceans [Watson, 2001].

Although thermal expansion will likely contribute more change than melting ice, it

is a relatively well-understood process and there is little uncertainty [Watson, 2001].

Additionally, though the melting of alpine glaciers has potential to contribute more

change than the melting of major ice sheets, the problem is not as heavily studied as

it is thought that these will be fully melted by end of the century [Watson, 2001]. I

therefore turn my attention in this thesis to the issue of melting of the Earth’s major

ice sheets in Greenland and Antarctica.

The Antarctic and Greenland ice sheets, if fully melted, would contribute enough

2

water to Earth’s oceans to raise the sea level 64 m [Lythe and Vaughan, 2001] [Bamber

et al., 2001] [Watson, 2007]. On the other hand, the influence of glaciers and ice

sheets on sea level rise from 1993 to 2003 is estimated at 1.2 ± 0.4mm/a [Watson,

2007]. Naively assuming that these trends remain constant during the next century,

we will see at most 16 cm of sea level change. Clearly, neither of these are realistic

scenarios. More informed estimates predict that melting ice during the next century

could contribute as much as 34 cm to sea level rise, but could also reduce the sea level

by up to 9 cm [Watson, 2001]. Improving upon these estimates requires an improved

understanding of how the Earth’s glaciers, including the Greenland and Antarctic ice

sheets, will respond to climate change. The ability to model these systems is therefore

an important effort towards the overall goal of understanding the impacts of climate

change. Often, these models take the form of computer simulations based on fluid

dynamics.

1.2 A Taxonomy of Ice Sheet Models

To fully model the motion of ice, one must solve a number of coupled equations.

Ignoring concerns such as temperature advection, there are two such equations. The

diagnostic equation specifies a field of velocities within the ice sheet, and the prognos-

tic or transport equation uses the computed velocities to specify how the thickness

of the ice sheet changes over time. Because thickness gradients in part determine ve-

locity, this leads to a coupled situation; while time-stepping the thickness equations,

one must recompute the velocities at regular intervals. This thesis will focus mainly

on the diagnostic equation.

At some level, nearly all ice sheet diagnostic models treat ice as an incompressible

non-Newtonian fluid and begin by modeling the balance of stresses that arises from

3

the Stokes equations for incompressible flow [Hooke, 1998]. Models mainly differ in

how many of these stresses are included in the model and how many are neglected in

order to simplify the computation. A model that includes everything is referred to as

a full-Stokes model. These are the “holy grail” of ice sheet models, and can currently

be deployed for small-scale work but are still impractical on continental scales due to

their computational intensity. Therefore, most models apply simplifying assumptions

to reduce computational complexity.

The most basic simplification arises from the assumption that all ice flow is due to

vertical deformation in response to the gravitational driving stress. This assumption

is valid as long as the ice is very thin in comparison to its extent; it is therefore referred

to as the Shallow Ice Approximation (SIA) [Hutter, 1983]. This is a popular model

due to its computational simplicity: ice physics are based only on local geometry

gradients [Hutter, 1983], and therefore the influence of the ice sheet on a given point

is limited to the immediate vicinity. Additionally, the SIA assumes that the ice is

“glued” to the bed - it does not its self take into account the fact that ice can slide over

a lubricated bed [Bueler and Brown, 2009], but this shortcoming is often ameliorated

by computing basal velocities in a separate, simple model known as a sliding law and

adding them to the SIA-derived velocities (e.g. [Greve, 1997], [Huybrechts, 1999]).

While valid for large portions of the Antarctica and Greenland ice sheets, the SIA

fails in several critical regions: namely, streams of fast-moving ice as well as ice shelves,

or regions of floating ice. In these cases, changes in the ice sheet’s geometry and

velocity can occur on relatively short timescales, which the shallow ice approximation

fails to capture [Watson, 2007]. Remote sensing data have confirmed that these short

time scale effects are observed, thereby further calling the suitability of models based

on the SIA into question [Oppenheimer and Alley, 2007].

The Shallow Shelf Approximation (SSA) ameliorates these concerns for ice shelf

4

regions by modeling vertically averaged ice motion instead the local balance of grav-

itational driving stress [Morland, 1987] [Weis et al., 1999]. Unlike the SIA, the SSA

models longitudinal stresses, or the ability for ice to push and pull upstream and

downstream ice. This leads to a critical computational difference: the physics in SSA

models are based on non-local effects. While solving for velocities in a SIA model is

little more than a matter of numeric differentiation, solving for velocities in a model

that applies the SSA or a higher approximation requires solving a partial differential

equation. The addition of longitudinal stresses allows the SSA to capture salient

physics in ice shelf and ice stream regions. Because of the vertically averaged nature,

however, the SSA does not perform well in areas where there is little velocity at the

base of the ice sheet, and it is these areas where the SIA performs well. Some models

have treated grounded ice using the SIA and floating ice using the SSA, though com-

plexity arises in these models when treating the grounding line and other boundaries

between SIA-governed flow and SSA-governed flow Hindmarsh [2006]. More modern

attempts construct a hybrid SIA-SSA model by using the latter as a more realistic

sliding law for the former [Pollard and DeConto, 2007], [Bueler and Brown, 2009].

On the whole, however, it is difficult to treat an entire system holistically using only

shallow approximations.

Modern computational prowess has advanced to the point where it is feasible to

discard these simplifications and treat a sheet-shelf system holistically using a single

model. Though full Stokes is still out of reach, it is possible to apply fewer simplifying

assumptions and build a higher-order model. These higher-order models differ from

the SIA by including a treatment of longitudinal stresses, and differ from both of

the shallow approximations by incorporating lateral drag as well [Hindmarsh, 2004].

Higher-order models differ from full-Stokes models by excluding the vertical shear

stresses on horizontal planes [Pattyn, 2003]; this will be discussed in much more

5

detail in Chapter 2.

Higher-order stress treatments can be either vertically averaged or fully three-

dimensional [Hindmarsh, 2004]. Three-dimensional models require more time to

compute but do not require an artificial recovery of the third dimension in order

to compute temperature advection within the ice sheet. In a numerical comparison

of ice sheet solutions using perturbative methods, Hindmarsh [2004] found three-

dimensional methods to be vastly superior to SIA models and slightly better than

vertically averaged (SSA) models. However, though the vertically explicit treatment

does only slightly better for regions where the SSA is valid, it is able to compute

velocities in regions where the SSA cannot due to a low velocity at the base of the

ice sheet. Therefore, unlike the SSA, higher-order approximations are able to treat

an entire sheet-stream-shelf system holistically.

1.3 Introducing CISM

A problem currently facing the global community of ice sheet modelers is fragmen-

tation of community software. It has been suggested [Oppenheimer and Alley, 2007]

that a “community ice sheet model”, providing a framework consisting of existing

implementations of most model components as well as facilities to couple to larger

climate models, would be beneficial to the community. This would provide a starting

point for researchers interested in improving models, and would represent an open,

off-the-shelf software component for researchers investigating the impact of climate

change. This “community model” approach has been used before, as in NCAR’s Com-

munity Climate System Model (CCSM) [Drake et al., 2005], to which the community

ice sheet model will contribute land ice physics.

Currently, Glimmer is the primary candidate for becoming this community ice

6

sheet model. As described by Rutt et al. [2009], Glimmer is a ice model based on the

shallow-ice approximation that includes thermomechanical coupling and sliding laws.

The strengths of this model is that it is includes facilities for coupling with global cli-

mate models, is supported by an active development community that focuses both on

scientific and software engineering concerns, and is already a strong implementation

of the SIA from which to begin work on extensions.

As we have seen, however, the set of physics currently implemented in Glimmer

have proven inadequate. In order to be useful as a next-generation ice sheet model,

Glimmer must be able to make predictions based on higher-order physical approxima-

tions. A development effort to this end is being headed by the University of Montana

and Los Alamos National Laboratories (LANL) To reflect both the new model’s role

in response to the recommendation above as well as its role as a component in CCSM,

the new version of the model has been called the Community Ice Sheet Model (CISM).

More recently, out of respect for the model’s history and pedigree, the full name of

the model has been chosen to be Glimmer/CISM. When referring to the model in

this thesis, I will use “Glimmer” to refer to the original version of the model that we

have been extending, and “CISM” to refer to the version of the model that is a result

of this development.

1.4 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides a detailed derivation of the first order diagnostic model

implemented, including a discussion of boundary conditions.

• Chapter 3 discusses the methods used to solve the equations derived in Chapter

7

2, including the finite difference discretization and the numerical methods for

solution.

• Chapter 4 presents a software engineering case study of integrating the first

order model with CISM.

• Chapter 5 describes a number of simple experiments to verify the correct-

ness of the first order model implementation using both exact solutions and

intercomparison projects.

• Chapter 6 contains concluding remarks and suggests directions for future work.

8

CHAPTER 2 THE FIRST ORDER MOMENTUM

BALANCE FOR ICE SHEET MODELS

I have integrated into CISM an improved version of Frank Pattyn’s first order model

[Pattyn, 2003]. This model simplifies the full Stokes equations by neglecting vertical

resistive stresses [Pattyn, 2003]. This arises from the simplifying assumption that the

pressure at any point in the ice is due only to the weight of the ice above it and not

due to resistance to motion; this is also known as the cryostatic approximation. As

we will see, this assumption has a major computational advantage. A proper full-

Stokes model solves for four three-dimensional fields: three components of velocity

and a scalar pressure [Versteeg and Malalasekera, 1995]. By assuming the hydrostatic

approximation, we no longer need to solve for pressure, and can reconstruct the

vertical velocity field using the fact that ice is incompressible [Pattyn, 2003]. This

reduces the complexity of the computation considerably, reducing the number of

variables from four to two: namely, the 3D horizontal fields of velocity.

2.1 Momentum Balance in the Ice Sheet Interior

2.1.1 Conservation Equations

To derive the first-order model, I begin by stating the laws of conservation of

mass, momentum, and energy as they apply to an incompressible fluid [Versteeg and

Malalasekera, 1995]. Consider an infinitely small “control volume” of ice. The law

9

of conservation of mass in this context states that the rate of increase of the mass of

the control volume must equal the net rate of flow into the control volume [Versteeg

and Malalasekera, 1995]. With an incompressible fluid such as ice, the mass of a

control volume cannot change, so this law reduces to the fact that any flow into the

control volume must be balanced by flow out of the control volume [Versteeg and

Malalasekera, 1995]. Stated formally,

∇ · v = 0 (2.1)

where v is the velocity vector.

Conservation of momentum is a statement of Newton’s second law as applied to

fluid dynamics: the rate of change of momentum equals the sum the forces [Versteeg

and Malalasekera, 1995]. If one considers a control volume of ice, the rate of change

of momentum (or the density times the acceleration) equals the sum of the forces due

to stress on the control volume and the force of gravity [Pattyn, 2003]. Formally,

ρi
dv

dt
= ∇ ·T + ρig (2.2)

where T is the total stress tensor, and ρi and g are the density of ice and gravita-

tional acceleration respectively. The value of these and other physical constants are

given in Table 2.1. Here I can neglect the non-gravitational acceleration term due the

Froude number of ice being of the order 10−12 (the acceleration term is 1012 times

smaller than the gravitational terms).

0 = ∇ ·T + ρig (2.3)

The conservation of energy is a statement of the first law of thermodynamics: the

10

Symbol Meaning Value
g Acceleration due to gravity 9.81 m s−2

ρi Density of ice 910 kg m−3

ρw Density of ocean water 1028 kg m−3

n Exponent in Glen’s flow law 3
ki Thermal conductivity of ice 6.62× 10−7 J m−1 K−1 yr−1

cp Heat capacity of ice 2009J kg−1 K−1

Table 2.1 Physical constants in first-order ice sheet model

rate of change of energy is equal to the rate of heat addition plus the rate of work

done [Versteeg and Malalasekera, 1995]. Formally,

ρi
d(cpθ)

dt
= ∇(ki∇θ) + Φ. (2.4)

Here θ is the ice temperature, ki and cp are the thermal conductivity and heat

capacity of ice, and Φ is the rate of heating as a result of internal deformation.

This equation is used to described the flow of temperature through an ice sheet,

which in turn affects the hardness of the ice and therefore its velocity. In general,

I would need to develop this equation alongside the equations for conservation of

mass and momentum. Although Pattyn’s original model did include temperature

as a dependant variable, temperature advection in CISM is handled by a different

software component [Rutt et al., 2009]. I will therefore turn my attention away from

solving for the temperature field and instead focus on solving for the velocities within

the ice.

I now begin to develop the first-order diagnostic model by applying our simpli-

fying assumptions. Because the model was originally developed by Pattyn [2003], I

will follow his derivation throughout, changing notation and expanding discussion as

needed. I expand the conservation of mass, using the common notation of referring

11

to velocity components as u, v, and w:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 (2.5)

I define the coordinate system so that the top of the ice sheet is at z = 0, with

positive numbers denoting lower elevations. This restricts gravitational influence to

the z dimension, and allows me to expand the momentum equation as

∂Txx
∂x

+
∂Txy
∂y

+
∂Txz
∂z

= 0

∂Tyx
∂x

+
∂Tyy
∂y

+
∂Tyz
∂z

= 0 (2.6)

∂Tzx
∂x

+
∂Tzy
∂y

+
∂Tzz
∂z

= ρig.

Because vertical resistive stresses are neglected, I drop the Tzx and Tzy derivatives

in the third equation

∂Tzz
∂z

= ρig. (2.7)

A proper solution to this system of equations would give a velocity vector field

and a stress tensor field. In order to do that, however, I would need to solve for ten

variables (neglecting Tzx and Tzy) using a system of four equations. To say that this

is grossly underdetermined would be an understatement! My strategy, then, is to

relate stress and velocity in such a way that I need only solve for the three velocity

components.

12

2.1.2 Deviatoric Stresses

Some additional transformations, however, are needed before directly relating the

stresses and velocities. First, it has been established that the strain rates in ice do

not depend on cryostatic pressure but on the differences between stresses in points

on the ice sheet of similar depth [Hooke, 1998]. I can estimate the cryostatic pressure

as the mean of the normal stresses

P =
1

3
(Txx + Tyy + Tzz). (2.8)

Thus, I define the deviatoric stress tensor as a stress tensor that neglects the stresses

arising from cryostatic pressure

T ′ij = Tij −
1

3
δij(Txx + Tyy + Tzz). (2.9)

Here, i, j ∈ x, y, z. The Kroneker Delta, δij, is one if i = j, and zero otherwise.

In order to substitute deviatoric stresses for total stresses, I form the system of

equations

Txx = T ′xx +
1

3
(Txx + Tyy + Tzz) (2.10)

Tyy = T ′yy +
1

3
(Txx + Tyy + Tzz).

Solving the linear system for Txx and Tyy gives

13

Txx = 2T ′xx + T ′yy + Tzz (2.11)

Tyy = 2T ′yy + T ′xx + Tzz.

I can remove the Tzz term by vertically integrating ∂Tzz
∂z

= ρig from the surface zs

to a height z in the ice sheet, resulting in

Tzz(z) = −ρig(zs − z). (2.12)

Thus:

Txx = 2T ′xx + T ′yy − ρig(zs − z) (2.13)

Tyy = 2T ′yy + T ′xx − ρig(zs − z).

2.1.3 The Constitutive Relationship

I relate the deviatoric stress tensor to velocity gradients by equating each with the

time derivative of strain, a measure of ice deformation. The deviatoric stress T′ and

strain rate ε̇ are related nonlinearly by a Glen-type flow law [Paterson, 1994]

T ′ij = 2µε̇ij (2.14)

with the effective viscosity µ given by

µ =
A
−1
n

2
ε̇

1−n
n . (2.15)

14

Here n is the flow law exponent, and defines the strength of the nonlinearity between

stress and strain rate, usually taken to be 3. A is a thermomechanical coupling

parameter, usually given by an Arrhenius relationship [Pattyn, 2003]. This is the ice

hardness parameter that, as mentioned earlier, is computed using equations derived

from the conservation of energy. Again, it is not elaborated in this model because

its computation is the responsibility of other CISM modules [Rutt et al., 2009]. For

many basic experiments it is taken as a constant 10−16 (as in Pattyn et al. [2008]) or

10−18 (as in MacAyeal et al. [1996]). Finally, ε̇ is the second invariant of the strain

rate tensor [Pattyn, 2003] [Hooke, 1998], given by

ε̇ =
√
ε̇2xy + ε̇2yz + ε̇2zx − ε̇xxε̇yy − ε̇yy ε̇zz − ε̇zz ε̇xx + ε0 (2.16)

.

ε0 is a small regularization (currently 10−30) that is added in practice to ε̇ in order

to avoid a division by zero, particularly in the case of a frozen bed [Pattyn, 2003].

I now formulate the viscosity term µ in terms of velocities rather than strain rates.

In a full Stokes model, the relationship between strain rates and velocity is defined

as [Hooke, 1998]


ε̇xx ε̇xy ε̇xz

ε̇yx ε̇yy ε̇yz

ε̇zx ε̇zy ε̇zz

 =


∂u
∂x

1
2
(∂u
∂y

+ ∂v
∂x

) 1
2
(∂u
∂z

+ ∂w
∂x

)

1
2
(∂v
∂x

+ ∂u
∂y

) ∂v
∂y

1
2
(∂v
∂z

+ ∂w
∂y

)

1
2
(∂w
∂x

+ ∂u
∂z

) 1
2
(∂w
∂y

+ ∂v
∂z

) ∂w
∂z

 . (2.17)

A second simplifying assumption of the first order model, left out until now for

clarity, is that I can neglect the horizontal gradients of the vertical velocity as they

are much smaller than the vertical gradients of the horizontal velocity. I apply this

assumption to arrive at

15


ε̇xx ε̇xy ε̇xz

ε̇yx ε̇yy ε̇yz

ε̇zx ε̇zy ε̇zz

 =


∂u
∂x

1
2
(∂u
∂y

+ ∂v
∂x

) 1
2
∂u
∂z

1
2
(∂v
∂x

+ ∂u
∂y

) ∂v
∂y

1
2
∂v
∂z

1
2
∂u
∂z

1
2
∂v
∂z

∂w
∂z

 . (2.18)

This simplifying assumption has allowed us to neglect the vertical component of

velocity when solving for the velocity fields, then reconstruct it using the incompress-

ibility condition. In order to remove our dependence on the vertical velocity entirely, I

use the law of conservation of mass to remove all ε̇zz factors from the second invariant

of the strain rate tensor. Rearranging terms from the conservation of mass equation:

∂w

∂z
= −

(
∂u

∂x
+
∂v

∂y

)
. (2.19)

From the strain rate tensor definition above, this is equivalent to

ε̇zz = −(ε̇xx + ε̇yy). (2.20)

Performing this substitution in the second invariant of the strain rate tensor given

above and rearranging terms leads to an alternate form that has no dependence on

the vertical velocity:

ε̇ =
√
ε̇2xy + ε̇2yz + ε̇2xz + ε̇xxε̇yy + ε̇2yy + ε̇2xx + ε0. (2.21)

I can now finally expand the strain rate invariant factor in the viscosity and perform

substitutions so that viscosity is formulated in terms of velocity gradients rather than

strain rates:

16

µ =
A
−1
n

2
ε̇

1−n
n (2.22)

µ =
A
−1
n

2
(ε̇2xy + ε̇2yz + ε̇2xz + ε̇xxε̇yy + ε̇2yy + ε̇2xx)

1−n
2n (2.23)

µ =
A
−1
n

2

(
1

4

(
∂u

∂y
+
∂v

∂x

)2

+
1

4

(
∂u

∂z

)2

+
1

4

(
∂v

∂z

)2

+

(
∂u

∂x

)2

+

(
∂v

∂y

)2

+
∂u

∂z

∂v

∂y

) 1−n
2n

.

(2.24)

2.1.4 Stress and Velocity

Given this relationship of both deviatoric stresses and velocities to strain rates, I

can now achieve our goal of reducing the original conservation equations to a system

of differential equations for the velocity components only. This will lead us to a set of

coupled elliptic partial differential equations that can be numerically approximated

to find the u and v components of the velocity field. Let us return to the first two

equations in the system resulting from the conservation of momentum

∂Txx
∂x

+
∂Txy
∂y

+
∂Txz
∂z

= 0 (2.25)

∂Tyx
∂x

+
∂Tyy
∂y

+
∂Tyz
∂z

= 0.

I want to express this equation in terms of the deviatoric stress rather than the

total stress. Applying the substitutions derived above leads to

17

∂

∂x
(2T ′xx + T ′yy) +

∂T ′xy
∂y

+
∂T ′xz
∂z

= ρig
∂zs
∂x

(2.26)

∂

∂y
(2T ′yy + T ′xx) +

∂T ′xy
∂y

+
∂T ′yz
∂z

= ρig
∂zs
∂y

.

Using Glen’s flow law and the simplification of strain rates given in Equation ??,

the stress tensor can be written as


T ′xx T ′xy T ′xz

T ′yx T ′yy T ′yz

T ′zx T ′zy T ′zz

 =


2µε̇xx 2µε̇xy 2µε̇xz

2µε̇yx 2µε̇yy 2µε̇yz

2µε̇zx 2µε̇zy 2µε̇zz

 =


2µ∂u

∂x
µ(∂u

∂y
+ ∂v

∂x
) µ∂u

∂z

µ(∂v
∂x

+ ∂u
∂y

) 2µ∂v
∂y

µ∂v
∂z

µ∂u
∂z

µ∂v
∂z

2µ∂w
∂z

 .

(2.27)

Directly substituting into the force balance equations gives

∂

∂x

(
4µ
∂u

∂x
+ 2µ

∂v

∂y

)
+

∂

∂y

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂u

∂z

)
= ρig

∂zs
∂x

(2.28)

∂

∂y

(
4µ
∂v

∂y
+ 2µ

∂u

∂x

)
+

∂

∂x

(
µ
∂u

∂y
+ µ

∂v

∂x

)
+

∂

∂z

(
µ
∂v

∂z

)
= ρig

∂zs
∂y

.

These equations show that the first order model can be thought of as augmenting

the SSA with the vertical diffusion of velocity ∂
∂z

(
µ∂u
∂z

)
. If this term were removed,

a vertically averaged membrane stress would be equated with the source term, which

is the basis of the SSA.

Finally, I expand the nested derivatives and rearrange terms based on the obser-

vation that each equation in this coupled system solves for a one component. Thus,

each equation has the component that it is solving for (u and v respectively) on

18

the left-hand side, and terms related to the orthogonal velocity component (v and u

respectively) on the right-hand side:

U : 4
∂µ

∂x

∂u

∂x
+
∂µ

∂y

∂u

∂y
+
∂µ

∂z

∂u

∂z
+ µ

(
4
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= ρig

∂zs
∂x
− 2

∂µ

∂x

∂v

∂y
− ∂µ

∂y

∂v

∂x
− 3µ

∂2v

∂x∂y
(2.29)

V : 4
∂µ

∂y

∂v

∂y
+
∂µ

∂x

∂v

∂x
+
∂µ

∂z

∂v

∂z
+ µ

(
4
∂2v

∂y2
+
∂2v

∂x2
+
∂2v

∂z2

)
= ρig

∂zs
∂y
− 2

∂µ

∂y

∂u

∂x
− ∂µ

∂x

∂u

∂y
− 3µ

∂2u

∂x∂y
.

2.2 Boundary Conditions

The interface of the ice sheet and a different medium such as ocean, air, or bedrock

provides a constraint on the stress tensor at the interface. These constraints translate

to a (usually Neumann-type) boundary condition on the differential equations for the

velocity field. These boundary conditions and their derivations will now be presented.

2.2.1 Stress-Free Surface

The stress-free boundary condition occurs at the surface of the ice sheet and spec-

ifies that the shear stress parallel to the surface is zero [van der Veen, 1999]. This

condition can be formalized [MacAyeal, 1996b] as

T · n̂s = 0. (2.30)

Where T is the total (not deviatoric) stress tensor and n̂s is a unit vector normal

to the surface of the ice sheet. I derive n̂s by normalizing

19

ns =


−∂zs

∂x

−∂zs
∂y

1

 , (2.31)

where zs is the elevation of the top of the ice sheet. Expanding the tensor dot

product and ignoring the vertical resistive stresses gives the force balance for the

upper boundary condition

Txx
∂zs
∂x

+ Txy
∂zs
∂y
− Txz = 0

Tyx
∂zs
∂x

+ Tyy
∂zs
∂y
− Tyz = 0 (2.32)

−Tzz = 0.

Using the transformation from total stress to deviatoric stress, and observing that

the term ρig(zs− z) is zero since z = zs, I arrive at the stress-free surface in terms of

deviatoric stresses

(2T ′xx + T ′yy)
∂zs
∂x

+ T ′xy
∂zs
∂y
− T ′xz = 0 (2.33)

(2T ′xx + T ′yy)
∂zs
∂y

+ T ′yx
∂zs
∂x
− T ′yz = 0.

Applying the constitutive relationship, and noting that I can divide through the

constant factor µ, I arrive at

20

(
4
∂u

∂x
+ 2

∂v

∂y

)
∂zs
∂x

+

(
∂u

∂y
+
∂v

∂x

)
∂zs
∂y
− ∂u

∂z
= 0 (2.34)(

4
∂v

∂y
+ 2

∂u

∂x

)
∂zs
∂y

+

(
∂u

∂y
+
∂v

∂x

)
∂zs
∂x
− ∂v

∂z
= 0.

Expanding and rearranging as I did for the interior equations,

4
∂u

∂x

∂zs
∂x

+
∂u

∂y

∂zs
∂y
− ∂u

∂z
= −2

∂v

∂y

∂zs
∂x
− ∂v

∂x

∂zs
∂y

(2.35)

4
∂v

∂y

∂zs
∂y

+
∂v

∂x

∂zs
∂x
− ∂v

∂z
= −2

∂u

∂x

∂zs
∂y
− ∂u

∂y

∂zs
∂x

.

2.2.2 Basal Boundary Conditions

A number of different models exist to approximate the effects of different bed

compositions. In the simplest case corresponding to a SIA model without a sliding

law, the ice is simply frozen to the bed. In this case, I apply a Dirichlet boundary at

the base the ice shelf that specifies that the velocity there is zero. A more complex

bed model with a high bed strength has also been used successfully.

More interesting results, however, come from allowing the ice sheet to slide over

the bed according to a model of the tendency of the bed to deform as ice moves over

it [Schoof, 2006]. The two most commonly used models for bed deformation are for

plastic and power law materials. Plastic bed models are believed to be appropriate

for ice that rests on marine sediments, whereas a power law relation for bed strength

may be more appropriate for ice resting on a layer of exposed bedrock.

A model for basal traction in cases where the bed consists of exposed bedrock is

formulated as a power law material. At the moment, I restrict the power law exponent

21

to be 1, resulting in a linear model. To derive the force balance in this case, I divorce

ourselves from a particular coordinate system and observe that given any unit vector

tangential to the bedrock t̂, the traction can be expressed by taking the projection

of basal drag onto that vector [Pattyn et al., 2008], as in

β2t̂ · v = t̂ · (T · n̂b) = τb, (2.36)

where n̂b is a unit vector normal to the lower surface and pointing into the bedrock

that I obtain by normalizing

nb =


∂zb
∂x

∂zb
∂y

−1

 , (2.37)

where zb is the elevation of the base of the ice sheet. Because of the dot product,

this produces only one equation, but since I am solving for the x and y components

of velocity, I need two. But, because the equation is true for any tangent vector,

and there are infinitely many tangent vectors to a surface, I can produce a linearly

independent set of equations by choosing linearly independent tangent vectors. I

choose

22

tx =


1

0

∂zb
∂x

 (2.38)

ty =


0

1

∂zb
∂y

 ,

which work nicely with the coordinate system to break τb into components τbx and

τby This gives the system of equations

β2 tx

||tx||
· v =

tx

||tx||
·
(

T
nb

||nb||

)
= τbx (2.39)

β2 ty

||ty||
· v =

ty

||ty||
·
(

T
nb

||nb||

)
= τby.

Expanding the vector and tensor products, I get

β2||nb||
(
u+ w

∂zb
∂x

)
= Txx

∂zb
∂x

+ Txy
∂zb
∂y
− Txz − Tzz

∂zb
∂x

(2.40)

β2||nb||
(
u+ w

∂zb
∂y

)
= Tyx

∂zb
∂x

+ Tyy
∂zb
∂y
− Tyz − Tzz

∂zb
∂y

.

I make the assumption here that the vertical velocity component at the base is much

larger than the horizontal component, which is valid at the bed as long as bedrock

gradients are not too large and melt rates are negligible. Hence, I drop the w terms

in the left hand side and substitute deviatoric stresses for total stresses, observing

23

that the pressure at the base is ρigH, giving

β2u||nb|| = (2T ′xx + T ′yy − ρigH)
∂zb
∂x

+ T ′xy
∂zb
∂y
− T ′xz + ρigH

∂zb
∂x

(2.41)

β2v||nb|| = (2T ′yy + T ′xx − ρigH)
∂zb
∂y

+ T ′yx
∂zb
∂x
− T ′yz + ρigH

∂zb
∂y

.

Finally, the pressure terms cancel and I apply the constitutive relationship to reach

β2u||nb|| = 2µ

(
2
∂u

∂x
+
∂v

∂y

)
∂zb
∂x

+ µ

(
∂u

∂y
+
∂v

∂x

)
∂zb
∂y
− µ∂u

∂z
(2.42)

β2v||nb|| = 2µ

(
2
∂v

∂y
+
∂u

∂x

)
∂zb
∂y

+ µ

(
∂u

∂y
+
∂v

∂x

)
∂zb
∂x
− µ∂u

∂z
.

Finally, rearranging terms gives

U : 4µ
∂u

∂x

∂zb
∂x

+ µ
∂u

∂y

∂zb
∂y
− µ∂u

∂z
= β2u||nb|| − 2µ

∂v

∂y

∂zb
∂x
− µ∂v

∂x

∂zb
∂y

(2.43)

V : 4µ
∂v

∂y

∂zb
∂y

+ µ
∂v

∂x

∂zb
∂x
− µ∂v

∂z
= β2v||nb|| − 2µ

∂u

∂x

∂zb
∂y
− µ∂u

∂y

∂zb
∂x

.

The formulation for basal traction due a to plastic bed is given by Schoof [2006] as

τ0t̂ ·
v

|v|
= t̂ · (Tn̂b) = τb, (2.44)

where |v| = (u2 + v2)
1
2 .

The rest of the formulation in the linear bed case is valid for this case as well,

though with β2 = τ0

(u2+v2)
1
2

. However, is a much harder problem to solve because the

strength of the nonlinearity is greater. In general, the type of boundary condition

24

is prescribed based on the type of till that the glacier flows over: in the case of ice

flow directly over bedrock, a linear bed model is preferred, but in cases where ice is

flowing over a deformable till the plastic bed model is preferred. When working with

real-world ice geometries, nontrivial inverse modelling is needed to specify the exact

nature of the basal boundary condition [Bueler and Brown, 2009].

2.2.3 Stress-Free Base Condition

Finally, we must consider the lower boundary condition of an ice shelf. In this

case, I balance the outward-facing lower surface normal with hydrostatic pressure

MacAyeal [1996b]. Assuming the ice shelf is floating in equilibrium, the lower surface

will be at elevation − ρi
ρw
H. Then,

Tn̂b = −ρwg(
ρi
ρw
H)n̂b (2.45)

where again, n̂b is the outward-facing normal unit vector to the ice surface that is

a normalization of

nb =


∂zb
∂x

∂zb
∂y

−1

 , (2.46)

Unlike the linear bed case above, I do not formulate this in terms of tangents

to the lower surface because there is no resistance; the formulation of this boundary

condition more closely resembles the stress-free boundary condition above. Expanding

the tensor product and canceling the normalization factor gives three equations

25

Txx
∂zb
∂x

+ Txy
∂zb
∂y
− Txz = −ρigH

∂zb
∂x

Txy
∂zb
∂x

+ Tyy
∂zb
∂y
− Tyz = −ρigH

∂zb
∂y

(2.47)

−Tzz = ρigH.

Notice that I have simplified the right-hand side in a somewhat revealing way.

Because I have assumed hydrostatic equilibrium, of course the ice shelf will float so as

to equalize pressure inside and outside of it. This is exactly what the right-hand-side,

which is the same as the cryostatic pressure at the base of the ice sheet, is telling us.

Next I substitute in deviatoric stresses. When I do this, the final equation becomes

tautological (again reflecting hydrostatic equilibrium) so I remove it and are left with

the two equations

(2T ′xx + T ′yy + ρigH)
∂zb
∂x

+ T ′xy
∂zb
∂y
− T ′xz = ρigH

∂zb
∂x

(2.48)

T ′xy
∂zb
∂x

+ (2T ′yy + T ′xx + ρigH)
∂zb
∂y
− T ′yz = ρigH

∂zb
∂y

.

Notice here that I can cancel ∂zb
∂x
ρigH and ∂zb

∂y
ρigH, leaving me with a stress-free

base. From here on the basal boundary condition can be easily adapted from the

stress-free surface by replacing surface gradients with bed gradients Pattyn [2003].

Observe also that this equation is equivalent to the hard bed model with β2 = 0,

which is how it is actually implemented in the software.

26

2.2.4 Ice Shelf Lateral Boundary Condition

The marine front of an ice shelf is subject to back stresses from seawater “pushing

back” on the shelf front. This boundary condition is often presented in a vertically

integrated form as originally developed by Morland [1987]. However, because the

first-order model is vertically explicit, I start with a vertically explicit form, with

T(z) · n = ρwgzn, z < 0. (2.49)

below the water level. Due to the approximation of atmospheric pressure as 0, above

the water level it becomes

T(z) · n = 0, z ≥ 0. (2.50)

If we consider a two-dimensional map of an ice shelf, then n is a vector that is normal

to the curve formed by the shelf front, pointing outward, with nz = 0. Because it is

not strictly true that ice calves perpendicularly to the water’s surface, equating nz

with zero is an approximation. This integral assumes a coordinate system where z is

strictly elevation (that is, z=0 at sea level, values increase as we ascend).

For most of the following derivation, I will neglect the above-water case and focus

on the case where z < 0. Applying the tensor product and using the assumptionthat

nz = 0, this leads to the system of equations

Txxnx + Txyny = ρwgznx

Tyxnx + Tyyny = ρwgzny (2.51)

Tzxnx + Tzyny = 0.

27

Under the assumption that vertical resistive stresses are zero, we can drop the third

equation. Substituting deviatoric stresses for total stresses,

(2T ′xx + T ′yy − ρig(zs − z))nx + T ′xyny = ρwgznx

T ′yxnx + (2T ′yy + T ′xx − ρig(zs − z))ny = ρwgzny (2.52)

(2.53)

Applying the constitutive relationship and replacing strain rates with velocities:

2µ

[(
2
∂u

∂x
+
∂v

∂y

)
nx +

1

2

(
∂u

∂y
+
∂v

∂x

)
ny

]
= nx (ρig (zs − z) + ρwgz)

2µ

[
1

2

(
∂u

∂y
+
∂v

∂x

)
nx +

(
∂u

∂x
+ 2

∂v

∂y

)
ny

]
= ny (ρig (zs − z) + ρwgz) (2.54)

(2.55)

Here I re-apply one of the main assumptions of the SSA: the assumption of plug

flow, or a lack of vertical dependence of velocity in ice shelf regions. However, plug

flow is not necessarily the case at the marine front of an ice shelf, as the stress at each

vertical layer would be different. In fact, the SSA is known to treat this area of the

shelf incorrectly, though differences are “winnowed out” within a few ice thicknesses

of the shelf [Morland, 1987] [MacAyeal, 1996b]. This assumption, however, allows a

return to a vertically averaged form of the right hand side by integrating over the

cryostatic and hydrostatic pressures

1

H

[∫ − ρi
ρw
H

0

ρwgzdz +

∫ − ρi
ρw
H

(1− ρi
ρw

)H
ρigzdz

]
=

1

2
ρigH

(
1− ρi

ρw

)
. (2.56)

28

Thus, I finally write the equations for the lateral boundary condition as

2µ

[(
2
∂u

∂x
+
∂v

∂y

)
nx +

1

2

(
∂u

∂y
+
∂v

∂x

)
ny

]
=

1

2
ρigH

(
1− ρi

ρw

)
nx (2.57)

2µ

[
1

2

(
∂u

∂y
+
∂v

∂x

)
nx +

(
∂u

∂x
+ 2

∂v

∂y

)
ny

]
=

1

2
ρigH

(
1− ρi

ρw

)
ny,

and rearrange terms to get

4µ
∂u

∂x
nx + µ

∂u

∂y
ny =

1

2
ρigH

(
1− ρi

ρw

)
nx − 2µ

∂v

∂y
nx − µvxny (2.58)

4µ
∂v

∂y
ny + µ

∂v

∂x
nx =

1

2
ρigH

(
1− ρi

ρw

)
ny − 2µ

∂u

∂x
nu − µuynx

29

CHAPTER 3 NUMERICAL APPROXIMATION

The higher-order velocity equations presented Chapter 2 are a reduced-complexity

version of the Navier-Stokes equations for fluid dynamics of a non-Newtonian fluid.

Unfortunately, this formulation of the Navier-Stokes equations does not have a known

general analytical solution, though solutions do exist for special cases. Therefore, we

must “solve” the equations using numerical rather than analytical techniques. The

need to solve these equations for real-world problems involving ice whose geometry

has no analytical form further necessitates numerical approximation. In this case,

Pattyn applies a finite-difference approximation to solve the velocity equations on a

three-dimensional grid that is regular in the horizontal dimensions and irregular in

the vertical dimension. This chapter presents the numerical techniques used to arrive

at this solution.

3.1 Rescaled Vertical Coordinate

Both Pattyn’s standalone model and Glimmer rescale the vertical coordinate by

the ice thickness [Pattyn, 2003] [Rutt et al., 2009]. This is similar to the s-coordinate

used in atmospheric modeling, first described by Phillips [1957]. For consistency with

CISM’s documentation I will refer to the new coordinate as σ rather than the ζ that

Pattyn uses or the s that is often seen outside of ice sheet modeling. This coordinate

is defined such that σ ∈ [0, 1], where 0 is always at the surface of the ice sheet and 1

30

is always at the base. An elevation z, then, is mapped to a vertical coordinate σ as

σ = (zs − z)/H (3.1)

where zs is the ice surface elevation and H is the ice thickness [Pattyn, 2003].

Computational nodes at the same σ level thus have the same percentage of ice above

and below them rather than being at the same elevation. The vertical coordinate

is thus described as “topography following” in that changes in the topography are

reflected by changes in the levels, as illustrated in Figure 3.1.

Figure 3.1 An illustration of the rescaled vertical coordinate used in CISM,
from the Glimmer documentation [Hagdorn et al., 2006].

There are several advantages of using such a coordinate system. First a vertically

unscaled model would require an ice grid consisting of several voxels, many of which

on each vertical column would be above or below the ice sheet at that column and

would thus not contain useful data. For a discussion of a vertically explicit model,

see Bueler et al. [2008]. A vertically rescaled system, regardless of the topography,

fully utilizes the vertical layers in each column. In addition, such a system allows

for an uneven spacing to be used in the vertical, allowing for greater computational

31

resolution where needed.

3.1.1 Derivation of Rescaling Parameters

As a result of this transformation, a coordinate (x, y, z) is mapped to (x′, y′, σ).

Application of the chain rule shows that that function derivatives must be re-written

(using f as a generic function and ∂f
∂x

as an example) as Pattyn [2003]

∂f

∂x
=
∂f

∂x′
∂x′

∂x
+
∂f

∂y′
∂y′

∂x
+
∂f

∂σ

∂σ

∂x
. (3.2)

Similarly for ∂f
∂y

and ∂f
∂z

. Pattyn simplifies this by assuming

∂x′

∂x
,
∂y′

∂y
= 1 (3.3)

and

∂x′

∂y
,
∂x′

∂z
,
∂y′

∂x
,
∂y′

∂z
= 0. (3.4)

This assumption is valid if the bed and surface gradients are not too large [Pattyn,

2003]. This simplifies the above to

∂f

∂x
=
∂f

∂x′
+
∂f

∂σ

∂σ

∂x
∂f

∂y
=
∂f

∂y′
+
∂f

∂σ

∂σ

∂y
(3.5)

∂f

∂z
=
∂f

∂σ

∂σ

∂z
.

Because the algebraic manipulation from here on is tedious but not particularly

difficult, I will not present it in full and will instead cite Pattyn’s result [Pattyn,

32

2003]. Pattyn defines rescaling parameters ax and ay (which can be seen as ∂σ
∂x

and

∂σ
∂y

); bx and by; and cxy. Following Pattyn, I present only the x and z derivative

cases, as the y derivative case is analogous to the x derivative case. The rescaling

parameters are

ax =
1

H
(
∂zs
∂x′
− σ∂H

∂x′
) (3.6)

bx =
∂ax
∂x′

+ ax
∂ax
∂σ

=
1

H
(
∂2zs
∂x′2

− σ∂
2H

∂x′2
− 2ax

∂H

∂x′
) (3.7)

cxy =
∂ay
∂x′

+ ax
∂ay
∂σ

=
∂ax
∂y′

+ ay
∂ax
∂σ

. (3.8)

Using these parameters, expressions for the derivatives become

∂f

∂x
=
∂f

∂x′
+ ax

∂f

∂σ
(3.9)

∂2f

∂x2
=
∂2f

∂x′2
+ bx

∂f

∂σ
+ a2

x

∂2f

∂σ2
+ 2ax

∂2f

∂x′∂σ
(3.10)

∂f

∂z
= − 1

H

∂f

∂σ
(3.11)

∂2f

∂z2
=

1

H2

∂2f

∂σ2
(3.12)

∂2f

∂x∂z
=

1

H
(

1

H

∂H

∂x′
∂f

∂σ
− ∂2f

∂x′∂σ
− ax

∂2f

∂σ2
) (3.13)

∂2f

∂x∂y
=

∂2f

∂x′∂y′
+ cxy

∂f

∂σ
+ ay

∂2f

∂x′∂σ
+ ax

∂2f

∂y′∂σ
+ axay

∂2f

∂σ2
. (3.14)

33

3.1.2 Transformation of Equations

Given the definitions above, deriving rescaled versions of the equations presented

in Chapter 2 is “simply” a matter of performing the correct substitutions.

On the interior of the domain, the velocity equations become

4µx′
∂u

∂x′
+ µy′

∂u

∂y′
+ 4µ

∂2u

∂x′2

+

(
4axµx′ + µ(4bx + by) + ayµy′ +

1

H2

∂µ

∂σ

)
∂u

∂σ

+ µ
∂2u

∂y′2
+ µ

(
4a2

x + a2
y +

1

H2

)
∂2u

∂σ2
+ 8axµ

∂2u

∂x′∂σ
(3.15)

+ 2ayµ
∂2u

∂y′∂σ
= ρg

∂zs
∂x′
− µy′

∂v

∂x′
− 2µx′

∂v

∂y′

− (2ayµx′ + axµy′ + 3cxyµ)
∂v

∂σ
− 3axayµ

∂2v

∂σ2

− 3µ
∂2v

∂x′∂y′
− 3ayµ

∂2v

∂x′∂σ
− 3axµ

∂2v

∂y′∂σ
,

where

µx′ =
∂µ

∂x′
+ ax

∂µ

∂σ
.

The stress-free surface condition becomes

4
∂zs
∂x′

∂u

∂x′
+
∂zs
∂y′

∂u

∂y′
+ (4ax

∂zs
∂x′

+ ay
∂zs
∂y′

+
1

H
)
∂u

∂σ

= −2
∂zs
∂x′

∂v

∂y′
− ∂zs
∂y′

∂v

∂x′
− (2ay

∂zs
∂x′

+ ax
∂zs
∂y′

)
∂v

∂σ
. (3.16)

The hard bed boundary condition becomes

34

4µ
∂zb
∂x′

∂u

∂x′
+ µ

∂zb
∂y′

∂u

∂y′
+ µ(4ax

∂zb
∂x′

+ ay
∂zb
∂y′
− 1

H
)
∂u

∂σ

= β2v||nb|| − 2µ
∂zb
∂x′

∂v

∂y′
− µ∂zb

∂y′
∂v

∂x′
− µ(2ay

∂zb
∂x′

+ ax
∂zb
∂y′

)
∂v

∂σ
. (3.17)

Finally, the lateral ice shelf boundary condition becomes

4µnx
∂u

∂x′
+ µny

∂u

∂y′
+ µ(4axnx + ayny)

∂u

∂σ

= nx
1

2
ρigH(1− ρi

ρw
)− 2µnx

∂v

∂y′
− µny

∂v

∂x′
− µ(2aynx + axny)

∂v

∂σ
. (3.18)

Note that no transformation of the source term is needed, as we had previously

removed the vertical dependence.

3.2 Nonlinear Iteration

The equations that govern the velocity field in an ice sheet are nonlinear, and there-

fore require an iterative solution. The nonlinear system of equations arising from the

stress balance is solved by computing the viscosity using the velocity values from the

previous iteration. We use velocities computed using the shallow ice approximation

as an initial guess. A separate linear system is then set up for the U and V compo-

nents of velocity, each solving one of the equations that arises from the stress balance.

While solving for the U component, any derivatives of V are computed numerically

from the values from the previous iteration. The same is done when computing V .

Pattyn found this to be more efficient than building a linear system that directly

couples U and V , as the unused strategy builds a matrix with four times as many

35

elements and does not appear to speed convergence [Pattyn, 2003]. The pseudocode

for this high-level iteration is

1. u, v ← shallow ice guess()

2. c← 0

3. Repeat until error < tolerance:

4. µ← compute viscosity(u, v)

5. u? ← compute u component(v, µ)

6. v? ← compute v component(u, µ)

7. u, v, c, error ← unstable manifold correct(u, u?, v, v?, c)

The nonlinear iteration method used is Picard iteration (also known as succes-

sive substitution) with unstable manifold correction, an accelerator method designed

specifically for problems that arise in ice sheet modeling [Hindmarsh and Payne,

1996]. The method considers Picard iteration to be deriving successive velocities

ui,ui+1, ... by computing and applying a series of correction vectors ci, ci+1, ... such

that ui+1 = ui + ci. Unstable manifold correction relaxes the partial solutions by

scaling the correction vector such that

ui+1 = ui + αci, α =
‖ci−1‖

‖ci − ci−1‖
. (3.19)

This correction is applied if the angle between successive correction vectors is less

than 5π
6

, a threshold identified by ? to work well. Iteration ends when the residual,

computed as

‖ci‖
‖ui+1‖

, (3.20)

36

is beneath an error tolerance. I have found that tolerances on the order of 10−4

work well, and are a good compromise between the accuracy of the solution and the

speed at which it is computed. Some problems are unstable enough that they will

never reach that tolerance, however. In this case, increasing the tolerance by a small

percentage every ten iterations can ensure good convergence where possible and a

compromise where not. This is turned off by default in the model.

I have found no situations in which the use of unstable manifold correction slows

convergence compared to pure Picard iteration, and it is often much faster than

when using Picard iteration. However, this method still tends to converge somewhat

slowly, particularly in cases where a nonuniform basal boundary condition is specified.

Its main benefit is that it is easy to implement and it is unknown whether more

contemporary methods such as Newton-Krylov iteration would perform better. It

is a potential topic of future research to characterize this method and compare its

performance to that of other, better-studied iteration methods.

3.3 Finite Difference Approximation

In order to obtain a numerical solution for the boundary value problem described

in Chapter 2 the model domain is discretized using a regularly spaced grid in the

horizontal dimensions and an irregularly spaced grid in the vertical dimensions. This

gives us a three-dimensional grid of points. Rather than computing a smooth analyt-

ical solution for the equations in the entire domain, we compute an approximation of

the value of the solution at each of these grid nodes.

As an improvement to Pattyn’s original model, rather than including all grid nodes

in the domain in the computation, I only solve for those grid nodes containing ice. In

many cases, particularly when solving on real-world domains, this can greatly reduce

37

the size of the computation.

The vertically rescaled equations are solved for each point on this grid using a

fully implicit scheme. Here I will briefly describe the implicit technique used to solve

boundary value problems; a more complete discussion can be found in Press et al.

[1992]. As usual for the finite difference method, we obtain a discretized version of the

velocity equations by replacing the partial differential operators with approximations

of the derivatives using neighboring grid nodes. The nonlinearities that arise from

the viscosity are handled through an iteration technique described in

3.4

??.

Using these approximations of the momentum balance equations, I then construct

a system of linear equations with a number of variables equal to the number of

computational nodes. If, for example, I use ten nodes in each horizontal dimension

and five vertical layers, it results in a linear system of 500 variables. If we consider

the matrix that represents this linear system with each row corresponding to a grid

node, we consider the grid nodes that enter into the finite difference approximation

of the equations at that node and enter coefficients into the repsective columns.

Because there are two equations for two variables, one equation is used to solve

for each velocity component while holding the other velocity component constant.

Derivatives of the component that is not being solved for are computed numerically

and entered into the right-hand side along with any source term.

In all cases, the finite difference approximations used are 2nd-order accurate. On

the interior of the domain, centered differences are always applied. On the regluar

grid in the horizontal dimensions, the approximation is

38

∂f

∂x
≈ fi+1 − fi−1

2∆x
(3.21)

∂2f

∂x2
≈ fi+1 + fi−1 − 2fi

(∆x)2
. (3.22)

At the lateral edge of an ice sheet, horizontal derivatives are still centered, with

a Dirichlet boundary of 0 velocity applied at one point past the edge of the ice.

This works in cases where it can be assumed that the ice sheet thickness gradually

becomes zero (i.e. there is no ice cliff). A more accurate discretization could be

obtained by upwinding at these points, as described by Fuyuki et al. [2007], but this

has not yet been implemented and should be considered a subject for future work. An

alternate method that has been used by Stephen Price (from personal conversations)

is to specify a zero-value Dirichlet condition at the land margin instead of one cell

away, assuming that the important features in the velocity occur in the interior, at

grounding lines, and at calving fronts.

The calving front of an ice shelf must be handled differently, as it is a sheer cliff

of ice rather than a gradual drop-off and cannot be assumed to have no flux! This

boundary condition is applied to all grid cells that are themselves floating and that

are either directly or diagonally adjacent to open ocean (if we only include cells that

are directly adjacent to ocean, the ∂2v
∂x∂y

terms difference into cells with no ice). In

these cases, centered derivatives are applied where possible, and upwinded derivatives

are applied where using a centered difference would reference a point that is off the

ice shelf.

In software, this is implemented using a mask field that assigns integer values to

different kinds of grid points such as open ocean, floating ice, grounded ice, and

transition zones such as the grounding line and calving front, as demonstrated in

39

Figure 3.2. In addition to determining the type of computation, the mask field is

important in the case of the calving front to determine both the direction of the

vector that is normal to the shelf front and the type of derivatives used at that

computational node. This is demonstrated in Figure 3.3.

Figure 3.2 A mask field is constructed to identify what kind of grid point a
computational node is. Here a flowline stream-shelf system and
the corresponding one-dimensional mask are shown.

Upwinded differences on the calving front are applied using the standard second-

order upwinded and downwinded finite difference discretizations

40

Figure 3.3 The mask field, determined by the geometry at the calving front
of an ice shelf, is used to construct both the shelf front nor-
mal vectors and to dynamically determine where upwinding of
derivatives is needed to remain on the shelf.

41

∂f

∂x
≈ 3fi − 4fi−1 + fi−2

2∆x
(3.23)

∂f

∂x
≈ −3fi + 4fi+1 − fi+2

2∆x
. (3.24)

In the vertical dimension, derivatives must be handled differently than their hori-

zontal counterparts because the vertical grid spacing may be nonuniform. We define

the vertical grid as a list σi that contains the value of the rescaled coordinate at each

vertical layer 1 ≤ i ≤ n, subject to the restrictions σ1 = 0, σn = 1, and σi < σi+1.

Second-order accurate derivative approximations with nonuniform grid spacing are

∂f

∂σ
≈ fk−1

σi − σi+1

(σi − σi−1) · (σi+1 − σi−1)
+ fk

σi+1 + σi−1 − 2σi
(σi − σi−1) · (σi+1 − σi)

(3.25)

+ fk+1
σi − σi−1

(σi+1 − σi) · (σi+1 − σi−1)

∂2f

∂σ2
≈ fk−1

2

(σi − σi−1) · (σi+1 − σi−1)
+ fk

2

(σi+1 − σi) · (σi − σi−1)
(3.26)

+ fk+1
2

(σi+1 − σi) · (σi+1 − σi−1)
.

At the upper and lower ice surfaces, upwinded and downwinded versions of the

derivatives are used, as there are no computational nodes in the bedrock or in the

atmosphere. These are

42

∂f

∂σ
≈ fk−2

σi − σi−1

(σi−1 − σi−2) · (σi − σi−2)
+ fk−1

σi − σi−2

(σi − σi−1) · (σi−1 − σi−2)
(3.27)

+ fk
2σi − σi−1 − σi−2

(σi − σi−1) · (σi − σi−1)

∂f

∂σ
≈ fk+2

σi+1 − σi
(σi+2 − σi+1) · (σi+2 − σi)

+ fk+1
σi+2 − σi

(σi+2 − σi+1) · (σi+1 − σi)
(3.28)

+ fk
2σi − σi+1 − σi+2

(σi+2 − σi) · (σi+1 − σi)
.

3.5 Solving the Linear System

Holding µ and the across-flow velocity component constant, I build a sparse linear

system as above. A separate matrix is built and solved for each velocity equation

to solve for the two components of velocity. Again, this linear system represents an

approximation of the partial differential equations describing the momentum balance,

discretized onto a finite grid. The last step in computing velocities, then, is to solve

the linear system.

Because the computational time required to solve the higher-order system is dom-

inated by finding the solution to the system of linear equations that arises from the

numerical discretization, an efficient method of storing and solving a linear system

is required. A simple “dense-matrix” storage format for a linear system consists of

a two-dimensional array. This incurs large storage and computational inefficiencies,

however, as most of the entries in the array are zeroes. An N × N linear system

requires O(N2) storage, most of which is wasted [Press et al., 1992].

I therefore store the linear system arising from the discretized equations in a triad-

format sparse matrix, which consists of three arrays storing the row, column, and

value of each non-zero entry in the matrix. If the matrix has m nonzero elements,

43

sparse matrices require only O(m) memory. If the number of nonzero entries m is

bounded above by a linear function of the number of variables N (as is the case in

systems arising from finite difference approximations), then the memory required is

O(N) [Press et al., 1992]. Therefore, for reasonably large computational domains,

the sparse storage format is much more efficient than the full matrix storage [Press

et al., 1992].

The option now exists in our model to use a variety of sparse linear solvers; this

will be returned to in Chapter 4. In general, I have found that the Biconjugate Gra-

dient (BiCG) method described by Press et al. [1992] and implemented in the SLAP

library by Seager [1989] is an adequate solver when combined with an incomplete

LU preconditioner. This is an iterative method for solving sparse linear systems that

frequently outperforms direct methods such as the unsymmetric multifrontal method

implemented in UMFPACK by Davis [2004].

However, the biconjugate gradient method does not always reach a solution: in

particular, if the solution vector is very close to zero, the method can stagnate be-

fore reaching convergence. In this case, I have found it to be effective to bootstrap

the nonlinear solve by using the direct solver in UMFPACK to solve the first few

iterations, then use the much faster biconjugate gradient method to continue with

the solution. Additionally, during model development, use of a direct solver can be

a good debugging tool, as it can provide insight into code errors that lead to insta-

bilities that prevent the BiCG solver from converging. Finally, certain problems are

somewhat sensitive to errors introduced by partially converged SLAP solutions, and

either a much lower error tolerance or a direct solver must be used throughout the

computation. I have found, however, no case where the BiCG solver converges but

where UMFPACK nevertheless outperforms it.

44

CHAPTER 4 SOFTWARE INTEGRATION

The integration of Pattyn’s model with Glimmer presented numerous software engi-

neering challenges. The model was written as a stand-alone Fortran program. Pattyn

wrote his code in an antiquated version of the language: Fortran-77 instead of the

Fortran-90 language that CISM is written in. Parameters such as grid size and spac-

ing, physical constants, and numerical tolerances were stored as global variables at

the start this single file of source code. Rather than reading in data for experiments,

the model had some simple experiments hard-coded at the beginning of the exe-

cutable program. This contrasts with Glimmer’s method of model setup, which is

to read model parameters and options from a text-based configuration file and input

data such as the model geometry from a NetCDF file; nothing is hard-coded into the

model its self.

The two models additionally made different assumptions regarding the nature of

the numerical field data, and these differences presented deeper concerns. Pattyn’s

model used a different dimension ordering than Glimmer: whereas Glimmer used

the NetCDF standard of addressing two-dimensional arrays as (x, y) and three-

dimensional arrays as (z, x, y), Pattyn’s model addressed two-dimensional arrays

as (y, x) and three-dimensional arrays as (y, x, z). Additionally, Pattyn’s diagnostic

model does not share Glimmer’s concept of multiple grids. In Glimmer, velocities

and associated quantities such as diffusivities are computed at the centroids of the

grid spaces, or on what is referred to as the staggered grid or “velocity grid” [Hag-

45

dorn et al., 2006]. Values of a function specified on one grid can be approximated by

averaging surrounding values from the other: pi+1/2,j+1/2 is the average of the points

pi,j, pi,j+1, pi+1,j, pi+1,j+1, shown in Figure 4.1. In contrast, Pattyn’s diagnostic model

co-located the ice geometry values and the velocity values (although Pattyn does

place the velocity values onto a staggered grid in an more ad-hoc way while solving

the ice equation [Pattyn, 2003]).

Figure 4.1 Points on the staggered grid are located at the centroids of the
nonstaggered grid, and can be thought of as the averages of the
nonstaggered points. From the Glimmer documentation [Hag-
dorn et al., 2006].

Pattyn’s model required infrastructure that was only partially present in Glimmer.

Certain model components, particularly those related to thermomechanical coupling,

were missing from the model; the required fields were present, but were filled in

with constant values. An ice transport scheme was present, but was based on a

simple model and was known not to conserve mass and required very small time

steps [Pattyn, 2003]. The sparse matrix solver used by Pattyn (namely, a diagonal-

preconditioned biconjugate gradient method copied from Press et al. [1992]) was ill-

suited to the problem and not compatible with Glimmer’s use of the GPL; for these

46

reasons, and because of the desire to use direct and parallel solvers with Glimmer, it

was necessary to build components to allow a more diverse selection of sparse matrix

solvers. Finally, many of the functions required by Pattyn’s model, such as numeric

differentiation, were also present in Glimmer in some form but were not generic enough

to be used outside of the modules for which they were originally intended. The code

duplication caused by introducing Pattyn’s redundant components was undesirable,

and these components reduced the cohesion of Pattyn’s model by introducing concerns

not directly related to the computation of higher-order velocities. These components

required a re-engineering effort to ensure that these functions were available to both

models without these drawbacks.

Interestingly, during my work on Pattyn’s higher-order component, an effort to

integrate a similar model was being performed at Los Alamos National Laboratories.

Though this required additional attention to make sure that both systems were inte-

grated cleanly and uniformly, it also helped both parties solve common problems that

resulted in the integration more quickly and effectively and drove the development of

the software’s architecture with a greater eye towards extendibility than would have

otherwise been developed.

In this chapter, I will describe the software development process and engineering

decisions that addressed these challenges and opportunities.

4.1 Code Structure

Fortran-90 does not support true object oriented programming: the closest it comes

is the addition of C-style data structures, but this lacks even the basic ability to

declare certain members as private. Although the Fortran 2003 standard does support

the object-oriented paradigm, few compilers implement the entire standard, so these

47

constructs were not used. On the other hand, the problem at hand, the integration

of several components that act as alternatives to one another is a problem that lends

itself very well to object-oriented design patterns. Therefore, a pseudo object-oriented

approach was used to design the additions to Glimmer that supported the new higher-

order physics. This means that concepts and best practices from object oriented

programming were used during the design, if not the implementation, of the new

modules.

In general, because the additions to Glimmer represented different physical approx-

imations or numerical algorithms used to solve the same set of equations, I employed

the strategy pattern described by Gamma et al. [1995] as a design pattern that “de-

fines a family of algorithms, encapsulates each one, and makes them interchangeable.

Strategy lets the algorithm vary independently from clients that use it” [Gamma

et al., 1995]. In other words, the strategy pattern defines a standard interface that

client code can use to solve a problem and creates multiple alternate algorithms that

solve the problem and conform to that interface. The standard interface is specified in

a base class from which classes implementing algorithms derive, thus allowing client

code to switch between algorithms transparently.

This design pattern was employed in three places in the code. The first was the

selection of an ice transport scheme between the old diffusive scheme in Glimmer

and the new incremental remapping scheme described by Lipscomb and Hunke [2004]

and integrated by LANL. The second was the decision between two alternate sets of

higher-order velocity solvers: those from Pattyn [2003] and those from an unpublished

model from Payne and Price. Note here the natural partitioning of the dynamical core

into the diagnostic portion (solving for a velocity field) and the prognostic portion

(using the solved velocities to evolve the ice geometry). Finally, I employed the

strategy pattern in selecting between

48

algorithms to solve the sparse linear system arising from the elliptical Stokes ap-

proximation (in this case, not all options are available depending on compiler options).

A “conceptual class diagram”, showing how this pattern would be implemented were

object-oriented constructs available, is shown in figure 4.2.

Figure 4.2 The conceptual, object-oriented static code structure of the addi-
tions to Glimmer. Conventions of a class diagram are followed,
though names are high-level and not representative of the re-
sulting software. (* Added as part of this thesis) (** Added by
parallel effort at LANL)

I implemented the strategy pattern in the non-object-oriented Fortran-90 language

as follows. First, I defined a data structure that held the data members required

by each strategy; in many cases, there was sufficient overlap so that there was little

memory in each case that was allocated but unused. This is to be expected, as the

strategy pattern encapsulates different algorithms for operating on data structures

rather than different methods of storing the data. Second, I defined a common inter-

face that code requiring a diagnostic, prognostic, or sparse matrix solver would use

49

to call out to the chosen strategy. Third, I created a high-level module that took the

place of the abstract base class, and an additional module for each different strategy

implementation. Each module implemented a function with the defined signature as

its entry point. Code that needed the algorithm would simply call the function in the

abstract base class; the abstract version of the call was little more than a switch on

a flag read at run time from the supplied configuration file. Thus, like the strategy

pattern, the switching between algorithms is mostly transparent to the calling code,

which is burdened only with the need to keep track of an additional flag specifying

which strategy should be used. This benefit was made possible by the common inter-

face. Figure 4.3 shows the F90 implementation of the conceptual static structure in

figure 4.2.

Notice that the shallow ice velocity solver is considered a separate concern from the

higher-order velocity solver. Indeed, they occupy separate derived types (glide velocity

versus glide velocity hom), even though these types need to contain several of the

same fields (such as u, v, and w components of velocity, fluxes, etc.). Indeed, two

data structures were created instead of one because the higher-order physics require

many more data fields – a derived class would have been preferable, but F90 does not

support this construct. Because the SIA method and the higher-order methods are

all methods of computing the velocity, however, an object-oriented approach would

require that all of these methods be implemented within derived classes based on a

single velocity solver base class. It is therefore worth discussing the reasons why this

was not done.

There are essentially four reasons for this, most of them deriving from the fact that

a higher-order velocity solution takes several orders of magnitude longer to compute

than a shallow ice velocity solution. First, during early stages of development, it was

desired to keep higher-order velocity separate so that it did not break production code

50

Figure 4.3 The static code structure shown in figure 4.2, translated to the
idioms available in Fortran-90. Diamonds are analogous to class
inheritance, as they represent instances where one module will
call only one other module in the relation at runtime, depending
on the configuration of the run.

51

(intelligent use of branching in our version control system could have accomplished

the same thing, but this was not done at the time). Second, for non-technical reasons

we desired the ability to create a version of CISM with the higher-order code stripped

out. Third, we thought it would be useful to be able to run higher-order computa-

tions diagnostically alongside an ice sheet that was evolving according to shallow ice

physics. Finally, we wanted to support emerging schemes that used a combination of

shallow ice and shallow shelf physics, such as the hybrid SIA-SSA model from Bueler

and Brown [2009]. All of these requirements pointed to a methodology of keeping

shallow ice operations “unpolluted” with higher-order operations.

Not shown on the module diagram are a number of modules added to provide lower-

level numerical routines to both Glimmer and Pattyn’s model. An example of this

is numeric differentiation, which was previously handled by routines in ice3d and in

glide thck. This reduced the software cohesion of these models, as numeric differen-

tiation is not directly related to either thickness evolution or higher-order solving. If

other modules needed access to these routines, they would have needed to import an

inappropriate module, increasing the amount of coupling in the system, or write their

own, increasing the amount of code duplication. Therefore, the numeric differentia-

tion routines were re-written to be more general, moved into a glide derivs module

whose only purpose was to provide these routines to both ice3d and glide thck, and

removed from the modules in which they originally resided. The same was done to al-

gorithms for staggering, handling masks, and handling periodic boundary conditions,

among other examples. The result is that not only is the integration cleaner, but also

code that has nothing to do with the higher-order integration has been improved and,

in general, CISM is a more welcoming framework for other integration efforts.

52

4.2 Engineering Process

I performed the actual integration of Pattyn’s Fortran-77 model with the Fortran-

90 Glimmer code in a multiphase, iterative prototyping process. In general, this

process consisted of working first on integrating components and upgrading physics

or numerics using an evolutionary, agile approach first, resulting in prototype code

that I then refined using more structured software engineering techniques.

4.2.1 Preparation of Standalone Code

A good deal of the integration effort was performed before Pattyn’s model was

even placed in CISM’s build environment. At this stage, I prepared A Fortran-90

version of the model suitable for integrating with Glimmer. I first wrote and used

an automatic preprocessor to convert the F77 fixed-form syntax into F90 free-form

syntax by changing the comment style and line continuation style. The script did not

attempt to apply any deeper syntactic updates, as it was determined that doing so

would take more time to develop than applying the updates manually. Next, Pattyn’s

model was updated to use Fortran-90 idioms rather than those of Fortran-77. During

this step I adopted best practices that emerged with the newer F90 syntax. These

changes included changing F77-style DO...CONTINUE loops to F90-style DO...END

DO loops, using implicit none, using assumed array shapes rather than explicit array

shapes, and declaring intents. This was an important step in making Pattyn’s code

more familiar, and thus more readable and maintainable, to future CISM developers.

It should theoretically have had no impact on model output; in practice, I saw differ-

ences on the order of 10−6% which I can only attribute to differences in the way the

F77 and F90 compilers used handled floating-point precision.

Finally, I imported a subset of Glimmer’s modules into the project and updated

53

Pattyn’s model to use them. Chiefly, Pattyn’s ad-hoc derivative and periodic bound-

ary condition routines were replaced by routines in a new Glimmer module developed

for the integration effort. Other minor changes included the use of Glimmer’s physical

constants and precision types. At this stage, I also gave the modified model a stag-

gered version of the geometry to verify that the model produced reasonable results,

as I knew that this would be required of it later in the integration process.

4.2.2 Initial Diagnostic Integration

During this stage, I integrated Pattyn’s diagnostic model with Glimmer using any

means necessary. As a result, the code at this phase was highly prototypical. The

main effort during this stage was the creation of a facade in glide veo higher to ad-

dress the data incompatibility concerns. A facade is another object-oriented design

pattern described by Gamma et al. [1995] that “provides a unified interface to a set of

interfaces in a subsystem. Facade defines a higher-level interface that makes the sub-

system easier to use” [Gamma et al., 1995]. In the case of the higher-order wrapper,

the complex subsystem was the series of calls needed to compute higher-order veloc-

ities, including the data transpositions needed. The facade implementation created

temporary versions of variables that transposed and staggered the data, making it

suitable for passing to Pattyn’s functions. The facade code also translated the results

of Pattyn’s computations back to CISM’s native format. Any inefficiency incurred

by these operations was overshadowed by the length of the higher-order computation

itself. Some of these operations remained in the final version of the integration, others

were rendered obsolete by additional engineering efforts. Wrapping these operations

in a high-level facade avoided polluting client code with the details of calling Pattyn’s

model.

54

4.2.3 Physics and Numerics Refinement

During this phase of development, I refined the initially rough integration by

putting into place the rest of the infrastructure developed for the integration and

by implementing additional physical requirements. I put into place a first version of

the modules and logic that allowed switching between sparse matrix solver packages,

though due to a poor understanding of the requirements of this subsystem the solver

algorithm could only be switched at compile time. The other main effort at this

stage was the addition of ice shelf physics, which Pattyn’s model lacked at the time

of integration. Software design changes required by the updates were still done in a

more prototypical fashion.

4.2.4 Software Design Refinement

During this phase, I refactored the prototype code from the previous phases, greatly

improving the overall software design. The compile-time sparse solver option was

changed to a runtime option, improving flexibility and allowing for the use of a di-

rect solver as a fall-back if an iterative solve failed. Pattyn’s code was changed to run

natively using CISM’s coordinate system, obviating the need to create transposed ver-

sions of fields used by Pattyn’s model. Though this was a major effort, the transposed

coordinate system was a source of many subtle bugs during the integration, and future

maintainers used to CISM’s native coordinate system would likely be confused when

reading Pattyn’s code. In addition to greatly improving the models maintainability,

the change allowed even more general-purpose routines in the higher-order model that

were sensitive to coordinate ordering to be pulled into their own modules. Like the

similar treatment of numeric differentiation, this avoided code duplication and clutter

while improving the cohesion in Pattyn’s model. Finally, during this phase LANL’s

55

Payne/Price model integration and the Pattyn model integration were redesigned and

standardized to use the same strategy-class-like design previously described.

4.2.5 Initial Prognostic Integration

All of the work described above was in support of the diagnostic computation:

computing a field of ice velocities within the ice sheet. CISM lacked, however, the

ability to use higher-order diagnostic velocities to solve the prognostic equation, which

uses those velocities to compute how the thickness and extent of an ice sheet evolves

over time. Glimmer contained the ability to evolve an ice sheet based on computing

shallow ice velocities and assuming that ice primarily diffused across a continent.

This diffusive scheme, however, is not suitable for use with higher-order velocities.

To ameliorate this, the model was integrated with an incremental remapping scheme,

described by Dukowicz and Baumgardner [2000] and Lipscomb and Hunke [2004] and

developed at LANL. This allowed the higher-order velocities to evolve the geometry

of the ice. Again, this early engineering effort was done by any means necessary,

resulting in highly prototypical code. Once again, I employed the strategy pattern

to allow transparent switching between the new prognostic solver and Glimmer’s old

diffusive scheme. At the time of this writing, this integration effort is still under

testing. After it is complete, another design refinement phase will be carried out.

4.3 Testing Process

Because both the new higher-order model and the original shallow ice model are

relatively complex to maintain, a suite of regression tests was created and run through-

out the integration process. The benefits of regression testing are well-understood in

software engineering: as software projects grow in complexity, it is difficult to ac-

56

curately assess the ripple effect of changes to software components across the entire

project. It is therefore desirable to develop a suite of tests that can be run quickly

to build confidence that code changes have not caused “regression”, or a reduction

in working functionality. These tests are run frequently so that if a regression does

occur, it is easy to pinpoint the small set of changes that may have caused it. (A dis-

cussion of regression testing can be found in most any software engineering textbook,

e.g. Pressman and Ince [2005].)

I chiefly tested CISM using the EISMINT-2 tests, described by Huybrechts et al.

[1996], and the ISMIP-HOM tests, described by Pattyn et al. [2008] and detailed

in the next chapter. I opted to use a black-box testing approach rather than the

white-box unit test approach because the components in scientific code tend to be

tightly coupled and therefore difficult to test in isolation. In addition, the existing

Glimmer code did not have requirements defined at a level of granularity that made

unit testing feasible.

Before the integration began, I used Pattyn’s original model to run ISMIP-HOM

A and C. During the pre-integration work, the updated F90 version of the model was

periodically used to run the same tests, with output compared numerically to the

original. Due to the complexity of numerical calculations and the opportunity for

roundoff errors to slightly change results, identical results were not expected. Rather,

I accepted the test results if they were within some predefined error tolerance when

comparing the original results and the most recent results from the updated model.

While integrating the higher-order model with CISM, I switched to a subset of

the EISMINT-2 tests, which I ran using the shallow ice computations in order to

build confidence that the integration process introduced no regression in the existing

capabilities of the model. Again, I compared the results to those from an unmodified

version of Glimmer to determine whether to accept the new version of the model.

57

Once the integration was completed to the point that I could receive output from

the higher-order computation running within CISM, I constructed a more full-featured

ISMIP-HOM test script to verify that the integrated higher-order model worked cor-

rectly. The test script also helped check for regression introduced by new features

added during concurrent development efforts. In this iteration of testing, model out-

put was checked not only against that of previous versions of the same model but

also against the output of other models running the same experiments. This inter-

comparison methodology is described in the next chapter. Both the test suite and

the comparison were scripted in Python to allow an entire ISMIP-HOM test, or some

subset thereof, to be run with no intervention; this same framework could be extended

to support EISMINT testing as well.

Finally, despite the difficulties of unit testing that were previously described, we

did write and perform unit tests on the subset of components developed as part of the

integration that could be tested in isolation, such as matrix assembly and numeric

differentiation.

58

CHAPTER 5 MODEL VERIFICATION

In Chapter 4, I discussed the use of well-known ice sheet experiments in a software

engineering context: making sure that changes to software do not undermine exist-

ing features. In this chapter, I expand on that discussion and present a number of

experiments that I used to build confidence in both Patty’s original model and the

correctness of its integration with CISM. During this effort, I ran a number of ex-

periments that provided comparisons to both existing models and to exact solutions.

The model was also validated through some comparison to observed data, though the

opportunity to do this was limited.

Though very common in the ice sheet modelling community, the methodology of

intercomparison comes under scrutiny often enough that it worth taking a moment to

address concerns regarding it. Model intercomparison is one tactic used for to verify

a new ice sheet model - that is, it is used to build confidence that the output of the

model under scrutiny corresponds to ice sheet physics as we currently understand

them. In addition to intercomparisons, a handful of exact solutions exist which we

can also compare to. Ice sheet modelers freely admit, however, that such experi-

ments cannot validate our models - that is, ensure that the underlying physics that

they implement reflect physical data. Intercomparison is prevalent in the ice sheet

modelling community because data to compare to is difficult to come by, is often

incomplete, and usually requires models to solve the ice sheet equations over more

difficult domains.

59

5.1 ISMIP-HOM Experiments

The first verification suite that I ran was a subset of the Ice Sheet Model Intercom-

parison Project for Higher Order Models (ISMIP-HOM) test suite described in Pattyn

et al. [2008]. The goal of ISMIP-HOM is to facilitate basic verification of ice sheet

models that implement higher-order physics by providing experiments that require

the use of higher-order stresses to properly solve. A wealth of model output data

in a standardized format has been published alongside the experiment descriptions

[Pattyn et al., 2008], allowing modelers to check their work against that of others

building similar models. Although these tests were previously performed by Pattyn

using the standalone version of his model, my version of Pattyn’s model represents

a significant amount of software engineering. I therefore performed the tests again

to verify that the model was correctly integrated into CISM, and that no regression

occurred as a result of Pattyn’s translation of his published model from C to F77 and

our translation from F77 to F90.

5.1.1 Description of Experiments

The subset of ISMIP-HOM that I ran consisted of the first four experiments (two

experiments are neglected due to relying on the presence of a prognostic solver, which

we did not have in place at the time). Each experiment is described in terms of a

rescaled horizontal coordinate system, with

x̂ =
x

L
(5.1)

ŷ =
y

L
.

60

This allows the experiments to be run on geometrically similar geometries for do-

main sizes of L = 5, 10, 20, 40, 80, and 160 km.

All experiments are run with periodic boundary conditions - that is, the domain

is assumed to be a small portion of an infinite domain that is periodically similar.

For these experiments, this has the advantage of avoiding the need to specify lat-

eral boundary conditions of the ice sheet. The ISMIP-HOM experiment descriptions

Pattyn and Payne [2006] recommend a simple and naive implementation of these

boundary conditions: domains are specified with a layer of “ghost cells” on the edges.

These ghost cells are not part of the computation, but rather represent the start of

the next repetition of the domain. During each nonlinear iteration, the ghost cells

are filled in by copying values from the computational domain. This method requires

iteration, but as it is used in the context of a computation that is already iterative it

is not seen as a disadvantage.

Note that this copy operation is valid even on along the axis perpendicular to the

slope of the surface and bed. Although the elevations differ between the two edges,

the copying does not cause a discontinuity because the elevations themselves do not

enter into the ice sheet equations and the elevation gradients remain consistent.

While two of the experiments are specified as three-dimensional, two are specified

as two-dimensional domains consisting of one horizontal and one vertical dimension

so as to allow flowline models to participate in the intercomparison. For the two

flowline experiments, the domain was extended the second horizontal dimension with

no across-flow variation; a more complete discussion can be found in Section ??.

The first two experiments exercise the handling of higher-order stresses that appear

due to variations in the bed geometry. The ISMIP-HOM A experiment consists of

a three-dimensional ice sheet with a uniformly sloping surface and a bed that varies

sinusoidally in two dimensions [Pattyn et al., 2008],

61

zs(x, y) = −x · tanα (5.2)

zb(x, y) = zs(x, y)− 1000 + 500 sin(2πx̂) sin(2πŷ) (5.3)

where the surface slope α = 0.5◦.

ISMIP-HOM B consists of a sinusoidally varying bed in one dimension to facilitate

participation by flowline models. Here zs is as in ISMIP-HOM A, and the basal

geometry is

zb(x, y) = zs(x, y)− 1000 + 500 sin(2πx̂). (5.4)

In both experiments, velocity at the bed is specified as a zero-valued Dirichlet

condition, corresponding to ice that is frozen to the bed.

The second two experiments exercise the handling of varying basal boundary con-

ditions, a necessary component of modeling ice streams. In both experiments, the ice

thickness is specified as a uniform 1 km with a uniform slope in both the surface and

base elevation of the ice sheet:

zs(x, y) = −x · tanα (5.5)

zb(x, y) = zs(x, y)− 1000 (5.6)

Here, α = 0.1◦ rather than 0.5◦.

The basal boundary condition specified as a hard (linear) bed with a sinusoidally

varying coefficient of friction (β2). Analogously to the three- and two-dimensional

experiments A and B, ISMIP-HOM C specifies that the sinusoidal variation occurs

62

in two dimensions while ISMIP-HOM D specifies that the sinusoidal variation occurs

in only one, again to allow flowline models to participate.

For ISMIP-HOM C:

β2 = 1000 + 1000 sin(2πx̂) sin(2πŷ) (5.7)

For ISMIP-HOM D:

β2 = 1000 + 1000 sin(2πx̂) (5.8)

All experiments were run on a 40x40x40 grid, with an exception for flowline exper-

iments discussed below. Given the hardware available this was the best compromise

between computational tractability and model accuracy. All computations were done

on CISM’s staggered velocity grid rather than its ice grid. Vertical grid spacing in all

cases was even; though Pattyn’s model has the ability to use a nonuniform spacing

in the vertical we did not take advantage of it for these runs.

5.1.1.1 Approximating Flowline Experiments

Special care must be taken when approximating two-dimensional flowline experi-

ments such as ISMIP-HOM B and D with a three-dimensional higher-order model.

This is done in theory by enabling periodic boundary conditions in the direction per-

pendicular to the flow. Because computational nodes in the perpendicular dimension

theoretically contain redundant data, I reduced the number of these nodes.

Problems arise, however, as a result of the periodic boundary update. Rather

than building the sparse matrix so as to reflect the presence of periodic boundary

conditions, this model enforces these boundary conditions by performing a ghost cell

update after velocity computations are completed. This copy operation can introduce

63

artificially large gradients at the boundaries of the computational domain. For most

experiments, this is not a problem, as the gradients “quiet down” after a number

of nonlinear iterations. When running a flowline experiment, however, there are

no naturally occurring gradients in the direction perpendicular to flow. Therefore,

rather than reducing in magnitude as the natural gradients begin to dominate, these

artificial gradients produce oscillations at the boundaries that neither decrease nor

increase in magnitude. The solution is simple: maintain the same number of grid cells

in the perpendicular direction while increasing the size of the grid spacing, effectively

reducing the magnitude of the artificial gradients. A properly chosen grid spacing

will stabilize the iteration at no computational cost.

5.1.2 Results

Although there are some deviations, my integration of Pattyn’s model compares

somewhat favorably to the other models submitted in the ISMIP-HOM intercom-

parison. In general, our results tend to be biased towards high velocities compared

to other first-order and full-stokes models. However, for most experiments we have

results that are within one standard deviation of the first-order models submitted to

the intercomparison.

For each experiment, we provide a visual of the flowline results of the experiment,

after the style of results presented in Pattyn et al. [2008]. We also present a table of

the maximum observed error, as well as whether the point at which that error was

observed was within one standard deviation of the mean.

5.1.2.1 ISMIP-HOM A

Figure 5.1 presents the results of this experiment visually. Per the ISMIP-HOM ex-

periment specification, the velocity plotted is a flowline extracted along the direction

64

Figure 5.1 Results for ISMIP-HOM A

65

of the surface slope at L̂ = .25. A numerical comparison using MSE is presented in

Table 5.1. Qualitatively, our model matches the mean outputs of first-order models

very closely. The velocity profile in all cases is similar to that of the mean. However,

the although the qualitative shape is the same in some cases the velocity magnitude

is not correct. This is particularly true of domain lengths of 5 km, 80 km, and 160

km, where the velocity (particularly the maximum observed velocity) is higher than

the mean of submitted models. In all cases except for the 160 km domain length, our

model output is consistently within 1 standard deviation of the mean of first-order

models submitted to the intercomparison.

5.1.2.2 ISMIP-HOM B

Similar to ISMIP-HOM A, our ISMIP-HOM B results are qualitatively similar.

We reproduce several distinctive features observed in the mean of the model outputs,

including the retrograde profile for L = 5 km observed between first order models and

full Stokes models. We also reproduce the flattening of the velocity profile observed

particularly when L = 10 km and L = 20 km. This is only observed in the flowline

version of the experiment, and is probably due to the lack of lateral stresses in the

flowline scenario compared with the three-dimensional scenario. Like the ISMIP-

HOM A results, the ISMIP-HOM B results overestimate the maximum velocity at

the longer domain lengths. However, this overestimation is less severe, with our model

output still within one standard deviation of the first order model mean.

5.1.2.3 ISMIP-HOM C

Compared to experiments that determine the effect of variations in bed topogra-

phy on velocity, experiments that determine the effect of variations in bed friction

converge very slowly. Short domain lengths in particular can take upwards of 500 un-

66

Figure 5.2 Results for ISMIP-HOM B

67

Figure 5.3 Results for ISMIP-HOM C

68

stable manifold iterations to converge, compared to 30-50 iterations needed for typical

ISMIP-HOM A and B experiments. Additionally, the slow convergence means that

the quality of the solution is much more dependent on the error tolerance used.

Our ISMIP-HOM C results accordingly are poor compared to our ISMIP-HOM A

and B results. Although our velocity profiles, compared to those of models submitted

to the intercomparison, are qualitatively similar, the deviations are much more severe.

For domain sizes less than 20 km, the velocity is underestimated. The velocities are

barely within one standard deviation when L = 10 km; when L = 5 km, the velocity is

just outside one standard deviation. Conversely, for domain sizes greater than 20 km,

the velocities are overestimated. This is analogous to our results for ISMIP-HOM A,

though more exaggerated. In addition, the maximum velocity in our model output is

offset slightly.

5.1.3 ISMIP-HOM D

At the time of this writing, I have not successfully run Pattyn’s model on ISMIP-

HOM D for domain lengths greater than 10 km. The solver quickly converges to a

partial solution, but fails to reach the specified error tolerance as a result of gradients

in the across-flow component that change in qualitative nature without reducing in

magnitude as the problem iterates. The shorter domains produce reasonable (within

one standard deviation) results, though a numerical comparison has not yet been

made. I do not, however, see this failing of Pattyn’s model as a problem. I have been

equally unsuccessful with these computations using his standalone version of the

model. As described earlier, running a flowline experiment with a three-dimensional

model is tricky, as the required periodic boundary conditions produce artificial gra-

dients that dominate the solution. I therefore postulate that I have simply not found

across-flow grid parameters that work well for this experiment. It could be, however,

69

that the problem is a more serious error in the experimental setup, causing a well-

posed two-dimensional problem to become ill-posed in three dimensions (this poor

iterative behaviour has, in my experience, been indicative of an ill-posed problem).

At any rate, as all of the practical applications of an ice model are three-dimensional,

difficulty in running flowline experiments does not significantly reduce the model’s

utility.

5.1.4 Effects of Grid Selection

A characteristic of numerical models that is often discussed is whether the model’s

performance is dependent on grid refinement. The ISMIP-HOM experiments were

run on a diverse selection of grids in order to determine this dependence. Intuitively,

one would expect that increasing the grid resolution in any dimension would improve

the accuracy of the solution. However, this is not necessarily the case!

To determine the effect of grid selection on how well the solution agrees with other

models, I ran ISMIP-HOM A for a variety of grid size selections. I compared the

model output to the mean output of non-full-Stokes models by computing the mean

squared error (MSE). The results are summarized in Table 5.1.

The data here do not paint a clear picture. For some domain sizes, namely 5km,

80km, and 160km, increasing the horizontal grid spacing without changing the vertical

grid spacing appears to decrease the accuracy of the model! The situation, however,

is opposite for 20km, 20km, and 40km. In all cases, decreasing the number of vertical

grid nodes from 40 to 20 led to a decrease in accuracy, but an increase from 40 to 60

only increased accuracy for domain sizes L > 40 km, and an increase from 60 to 80

only increased accuracy for domain sizes L > 80 km. These suggest that there is at

least some dependence on aspect ratio rather than simply on grid resolution, but it

is not a simple relationship and there are likely other factors involved.

70

5 km 10 km 20 km 40 km 80 km 160 km
± 1 std. dev. 22.4 8.82 4.72 5.72 5.21 4.13

20x20x40 0.314 2.52 2.72 1.24 0.453 0.627
40x40x40 1.08 1.10 0.197 0.407 2.38 7.48
60x60x40 2.09 1.08 0.0693 0.777 4.81 12.9
40x40x20 315 15.5 6.85 18.6 5.34 15.1
40x40x60 4.78 2.08 0.469 0.0698 0.308 0.848
40x40x80 6.96 2.45 0.626 0.0787 0.0825 0.152

Table 5.1 Comparison of the MSE observed in ISMIP-HOM A on a variety
of grids with the MSE expected if the model produced an output
that was exactly one standard deviation away from the mean
across all models in the intercomparison. Bolded entries are on
average worse than one standard deviation from the mean.

The results for a similar experiment using ISMIP-HOM C are presented in Ta-

ble 5.2. Unfortunately, the selection of grid sizes here is limited by the need to “spin

up” an ISMIP-HOM C solve with a direct sparse solve in the first few iterations.

Here the trend is somewhat more clear: For most domain sizes, refinement of the

horizontal grid is beneficial (curiously, though, for L = 5 km a coarser horizontal grid

works better). Both refinement and coarsening of the vertical grid while holding the

horizontal grid size constant leads in most cases to a worse solution. This suggests

again that there is some aspect ratio dependence.

5.2 Idealized ice shelf experiments

While ISMIP-HOM A-D test the components of the model required for diagnostics

of land ice velocities, they fail to exercise the ability of the model to handle floating

ice. As this was a major component added beyond the capability of Pattyn’s orig-

inal model, it is important to rigorously verify its performance. In order to verify

the correctness of the ice shelf physics with regard to the mathematical model, we

71

5 km 10 km 20 km 40 km 80 km 160 km
± 1 std. dev. 16.5 0.844 0.326 0.363 0.435 0.625

40x40x40 11.6 0.370 0.171 0.611 0.778 0.930
20x20x40 3.13 0.0526 0.287 0.542 1.21 3.14
60x60x40 16.5 0.381 0.00282 0.0620 0.450 0.795
40x40x20 11.8 0.383 0.275 0.425 0.820 1.01
40x40x60 11.5 0.381 0.179 0.571 0.779 0.929

Table 5.2 Comparison of the MSE observed in ISMIP-HOM C on a variety
of grids with the MSE expected if the model produced an output
that was exactly one standard deviation away from the mean
across all models in the intercomparison. Bolded entries are on
average worse than one standard deviation from the mean.

compared the CISM model output to an exact solution for the 1D velocity profile

of a flowline through an unconfined ice shelf, developed by Weertman [1957]. The

analytical solution for strain rate is

ε̇xx =
dv̄

dx
= A

(
ρigH

4

(
1− ρi

ρw

))n
. (5.9)

The domain is specified such that one end is the grounding line and the other end

is the calving front. A Dirichlet boundary condition specifies the flux exactly at the

grounding line. Because the entirety of the domain is an ice shelf, note that the

assumption of plug flow means that there is no vertical dependence in the solution;

this is emphasized with the use of average velocity in the strain rate definition.

5.2.1 Constant thickness

As an initial experiment, we held the thickness to be constant H = 1000 meters.

The ice shelf was assumed to be isothermal, using the EISMINT-Ross value of A =

4.6 × 10−18. In these cases, there is no horizontal dependence in either A or H.

72

Therefore, Weertman’s solution can be easily integrated, giving

v̄(x) = A

(
ρigH

4

(
1− ρi

ρw

))n
x+ v̄0. (5.10)

Using the values of the constants specified above, specifying zero flux at the ground-

ing line (v0 = 0), and with x in meters, this becomes

v̄(x) = (0.077098679482272892 s−1)x. (5.11)

As is the case of ISMIP-HOM B and D, a flowline experiment was simulated by

reducing the size of the domain perpendicular to the direction of flow and enabling

periodic boundary conditions on the lateral edges of the domain. Although this

problem converges slowly, our model output matches the analytical solution to .3026%

just after the grounding line to .3047% at the shelf front. As these are the minimum

and maximum observed error, our model matches the analytical flowline velocity very

closely.

5.2.2 Van der Veen Ice Tongue

We additionally tested our model against the steady-state ice shelf geometry derived

by Van der Veen [1986]. We assuming a nonzero input flux q0, and use the dimensional

rescalings

73

u = Uu′

x = Lx′

h = Zh′

2

(
U

AL

) 1
n Z

L
=
ρigZ

2

2L
.

(
1− ρi

ρw

)

Van der Veen found the steady-state ice profile given q0, h0 6= 0 to be

H ′(x) =

[
1 +

q′n+1
0 (H

′−(n+1)
0 − 1)

(q′0 + x)n+1

] −1
n+1

. (5.12)

For this experiment, rather than the EISMINT-Ross constants, we use the constants

specified for the EISMINT-1 experiments [Huybrechts et al., 1996], shown in Table 5.3.

Under these conditions, [MacAyeal, 1996b] computes the rescaling parameters as also

shown in the table.

Symbol Meaning Value
a Mean annual accumulation .3 m a−1

q0 Flux at domain boundary 4× 105 m2 a−1

H0 Thickness at domain boundary 103 m
A Glen’s flow law parameter 3.155818× 10−25 Pa−3 s−1

Z Thickness rescaling parameter 205.7426 m
U Velocity rescaling parameter 400 m a−1

L Distance rescaling parameter 274.32 km

Table 5.3 EISMINT-1 constants and rescaling parameters for ice tongue
experiment

Again approximating a flowline experiment by enforcing periodic boundary condi-

tions, we performed a diagnostic run on the steady-state geometry (note that, because

74

both the grounding line flux and the annual accumulation are not zero, the velocity

for the steady state is not necessarily zero). Integrating the analytical solution as

above reveals a mean percent error of 2.56% between the computed solution and the

analytical solution. However, the majority of this error is not due to the way the

model handles the ice shelf front. Rather, it arises from the fact that the initial gra-

dient at the grounding line is quite steep and difficult to resolve. This is supported

by the fact that, if we assume that the grounding line is moved one node forward and

take the computed velocity there as the Dirichlet condition, the mean error is reduced

to just .58%. It is additionally supported by the fact that the 2.56% error responds

favorably to grid refinement. The vertically averaged velocities resulting from both

the model, the correct analytical solution, and the analytical solution adjusted to

ignore the initially high thickness gradient are summarized in Figure 5.4

5.3 Ross ice shelf experiment

5.3.1 Description of Experiment

The EISMINT-Ross ice shelf experiment is an intercomparison experiment for shal-

low shelf models and other models capable of modeling ice shelf physics. The exper-

iment is based on velocity observations from the Ross Ice Shelf Geophysical and

Glaciological Survey (RIGGS), whose results were first published by Thomas, R.H.,

D.R. MacAyeal, D.H. Eilers and Gaylord [1984]. Velocity data from the RIGGS ob-

servation stations has been interpolated and aggregated with other observations of

the Ross ice shelf by MacAyeal et al. [1996].

Because it is meant as an intercomparison solely of ice shelf models, EISMINT-Ross

prescribes as the computation domain only those locations that are fully floating and

located on the Ross ice shelf. Ice flux into the domain from ice streams are prescribed

75

Figure 5.4 The model output given Van der Veen’s steady-state ice tongue
profile is compared to both the analytical solution and an ana-
lytical solution that is adjusted to account for the difficulty of
resolving the high thickness gradient just after the grounding
line.

76

as Dirichlet boundary conditions applied to the velocity computation. Other areas of

the domain not on the Ross ice shelf (such as Roosevelt Island) are excluded from the

domain by prescribing a zero-value Dirichlet boundary (thereby holding those veloc-

ities at zero during the computation). Although these simplifications are not needed

for a higher-order model that can treat ice shelves holistically with ice streams and

grounded regions within the shelf, they were maintained for the purpose of inter-

comparison. As an additional simplification, although ice temperatures have been

determined through observation, the EISMINT-Ross intercomparison is prescribed

for an isothermal ice shelf; this is because models using polythermal ice have so far

been unsuccessful in capturing the correct behavior [MacAyeal et al., 1996].

5.3.2 Results

Evaluating the EISMINT-Ross experimental results involves two layers of intercom-

parison. First, our experimental results are compared to the observations from the

RIGGS stations. The Chi-squared error is computed. Figure 5.5 shows the map of our

computed velocities; Figure 5.6 shows how our model compares to the observations.

The second layer of intercomparison is a comparison maximum velocity observed in

our model and the chi-squared error to other results published by MacAyeal et al.

[1996]. Table 5.4 shows that we compare favorably to other models attempting the

same problem, both in terms of the observed chi-squared error and the maximum

observed velocity. Only one published result, Bremerhaven1, outperforms our model.

This does not mean that we are performing correctly! Rather, it means that any mis-

takes that we made with respect to our ice shelf physics are systemic and are present

to some degree in other participating models. [MacAyeal et al., 1996] believes that

this is due to a combination of using isothermal rather than polythermal ice and spec-

ifying an incorrect basal boundary condition. Modeling flow over Roosevelt Island

77

rather than specifying zero flux at the grounding line may also produce more realistic

results; this was not done originally as it was impossible to handle this case in SSA

models.

Max vel.
Model X2 (m/a)

Bremerhaven1 3605 1379
Bremerhaven2 12518 1663

Chicago1 5114 1497
Chicago2 5125 1497
Grenoble 5237 1508
Missoula 4962 1495

Table 5.4 Error from my model’s Ross diagnostic run compared to those
of other models submitted to the intercomparison project
[MacAyeal et al., 1996]

78

Figure 5.5 Map of velocities computed for EISMINT-Ross. Discrete data
points represent observed velocities at RIGGS stations.

79

Figure 5.6 Computed velocity versus velocity observed at RIGGS station
at that location for EISMINT-Ross.

80

CHAPTER 6 CONCLUSION

Although this thesis represents over a year of software development effort, this

project was by no means isolated. As such, I would like to conclude by looking not

only behind at the work that I did and what we can take from it, but also ahead at

how this past year’s effort impacts the Community Ice Sheet Model and where the

project might go from here.

6.1 Lessons Learned

The integration of higher-order physics into CISM provided numerous challenges

and opportunities for learning. There are several lessons we can take from the software

engineering effort. First, two “best practices” that were particularly reaffirmed are

the importance of frequent regression testing and the related importance of version

management. Because Glimmer is such a highly coupled model, the code base was

quite fragile and prone to breaking when changing seemingly unrelated parts of the

code. Testing using both EISMINT and ISMIP-HOM proved essential in catching

these errors, and the presence of a version control system (namely Subversion) made

it possible to determine quickly the change that lead to the regression, especially

when tests were not run as often as would be ideal and a binary search through the

revision archive was needed to find the responsible revision! The quality of the code

benefited greatly from this methodology.

81

The rapid prototyping approach used during the development of the model had

both benefits and drawbacks. A fast integration allowed us to test often against

intercomparison experiments and to find problems with the integration early. De-

bugging any code is a lengthy, arduous process, and the nature of scientific code

means that this was doubly true in this instance. Early feedback was therefore essen-

tial. However, in some cases the rapid prototype itself created bugs. In particular,

a plethora of errors arose from the coordinate transposition of Pattyn’s model with

respect to CISM’s system, and many of these errors were a result of the ad-hoc way

in which the transposition was initially handled. It is my opinion that re-engineering

Pattyn’s code to natively use Glimmer’s coordinate system would have been a large

up-front investment but would have saved time overall. Additionally, the danger with

any prototype code is that the prototype gains a sort of inertia, and refactoring must

be done consciously and with an understanding that it is worth the effort in the long

run. This rings just as true in the case of CISM as in any other development effort.

I had mentioned that debugging scientific code provides a particular set of chal-

lenges compared to debugging other types of programs; this arises from the fact that

this kind of scientific program in particular involves the processing of large fields

rather than scalar quantities. A visual debugging process is therefore key – writing

snapshots of the fields involved to text or NetCDF files and using an appropriate

visualization tool (Matlab or ncview) revealed patterns that numerical inspection

of the data could not. Choosing an appropriate level of granularity was also key;

though insights sometimes arose from directly inspecting the sparse matrix that was

assembled, more often than not the exercise was a waste of time.

In addition, the fact that a sparse matrix solve is involved means that the errors

are particularly hard to diagnose. The solve is a large “black box” at the very core

of the higher-order scheme that transforms inputs to outputs in such a way that it is

82

nearly impossible to backtrack from a bad output and determine what specific input

error caused the error on the output side. In many cases, I erroneously responded to

this by “randomly thrashing” - I would change signs or constants in the code to see

how the model responded. This was rarely helpful.

A more useful exercise was to simplify the model rather than change it randomly.

In one case where ice shelf physics became unstable when the shelf front was at a 45◦

angle with respect to the numerical grid, a month-long debugging effort was ended

by changing the model such that viscosity was constant. Combined with the insight

of which terms in the model disappeared when viscosity derivatives were zero, I was

able to find that the numerical discretization of ∂2µ
∂xy

was reaching into areas with no

ice and that a grid cell needed to be a shelf front if it was diagonally adjacent to an

ocean cell! A few days of more directed searching therefore found an error that a

month of less directed probing did not.

6.2 Towards a True Community Model

Understanding the response of ice sheets to climate forcing is an essential part of

understanding the impact climate change will have in the 21st century. We have seen

that the previous generation of ice sheet models, of which Glimmer was a member, is

unable to properly capture the behavior of some of the more important glaciological

systems. The work in this thesis represents an important first step towards readying

the Community Ice Sheet Model to tackle the problems currently facing the ice sheet

modeling community. To our knowledge, no other program combines higher-order

physics with the infrastructure available in CISM, putting it on the leading edge of

ice models.

As I have discussed before, though, the work in this thesis is but one arm of a major

83

effort to prepare CISM to meet these challenge. Work at Los Alamos to integrate

similar physics has also progressed over the same time period. The fact that two

models were integrated forced additional design work to make sure that the models

could co-exist. But with a framework already in development for multiple models

to exist in the system, with a little extra attention towards good object-oriented

practices we made sure that the framework can scale to allow much more than two

methods of computation to exist in CISM. This emphasizes a single fact: that CISM

is a community effort. It now exists as not only a usable next-generation ice sheet

model, but also as a better platform for experimentation. Trying different methods

of solving the ice equations within this framework should be encouraged.

There is more work that needs to be done, however, before CISM is able to answer

the scientific questions that we have set out to answer. One issue that needs to be

tackled is the model’s ability to integrate with prognostic solvers, evolving both the

geometry and the temperature distribution of the ice sheet. Work has been done on

this as part of this thesis, but additional development and testing is needed.

A larger issue is that of scalability. The problem size that Pattyn’s model is able

to solve is limited by the capabilities of a single processor. Continent-scale diagnostic

solves are just at the limit of what can be accomplished, and prognostic solves using

higher-order physics are slow enough that they are not generally feasible. The situa-

tion will not improve with more processing power, as newer microchip technology is

used to fabricate chips with more processors, not single processors with more power.

Therefore, parallelism is essential to the scalability of this model.

This scalability can be partially accomplished by parallelizing the sparse matrix

solve, as that is the main bottleneck in the higher-order solve. With the addition of the

sparse matrix subsystem as part of this thesis, it is much easier to integrate a different

sparse matrix solving library that is set up for parallel computation. At another

84

university, an effort is underway to integrate Pardiso (“Parallel Direct Solver”) in

order to ameliorate this bottleneck.

However, this parallelism does not use the Message Passing Interface (MPI) and is

therefore limited to multiple cores on a single processor. It will also reach diminishing

returns as the sparse solve is parallelized to the point that it is no longer the main

bottleneck. In order for a truly scalable solver to be developed, techniques such as

MPI and domain decomposition need to be applied at a higher level in the model.

Work is underway at LANL to parallelize the entire dynamic core, not just the higher-

order core, in just this way. This has the additional advantage that parallel processing

is available for almost no additional effort to model developers, again contributing to

the community aspect of the model. It will, however, take a significant development

effort until this is ready.

Finally, the fastest and most complete model in the world is useless if it does not

support a scientific effort. Datasets are being developed in parallel to the model

development. Inverse modeling techniques need to be developed to determine the

initial temperature conditions of the ice sheet, as well as to specify the basal boundary

condition. Finally, we return to the original purpose of building these models: to

determine the impact of climate change on the Earth’s glaciers, and to determine

the impact of changes to those glaciers on the Earth’s sea level. The specification

and execution of these experiments is the purpose of the newly created SeaRISE

and Ice2Sea efforts. The presence of a community ice sheet model as a foundation

that these efforts can build on for experiment development and intercomparison is an

important step forward in answering these questions.

85

APPENDIX A GLIDE CONFIGURATION WITH

HIGHER-ORDER OPTIONS

A.1 Introduction

In this appendix, I present the format of the Glide configuration file. The majority

of this appendix originally appeared in the Glimmer documentation [Hagdorn et al.,

2006], and has been expanded with the higher-order options. New sections, options,

and settings have been marked with an asterisk. The major changes are the addition

of a higher-order options section, the addition of a new way of specifying one of

several built-in vertical layers, and the ability to choose incremental remapping as an

evolution scheme.

A.2 Documentation

The format of the configuration files is similar to Windows .ini files and contains

sections. Each section contains key, values pairs.

• Empty lines, or lines starting with a #, ; or ! are ignored.

• A new section starts with the the section name enclose with square brackets,

e.g. [grid].

• Keys are separated from their associated values by a = or :.

86

Sections and keys are case sensitive and may contain white space. However, the

configuration parser is very simple and thus the number of spaces within a key or

section name also matters. Sensible defaults are used when a specific key is not

found.

[grid]

Define model grid. Maybe we should make this optional and read grid specifi-
cations from input netCDF file (if present). Certainly, the input netCDF files
should be checked (but presently are not) if grid specifications are compatible.
ewn (integer) number of nodes in x–direction
nsn (integer) number of nodes in y–direction
upn (integer) number of nodes in z–direction
dew (real) node spacing in x–direction (m)
dns (real) node spacing in y–direction (m)
sigma file (string) Name of file containing σ coordinates. Al-

ternatively, the sigma levels may be specified using
the [sigma] section decribed below. If no sigma
coordinates are specified explicitly, they are calcu-
lated based on the value of sigma builtin

sigma builtin * If sigma coordinates are not specified in this configuration file or using the
sigma file option, this specifies how to compute the sigma coordinates.
0 Use Glimmer’s default spacing

σi =
1− (xi + 1)−n

1− 2−n
with xi =

σi − 1

σn − 1
, n = 2.

1 Use evenly spaced layers
2 Use the spacing defined for Pattyn’s model

continued on next page

87

continued from previous page

[sigma]

Define the sigma levels used in the vertical discretization. This is an alternative
to using a separate file (specified in section [grid] above). If neither is used,
the levels are calculated as described above. This does not work in version
1.0.0 — a bugfix will be incorporated into v.1.0.2.
sigma levels (real) list of sigma levels, in ascending order, sep-

arated by spaces. These run between 0.0 and 1.0

[time]

Configure time steps, etc. Update intervals should probably become absolute
values rather than related to the main time step when we introduce variable time
steps.
tstart (real) Start time of the model in years
tend (real) End time of the model in years
dt (real) size of time step in years
ntem (real) time step multiplier setting the ice temper-

ature update interval
nvel (real) time step multiplier setting the velocity up-

date interval

[options]

Parameters set in this section determine how various components of the ice sheet
model are treated. Defaults are indicated in bold.
ioparams (string) name of file containing netCDF I/O con-

figuration. The main configuration file is searched
for I/O related sections if no file name is given
(default).

temperature 0 isothermal
1 full

flow law 0 Patterson and Budd
1 Patterson and Budd (temp=-10degC)
2 constant value, taken from default flwa *

basal water 0 local water balance
1 local water balance + const flux
2 none

marine margin 0 ignore marine margin
1 Set thickness to zero if floating
2 Set thickness to zero if relaxed bedrock is below a

given depth
3 Lose fraction of ice when edge cell
4 Set thickness to zero if present-day bedrock is be-

low a given depth
continued on next page

88

continued from previous page
slip coeff 0 zero

1 set to a non–zero constant everywhere
2 set constant where the ice base is melting
0 ∝ basal water

evolution 0 pseudo-diffusion
1 ADI scheme
2 diffusion

3 * Higher-order incremental remapping
vertical integration 0 standard

1 obey upper BC
topo is relaxed 0 relaxed topography is read from a separate variable

1 first time slice of input topography is assumed to
be relaxed

2 first time slice of input topography is assumed to
be in isostatic equilibrium with ice thickness.

periodic ew 0 switched off
1 periodic lateral EW boundary conditions (i.e. run

model on torus)
periodic ns 0 switched off

1 periodic lateral NS boundary conditions (i.e. run
model on torus)

hotstart Hotstart the model if set to 1. This option only
affects the way the initial temperature and flow
factor distribution is calculated.

[ho options] *

Parameters set in this section determine how various components of the higher-
order extensions to the ice sheet model are treated. Defaults are indicated in
bold. To enable higher-order computation, set diagnostic scheme to something
other than 0. The computed velocities will only be used prognistically, however,
if an evolution scheme that can make use of them has been enabled (currently
only incremental remapping)
diagnostic scheme 0 No higher-order diagnostics

1 Pattyn/Bocek diagnostic, computed on the ice grid
2 Pattyn/Bocek diagnostic, computed on the veloc-

ity grid
3 Payne/Price diagnostic

continued on next page

89

continued from previous page
basal stress input 0 Ice glued to the bed (beta field is all NaN)

1 Beta field is 1/soft
2 Beta field is 1/btrc
3 Beta field is read from input NetCDF independent

of shallow-ice sliding law
4 Use slip ratio, described in ISMIP-HOM F [Pattyn

and Payne, 2006]
basal stress type 0 Linear bed

1 Plastic bed
which ho efvs 0 Use full nonlinear viscosity

1 Apply a linear viscosity
which ho source 0 Use vertically averaged formulation of the shelf

front source term
1 Use a vertically explicit formulation of the shelf

front source term (currently not working)
2 Turn off the ice shelf front and treat those locations

as a land margin instead
guess specified 0 Use a model-defined initial guess (SIA for Pat-

tyn/Bocek, zero for Payne/Price)
1 Read the initial velocity guess from uvelhom and

vvelhom
include thin ice 0 Do not include ice below the ice dynamics limit in

the higher-order diagnostic
1 Compute higher-order diagnostic for all ice, even

ice below the ice dynamics limit
which ho sparse 0 Solve sparse linear system with LU-preconditioned

biconjugate gradient method
1 Solve sparse linear system with LU-preconditioned

GMRES method
2 Solve sparse linear system with UMFPACK (not

always available)
continued on next page

90

continued from previous page
which ho sparse fallback Specifies a sparse solver package to use if the pack-

age specified in which ho sparse fails. The op-
tions are the same, though setting to -1 disables
the fallback (this is the default).

[parameters]

Set various parameters.
log level (integer) set to a value between 0, no messages,

and 6, all messages are displayed to stdout. By
default messages are only logged to file.

ice limit (real) below this limit ice is only accumulated; ice
dynamics are switched on once the ice thickness is
above this value.

marine limit (real) all ice is assumed lost once water depths
reach this value (for marine margin=2 or 4 in
[options] above). Note, water depth is negative.

calving fraction (real) fraction of ice lost due to calving.
geothermal (real) constant geothermal heat flux.
flow factor (real) the flow law is enhanced with this factor
hydro time (real) basal hydrology time constant
isos time (real) isostasy time constant
basal tract const constant basal traction parameter. You can load

a nc file with a variable called soft if you want a
specially variying bed softness parameter.

basal tract (real(5)) basal traction factors. Basal traction
is set to B = tanh(W) where the parameters
(1) width of the tanh curve
(2) W at midpoint of tanh curve [m]
(3) B minimum [ma−1Pa−1]
(4) B maximum [ma−1Pa−1]
(5) multiplier for marine sediments

default flwa * Flow law parameter A to use in isothermal exper-
iments (flow law set to 2). Default value is 10−16.

[isostasy]

Isostatic adjustment is only enabled if this section is present in the configuration
file. The options described control isostasy model.
lithosphere 0 local lithosphere, equilibrium bedrock depression

is found using Archimedes’ principle
1 elastic lithosphere, flexural rigidity is taken into

account
continued on next page

91

continued from previous page
asthenosphere 0 fluid mantle, isostatic adjustment happens instan-

taneously
1 relaxing mantle, mantle is approximated by a half-

space
relaxed tau characteristic time constant of relaxing mantle (de-

fault: 4000.a)
update lithosphere update period (default: 500.a)

[projection]

Specify map projection. The reader is referred to Snyder J.P. (1987) Map Pro-
jections - a working manual. USGS Professional Paper 1395.
type This is a string that specifies the projection type

(LAEA, AEA, LCC or STERE).
centre longitude Central longitude in degrees east
centre latitude Central latitude in degrees north
false easting False easting in meters
false northing False northing in meters
standard parallel Location of standard parallel(s) in degrees north.

Up to two standard parallels may be specified (de-
pending on the projection).

scale factor non-dimensional. Only relevant for the Stereo-
graphic projection.

[elastic lithosphere]

Set up parameters of the elastic lithosphere.
flexural rigidity flexural rigidity of the lithosphere (default:

0.24e25)

[GTHF]

Switch on lithospheric temperature and geothermal heat calculation.
num dim can be either 1 for 1D calculations or 3 for 3D

calculations.
nlayer number of vertical layers (default: 20).
surft initial surface temperature (default 2◦C).
rock base depth below sea-level at which geothermal heat

gradient is applied (default: -5000m).
numt number time steps for spinning up GTHF calcula-

tions (default: 0).
rho The density of lithosphere (default: 3300kg m−3).
shc specific heat capcity of lithosphere (default: 1000J

kg−1 K−1).
continued on next page

92

continued from previous page
con thermal conductivity of lithosphere (3.3 W m−1

K−1).

NetCDF I/O can be configured in the main configuration file or in a separate file
(see ioparams in the [options] section). Any number of input and output files can
be specified. Input files are processed in the same order they occur in the configuration
file, thus potentially overwriting priviously loaded fields.

[CF default]

This section contains metadata describing the experiment. Any of these parame-
ters can be modified in the [output] section. The model automatically attaches
a time stamp and the model version to the netCDF output file.
title Title of the experiment
institution Institution at which the experiment was run
references References that might be useful
comment A comment, further describing the experiment

[CF input]

Any number of input files can be specified. They are processed in the order they
occur in the configuration file, potentially overriding previously loaded variables.
name The name of the netCDF file to be read. Typically netCDF

files end with .nc.
time The time slice to be read from the netCDF file. The first time

slice is read by default.

[CF output]

This section of the netCDF parameter file controls how often selected variables
are written to file.
name The name of the output netCDF file. Typically netCDF files

end with .nc.
start Start writing to file when this time is reached (default: first

time slice).
stop Stop writin to file when this time is reached (default: last

time slice).
frequency The time interval in years, determining how often selected

variables are written to file.
variables List of variables to be written to file. See Appendix B for a list

of known variables. Names should be separated by at least
one space. The variable names are case sensitive. Variable
hot selects all variables necessary for a hotstart.

continued on next page

93

continued from previous page

94

APPENDIX B GLIDE NETCDF VARIABLES

B.1 Introduction

In this appendix, I present the NetCDF variables that Glide reads and writes. This

originally appeared in the Glimmer documentation [Hagdorn et al., 2006], and has

been expanded with the higher-order options. A ∗ denotes variables that are used as

input, all others are output only. A †denotes variables that have been added for this

thesis.

B.2 Documentation

Name Description Units

level sigma layers 1

CF name: land ice sigma coordinate

lithoz vertical coordinate of lithosphere layer meter

x0 Cartisian x-coordinate, velocity grid meter

x1∗ Cartisian x-coordinate meter

y0 Cartisian y-coordinate, velocity grid meter

y1∗ Cartisian y-coordinate meter

continued on next page

95

continued from previous page

Name Description Units

acab accumulation, ablation rate meter/year

CF name: land ice surface specific mass balance

acab tavg accumulation, ablation rate (time average) meter/year

CF name: land ice surface specific mass balance

age∗ ice age year

CF name: land ice age

artm annual mean air temperature degree Celsius

CF name: surface temperature

beta∗† higher-order bed stress coefficient unknown

bheatflx∗ basal heat flux watt/meter2

bmlt∗ basal melt rate meter/year

CF name: land ice basal melt rate

bmlt tavg basal melt rate (time average) meter/year

CF name: land ice basal melt rate

btemp basal ice temperature degree Celsius

CF name: land ice temperature

btrc basal slip coefficient meter/pascal/year

bwat∗ basal water depth meter

calving ice margin calving meter

diffu apparent diffusivity meter2/year

dusrfdtm rate of upper ice surface elevation change meter/year

eus global average sea level meter

continued on next page

96

continued from previous page

Name Description Units

CF name: global average sea level change

flwa∗ Pre-exponential flow law parameter pascal/year

iarea area covered by ice km2

ivol ice volume km3

kinbcmask∗† Mask of locations where uvelhom, vvelhom

value should be held as Dirichlet boundaries

1

lat∗ latitude degreeN

CF name: latitude

litho temp∗ lithosphere temperature degree Celsius

lon∗ longitude degreeE

CF name: longitude

lsurf ice lower surface elevation meter

relx∗ relaxed bedrock topography meter

slc isostatic adjustment meter

CF name: bedrock altitude change due to isostatic adjustment

soft∗ bed softness parameter meter/pascal/year

tau xz† X component vertical shear stress kPa

tau yz † Y component vertical shear stress kPa

taux basal shear stress in x direction kilopascal

tauy basal shear stress in y direction kilopascal

temp∗ ice temperature degree Celsius

CF name: land ice temperature

continued on next page

97

continued from previous page

Name Description Units

thk∗ ice thickness meter

CF name: land ice thickness

thkmask mask 1

topg∗ bedrock topography meter

CF name: bedrock altitude

ubas∗ basal slip velocity in x direction meter/year

CF name: land ice basal x velocity

ubas tavg basal slip velocity in x direction (time aver-

age)

meter/year

CF name: land ice basal x velocity

uflx flux in x direction meter2/year

usurf∗ ice upper surface elevation meter

CF name: surface altitude

uvel ice velocity in x direction meter/year

CF name: land ice x velocity

uvelhom∗† ice velocity in x direction according to higher

order model

meter/year

CF name: land ice x velocity

vbas∗ basal slip velocity in y direction meter/year

CF name: land ice basal y velocity

vbas tavg basal slip velocity in y direction (time aver-

age)

meter/year

continued on next page

98

continued from previous page

Name Description Units

CF name: land ice basal y velocity

velnormhom † Ice velocity magnitude according to higher-

order model

meter/year

vflx flux in x direction meter2/year

vvel ice velocity in y direction meter/year

CF name: land ice y velocity

vvelhom∗† ice velocity in y direction according to higher

order model

meter/year

CF name: land ice y velocity

wgrd Vertical grid velocity meter/year

wvel vertical ice velocity meter/year

99

APPENDIX C SPARSE MATRIX DOCUMENTATION

C.1 User documentation

This section documents the usage of the sparse solver subsystem to solve a sparse

linear system.

C.1.1 Modules

In order to make use of the sparse solver subsystem, first import the following

modules:

1. glimmer sparse type – This module contains structure and function definitions

for a sparse matrix type. This module concerns creating a sparse matrix in triad

format, and is not dependent on the solver used

2. glimmer sparse – This module provides the linear system solver framework

that makes use of the sparse matrix type.

C.1.2 Setting up a linear system

The derived type sparse matrix type provides a high-level way to allocate a sparse

matrix. If you have declared

type (spa r s e mat r i x type) : : matrix

call

100

new sparse type (n , m, matrix)

to initialize the data structure and allocate memory, where n is the order of the

matrix and m is the expected number of nonzero entries. m need only be an initial

guess; the data structure will grow dynamically if it is exceeded, and will handle

under-use of the allocated memory properly.

To add a nonzero entry to the sparse matrix:

s p a r s e i n s e r t v a l (matrix , i , j , a)

where i and j are the one-based row and column in the matrix in which to insert the

value, and a is the value to insert. This will perform basic sanity checks: 0 < i ≤ n,

0 < j ≤ n, and a 6= 0. It will not check for double insertions, as this would incur

a large inefficiency. Also, bear in mind that there is no check outside of the sparse

matrix solver that you have placed at least one nonzero entry in every row and column

- it is up to you to make sure that matrix is nonsingular.

A sparse matrix can be cleared without deallocating memory using

s p a r s e c l e a r (matrix)

This is useful when creating a new matrix for the same kind of operation, such as

solving the same set of equations for a different viscosity field. Once completely done

with the memory it can be deallocated with

d e l s p a r s e m a t r i x (matrix)

As an example, the following code creates a 10x10 tridiagonal matrix suitable for

solving a 1-D diffusion problem implicitly:

type{ spa r s e mat r i x type } : : matrix

integer : : i

101

! Tr id iagona l matrix w i l l have 3 e n t r i e s f o r every row .

ca l l new spa r s e type (10 , 30 , matrix)

! Impose D i r i c h l e t boundar ies

ca l l s p a r s e i n s e r t v a l (matrix , 1 , 1 , 1)

ca l l s p a r s e i n s e r t v a l (matrix , 10 , 10 , 1)

! F i l l in the matrix f o r the i n t e r i o r

do i = 2 , 9

ca l l s p a r s e i n s e r t v a l (matrix , i , i −1, −1)

ca l l s p a r s e i n s e r t v a l (matrix , i , i +1, −1)

ca l l s p a r s e i n s e r t v a l (matrix , i , i , 2)

end do

C.1.3 Solving a linear system

A linear system solve is conceptually broken into six phases. Note that you will

need to call all five, even if some solver packages may not need them. Although

somewhat complicated, this was done so that operations that need not be done for

every solve can be performed once and reused.

1. Solver initialization: Allocates memory used by the sparse solver that is inde-

pendent of the matrix used.

2. Workspace allocation: This consists of allocating memory that can be done as

soon as the size of the linear system is known. Once the workspace is allocated,

it can remain allocated until the size of the linear system changes.

102

3. Matrix preprocessing: This consists of steps that need to be done for each

matrix, but not necessarily for each solve, such as LU factorization.

4. Matrix solve

5. Matrix postprocessing: Deallocates all memory from the preprocessing step.

Must be called before preprocessing another matrix.

6. Workspace deallocation: Deallocates all memory in the workspace allocation

step.

There are also two sparse matrix data structures that need to be instantiated.

These roughly correspond to the public and private interfaces of the sparse solver

system. The public type is sparse solver options, and holds user-configurable

options such as the error tolerance of an iterative method. The private type is

sparse solver workspace, and holds temporary memory required by the solver.

Sparse solver workspace should always be treated as an opaque type, and should

never be accessed by client code.

I will present a simple example of setting up, running, and tearing down the solver.

This example will not present any more complicated use cases of using the same

allocated workspace across several solves, or of solving the same matrix with different

right-hand side vectors. The module ice3d lib is a good example of the former,

though there are no examples of the latter in Glimmer/CISM currently.

If these two types are declared as

type (s p a r s e s o l v e r o p t i o n s) : : opt

type (s p a r s e s o l v e r w o r k s p a c e) : : wk

first step is initialize the sparse solver, including setting any default options, by

calling

103

s p a r s e s o l v e r d e f a u l t o p t i o n s (method , opt)

where method is an integer indicating the sparse solver method. The possible values

are listed at the beginning of glimmer sparse.F90, and are currently

Option Solver

0 Biconjugate Gradient Method (BiCG) with incomplete LU preconditioner from SLAP Seager [1989]

1 Method of Generalized Minimum Residuals (GMRES) with incomplete LU preconditioner from SLAP Seager [1989]

2 Unsymmetric Multifrontal Method direct solver from UMFPACK Davis [2004]

Once done, initialize the workspace and preprocess the matrix:

ca l l s p a r s e a l l o c a t e w o r k s p a c e (matrix , opt , wk)

ca l l s p a r s e s o l v e r p r e p r o c e s s (matrix , opt , wk)

Sparse allocate workspace takes an optional fourth argument of the maximum

number of nonzeros that the sparse matrix can have. This is to allow the workspace

to be allocated before the matrix is set up, in case the same workspace is used to

solve several systems. If left out, the workspace is allocated to support the current

number of nonzeros in the provided sparse matrix structure.

Next, solve the sparse linear system

i e r r = s p a r s e s o l v e (matrix , rhs , answer , opt , wk , err , i t e r , verbose)

where:

• rhs is an array of length n that contains the right-hand side of the equation

Ax = b

• answer is an array of length n. It should contain an initial guess of the solution

before the call. After the call, it contains the solution.

104

• err is a an output variable that contains the error tolerance that the solver

converged to (0 if a direct solver was used)

• iter is an output variable that contains the number of iterations that the solve

took (1 if a direct solver was used)

• verbose is a boolean that specifies whether the solver should, if available, provide

verbose output

This call returns an error flag that is zero if solve completed successfully, and

nonzero if it did not. See section C.1.4 for more information.

Finally, clean up the memory used by the sparse matrix solver:

ca l l s p a r s e s o l v e r p o s t p r o c e s s (matrix , opt , wk)

ca l l spa r s e de s t roy workspace (matrix , opt , wk)

C.1.4 Handling errors

There are several ways to handle a sparse matrix error, indicated by a nonzero

return value from sparse solve. To print the error to stdout:

s p a r s e i n t e r p r e t e r r o r (opt ions , e r r o r c o d e)

More generally, the error code can be converted to a human-readable string:

s p a r s e i n t e r p r e t e r r o r (opt ions , e r ro r code , e r r o r s t r i n g)

Finally, a subroutine is included for convenience to automatically log the error and

stop the ice model:

subroutine h a n d l e s p a r s e e r r o r (matrix , s o l v e r o p t i o n s , e r ro r code , FILE , LINE)

105

FILE and LINE need not be included, but if so the log file can point to the

place in the code where the sparse solve failed, rather than to the handle sparse error

routine its self.

106

BIBLIOGRAPHY

J. L. Bamber, R. L. Layberry, and S. P. Gogenini. A new ice thickness and bed

data set for the Greenland ice sheet 1: Measurement, data reduction, and errors.

Journal of Geophysical Research, 106(D24):33773–33780, 2001.

E. Bueler and J. Brown. The shallow shelf approximation as a ”sliding law” in a

thermomechanically coupled ice sheet model. Journal of Geophysical Research,

2009. In Press.

E. Bueler, J. Brown, and C. Lingle. PISM: a parallel ice sheet model. Available at

http://www.pism-docs.org, 2008.

T.A. Davis. Algorithm 832: Umfpack, an unsymmetric-pattern multifrontal method.

ACM Transaction on Mathematical Software, 30(2):196–199, June 2004.

J.B. Drake, P.W. Jones, and GR Carr. Overview of the Software Design of the CCSM.

INTERNATIONAL JOURNAL OF HIGH PERFORMANCE COMPUTING AP-

PLICATIONS, 19(3):177, 2005.

J.K. Dukowicz and J. R. Baumgardner. Incremental remapping as a transport/ad-

vection algorithm. J. Comput. Phys., 160:318–335, 2000.

S. Fuyuki, A. Abe-Ouchi, and H. Blatter. An improved numerical scheme to compute

horizontal gradients at the ice-sheet margin: its effect on the simulated ice thickness

and temperature. Annals of Glaciology, 46:87, 2007.

107

E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Reusable Ele-

ments of Object-Oriented Programming. Addison-Wesley, Boston, MA, 1995.

R. Greve. Application of a polythermal three-dimensional ice sheet model to the

Greenland ice sheet: Response to steady-state and transient climate scenarios. J.

Climate, 10(5):901–918, 1997.

M. Hagdorn, I. Rutt, T. Payne, and F. Hebeler. GLIMMER-The GENIE Land Ice

Model with Multiply Enabled Regions-Documentation, 2006.

R. C. A. Hindmarsh. A numerical comparison of approximations to the Stokes

equations used in ice sheet and glacier modeling. J. Geophys. Res, 109(F01012):

doi:10.1029/2003JF000065, 2004.

R. C. A. Hindmarsh and A. J. Payne. Time-step limits for stable solutions of the

ice-sheet equation. Ann. Glaciol., 23:74–85, 1996.

R.C. Hindmarsh. The role of membrane-like stresses in determining the stability and

sensitivity of the Antarctic ice sheets: back pressure and grounding line motion.

Philosophical Transactions A, 364(1844):1733, 2006.

R. LeB. Hooke. Principles of Glacier Mechanics. Prentice-Hall, London, 1998.

K. Hutter. Theoretical glaciology. In Material science of ice and the mechanics of

glaciers and ice sheets. D. Reidel Publishing Company/Tokyo, Dordrecht etc, 1983.

P. Huybrechts. J. deWolde, 1999: The dynamic response of the Greenland and Antarc-

tic ice sheets to multiple-century climatic warming. Journal of Climate, 12(8):

2169–2188, 1999.

P. Huybrechts, T. Payne, and The EISMINT Intercomparison Group. The EISMINT

benchmarks for testing ice–sheet models. Ann. Glaciol., 23:1–12, 1996.

108

W. Lipscomb and E.C. Hunke. Modeling sea ice transport using incremental remap-

ping. Monthly Weather Review, 132:1341–1354, 2004.

M. B. Lythe and D. G. Vaughan. BEDMAP: A new ice thickness and subglacial

topographic model of Antarctica. J. Geophys. Res., 106(B6):11335–11351, 2001.

D. R. MacAyeal. Large-scale ice flow over a viscous basal sediment: Theory and

application to Ice Stream B, Antarctica. Journal of Geophysical Research, 94(B4):

4071–4087, 1989.

D. R. MacAyeal, V. Rommelaere, P. Huybrechts, C. L. Hulbe, J. Determann, and

C. Ritz. An ice-shelf model test based on the Ross Ice Shelf, Antarctica. Annals

of Glaciology, 23:46–51, 1996.

D.R. MacAyeal. EISMINT: Lessons in Ice-Sheet Modeling. Department of Geophysical

Sciences, University of Chicago, 1996b.

L. W. Morland. Unconfined ice shelf flow. In C. J. Van der Veen and J. Oerlemans,

editors, Dynamics of the West Antarctic Ice Sheet. Dordrecht, Reidel Publishing

Company, 1987.

Michael Oppenheimer and Richard Alley. Report of the workshop on ice sheet mod-

elling. Available at www.scar.org/researchgroups/physicalscience/icesheetrpt.pdf,

2007.

W. S. B. Paterson. The Physics of Glaciers. Oxford, 3rd edition, 1994.

F. Pattyn. A new three-dimensional higher-order thermomechanical ice-sheet model:

basic sensitivity, ice-stream development and ice flow across subglacial lakes. Jour-

nal of Geophysical Research (Solid Earth), 108(B8):2382, 2003. doi: 10.1029/

2002JB002329.

109

F. Pattyn and T. Payne. ISMIPHOM: Ice sheet model intercomparison project.

Available at http://homepages.ulb.ac.be/ fpattyn/ismip/ismiphom.pdf, 2006.

F. Pattyn et al. Benchmark experiments for higher-order and full-Stokes ice sheet

models (ISMIP-HOM). The Cryosphere, 2:95–108, 2008.

NA Phillips. A coordinate system having some special advantages for numerical

forecasting. Journal of the Atmospheric Sciences, 14(2):184–185, 1957.

D. Pollard and R.M. DeConto. A coupled ice-sheet/ice-shelf/sediment model

applied to a marine margin flowline: forced and unforced variations. SPE-

CIAL PUBLICATION-INTERNATIONAL ASSOCIATION OF SEDIMENTOL-

OGISTS, 39:37, 2007.

W. H. Press, B. P. Flannery, S. A. Teukolsky, and V. T. Vetterling. Numerical Re-

ceipes in FORTRAN. The Art of Scientific Computing. Second Edition. Cambridge

University Press, Cambridge, 1992.

R.S. Pressman and D. Ince. Software engineering: a practitioner’s approach. McGraw-

Hill New York, 2005.

IC Rutt, M. Hagdorn, NRJ Hulton, and AJ Payne. The Glimmer community ice sheet

model. Journal of Geophysical Research-Earth Surface, 114(F2):F02004, 2009.

C. Schoof. Variational methods for glacier flow over plastic till. Journal of Fluid

Mechanics, 555:299–320, 2006.

M.K. Seager. A SLAP for the masses. Parallel Supercomputing: Methods, Algorithms

and Applications, pages 135–155, 1989.

110

Thomas, R.H., D.R. MacAyeal, D.H. Eilers and D. R. Gaylord. Glaciological studies

on the ross ice shelf, antarctica: 1973-1978. Antarctic Research Series, 42:21–53,

1984.

C. J. van der Veen. Fundamentals of glacier dynamics. A. A. Balkema, Rotterdam,

1999.

CJ Van der Veen. Numerical modelling of ice shelves and ice tongues. In Annales

geophysicae. Series B. Terrestrial and planetary physics, volume 4, pages 45–53,

1986.

H.K. Versteeg and W. Malalasekera. An introduction to computational fluid dynamics.

Prentice Hall, Harlow, England, 1995.

Robert T. Watson, editor. Climate Change 2001: Synthesis Report: Third Assesment

Report of the Intergovermental Panel on Climate Change. Cambridge University

Press, Cambridge, England, 2001.

Robert T. Watson, editor. Climate Change 2007: Synthesis Report: Fourth Assesment

Report of the Intergovermental Panel on Climate Change. Cambridge University

Press, Cambridge, England, 2007.

J. Weertman. Deformation of floating ice shelves. Journal of Glaciology, 3(21):38–42,

1957.

M. Weis, R. Greve, and K. Hutter. Theory of shallow ice shelves. Continuum Me-

chanics and Thermodynamics, 11:15–50, 1999.

	Integration of Higher-Order Physics in the Community Ice Sheet Model: Scientific and Software Concerns
	Let us know how access to this document benefits you.
	Recommended Citation

	ABSTRACT
	INTRODUCTION
	Motivation for ice sheet modeling
	A Taxonomy of Ice Sheet Models
	Introducing CISM
	Thesis Organization

	THE FIRST ORDER MOMENTUM BALANCE FOR ICE SHEET MODELS
	Momentum Balance in the Ice Sheet Interior
	Conservation Equations
	Deviatoric Stresses
	The Constitutive Relationship
	Stress and Velocity

	Boundary Conditions
	Stress-Free Surface
	Basal Boundary Conditions
	Stress-Free Base Condition
	Ice Shelf Lateral Boundary Condition

	NUMERICAL APPROXIMATION
	Rescaled Vertical Coordinate
	Derivation of Rescaling Parameters
	Transformation of Equations

	Finite Difference Approximation
	Solving the Linear System
	Nonlinear Iteration

	SOFTWARE INTEGRATION
	Code Structure
	Engineering Process
	Preparation of standalone code
	Initial diagnostic integration
	Physics and numerics refinement
	Software design refinement
	Initial prognostic integration

	Testing Process

	MODEL VERIFICATION
	ISMIP-HOM Experiments
	Description of Experiments
	Results
	ISMIP-HOM D
	Effects of grid selection

	Idealized ice shelf experiments
	Constant thickness
	Van der Veen Ice Tongue

	Ross ice shelf experiment
	Description of Experiment
	Results

	CONCLUSION
	Lessons Learned
	Towards a true community model

	GLIDE CONFIGURATION WITH HIGHER-ORDER OPTIONS
	Introduction
	Documentation

	GLIDE NETCDF VARIABLES
	Introduction
	Documentation

	SPARSE MATRIX DOCUMENTATION
	User documentation
	Modules
	Setting up a linear system
	Solving a linear system
	Handling errors

	Developer documentation

	BIBLIOGRAPHY

