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Citizen science programs that use trained volunteers may be a cost-effective 

method for monitoring wildlife at large spatial and temporal scales. However, few studies 

have compared inferences made from data collected by volunteers to professionally 

collected data.  In Glacier National Park (GNP), Montana, I assessed whether citizen 

science is a useful method to monitor mountain goat (Oreamnos americanus) 

populations.   I compared estimates of mountain goat abundance by volunteers at 32 sites 

throughout GNP to estimates by biologists and raw counts from aerial surveys at a subset 

of 25 and 11 sites, respectively.  I used multiple observer surveys to calibrate the indices 

of abundance for the effect of observer variation between volunteers and biologists.  I 

used N-mixture models, which calculated detection probability through patterns of 

detection and non-detection to obtain estimates of abundance.  Population estimates made 

by citizen science overlapped estimates by biologists and estimates from previous 

research.  Density estimates from aerial surveys were lower, possibly due to imperfect 

detection during aerial surveys or due to violation of the assumption of population 

closure.  Mean detection probability from multiple observer surveys for biologists was 

significantly higher and less variable than that of volunteers, but was not a suitable 

correction factor, because it was not consistent across all densities of mountain goats.  

Volunteer experience did not significantly influence detection probability or abundance 

estimates.  Abundance estimates by volunteers were influenced by number of site visits.  

More frequent site visits balanced out lower detection probability by volunteers and 

resulted in abundance estimates that were less variable than those of biologists.  When 

large spatial and temporal coverage can be achieved, citizen science can provide 

mountain goat population estimates that are statistically similar to those of biologists.  

However, neither estimates by volunteers or biologists had sufficient statistical power to 

detect a 30% decline in mountain goat population size over 10 years.  Power by 

volunteers could be increased by reducing the number of sites and increasing surveys/site 

or by continuing monitoring over a longer time frame (i.e., 30 years).  Citizen science 

programs can contribute to long term monitoring when properly designed.   
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INTRODUCTION 

Research and monitoring that relies on volunteers to collect data without direct 

supervision is called ―citizen science‖ (Trumbull et al. 2000).  The use of citizen science 

for long-term ecological data collection is increasing (Newman et al. 2003, Danielsen et 

al. 2005, Greenwood 2007, Cohn 2008) as ecosystem-level disturbances (e.g., global 

climate change; Morisette et al. 2009),and public participation in resource management 

increases (Yung 2007), and funding for ecological monitoring declines (Pilz et al. 2005).   

In addition, many granting organizations (e.g., National Science Foundation) often 

require grantholders to incorporate public participation in research and monitoring 

(Silvertown 2009).   

Careful training and sampling design may allow citizen science programs to yield 

results that are as reliable as those from professionals monitoring programs (Hochachka 

et al. 2000, Yoccoz et al. 2003, Gouevia et al. 2004).  Citizen science data are often 

collected on spatial scales beyond the reach of most research budgets (Cooper et al. 2007, 

Greenwood 2007, Cohn 2008).  Because funding required for citizen science programs is 

lower, they may also be conducted over a longer term than professional monitoring 

programs with larger funding needs (Danielsen et al. 2005).  For example, the National 

Audubon Society‘s Christmas Bird Count, a citizen science effort, which began in 1900, 

has yielded the longest unbroken record of bird diversity and distribution (Root and 

Alpert 1994) with the broadest temporal and geographic coverage of North America's 

avian fauna (Dunn et al. 2005).   

However, the question of whether citizen science is a scientifically robust 

approach remains unanswered.  Citizen science sampling often represents a compromise 
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between ideal design and design that maximizes participation (Greenwood 2007).  Many 

of the assumptions underpinning statistically rigorous ecological surveys (e.g., skill levels 

of observers, consistent survey effort, homogeneity of temporal variables) are violated 

with citizen science (Danielsen et al. 2005).  The impact on the validity of the inferences 

that can be drawn from the data caused by these departures from traditional survey design 

needs to be assessed.  A major obstacle to understanding the effectiveness of citizen 

science is the paucity of studies that have compared data and results from volunteers to 

professionally collected data (Fitzpatrick et al. 2009).     

In 2005, managers at Glacier National Park (GNP) established a citizen science 

program to conduct needed baseline monitoring for common loons (Gavia immer).  

Volunteers ( / year =117 ± 21 [SD]) participated each year from 2005 through 2009, 

gathered observational data (effort > 8,000 hours), and contributed information on nest 

location and estimates of chick hatch dates.   Volunteers detected 86% of loon chicks 

known by biologists to be present in GNP (Jami Belt, Glacier National Park, unpublished 

data).  Due to these successes, GNP managers decided to expand the citizen science 

program to monitor mountain goats (Oreamnos americanus).  

Declines in goat numbers at a prominent mineral lick in GNP (Steve Gniadek, 

Glacier National Park, unpublished data), and throughout the neighboring Bob Marshall 

Wilderness (Koeth 2008), and uncertainty about mountain goat response to climate 

change (Pettorelli et al. 2007)  generated concern about the stability of mountain goat 

populations in GNP.  Earlier studies yielded density estimates of 1.16 mountain goats/ 

km² in a 310 km² central portion of GNP (Chadwick 1977) and 2.9 mountain goats/ km² 

in a  32.7 km² area (Singer and Doherty 1985) of the park‘s 4,081 km² area.  More recent 
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and broad-scale abundance estimates of mountain goats in GNP are needed for future 

trend monitoring.  Given National Park Service interest in non-invasive monitoring 

methods due the sensitivity of mountain goats to trapping (Côté et al. 1998) and the costs, 

safety concerns, and potential impacts to visitor experience associated with traditional 

mark- recapture methods, citizen science was suggested as a monitoring approach.   

Aerial survey by helicopter are the primary non-invasive technique used to census 

mountain goats (Shackleton 1997) but the high cost of this method means that coverage 

or replication is often sacrificed.  A combination of aerial surveys and observational 

ground counts may improve precision of population estimates (Festa-Bianchet and Côté 

2008).  Mountain goats are an ideal candidate species for ground counts due to the high 

visibility of their exposed habitats (Veitch et al. 2002).   Ground counts are rarely 

conducted however, as they are not typically cost-efficient due to the rugged and remote 

places inhabited by mountain goats (Festa-Bianchet and Côté 2008).  Studies using the 

number of ungulates seen/day by hunters and outfitters as an estimate of ungulate density 

(Pettorelli et al. 2007, Veitch et al. 2002, Ericsson and Wallin 1999) have reported 

promise as viable long-term monitoring techniques.   

The large number of visitors to GNP (approx. 2 million/ year) similarly provides a 

potentially useful resource for monitoring mountain goat populations.  In spring 2008 

GNP created the High Country Citizen Science (HCCS) program to train volunteers to 

conduct observational surveys of mountain goats.  These surveys take place on a park-

wide scale and focus on data collection at backcountry locations (i.e., data that have been 

logistically difficult and costly for biologists to collect).  The goals of the program are to 



 

 4 

estimate the distribution and abundance of mountain goats in GNP and to establish 

protocols for long-term trend monitoring. 

My objective was to determine whether citizen science is a viable method for 

long-term population monitoring of mountain goats.  As a model for comparing 

inferences from data derived by volunteers to those from biologists, I compared citizen 

science estimates to estimates from data collected by biologists following the same 

survey protocols over a smaller area of GNP.   To determine whether these mountain goat 

population estimates were similar to estimates derived from other methods, I compared 

volunteer and biologist estimates to aerial surveys, and to the earlier density estimates of 

Chadwick (1977) and Singer and Doherty (1985).   

Given a limited budget, a tradeoff is necessary in professional monitoring 

between spatial coverage and temporal coverage.  A team of volunteers can achieve large 

spatial and temporal coverage, but the reliability of inferences that can be drawn from the 

data is unknown.  Do the benefits of large spatial and temporal sample sizes attainable 

using citizen science balance the limitations that result from varied skill levels and 

heterogeneous survey effort?  Volunteers with varied skill level often underestimate 

abundance (Newman et al. 2003, Delaney et al. 2008) but estimates are consistent and 

have a linear relationship to density estimates obtained from other sources (Kindberg et 

al. 2009).   Therefore, I predicted volunteers would detect less mountain goats than 

biologists and due to differences in skill level among volunteers, would have more 

variable detection rates.   Abundance estimates of mountain goats by volunteers at each 

site would be more variable and biased low compared to counts by biologists.  Because 

volunteers would be likely to survey sites more often, I predicted that they would be more 
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likely than biologists to capture a higher minimum count of mountain goats as the 

number of site visits increased.   I, therefore, expected that estimates of mountain goats at 

specific sites from citizen science volunteers would have a larger negative degree of bias 

and higher variation than estimates from biologists, but that abundance estimates across 

all survey sites would be similar to estimates from biologists due to larger spatial and 

temporal coverage.   

STUDY AREA  

Glacier National Park contains 4,081 km² of federally protected land and is 

situated in the northern Rocky Mountains, Montana, USA.  The park is divided 

lengthwise by the Continental Divide.  Elevations range from 945 m to 3,200 m.  

Timberline east of the Continental Divide is 244 m lower than on the western side.  

Forest canopy cover is dominated by Engelmann spruce (Picea engelmannii), Douglas fir 

(Pseudotsuga menziesii) and subalpine fir (Abies labioscarpa).  Over one-third of park is 

within the alpine zone, which is dominated by sparse rock outcroppings (Chadwick 

1977).    Alpine vegetation includes ledge, talus, meadow and krummholz communities 

that grade into subalpine coniferous forests at lower elevations (Hop et al. 2007).   

Glacier National Park provides habitat to an unhunted native population of 

mountain goats of undetermined size.  Density estimates in limited sections of the park 

have ranged from 1.16 mountain goats/ km² (Chadwick 1977) to 2.9 mountain goats/km² 

(Singer and Doherty 1985). Glacier National Park maintains an extensive network of 

>1,127 km of hiking trails.  My study area included all portions of the Livingston and 

Lewis mountain ranges that had slope angles ≥ 25º and were within 3.2 km of a trail (Fig. 

1).  Surveys were conducted at 32 sites with an area of 1,311km² (32.1% of GNP).          
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METHODS 

Proximity to escape terrain is a strong determinant of habitat use by mountain 

goats (Brandborg 1955, McFetridge 1977, Haynes 1992, Hamel and Côté 2007).  Escape 

terrain (i.e., precipitous terrain with cliffs and rocky ledges and slopes angles ≥25 º 

[Chadwick 1976, Varley 1994, Gross et al 2002]) is used to evade predators.  A model 

based solely on distance to escape terrain with slopes angles ≥33º correctly classified 

87% of mountain goat observations from a study in Colorado (Gross et al. 2002).  

Therefore, I modeled escape terrain from a 30m digital elevation model using slope angle 

classifications of 25 to 32, 33 to 39, and 40 to 90º (Gross et al. 2002).  The area of GNP 

with slope angles ≥25º was 1,653 km² (40.5% of GNP).  I then created 8 km by 11 km 

grid cells over the escape terrain to systematically locate observation sites.  The grid cell 

size was large enough to encompass the maximum home range size of a mountain goat 

(Rideout 1977), to minimize the likelihood that mountain goats would move from one 

grid cell to another.   

Most (76.6%) of the escape terrain used by mountain goats in GNP exceeded 40º 

(Chadwick 1977).  Therefore, I identified all grid cells with ≥40º escape terrain ≤3.2 km 

from a hiking trail for observation sites.  The distance of 3.2 km is the maximum line of 

sight distance for reliable detection and identification of mountain goats (S. Gniadek, 

Glacier National Park, personal communication; D. Chadwick, National Geographic, 

personal communication) which I verified through field tests.  Other studies have used 

distances of up to 10 km to observe ungulates (Krausman et al. 2004) that, like mountain 

goats , are highly visible in exposed habitats .  I then divided each trail into 2 km 
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segments, randomly selected 1 segment/cell, hiked each segment and recorded Universal 

Transverse Mercator (UTM) coordinates of all points from which slope features were 

visible.  I finally randomly selected from all points a single observation point (i.e., site) in 

each grid cell from which the largest area of escape terrain ≥25 º was visible.       

I selected 32 sites but topographic features blocked portions of each site.  I 

calculated the portion of each site that was visible from each observation point using the 

Spatial Analyst Viewshed function in ArcGIS (Environmental Systems Research 

Institute, Redlands, California).  We used the Spatial Analyst Extract by Mask function in 

ArcGIS to calculate the area of escape terrain in the viewshed of each site ( =4.7 km² ± 

2.3 [SD].   The area of escape terrain within viewsheds was 149 km² (9.0% of escape 

terrain in GNP) and the area of escape terrain at sites was 727 km² (43.9% of escape 

terrain in GNP).  Most escape terrain was above treeline.   

I recruited volunteers for the HCCS program using press releases, newspaper 

articles, public presentations, and flyers. In 2008 and 2009 selected volunteers attended a 

standardized 6 hour training session where they learned ecology of mountain goats, field 

identification relative to co-occuring ungulates (e.g., bighorn sheep [Ovis canadensis], 

mule deer [Odocoileus hemionus], white-tailed deer [O. virginianus], elk [Cervus 

canadensis], and moose [Alces alces]), and classification of age and sex following criteria 

developed by Smith (1988).  Volunteers then worked in the field with HCCS staff to 

learn survey protocol, data form completion, and the use of survey equipment (e.g., 

binoculars, spotting scopes, Global Positioning System (GPS), and compasses).   

Volunteers were asked to record the power and field of view of optical equipment on 

their data sheet.   
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All volunteers in 2009 completed a participant information sheet (Appendix 1) 

detailing their experience with spotting scopes and viewing wildlife.  I used these 

answers as a self-evaluation measure to assess experience level (Martin 1997, Scott et al. 

2005).  I also assessed the experience level of biologists who conducted mountain goat 

surveys in GNP using the same questionnaire (scores could range from 9- 42).  I pooled 

separate scores for volunteers and biologists, calculated the quartiles for the pooled data, 

and ranked each participant as: novice (minimum to first quartile, 9-20.75 points); some 

relevant experience (first quartile to mean, 20.76-26 points); moderate (mean to third 

quartile: 26.01- 31 points); and skilled (third quartile and above ,31.01- 42 points). 

Once trained, volunteers conducted surveys at selected sites based on their 

schedule, hiking ability, and preference.  Volunteers navigated to each site using a GPS 

unit and site map.  Photos of the observation point and the views due north and due south 

were provided to ensure that volunteers could locate the correct site despite GPS error 

(+/- 10m).  Volunteers conducted a 1 hour survey, recorded the number, age and sex of 

mountain goats detected, time of initial detection, and group size.  Volunteers were also 

asked to take photos of each group of mountain goats with a digital camera through a 

spotting scope, and to submit photos for verification purposes.   

Volunteers also recorded temperature, cloud cover, weather, time of day, and 

behavior that may affect detection probability  Volunteers recorded behavior of 

individual mountain goats upon detection (e.g., bedded, standing, foraging, walking), 

which I converted into the percentage of mountain goats that were moving upon 

detection.  Beginning in 2009 volunteers also documented visibility (as a proxy for 

distance estimation) and habitat use.  I used a 2 step process to estimate visibility.  
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Volunteers first recorded how they detected each group of mountain goats (visible with 

the naked eye, visible with binoculars or visible only with spotting scope).  I then scaled 

this visibility information into a single value for each survey by weighting the percentage 

of mountain goats seen in each category (naked eye by 1, binoculars by 2, spotting scope 

by 3), then summed the total.  Habitat use was estimated by recording landscape features 

where mountain goats were detected.  Landscape features recorded were those that may 

influence the distribution of mountain goats in GNP (Chadwick 1976) and included 

permanent snow or icefields, ledges, talus-scree-moraine, meadows, shrubs-krummholz, 

forests, roads, and trails.  I identified the dominant landscape feature in which the 

majority of mountain goats were seen from these data.  I chose these covariates and the 

covariates listed in the previous paragraph because they were the factors most likely to 

influence detection probability that could also easily be recorded by volunteers.   

Surveys were conducted between the second week of June and the last week of 

October, 2008 and 2009, after parturition and before the rut.  During this time mountain 

goats are more likely to remain within their home ranges (Festa-Bianchet and Côté 2008) 

and I assumed that the population was closed to changes in occupancy (MacKenzie et al. 

2003).  My use of sites that were larger than maximum home range size estimates for 

mountain goats also made the assumption of population closure during sampling periods 

viable.  The goal was for volunteers to conduct ≥ 3 surveys at each site.  I sent periodic 

emails to volunteers to inform them of sites that had been surveyed most recently and 

sites that needed to be surveyed.  Due to the voluntary nature of the program, however, I 

could not assign survey locations.  Because volunteers chose their own survey locations 

and schedule, and individual volunteers rarely surveyed the same site ≥ 1X, potential 
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sources of heterogeneity from observer and time of day effects were minimized 

(MacKenzie and Royle 2005).    

Biologists in GNP who have >1 year experience monitoring mountain goats 

conducted observational surveys at a subset of sites to compare to data from volunteers.  

Biologists conducted ≥ 3 surveys following the same protocols as volunteers at each of 

14 sites that were randomly selected from all sites accessible within 1 day of travel (one-

way distance).  The order of site visits was rotated to avoid the introduction of systematic 

variation (MacKenzie and Royle 2005).  Although mountain goats are most active in the 

morning (0700-1000) and late afternoon (1500-2000) (Rideout 1977, Singer and Doherty 

1985), biologists conducted surveys during times of day that volunteers most commonly 

conducted surveys.  I also asked biologists to conduct surveys at additional sites 

whenever possible.   

Detection probability is rarely constant at all sites and times and not all covariates 

can be measured, so direct estimation of detection probability is an important part of 

monitoring (Alldredge et al. 2006).  Experience level differences among observers can 

also influence detection probability ( i), biasing abundance estimates (Nichols et al 2000, 

Genet and Sargent 2003).  In this case i refers to the probability that mountain goats 

were detected at a site given they were present, rather than the probability that a mountain 

goat was present at the site.  I conducted independent multiple observer surveys (Nichols 

et al. 2000) .  to directly estimate differences in i between biologists ( biol) and 

volunteers ( vol).   Multiple observer approaches enable use of mark-recapture 

methodology to move point counts from indices to estimates of abundance (Nichols et al 

2000, Johnson 2008).  Constant use of spotting scopes and binoculars during the 1 hour 
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survey inhibited the ability for observers to cue off detections of others and ensured that 

observers maintained independence during multiple observer surveys (Nichols et al 

2000).   

One biologist conducted 76 multiple observer surveys simultaneously with 

volunteers.  I selected a number of volunteers from each experience rank proportionally 

to the number of volunteers in that experience rank to ensure that i was measured for 

volunteers with all levels of experience,.  Each biologist also conducted ≥2 multiple 

observer surveys on 2 separate occasions with each other to measure differences in i 

among biologists.  I used the Lincoln-Petersen estimator to obtain an estimate of 

abundance for each survey, then divided the observer‘s count by that estimate to 

determine i for each observer (Nichols et al.  2000).    

Results from multiple observations where no mountain goats were seen were 

omitted from analysis.  I used Welch‘s t-approximation (Welch 1947) to test for 

differences between volunteers and biologists, and between biologists.  I divided high 

counts at each site from volunteers and from biologists by mean i for each group ( biol 

for biologists and vol for volunteers) to get corrected counts.   

I developed sets of logistic regression models, using data from volunteers and 

data from biologists to test the importance of covariates with the potential to affect biol 

and vol .  Covariates tested in the models were observer experience, size of largest group 

of mountain goats detected, total number of mountain goats, temperature, binocular 

power, binocular field of view, scope power, scope field of view, start time of survey, 

wind speed, and weather.  I used Akaike‘s Information Criteria for small sample sizes 
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(AICc; Burnham and Anderson 2002]) to evaluate models and select the top model.  I 

used R statistical software (http://www.r-project.org/) for all data analysis.  

I used the highest count obtained at each site as the count statistic for that site.  

Density for each site was estimated by dividing the high count of mountain goats by the 

area of escape terrain at each site.  To derive more robust estimates of density at each site 

from these index counts I divided density estimates by i for each observer class (i.e. 

volunteer or biologist).  I then divided density estimates by the average density to obtain 

relative density estimates for each observer class (i.e., volunteer, biologist, and aerial 

observers). I determined quartiles of relative density estimates for each observer class and 

assigned each site a density rank of no mountain goats, low (first quartile), moderate 

(second quartile), high (third quartile), and very high (fourth quartile).  I considered 

relative density estimates between observer classes to be in agreement if they were within 

1 quartile of one another. 

Because all or nearly all members of a mountain goat group occasionally travel 

together (Chadwick 1977, Singer and Doherty 1985), these estimates represent the 

highest density of mountain goats within the viewshed of each site.   It is unlikely, 

however, that all mountain goats occupying a site will be available for detection in the 

viewshed simultaneously.  Therefore, density estimates based on high counts were likely 

biased low and do not accurately reflect the number of mountain goats inhabiting the 

surrounding survey area that were not detected.   

I also needed estimates that incorporated the probability that a mountain goat was 

present at the site to enable estimation of abundance beyond the viewshed at each site,.  

Patterns of detection and non-detection during spatially replicated counts can be used to 
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adjust for biases in counts that are caused by false absences (MacKenzie et al. 2002, 

MacKenzie and Kendall 2002).  I used N-mixture models to derive an estimate of 

average abundance (λ) and occupancy (ψ) across all survey areas (Royle 2004).  I 

analyzed volunteer data and biologist data separately to estimate λ and ψ for each group.  

N-mixture models assume that site-specific abundance influences detection (or non-

detection) of animals at a site (p), that distribution of animals across survey sites is 

random, and can be described by a Poisson distribution (Royle and Nichols 2003).  An 

estimate of λ is derived by integrating the binomial probabilities of detecting a certain 

count of animals at each site over the possible values of abundance for that site (Royle 

2004).    

I developed a series of models of covariates with the potential to influence λ and p 

but used only 2009 data; the number of visits to each site in 2008 by biologists was too 

low (≤ 2) to obtain adequate estimates of p.  Covariates tested in relation to p included all 

of the variables included in models for i from multiple observer surveys except 

estimated abundance of mountain goats.  Additional covariates tested for p included the 

percentage of mountain goats that were moving when detected, visibility of mountain 

goats, and the dominant landscape feature.  Covariates with potential to influence λ 

included viewshed area (km²), area of escape terrain within viewshed (km²), area of 

escape terrain at site (km²), and number of site visits. I then used AIC to select the top 

model and evaluated the goodness-of-fit of our fitted model using parametric 

bootstrapping.   I estimated average density of mountain goats in GNP using the 

following equation:  

  =                        (1) 
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To extrapolate abundance to all areas with escape terrain ≥25°, I used the following 

equation:  

 =        (2) 

I conducted N-mixture analysis, model development and model selection using the 

―Unmarked‖ package (http://r-forge.r-project.org/projects/unmarked) in R. 

We conducted aerial surveys of the entire site (including area outside of the 

viewshed) at 11 sites (total 450.56 km²; 11% of GNP) to obtain estimates of the number 

of mountain goats at each site against which to compare our estimates.  Montana Fish, 

Wildlife & Parks personnel, who had extensive experience with aerial mountain goat 

surveys, conducted aerial surveys by helicopter during 2 days in August 2009 at 

minimum above ground elevations of 150m.  Locations were recorded using GPS for all 

mountain goats observed.  I overlaid all goat locations onto our site viewshed maps to 

determine the count of mountain goats at each site that were within viewsheds.  I 

developed a density estimate for viewsheds by dividing this count by the summed area of 

escape terrain in all viewshed surveyed during aerial surveys. I used regression analysis 

to compare raw counts within site viewsheds from aerial surveys to raw and corrected 

high counts from volunteers and biologists.  I estimated density from aerial surveys for 

the entire survey area by dividing the sum of counts at each site by the area of escape 

terrain at all sites surveyed during aerial surveys.  I compared this density estimate to N-

mixture model density estimates from volunteers and biologists to determine whether the 

aerial survey estimate fell within the confidence intervals of either estimate.   Other 

studies have reported detection probabilities of mountain goats during aerial surveys from 

0.55 to 0.84 (Gonzalez-Voyer et al. 2001) and 0.75 to 0.91 (Rice et al. 2009).   

http://r-forge.r-project.org/projects/unmarked
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The long-term goal of the HCCS program is to detect trends in mountain goat 

populations.  I conducted a power analysis to determine whether the levels of precision in 

λ and standard error of λ from estimates by volunteers and biologists were adequate to 

detect a population decline.  The International Union for Conservation of Nature criteria 

for upgrading mountain goats from their current status as least concern to vulnerable 

include a 30% level of reduction in population size over 3 generations, or 10 years 

(Shackleton 1997).  I used methods proposed by Field et al. (2005) to assess the power of 

surveys by volunteers and biologists for identifying a population decline of 30% over 10 

years.  

RESULTS 

During 2008 and 2009, 140 volunteers were trained and 104 volunteers conducted 

≥1 survey.  Volunteers and biologists spent 4,401.3 and 1,219.1 hr., respectively, 

conducting mountain goat surveys (Table 1).  Experience ranks of biologists (  = 34.9 ± 

1.64 [SD], range = 33- 37) were higher and less varied than those of volunteers (  = 24.5 

± 7.09, range = 10- 39).  All biologists were in the skilled experience rank.  The 

proportion of volunteers in each experience rank (including volunteers who conducted ≥ 

1 survey) varied: novice = 27%, some relevant experience = 31%, moderately skilled = 

27%, skilled = 15%.  The proportion of volunteers in each experience rank that accepted 

our invitation to conduct multiple observer surveys also varied: novice = 20%, some 

relevant experience = 38%, moderately skilled = 35%, skilled = 7%.    

Mean i for GNP biologists and the GNP biologist who conducted multiple 

observer surveys with volunteers was not significantly different (t = 1.5344, df = 35.2, P 

= 0.93).  Therefore I combined i from all multiple observer surveys by biologists into 
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mean biol for all biologists.  Mean biol (0.809 ± 0.249) was significantly higher (t = 

3.1609, df = 81.5, P = 0.001) than mean vol  (0.647 ± 0.317).   No misidentifications of 

other species as mountain goats or other false positives were reported during multiple 

observer surveys.  Examination of verification photos made during single observer 

surveys by volunteers and biologists showed no evidence of misidentifications or false 

positives.  Verification photos were submitted for 15% of groups of mountain goats 

detected by volunteers and for 74% of groups of mountain goats detected by biologists.   

Group size of the largest group of mountain goats (GroupSize), and total number 

of mountain goats (TotalGoats) were the most influential covariates for predicting 

detection probability by volunteers and biologists (Table 2).  A model for biol adding 

observer experience (ExpRank) to the model had the lowest AIC score, but was 

competing with the 2 parameter model.  I considered the contribution of observer 

experience to be negligible, however, because it was not a significant predictor (P = 

0.237), and inclusion in models resulted in marginal reductions of residual deviance (< 2) 

compared to competing models.  In the best supported models, vol increased by 0.16 

with an increase in GroupSize and decreased by 0.09 with an increase in TotalGoats 

(Table 4), and biol increased by 0.24 with an increase in GroupSize and decreased by 

0.13 with an increase in TotalGoats (Table 5).   Inclusion of GroupSize and TotalGoats as 

predictors of vol resulted in a 41% reduction in residual deviance and for biol a 42% 

reduction in residual deviance.  Both models underestimated i at high values of the 

combined predictor variables.   

Raw high counts (uncorrected for i) from volunteers had a strong statistical 

relationship in 2008 with counts from biologists in 2008 (R²adj = 0.66, df = 19, P < 0.001) 
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but not in 2009 (R²adj = 0.38, df = 23, P < 0.001) (Fig. 2).  Density estimates followed the 

same pattern (Fig. 3).  In 2008, 64% of the variation in density estimates by volunteers 

was explained by density estimates by biologists (R²adj = 0.64, df = 19, P < 0.001) while 

in 2009 the correlation was 49% (R²adj = 0.49, df = 23, P < 0.001).  However, when 2009 

density estimates for sites surveyed < 3 times by volunteers and biologists were excluded, 

and 1 strong leverage point (Cook‘s distance > 1.0) removed,  regression results had high 

explanatory power (R²adj = 0.84, df = 11, P < 0.001).  Raw counts from aerial surveys 

were not correlated with estimates from 2009 corrected high counts by volunteers (R²adj = 

0.20, df = 8, P < 0.06) nor with estimates by biologists (R²adj = 0.07, df = 6, P = 0.26) 

(Fig. 4).   Density estimates for aerial surveys were also poorly correlated with 2009 

density estimates from volunteers (R²adj = 0.47, df = 8, P < 0.001) and biologists (R²adj = 

0.45, df = 6, P < 0.04). 

Aerial counts in survey viewsheds and 2009 density estimates from uncorrected 

high counts by volunteers and biologists in survey viewsheds were similar (1.99 

mountain goats/ km², 1.91 mountain goats/ km² and 1.87 mountain goats/ km² 

respectively).  Mean density estimates for all escape terrain at sites, based on corrected 

high counts by volunteers (0.54 to 0.72 mountain goats/ km²) and biologists (0.48 to 0.55 

mountain goats/ km²) were lower than density estimates from the aerial survey counts 

(0.95 mountain goats/ km²).   Density estimates by volunteers were higher and more 

variable than density estimates by biologists, but confidence intervals overlapped.   When 

calculated only for sites visited ≥ 3 times in 2009, however, density estimates by 

volunteers remained nearly the same (0.56 to 0.74 mountain goats/km²), but density 

estimates by biologists were higher (0.71 to 0.8 mountain goats/km²).  Relative density 
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estimates (Table 5 and Fig. 5) were in agreement between volunteers and biologists at 18 

of 25 sites, between volunteers and aerial surveys at 10 of 11 sites, between biologists 

and aerial surveys at 6 of 9 sites, and between all 3 (volunteers, biologists and aerial) at 5 

of 9 sites.   

The best supported N-mixture model for 2009 volunteer data included number of 

site visits (SiteVisits) as a predictor of mean abundance at sites (λ), and group size of 

largest group of mountain goats (GroupSize), and landscape feature in which the majority 

of mountain goats were seen (DomFeat) as predictors of detection of mountain goats at 

sites (p).  In the top model for 2009 data from biologists, area of escape terrain within 

viewshed (ViewshedEscape) was the most influential predictors of λ.  GroupSize and 

DomFeat were also influential predictors, but the addition of visibility of mountain goats 

(Visibility) as an additional predictor of p improved the model performance.  Goodness-

of-fit tests for the selected models for volunteer data (P = 0.96) and biologist data (P = 

0.455) yielded small differences between observed residual deviance and expected 

residual deviance indicating that the N-mixture models fit the data.  N-mixture models 

were not developed for 2008 data due to the low number of site visits by biologists.     

The best N-mixture model for 2009 volunteer data (Table 6) estimated abundance 

at 23.44 to 32.3 mountain goats/ site (λ = 27.52 ± 2.25 [SE], p = 0.06 ± 0.41, ψ = 0.96).  

Multiplying λ by the number of sites surveyed (N = 32) and dividing by escape terrain at 

sites (km²) yielded a density estimate of 1.23 (± 0.195) mountain goats/km².  The best N-

mixture model for 2009 data from biologists estimated abundance at 26.13 to 45.51 

mountain goats/site (λ = 32.95 ± 3.89, p = 0.094 ± 0.17, ψ = 0.97), yielding a density 

estimate of 1.56 (± 0.42) mountain goats/km² (N = 25).  Extrapolating these density 
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estimates from volunteer and biologists models to all escape terrain in GNP yielded an 

estimate of 1,705 to 2,349 mountain goats by volunteers and or 1,885 to 3,269 mountain 

goats by biologists.   

The N-mixture density estimate by biologists and volunteers were higher than the 

aerial survey estimate (0.95 mountain goats/ km²).  Estimates by volunteers and 

biologists overlapped the estimate of 1.16 mountain goats/ km² by Chadwick (1977).  

Volunteer and biologists estimates were lower than the estimate of 2.9 mountain goats/ 

km² by Singer and Doherty (1985).   

I conducted a power analysis using N-mixture model estimates of λ and SE, and 

assuming no change in SE in future years of monitoring to evaluate the probability of 

detecting a population change of 30% over 10 years. When significance level (α) was 

0.05, the power to detect a 30% decline over 10 years by volunteers was 0.28 and for 

biologists was 0.12.  Increasing α increased the power for volunteers and biologists [α = 

0.1, power (volunteers) =  0.40, power (biologists) = 0.20; α = 0.2, power (volunteers) = 

0.56, power (biologists) = 0.33], but did not near the goal to detect a decline with high 

probability (e.g., power > 0.8).   

DISCUSSION 

Developing baseline estimates of species density or abundance over entire 

management areas, (e.g., National Parks) requires large sample sizes, often precluding the 

use of traditional, but more costly, monitoring strategies (e.g., monitoring by biologists, 

aerial surveys, mark-recapture).  The use of volunteers in monitoring programs offers 1 

solution, but few programs are able to assess the relative quality data of data collected by 

biologists and volunteers (Fitzpatrick et al. 2009, Kindberg et al. 2009).  I compared 
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population estimates of mountain goats from data collected by citizen science volunteers 

at sites throughout GNP to population estimates from data collected by biologists at a 

subset of sites.  Our conclusions are broadly applicable to citizen monitoring programs, 

and have particular relevance to programs monitoring common and highly visible 

species.   

Population estimates from citizen science data were similar to those from data 

collected by biologists.  Uncorrected counts in survey viewsheds by volunteers and 

biologists were similar and were close to counts from aerial surveys.  Confidence 

intervals of our density estimates from high counts by volunteers and biologists 

overlapped, despite a lower mean detection probability by volunteers.  Density estimates 

by volunteers and biologists from N-mixture models also overlapped each other and those 

from earlier research (Chadwick 1977).  Volunteer estimates provide similar baseline 

information compared to biologists for planning future monitoring and research.   

  A few discrepancies in the estimates raise important considerations. The average 

density and relative abundance estimates were considerably lower than estimates by 

Singer and Doherty (1985)(i.e.,  1.03- 1.42 mountain goats/ km² versus 2.9 mountain 

goats/ km²).  This may be partially explained by the small area encompassed by their 

study area and its proximity to a heavily-used mineral lick.  Conversely, our N-mixture 

model estimates were higher than aerial survey counts.  I found no evidence of 

misidentification of mountain goats to suggest that our estimates were falsely inflated.  A 

simple explanation may be that detection probability during aerial surveys was less than 

perfect.  I did not measure detection probability during aerial surveys but other studies 

have reported detection probabilities from 0.55 to 0.84 (Gonzalez-Voyer et al. 2001) and 
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0.75 to 0.91 (Rice et al. 2009).  Using this range (i.e., 0.55- 0.91) as a hypothetical 

correction factor for our aerial survey count yields an estimate of 1.03 to 1.38 mountain 

goats/ km² which overlaps our N-mixture density estimates by volunteers and biologists 

(Fig. 6).  An alternative explanation for the discrepancy between our estimates and aerial 

counts is that that our assumption of closure may have been violated.  Mountain goat 

home range sizes (e.g., from 6.3 km
2
 [Singer and Doherty 1985] to 24 km

2
 [Rideout 

1977]) vary widely throughout their range.   Due to a lack of specific information about 

mountain goat home range sizes and locations in GNP, I assumed a rectangular home 

range.  Home ranges may, in fact, be more linear, reflecting fidelity to escape terrain 

(Brandborg1955, Hamel and Côté 2007).  If home ranges are in fact linear, mountain 

goats may have moved from one survey site to another, potentially inflating population 

estimates from ground counts.  Ensuring closure using linear home ranges would require 

a more terrain-specific approach with specific knowledge about movement patterns.    

Observer experience for volunteers was lower and more varied than for biologists, 

as I expected, but did not correlate with detection probability or directly influence 

estimates.  The proportion of volunteers in the novice and skilled experience ranks who 

accepted our invitations to conduct multiple observer surveys was lower than the 

proportion of overall volunteers in these experience ranks.  This potential 

underrepresentation of volunteers at the lower and upper ends of observer experience in 

our multiple observer sample may have negatively affected the correlation between 

experience and detection probability.   

Other citizen science programs use scores from observer experience to weight 

data from volunteers (Silvertown 2009).  This approach may be effective if skill level is 
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correlated with experience, but my results suggest that weighting data in this manner may 

not be valid and I caution against this practice.  The adequacy of the chosen tool for 

measuring observer experience is also an important consideration for other programs.  In 

our study, low correlation between experience and estimates of detection probability and 

abundance may have resulted from failure of our participant survey to accurately measure 

experience level.  A few relevant metrics of experience were not included because they 

are difficult to quantify (e.g., the degree to which volunteers have a search image, the 

amount of investment volunteers have in surveying).  Factoring in the number of surveys 

conducted by each observer may also improve the measurement of experience rank.  

Observer bias, such as lower detection probability, generally decreases as observers 

become more experienced (Delaney 2008) and number of surveys may provide a 

promising avenue for exploring the relationship between experience and observer bias. 

I used multiple observer surveys to correct for observer variation between 

volunteers and biologists and to calibrate our indices of abundance.  Incorporating 

detection probability measured by multiple observer approaches has been proposed as a 

correction factor for data with high inter-observer variation (Nichols et al. 2000, 

Alldredge et al. 2006).  Such a correction factor could be useful in calibrating data from 

citizen science programs to make it comparable to data from biologists.  Correcting data 

according to detection probability differences is only valid, however, if it is consistent 

across survey conditions, or if the variation can be adequately modeled.   

My results suggest that detection probabilities from multiple observer surveys are 

not sufficient to correct counts because they are not consistent across all levels of 

mountain goat abundance.  If mean detection probability is used as a correction factor for 
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volunteer data in future monitoring, abundance of mountain goats would be 

overestimated when group size was large and underestimated when the total number of 

mountain goats was high.  The models estimated to explain the variation provided some 

insight into the factors that influenced detection probability, but failed to explain most of 

the variation, reducing residual deviance by <50%.  This suggests that unmeasured 

variables (e.g., volunteer effort) may have contributed to differences in detection 

probability.  Detection probabilities that were inconsistent across mountain goat densities 

may explain the low correlation between density estimates by volunteers and biologists, 

but this fails to explain the low correlation between high counts by volunteers and 

biologists that were not corrected by detection probability. 

To obtain estimates of true abundance I used N-mixture models, which 

incorporated the probability that a mountain goat was present at the site, but was not 

detected because it was either outside of the viewshed during the survey period or missed 

due to observer error.  Similar to multiple observer surveys, N-mixture models resulted in 

lower detection probabilities and more variation among volunteers than among biologists.  

Detection probability in N-mixture models for volunteer and biologist data was again 

influenced by mountain goat group size.  Habitat use also influenced detection 

probability for volunteers and biologists while visibility was influential only for biologist 

data.  Habitat use and visibility may have similarly influenced multiple observer models 

but these parameters were not tested because data was not available for 2008.   

N-mixture model estimates were higher than estimates from high counts in 

viewsheds that were corrected for detection probability, most likely because not all 

mountain goats were available for detection in viewsheds during survey periods.  The 
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high probability of occurrence (≥0.96) and low detection probability (≤0.094) estimated 

by N-mixture models confirm this explanation and suggest that mountain goats inhabiting 

sites were frequently absent from survey viewsheds.  Abundance estimates by biologists 

were influenced by area of escape terrain in viewsheds, a result supported by previous 

research that identified escape terrain as the best predictor of mountain goat occurrence 

(Gross et al. 2002, Hamel and Côté 2007).  While the area of escape terrain in viewsheds 

also influenced abundance estimates by volunteers in several of the highest ranking 

models, the number of site visits alone best explained the variation and had the largest 

influence on abundance estimates by volunteers.  Other studies have reported that 

volunteers underestimate abundance due to lower detection probability (Newman et al. 

2003, Delaney et al. 2008).  In our study, however, the effect of lower detection 

probability on abundance estimates by volunteers was balanced out by the larger number 

of site visits.  Variation in abundance estimates was lower for volunteers than for 

biologists because volunteers surveyed more sites more frequently.    

The number of site visits by volunteers did not affect detection probability during 

multiple observer surveys, but it may explain why uncorrected high counts and density 

estimates by volunteers and biologists were not more highly correlated.  By surveying 

sites more often, volunteers captured a higher minimum count of mountain goats at >50% 

of sites.  The larger variation in detection probability among volunteers, however, led to 

volunteers reporting a larger proportion of counts that were lower than biologist counts.  

Therefore, N-mixture model estimates by biologists were higher despite higher minimum 

counts by volunteers.  
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When large sample sizes can be obtained through large spatial and temporal 

coverage, citizen science can provide mountain goat population estimates that are 

statistically equivalent to those of biologists.  However, to be useful for long-term 

monitoring, baseline estimates must have statistical power to detect significant population 

changes (Field et al. 2005).  In our study, statistical power of estimates by volunteers and 

biologists were not sufficient to detect a 30% decline in mountain goat population size 

over 10 years.  Because I had no measure of variation and was unable to quantify the 

power of aerial surveys, I cannot comment on the likelihood of detecting such a decline 

using this method.  As a general rule, aerial surveys that do not incorporate some measure 

of detection probability (e.g., distance sampling, double observer surveys, repeat surveys; 

Gonzalez-Voyer et al. 2001) have low power to accurately detect changes in population 

size (Rice et al. 2009).   

Optimization of our survey design may increase the power to detect mountain 

goat population trends.  To attain power of 0.8 while maintaining the current level of 

survey effort, the standard error for volunteer estimates of abundance would need to 

decrease to 1.502.  This may be attainable with a greater number of volunteers across 

more sites.  Recruiting more volunteers may be an option for increasing sample size but 

would require additional funds for volunteer coordination.  Alternatively, greater 

precision and higher power could be achieved by reducing the number of sites and 

increasing surveys/site (MacKenzie and Royle 2005).   This could be particularly 

effective when probability of occupancy is high but detection probability low 

(MacKenzie and Royle 2005), as is the case with common but wide-ranging species.  
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The capacity for citizen science programs to continue monitoring over a long 

period of time could be harnessed as an additional means of increasing power.  Funding 

for monitoring of species that are not in imminent danger of extinction is often limited.  

When resources are scarce and population declines may not be evident immediately, the 

long-term nature of citizen science is particularly advantageous.  If monitoring at the 

current spatial and temporal scale continues for 30 years, citizen science volunteers will 

have an 80% likelihood (α = 0.1) of detecting a 30% decline in mountain goat 

populations.  For species that do not require management action over the short-term, 30 

years may represent a suitable time frame for conservation.  When properly designed by 

incorporating detection probability by volunteers, citizen science programs can contribute 

to long term population monitoring.  

MANAGEMENT IMPLICATIONS 

Wildlife managers faced with limited funding to meet their monitoring needs are 

increasingly turning to the free labor source provided by the public (Silvertown 2009), 

but establishing and coordinating of a citizen science program requires financial 

commitment and effort (Yung 2007).  Managers must determine which will better meet 

their conservation objectives: hiring a citizen science project manager to coordinate 

volunteers to cover a larger sample area, or enlisting a small number of biologists to 

cover a smaller sample area.  Our results suggest that the 2 methods may yield 

statistically similar population estimates if enough data are collected by volunteers.  

Further studies comparing citizen science and professional approaches will help to 

establish the generality of our results.  
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Citizen science programs involved with long-term monitoring should incorporate 

some measure of data quality.  The cost of employing biologists or using other methods 

(e.g., mark-recapture) limits comparisons of data on a similar scale to the data that can be 

collected by volunteers.  The use of multiple observer surveys to correct volunteer data 

may not be viable for citizen science data due to the high variability in detection 

probability.  However, double sampling using data collected by biologists or data from 

aerial surveys over a smaller subsample offers a useful comparison providing that enough 

data are collected to measure detection probability.  Data quality comparisons will likely 

be most effective once the program has been established (e.g., ≥1 year after initiation), 

because managers can then determine the scale of data collection by volunteers.   

Because citizen science population estimates from small sample sizes are not 

comparable to biologist estimates I do not recommend citizen science as a direct 

substitute for professional monitoring.  Citizen science will only produce similar 

populations estimates to those of biologists when sample sizes are larger those attainable 

by biologists.   I reported that abundance estimates were positively influenced by number 

of site visits and that variation was negatively influenced by number of sites surveyed.  

Future research on the number of site visits and number of surveys at each site that 

maximize precision of citizen science estimates would contribute toward increasing the 

power of detecting trends.    
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Table 1:  Site visits and surveys conducted by volunteers and biologists in Glacier 

National Park, Montana for mountain goat population estimates.  

Year Observer 

Sites 

visited 

No. 

surveys 

 no. site    

    visits          SD 

Sites surveyed 

3 times 

2008 Volunteers 30 132 5.95 2.6 22 

2008 Biologists 21 33 1.84 0.62 0 

2009 Volunteers 32 197 7.24 2.85 31 

2009 Biologists 25 76 4.78 2.94 14 
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Table 2:  Logistic regression models for detection probability of volunteers ( vol) and biologists ( biol) during multiple observer 

surveys for mountain goats in Glacier National Park, Montana.   Variables included in models are observer experience (ExpRank), 

size of largest group of mountain goats detected (GroupSize), total number of mountain goats (TotalGoats), temperature (Temp), 

binocular power (BinocPower), binocular field of view (BinocView), scope power (ScopePower), scope field of view (ScopeView), 

start time of survey (StartTime), wind speed (WindSpeed), number of visits to site by year and observer (SiteVisits), and weather 

(SkyCover).  All variables are continuous except for SkyCover which is a factor variable with 5 levels.  
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Model  for volunteers K AICc ∆i wi 

GroupSize, TotalGoats 3 46.99 0.00 0.556 

GroupSize, TotalGoats, SiteVisits 4 48.05 1.07 0.326 

ExpRank, GroupSize, TotalGoats, SiteVisits 5 50.25 3.26 0.109 

ExpRank, GroupSize, BinocPower, BinocView, TotalGoats, SiteVisits 7 55.79 8.80 0.007 

ExpRank, GroupSize, BinocPower, BinocView, WindSpeed, TotalGoats, SiteVisits 8 59.46 12.47 0.001 

TotalGoats 2 60.97 13.98 0.001 

Model for biologists K AICc ∆i wi 

ExpRank, GroupSize,TotalGoats 4 72.75 0.00 0.338 

GroupSize,TotalGoats 3 73.13 0.38 0.279 

ExpRank, GroupSize,TotalGoats, SiteVisits 5 73.14 0.39 0.277 

ExpRank, GroupSize,WindSpeed, TotalGoats, SiteVisits 6 75.76 3.02 0.075 

ExpRank, GroupSize,Temp,  WindSpeed, TotalGoats, SiteVisits 7 78.06 5.32 0.024 

ExpRank, GroupSize,Temp, BinocPower, BinocView,  WindSpeed, TotalGoats,  

     SiteVisits 9 80.16 7.42 0.008 
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Table 3:  Parameter estimates, errors and deviance for best model for detection 

probability of volunteers ( vol) during multiple observer surveys for mountain goats in 

Glacier National Park, Montana.     

vol  ~ GroupSize+ TotalGoats 

Coefficients Estimate SE z value Pr(>|z|) 

Intercept 0.55931 0.2962 1.888 0.059 

GroupSize 0.16067 0.05951 2.7 0.0069 

TotalGoats -0.09027 0.03231 -2.793 0.0052 

Null deviance:   26.943  on 49  degrees of freedom 

 Residual deviance:  15.894  on 47  degrees of freedom  

 

 

Table 4:  Parameter estimates, errors and deviance for best model for detection 

probability of biologists ( biol) during multiple observer surveys for mountain goats in 

Glacier National Park, Montana.     

biol ~ GroupSize+ TotalGoats 

Coefficients Estimate SE z value Pr(>|z|) 

Intercept     0.97 0.26165 3.719 0.0002 

GroupSize 0.24 0.06972 3.486 0.0005 

TotalGoats -0.13 0.03817 -3.483 0.0005 

Null deviance:   47.764  on 105  degrees of freedom 

 Residual deviance:  27.844  on 103  degrees of freedom 
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Table 5:  Relative density estimates of mountain goats from corrected 2009 high counts 

from volunteers and biologists and raw counts from aerial surveys in Glacier National 

Park, Montana. 

Site 

volunteer 

relative 

density 

estimate 

biologist 

relative 

density 

estimate 

aerial relative 

density 

estimate 

Apikuni Falls very high very high -- 

Autumn Creek very high very high -- 

Avalanche Lake moderate moderate -- 

Beaver Woman  high moderate high 

Boulder Pass low -- moderate 

Coal Creek low high -- 

Cobalt Lake moderate moderate -- 

Cut Bank  very high moderate -- 

Elizabeth Lake very high moderate very high 

Fifty Mountain high -- -- 

Firebrand Pass moderate no goats -- 

Grace Lake moderate no goats -- 

Gunsight Pass high high very high 

Harrison Lake moderate no goats moderate 

Haystack Butte very high very high -- 

Iceberg Lake very high very high -- 
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Janet Lake moderate -- low 

Numa Lookout low no goats no goats 

Ole Creek low no goats -- 

Otokomi Lake moderate moderate -- 

Park Creek no goats -- -- 

Pitamakin Pass high -- -- 

Poia Lake no goats very high very high 

Preston Park moderate moderate -- 

Red Eagle high moderate -- 

Scenic Point no goats -- -- 

Siyeh Pass  moderate moderate -- 

Sperry Chalet moderate moderate moderate 

Triple Divide  high very high moderate 

Trout Lake no goats low low 

Upper Kintla no goats -- -- 

Upper Nyack low moderate -- 
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Table 6:  N-mixture models for mountain goat abundance from 2009 volunteer survey data and 2009 biologist survey data from 

Glacier National Park, Montana.  Detection probability covariates for N-mixture models were observer experience (ExpRank), size of 

largest group of mountain goats detected (GroupSize), temperature (Temp), binocular power (BinocPower), binocular field of view 

(BinocView), scope power (ScopePower), scope field of view (ScopeView), start time of survey (StartTime), wind speed 

(WindSpeed), weather (SkyCover) , percentage of mountain goats seen that moving when detected (PercentMoving), visibility of 

mountain goats (Visibility), and landscape feature in which the majority of mountain goats were seen (DomFeat).  Abundance 

covariates with potential to influence λ were viewshed area in km² (Viewshed), area of escape terrain ≥25° within viewshed 

(ViewshedEscape), area of escape terrain ≥25° survey site (SiteEscape), and number of site visits (SiteVisits).  Detection probability 

of mountain goats is denoted in the column labeled p. 

Models from 2009 volunteer data K AIC ∆i wi λ SE(λ) p 

~GroupSize + DomFeat ~ SiteVisits  10 462.20 0.00 0.40 27.52 2.25 0.06 

~GroupSize + DomFeat  ~ SiteVisits +Viewshed 11 464.18 1.98 0.15 27.54 2.26 0.06 

~GroupSize + DomFeat ~ SiteVisits + Viewshed +  

     ViewshedEscape  12 465.90 3.70 0.06 27.39 2.27 0.06 

~GroupSize + DomFeat + StartTime + WindSpeed + ExpRank +  

     SkyCover + Visibility + Temp  + PercentMov + Visibility ~  

     SiteVisits + Viewshed + ViewshedEscape + SiteEscape  
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469.92 

 

 

7.72 

 

 

0.01 

 

 

24.48 

 

 

2.08 

 

 

0.05 

~GroupSize + DomFeat + StartTime + WindSpeed + ExpRank +         
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     SkyCover + Visibility + Temp + PercentMov + BinocPower +  

     BinocView + ScopePower + ScopeView ~ SiteVisits +  

     Viewshed + ViewshedEscape + SiteEscape 

 

 

30 

 

 

473.79 

 

 

11.59 

 

 

0.00 

 

 

23.64 

 

 

2.04 

 

 

0.06 

Null  2 1687.85 1225.65 0.00 27.39 2.28 0.12 

Models from 2009 biologist data K AIC ∆i wi λ SE(λ) p 

~GroupSize + DomFeat + Visibility ~ ViewshedEscape 9 264.13 0.20 0.26 32.95 3.89 0.09 

~GroupSize + DomFeat + Visibility ~ ViewshedEscape + SiteVisits  

     + SiteEscape + Viewshed 12 267.21 3.28 0.06 31.58 3.78 0.09 

~GroupSize+ DomFeat ~ ViewshedEscape  8 272.43 8.50 0.00 34.36 3.99 0.14 

~GroupSize + DomFeat + Visibility + Temp + SkyCover+  

     StartTime +WindSpeed +ExpRank + SkyCover + PercentMov ~  

     ViewshedEscape + SiteVisits + SiteEscape + Viewshed 24 279.60 15.67 0.00 32.52 4.12 0.09 

~GroupSize + DomFeat + Visibility + Temp + SkyCover+  

     StartTime +WindSpeed +ExpRank + SkyCover + PercentMov +  

     BinocPower + BinocView + ScopePower + ScopeView ~  

     ViewshedEscape + SiteVisits + SiteEscape + Viewshed 28 284.48 20.55 0.00 31.56 4.09 0.09 

Null 2 739.94 476.01 0.00 22.87 2.84 0.26 
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Fig. 1:  Escape terrain in GNP with slope angle classifications of 25 to 32 (light grey/ 

yellow), 33 to 39 (dark grey/ orange), and 40 to 90 º (black/ red) used to select sites in 

each grid cell.  Pink lines are hiking trails and light green areas are 3.2 km buffers around 

trails. 
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Fig. 2:  Regression of high counts of mountain goats by volunteers with high counts by 

biologists for 2008 (left) and 2009 (right) in Glacier National Park, Montana.  The solid 

blue line is the regression line.  The dashed line is 1:1 line.   
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Fig. 3:  Regression of density estimates of mountain goats by volunteers with density 

estimates by biologists at all survey sites for 2008 (left) and 2009 (right) in Glacier 

National Park, Montana.  The solid blue line is the regression line.  The dashed line is 1:1 

line.   
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Fig. 4:  Regression of 2009 corrected high counts of mountain goats by volunteers (left) 

and corrected high counts by biologists (right) with raw counts from 2009 helicopter 

surveys in Glacier National Park, Montana.  High counts for volunteers and biologists are 

corrected by mean detection probability.  The solid blue line is the regression line.  The 

dashed line is 1:1 line.   
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Fig. 5:  Maps of relative densities of mountain goats estimated from corrected high counts by volunteers (left) and biologists (center), 

and raw counts from and helicopter surveys (right) in Glacier National Park, Montana.  Legend: yellow= no mountain goats, orange= 

low density, red= moderate density, pink= high density and blue = very high density. 
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Fig. 6:  Density estimates of mountain goats by volunteers, biologists, aerials surveys and 

previous research (Chadwick 1977) in Glacier National Park, Montana derived from N-

mixture models with confidence intervals where available.  Confidence intervals for 

aerial survey estimates are derived using a range of detection probabilities (0.55- 0.91) 

from other mountain goat aerial surveys  (Gonzalez-Voyer et al. 2001; Rice et al. 2009) 

as a hypothetical correction factor for our aerial survey count.   
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Appendix 1:  Questions from participant information sheet used to assess experience 

level of volunteers and biologists conducting mountain goat surveys for the High Country 

Citizen Science program in Glacier National Park, Montana.  The range of possible 

scores for each question in listed in parentheses after the question. Minimum score was 9, 

maximum score was 42 

1. Experience using binoculars to find wildlife at a distance (scores 1-5): 

 _____ limited use of binoculars  _____ 1 to 2 years   ____ 2 to 4 years    

____ 4 to 8 years  _____ over 8 years 

2. Experience using a spotting scope (scores 1-6):  

_____ have never used a spotting scope  _____ 1 month to 1 year   

_____ 1 to 2 years   ____ 2 to 4 years   _____ 4 to 8 years  ___over 8 years 

3.  Which best describes your approach to wildlife watching (scores 1-3):   

_____ casual/incidental watching    

_____actively search for wildlife during other recreation    

_____take trips with specific intention of watching wildlife   

4. Experience with wildlife photography (scores 1-3):   

_____ casual/incidental photography of wildlife   

_____actively search for wildlife to photograph during other recreation    

_____take trips with specific intention of photographing wildlife   

5.  Approximate number of days spent wildlife watching/ wildlife photographing trips in  

the past year (scores 1-5):  

_____0-10   _____11-30   _____31-60   _____61-100  _____101+  

6. Wildlife data collection experience (other than GNP citizen science) (scores 1-5):  
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_____ never collected wildlife data 

_____occasional participation in an organized wildlife/ bird count (e.g. Christmas  

Bird Count) 

____ have worked as a wildlife field technician for 1 to 2 year   

____ have worked as a wildlife field technician for 2 to 4 years   

____ have worked as a wildlife field technician for 4 or more years 

7. Do you document the behavior, habitat or other aspects of wildlife you have seen 

(scores 1-3)?  

_____ never _____ occasionally for significant wildlife sightings   

_____ regularly document wildlife sightings  

8. Ability to spot large mammals at a distance using binoculars or a spotting scope 

(scores 1-5):   

_____1(novice)    ______2    ______3    _____ 4     _____5(expert)   

9. Ability to identify mountain goats at a distance (scores 1-5):    

_____1(novice)    ______2    ______3    _____ 4     _____5(expert)   

 


	Evaluating population estimates of mountain goats based on citizen science
	Let us know how access to this document benefits you.
	Recommended Citation

	OFFICIAL SIGNATURE PAGE TEMPLATE (To be turned in to the Graduate School with your one certified copy

