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Morrow, Natalie J., M.S. Spring 2002 Geology

Characterization of the Lithostratigraphic Factors Controlling Petroleum Hydrocarbon Migration In 
A Portion of the Missoula Valley Aquifer, Missoula, Montana (242 pp.)

Director: Dr. William W. Woessnei^^ÿ:^^^^/^ 5 V ^  2 -

Petroleum hydrocarbon release sites have the potential to contaminate drinking water supplies 
and pose a threat to human health and the environment. Characterization of physical and 
chemical properties of petroleum hydrocarbons and the subsurface environment are critical for 
proper identification of the contaminant migration and fate, and for site remediation. Most 
commonly, processes of sorption, biodégradation, and natural attenuation, and the physical 
constraints that are a function of the lithostratigraphy are discussed in the literature. Studies that 
characterize the lithostratigraphic Actors controlling petroleum hydrocarbon migration and fate in 
the coarse grained vadoze zone and groundwater setting are few.

The purpose of this study was to evaluate how lithologie and stratigraphie (lithostratigraphic) 
factors affect the distribution of petroleum hydrocarbon fuel (gasoline and diesel) in a coarse 
grained vadose zone and aquifer. Rotosonic drilling was used to complete five vertical borings 
and obtain relatively undisturbed continuous cores to depths ranging from 65 to 115 feet below 
ground surface. Detailed physical and geochemical logging of each core was performed and 
detailed boring logs, cross sections, and conceptual models of the lithostratigraphy were 
constructed. Subsurface soil samples were screened on site for the volatile petroleum 
hydrocarbons using a photoionization detector. Selected subsurface soil samples and all 
groundwater from site monitoring wells were analyzed for BTEX, MT6E, volatile petroleum 
hydrocarbons, and extractable petroleum hydrocarbons. Data were synthesized and the 
contaminant source and migration routes were determined.

Study results revealed that a main upper and lower unit are present. Clay and sand layers 
generally appear to have slowed the vertical migration of petroleum hydrocarbons beneath the 
source area while diffusion of the vapor phase within the main unsaturated coarse sandy gravel 
unit resulted in wide spread impacts to the groundwater system. In addition, water table 
fluctuations of up to 13 feet are believed to be responsible for the spread of residual petroleum 
hydrocarbons in the smear zone. These residual petroleum hydrocarbons continue to act as a 
source of petroleum hydrocarbon contamination to the subsurface soil and groundwater at the 
site.
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1 INTRODUCTION

The following sections provide a brief introduction of: 1) the importance of studying petroleum 

hydrocarbon contamination in the subsurface; 2) the history of petroleum hydrocarbon 

contamination at the study site; and 3) the goals of this study.

In the United States, approximately 2.5 million underground storage tanks (USTs) are used to 

store fuel and oil (Fetter, 1999). Inadvertent releases of gasoline, diesel, and heating and fuel 

oils, and synthetic organic compounds are a common environmental problem (Lahavis, et. al., 

1999; Thoma, et. al., 1999; Schwarzenbach, R.P, et. al, 1993). There are between 100,000 and 

400,000 gasoline storage tanks leaking into soil and/or groundwater in the United States (Lahvis, 

et. al., 1999). Contamination from these sources are a significant environmental concern as more 

than half of the population of the United States relies upon groundwater for their drinking water 

source (Fetter, 1999) and private wells near gasoline stations are commonly contaminated by 

leaky USTs (Lince, et. al., 1998).

Additionally, risk-based corrective action procedures are beginning to replace fixed corrective 

action concentration limits during environmental investigations and remediation (Thoma et. al., 

1999). These risk-based corrective action (RBCA) guidelines are used to evaluate the existing 

and potential risks to human health and the environment associated with a petroleum release 

(MDEQ, 2000) and soil and groundwater cleanup goals for a site may be based upon the results 

of the risk-based evaluation. Therefore, knowing the concentration of petroleum hydrocarbons in 

subsurface soil and groundwater, and evaluating the fate and transport of contaminants in natural 

systems is critical.

Characterization of key physical and chemical properties of the subsurface environment at a 

release site is important when evaluating the fate of contaminants in the subsurface. Physical

1
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factors influencing the movement of water and contaminants in an aquifer and vadose zone 

include structure, stratigraphy, and lithology of the aquifer and vadose zone materials (USGS, 

1997). In addition, temperature, humidity, soil moisture, advection, diffusion, dispersion, and 

sorption onto aquifer materials affect contaminant mobility and water transport in the subsurface 

(Fetter, 1999 and Barker, et. al., 1987). In addition, Sawhney, et. al. (1988); Barker, et. al. 

(1987); Lince, et. al. (1998), and other workers have investigated how biodégradation in the 

aquifer and vadose zones also attenuates contaminant migration.

Sorption of petroleum hydrocarbons to/within soil organic matter has been examined by Pennell, 

et al. (1992); Hoff, et al. (1993); Steinberg and Kreamer (1993); Conklin et al. (1995); Herbert, et 

al. (1993) and Kohl, et al. (2000) and biodégradation of petroleum hydrocarbons in the 

subsurface has been studied by Lahvis and Baehr, (1996); Aelion, et al. (1997); and Lahvis et al., 

(1999). Details of how non-aqueous phase liquids (NAPLs) are transported in the vadose zone 

and saturated zones are described in Appendix A.

Unfortunately, almost no attention has been given to the importance of the lithostratigraphy 

affecting transport, especially at sites dominated by gravel and cobble sediment. This work will 

attempt to examine how the lithostratigraphy of the coarse-grained Missoula Valley Aquifer (MVA) 

influences the migration and fate of petroleum hydrocarbon contamination in the subsurface at a 

petroleum release site in Missoula, Montana.

GOALS

The goal of this study is to evaluate how lithologie and stratigraphie (lithostratigraphic) factors 

affect the distribution of petroleum hydrocarbon fuel (gasoline and diesel) in a coarse-grained 

vadose zone and aquifer in a portion of the MVA, Montana. Specific objectives include:
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1. Construction of lithostratigraphic boring logs and cross sections using existing well logs and 

coring data.

2. Mapping of the position and extent of petroleum contamination in the vadose zone and 

aquifer.

3. Testing a groundwater particle tracking model to evaluate if the interpreted source area and 

migration pathways are appropriately designated.

4. Prediction of the fate of the spilled fuel.

Portions of this study were completed in conjunction with a Phase III Remedial Investigation 

performed by MFG, Inc., my employer. I was the primary field person for MFG during all aspects 

of the investigation, with the exception of groundwater sampling activités, and authored the 

Phase ill Remedial Investigation report (MFG, 2001). The Phase II Remedial Investigation report 

was submitted to MDEQ Petroleum Release Section in October 2001. This thesis used some of 

the data and information collected during the Phase III Remedial Investigation report and 

incorporated additional data and evaluations performed as part of this thesis.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 PHYSICAL SETTING AND SITE HISTORY

PHYSICAL SETTING

The Missoula Valley is located within the Rocky Mountains in west-central Montana. It is an 

intermountain valley approximately 35 square miles in size (Armstrong, 1991) (Figure 1). The 

valley is a fault-bounded basin and probably formed as a result of horizontal extension resulting 

from Laramide thrusting during the Cretaceous and middle Eocene time (Woessner, 1998), 

Horizontal extension caused normal faulting parallel to the faces of Mount Jumbo and Mount 

Sentinel and in the formation of the Clark Fork Fault (Woessner, 1988). The valley is bounded on 

the north by the Rattlesnake Hills; on the east by the Sapphire Range, on the south by the 

Bitterroot Range, and on the west by the Ninemile Divide (Armstrong. 1991).

The topography of the valley floor is relatively Oat, sloping gently to the northwest from the hills 

toward where the Clark Fork River leaves the valley (Woessner, 1988). The elevation of the 

valley, generally following Brooks Street, ranges from approximately 3,200 feet above mean sea 

level (AMSL) near the Clark Fork River, north of the Site; approximately 3,180 feet AMSL at the 

Site; and approximately 3,155 feet AMSL near the Bitterroot River, south of the Site (Figure 1).

The climate of the area is semi-arid. Winter is dominated by Pacific maritime air (Woessner. 

1988). The total annual average amount of precipitation for Missoula is approximately 13.6 

inches per year and ranges from an average low of 0.78 inches in February to an average high of 

1.89 inches in June (WRCC, 2001). The average annual minimum temperature in Missoula is 

32.3 °F and the average annual maximum temperature is 56.4 °F (WRCC, 2001).

The Clark Fork and Bitterroot Rivers drain the Missoula Valley (Figurel). The Clark Fork River 

enters the valley from the east, through the Hellgate Canyon. The Bitterroot River enters the
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valley in the southern portion of the Missoula Valley. Other streams entering the valley include 

Rattlesnake Creek, Grant Greek, and Pattee Creek.

Sediments comprising the Missoula Valley are continental clastic deposits (Figures 2 and 3;

Clark, 1986 and Woessner, 1988). The valley floor is covered by alluvial and lacustrine 

sediments of Quaternary age. The foothills surrounding the valley floor and beneath the MVA are 

primarily composed of fine-grained sediments deposited during the Tertiary period, a time when 

the basin was internally drained. These Tertiary sediments (the Renova Formation), of Oligocene 

and early Miocene age, range in size from clay to coarse gravel and unconformably overlie 

Precambrian Belt Supergroup metasediments (Clark, 1986 and Woessner, 1988). Mountain 

ranges surrounding the Missoula Valley are composed of Precambrian Belt Supergroup 

metasediments (Woessner, 1988).

The Missoula Valley Aquifer (MVA) underlies the Site and valley floor. It is an unconfined highly 

productive aquifer and has been designated a Sole Source Aquifer by the Environmental 

Protection Agency (EPA; MCCHD, 1987). Mountain Water Company supplies a majority of 

Missoula’s residents with water from more than 30 municipal wells (MSE, 1994b). Numerous 

studies have been performed to characterize the hydraulic properties of the MVA, and the 

interactions between the MVA and Clark Fork and Bitterroot Rivers (Woessner, 1988; Clark 1986; 

Smith, 1992; Morgan, 1986; Miller, 1991; and Pracht, 2001). The 1991 study by Armstrong 

evaluated the distribution and occurance of perchloroethylene in the MVA. Armstrong also 

created cross sections of the MVA in an attempt to evaluate how the stratigraphy of the MVA 

might affect the distribution of perchloroethylene.

Three main hydrostratigraphic units are present within the Missoula Valley. They include the 

Pleistocene -  Hoiocene surface sand and gravel. Tertiary Sediments, and Precambrian Bedrock. 

The surface deposits of the Missoula Aquifer include sand, gravel, and boulders with some silt
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and clay; Tertiary Sediments are composed of clay with interbedded and embedded sand and 

gravel; and the Precambrian rocks includes quartzite, red and green argillite, and carbonates 

(Woessner, 1988). Missoula Valley residents use all three of these hydrostratigraphic units as 

sources of groundwater (Woessner, 1988).

Using driller’s logs, the MVA has been further divided into three main stratigraphie units, as 

follows (Woessner, 1988);

• Unit One includes interbedded boulders, cobbles, and gravel with sand, silt and some 

clay. Thickness ranges from 10 to 30 feet and is found at the land surface. Unit One 

typically is not saturated except beneath and adjacent to streams.

• Unit Two is a tan to yellow silty sandy clay with layers of coarse sand and gravel. The 

thickness of Unit Two averages 40 feet in the center of the basin and can be up to 130 

feet. Unit Two may be absent in some portions of the valley.

• Unit Three consists of interbedded gravel, sand, silt, and clay and is coarser toward the 

bottom of the unit. The thickness of Unit Three varies from 50 feet to 100 feet. 

Development of wells in Unit Three can produce up to 3,000 gallons of water per minute.

Table 1 presents estimates of some of the aquifer properties developed by Clark (1986). Miller 

(1991), and Pracht (2001).
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Table 1 : Missoula Valley Aquifer Properties

Property Unit One Unit Two Unit Three

Hydraulic Conductivity 

(gpd/ft^) ---

Clark; 10,300-25,500 

Miller: 1 ,550- 18,000 

Pracht: 141,791 -268,657

Vertical Hydraulic 

Conductivity (gpd/ft^)
--- Clark: 970-2 ,100

Transmissivity (gpd/ft) 310,000 8,000 750,000-1,710,000

Porosity 0.20 —- 0.20

Specific Yield 0.12 --- 0.10

Thickness (ft) 1 0 -3 0 40 5 0 -1 5 0

Morgan (1986) and Armstrong (1991) constructed several cross sections of the MVA using 

driller’s well logs (e.g., Figures 4 and 5). The cross sections typically show two to three distinct 

hydrogeologic units, as described above. A further discussion of cross sections at the Site and 

the MVA is presented in Section 4.

Previous studies at the Site indicate the subsurface is predominantly composed of sandy gravel 

with layers of sand. A clay layer was logged at approximately 18 feet below ground surface (bgs) 

in boring/well MSE-1 (MSE, 1994b). MSE (1994a) estimated the total thickness of the coarse 

grained sediments to be approximately 125 feet.

10
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Figure 4 Example cross section of MVA completed using driller’s logs 
(map shows location of cross section).
Source: Armstrong, 1991.
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SITE HISTORY

The Burger King Petroleum Release Site (the "Site ") is located at 2405 Brooks Street, a primarily 

commercial/industrial area of Missoula, Montana. It is located in the central portion of the 

Missoula Valley near the intersections of Brooks Street (Highway 93), South Avenue, and Russell 

Street (Figure 6). The Site is located in Township 13 North, Range 19 West, Section 32.

Petroleum hydrocarbon odors at the Site were first reported in the Burger King restaurant to the 

Missoula City-County Health Department, prior to April 1990 (MSE, 1994a and MFG, 2001). 

Petroleum hydrocarbon contamination of the aquifer was discovered in April 1990, at a well 

serving the nearby Dairy Queen (MSE, 1994a).

One potential source of gasoline and diesel contamination at the Site was the former full service 

gasoline station located at the current location of the Burger King restaurant (SES, 1994). The 

former gasoline service station used above ground storage tanks (ASTs) to store both gasoline 

and diesel (SES, 1994). The pump islands (fuel dispensers) for the service station were located 

on the southeastern side of the property and were connected to the ASTs via underground pipes 

(SES, 1994). The locations of the former AST farm and fuel dispenser islands are shown in 

Figure 7. A 1967 aerial photograph reviewed by MSE, Inc. (MSE, 1994b) indicated the service 

station building was oriented as shown in Figure 7. At the time of operation, the service station 

contained an above ground storage tank (AST) farm. The pump islands for the service station

13
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were located on the east-southeast portion of the Site, adjacent to Brooks Street. In addition, the 

aerial photograph showed the AST farm was located at the west-southwest side of the service 

station and adjacent to the west side of the present-day Burger King restaurant (MSE, 1994b; 

Figure 7).

According to the initial investigation conducted in 1994 (MSE, 1994b), a total of five tanks 

comprised the AST farm. At the time of the initial investigation (MSE, 1994a), the type of fuel 

previously dispensed from the tanks was unknown. In addition, information regarding the type of 

storage tank used, when the tanks were removed or demolished, and the duration of operation of 

these tanks at the service station is unknown (MSE. 1994a). The exact location and orientation 

of underground piping used to transmit fuel from the ASTs to the pump island is also unknown. 

According to the Missoula County Fire Marshall, the tanks were probably removed prior to 

construction of the Burger King restaurant in 1976; however, there are no records documenting 

their removal (MSE, 1994a).

A second potential source of petroleum hydrocarbon contamination at the Site was identified as a 

convenience store located 1530 Livingston Avenue at what is now a Farmer's Insurance Agency 

(MSE, 1994a). The gasoline UST was located southeast of the building and the pump island was 

located south of the building and west of the UST (MSE, 1994b and Shannon, 1994; Figure 7). 

The fate of the UST system is unknown and no records of tanks were found at the Missoula 

County Fire Department (MSE, 1994a). A note and photograph of the convenience store was 

found while reviewing old files stating that the convenience store (Super Suds) opened in May 

1977 and was in existence until November 1981. The photograph showed a crane in front of the 

store on Livingston Avenue, possibly dismantling the roof of the canopy over the pump island. 

Gasoline pricing signs were present in the photograph. It was unknown whether the UST was 

removed prior to or after November 1981. A soil boring SB-3 (Figure 7), in the area of the former 

UST and pump islands, encountered no petroleum hydrocarbon contamination between the

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ground surface and the bottom of the boring, 54 feet below ground surface (bgs; SES, 1994). 

There are no records indicating petroleum hydrocarbons were released at the convenience store.

One upgradient UST site with reported leaks was/is the Cenex gas station located at 1108 W. 

Central (Facility ID #32-08907), approximately 2,000 feet northeast of the Site on Brooks Street. 

The Cenex site had a total of three USTs (MSE, 1994a). Based on analytical data collected 

historically from the most northeastern on-Site monitoring well (SES-1; see Figure 7), it does not 

appear that the petroleum release at the Cenex gas station has impacted the groundwater 

beneath the Burger King Site (MFG, 2001).

According to the 1994 MSE report (1994a), there may have been three other USTs located 

across Brooks Street. These include the Kentucky Fried Chicken (currently a temporary loan 

business) location, the Missoula County Fairgrounds, and at Pruyn Veterinary Hospital (Figure 6). 

However, there were no reports of leaks originating from these USTs with the exception of the 

UST located at the fairgrounds. A small release occurred at this location and minor amounts of 

soil were removed. However, the fairgrounds release site has since been closed for no further 

action.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 METHODS OF INVESTIGATION

The following section describes the methods used to accomplish the goals of this study, including 

data gathering and data review, drilling and sample collection, grain size analyses, completion of 

cross sections, delineation of soil contamination, monitoring well installation, groundwater 

sampling, and water table and vadose zone modeling.

The use of the terms subsurface soil or soil during subsurface investigations is common in the 

environmental consulting field and are general terms for referring to subsurface sediments and/or 

subsurface materials. The terms subsurface soil or soil may also be used in this thesis to refer to 

the subsurface sedimentary deposits of the MVA. The terms subsurface sediments, subsurface 

soil, and soil in this report are synonymous.

DOCUMENT REVIEW AND DATA GATHERING

Reports from previous investigations of the Site were reviewed prior to beginning this study. Data 

used in this evaluation were obtained from a 1994 site and field investigation (MSE, 1994a and 

MSE 1994b); 1994 and 1995 remedial investigations (SES, 1994 and SES, 1995), a soil vapory 

survey (Higgins, 1999), quarterly groundwater monitoring reports, and the Phase III Remedial 

Investigation Report (MFG, 2001). The data contained within these reports include boring and 

well log data, analytical results from subsurface materials and groundwater, and soil vapor survey 

results. Table 2 provides a summary of previous investigations and their results.

In addition. Mountain Water Company was contacted to collect additional information regarding 

an April 1990 water line rupture event at the Site. The purpose of obtaining these additional data 

was to evaluate the potential effect of a documented water line rupture event on contaminant 

migration at the Site. Information obtained from Mountain Water Company included: 1) the
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TABLE 2
SUMMARY OF PREVIOUS INVESTIGATIONS
BURGER KING PETROLEUM RELEASE SITE

INVESTIGATION REFERENCE RESULTS

Investigation of a Possible Petroleum 
Release in the Vicinity of the Matuska 
Dentist Office and Brooks Avenue 
Dairy Queen

<D

MSE, 1994a The report identified the potential sources of petroleum hydrocarbons present 
in the Dairy Queen well. Possible sources included the former AST farm for a 
service station, located at the present-day Burger King restaurant, and USTs 
at the former convenience store, located at the Commnet 2000 (currently 
Farmer’s Insurance) building. The report also noted that just prior to the first 
detection of petroleum hydrocarbons in the Dairy Queen Well water, the water 
line connecting the Burger King restaurant to the municipal water supply had 
ruptured, causing a large volume of water to be released to the subsurface. 
The location and size of water line that ruptured was not mentioned in the 
report. The Dairy Queen well was sampled in April 1990, just after the 
detection of petroleum hydrocarbons in the well. The well was sampled again 
in September 1990 and in 1992. The results of these studies indicated no 
detectable levels of petroleum hydrocarbon contamination in the well.

Installation of Soil borings and 
Monitoring Welts on the Commnet 
2000 and Burger King Properties

MSE. 1994b The report presented the location of the AST farm at the former service station 
and tanks associated with the convenience store (Figure 7). Three soil 
borings were installed and soil samples collected. Monitoring wells were 
installed in two of these borings (MSE-1 and MSE-2, see Figure 7). The 
purpose of the investigation was to confirm the presence or absence of 
contamination in subsurface soils and/or groundwater at the Site. Soil 
contaminated with petroleum hydrocarbons was encountered in both borings 
but groundwater contamination was only encountered in MSE-1.

Burger King Remedial Investigation SES, 1994 The purpose of the investigation was to identify the source of petroleum 
hydrocarbon contamination and define the extent of the petroleum 
hydrocarbon release. Three monitoring wells (SES-1, SES-2, and SES-3) 
were installed at the Site (Figure 7). SES-3 showed evidence of petroleum
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INVESTIGATION REFERENCE RESULTS

hydrocarbon contamination in subsurface soil and groundwater. Groundwater 
sampling was performed on all wells at the site, including the Dairy Queen 
well. Analytical results indicated detectable levels of gasoline and diesel 
components in MSE-1, SES-3, and the Dairy Queen well. Toluene was 
detected in well SES-1.

Burger King Phase II Remedial 
Investigation

roo

SES, 1995 The purpose of the investigation was to further evaluate the extent and 
magnitude of petroleum hydrocarbons in subsurface materials and 
groundwater at the Site. Two soil borings were installed (SB-4 and SES-5; 
see Figure 7). SES-5 was completed as a groundwater monitoring well. 
Subsurface contamination was encountered at approximately 45 feet bgs. 
Groundwater sampling was performed. Dissolved phase petroleum 
hydrocarbon contamination was encountered in wells SES-3, SES-5, and 
MSE-1. No dissolved phase petroleum hydrocarbons were detected in SES-1, 
SES-2, MSE-2, and the Dairy Queen well.

Quarterly Groundwater Monitoring and 
Soil Gas (Vapor) Survey

Higgins, 1999 A soil vapor survey was performed in May 1999. The purpose of the 
investigation was to evaluate the distribution of gasoline and diesel range 
petroleum hydrocarbons in the subsurface. A total of 73 one-inch Gore- 
Sorbers® were installed at a depth of 3-feet into the subsurface at specific 
locations at the Site. Gore-Sorbers® remained in the ground for three weeks 
then were retrieved and sent to the Gore laboratory for analysis. According to 
the analytical results, several areas of the Site indicated there were “hot spots" 
located in and near the former AST area can be explained by the elevated 
concentrations of petroleum hydrocarbons in the vadose and saturated zones. 
PID screening values and subsurface and groundwater analytical results verify
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petroleum hydrocarbons in this area. Some of the sorbers from the soil vapor 
survey confirmed that elevated petroleum hydrocarbon vapors existed in areas 
upgradient from the former AST farm area, and at other downgradient 
locations.

The following details the locations of the “hot spot" areas. "Hot spot” gasoline 
range hydrocarbon vapors were present at soil vapor sorber locations as 
follows: 1) northeast of the Burger King building; 2) south of Burger King; 3) 
east of Burger King; 4) east of the insurance building; and 4) the east corner of 
the Dairy Queen building. “Hot spot” diesel range hydrocarbon vapors were 
present at soil vapor locations as follows: 1) northeast of the Burger King 
building; 2) southwest of the Burger King building; 3) south and west of the 
Burger King building; 4) at the east corner of Dairy Queen; and 5) east of the 
insurance building.

[Note: Gore-Sorbers® are one brand of soil vapor collection devices. The 
Gore-Sorbers® vapor collection module is constructed of GORE-TEX®. Each 
module contains various polymeric and carbonaceous adsoibents for the 
collection of volatile and semi-volatile organic compounds. For more 
information on this topic the reader is referred to the Gore web site at 
http://164.109.56.82/english/ipd/soilgas/index.html.]

http://164.109.56.82/english/ipd/soilgas/index.html


location of the water line; 2) the approximate location of three water line breaks along the line; 3) 

the diameter of the water line; 4) the carrying capacity of the 2-inch diameter water line; and 5) 

important details regarding the notification and service call dates. After evaluation of the data 

collected, a release volume was calculated (see Appendix E).

DRILLING AND SUBSURFACE SAMPLING

During the remedial investigation, the rotosonic drilling method was used to collect continuous 

cores of the MVA. Previous investigations at the Site used the hollow-stem auger drilling method. 

Hollow-stem auger drilling proved unsatisfactory due to the very coarse nature of the subsurface 

materials and poor sample recovery during split spoon sampling. Rotosonic drilling is quick, 

efficient, and produces less drill cuttings than other drilling methods (Barrow, 1994). The 

rotosonic drilling method employs the use of high frequency mechanical vibration to advance the 

drill stem into the subsurface and collect relatively undisturbed continuous cores of subsurface 

materials (Barrow, 1994). Boart Longyear, headquartered in Salt Lake City, Utah, was the drilling 

contractor for the Study. A photograph of the Boart Lonyear rotosonic drill rig used during the 

investigation is provided as Figure 8. Additional photographs of rotosonic drilling at the Site are 

provided in Appendix B (the compact disk).

Relatively undisturbed 4 %-inch diameter continuous cores were obtained from each borehole 

drilled during this investigation. During drilling, the drill stem was extracted from the borehole at 

approximately 5 feet intervals. Subsurface sediment cores were extruded directly from the drill 

stem into clear plastic sleeves (Figure 9). Prior to extruding the core, the bottom of the plastic 

sleeve was tied in a knot by the driller. Cores were preserved in approximately 2-foot intervals. 

The end depth of each core interval was immediately written in indelible ink on each plastic core 

sleeve by the driller. The top end of each core was seated with duct tape and additional sample 

identification was written on each sleeve, specifying the borehole name, date, and start and end
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Figure 8 Boart-Longyear Rotosonic Drill Rig at MFG-2. Looking north.
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Figure 9 Extraction of core into plastic sleeve from drill stem.
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depths of each core interval. All cores were preserved and stored in a secure location until 

detailed logging could be completed.

A total of five vertical boreholes and one angled borehole were drilled at the Site during the 

remedial investigation. The boreholes completed during this investigation include MFG-B1, 

MFG-B2, MFG-B3, MFG-B4, MFG-B5, and 1V1FG-B6 (see Figure 7). Borehole locations were 

selected to; 1) evaluate the magnitude and vertical extent of petroleum hydrocarbons in the area 

of the former ASTs and service station pump islands, and 2) evaluate the potential migration of 

petroleum hydrocarbons onto or off of the Site. Three boreholes (MFG-B3, MFG-5 and MFG-B6) 

were located as close to the former ASTs and pump islands as possible; two boreholes (MFG-2 

and MFG-4) were located upgradient of the former ASTs; and borehole MFG-1 was located 

downgradient of the former ASTs and pump islands. MFG-B6, the angled borehole, was used to 

obtain soil cores under the corner of the existing Burger King building; the former location of the 

pump islands. Total depths of the vertical boreholes ranged from 65 feet below ground surface 

(bgs) to 115 feet bgs. The total length of MFG-B6 was 28 feet, which corresponded to a final 

vertical depth of approximately 25 feet bgs. Groundwater was encountered in each vertical 

borehole at approximately 55 feet bgs; groundwater was not encountered in the angled borehole.

After completion of drilling activities, cores were logged in detail using standard procedures (see 

Appendix C). In addition, each core was photographed in its entirety. The entire suite of 

photographs taken during drilling and logging is contained on the enclosed compact disk 

(Appendix B).
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GRAIN SIZE ANALYSES

Grain size analyses were performed to provide general information on the size and uniformity of 

the aquifer materials at the Site. In addition, the results were used to supplement the qualitative 

estimate of grain sizes performed on the cores in the field.

A total of 31 samples of cored material were analyzed for grain size from two of the five cores. 

Twenty grain size samples were analyzed from boring MFG-2 and 11 from boring MFG-B3. 

MFG-2 was selected because it was the deepest core and samples could be obtained from the 

greatest number of depth intervals. MFG-B3 was selected because it was one of the cores at the 

location of the former AST farm and petroleum hydrocarbons were detected through physical 

inspection and on-site PID screening.

Samples were collected at approximatly 10-foot intervals and from sections of the core with 

lithology or grain size contrasts. Intervals were skipped where an abundance of rock flour was 

present (due to the drilling action through large cobbles) or where the material appeared to be 

approximately the same as the sample interval directly above that location. Samples were 

collected from one-half foot to one-foot intervals. To collect the sample, subsurface material was 

scooped out of the core liner using a small bowl. The sample was then transferred to a quart-size 

Ziploc^“ bag for storage. The boring number and depth interval of the sample were immediately 

recorded on each bag with indelible ink. All grain size analyses were performed using standard 

analytical methods at the Lolo National Forest Materials Testing Laboratory located at Fort 

Missoula in Missoula, Montana (details are presented in Appendix G).
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CROSS SECTIONS

Geologic cross sections were constructed using QuickCross/Fence 2001 (M-Tech, 2001). 

Borehole information was entered into the QuickLog 2001 program and cross sections were 

generated using these logs. Some logs contained extensive detail and; therefore, a few thin non- 

continuous units were combined with larger units to reduce the complexity of the cross sections. 

Correlating some layers between new and previously described boreholes from auger drilling or 

water well driller’s logs proved difficult simply due to the difference in the sample collection 

intervals and the lithologie logging detail provided in the logs. In cases where at least one major 

layer from a previously installed borehole could not be reasonably identified to correspond to a 

layer in one newly installed borehole, that borehole was excluded from the cross section (e.g., 

borehole SES-B4 was excluded from Cross Section B-B’ [see Section 4]).

DETECTION OF SUBSURFACE SOIL CONTAMINATION

Volatile petroleum hydrocarbon detection in sediment samples was performed using a PE 

Photovac™ (model No. 2020) photoionization detector (PID). The PID was calibrated daily using 

100 ppm isobutylene gas. PID readings were collected from the very bottom of each core 

interval. A small cut was made in the core's plastic core sleeve and the PID sampler tip was 

inserted. Each PID reading was recorded on the field log sheet after the reading stabilized. PID 

readings were discontinued once the water table was encountered or if soil moisture in the 

sample was too high, causing error readings on the PID.

Subsurface sediment samples were also collected from the depth interval with the highest PID 

reading and from the depth interval that crossed the approximate air/water interface (just above 

the water table). Boreholes where PID readings did not indicate a hydrocarbon presence were 

only sampled at the approximate air/water interface. Sample depths at the air/water interface
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ranged from 55 feet to 58 feet bgs. The Extractable Petroleum Hydrocarbon (EPH) Screen and 

volatile petroleum hydrocarbon (VPH) analyses were performed on these samples using standard 

procedures. VPH sample collection was performed according to EPA SW 846 Method 5035. For 

this sample collection procedure, a sample collection device, dedicated sample syringes, and pre

weighed VOA vials were obtained from the analytical laboratory (Energy Laboratories in Billings, 

Montana). EPA Method 5035 states the VOAs should be pre-preserved with methanol; however, 

Energy Laboratories recommended preserving the vials with methanol once they arrived at the 

laboratory due to a history of problems encountered with methanol leaking out of the vial during 

shipment. Therefore, the pre-weighed VOA vials obtained from the laboratory did not contain 

methanol preservative. VPH samples were collected using the dedicated syringes and sample 

collection device. The syringes were set up to collect approximately 10 grams of sample. Once 

the sample was collected in the syringe, it was immediately transferred to the VOA vial and 

capped.

One problem encountered while using the syringes was that some of the coarse-grained material 

would not become trapped in the syringe and could not be transfered easily to the VOA vial.

When this occurred, approximately 10 grams of sample was transferred to the pre-weighed VOA 

vial using a disposable plastic spoon. The latter methodology does not compromise the analytical 

procedure because the appropriate volume of methanol preservative was added to the VOA vial 

at the laboratory.

Details about decontamination procedures used in the field are provided in the remedial 

investigation report prepared by MFG (MFG, 2001). Details about sample handling procedures 

are provided in the remedial investigation report prepared by MFG (2001). No field duplicates or 

field equipment rinsate blanks were collected during this study.
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All samples were analyzed for VPH and EPH Screen using the Massachusetts Department of 

Environmental Protection procedures, as recommended in the Tier 1 Risk-Based Corrective 

Action (RBCA) Guidance document (MDEQ, 2000). The VPH method includes analysis for the 

following constituents: methyl t-butylether (MTBE), benzene, toluene, ethylbenzene, m+p- 

xylenes, o-xylene, total xylene, naphthalene, 09 to CIO aromatics, C5 to C8 aliphatics, C9 to C l2 

aliphatics, and Total Purgeable Hydrocarbons (TPH). EPH Screen analysis provides a total 

extractable hydrocarbon (TEH) value. If the EPH Screen result was above 50 ppm, the EPH 

fractionation analysis was requested. The full EPH test includes analysis of C9-C18 aliphatics, 

C19-C36 aliphatics, C11-C12 aromatics, TEH, and polynuclear aromatic hydrocarbons (PAH).

MONITORING WELLS

Monitoring wells were completed in four of the six boreholes drilled during this remedial 

investigation; boreholes MFG-B1, MFG-B2, MFG-B4, and MFG-B5 were completed as monitoring 

wells MFG-1, MFG-2, MFG-4, and MFG-5, respectively. Each monitoring well was completed at 

a total depth of approximately 65 feet bgs. Well construction information is presented in Table 3. 

Each well was completed as a flush-mount well. The location of each well is shown on Figure 7. 

Boring logs and well completion diagrams are provided in Appendix C.

HYDROGEOLOGY

The measuring point elevation (top of the polyvinylchloride casing) was surveyed by GMT 

Consultants. Water levels were collected using a Solinst electronic water level indicator. 

Additional water levels were collected from the Missoula Water Quality District wells at the corner 

of South and Bancroft and Blaine and Crosby using a steel tape. Water level information was 

also obtained directly from Mountain Water Company for the Southgate, Benton, and 200 South 

Avenue wells. The purpose of collecting water level data from the Water Quality District wells
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Well ID# Completion
Date

Measuring Point 
Elevation (feet 

AMSL)

Completion 
Depth (feet)

Well
Diameter
(inches)

Screen
Length
(feet)

Screened 
Interval 

(feet bgs)

Screened Interval 
(feet AMSL)

MSE-1 4/6/94 3182.8 60.1 2 15 45.1 -60.1 3137.7-3122.7

MSE-2 4/9/94 3181.7 60.0 2 15 45.0-60.0 3136.7-3121.7

SES-1 9/26/94 3181.4 58.25 4 25 33.3 - 58.3 3148.1 -3123.1

SES-2 9/21/94 3182.6 58.04 4 25 33.0 - 58.0 3149.5-3124.5

SES-3 9/28/94 3181.5 58.58 4 25 33.6 - 58.6 3148-3123

SES-5 8/25/95 3182.6 57.7 4 20 37.7 - 57.7 3144.9 - 3124.9

'MFG-1 4/5/01 3181.9 68.5 2 20 46.2 - 66.2 3135.7-3115.7

'MFG-2 4/6/01 3180 115 2 20 44.5 - 64.5 3135.5-3115.5

'MFG-4 4/8/01 3181.3 70 2 20 45.9 - 65.9 3135.4-3115.4
'MFG-5 4/9/01 3182.1 70 2 20 41.3-61.3 3139.8-3119.8

’ Filter pack was completed using a 4" Pre-Pack SCH 40 0.020 Slot PVC Screen with 8x12 Sand Pack. See boring/well 
logs for well construction details.



and Mountain Water Company wells was to calculate a more regional gradient and evaluate 

groundwater flow direction for the area including and surrounding the Site. A water table map 

was prepared for the Site using water table elevation data collected on April 14, 2001.

No aquifer testing to evaluate hydraulic conductivity was performed during this remedial 

investigation. However, the use of two methods to estimate hydraulic conductivity from the grain 

size analysis results were evaluated. These methods include the Hazen Method (Driscoll, 1995) 

and the method developed by Shepard (Fetter, 1994). Further details discussing the use of these 

methods are provided in Appendix G.

Average linear velocity was calculated using the following equation using results obtained from 

the water table modeling effort.

Vx = KAh (Fetter, 1994)
neA/

Where:

Vx = average linear velocity/seepage velocity (ft/day)

K = hydraulic conductivity (ft/day) 

ne = effective porosity 

Ah/AI = gradient (ft/ft)

GROUNDWATER SAMPLES

After all new wells were installed, the wells were developed prior to sampling. Water level 

measurements and groundwater sampling was performed at all previously installed wells and 

newly installed wells at the Site. Measurement of petroleum hydrocarbons product thickness was 

not performed as previous investigations and monitoring events at the Site had not indicated its
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presence. There was no measurable free product in the wells. Details of the groundwater 

sampling activities, and decontamination and sample handling procedures are provided in the 

remedial investigation report prepared by MFG (MFG, 2001).

All groundwater samples were analyzed for VPH and EPH Screen using the Massachusetts 

Department of Environmental Protection procedures, as recommended in the Tier 1 RBCA 

Guidance document (MDEQ, 2000), Groundwater samples were analyzed for the same 

analytical parameters as the subsurface soil samples.

MODELING

An attempt was made to simulate the potentiometric surface mapped at the Site using Visual 

MODFLOW 2.8.2, a 3-dimensional groundwater flow and contaminant transport computer model 

by Waterloo Hydrogeologic, Inc. (WHI, 2000). An attempt was also made to simulate the 1990 

water line rupture to evaluate its potential to affect groundwater flow direction and rates, thus 

contaminant transport at the Site. Particle tracking was used in both simulations to evaluate 

possible contaminant transport routes at the Site. In addition, a vadose zone model was 

attempted to evaluate the fate of VOC within the zone of water table fluctuation using VLEACH 

(WHI, 2001). Models of groundwater flow and vadose zone transport at the Site were performed 

to assist in the interpretation and visualization of conditions at the Site. Models were not 

constructed or calibrated to act as prediction tools.

A water table model was attempted to simulate groundwater conditions on April 14, 2001. A two- 

layer steady state model was designed to simulate a potentiometric map of the Site and 

surrounding areas. Two layers were chosen after review of the iithostratigraphic logs, cross 

sections, and water table elevation data. Hydrogeologic conductivity values, previously estimated
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for the MVA in the vicinity of the Site, were initially used in the model. Appendix D provides a 

further discussion on setup and calibration of the model.

In addition to producing a simulated water table map for the Site, a steady state simulation of the 

water line rupture event was also attempted to evaluate the effect of the water line rupture event 

on the water table at the Site. Details of setup and calibration of the model are provided in 

Appendix D.

VLEACH, a one-dimensional finite difference model for predicting the vertical migration of volatile 

petroleum hydrocarbons and VOGs in the vadose zone (WHI, 2001), was used to evaluate 

vadose zone migration of ethylbenzene in the vadose zone over time. VLEACH partitions the 

total mass of contaminant, in each model cell, into three phases. These phases include: liquid 

(dissolved in water), sorbed (adsorbed to solid surfaces), and vapor (WHI, 2001). During model 

simulation, liquid phase contamination is subject to downward advection and contamination in the 

vapor phase is subject to gas diffusion. Ethylbenzene subsurface soil analytical results from 

MFG-B3 were used to evaluate the vadose zone modeling effort.

Modeling the Site using this or other models in the UnSat Suite is limited because:

• There are only a few select programmed soil types, none of which include gravel, as the 

dominant soil type.

• "Known " or " common"" volatile petroleum hydrocarbons (i.e., benzene versus C9-C12 

aliphatic volatile compounds) are pre-programmed. However, at this Site, the majority of 

the volatile compounds detected were general or '"unknown” volatile aliphatics and 

aromatics.
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Recognizing these limitations, an attempt was made to generally simulate LNAPL migration in the 

vadose zone. Additional details of model setup is provided in Appendix F.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4 RESULTS

The following presents the results of this study. The results are discussed in the following order: 

lithostratigraphy, hydrogeology, source area and contaminant distribution, mapping of soil and 

groundwater contamination, influence of a water line rupture on contaminant migration, and 

potentiometric surface and vadose zone model results,

LITHOSTRATIGRAPHY

Grain size analytical results including classification tables, a results summary table, and grain 

size distribution curves are presented in Appendix G. In addition, a qualitative estimation of the 

percent gravel versus percent sand and fines was made during logging of the cores. These 

results are presented on the detailed boring logs (Figure 10 and Appendix C). Because the 

samples collected from the cores may not have had a complete representation of all grain sizes 

present In the subsurface, particularly the larger cobble sized-grains, the results of the grain size 

analyses may not completely represent the full spectrum of grain sizes present in the subsurface.

Cross sections were constructed from boring logs completed during previous remedial 

investigations and during this study (Figures 11 through 15). The majority of subsurface soils 

beneath the Site are characterized as sandy gravel.

Each cross section shows several distinct interbedded layers of sand, clay, and caliche. Cross 

sections A-A’ (Figure 12) and D-D’ (Figure 15) also contain a silt layer at MFG-5. Cross sections 

B-B’ (Figure 13) and D-D’ (Figure 15) appear to contain fewer interbedded layers than cross 

sections A-A’ and C-C’ (Figure 16). However, only one borehole logged in Iithostratigraphic detail 

was used in cross sections B-B’ and D-D’, Therefore, more and continuous layers may exist in 

the subsurface than those shown on these two cross sections. Initially, an attempt was made to
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extended the Site cross sections to include water wells within one mile of the Site. However, this 

effort was abandoned after recognizing the lack of detail in the driller’s logs.

Generally, sand and gravel clasts appear to be predominantly of Belt Super Group origin and 

include red and green argillite, various colors of quartzite, siltstone and sandstone, and chert. 

Sand and grave! of granitic composition were identified clearly in one small interval of MFG-4. 

Additionally, mica was identified at various depths in this borehole; however, it was present only 

in very minor amounts in the other boreholes and was not in notable abundance. Other clasts of 

granitic or other composition may have been present. Identification and logging of individual clast 

origin and/or composition were not performed as a part of this thesis study. Two characteristic 

Iithostratigraphic units were identified.

Upper Unit

The Upper Unit is similar to the previously described Unit One described by others (see Section 

2), with the exception of its thickness and total dept. During this evaluation, the Upper Unit was 

recognized as extending from the ground surface to a total depth of approximately 58 to 60 feet 

bgs. This was considered as the boundary between the Upper Unit and Lower Unit at the Site 

(see below). There appears to be a general coarsening of the sediments below the 58 to 60 foot 

depth interval. Previous descriptions of Unit One describe the unit as extending to a total depth 

of 30 feet bgs. There was no obvious change in lithology near this depth interval. However, 

interbedded sand, silt, clay, and caliche were present between approximately 20 feet and 60 feet 

bgs within the Upper Unit.

Figures 16 through 23 present representative photographs of subsurface materials encountered 

within the Upper Unit, including a caliche layers and a silt layer. The sandy gravel portions 

generally contain well-graded gravel and well to poorly graded sand. During field logging,
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well-graded gravel was defined as having variable sizes of gravel and contained cobbles. Poorly 

graded was defined as having variable sizes of gravel up to two inches in size but with no 

cobbles.

Grain size analysis revealed the content of gravel in the Upper Unit ranged 

from zero to 82.7 percent with an overall average of 55.2 percent; average sand content ranged 

from 15.6 percent to 97.3 percent with an overall average of 41.3 percent; and the average silt 

and clay content ranged from 1.5 percent to 6.8 percent with an overall average of 3.6 percent. 

The average median grain size in the Upper Unit was 0.22 inches.

Gravel in this unit ranges from granule to cobble size (according to the Wentworth Scale).

Overall, the gravel was rounded but occasionally contained some slightly subrounded clasts. 

Cobbles and broken cobbles up to 5.5 inches in size were retained in the cores; however, the 

driller estimated that boulders up to approximately 1.5 feet in size may have been encountered 

during drilling in this unit.

Sand sizes ranged from very fine to very coarse and the size composition varied greatly 

throughout each borehole. In general, sand ranged from subrounded to subangular (see Figures 

16,17,18,19,and 21). Sand layers were well to poorly graded, and generally contained some 

small gravel, silt, and minor clay. The sand layers contained in this unit ranged from 

approximately one to 4.5 feet thick. Many of these layers appear to be discontinuous across the 

Site. One sandy silt layer was encountered in MFG-5 between approximately 48 and 51 feet bgs. 

The sandy silt layer (Figure 23) contained small gravel and minor amounts of sand. This layer 

was light yellowish brown and may correspond sediment attributed to Unit Two described by 

others (see Section 2). However, this silt layer was not identified as a distinct unit because the 

Upper Unit is clearly present both above and below this layer in MFG-5.
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Figure 16 MFG-B2 (9-13’): Representative sandy gravel within Upper Unit.
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Figure 17 MFG-B2 (20-22.5’): Representative sandy gravel within Upper Unit with core of 
cobble (center).
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Figure 18 MFG-B3 {32.5-35’): Representative sandy gravel within Upper Unit,

«T

I  m F A 'G f

Figure 19 MFG-B5 (36.5-39’): Representative sandy gravel within Upper Unit.
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Figure 20 MFG-B3 (37.5-40’); Sand layer within Upper Unit, possibly part of Unit

Figure 21 MFG-B3 (45-47.5’): Representative sandy gravel within Upper Unit.
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Figure 22 MFG-B2 (25-27.5'); Caliche layer encountered in Upper Unit, possible part 
nf I Init Twn
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Figure 23 MFG-B5 (48-51.5’): Silt to sandy silt layer encountered in Upper Unit, possibly 
part of Unit Two,
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Several clay/clayey layers were identified in the Upper Unit. The boreholes where clayey layers 

were encountered include MFG-B3, and MFG-4. In borehole MFG-B3, a clayey sandy gravel to 

sandy clay with gravel layer was encountered between approximately 19 and 20 feet bgs; a 

gravelly clay layer was encountered between approximately 55 and 55.75 feet bgs; and a clay 

layer between 60 to 60.25 feet bgs. One clayey gravel layer was encountered approximately 

between 18.5 to 19 feet bgs in MFG-4. The clay/clayey gravel layer located in these two borings 

between 18 to 20 feet bgs is consistent with a clay/clayey gravel layer noted in a similar interval 

by MSE, Inc. during the installation of well MSE-1 (MSE, 1994b).

Caliche was observed in all of the vertical boreholes (Figure 22). To verify the layers indentified 

were caliche, it was tested for the presence of calcium carbonate with dilute hydrochloric acid. 

The test confirmed a calcium carbonate cement was present. There appeared to be two to three 

layers containing broken fragments of caliche. It consisted of a whitish- to pinkish-cemented 

gravelly sand to sandy gravel. The gravel contained in the caliche was generally small but 

occasionally contained gravel up to 3 inches in size. Caliche layers were not logged in MFG-1; 

however, it was most likely present and may have been inadvertently dismissed as an artifact 

generated during drilling at the time of logging (MFG-1 was the first core logged).

Another unit (Unit Two) of the MVA has been described by others within the depth interval labeled 

as the Upper Unit. A sandy silt to silty sand layer, very similar to sediments attributed to Unit Two 

was encountered in MFG-5. It is assumed that this layer is the same as the tan to yellow silty 

sandy clay previously described as Unit Two. The sandy silt layer was not continuous across the 

Site. Unit Two has also been described as a silty sandy clay with layers of coarse sand and 

gravel. In addition, development of wells completed in this zone has also been known to produce 

pinkish colored water (Woessner, 2001).
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The caliche layers are present between approximately 20 feet and 35 feet bgs at the Site and are 

off-white, to light to moderate pink in color. Sand layers are also present between approximately 

30 feet and 40 feet bgs. This group of layers may represent what has been described as Unit Two 

by others (see Section 2).

Lower Unit

A second unit (the Lower Unit) was identified at the Site and extends to a depth of at least 115 

feet bgs. This unit generally began between approximately 58 to 60 feet bgs. The Lower Unit 

consists mainly of sandy gravel with interbedded sand and clay layers, similar to the Upper Unit. 

This unit is similar to the previously described Unit Three (see Section 2). Consistent with 

previous observations, this Lower Unit is coarser than the Upper Unit. The median grain size of 

the lower unit is 0.36 inches (compared with a median grain size of 0.22 inches in the Upper Unit. 

Representative photographs of subsurface sediments encountered in the Lower Unit are included 

as Figures 24 through 39.

The main differences observed between the Upper Unit and Lower Unit are that the Lower Unit is 

mostly saturated and consisted of relatively clean washed sands and gravels with little silt and 

clay. As described during logging, gravel in the Lower unit is mainly welt graded with few 

sections of poorly graded gravel. There were no known boulders encountered in the Lower Unit 

during drilling as cores of large clasts were not observed in the samples. In addition, the driller 

stated drilling conditions did not indicate boulders were encountered. Gravel content in the Lower 

Unit ranged from 3.0 percent to 86.1 percent with an overall average of 59.6 percent (Appendix 

G). Sand content ranged from 12.6 percent to 94.2 percent with an overall average of 38.5 

percent. Silt and clay ranged from 0.9 percent to 4.3 percent with an overall average of 1.9 

percent. Qualitative estimates of the percent gravel versus percent sand and fines were also 

made during logging of the cores (Appendix C).
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Figure 24 MFG-B4 (66.5-67.5’): Coarse gravel within Lower Unit.

Figure 25 MFG-B2 (77.5-80’); A portion of an upward fining sequence in Lower Unit, ranges 
from coarse gravel to sand in photograph.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



nriFfr- B i 
V% S-^o'

likMWS«03=
.rœ z . PimàVLj

fjo-ii-iwJi;:;: ,t-à=reJ

Figure 26 MFG-B2 (87.5-90’): Sand and grave! layers in Lower Unit.
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Figure 27 MFG-B2 (92.5-95): Shows 2-inch gravel layer (approx. center) with sand layer on 
right and sandy gravel on left. Lower Unit.
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Figure 28 MFG-B2 (105-107.5’): Coarse sand layer in Lower Unit.

Figure 29 MFG-B2 (107.5-110’): Coarse gravel in Lower Unit.
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In addition, more defined gradational changes or sequences were observed within the sandy 

gravel and sand units. At least one distinct upward fining sequence was observed in MFG-2.

One upward fining sequence began at approximately 75 feet bgs as sandy gravel, graded to sand 

at approximately 73 feet bgs and ended with a gravelly clay layer approximately 70 feet bgs.

Sand layers were poorly graded (or well sorted), usually contained some small gravel, the 

composition of some individual sand layers consisted of clean sand with other layers of clean 

coarse and very coarse sand. Interbedded sand layers ranged from 0.5 to four feet thick. One, 

0.8 to 1-foot thick clay layer was observed in IVlFG-2 at approximately 70 feet bgs. This clay layer 

was the only clay layer observed in the Lower Unit. Silt and clay in the Lower Unit was typically 

less than five percent of the composition and was generally present mainly as muddy coatings on 

the gravel and sand.

HYDROGEOLOGY

Table 3 provides a summary of the borehole and well completion information, including those 

wells completed during previous investigations. The water table was mostly found in the Lower 

Unit. However, seasonally it would often rise into the lower portion of the Upper Unit. The 

saturated zone is estimated to be 60 to 70 feet thick. A water table map was prepared and the 

groundwater flow direction was estimated using water table elevation data collected on April 14, 

2001 (Figure 30).

The Hazen Method and Shepard Method for estimating hydraulic conductivity from grain size 

analyses were reviewed; however, these methods were determined to be inappropriate (see 

Appendix G). Therefore, aquifer properties already established and used by others were selected 

to characterize the hydraulic properties of the subsurface material and for use in the groundwater 

modeling effort. Aquifer properties have been estimated for Unit Three
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(Lower Unit) of the MVA by others and range from 6,000 ft/day (Miller, 1991) to 36,000 ft/day 

(Pracht, 2001).

The groundwater gradient at the Site is approximately 0.0014 ft/ft. The porosity of the Upper and 

Lower Unit is estimated to be 0.20 (Clark, 1986). A hydraulic conductivity value of 19,000 ft/day 

was obtained during the water table modeling effort and is assumed to represent the aquifer at 

the Site. The average linear velocity is approximately 130 ft/day. For example, an average linear 

velocity of 133 ft/day indicates that groundwater from MFG-B3 will take at least 1.5 days to reach 

the Dairy Queen Well. Estimates made recently by Pracht (2001) for the portion of the MVA 

approximately paralleling Brooks street indicate average linear velocities ranging from 90 ft/day to 

145 ft/day.

Water table elevation data and hydrographs show the water table fluctuates at least 13 feet at the 

Site. One representative hydrograph is presented as Figure 31, The lowest water table elevation 

recorded at the Site was approximately 3,128 feet AMSL in March 2001 and the highest recorded 

water level was 3,141 feet AMSL in June 1997. The position of the water table is related to the 

Site stratigraphy in Figures 32 through 34.

SOURCE AREA AND CONTAMINANT DISTRIBUTION

While lithostratigraphy plays an important role in contaminant migration and fate at the Site and is 

the focus of this study, other factors such as water table fluctuations, the location of the source, 

and anthropogenic related events may also have influenced petroleum hydrocarbon migration at 

the Site.
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Subsurface Sediment PtD and Analytical Results

The results of both past (MSE, 1994; SES, 1994; and SES, 1995) and present PID screening 

results were used in evaluating the extent, magnitude, and type of contamination present in 

subsurface sediments. During this study, VOCs were detected by the PID in two boreholes, 

MFG-B3 and MFG-5 (Table 4 and Figure 35). The PID did not record the presence of VOCs In 

MFG-1; however, groundwater analytical results revealed that MFG-1 also contained subsurface 

contamination at the smear zone (i.e., the approximate 13-foot aquifer interval in which the water 

table fluctuates). PID values and odor notations are shown on each boring log (Appendix C).

PID readings were tabulated and are presented in Table 4. Figure 35 graphically presents PID 

readings versus depth for this investigation and previous investigations. Figure 7 shows the 

location of each borehole/well location.

In borehole MFG-B3, PID readings gradually increased as depth increased. The highest PID 

(1,089 ppm) was recorded at 50 feet bgs, which is close to the top of the smear zone. PID 

readings below 55 feet bgs gradually decreased to 8.5 ppm at 65 feet bgs. The highest PID 

reading in MFG-5 (1,265 ppm) was recorded at 57.5 feet bgs. Petroleum hydrocarbon odors 

were noted in each of these boreholes between 45 and 50 feet bgs, which corresponds to the 

approximate top of the smear zone.

VOCs may not have been detected in MFG-1 because PID readings were discontinued after 32.5 

feet bgs because there was high soil moisture content in the cores that caused instrument errors, 

However, the color of the sand logged from 55 feet bgs through the total depth of the borehole 

(68.5 feet bgs) was noted during logging as dark grayish brown (possible hydrocarbon staining) 

but no odor was apparent.
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TABLE 4 
PID SCREENING RESULTS 

BURGER KING PETROLEUM RELEASE SITE
MFG-1 MFG-2 MFG-83 MFG-4 MFG-5 MSE-1 MSE-2 SB-3 SES-1 SES 2 SES-3 SES-B4 SES-6

Depth PID Depth PID Depth PID Depth PID Depth PtD Depth PID Depth PID Depth PID Depth PID Depth PID Depth PID Depth PID Depth PID
1.5 1.2 20 0.0 1.5 1.5 4.0 0.1 0.5 0.0 4.5 1.4 4.5 16 2 4.5 2.7 5 3 5 5 11 6.3 6 7.1
4.0 7 3 4.0 3.2 6.5 6 5 6.5 0.5 6.5 4.0 9 5 1 9,5 0.7 9.5 0 10 3.9 10 10 13.5 2.4 11 8.2
6 5 2.2 6.5 3.1 9.0 9.0 7 5 0.5 9 0 1.0 14.5 226 14.5 1.5 14 5 0 IS 4.8 15 2.2 15 16.25 1,4 16 2.4
8.5 2.0 9.0 50 11.5 11.5 10.0 0.2 11.5 0.0 19.5 368 19.5 1 19 5 0 20 3.8 20 2 5 20 21 0 21 3
11.0 2 5 11.0 4 3 14.0 14.0 12.5 0.2 13 0 0.8 25 50 25 1.2 25 0 25 4.1 25 0.2 25 25.75 27.4 26 2.6
13.0 3.8 13.0 5.6 16.5 16.5 15.0 0.1 15 5 1.1 29.5 0 29.5 0.9 29.5 0 30 3 8 30 2.6 30 31 14.7 31 3.3
15 0 4.5 15 0 4.2 18.0 18.0 16.5 0.2 16,5 5.0 34 5 0 34.5 6.8 34.5 0 35 4.3 35 2.5 35 33.5 16 36 2.5
17.0 5.9 17.5 4.2 20.0 20.0 18.0 2 5 17.5 8.8 40 0 40 2 2 40 0 40 10.3 40 0.3 40 36 10.8 41 2.4
19.0 4,0 20.0 5.0 22.5 22.5 20 0 1.3 20.0 5.4 44.5 0 44.5 20 44.5 0 45 10 45 0.3 45 38.25 11.8 46 6.8
21.5 4.0 22.5 5 5 25.0 25.0 21.5 3.0 22.5 9.2 49 5 1,100 49.5 1,385 49.5 50 20 50 50 33.8 45.5 1329 51 1,620
24 0 4 4 25.0 8.1 27,5 27.5 24.0 1.0 25.0 2.5 51.5 2,500 51 5 51.5 0 55 17.8 55 55 83.3 53.5 767
27.5 4.8 27.5 7.0 30.0 30.0 26.5 2.1 26.5 10.3 53 950 53 10 63 0 56 1,360
30 0 5.4 30,0 122 32.5 32.5 29.0 0.8 27.5 3 8 61 792
25.0 2.4 32.0 7.1 35 0 35.0 31.5 0.4 29.0 4.1
32.0 14,4 34,0 7.8 37.5 37.5 34.0 10.7 31.5 3 5

36 5 8.0 40.0 40.0 36.5 4.8 34.0 5 8
39 0 5 9 42.5 42.5 39.0 27.5 36.5 4.0
41 5 5 0 45.0 91.4 41.5 10.1 39 0 7.2
44.0 7.5 47.5 723,0 44.0 16.0 41.5 6 5
46.5 5.5 50.0 1089.0 46.5 6.0 44 0 13.8
47.5 7.8 52.5 283.0 49.0 10 3 46.5 9.0
50.0 0.0 55.0 580.0 51.5 4.2 48 0 4 5
52.5 3.9 57.5 239.0 54.0 6.7 51.5 50.1
55 0 4.5 60,0 188.0 56.5 23.4 54,0 222 0

62 5 130.0 58.0 3.2 56.5 901.0
65.0 8,5 60.5 4,3 57.5 1265.0

60 0 776.0
62,5 45.4
650 49.9
67.5 48.0
70.0 24.0

Blanks = No PID value recorded
Depths for MSE and SES boreholes are averages, see the previous remedial Investigation reports for actual depth ranges (MSE. 1994b; SES, 1994; and SES, 1995) 
AIMS 2000 data was also collected for SES-3 (SES, 1994); however, this data appeared unreliable and was excluded from this table.
Depth = Feet below ground surface 
PID measured in ppm-v
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Notably absent in all PID screening results was substantial evidence of vadose zone 

contamination above the smear zone. This has been a consistent occurrence throughout all 

phases of investigation (MSE, 1994; SES, 1994; SES, 1995; and MFG, 2001) with the exception 

of PID results from one borehole, MSE-1. PID results from MSE-1 did indicate shallow 

subsurface petroleum hydrocarbon contamination between approximately 14 to 20 feet bgs. The 

results shown in Table 4 and Figure 35 indicate that petroleum hydrocarbon contamination was 

encountered in several boreholes (MSE-1, MSE-2, SES-3, SES-B4, SES-5, MFG-B3, and MFG- 

5) below a depth of approximately 45 feet bgs. The water table in each of these remedial 

investigations was encountered between 51 feet and 55 feet bgs.

The highest PID readings were obtained just below 50 feet bgs in boreholes MSE-1, MSE-2, 

SES-5, SES-B4, MFG-B3, and MFG-5, PID readings for SES-3 ranged from 33.8 to 83.3 ppm at 

50 and 55 feet bgs, respectively. These values were lower than those recorded at the other 

boreholes at the same depth but still indicated petroleum hydrocarbon contamination at this 

location. In addition, an AIM 2000 instrument was used for field screening at SES-3 (SES, 1994); 

however, these values did not appear reliable and were not included in this evaluation.

Subsurface sediment analytical results obtained during this study and previous investigations are 

presented in Table 5. Analytical results were compared with the Tier 1 RBSLs for samples 

collected at a distance of less than 10 feet from/above groundwater (MDEQ, 2000) to evaluate 

the magnitude of contamination at the Site.

MFG-B3 and MFG-5 were the only boreholes where VOCs were detected by the PID. In each 

borehole, one sample was collected from the interval with the highest PID reading and from the 

approximate air/water interface (just at the water table) and one sample from just above the water 

table in each of these boreholes. The samples collected include MFG-B3(50 ft), MFG-B3(55 ft), 

MFG-B5(56.6 ft), MFG-B5(57.5 ft).

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD
■D
O
Q .
C

g
Q .

■D
CD

C/)W
o"3
0
3
CD

8

ci'3"

1
3
CD

"nc3.
3 "
CD

CD■D
O
Q .
C
a
O
3

■D
O

CD
Q .

■D
CD

C /)
C /)

o>w

TABLE S 
SUBSURFACE SOIL BORING 

ANALYTICAL RESULTS

ANALYTE
(ppm )

T ie r i  
Subsurface  
Soil RBSLs  
<10 fee l to 

Groundw ater

MFG-B1  
(fiS  ft)

M P 6 -6 2
( 5 8 m

M FG -83
(SON)

M F G B 3  
(55  ft)

M F 6 -B 4
(58 ft)

M FG -S6  
(56.5 ft)

MFG-BS
(5 7 J f l)

MSE-1
(49 R)

MSE-2  
(49 ft)

SB-3
(53 ft)

SES-1 
(50 ft)

SES-2  
(55 ft)

SES-3  
(50 ft)

SES-3 
(65 ft)

SCS-B4
m m

SES-B 4  
(46  ft)

SES-S 
(60 ft)

Date Collected - 4/4/01 4 /4 /0 1 4/6AJ1 4/6AJ1 4/a/oi 4/10/01 4/10fl)1 4/94 4/94 4/94 9/94 9/94 9/94 9/94 8/95 8/95 m i
Percent Moisture 
(% bv welqW)

NS 4 10 6 10 6 7 7 NM NM NM NM NM NM NM NM NM NM

MTBE 0.1 <0 .1 0 < 0 .1 0 < 0 .1 0 <0 .10 <0.10 < 0 .1 0 < 0.20* NM NM NM NM NM NM MM NM NM NM

Benzene 0.05 <0 .0 5 < 0 .05 < 0 .05 < 0 .0 5 < 0 .0 5 < 0 .0 5 <0.10* 0.130 0.009 NO <0.005 <0.005 <0.0001 <0.001 <0.005 <0.050 NM

Toluene 14 < 0 .0 5 < 0 .0 5 < 0 .05 <0 -0 5 < 0 .0 5 < 0.20* < 1.0* 0.600 0.140 NO <0.005 <0.005 0.023 <0.005 <0.005 0.244 NM

Ethylbenzene 13 < 0 .0 5 < 0 .0 5 0.18 0.060 < 0 .0 5 < 0 .0 5 <0.10* 0.230 0.220 NO <0.015 <0.015 0.044 <0.005 <0.05 0.414 NM

Totol Xylene 220 < 0 .0 5 < 0 .0 5 1.1 0.37 < 0 .0 5 0.19* 0.75* 0.260 2.0 NO <0.026 <0.026 0.341 <0.015 <0.015 0.807 NM

Napthalene 3 < 0 .1 0 < 0 .1 0 <0 .10 < 0 .1 0 < 0 .1 0 < 2 .0 * < 4 5 * NM NM NM NM NM NM NM NM NM NM

Volatile
Petroleum
Hydrocarbons^

NS < 2 .0 < 2 .0 220 70 < 2 .0 305 620 260 90 NO <1.0 <1.0 560 <1.0 1,360 2 ,490 NM

ExUactabie
Petroleum
Hydrocarbons^

NS < 1 0 < 10 275 154 < 10 142 485 NM NM NM <1.0 <1.0 1620 <1.0 3.750 5,400 NM

C5-C8 AJIphatlcs 100 < 2 .0 " < 2 .0 ' 2 7 ' 7 .9 ' < 2 .0 * 4 5 ' 167" NM NM NM NM NM NM NM NM NM NM

0 9 -0 1 2
Allphattos

500 < 2 .0 * < 2 .0 * 57* 21* < 2 .0 * 103* 228* NM NM NM NM NM NM NM NM NM NM

C9-C10
Aromallcs 15 < 2 .0 < 2 .0 64 16 < 2 .0 68 157 NM NM NM NM NM NM NM NM NM NM

C9-C18 5,000 ,NM NM 155 88 NM 86 311 NM NM NM NM NM NM NM NM NM NM

C l 9 -036 5,000 NM NM <2 0 < 2 0 NM < 2 0 < 2 0 NM NM NM NM NM 'N M NM NM NM NM

C11-C22 400 NM NM 66 28 NM 26 93 NM NM NM NM NM NM NM NM NM NM

Total Extractable NS NM NM 239 127 NM 124 444 NM NM NM <1.0 <1.0 1330 <1.0 3,230 4 .350 NM

1 RBSLs standariJs for C6-C8 Allphdtlcs. 0 9 - 1 0  Aromatlcs, and 0 1 1 -0 2 2  Aîiphatics and Total ExtradabteHydrocartions were developed during creation of Tier 1 Risk Based CorrscUve Action standards (M OEQ , 2000) for Impacted soli 
greater than 2 feel kyelow ground surface and sample to groundwater depth less than 10 fe e l . The remaining compound standards were adopted from Circular W QB-7 Montana Numerica W ater Quality Standards (MOEO, 2000)

3 Results are presented In n>m (ppm: mg/kg), except where noled.
4 Volatile Petroleum Hydrocarbons (VPH) is equlvafeni to Total Purgeable Hydrocarbons (TP H ) -Gasoline Range Organlcs); Extractable Petroleum Hydrocarbons (EPH) Is equivalent to TPH-GHesel Range Organlcs
5  Repealing limit Is elevated due to sample matrix toterference.
*  Aromatto constituents Bwizene. Toluene. Elhylbenzene and m *p  Xylenes were subtracted from this vahre.
^Aromatic constituents o-Xytene and C 9 to C IO  eromatics were subtracted from this value.
NfUl s  Hot Measured/Analyzed. NS = No Standard BOLD = Indicates result Is at or above RBSL



No elevated PID readings were obtained from MFG-1, MFG-2, and MFG-4; therefore, only one 

sample was collected from the approximate air/water interface interface in each of these 

boreholes. The samples collected include MFG-B1 {55 ft). MFG-B2(58 ft), and MFG-B4(58 ft). 

Each sample was analyzed for VPH and EPH Screen. During this study boring MFG-B6. the 

angled boring that penetrated the zone below the former pump islands, did not reveal the 

presence of petroleum hydrocarbons during PID screening.

Of the seven subsurface sediment samples analyzed, four contained analytes exceeding Tier 1 

Subsurface Soil RBSLs. These include MFG-B3(50 ft). MFG-B3(55 ft). MFG-B5(56.5 ft). MFG-B5 

(57.5 ft). The results are summarized below.

C9-C10 aromatics RBSLs were exceeded in all four of the above samples and C5-C8 aliphatics 

were exceeded in MFG-B5(57.5 ft) only. C9-C10 aromatics results for MFG-B3(50 ft) and MFG- 

B3(55 ft) were 64 parts per million (ppm) and 16 ppm. respectively. C9-C10 aromatics results for 

MFG-B5(56.5 ft) and MFG-B5 (57.5 ft) were 68 ppm and 167 ppm, respectively. The C5-C8 

aliphatics result for MFG-B5(57.5 ft) was 167 ppm. The remaining subsurface samples contained 

no analytes exceeding Tier 1 Subsurface Soil RBSLs.

Groundwater Analytical Results

All 10 monitoring wells at the Site were sampled between May 31 and June 1. 2001.

Temperature, pH, and specific conductivity were monitored in the field during purging and 

sampling activities at two wells. The temperature range recorded was 17.5 to 21.2 degrees °C. 

specific conductivity ranged from 785 to 1,328 pmhos/cm at 25 °C, and pH was recorded in one 

well as 6.88 standard unit. Field parameter and analytical results are presented in Table 6.
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Ali samples were analyzed for VPH and EPH screen. Of the 10 monitoring wells sampled, four 

contained constituents with concentrations above the Tier 1 groundwater standard and/or RBSL 

(MDEQ, 2000). These wells include MSE-1, SES-5, MFG-1, and MFG-5. A total of 10 results 

exceeded the Tier 1 standard/RBSL.

The C5-C8 aliphatics standard/RBSL was exceeded in well MFG-5 with a result of 514 ppb. The 

MFG-5 result (1,090 ppb) also exceeded the C9-C12 aliphatics standard/RBSL. The C9-C18 

aliphatics standard/RBSL was exceeded in wells MSE-1 and MFG-5. The C9-C18 aliphatics 

results for these two wells were 1,200 ppb and 3,900 ppb, respectively. C9-C10 aromatics 

standard or RBLS values were exceeding in wells SES-5, MFG-1, and MFG-5. The results for 

C9-C10 aromatics for these three wells were 467 ppb, 161 ppb, and 1,800 ppb, respectively. The 

Cl 1-C22 aromatics standard/RBSL was exceeded in MFG-5 with a result of 1,100 ppb. Finally, 

wells MSE-1 and MFG-5 results for TEH exceeded the standard/RBSL. The results for TEH for 

these two wells were 1,200 ppb and 6,300 ppb, respectively.

MAPPING OF SOIL AND GROUNDWATER CONTAMINATION

Soil Impacts

Concentrations of VPH and EPH in subsurface sediments at each boring location are shown on 

Figure 37. One to two subsurface sediment samples were collected from each boring at the Site 

during this study and previous studies. The concentrations placed on the maps include the 

results from the sample interval with the highest concentrations. The Source Area of 

contamination is defined as the area where the former ASTs and underground piping resided 

(see Figure 36). The highest concentrations for both VPH and EPH were obtained within the 

Source Area. Soil contamination extent plumes for VPH and EPH were developed and are 

provided as Figures 38 and 39. The results show the extent of VPH in subsurface soil is slightly
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greater than that for EPH.

Groundwater Impacts

Groundwater VPH and EPH concentrations from the May 2001 sampling event are shown on 

Figure 40. Groundwater concentration plume maps for VPH and EPH Screen results from the 

May/June 2001 groundwater analytical results are presented as Figures 41 and 42, respectively. 

The placement of concentration contours, and therefore, the plume boundaries are inferred, due 

to the limited amount of data available in some areas.
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The dimensions of the VPH plume are approximately 170 feet long by 130 feet wide (Figure 41); 

the dimensions of the EPH plume are approximately 210 feet long by 130 feet wide (Figure 42). 

The EPH plume may be longer than what it would be if well SES-2 were not contaminated with 

asphalt sealants from the drive-thru. The EPH plume (Figure 42) was redeveloped excluding well 

SES-2, since the contamination in that well is believed to be from asphalt sealants applied to the 

drive-thru. The revised EPH plume is shown on Figure 43. The shape of the plume narrows is 

closer in shape to the VPH plume map, and trends in a similar direction as the VPH plume map 

(Figure 41). A further discussion of factors affecting contaminant migration and plume shape is 

included in Section 5.

Since groundwater monitoring began in 1994 and 1995, wells in and closest to the Source Area 

(MSE-1, SES-5, and MFG-5) have consistently shown elevated petroleum hydrocarbons in the 

groundwater for both the gasoline range (VPH) and diesel range (EPH) constituents. VPH results 

have ranged from 55 to 58,100 ppb and EPH Screen results have ranged from not detected (less 

than 550) to 51,500 ppb.

Downgradient wells (MSE-2, SES-2, SES-3, MFG-1, and the Dairy Queen well) have shown 

variable levels of petroleum hydrocarbon contamination. The Dairy Queen well was sampled in 

1990 after hydrocarbon odors were reported in the groundwater. The results indicated volatile 

petroleum hydrocarbon contamination in the well at detectable levels. The MDHES sampled this 

well two subsequent times, once in 1990 and once in 1992. Results indicated there were no 

detectable petroleum hydrocarbons in the well. Detectable levels of petroleum hydrocarbons 

were again detected in a sample collected in 1994. Samples collected in 1995 and since that 

time have indicated no detectable petroleum hydrocarbons present in the well.

Only recently, since December 1998, has well SES-2 (a downgradient well) shown detectable 

levels of diesel range organics, total extractable hydrocarbons and EPH. The EPH fractionation
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results, from March 2000 and January 2001, indicated some values above WQB-7 standards or 

Tier 1 RBSLs (MDEQ, 2000). EPH Screen results ranged from 2,200 to 21,000 ppb. The 

remaining EPH results from this well were all below detection (at least less than 590 ppb). SES-3 

groundwater analytical results have indicated variable detections of both VPH and EPH Screen 

results. VPH results range from “not detected" (less than 20ppb) to 135 ppb; EPH Screen results 

range from "not detected” (less than 560) to 3,600 ppb. The first sample obtained from MFG-1 

was May 31, 2001. The VPH result was 264 ppb and the EPH Screen result 3,900 ppb. These 

results appear to confirm the existence of a groundwater connection between the former AST 

farm at Burger King and Dairy Queen. Weils upgradient of the Source Area include SES-1, MFG- 

2, and MFG-4. All VPH and EPH Screen results for these wells have not shown a presence of 

petroleum hydrocarbon contamination, with the exception of the June 1, 2001 EPH Screen result 

for SES-1. This result was 650 ppb, below the 1,000 ppb action level for performing EPH 

fractionation analyses. At this point in time, this result June 1, 2001 result is considered to be an 

aberration and not indicative of any migration of petroleum hydrocarbons into this area from the 

Source Area. This well is located in the Burger King parking lot, between the alley way and picnic 

area. It is possible that petroleum hydrocarbons enter the well during runoff due to a poor seal on 

the surface cap. However, further groundwater sampling is necessary to confirm or invalidate this 

assumption. A further discussion of groundwater contamination in wells SES-2 is provided in 

Section 5.

INFLUENCE OF A WATER LINE RUPTURE ON CONTAMINANT MIGRATION

The results of research into the water line rupture event in April 1990 indicated that it could be a 

mechanism of contaminant distribution to other areas of the Site. During the water line rupture 

event, up to 1.2 million gallons of water ("worst case" scenario) may have been discharged to the 

subsurface over a minimum of five days. The main rupture location was located no more than 20 

to 30 feet north (upgradient) of the Source Area. The other two noted rupture locations were
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located near the entrance to the drive through. Appendix E provides additional details regarding 

the water line rupture.

MODEL RESULTS

To obtain a 0.0014 ft/ft gradient across the modeled area and the Site, constant head boundaries 

were placed at the upgradient and downgradient boundaries of the modeled area (Figure 45). No 

flow boundaries were placed on each side representing flow lines (southwest and northwest 

sides) of the modeled area. For the model, the subsurface at the Site was divided into two layers 

as shown on Figure 46.

An average estimated hydraulic conductivity of 4,000 ft/day for Layer 1 was used in the modeling 

effort. Three hydraulic conductivity zones were applied to Layer 2. Initially, these include values 

tested by Practht (2001) for simulations along Brooks street in the vicinity of the Site and within 

the modeled area. These values include 36,000 ft/day, 21,500 ft/day, and 25,000 ft/day.

Hydraulic conductivity within the three zones of Layer 2 were adjusted until the calculated versus 

observed heads of each well fell within the 95 percent confidence interval of the 1:1 line, with the 

exception of two wells (MSE-2 and MFG-5; see Figure 45). In addition, adjustments were 

continued until a reasonable mean calibration error value was reached. The mean absolute error 

calibration between calculated and observed heads was 0.1 feet. Calculated versus observed 

head graph and statistics are presented in Figure 47.
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After calibration of the model was complete, the final calibrated hydraulic conductivity of the three 

zones included 36,000 ft/day north-northeast of the Site, consistent with that estimated by Pracht 

(2001); 25,000 ft/day hydraulic conductivity zone south-southwest of the Site, also consistent with 

that estimated by Pracht (2001); and the hydraulic conductivity at the Site was 19,000 ft/day. 

(Figure 45).

A hydraulic conductivity value of 19,000 ft/day is a reasonable estimate considering the very 

coarse grained nature of much of the aquifer at the Site. The decrease in the hydraulic 

conductivity from 36,000 ft/day in the north-northeastern zone to 19,000 ft/day may be justified 

due to the increased occurrence of sand and sand with gravel layers observed within the aquifer 

(see Figure 12 and the boring log for MFG-2 in Appendix C). These layers would tend to lower 

the hydraulic conductivity. Driller's logs reviewed in the vicinity of the Site generally do not 

identify these individual sand or sand with gravel layers; therefore, it is unclear as to the extent 

and thickness of these layers in upgradient and downgradient areas. These layers, identified 

during logging, are typically several inches to a few feet thick; it is possible that they are localized 

and non-contlnuous, restricting them to the Site and local site area.

Steady state groundwater model simulations were performed to assess the potential effect of the 

1990 water line break on the subsurface at the Site. The actual amount of water released to the 

subsurface is unknown. However, the total “worst case" scenario of water released to the 

subsurface due to a full rupture of the water line would have been approximately 1.2 million 

gallons over five days time (Appendix E).
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The water table map and parameters, described above, were used for the water line rupture 

simulations and was simulated using various water discharge values. In addition, various release 

volumes were assigned to the three water line rupture locations to for transmission to the water 

table in the model. The water table and particle tracking results for the “worst case" scenario are 

presented as Figures 48 and 49, respectively. All water line rupture results are included in 

Appendix E.

In general, the results of each steady state simulation suggested that the volume of water 

potentially discharged during the water line break might have caused a temporary and slight 

increase in the gradient of the water table (see Figure 48 and Appendix E). Only direct recharge 

of water to the saturated zone is represented in the model (i.e., the influence on the vadose zone 

is ignored). Hence, lithostratigraphic effects, within the vadose zone, that effect the distribution 

and rate of recharge of water reaching the water table are not represented. Therefore, the results 

of the water line rupture model are only suggestive of what may have occurred at the water table.

A conceptual model of the water line rupture event adjacent to the Source Area depicts how 

lithostratigraphic controls may have affected downward percolating water (Figure 50). The water 

may not have flowed directly to the water table but along various vertical and horizontal flow 

paths prior to reaching the water table. An urban storm water study was perfomed by Wogsland 

(1988) in the vicinity of the Site, During the study, five runoff events were monitored and the 

runoff volumes entering the storm drains were calculated. During these events, Wogsland 

(1988) reported runoff volumes ranging between 2,000 gallons to 46,600 gallons. The results of 

the study indicated that small changes in the water table were evident due to these precipitation 

runoff events (Wogsland, 1988). Under the
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“worst case” senario for the Site approximately 1.2 million total gallons or 240,000 gallons per day 

would have discharged to the subsurface. Under a “minor case” scenario with a water line 

rupture discharge volume of 20 gallons per minute, approximately 28,800 gallons per day would 

have discharged to the subsurface. Under both of these scenarios, the volume of water per day 

is within or exceeds the volume range in which Wogsland (1988) noted rises in the water table 

due to storm water runoff events. Therefore, it is possible that the water line rupture event would 

have transmitted enough water to the subsurface to produce a noticeable change in the water 

table at the Site.

Vadose zone modeling was performed to determine if flow processes could be simulated in the 

vadose zone near the groundwater-vadose zone interface. Ethylbenzene concentrations in MFG- 

B3 were used in the simulation. The following table summarizes the input parameters. The 

purpose of the model was to evaluate the concentration of ethylbenzene in the subsurface after 

30 years. Because subsurface samples were only collected from the smear zone, the model only 

represents contaminants in this area. There may be low levels of petroleum hydrocarbon 

contamination above the smear zone, however this was not verified through analytical sampling.

PARAMETER VALUE

Ethylbenzene Soil Concentration
0.18 mg/kg at 50 feet bgs 

0.06 mg/kg at 55 feet bgs

Percent Moisture 6% at 50 feet bgs

Organic Carbon 0.1

Soil Matrix/Profile Sand Profile

Model Run Time 30 Years

Remaining Parameter Model Defaults

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Concentration results for gas, soil water (pore water), and solid (adsorbed) phases for zero (0) to 

30 years results indicate only a minor decrease in ethylbenzene concentration would have 

occurred in each of these phases over the 30-year model simulation. One representative graph 

showing the change in the ethylbenzene concentration in the gas (vapor) phase within the vadose 

zone is provided as Figure 51. The remaining vadose zone modeling results are included in 

Appendix F.

As mentioned in Section 3, the vadose zone model may not appropriately represent the Site, 

Therefore, it may not accurately reflect the fate of ethylbenzene, or other VOCs if modeled, in the 

subsurface at the Site. However, while the results may not be accurate for much of the 

subsurface materials encountered within the Source Area, it may be representative of sand layers 

and higher sand content zones within the sandy gravel units. Subsurface soil samples collected 

within the Source Area have continued to exhibit detectable levels of ethylbenzene. Soil samples 

collected from the vadose zone in from MSE-1 in 1994 had an ethylbenzene concentration of 

0.230 mg/kg and the soil sample collected in 1995 from SES-B4 contained an ethylbenzene 

concentration of 0.414 mg/kg. A sample collected six to seven years later within the Source Area 

from MFG-B3 contained ethylbenzene concentrations of 0.18. While the samples were collected 

from different boreholes and slightly different depths within the vadose zone, the analytical results 

tend to support the model results by indicating only a slight, if any, decline in the ethylbenzene 

concentration over seven years within the Source Area. However, additional soil analyses in 

subsequent years would be needed to fully support the results of the modeling effort. Section 5 

presents a further discussion of these results.
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5 DISCUSSION

CONCEPTUAL MODELS

Conceptual models were constructed to help visualize petroleum hydrocarbon migration from the 

subsurface to groundwater (Figures 32 through 34). Included in each conceptual model is the 

former AST farm, and sources of petroleum hydrocarbon to the subsurface include spills and 

leaks. Vertical migration of contaminants will be quickest in the coarse sandy gravel areas of the 

subsurface while the presence of clay, sand, silt, and caliche layers beneath the former AST farm 

will slow vertical migration and increase horizontal or lateral spreading of petroleum hydrocarbons 

in the subsurface. Overall, the limited surface source of contaminants will relate to a large foot 

print of degradation because lower permeable layers are present.

SOURCE AREA

It does not appear that an off site source is responsible for petroleum hydrocarbon contamination 

at the Site. Even though a specific point or mechanism of release (i.e., fittings, overfills, piping, 

etc.) has not been confirmed, enough circumstantial evidence has been obtained in order to 

identify the likely Source Area. It appears to be the service station located at the Burger King Site 

and includes the former AST farm, the area beneath and adjacent to the underground piping 

pathway to the pump islands (along the south side of the Burger King building), and the area near 

the pump Islands, but not directly below the pump islands (see Figure 36).

After reviewing previously collected data and data collected during this study the highest 

concentrations of petroleum hydrocarbons in both subsurface sediments and groundwater exist at 

the fringe of and within the Source Area (at MFG-B3, MFG-5, and SES-B4) (Tables 5 and 6 and 

Figures 39 and 40). It appears reasonable to conclude that contamination of the subsurface
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environment occurred due to: 1) spills and overflow events at the ASTs; 2) leaks from pipes and 

fittings; and 3) leaking underground piping between the ASTs and the pump islands. The 

following provides some supporting discussion for defining the Source Area.

Elevated subsurface PID readings were obtained during the drilling of MSE-1 between 14 to 20 

feet bgs (Figure 35 and Table 4). Drilling at this location also noted a clay layer with perched 

water at this depth, A shallow subsurface sample was collected from approximately 25 feet bgs 

at SES-B4 (B-4 on the map). The VPH and EPH analytical results from this sample were 

contained elevated constituents. A clay layer was also encountered during drilling of MFG-B3. A 

clay layer located approximately 18 feet bgs has most likely trapped, spread, and released 

petroleum hydrocarbons within the Source Area.

The soil vapor survey conducted results (Higgins, 1999) support the proposed source area and 

role of the clay layer in impacting contaminant migration (see Table 2). The soil vapor survey 

indicated several areas containing elevated levels (or “hot spots”) of volatile and semi-volatile 

petroleum hydrocarbons. Gasoline range hydrocarbon "hot spots" include: 1 ) north of the 

northeast corner of the Burger King building and west of SES-1 ; 2) just south of the Burger King 

restaurant near SES-5; 3) just east of the insurance building; 4) and the east corner of the Dairy 

Queen building. Diesel range hydrocarbon “hot spot" include: 1) north-northeast of the Burger 

King building and west of SES-1; 2) southwest of the Burger King building, southwest of the 

Source Area and west of MSE-1; 3) south and west of the Burger King building within the Source 

Area; 4) at the east corner of Dairy Queen; 5) and just east of the insurance building (see Figure 

7).

Each of the “hot spots ' identified above appear to be associated with identifiable man-made 

features or the Source Area. The gasoline and diesel “hot spot” located north-northeast of the 

Burger King building and west of SES-1 is located near where the Burger King restaurant sewer

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



line connects with the main Missoula City sewer line. Vapors at this location may be collecting 

around this feature(s). Gasoline and diesel range vapors were also present adjacent to two 

buildings, the Dairy Queen and insurance building. The vapors may be collecting around the 

foundations on these buildings. The remaining "hot spots" are within or adjacent to the Source 

Area. Hence, the petroleum hydrocarbon contamination from the Source Area is probably 

responsible for the vapors collected in these areas. The remaining lower concentrations around 

the Site are most likely present due to diffusion and/or sorption of gas phase petroleum 

hydrocarbons in the coarse grained and finer grained layers within the vadose zone. The 

subsurface soil analytical results, soil vapor survey results, and the results of the plume maps 

(see Section 4) suggest the defined Source Area is the source of subsurface soil contamination at 

the Site.

PETROLEUM HYDROCARBON PHASES PRESENT AT THE SITE

Petroleum hydrocarbon contamination is probably present in several forms. In general, it appears 

that most of the petroleum hydrocarbons present in the subsurface sediments are in the form of 

residual hydrocarbons in the vapor and liquid phases. These residuals probably exist due to the 

following; 1) vapors and liquid phase petroleum hydrocarbons trapped during the initial vertical 

and horizontal migration from the source toward the water table; 2) as vapors and liquids trapped 

in the pore spaces as a result of water table fluctuations: 3) emplacement of residual 

hydrocarbons as a result of the water line rupture; 4) continued spreading due to water table 

fluctuations and diffusion and sorption of vapors; and 5) dissolved phase hydrocarbons in the 

groundwater.

Dissolved phase petroleum hydrocarbons in groundwater and some free phase petroleum 

hydrocarbons, present as sheen and globules, have been observed during purging of wells in the 

Source Area. However, attempts to measure free product thickness with an interface probe has
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failed to identify a measurable thickness in the wells at the Site. This is likely due to the very 

coarse-grained nature of the subsurface materials. Petroleum hydrocarbon contamination in the 

Source area is likely present in the vadose zone as residual petroleum hydrocarbons in the vapor 

and dissolved phase within water films, and in the liquid phase as ganglia (blobs of petroleum 

hydrocarbons) trapped in pore spaces as the hydrocarbons migrated downward and as a result of 

water table fluctuations. The Source Area contains petroleum hydrocarbons in subsurface soil 

with concentrations above the MDEQ Tier 1 standards and RBSLs. Vapor phase contamination 

has been confirmed through the results of the soil vapor survey and other residual hydrocarbons 

have been confirmed through field screening and analytical results.

Petroleum hydrocarbons downgradient of the Source Area are probably present as vapors 

residing in the pore spaces in the vadose zone and in vapor and dissolved phases in the smear 

zone. As mentioned above, the soil vapor survey results indicated Site-wide vapor phase 

contamination which supports this observation. In addition, downgradient petroleum hydrocarbon 

contamination was observed in groundwater in MFG-1 even though subsurface soil analytical 

results showed no detectable levels of hydrocarbon contamination. It is expected that some 

residual hydrocarbons are present within the “smear zone” at this location.

The extent of contamination was estimated using all data and analytical results collected from to 

date. Because there have been no data collected from subsurface soils and groundwater beyond 

the Dairy Queen, southwest of the Site, nor in areas east and west of the Site, the exact extent of 

contamination is unknown. Results show subsurface soil and groundwater within the Source 

Area have been the most affected by petroleum hydrocarbon contamination (see Figures 39 and 

40). Downgradient wells contain variable levels of dissolved phase petroleum hydrocarbons 

contamination while upgradient wells have not indicated the existence of such contamination.
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LITHOSTRATIGRAPHIC CONTROLS ON CONTAMINANT MIGRATION

The lithostratigraphy present at the Site has shown to play an important role in contaminant 

migration. The lithostratigraphic factors and other features or factors believed to have influenced 

or may still be influencing contaminant migration at the Site include the following:

• Sandy gravel within the vadose zone: The main component of the vadose zone is sandy

gravel. This component is believed to contribute greatly to the migration of contamination 

through the diffusion of VOCs both horizontally and vertically. This conclusion is supported 

by the results of the soil vapor survey performed by Higgins (1999). Overall, the results of 

the soil vapor survey showed a fairly wide distribution of VOC vapors throughout the Site. 

Sorption within the sandy gravel units probably also occurs within water films and on 

subsurface materials. This may be more evident within the Source Area and vicinity of the 

Source Area due to the higher concentrations of VOCs found in this area (see Section 4). 

However, few VOCs have been detected in the upper regions of the vadose zone during PID 

screening within the Source Area and have not been detected outside the Source Area 

(Table 4 and Figure 35),

• Sand layers within the vadose zone: Sand layers within the vadose zone at the Site are 

believed to contribute to contaminant migration within the Source Area by slowing the 

vertical migration of petroleum hydrocarbons and; therefore, also contributing to the 

horizontal spreading of petroleum hydrocarbons (see Figures 32, 33, and 34). Diffusion 

and sorption are also expected to play key roles in the contaminant migration within the 

Source Area. As the petroleum hydrocarbons migrate downward, some components are 

volatilized and become diffused. The soil vapor survey (Higgins, 1999) indicated wide 

spread contamination of volatile petroleum hydrocarbons across the Site. Other petroleum 

hydrocarbons may become in dissolved within water films on soil particles, and others may
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become sorbed to the subsurface materials. Sand layers would have a greater ability to 

trap residual hydrocarbons due to the high interstitial tension on the particles.

• Clay layers within the vadose zone: Previous investigations at the Site have indicated the 

clay layer located beneath and within the Source Area has had an affect on petroleum 

hydrocarbon migration. Shallow contamination was observed at MSE-1 during drilling and 

sampling. Shallow subsurface soil contamination at this location may be due to the 

presence of this clay layer and its proximity to a main leak source or spill from the former 

AST farm. This clay layer may have been initially responsible for reducing the rate of 

downward migration of petroleum hydrocarbons at this point and still retaining some 

petroleum hydrocarbons at this shallow depth. As a lower permeability zone, the clay layer 

reduces the ability of the petroleum hydrocarbons to migrate vertically and increases the 

migration of petroleum hydrocarbons horizontally within the vadose zone. Once the 

petroleum hydrocarbons reach a higher permeability zone, they will again migrate 

vertically. Sorption, and to a lesser extent diffusion, probably also play roles in the 

petroleum hydrocarbon migration within the clay layer.

• Caliche layers within the vadose zone: Caliche layers within the vadose zone probably 

contribute to petroleum hydrocarbon contamination at the Site in a similar manner to the 

sand and clay layers, depending on the permeability and composition of the layer at the 

point of contact. No petroleum hydrocarbon contamination was evident within these 

layers.

The presence of caliche zones in the Missoula basin sediments has not been previously 

described. Caliche forms in arid to semiarid climates. The soil in these environments tend 

to accumulate calcium carbonate, typically in the form of calcite (Blatt, et al., 1980).

Caliche forms as a result of the combined factors of changes in the partial pressure of
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carbon dioxide in the soil zone and evaporation (Blatt, et al., 1980). In arid environments, 

the quantity of organic matter in soil is less and there is an increase in evaporation of water 

from the vadose zone (Blatt, et al., 1980). More water is drawn to the surface through 

capillary action, the water and carbon dioxide in the soil are lost to the atmosphere, 

causing the precipitation of calcium carbonate in the soil (Blatt, et al., 1980). Therefore, in 

areas with low rain fall, the caliche zone is relatively close to the surface. Figure 52 

presents a visualization of the factors involved in caliche formation, as discussed above. 

The caliche detected in the cores is most likely indicative of one or more periods of climatic 

dry spells where there was little precipitation and little or no vegetation present. Thus far, 

the sediments of the MVA are believed to be Quaternary age. However, a documented dry 

spell occurred in the late Pleistocene. Therefore, the identification of the caliche layers 

may suggest the MVA sediments were deposited earlier, during the Pleistocene, than what 

is now commonly believed. Further age dating studies are needed to evaluate their true 

time of deposition.

CONTROLS ON PETROLEUM HYDROCARBON MIGRATION IN GROUNDWATER

Water table fluctuations probably have contributed to the spread of petroleum hydrocarbon 

contamination at the Site. For the most part, the zone of water table fluctuation appears to be 

mostly within sandy gravel. However, a portion of this interface area does contain some layers of
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sand, silt, and clay. The sand layers within this zone probably retain more sorbed hydrocarbons 

than the sandy gravel where diffusion may be more dominant. PID results and subsurface 

material sampling suggest that petroleum hydrocarbon contamination beneath the Source Area is 

at least 10 to 13 feet thick. This zone contained the highest PID readings and subsurface soil 

analytical results were consistently obtained between approximately 45 and 60 feet bgs at the 

Site. The subsurface interval of 45 to 60 feet bgs is within the water table fluctuation zone 

(“smear zone") at the Site. The petroleum hydrocarbons trapped in these areas are probably in 

the form of residual petroleum hydrocarbons and trapped ganglia in pore spaces in the smear 

zone and aquifer.

Horizontal spreading of petroleum hydrocarbons at the water table further contribute to the 

distribution of petroleum hydrocarbons in the subsurface. At the time of drilling, the aquifer was 

contained mostly within the Lower Unit at the Site. For the most part, the upper portion of the 

aquifer within the Source Area consists of coarse sandy gravel. The hydraulic conductivity is 

expected to be quite high in this zone and; therefore, dissolved petroleum hydrocarbons in 

groundwater would also be expected to move quite rapidly. The shape of the plume is also a 

factor of the hydraulic properties of the aquifer which are controlled by the lithostratigraphy.

Recall the Burger King restaurant was completed in 1976. Therefore, the service station has 

probably been inactive for at least 25 years and new sources of petroleum hydrocarbons at the 

Burger King Site have not occurred for at least 25 years. The results of this study have shown 

that elevated concentrations remain within the Source Area in both subsurface soil and 

groundwater.

Additionally, the slow migration and remaining high concentrations in groundwater in the Source 

Area may be due to residual petroleum hydrocarbons trapped in the “smear zone" that are slowly 

dissolving and entering the groundwater flow system. These residual petroleum hydrocarbons
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often constitute the majority of the volume of petroleum hydrocarbon contamination at sites 

(Conrad, et al., 1992) and can form a relatively immobile source (Baehr and Corapcioglu, 1987 

and Lahvis and Baehr, 1996). In addition, sorption of colloidal particles at the gas-water 

interface is irreversible due to the capillary forces (Wan and Wilson, 1994). However, fluctuating 

water tables and recharge may assist in colloid mobility (Wan and Wilson, 1994). This immobile 

gas-water interface in porous media can retard the transport of particulate contaminants (Wan 

and Wilson, 1994). This relationship help support the observation that the highest levels of 

petroleum hydrocarbons are concentrated within the relatively small Source Area and appear to 

quickly decrease away from the source area.

While passing groundwater may dissolve portions of these residual hydrocarbons, they still act as 

continuing sources of petroleum hydrocarbon contamination (Conrad, et al., 1992). In cases 

where a local equilibrium has been reached, only residual hydrocarbons at the extreme upstream 

end of the zone are dissolved into the passing groundwater (Conrad, et al., 1992), The elevated 

concentrations of petroleum hydrocarbons within the Source Area may suggest that there is an 

abundance of residual petroleum hydrocarbons (as supported by the analytical results) within the 

smear zone and the system may be in or close to equilibrium. Conrad et al., (1992) also found 

that water tends to flow preferentially around residual hydrocarbon blobs (or ganglia) with greater 

flow through water-filled pores and much less flow through pores containing sorbed hydrocarbon 

films. This effect reduces dissolution of residual petroleum hydrocarbons into the flowing 

groundwater (Conrad et al., 1992).

In addition, the vadose zone model results indicated only a minor decline in ethylbenzene 

concentrations would likely occur within the smear zone after 30 years. The minor decline in 

ethylbenzene may support the fact that residual petroleum hydrocarbons present within this area 

have been and will continue to be a significant source of petroleum hydrocarbon contamination at 

the Site; that the petroleum hydrocarbons are not being dissolved into groundwater at a fast rate;
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that little is being volatilized and escaping into the atmosphere; and it may also suggest that the 

system may be in equilibrium or close to equilibrium.

After groundv/ater has passed through this area and the saturation limit has been reached (e.g., 

no more hydrocarbons are dissolved), a dispersion zone is created. The size of the dispersed 

zone is dependent on the velocity of groundwater flow and the interphase mass transfer rate 

(Conrad, et al., 1992). In addition, the ratio of longitudinal dispersivity (OlI mixing in directions 

along the flow path) and transverse dispersivity (Ot; mixing in directions normal to the flow path) 

also plays a major role in the shape of a contaminant plume (Fetter, 1999). The lower the ratio 

iajor), the broader the shape of the plume (Fetter, 1999). Therefore, because the shape of the 

VPH and EPH plumes are fairly wide, the Dl/Ot ratio is expected to be relatively small and/or the 

vadose zone spreading has enlarged the source area. The higher the velocity and the lower the 

interphase mass transfer rate, the larger the dispersed zone (Conrad, et al., 1992). These 

interactions may explain the high concentrations still found in the Source Area and the size of the 

plume. Other factors strongly affecting the shape and size of the contaminant plumes include: 

the petroleum hydrocarbon release rate and volume, the porosity of the subsurface materials, 

hydraulic conductivity of the subsurface materials, the hydraulic gradient (API, 1996). In addition, 

the extent of the petroleum hydrocarbon plume is also dependent on the chemical and physical 

properties of the petroleum hydrocarbon (API, 1996). A steep hydraulic gradient will produce a 

narrower plume and faster migration of hydrocarbons in the subsurface (API, 1996). Plumes in 

shallow hydraulic gradients are generally fairly wide, almost as wide as they are long (API, 1996). 

At the Site, VPH constituents are generally more soluble and volatile than EPH constituents and 

have an overall slightly greater overall extent than EPH. For example, benzene is more soluble in 

water than diesel range petroleum hydrocarbons; therefore, benzene would have a greater 

overall distribution than diesel range petroleum hydrocarbons.
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Water Line Rupture Event

The contamination detected in the Dairy Queen well in April 1990, just after the water line rupture 

event, may have been due to the mobilization of petroleum hydrocarbons from the Source Area 

into the groundwater. It is unknown to what extent petroleum hydrocarbons existed in the 

groundwater beneath the Dairy Queen prior to this event; however, there were no previous 

reports of detections in this well water prior to this event. In addition, the Dairy Queen well was 

sampled again in September 1990 and in 1992 by regulatory agencies. Each of these 

subsequent events showed no detectable petroleum hydrocarbons in the groundwater at the 

Dairy Queen well. The subsequent sampling events indicate the April 1990 detection of 

petroleum hydrocarbons in the well water were most likely due to a slug of petroleum 

hydrocart>ons released during the water line rupture event or reactivation of petroleum 

contamination present at the water table or in the smear zone.

Given the proximity of the main rupture location to the Source Area, the water line rupture event 

may have redistributed petroleum hydrocarbons from the Source Area into other areas of the 

vadose zone and/or groundwater. The conceptual model showing the approximate location of the 

water line ruptured is provided as Figure 33. As discussed previously, when the water line 

ruptured, a large volume of water was released into the subsurface over a minimum of five days. 

The conceptual model shows the lithostratigraphic controls of the water released from the water 

line rupture. As shown in the conceptual model, several lithostratigraphic layers were present in 

the subsurface beneath the water line rupture location and Source Area. These include two sand 

layers, a clay layer, and a caliche layer.

The conceptual model indicates the water from the water line rupture probably encountered at 

least some of the petroleum hydrocarbon contamination present within and adjacent to the 

Source Area. At a minimum, the water traveling through the vadose zone probably encountered
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vapor phase, dissolved phase, and residual phase LNAPLs in the vadose zone. Once the vi/ater 

encountered the LNAPLs, they were probably either redistributed in the vadose zone and/or were 

flushed to the saturated zone where they were further mobilized and redistributed downgradient. 

These LNAPLs probably traveled in the dissolved and possibly free phases with some eventually 

becoming trapped as residual LNAPLs.

Detected Impacts at Well SES-2

There are two possible on-site sources of petroleum hydrocarbons to well SES-2. The first 

source is petroleum hydrocarbons originating from the AST farm and associated piping at Burger 

King and a second possible source is petroleum hydrocarbons originating from asphalt sealants 

applied to the roadway in the Dairy Queen drive-thru.

The well casing for SES-2 is damaged, and the damage may have occurred during remodeling 

construction at the Dairy Queen drive thru (see below). The top of the well casing is broken and 

the surface cap does not seal properly. Therefore, it is possible that asphalt sealants may enter 

the well during asphalt maintenance activities or gasoline, diesel, and vehicle oil may enter the 

well in runoff during precipitation events. Additionally, the Dairy Queen drive thru was originally 

oriented so that vehicles would enter from Brooks Street (Figure 7), and at that time, well SES-2 

was not in the drive thru. Sometime during the summer of 1996 (Harvey, 2001), the drive thru 

was changed to allow entrance from Washburn. As a result of the drive-thru modification, well 

SES-2 is now located in the drive-thru. The present orientation of the drive-thru is shown on 

Figure 40 and the drive thru orientation prior to 1996 is shown on Figure 7. The approximate 

carbon range for asphalt sealants is Cl 8 through 026. These carbon ranges have been detected 

at concentrations exceeding Tier 1 Groundwater RBSLs in SES-2. It is believed that the main 

source of contamination in this well is from the drive-thru and not from the former AST farm.
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Repairing the well casing and ensuring surface components seal properly should reduce the 

potential for asphalt sealants and other petroleum hydrocarbons to enter the well.
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6 CONCLUSIONS

1. Overall, two main lithostratigraphic units were identified at the Site. These include the Upper 

Unit and Lower Unit. The Upper Unit extends from ground surface to approximately 58 to 62 feet 

bgs and is composed of sandy gravel with layers of sand, silt, clay, and caliche. The Lower Unit 

consists of sandy gravel with layers of sand and clay, appears to be overall coarser than the 

Upper Unit, and extends from approximately 58 to 62 feet bgs to a total depth of at least 115 feet 

bgs. The total depth of the Lower Unit and aquifer is believed to be approximately 125 feet at the 

Site. Unit Two, described by others, was not clearly identifiable.

2. The lithostratigraphy played a role in contaminant migration (e.g., the clay layer present at 

MSE-1 caused reduction in vertical migration and some perching of petroleum hydrocarbons and 

water on top of the clay layer). Residual petroleum hydrocarbons trapped within pore spaces in 

the smear zone (or water table fluctuation zone) are believed to be a continuing source of 

petroleum hydrocarbon contamination to groundwater. Various other sand and clay layers within 

the vadose zone probably contributed to horizontal spreading of petroleum hydrocarbon 

contamination in the subsurface. Vapor phase migration of petroleum hydrocarbons was most 

likely significant in the vadose zone.

3. Groundwater flow is to the southwest, approximately paralleling Brooks Street. A water table 

model, water line rupture model, and vadose zone model were used to assist in interpretation of 

possible controls on petroleum hydrocarbon migration and fate. The results of the water table 

model suggest that the hydraulic conductivity of the MVA at the Site is 19,000 ft/day with an 

average linear velocity of 130 ft/day. The simulation of a water line rupture indicated a temporary 

rise in the water table would occur (under steady state conditions) and re-mobilization of 

petroleum hydrocarbons in the subsurface would have been likely.
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4. The vadose zone appears to remain a significant source of contamination to the subsurface 

soil and groundwater. It is likely that little change in the ethylbenzene concentrations found in the 

smear zone would occur over a 30-year simulation period. This is supported by observations that 

elevated levels of petroleum hydrocarbons are still present within the Source Area after the 25 

years. Thus, the smear zone appears to remain a significant source of contamination to the 

groundwater.

5. Rotosonic drilling proved to be a very efficient and effective tool for examining the subsurface 

lithostratigraphy at the Site in great detail. The data it provided was invaluable to this study.

The results of this study have provided detailed information about the lithostratigraphy present in 

one portion of the MVA. This study has also given support to the value and importance of 

characterizing the lithostratigraphy and lithostratigraphic controls on petroleum hydrocarbon 

migration. Lithostratigraphy together with identifying and evaluating other natural and 

anthropogenic factors influencing in the fate and migration of petroleum hydrocarbons are 

important and can be valuable tools in assessing the fate and migration of petroleum 

hydrocarbons in the subsurface and will provide a better understanding of the complex system for 

remediation purposes.
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7 RECOMMENDATIONS

Some of the methods presented in this study may be of benefit during future studies at 

contaminant release sites including; 1) the use of rotosonic drilling and detailed logging to better 

characterize the lithostratigraphy at the site; 2) detailed logging of the cores to understand the 

lithology and stratigraphy present that may play a role in contaminant fate and migration; 3) grain 

size analyses to support observations made during logging and for use in remediation 

alternatives; 4} a thorough review of data collected from previous studies and integration of this 

data during additional site characterizations; 5) a thorough review of other relevant factors that 

may have a role in contaminant fate and migration (e.g., the water line rupture event); and 6) 

construction of cross sections and conceptual models to assist in visualizing lithostratigrapic 

and/or other natural and anthropogenic controls of contaminant fate and migration.

Additional investigative methods that are recommended in future studies of petroleum 

contaminated sites include: 1) collection of several depth integrated subsurface soil samples from 

the vadose zone to better characterize the petroleum hydrocarbon concentration changes with 

depth; 2) collection of subsurface soil samples for additional vadose zone characterization for use 

in vadose zone modeling efforts, such as total organic carbon content, moisture content, density, 

and porosity; 3) use rotosonic drilling at complex sites or as needed to assist in better 

characterization of the lithostratigraphy present at a site; 4) thoroughly review data collected 

during previous studies and integrate this data to help solve contaminant fate and migration 

issues at the site; and 5) use visual aids such as cross sections and conceptual models to assist 

with understanding contaminant fate and migration.
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1.0 INTRODUCTION

This paper provides an overview of the migration of organic compounds, particularly light non- 

aqueous phase phase liquids (LNAPLs), and their migration in the vadose zone and at the water 
table. In general, organic compounds in this paper refer to LNAPLs; however, some of the 

information presented will also apply to dense nonaqueous phase liquids (DNAPLs). The vadose 
zone section not only discusses topics relevant to the vadose zone but also provides a brief 
background about the physical and chemical properties of organic compounds that are important 
for their migration in both the vadose and saturated zones. The saturated zone section provides 
a brief overview of contaminant transport and migration of organic compounds at the water table.

1.1 Preview

Petroleum hydrocarbons and other organic compounds spilled or released at or near land surface 
migrate through the vadose (or unsaturated) zone and eventually may reach the water table, in 
the vadose zone, there are three zones of saturation. They include the pedular zone, the 
funicular zone, and the capillary zone. Water saturation and the nature of contaminant migration 

varies within each of these zones. Along the path through the vadose zone, a variety of 
mechanisms will either transport or retard the migration of the contaminant to the water table. 
Some of these include volatilization of the compound; sorption to mineral or soil particle surfaces; 
sorption to soil organic matter; volatilization and/or dissolution into water films or air bubbles; and 

biodégradation. Finally, the transporation of the organic compound will depend on the physical 
and chemical characteristics of the compound. Some of these include the solubility of the 

compound in water and air, the volatility of the compound, and the viscocity of the compound.

Movement of organic compounds at the water table and in the saturated zone depend on the 
physical and chemical properties of the compound, water table fluctuations, groundwater flow, 

and sorption processes, similar to those described for the vadose zone.

1.2 Paper Organization

This paper is organized into four sections. Section 1 provides an introduction and preview into 
the paper topic. Vadose zone characteristics and processes of contaminant transport and 

migration are presented in Section 2. Section 3 discusess the saturated zone. A summary is
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provided in Section 4 and References in Section 5. Figures and tables referenced in the text are 

attached at the end of the paper.
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2.0 VADOSE ZONE

This section is organized as follows. Section 2.1 provides a brief introduction. Pressure, tension, 
and saturation properties are discussed in Section 2.2. Section 2.3 discusses the three water 

saturation zones within the vadose zone. An overview of sorption and diffusion processes is 
presented in Sction 2.4. Section 2.5 discusses the physical properties of organic compounds. 
Section 2.6 provides a detailed discussion of the gas-water and solid-water interfaces in the 

vadose zone. Miscellaneous other important vadose zone mechanisms such as vapor migration 
and biodegredation are discussed in Section 2.7.

2.1 Introduction

Non aqueous phase liquids (NAPLs) are transported, distributed and retarded in the vadose zone 

by various factors. VOCs are non-aqueous phase liquids (NAPLs). Some common VOCs 
include benzene, toluene, p-xylene, ethylbenezene, tetrachloroethylene (PCE), and 

trichlorethylene (ICE). Mobility of volatile organic compounds (VOCs) in the vadose zone is very 

dependent on the diffusion and sorption of the organic compound within the soil matrix (Steinberg 
and Kreamer, 1993). These are non-steady-state processes (Thoma, et al., 1999). There are 
four retention mechanisms that occur in the vadose zone. These include sorption to mineral 
surfaces, sorption to organic matter, volitilization into the gas phase, and dissolution into bulk 
water,

2.2 Tension, Pressure, and Saturation

The effects of interfacial tension, pressure, and saturation of the wetting and non-wetting phases 

are presented in the following sections.

2.2.1 Interfacial Tension

Interfacial energy exists when a liquid is in contact with another substance (Fetter, 1999). This 

other substance may be a solid, an immiscible liquid, or a gas. Interfacial energy is created as a 
result of the difference in the degree of attraction one substance has for the molecules comprising 

the other substance (Fetter, 1999). In a system with two immiscible liquids, the interfacial tension
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is an important component in determining what fluid will be the wetting liquid in the vadose zone 
and which will be the non-wetting fluid.

When two liquids are present in the vadose zone, one liquid will preferentially spread over, or wet, 
the entire solid surface (the wetting liquid), the other will remain as the non-wetting fluid and 

reside in the pore spaces of the porous media (Fetter, 1999). If a system is dry when the oil 
(NAPL) is introduced to the system, the porous media will become oil-wet; with the wetting fluid 
being the oil and water becoming the non-wetting fluid (Fetter, 1999). Systems are rarely oil-wet 

due to water that is held as pendular rings, even in soil that appears dry (Fetter, 1999).

2.2.2 Pressure

Air pressures measured above the water table will be equal to atmospheric pressure (Fetter, 
1994). Fluid pressures above the water table are negative with respect to atmospheric pressure, 
creating tension (Fetter, 1994). This capillary pressure (or surface tension) at the air-water 

interface and the molecular attraction of the solid and liquid phases in the vadose zone cause an 
upward attraction of water molecules and other molecules at the water table (Fetter, 1994). The 
height of the capillary rise will depend on the pore size. Smaller pores will draw a higher capillary 
rise due to the increased surface tension. Larger pores will have a lower capillary rise because 
there is less surface tension.

2.2.3 Saturation

The fraction of the total pore space filled by a fluid is called the saturation ratio (Fetter, 1999).
The total of all fluids present, including air, will add up to a total saturation of 1.0. In the vadose 
zone, a wetting fluid may become replaced by the non-wetting fluid. Displacement of the wetting 
fluid by non-wetting fluid is called drainage (Fetter, 1999). Displacement of the non-wetting fluid 

by the wetting fluid is called imbibition (Fetter, 1999). Residual wetting saturation, or irreducible 
wetting-fluid saturation, is the saturation point at which no more wetting fluid will be displaced by 

the nonwetting fluid (Fetter, 1999). At the point where a zero capillary pressure is reached, some 

of the non-wetting fluid will still remain in the pore spaces. This is called irreducible non-wetting 
fluid saturation, or residual non-wetting fluid saturation (Fetter, 1999). Residual saturation 

depends on surface tension of the oil (or non-wetting fluid) and pore size distribution (Kemblowski 

and Chiang, 1988). As the pore radius distribution becomes more narrow, the less the residual 

oil saturation (Kemblowski and Chiang, 1988).
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The irreducible wetting fluid (water) is greatest close to the water table, where the most negative 
capillary pressures exist; the irreducible non-wetting fluid is shown to be in greater abundance in 
the higher zones of the vadose zone, where there is less capillary pressure and where it has 

displaced more of the wetting fluid. During drainage of the wetting fluid and advancement of the 
non-wetting fluid, there is an increase in the capillary pressure (Gvirtzman and Roberts, 1991).

Figure 1 shows the percent water saturation distribution for various zones from the land surface 

to the saturated zone. According to Cole (1994), the vadose zone contains 20 to 60 percent 
water saturation, the capillary zone contains 60 to 80 percent water saturation, the water table 
fluctuation zone contains 60 to 100 percent water saturation and the saturated zone is 100 

percent saturated.

2.3 Water Saturation Zones within the Vadose Zone

The vadose zone is comprised of three zones of varying water saturation. Figure 1 provides an 
overview of percent water saturation for the vadose zone and capillary zone. Cole (1994) 
indicates the upper vadose zone contains 20 to 60 percent saturation and the lower portion of the 

vadose zone (capillary zone) is 60 to 80 percent saturated.

The three zones within the vadose zone include the pendular zone, funicular zone, and insular or 

capillary zone (Gvirtzman and Roberts, 1991 and Hoag and Marley, 1986). The position of the 

free liquid surface (saturated zone) will determine the vapor pressures in the porous media and 
also the types of saturation zones present in the vadose zone. The capillary zone is the portion 

of the capillary fringe that is saturated (Gvirtzman and Roberts, 1991). In some systems, the 
funicular zone may be absent (Hoag and Marley, 1986).

2.3.1 Pendular Zone

The pedular zone is the driest and upper most zone within the vadose zone. This zone is 

characterized by very low water content. Thin films of water coat the grains of the porous media 

due to the hydrophilic properties of the solid (Gvirtzman and Roberts, 1991). Therefore, this zone 
is still considered water wet (Fetter, 1999). Because of the low water content and high surface 

tension on the grains, water does not flow in the pendular zone. The wetting liquid in this zone is
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retained as Isolated masses (Gvirtzman and Roberts, 1991 and Hoag and Marley, 1986) and the 
remaining void space Is filled either by air or the non-wetting liquid (NAPL or organic compound).

Each mass Is In the form of pendular rings (figure 2) around the tangent points of spheres 
(Gvirtzman and Roberts, 1991), at the grain contact points In the porous media (Fetter, 1999).

The wetting fluid accumulates In this fashion, under equilibrium conditions, because it Is the form 
that requires minimum surface energy (Gvirtzman and Roberts, 1991). The shapes of the air- 

liquid interfaces are convex, toward the contact points (Hoag and Marley, 1986). The curvature 
of the ring \m II depend upon the equilibrium vapor pressure with the surrounding vapor pressure 

of the system (Hoag and Marley, 1986). In addition, pendular rings that become isolated are still 
connected to the bulk water phase by mass transfer through the vapor phase (Gvirtzman and 
Roberts, 1991). This may occur when the pendular rings around grain contact points are spatially 
uneven at some equal height above the free liquid (capillary zone). The system will then come 
into equilibrium through mass transfer between the vapor phase and liquid phase (Gvirtzman and 
Roberts, 1991). The size of the pendular rings varies from zero to a maximum size where they 

meet each other. A zero case scenario is where only the non-wetting fluid fills the pores 
(Gvirtzman and Roberts, 1991). In addition, the curvature of the pendular ring air-liquid interface 

is proportional to the height above the free liquid zone (Hoag and Marley, 1986). Therefore, the 
curvature of Hie pendular ring will increase (sharpen) as the amount of liquid in the pendular ring 

decreases which is proportional to the distance of the pendular ring above the free liquid surface 
(Hoag and Marley, 1986). In other words, the pendular rings will be sharper higher in the system 

(close to land surface) than those at depth in the system.

Finally, the residual saturation (the amount of the compound remaining in the system) of the 

organic compound in the pendular zone of the vadose zone will dictate if the organic compound 
will reach the water table and the amount that reaches the water table (Hoag and Marley, 1986),

2.3.2 Funicular Zone

The funicular zone is characterized by a gradual increase in the size of the pendular rings. The

pendular rings increase in size until they unite and fuse into more complicated masses or ganglia

(Gvirtzman and Roberts, 1991 and Hoag and Marley, 1986). Ganglia (or ganglion) are described
as nodular blobs of a non-wetting phase that occupies at least one void space and generally
several adjoining chambers of the void space (Gvirtzman and Roberts, 1991). Figure 3 shows

some examples of ganglia produced during a study performed by Conrad, et al. (1992).

Spherical ganglia may form in cases where the non-wetting phase loses its continuity between
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adjacent chambers (Gvirtzman and Roberts, 1991). This may occur as pendular rings of the 

wetting fluid merge and cut off the ganglia "arms.” Ganglia trapped by the wetting phase in this 
manner are spherical and immobile (Gvirtzman and Roberts, 1991). The funicular zone may not 
always be present in the vadose zone. The system may move directly from the pendular zone to 
the capillary zone.

2.3.3 Capillary (Insular) Zone

The ganglia of the funicular zone continue to merge until a capillary surface is formed (Hoag and 

Marley, 1986). These coalesced ganglia form the capillary surface. The capillary zone, the 
lowest portion of the capillary fringe, is the portion of the capillary fringe that is water saturated 
(Gvirtzman and Roberts, 1991). The capillary fringe is not a regular surface and the capillary rise 
will be different across the surface depending on the interconnectedness and size of the pore 
spaces (Fetter, 1999). LNAPLs may migrate through the vadose zone and accumulate on top of 
the capillary zone, creating an “oil table” (Fetter, 1999), where the pores are saturated with NAPL. 

If a sufficient amount of LNAPL accumulates, the water capillary zone may disappear and the “oil 
table" will rest on top of the water table (Fetter, 1999).

2.4 Sorption and Diffusion Processes

The following sections provide an overview of sorption and diffustion processes that occur in the 
vadose zone. Section 2.7 provides a more detailed discussion focusing on the air-water (gas- 

water) and solid-water interfaces.

2.4.1 Sorption

Sorption includes the processes of adsorption, absorption, chemisorption, and ion exchange 
(Fetter, 1999). Adsorption is the process by which a solute sticks to or clings to the surface of a 

solid particle. Absorption occurs when a solute can diffuse onto or into a particle (Fetter, 1999), 

such as, into the structure of soil organic matter or into the structure of a clay mineral. 

Chemisorption is the process by which a solute is incorporated onto the surface of soil particles, 
sediment or rock through chemical reactions (Fetter, 1999). Ion exchange is the process by 

which ions are attracted to a positively or negatively charged surface and held there by
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electrostatic forces (Fetter, 1999). For example, a cation may be attracted to the negative charge 
of a clay mineral surface.

One of the most important factors controlling the mobility and distribution of VOCs in the 
unsaturated zone is vapor-phase sorption (Pennell, et al., 1992 and Steinberg and Kreamer,

1993) and diffusion of the VOCs within the porous media (Steinberg and Kreamer, 1993). Vapor- 
phase sorption is the process by which VOC vapors sorb to soil organic matter, adsorbed water 
films, mineral surfaces and soil particles, and at the air-water interface (Conklin, et ai, 1995; 
Pennell, et al, 1992; and Thoma, et al, 1999). The degree to which these mechanisms will be 
important in a system depends primarily upon the soil moisture content (relative soil humidity), the 
vapor pressure and solubility of the organic compound, and the surface area and organic carbon 
content of the porous media (Pennell, et al, 1992). In addition, the hydrophobicity (see Section
2.5.5) of the organic compound controls the amount of that compound that may accumulate in the 
vadose zone by the various sorption processes (Conklin, et al, 1995 and Kohl, et al, 2000).

2.4.2 Diffusion

Diffusion is also an important transport mechanism in the vadose zone. Diffusion is the process 
by which a solute will migrate from an area of greater concentration toward an area of lower 

concentration (Fetter, 1999). It is controlled by chemical interactions between the organic 
compound and the porous media, physical properties of the chemical and porous media, and the 
environmental conditions in the vadose zone (Thoma, et al., 1999). Vapor phase migration of 
volatilized organic compounds may occur in the vadose zone due to atmospheric pressure 

gradients (Fetter, 1999).

2.5 Physical Properties of Organic Compounds

The most important physical properties of petroleum hydrocarbons (organic compounds) include 

volatility, solubility in water, specific gravity and viscosity (Cole, 1994). An evaluation of these 
properties will aid in determining how the compound will be found and migrate in the environment. 
In addition, the octanol-water partition coefficient, Henry's Law constant, and/or the water-air 

partition coefficient may be used to evaluate the nature of the compound in the environment.

2.5.1 Volatility

The volatility of a substance is defined as the tendency of a substance to transfer to or from a

solid or liquid phase to and from the gaseous phase (Fetter, 1999, Cole, 1994 and
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Schwarzenbach, et al., 1993), The higher the vapor pressure is of the compound, the more 

volatile the compound (Fetter, 1999). A compound described as highly volatile is one that 
vaporizes or transfers easily to or from the gas phase (Cole, 1994). At a given vapor pressure, 

the lower molecular weight compounds will show much less interfacial adsorption, more volatility, 
than the higher molecular weight compounds (Costanza and Brusseau, 2000). An example of a 
highly volatile compound is gasoline. Diesel fuel and oil have low vapor pressure values and are; 
therefore, less volatile.

Vapor density is related to the equilibrium vapor pressure of a compound (Fetter, 1999). Vapor 
density indicates whether a gas will rise or sink in the atmosphere (Fetter, 1999). If the vapor 
density is lighter than air it will rise and vice versa.

The t)Oiling point of a compound is related to vapor pressure. A compound with a high vapor 
pressure will have a low boiling point and vice versa (Cole, 1994). Figure 4 shows the 
relationship between vapor pressure and boiling point for selected alkane group of organic 

compounds. Figure 5 shows the boiling point distribution of common petroleum hydrocarbon 
products. In addition, the melting point of the compound is useful to determine if a compound will 
be solid or liquid. If the temperature in the system is below the melting point of the compound, 
the compound will be in the solid phase (Fetter, 1999). Table 1 provides volatility values for some 

common petroleum hydrocarbons.

2.5.2 Solubility

The aqueous solubility of a compound is a measure of how much an organic compound prefers to 
be present as a solute in water (Schwarzenbach, et al., 1993). The higher the aqueous solubility 

number or value of the compound, the more likely the compound is to dissolve in water. Figure 6 
shows some common organic compounds and their ranges of solubility in water. The solubility of 
a gas must be measured at a given vapor pressure (Fetter, 1999). The solubility of a liquid is a 

function of the temperature of the water and nature of the compound (Fetter, 1999). Lighter 

molecular weight compounds are more soluble in water than heavier molecular weight 

compounds (Cole, 1994).
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2.5.3 Viscosity

Viscosity is the measure of the resistance of a substance to flow due to gravity (Cole, 1994). The 

viscosity will indicate the speed of movement of a compound through the porous media (Cole, 
1994). The higher the viscosity, the slower it will move; the lower the viscosity, the faster it will 

move. Figure 7 provides a summary of different groups of petroleum hydrocarbon and their 
relative viscosity and volatility to one another. The figure indicates that compounds that are more 
volatile have lower viscosity. In general, the more volatile a component, the faster it will move.

2.5.4 Henry’s Law Constant and Water-Air Partition Coefficients

Henry's Law constant (K h ) is the ratio of the amount of a compound in the gas phase to the 

amount of the compound in the water phase (Schwarzenbach, et al., 1993). High Kh values 
indicate that a compound would move more easily from the water phase into the gas phase 
(Schwarzenbach, et al., 1993). Figure 8 shows the ranges in Henry's Law constant for some 
common organic compounds.

Water-air partition coefficients are also used to express the amount of a compound partitioned 
between the water phase versus the gas phase. It is the ratio of the aqueous solubility of a 
substance to the saturated vapor concentration of the substance (Fetter, 1999). In this case, a 

compound with a high water-air partition coefficient will partition or dissolve into the water phase 
more readily than it will partition into the gas phase (Fetter, 1999). For example, gasoline 

compounds (i.e., benzene, a component of gasoline) may infiltrate via dissolution and collect at 
the water table even though no gasoline reaches the water table (Fetter, 1999).

2.5.5 Octanol-Water Partition Coefficient

The octanol-water partition coefficient is a measure of the degree to which an organic compound 
will dissolve between two immiscible liquids (Fetter, 1999 and Schwarzenbach, et al., 1993). The 

organic compound is mixed with equal amounts of water and an organic solvent (octanol). The 

higher the octanol-water partition coefficient (Ko*), the less mobile the compound tends to be in 

the environment (Fetter, 1999). Figure 9 shows the Ko* range of values for some common 
organic compounds.
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2.5.6 Hydrophobic versus Hydrophillic

A hydrophilic compound is one that has an affinity for or likes water (Bates and Jackson, 1987). 

Organic compounds may be adsorbed onto solid surfaces due to hydrophobiciy (Fetter, 1999). A 
hydrophobic compound is one that lacks an affinity for water or is "water hating” (Bates and 
Jackson, 1984 and Schwarzenbach, et al., 1993). Hydrophobic compounds vary in polarity and 
are electrically neutral (Fetter, 1999). As chain lengths of the organic compound increases, 
surface tension decreases due to the increased hydrophobic surface area in contact with the 

water (Costanza and Brusseau, 2000). The solubility of an organic molecule is affected by the 
degree to which the organic compound is attracted by polar water molecules which is also 
dependent on the polarity of the organic compound (Fetter, 1999). While some hydrophobic 
compounds dissolve in water, they have low solubilities. Hydrophobic compounds generally 
adsorb to organic material, if present, in the porous media and to a lesser extent to mineral 
surfaces (Fetter, 1999).

2.6 Gas-Water and Solid-Water Interfaces

The following sections describe the interactions that occur between organic compounds and the 

air, water, and solids present in the vadose zone.

2.6.1 Gas-Water (Air-Water) Interface

Petroleum hydrocarbon compounds may adsorb not only at the air-water interface but may also 

dissolve into adsorbed water films coating the soil particles of the porous media (Pennell, et al, 
1992). The determining factor controlling how much of a compound is in each phase (air/gas or 
water) is dependent on the physical and chemical characteristics of the compound. These 
physical and chemical characteristics are measured using the octanol-water partition coefficient, 

Henry's Law constant or water-air partition coefficient, and/or the organic compounds solubility in 

water (Section 2.5).

Weakly polar solutes may become simultaneously adsorbed at the air-water interface and 

dissolved into the liquid phase of water films coating the porous media (Pennell, et al., 1992). 

The dissolution of organic vapors into adsorbed water films increases as the solubility and 
volatility of the VOC increases (Hoff, et al., 1993). That is, the more likely the VOC is to dissolve 

in water, the more likely it will sorb onto and into water coatings on the porous media. Lower
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molecular weight compounds are more volatile (Costanza and Brusseau, 2000). Because the 
lower molecular weight compounds are more volatile, they will be more saturated in the system. 
Therefore, more gas molecule collisions will occur and there will a greater probability these 
molecules will be come adsorbed in water.

Adsorbed water films comprise a large surface area to volume ratio; therefore, adsorption at the 
air-water interface may be a significant contributor to the sorption of organic compound vapors in 

the vadose zone (Pennell, et al., 1992). Hence, water films may compose a larger portion of the 
total sorbed VOCs, especially in soils with a low organic matter content (Pennell, 1993, Costanza 
and Brusseau, 2000). Volitilization and dissolution are strongly controlled by the gas-water 

Interfacial area (Costanza and Brusseau, 2000). Vapor diffusion rates are typically much faster 
than aqueous diffusion rates; consequently, the larger the air interfacial area to water ratio, the 
greater the mass transfer rates between the air-water interface (Costanza and Brusseau, 2000).

Gas phase organic compounds, as well as, colloidal particles participate in air-water mass 

transfer in the vadose zone. Colloids are particles 1 nm to 10 |im in size (Wan and Wilson,

1994). Contaminant mobility may be enhanced by the adsorption or organic and inorganic 

molecules to mobile colloids in the vadose zone (Wan and Wilson, 1994). In a study conducted 

by Wan and Wilson (1994), colloids were found to be sorbed at the air-water interface on air 
bubbles. Wan and Wilson (1994), suggest the preferential sorption of colloid particles at the gas- 

water interface as a mechanism for vadose zone transport of organic compounds,

2.6.2 Solid-Water Interface

Water has been shown to drastically inhibit the sorption of VOCs by the porous media (Steinberg 
and Kreamer, 1993). In porous media lacking water, the sorption of organic compounds by soil is 

mainly by adsorption of the compound onto the surfaces of the porous media. Organic 

compounds may sorb onto mineral surfaces or partition into soil organic matter (Pennell, et al,

1992). Colloid particles (less than 2 pm in size) are also important solid surfaces and may 

include clay minerals and organic matter (Fetter, 1999).

Hydrated soils act as sorbents for organic compounds in which soil organic matter functions as a 
partition medium and other soil surfaces function as absorbents (Pennell, et al., 1992). In soils 

where the water content is sufficiently low or absent, partially hydrated mineral surfaces are 

primarily responsible for sorption (Hoff, et al., 1993a and Smith, et al., 1990). Therefore,
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adsorption of organic compounds by mineral surfaces in water-saturated soils in close proximity 
to the water table will be insignificant {Smith, et al., 1990), In general, soil organic matter is the 
primary sorption mechanism in systems with high water content; sorption to mineral surfaces 

dominates in very low water content soils (Costanza and Brusseau, 2000). A combination of 
these two mechanisms will be present in systems with intermediate water content (Costanza and 
Brusseau, 2000).

Soil Organic Matter

According to Kohl, et al. (2000), soil organic matter is a critical control in the fate and transport of 
nonpolar organic compounds (i.e., polynuclear aromatic hydrocarbons (PAHs) and 

polychlorinated biphenyls(PCBs)) in the environment. Soil organic matter may be present as 

dissolved macromolecules, coatings on inorganic colloids, or organic particulates (Herbert, et al,
1993). Herbert, et al (1993) states that soil organic matter is the most important material to 
facilitate the transport of organic compounds. The effectiveness of soil organic matter to 
transport organic compounds depends on the concentration of soil organic matter in the soil 

solution, their stability as mobile particulates in the soil solution, their mobility through the vadose 
zone, and the degree to which they interact with the organic compound (Herbert, et al, 1993), In 
some instances, the organic compounds may become permanently bound to soil organic matter, 
even after a very brief contact period, creating bound organic compound residuals (Kohl, et al, 
2000). In addition, organic compounds may not only adsorb to the surfaces of the soil organic 
matter but also dissolve and become distributed within the structure of the soil organic matter 
(absorption) which is controlled by the compounds solubility in water (Kohl, et al, 2000).

In a study performed on Woodburn soil for 12 aromatic hydrocarbons, the extent of the organic
compounds insolubility in water was shown to be the primary factor controlling the partitioning of
the compound into soil organic matter (Chiou, et al, 1983). In addition, soil organic matter in high

humidity/hydrated soils has been suggested as the dominant mechanism for vapor-phase
adsorption for some compounds (Pennell, et al, 1992 and Steinberg and Kreamer, 1993).
Studies have shown that, a strong inverse relationship between relative humidity and the sorption

of organic compounds on soil and organic matter exist in the vadose zone (Pennell, et al., 1993;

Steinberg and Kreamer, 1993; and Thoma, et al., 1999). That is, as relative humidity in the

porous media increases, sorption of organic compounds to the porous media and other soil

constituents decreases. In general, as the relative humidity in soil increases, water strongly

competes with organic compounds and vapors for the soil mineral adsorption sites. This results

in a decrease or suppression of VOC sorption on these surfaces (Pennell, et al, 1993; Steinberg
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and Kreamer, 1993; and Chiou, et al, 1983). Therefore, soil organic matter may be the more 
dominant adsorption site for organic vapors and compounds in higher humidity soils (Chiou, et al, 
1983; Steinberg and Kreamer, 1993; and Pennell, et al, 1993). However, the relationship 

between humidity and increases in sorbed organic compounds into soil organic matter may not 

always be the case, especially in low orgainic matter soils (Pennell, et al, 1993). In this case, 
sorption to other solid surfaces or interaction at the air-water interface may play the more 
important role.

Other Solid Surfaces

Other solid surfaces such as sand grains and clay minerals will also sorb organic compounds. 

When the water films become too thin solid surfaces may become exposed to the air. This will 
increase the sorptive capacity of the soil (Hoff, et al., 1993b). This will expose highly sorptive clay 
mineral sites and other soil surfaces (Hoff, et al., 1993b).

2.7 Other Important Vadose Zone Mechanisms

The following sections discuss volitilization and biodégradation of organic compounds in the 

vadose zone.

2.7.1 Volitilization

Volitilization is a diffusion-driven process (Lahvis, et al., 1999). Vapor or gas phase movement of 

volatilized organic compounds that do not sorb to the gas-water or solid-water interface may also 
occur in the vadose zone. In this case, the volatilized organic compound is in the gas phase and 
may be transported by diffusion through the porous media of the vadose zone under air pressure 
gradients as atmospheric pressure fluctuates (Fetter, 1999). Organic compounds with high vapor 

pressure are likely to volatilize and be transported in this manner (Kostecki and Calabrese, 1989). 
These vapors may migrate vertically and/or laterally and collect in sewer lines, basements, utility 

corridors (Kostecki and Calabrese, 1989). Potential fire or explosion hazards may be created in 

these instances. Not only do these vapors present a problem in physical structures, they vapors 

may also migrate to the surface and affect surface water and agricultural crops in the immediate 

vicinity of the soil containing the organic compound (Kostecki and Calabrese, 1989).
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2.7.2 Biodegredation

Degradation is the process of an organic compound becoming smaller or broken down by 

chemical or biological means (Fetter, 1999). Organic compounds are substrates for microbial 

growth (Fetter, 1999). The substrate is an energy source for the microbes. The microbes adhere 
to solid surfaces in the porous media and form a biofilm (Fetter, 1999). Aerobic degradation is 
the process of biodégradation in which microbes need oxygen in their metabolism (Fetter, 1999). 

Anaerobic biodégradation occurs where little or no oxygen is needed for microbial metabolism.

Aerobic biodégradation and volatilization of organic compounds near the water table are 
mechanisms for mass removal of organic compounds from groundwater (Lahvis, et al., 1999). As 

aerobic biodégradation proceeds in the vadose zone, a concentration gradient is created. The 

concentration gradient, in turn, increases the volatilization (a diffusion driven process) of organic 
compounds (Lahvis, et al., 1999). In addition, aerobic biodégradation rates near the water table 
have been shown to exceed biodégradation rates higher in the unsaturated zone by an order of 
magnitude (Lahvis, et al., 1999). Biodégradation can also prevent vertical diffusion of organic 
compounds into the unsaturated zone (Lahvis, et al., 1999).

The rate of biodégradation is site specific. The rate of biodégradation may be affected by the 
hydrocarbon substrate, electron acceptor, nutrient availability, hydrogeology, biomass 

concentration, temperature, and pH (Lahvis and Baehr, 1996). In the field, biodégradation is 
typically monitored by measuring the changes in the concentrations of oxygen and carbon dioxide 

in the subsurface (Lahvis and Baehr, 1996; Lahvis, et al., 1999; and Suchomel, et al., 1990). 
Figure 10 provides an example of the chemical and biological processes occurring in the vadose 
zone and saturated zone. The vadose zone shows a decrease in oxygen content moving from 
land surface to the saturated zone. In Figure 10 Above the capillary zone, there is an increase in 

carbon dioxide content. In this study, biodégradation activity was reported as occurring in the 

capillary fringe, just above the water table (Lahvis and Baehr, 1996).
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3.0 SATURATED ZONE

This section discusses the migration of organic contaminants at and near the water table.
Section 3.1 provides a brief introduction. Section 3.2 discusses the important physical properties 
of organic compounds at the water table. Sorption, diffusion, and dispersion mechanisms are 

presented in Section 3.3. Section 3.4 and 3.5 briefly discus biodégradation and colloid transport 
in a saturated system, respectively. Finally, Section 3.6 discusses the migration of organic 
compounds near the water table.

3.1 Introduction

Organic compounds, such as gasoline, spilled at or near the land surface migrate through the 
vadose zone and may eventually encounter the water table. Compounds that are less dense 
than water (LNAPLs) will float on the top of the water table, those that are more dense (dense 
NAPLs or DNAPLs) will sink to the bottom of the aquifer (Gvirtzman and Roberts, 1991).

3.2 Physical Properties of Organic Compounds

As discussed above in Section 2.5, physical properties and ways to evaluate a compounds 
migration in the environment will also be important for their movement in the saturated zone. The 

most important physical properties of petroleum hydrocarbons (organic compounds) include 

volatility, solubility in water, specific gravity and viscosity (Cole, 1994). In addition, mechanisms 
to evaluate how the compound will migrate in the environment must also consider the octano

water partition coefficient, Henry's Law constant, or the water-air partition coefficients. In 
example, the gasoline compound of BTEX (benzene-toluene-ethylbenzene-xylene) contains four 
organic compounds that will migrate at different velocities in groundwater (Alvarez, et al., 1998). 
Benzene is more soluble in water than xylene; therefore, benzene will migrate faster in 

groundwater than xylene.

3.3 Sorption, Diffusion, and Dispersion
Section 2.5 discusses sorption and diffusion processes in the vadose zone. These processes, 

along with advection and mechanical dispersion, are also important in the saturated zone.
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3.3.1 Advection

Advection is the process in which dissolved solids (solutes) are carried along with flowing 

groundwater (Fetter, 1999 and Mackay, et al., 1985). It is the dominant factor of the migration of 
dissolved contaminants in sand and gravel aquifers (Mackay, et al., 1985). The amount of solute 
carried in the flowing groundwater is a function of the quantity of groundwater flowing and the 
concentration of the solute in the groundwater (Fetter, 1999).

3.3.2 Diffusion and Dispersion

The spreading of solutes from an area of high concentration to low concentration is called 
diffusion (see Section 2.5). Mechanical dispersion is the process by which mixing or spreading of 
the solute with groundwater occurs along flow paths in the porous media (Fetter, 1999 and 

Mackay. et al., 1985). There are two types of mechanical dispersion, longitudinal dispersion and 
transverse dispersion. Longitudinal dispersion is the mixing that occurs along the direction of the 

flow path (Fetter, 1999). Transverse dispersion is the mixing that occurs in a direction normal to 

the flow path (Fetter, 1999). Spreading of solutes in groundwater is believed to be proportional to 
the rate of groundwater flow and is also dependent on the structure of the porous medium of the 

aquifer (Mackay, et al., 1985). Dispersion in the longitudinal direction is greater than dispersion in 
the transverse directions (Mackay, et al., 1985). Hydrodynamic dispersion considers the mixing 
that occurs due to both diffusion and dispersion in the flowing groundwater (Fetter, 1999).

3.3.3 Sorption

Sorption in the saturated zone occurs by the same processes as the vadose zone (see Section

2.5). Solutes flowing along groundwater paths may interact with the aquifer materials. These 

interactions include adsorption, absorption, chemisorption, and ion exchange (Fetter, 1999 and 

Mackay, et al., 1985). Solute migration may be retarded and concentrations of the solute may be 

evident as more solute interactions take place (Mackay, et al., 1985). Interactions of the solute 

with the aquifer materials depend on the characteristics of the solute (solubility, hydrophobicity, 

etc.), the solute concentration, the pH of the groundwater, and the presence of other dissolved 

components (Mackay, etal., 1985).
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3.3.4 Air-water Interface

The air-water interface in the saturated zone Is limited to gas bubbles in the system. Sorption of 
organic compounds at this air-water interface may occur in the saturated zone. Gas bubbles in 

the saturated zone may be produced by: 1) the entrapment of air during water table fluctuations, 
2) generation of gas bubbles due to aqueous phase pressure decreases, and 3) organic and 
biogenic activities (Wan and Wilson, 1994). Organic compounds may sorb to the the air bubbles 
in the saturated zone (Wan and Wilson, 1994 and Hoff, et al, 1993).

3.3.5 Solid-Water Interface

Solid-water sorption interfaces are present in the saturated zone as solid soil and mineral 
surfaces and soil organic matter. Like the vadose zone (see Section 2.6.2), soil organic matter is 
the dominant sink for organic compounds in saturated systems (Fetter, 1999). In systems, where 
soil organic matter is less than one percent of the soil or aquifer on a weight basis, then soil or 

mineral surfaces will be the dominant sorption site (Fetter, 1999).

3.4 Biodégradation

Biodégradation will also take place in the saturated zone. As discussed in Section 2.7.2, 
biodégradation includes aerobic and anaerobic forms of biodégradation. Aerobic biodégradation 

takes place with microbes that require oxygen in their metabolism. In both aerobic and anerobic 
biodégradation, hydrocarbons or other organic compounds are consumed and used as energy 

sources by the microbes (Fetter, 1999). Biodégradation may retard the migration of organic 

compounds in the vadose zone.

3.5 Collids

Colloids are particles with diameters less than 1 nm in size. These include dissolved organic 

macromolecules (i.e., humic substances or microorganisms -  viruses and bacteria), and mineral 

matter (Fetter, 1999). Dissolved solutes may sorb to the surfaces of colloids. As mentioned 

previously, some colloids are small enough to sorb to air or gas bubbles and be transported in the 
vadose and saturated zones. Colloids may also be transported by groundwater flow through the 

porous media (Fetter, 1999). Transport of colloids in groundwater may be affected by
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groundwater flow velocity, the size and nature of the colloid, the geometry of the pores of the 

porous media, and the quantity of colloids (Fetter, 1999). Colloids may enhance the transport 
capability of an organic compounds. For example, a hydrophobic compound may sorb to the 
colloid and the colloid transported through the aquifer. Therefore, some compounds may migrate 
farther or along different paths due to sorption to colloids.

3.6 Organic Compound Migration Near the Water Table

The following sections provide a brief introduction to contaminant migration in Section 3.6.1. 
hydrocarbon behavior in groundwater is discussed in Section 3.6.2, and a more detailed 
discussion of hydrocarbon migration from the vadose zone to the water table in Section 3.6.3.

3.6.1 Introduction

Once an organic compound, such as gasoline, is released to the land surface, it begins to migrate 
through the vadose zone. A release of organic liquid at the land surface will eventually reach the 

capillary zone (Conrad, et al.. 1992). This organic liquid will reach the water table if the water 
table is shallow or the volume of the liquid released is great enough. During this migration, the 
mass of hydrocarbon penetrates as a distinct phase through the vadose zone, it will partially 
dissolve or sorb to the solid-water and air-water interfaces (Gvirtzman and Roberts, 1991).
Section 2.2 discusses the three zones of the vadose zone (or unsaturated zone). These include 
the Pendular Zone, the Funicular Zone, and Capillary Zone. Section 2 provides a detailed 

discussion of the processes occurring in the vadose zone during contaminant migration. 

Eventually, the capacity of the vadose zone to retain the hydrocarbon will be exceeded; thus, the 
hydrocarbon will reach the water table (Gvirtzman and Roberts, 1991). Figure 11 is a diagram 

showing the migration of an organic compound to the water table.

3.6.2 Forces Controlling Hydrocarbon Behavior

The three major forces controlling organic liquid behavior in groundwater include: capillary forces, 

viscous forces, and gravity or buoyancy forces (Conrad, et al., 1992). The interaction between 

cohesive forces between each compound and the adhesive forces between the solid phase and 

each compound is the capillary force (Conrad, et al., 1992). The capillary force is proportional to 

the strength of the fluid wetting the solid surface and to the interfacial tension (see Section 2.2) at 

the fluid-fluid interface (Conrad, et al., 1992). The capillary force is inversely proportional to the
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pore size of the porous media (Conrad, et al., 1992). Viscosity forces are proportional to the 
pressure gradient and permeability within the porous media. Buoyancy, a gravitational force, is 
proportional to the density difference between the fluids in the groundwater (Conrad, et al., 1992). 

Capillary forces are typically the dominant of the three forces (Conrad, et al., 1992). The effects 
of these forces are further discussed in Section 3.6.3.

3.6.3 Hydrocarbon Migration
The following sections describe the downward and lateral migration of LNAPLs in the capillary 

zone and at the water table.

Downward Migration

Seepage of the hydrocarbon comprises the first stage in contaminant migration. After the 
hydrocarbon is introduced to the ground surface, it will migrate downward. Man-made conduits 
(i.e.. utility or foundation) may affect the migration of the contaminant (Cole, 1989 and Stringer, 
1992). Two zones of spreading occur during seepage of the hydrocarbon. In the center of the 
hydrocarbon plume in the vadose zone is the oil core (Figure 11 ). The oil core consists of oil 
flowing due to gravitational forces and flow is described by Darcy's Law (Stringer, 1992). The oil 
core is surrounded by the oil wetting zone (or oil capillary zone) (Stringer, 1992). The spreading 
shape of the oil depends on the hydraulic conductivity, the rate of infiltration, and capillary forces 
(Stringer, 1992). The spreading shape will be different as it encounters different hydraulic 
conductivity zones. For example, the vertical migration of hydrocarbons will be faster in gravel 

and slower through sand, silt, and clay units. The lateral migration of hydrocarbons is also 

affected by the lithology.

Lateral Migration

Lateral spreading of the hydrocarbon in the vadose zone and saturated zone will occur as 

different lithologies are encountered. As mentioned above, hydrocarbons will travel faster 
through gravel where the interstitial forces are less and slower through finer grained zones where 

interstitial forces are greater. For example, hydrocarbon migration in gravel may have straighter 

path than if sand or clay layers are encountered as it migrates downward. The sand and clay 

layers may cause lateral spreading due to the decreased hydraulic conductivity and permeability 

of the unit.
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If there is a sufficient volume of hydrocarbon, it will continue to migrate downward until it reaches 
the capillary fringe. At the capillary fringe, there is sufficient water saturation to decrease the flow 
of the hydrocarbon at the leading edge (Stringer, 1992). At this point, a pressure mound builds 

(Conrad, et al., 1992 and Stringer, 1992). Eventually, the mound will build to the point at which 
lateral spreading will occur due to capillary forces (Figure 11; Conrad, et al., 1992 and Stringer, 

1992). At this point, only slow vertical penetration will continue and the hydrocarbon may 
temporarily infiltrate below the water table (Stringer, 1992). Eventually, the pressure mound will 
flatten and lateral spreading and distribution continue, but more slowly, as the volume of 

hydrocarbon flowing to the area decreases (Conrad, et al., 1992 and Stringer, 1992). The 

spreading portion of the hydrocarbon is referred to as a “pancake.” The thickness of the pancake 
is approximately the same thickness as the capillary fringe (Stringer, 1992). Spreading stops 

when the oil reaches residual saturation. LNAPL migration, is influenced by interfacial and 
capillary forces in the later stages (Stringer, 1992).

Finally, the hydraulic gradient of the aquifer will influence the movement of hydrocarbons. This 
stage is referred to as the immobilization stage (Stringer, 1992). At this stage, hydrocarbons will 
move in the direction of groundwater flow. The movement is at a rate that is slightly less than the 

flow of the underlying groundwater (Stringer, 1992). The rate of movement is dependent on the 

density of the hydrocarbon.

Water Table Fluctuation Effects

Water table fluctuations wilt continue to spread the LNAPLs. At the water table and capillary 
zone, natural fluctuations in the water table cause “smearing" and redistribution of the organic 

compound (Figure 11 and 12;Lahvis, et al., 1999). In the “smear zone" organic compounds may 
dissolve in groundwater, volatilize and diffuse through the vadose zone, sorb to aquifer sediments 

and soil organic matter, or undergo chemical and biological reactions (Lahvis, et al., 1999).

These water fluctuations will widen the pancake vertically and; therefore, increases the amount 
that will be retained in the un saturated zone (Stringer, 1992). Water table fluctuations through the 
"smear zone" creates a situation where the porous media is sometimes saturated during rises in 

water level to a situation where the porous media becomes water wet during lowering in water 

level (see Section 2.2). Residual hydrocarbons (residual hydrocarbon fluid saturation) will also 

remain in the capillary fringe due to water table fluctuations (Conrad, et al., 1992). Residual 

hydrocarbon may be dissolved by the passing groundwater even though the compound may be 

immiscible in water (Conrad, et al., 1992). The residual hydrocarbons trapped in the “smear
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zone" and capillary zone often contribute the major volume of the hydrocarbon pollution in a 
system (Conrad, etal., 1992).

Hydrocarbons will rise with a rising water table but at a slower rate than the water table. 

Therefore, these hydrocarbons become trapped below the water table at insular residual 
saturation (Stringer, 1992). As the water table falls below the level of the trapped hydrocarbon, 
the water saturation decreases and the hydrocarbons remobilized (Stringer, 1992). The above is 
an explanation for the reappearance of hydrocarbons in a well after long absences of them 
(Stringer, 1992). The trapping of hydrocarbons in water wet porous media, which had been 

previously saturated media (i.e., the "smear zone"), is explained by the effects of capillary forces 
(see Section 3.6.2). These trapped hydrocarbons, residual, are typically in the form of 
immobilized ganglia and become separated from the main body of hydrocarbon (Conrad, et al., 
1992). These residual hydrocarbons are also referred to as the residual non-wetting fluid 

saturation (Conrad, et al., 1992).

Figure 12 presents a diagram of hydrocarbon contaminant distribution in the various zones. 

According to the figure, residual hydrocarbons are present in the vadose zone. In the capillary 

zone, free liquid hydrocarbon and adsorbed hydrocarbons are present. In the water table 

fluctuation zone, hydrocarbons may be sorbed to soil material or are present as ganglia. In the 

saturated zone, dissolved hydrocarbons are present along with some trapped hydrocarbons 

(probably small ganglia).
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4.0 SUMMARY

This paper provided an overview of some of the major components of NAPL transport and 
migration in the vadose zone and at the water table. Tension, pressure and the degree of 

saturation in the vadose zone play an important role in the retention and transport of NAPLs. The 
amount of tension, pressure, and saturation in the system will affect how water and NAPLs will 
be found in the system, either as wetting or non-wetting fluids and the abundance of these 
substances within the vadose zone at various distances below surface in the system. There are 
three saturation zones in the vadose zone. Each zone is characterized by the moisture content 

and configuration of the wetting and non-wetting fluids in the porous media. Within these zones, 

a variety of processes occur that enhance or inhibit NAPL migration. These include sorption and 
diffusion processes. Sorption is one of the most important factors controlling the mobility and 
distribution of VOCs in the vadose zone. Diffusion also plays a role NAPL migration in the 
vadose zone and may occur due to atmospheric pressure gradients. However, the degree to 
which these processes will control migration will depend on the physical and chemical properties 

of both the contaminant and the porous media. The physical and chemical properties include 
volatility, solubility, hydrophobicity, and viscosity of the NAPL Some physical and chemical 

properties of the vadose zone that may affect contaminant transport include sorption of the 
compound into air bubbles or pendular rings at the air-water interface and to mineral surfaces and 

soil organic matter at the solid-water interface. Volatilization and biodegredation are also 
important factors in the migration and retardation of NAPLs in the vadose zone. These two may 

work together to degrade and retard NAPLs in the vadose zone.

In the saturated zone, the same physical and chemical properties of the NAPLs along with 
sorption, diffusion, dispersion (including advection) will help determine their fate in the system. 

Interactions with air bubbles at the air-water interface and colloidal material may enhance 
contaminant transport in the system. Sorption at the solid-water interface and biodégradation 

may help to retard the migration of the NAPL in the system. Once an LNAPL is introduced at the 

surface, it will migrate downward. Spreading will occur due to gravitational forces and may 

spread unevenly depending on the rate of infiltration, capillary forces, and as the LNAPL 
encounters porous media of differing hydraulic conductivities. If the volume of LNAPL is sufficient 

enough, it will continue to migrate vertically until it reaches the capillary fringe. The LNAPL will 
begin to slow due to an increase in water saturation. A mound will begin to build, vertical 

migration will slow, and eventually lateral spreading will occur and form a "pancake," and the 
LNAPL may temporarily infiltrate below the water table. LNAPL will then become transported at a 

rate dependent on groundwater flow velocity and hydraulic conductivity of the porous media.
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Product
Volatility 

(at 70"F in psia)
Hashpoint

Flammability Limits 
% bvvol.

in °C in “F LFL 5 UFL

Gasoline t 4 - 8 - 3 0 - 4 3 -3 6 --4 5 1.4 7.6

Benzene 1.6 -11 12 1.3 7.9

Toluene 1.9 4 40 1.2 7.1

Ethylbcnzenc 2.2 18 68 — —

Xylenes 2 2 27 81 1.1 7.0

n-Hcxanc 1.5 -40 -40 1.2 7.1

JP-4 Jet Fuel 1.6 -1 0 -+ 3 5 -2 2 -+ 9 5 __3 _ 3

Diesel 0.009 4 0 -6 5 100-130 1.3 4 6.0 4

Kerosene 0.011 40-75 100-160 1.4 6.0

Light Fuel Oil <10*3 40 -1 0 0 100 -  200 _  4 _  4
#1 and #2

Heavy Fuel O il <10'3 65 -1 3 0 140 -  270 1.0 5.0
#4, #5. and #6

Lubricating Oil <10-3 150-225 300 -4 50 —  4 __ 4

Used Oil <10-3 >100 >200 _  4 __ 4

1 Values vary slightly depending on grade.
2 Value is for m-xylenc.
3 Similar to gasoline.
4 Relatively nonflammable, NFPA = 2.
5 LFL is Lower Flammability Limit; UFL is Upper Flammabilicy Limit.

CCcIc,
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Unsaturated (Vadose) Zone 
20-60% Saturated

Water Table 
Fluctuation Zone

60-100% Saturated

W 0 Ê #

Capillary Zone 
60-80% Saturated

Groundwater 
100% Saturated

Figure | Generalized So il Column in Microview. A  microscopic view o f soil 
particles and phases indicates that soil moisture in the vadose zone is largely 
confined to an aqueous layer surrounding the particles. The interstitialpore spaces 
in this zone arefilled with air. The aqueous layer and the vapor spaces are important 
since the majority o f microbial action is carriedoutin the re^on. The capillary zone 
is partially saturated with bulk water mostly on the surface o f soil particles. The 

fluctuation zone is mostly saturated with bulk liquidphase interstitial water. There 
are no interstitial vapor spaces lefi in the saturated zone. Consequently this region 
is largely anaerobic.
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Fig. 2  A pendular n.i* between two spheres and another one 
isolated from the bounding solids.

Fig. % (o) Cubic and (6) rhombohedral packings of identical 
spheres with wetting and nonwetting fluids filling the void space, (c) 
and (</) Unit cells and (e) and ( / )  unit voids for both packing 
arrangements are also shown. The pendular rings are drawn at their 
maximum size for a contact angle of zero.
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Fig. 3  S £M  photomicrographs o f bJob casts from Sevtileiu sand column. I u I Some relatively simple blob shapes, (b) 
Larger, more complex, branching blobs. ~

F it 3 SEM photomicrograph o f  many blob casts from the Sevil- 
*  tela sand.
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Number of Carbons
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(Cl, Methane, through C20.Eicosane)

H ffire  4 Volatility o f Selected Alkanes. The normal (at 1 atmosphere) 
boiling point (solid line) and vapor pressure (at 20°C, dotted line) for several 
representative hydrocarbons are shown. Boilingpoints increase as the vaporpressure 
decreases. A  higher vapor pressure corresponds to higher volatility and indicates an 
increased tendency to exist in the vapor phase in porous soils. For compounds having 
molecular weights greater than decane, Cjo, the vapor pressure is too low for 
significant vapors to exist at ambient temperatures.
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Figure 5 .Boiling Point Distribution o f Petroleum Products. Boilingpoirtt
ranges for representative petroleum products are shown. Since boiling points are 
inversely proportional to vapor pressures (volatility), the ranges also r^ect relative 
volatilities. Gasoline is in a class by itself. Jet Juel, diesel and other kerosene 
derivatives form a group; similarly lubricating and juel oils have extremely low 
vapor pressures.
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Figure 7  Kinem atic Viscosity. Schematic representation o f the relative 
kinematic viscosity o f  representative petroleum products. The higher the kinematic 
viscosity, the faster the product can be expected to move through soils. Only thê  
products ofGroups I  and I I  migrate rapicUy enough to be considered “freeflowing. 
Group I  products can migrate rapidly enough to warrant aggressive response. The 
products o f Groups I I I  and TV are essentially immobile in all soil types.
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Figure I I  Conceptualization o f natural attenuation remediation at a petroleum product spill site.
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Figure 17̂  D istribution o f Hydrocarbon Phases in Soils. Petroleum hydrocar
bons tend to partition among soil particles, vapor, the aqueous phase, and a bulk 
hydrocarbon phase. In the unsaturated or vadose zone the open pore spaces among 
soilparticles allow volatile contaminants to vaporize. Vapors w ill migrate through 
a loose, porous soil, but remain trapped in a tighter, more dense soil. In the saturated 
zone water is the primary bulk phase and contamination is normally limited to 
dissolved hydrocarbons or to trapped, dispersed bulk hydrocarbons. In the interme
diate zones hydrocarbons can migrate duringdryer periods when the zone is drained 
and less than 100% saturated. During periods when the water table rises 
hydrocarbons become trapped since water migrates much faster than bulk liquid 
phase hydrocarbons.
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APPENDIX B

PHOTOGRAPHS 

(See Compact Disk)
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APPENDIX C

BORING AND WELL LOGS
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Rotosonic Drilling Method

Difficulty drilling included auger refusal and auger abandonment in one hole at the Site. In 

addition, split spoon sampling was performed at 5-foot intervals during previous investigations. 

This sampling method may not have provided good sample recovery for geologic logging or 

analytical sampling due to the coarse subsurface materials. The air rotary drilling method was 

not chosen for use during the remedial investigation due to the disturbed nature of cuttings 

returned to the surface for logging purposes. In addition, subsurface sampling during air rotary 

drilling using a split spoon encounters the same limitations as with split spoon sampling during 

hollow-stem auger drilling. These and other methods may not always yield the best data and/or 

may not be the most effective methods for subsurface investigations (Barrow, 1994).

Detailed Core Logging

Each core was logged in detail as follows: 1) the Unified Soil Classification System (USCS) was 

used for consistency to record physical features of the subsurface sediments encountered; 2) a 

sand gauge was used to provide consistency while logging sand sized material; 3) a Munsel®

Soil Colors Chart was used to record the general color of the subsurface sediments encountered; 

4) the relative moisture content of the subsurface sediments was noted; and 5) a qualitative 

estimate description of the percent gravel versus the percent of sand and fines was made 

throughout each core. The USCS is a logging system commonly used in the environmental 

consulting and engineering fields to describe subsurface materials (and soil) encountered during 

drilling or excavation. It is used to provide consistency while logging characteristics of subsurface 

samples.
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APPENDIX D

WATER TABLE MODEL RESULTS
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Water Table Model Setup

Initially, the potentiometric surface was drawn by hand to determine the flow direction at the Site 

using water table elevation data collected on April 14, 2001. The approximate direction of flow at 

the Site was determined to be to the southwest, approximately paralleling Brooks Street. This 

information was then used to align the model grid in the approximate direction of flow.

A two-layer steady state model was designed to simulate groundwater flow conditions at the Site 

and produce a water table map of the Site and surrounding area. Two layers were chosen after 

review of the lithostratigraphic logs, cross sections, and water table elevation data.

Layer 1 is defined as the subsurface zone between the ground surface and bottom of the Upper 

Unit (top of the Lower Unit; see Section 4). Within the modeled area. Layer 1 extends from the 

ground surface of 3,200 feet AMSL (northeastern boundary of the modeled area) to 3,110 feet 

AMSL. Layer 1 at the Site extends from approximately 3,182 feet AMSL to 3,110 feet AMSL. 

Layer 2 of the model extends from 3,110 feet AMSL to an estimated depth of 3,050 feet AMSL. 

Figure D1 in Appendix D shows the approximate divisions between Layer 1 and Layer 2 at the 

Site.

Constant head boundary conditions were set according to the MVA gradient calculated from 

water level elevation data obtained from the Missoula Water Quality district well located at the 

intersection of Blaine and Crosby streets and Mountain Water Company MWC-26 on Benton 

Avenue. The gradient over the modeled area is approximately 0.0014 ft/ft. No-flow boundaries 

were placed on each side of the model. The groundwater gradient for the MVA was calculated 

using data from Missoula Water Quality District and Mountain Water Company wells in the vicinity 

of the Site. The groundwater gradient calculated from these two wells producted a groundwater 

gradient of approximately 0.0014 ft/ft. In addition, the groundwater gradient for the Site was
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calculated between wells MFG-4 and MFG-1. Constant head boundaries were placed at the 

northeastern and southwestern boundaries of the model grid such that the gradient over the 

modeled area was approximately 0.0014 ft/ft. The wells at the Site were placed on the model 

grid as observation wells and the water table elevation data collected on April 14,2001 was 

entered as calibration values.

No aquifer testing has been performed at the Site. Therefore, no site-specific hydraulic 

conductivity data exists for the Site. Hydraulic conductivity values, previously estimated for the 

MVA in the vicinity of the Site, were initially used in the model. The hydraulic conductivity values 

were based on simulations by Pracht (2001) in a numerical model of the MVA were used as 

inputs in this model. Pracht’s study estimated hydraulic conductivity along a flow tube generally 

following Brooks Street. Three hydraulic conductivity values from Pracht's study were initially 

used in the model and include 36,000 ft/day, 25,000 ft/day and 21,700 ft/day. In addition, 

porosity, specific yield, and specific storage were estimated after reviewing the lithostratigraphic 

logs, grain size analyses, and cross sections. Porosity (0.20) and specific yield (0.12) values 

used in the model are consistent with those described by others.

MODEL INPUT VALUES

Parameter Layer 1 Layer 2

Hydraulic Conductivity (ft/day) Kx.y= 4,000: Kz=400 Kx,y= 36,000; = 3,600 
Kx,y = 19,000; Kz= 1,900 

Kx.y = 25,000; K% = 2,500

Specific Storage (S*; 1/ft) 0.00001 0.00001

Specific Yield (Sy) 0.12 0.15

Effective Porosity 0.20 0.20

Total Porosity 0,20 0.20

Constant Head Values: Top (Northeast boundary) = 3128.77 ft AIV

Bottom (Southwest boundary) = 3127.67 fi

SL
tAMSL
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OBSERVATION WELL INPUT VALUES

Well Number Observation Point (ft AMSL) Observed Head (ft AMSL)

MSE-1 3130.22 3128.19

MSE-2 3129.16 3127.92

SES-1 3135.83 3128.35

SES-2 3137.04 3128.01

SES-3 3135.45 3128.15

SES-5 3134.94 3128.33

MFG-1 3130.22 3128.19

MFG-2 3125.51 3128.30

MFG-4 3125.42 3128.36

MFG-5 3129.77 3127.73

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



SITE STATIC WATER LEVEL ELEVATIONS 
BURGER KING PETROLEUM RELEASE SITE 

Page 1 of 2

Well SES-1 Well SES-3
Measuring Point Elevation (ft AMSL) *  3181.38 Measuring Point Elevation (ft AMSL) = 3181.53
Date Depth to Water Static Water Level Dale Depth to Water Static Water Level

from PVC MP (ft) Elevation (ft AMSL) from PVC MP (ft) Elevation (ft AMSL)
11/22®4 51.92 3129.46 11/22/94 52.28 3129.25
8/30/95 47.99 3133,39 8/30/95 48.36 3133.17
316m _j 49.90 3131.48 3/6/96 50.28 3131.25
6/13/96 41.76 3139.62 6/13/96 42.16 3139.37
10/3/96 48.03 3133.35 10/3/96 48.50 3133.03
6/4/97 40.20 3141.18 6/4/97 40.63 3140.9

12/18aa 50.14 3131.24 12/18/98 50.51 3131.02
S/14/99 49.30 3132.08 5/14/99 49.60 3131 93
7/6/99 43.85 3137.53 7/6«9 44.20 3137.33
3122m 52.61 3128.77 3 1 2 2 m 52.98 3128.55
9/12/00 50.34 3131.04 9/12A30 50.73 3130.8

1 2 /2 2 Æ0 51.63 3129.75 1 2 /2 2 /0 0 52.04 3129.49
1/4/01 51.77 3129.61 1/4/01 52.17 3129.36
i/io ra i 52.03 3129.35 1 / 1 0 /0 1 52.44 3129 09
i/i8m i 52.27 3129.11 1/18/01 52.66 3128.87
2 /1/01 52.74 3128.64 2 /1 /0 1 53.11 3128 42

2 /1  smi 53.11 3128.27 2/15/01 53.46 3128.07
3W01 53.48 3127.9 3/3/01 53.83 3127.7
3/17/01 53.48 3127.9 3/17/01 53.84 3127.69
4/1/01 53.26 3128,12 4/1/01 53.62 3127.91

4/14/01 53.03 3123 36 4/14/01 53.38 3128.15
6 /1/01 49.25 3132.13 5/31/01 49.66 3131.87

Well SES-2 Well SES-5
Measuring Point Elevation (ft AMSL) = 3182.58 Measuring Point Elevation (It AMSL) = 3182.64
Date Depth to Water Static Water Level Date Depth to Water Static Water Level

from PVC MP (ft) Elevation (ft AMSL) from PVC MP (ft) Elevation (ft AMSL)
11/22B4 53.46 3129.12 8/30/95 49.31 3133.33
8/30/95 49.63 3132.95 3/5/96 51.25 3131.39
3mm 51.44 3131.14 6/13/96 43.18 3139.46

6/13Æ6 43.33 3139.25 10/3/96 49.45 3133.19
10/3/96 49.70 3132.88 6/4/97 41.60 3141.04
6/4/97 41.85 3140.73 12/18/98 51.40 3131.24

12/18/98 51.60 3130.98 5/14/99 50.70 3131.94
5/14^9 50.90 3131.68 7/6/99 45.15 3137.49
im m 45.35 3137.23 3/22A)0 53.91 3128.73
3/22/00 54.10 3128.48 9/12/00 51.70 3130 94
9/12/00 51.66 3130.72 12122100 52.98 3129.66
12/224)0 53.18 3129.4 1/4/01 53.13 3129.51
1/4/01 53.33 3129.25 1 /1 1 /0 1 53.41 3129.23

1 /1 0 /0 1 53.61 3128.97 1/18/01 53.63 3129.01
1/18/01 53.79 3128.79 2 /1 /0 1 54,10 3128.54
2 /1/01 54.26 3128.32 2/15/01 54.46 3128.18
2/154)1 54.61 3127.97 3/3/01 54.81 3127.83
343/01 54.98 3127.6 3/17/01 54.86 3127.78
3/17/01 54.92 3127.66 4/1/01 54.63 3128.01
4/1/01 54.79 3127.79 4/14/01 54.41 3128.23
4/14/01 54.57 3128.01 6 /1 /0 1 52 56 3130.08
5/31/01 50.92 3131.66
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SITE STATIC WATER LEVEL ELEVATIONS 
BURGER KING PETROLEUM RELEASE SITE 

Page 2 of 2

Well MSE-1
Static Water Level Data

Measuring Point Elevation (ft AMSL) = 3182.82
Date Depth to Water Static Water Level

from PVC (ft) Elevation (ft AMSL)
9/8/94 53 59 3129.23

11/22/94 51.78 3131.04
8/30/95 49.56 3133.26
3/6/96 51.50 3131.32

6/13/96 43.32 3139.50
10/3/96 49.64 3133.18
6/4/97 41.80 3141.02

12/18/98 51.68 3131.14
5/14/99 50.90 3131.92
7/6/99 45.45 3137.37
3/22/00 54.12 3128.70
9/12/00 51.94 3130.88
1 2 /2 2 /0 0 53.22 3129.60
1/4/01 53 38 3129.44

1 /1 1 /0 1 53.70 3129.12
1/18rt)1 53 8 8 3128.94
2 /1/01 54.34 3128.48
2/15/01 54.70 3128.12
3/3/01 55.07 3127.75
3/17/01 55.08 3127.74
4/1/01 54 8 6 3127.96

4/14/01 54.63 3128.19
5A31/01 50.92 3131.90

Well MSE-2
Measuring Point Elevation (ft AMSL) - 3181.66
Date Depth to Water Static Water Level

from PVC MP (ft) Elevation (ft AMSL)
9/8re4 52.64 3129.02

11/22/94 50.88 3130.78
8/30/95 48.74 3132.92
3/5/96 50.6 3131.06
6/13/96 42.67 3138.99
10/3/96 49.8 3131.86
6/4/97 40.92 3140 74

12/18/98 50.85 3130.81
5/14/99 50 3131.66
7/6/99 44,55 3137.11
3122m 53.34 3128.32
9/12/00 51.03 3130.63

1 2 /2 2 /0 0 52.38 3129.28
1/4/01 52.5 3129.16

1 / 1 0 /0 1 52,8 3128 8 6

1/18/01 S3 3128.66
2 /1 /0 1 53.46 3128.2
2/15/01 53.81 3127 85
3/3/01 54.2 3127.46
3/17/01 54.2 3127.46
4/1/01 53.97 3127.69
4/14/01 53.74 3127.92
5/31/01 50.04 3131.62

Measurin
Dale

Well MFG-1 
Static Water Levt 

3 Point Elevation (ft 
Depth to Water 
from PVC (It)

'1 Data
AMSL) = 3181.85 

Static Water Level 
Elevation (ft AMSL)

4/14/01 53.64 3128.22
5/31/2001 49.98 3131.88

Measurin
Date

Well MFG-: 
Static Water Lev* 

3 Point Elevation (ft 
Depth to Water 
from PVC (ft)

il Data
AMSL) = 3180.01 

Static Water Level 
Elevation (ft AMSL)

4/14/01 51.71 3128.30
5/31/2001 47.98 3132.03

Measurin
Date

Well MFG-4 
Static Water Lev« 

; Point Elevation (ft 
Depth to Water 
from PVC (ft)

1

8 Data
AMSL) = 3181.32 

Static Water Level 1 
Elevation (ft AMSL) |

4/14/01 52.96 3128.36 1
6 / 1 /2 0 0 1 49.20 3132.12 1

Measurin
Date

Well MFG-£ 
Static Water Levs 

3 Point Elevation (ft 
Depth to Water 
from PVC (ft)

1 Data
AMSL) = 3182.07 

Static Water Level 
Elevation (ft AMSL)

4/14/01 — —

6 /1 /2 0 0 1 50 06 3132.01
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SES-1

MFG-4
M F G -5 M FG -2

M SE-1

MSE-2 SES-5

SES-3 M FG -1SES-2 /

cd-
Calculated 
(tt AMSL)

Observed 
(ft AMSL)W ell#

3128.22MSE-1 3128.19

3128.193127.92MSE-2

3128.303128.35SES-1

3128.143128.01SES-2

3128.163128.15SES-3

3128.223126.23SES-5

3128.163128.19MFG-1

3128.243128.30MFG-2

3128.263128.36MFG-4

3127.73 3128.24,MFG-5

3127.92 3128.32
Obs. Head (feel)

Num.PofnIs : 10 
Mean Error ; 0.07042773 (feel) 

Mean Absolute : 0.119416 (feel) 
Slandaid Enor of the Estimale : 0.05958162 (feel) 

Root mean squared : 0.1921192 (feel) 
Normalized RMS : 30.49511 ( %}

N. Morrow
M.S. Thesis -U  of Montana, Missoula 
Burger King Site



APPENDIX E

WATER LINE RUPTURE DATA AND 

WATER LINE RUPTURE MODEL RESULTS
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Water Line Rupture Data

After contacting Mountain Water Company in May 2001, a copy of Service Order Number 35585 

(the “Service Order”), dated April 14,1990 was obtained via facsimile. The first Mountain Water 

Company service call pertaining to potential water line leaks at Burger King was made on April 

15,1990. At that time, the customer requested that Mountain Water Company locate a 

suspected water line break. The work was delayed at the time of the service call due to high wind 

conditions; locating the break(s) was not completed until April 19,1990.

According to a sketch provided with the Service Order, the water line was(is) located near the 

northwest corner of the Burger King building and ran approximately northwest until connecting to 

the main service line in the alley (see Figure 38). In the sketch, the main service line appeared to 

run parallel with the alley until it connected to the water main under Washburn Street. In addition, 

the sketch also showed that 1503 Livingston (the Farmer’s Insurance building) connected to the 

main service line in the alley. The sketch showed that the 1503 Livingston service connection ran 

north, perpendicular to the building.

The results of Mountain Water Company's investigation revealed several potential breaks in the 

line. One potential break was located near the northwest corner of the Burger King building; a 

second was located north of the Burger King drive-through entrance; and a third was located east 

of the connection between the service line for 1503 Livingston and the water line in the alley, also 

near the Burger King drive-through (Figure 38). According to the Service Order, Burger King was 

informed that replacement of their service line was necessary from the main water line under 

Washburn Street to the connection at the Burger King building. The date the water was shut off 

to the line and replacement of the service line is unknown.
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According to Mountain Water Company records, the water line servicing Burger King, at that time 

and currently, is two inches in diameter. Mountain Water Company personnel stated this line 

would supply a maximum of 170 gallons per minute (gpm). Therefore, during a complete water 

line rupture, approximately 170 gpm would be lost to the subsurface. The total volume of water 

lost to the subsurface at the Site during the rupture is unknown; however, the maximum total 

volume can be estimated using the above information. Approximately five days lapsed between 

the reporting of the service line problems until Mountain Water Company located the line breaks. 

The additional amount of time required to repair the water line is unknown. In addition, the line 

may have been leaking prior to the final line rupture.

Estimating the of volume lost in five days at a rate of 170 gpm would provide an estimate of the 

“worst-case senario" of the volume of water discharged Into the subsurface at the Site. Under 

this scenario, the volume of water lost over the 5-day period would have been approximately 1.2 

million gallons. Probably a more ideal scenario would be half that volume at approximately 

600,000 gallons. After the discovery of the ruptured water line, an additional amount of water 

would have been leaking into the subsurface until the water line was repaired. The date of the 

water line repair is unknown. Additionally, prior to the water line rupture, the water line had 

probably been leaking at an unknown rate and for unknown period of time and would have also 

been discharging water to the subsurface. The water line rupture event is believed to be one 

important control on contaminant migration at the Site.
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APPENDIX F

VADOSE ZONE MODEL RESULTS
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VADOSE ZONE MODEL INPUT PARAMETERS

PARAMETER VALUE

Ethylbenzene Soil Concentration
0.18 mg/kg at 50 feet bgs 

0.06 mg/kg at 55 feet bgs

Percent Moisture 6% at 50 feet bgs

Organic Carbon 0.1

Soil Matrix/Profile Sand Profile

Model Run Time 30 Years

Remaining Parameter Model Defaults
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GRAIN SIZE ANALYSIS RESULTS
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GRAIN SIZE ANALYSIS 

Sample Preparation

At the laboratory, all samples were transferred from the quart-size plastic bags into stainless steel 

trays for drying. Sample identification tags were placed immediately into each drying tray. The 

tray was then placed into the drying oven. Samples were dried at 200°F {93®C) for approximately 

seven hours, and allowed to cool in the drying oven overnight. The samples were removed from 

the oven on an as needed basis during the analysis procedure.

Selection of Sieves

The number and type of sieves used in the analysis, were chosen to facilitate the capture of the 

largest range of grain sizes present in the samples. Therefore, nine coarse mesh soil test sieves 

(3, 2, VA, 1, %, %, %, #4, and #8) were chosen for analysis of cobble to granule size gravel. In 

addition, a total of five finer mesh soil test sieves (#16, #30, #50, #100, #200) were chosen for the 

analysis of sand and silt and clay size fractions. Silt and clay grain sizes were captured in the 

bottom collection pan and were not analyzed further into their respective grain sizes. Table 3 

provides a grain size classification table for general reference to sieve and grain sizes including 

classification according to Wentworth Classification and the Unified Soil Classification System,

All sieves used in the analyses were 12-inch diameter ASTME-11 Soil Test Sieves, with the 

exception of the soil test sieves used for the 3-inch and 2-inch size fractions. These two sieves 

were six inches in diameter. Table 4 provides information about the specifications of the soil test 

sieves used in the analyses.

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Grain Size Analysis

Standard grain size analysis logs, provided by the Lolo National Forest Materials Testing 

Laboratory, were used for each sample analyzed. Prior to analysis, each sample was weighed 

and the weight recorded on the sample log. The purpose was to document the beginning and 

ending weights of the sample to evaluate the amount of material that may have been lost during 

the analysis procedure. After the beginning weight was recorded, each sample was transferred 

to the first stack of test sieves. A capture pan was placed on the bottom of the stack to retain 

material passing the finest sieve in the stack. Next, a cover pan was placed on the top of the 

stack to contain the sample. Samples were analyzed by using a Ro-Tap machine. The Ro-Tap 

operates by shaking the stack of sieves while tapping the top cover pan of the sieve stack to 

facilitate both horizontal and vertical movement of the stack.

Analyzing for a total of 15 possible grain sizes required two rounds of analyses per sample. The 

first set of sieves included the 3, 2, VA, 1, %, %, and % size test sieves. The first stack of test 

sieves was placed on the Ro-Tap. The Ro-Tap was then programmed to shake and tap the first 

set of sieves for a total of seven minutes. Once the seven minutes had passed, the Ro-Tap 

would stop. The stack of sieves was removed from the Ro-Tap and taken to the weighing scale.

A weiging pan was placed on the scale and the scale fared {reset to zero). The weight retained 

on each sieve was weighed by transferring all material retained on the top of the sieve to the 

weighing pan on the scale. The weight retained was recorded on the analysis log. The scale 

was fared prior to the addition of the material from each consecutive sieve size. After the weights 

were recorded for the first set of sieves, the material remaining in the capture pan at the bottom of 

the first sieve stack was then transferred to the second stack of test sieves.

The second stack of test sieves consisted of the #4, #8, #16, #30, #50, #100, and #200 size 

sieves. This second stack of sieves was placed on the Ro-Tap for a total of 12 minutes. The
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adjustment in analysis time was to try to provide additional time for the very fine sand and silt and 

clay size fractions to pass through the smaller sieve sizes. Once analysis on the Ro-Tap was 

completed, the weight retained on each sieve and the silt and clay size material retained in the 

capture pan was recorded on the analysis log, as described above. The results of the grain size 

analysis are discussed in Section 4.

The average gravel content in the Upper Unit was 55.2 percent and 59.6 percent in the Lower 

Unit. The average sand content In the Upper Unit was 41.3 percent and 38.5 in the Lower Unit.

In the Upper Unit, the average silt and clay content was 3.6 percent and 1.9 percent in the Lower 

Unit. The average d4o value (where 40 percent of the sample is coarser and 60 percent finer) for 

the Upper Unit was 10.9 millimeters and 12.0 millimeters for the Lower Unit. The average 

Effective Grain Size (dgo) value (where 10 percent is finer and 90 percent coarser) for the Upper 

Unit was 0.2 millimeters and 0.3 millimeters for the Lower Unit. The mean grain size (djo) for the 

Upper Unit was 5.6 millimeters and 9.1 millimeters for the Lower Unit. The average Uniformity 

Coefficient was 40.6 and 40.5 for the Upper and Lower Units, respectively.

Grain Size Analyses and Hydraulic Conductivity Estimates

No aquifer testing was performed during this remedial investigation. While grain size analyses 

were performed on samples from two boreholes, there is no accurate way to calculate hydraulic 

conductivity directly from grain size analyses and grain size distribution curves (Driscoll, 1995). 

One method commonly used to estimate hydraulic conductivity is the Hazen Method. It uses the 

effective grain size and uniformity coefficient to estimate hydraulic conductivity on sandy 

sediment and sediments with uniformity coefficients under five, meaning well sorted (poorly 

graded). This method was not used to estimate hydraulic conductivity on the sediments at the 

Site because most of the sediments were sandy gravel with uniformity coefficients well above 

five. A second method developed by Shepherd (Fetter, 1994), uses the mean (median) grain
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size (dso) to estimate hydraulic conductivity. Shepherd developed formulas to estimate the 

hydraulic conductivity on several categories of well-sorted, texturally mature sediments with high 

roundness and sphericity (Fetter, 1994). This method could also not be used because most of 

the subsurface material at the Site was shown to be poorly sorted (well graded) through the grain 

size analyses and logging effort.

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ASTME -11 SOIL TEST SIEVES

Sieve / Mesh Size Sieve Diameter 
(inches)

Ape
Millimeter

rture
Inches Frame Composition Mesh Composition

3 6 76.2 3 Brass Brass
2 6 50.8 2 Brass Brass

1 1/2 12 38.1 1.5 Stainless Steel Stainless Steel
1 12 25.4 1 Stainless Steel Stainless Steel

3/4 12 19.0 0.75 Stainless Steel Stainless Steel
1/2 12 12.5 0.5 Stainless Steel Stainless Steel
3/8 12 9.5 0.375 Stainless Steel Stainless Steel
#4 12 4.75 0.19 Stainless Steel Stainless Steel
#8 12 2.36 0.09 Stainless Steel Stainless Steel
#16 12 1.18 0.05 Stainless Steel Stainless Steel
#30 12 0.600 0.02 Stainless Steel Stainless Steel
#50 12 0.300 0.01 Stainless Steel Stainless Steel

#100 12 0.150 0.006 Stainless Steel Stainless Steel
#200 12 0.075 0.003 Stainless Steel Stainless Steel
-#200 12 -0.075 -0.003 Stainless Steel Stainless Steel
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GRAIN SIZE CLASSIFICATION TABLE

’Sieve / 
Mesh 
Size

Sieve Apei 
Millimeters 

(mm)

lure / Gra 
Microns 

(urn)

in Size 
Inches 

(in) General Wentworth
Classification

^Size Classi 
Wentworth 
Inches

Pications 
Size Range 

Milimeters
uses

Classification
uses

Size Ranae
3 76.2 76,200 3.0 Cobble 2.52 to 10,08 64 to 256

2 50.8 50,800 2.0 Pebble 0.16 to 2.52 4 to 64 Very Coarse 
Gravel

1.26 to 2.52 in 
(32 to 64 mm)

1 1/2 37.5 37,500 1.5 Pebble 0.16 to 2.52 4 to 64 Very Coarse 
Gravel

1.26 to 2.52 in 
(32 to 64 mm)

1 25.0 25,000 1.0 Pebble 0.16 to 2.52 4 to 64 Coarse
Gravel

0.63 to 1.26 in 
(16 to 32 mm)

3/4 19.0 19,000 0.75 I
CD

Pebble 0.16 to 2.52 4 to 64 Coarse
Gravel

0.63 to 1.26 in 
(16 to 32 mm)

1/2 12.7 12,700 0.50 Pebble 0.16 to 2.52 4 to 64 Medium
Gravel

0.31 to 0.63 in 
(8 to 16 mm)

N)
o  3/8 9.5 9,500 0.38 Pebble 0.16 to 2.52 4 to 64 Medium

Gravel
0.31 to 0.63 in 
(8 to 16 mm)

#4 4.75 4,750 0.19 Pebble 0.16 to 2.52 4 to 64 Fine Gravel 0.16 to 0.31 in 
(4 to 8 mm)

#8 2.36 2,360 0.09 Granule 0.08 to 0.16 2 to 4
#16 1.18 1,180 0.05 Very Coarse Sand 0.04 to 0.08 1 to 2
#30 0.6 600 0.02 TJ Coarse Sand 0.02 to 0.04 0.5 to 1
#50 0.3 300 0.01 C

CD Medium Sand 0.01 to 0.02 0.1 to 0.02
#100 0.15 150 0.006 w Fine Sand 0.005 to 0.01 0.125 to 0.25
#200 0.075 75 0.003 Very Fine Sand 0.002 to 0.005 0.063 to 0.125

-#200 -0.075 -75 -0.003 Silt & Clay Silt & Clay
Silt: 0.0002 to 
0.002; Clay: 
<0.0002

Silt: 0.004 to 
0.063 Clay: 
<0.004

3
3 "
CD

CD■O
O
Q.
C

a
O3
"O
O

CD
Q.

■O
CD

C /)
C /)

Screen / Mesh Size information obtained from screens used in grain size analysis.
 ̂Classifications and values obtained from Groundwater and Wells, Second Edition, 1986. Fletcher G. Driscoll. Published by Johnson Screens, St. Paul. 

Minnesota.



GRAIN SIZE ANALYSIS SUMMARY TABLE

Borehole & Depth Interval (feet bgs)
Percent
Gravel

Percent
Sand

Percent
Sllt&
Clay

ff+o
(mm) (inch.)

Effective 
Grain Size 
dm (mm)

Effective 
Grain Size 
deo (inch.)

Mean 
Grain Size 
dso (mm)

Mean 
Grain Size 
dso (inch.)

Uniformity
Coefficient

<C„)

MFG-B2
2,5-3 80.2 17.5 2.3 25 1 .0 0.25 0 .0 1 7.8 0.31 ICO
5-5 .5 70.7 26.2 3.1 8.4 0.33 0.3 0 .0 1 6.3 0.25 28
11 - 11.5 53.4 42.9 3.7 8.5 0.34 0.17 0 .0 1 4 0.16 50
17.5-18 28.3 6 6 .1 5.6 0.55 0 . 0 2 0 .1 1 0 . 0 0 0.44 0 . 0 2 5
28-29 2 .0 95.0 3.0 0.39 0 . 0 2 0.16 0 .0 1 0.35 0 .0 1 2.4
38-39 42.4 52.4 5.2 3 0 . 1 2 0.13 0 .0 1 0.95 0.04 23
51-52 69.3 266 4.1 16.4 065 0 . 2 0 .0 1 1 0 .1 0.40 82
75-76 34.9 60.8 4.3 1 .1 0.04 0.16 0 .0 1 0.54 0 . 0 2 6.9
77-77 5 25.2 72.4 2.5 0.9 004 0.19 0 .0 1 0.65 0.03 4.7
77.5 - 78 11.7 86.3 2 .0 1.4 0.06 0,27 0 .0 1 1 0.04 5.2
79-80 8 6 .1 1 2 .6 1 .2 2 2 087 1.5 0.06 18.4 0.73 15
89-90 2 1 , 8 75.9 2.3 0.52 0 . 0 2 0.18 0 .0 1 0,44 0 . 0 2 2.9
90-91 696 28.9 1.5 6.7 0.27 0.44 0 . 0 2 5 0 . 2 0 15
94-95 3.0 94.2 2 .8 0.43 0 . 0 2 0.14 0 .0 1 0.36 0 . 0 2 3.1
98.5-99 78.4 18.8 2 .8 17.8 0.71 0.27 0 .0 1 15 0.60 6 6

104-105 834 14.5 2 .1 28 1 .1 1 0.5 0 . 0 2 23 091 56
105 -105.5 4.9 93.3 1.7 0.82 0.03 0.24 0 .0 1 0.7 0 03 34
107 - 107.5 14.7 83.8 1.5 1 .6 0.06 0 32 0 .0 1 1.3 0.05 5
109-110 79.3 17.8 2.9 25 0.99 0.25 0 .0 1 19 0.75 1 0 0

111 -111.5 74.7 24.5 0.9 1 2 0.48 0.28 0 .0 1 8.5 0.34 43
Overall Average: 46.7 50.5 2 .8 9.0 0.36 0.3 0 .0 1 6 . 2 0.25 30.8

Avg Upper Unit (0 to -60 feet bgs): 49.5 46.7 3.9 8.9 0.35 0 . 2 0 .0 1 4.3 0.17 41.5
Avg Lower Unit (-60+ feet bgs): 45.2 52.6 2 .2 9.1 0.36 0.4 0 .0 1 7.2 0.29 25.1

MFG-B3
12-13 79.8 18.7 1.5 2 1 0.83 0.3 0 .0 1 3.3 0.13 70
18-19 80.1 17.8 2 .1 7.8 0.31 0 3 0 .0 1 4.5 0.18 26
32-32.5 50.3 42.9 6 . 8 4.3 0.17 0 .1 0 . 0 0 2.4 0 . 1 0 43
36-37 44.9 49.5 5.6 3.5 0.14 0.14 0 .0 1 1 .6 0  06 25
40.5-41.5 0 . 0 97.3 2.7 0.37 0 .0 1 0.16 0 .0 1 0.3 0 .0 1 2.3
41.5-42 40.2 54.6 5.3 0.24 0  0 1 0.14 0 .0 1 0 . 8 0.03 1.7
43-44 81.9 16.0 2 .1 28 1 .1 1 0.53 0 . 0 2 21 0.83 53
46-47 82.7 15.5 1 .8 23 0 91 0 .6 0 , 0 2 19 0.75 38
48-49 79.5 18.7 1 .8 27 1.07 0.4 0 . 0 2 8.4 0.33 6 8

55.5 - 56.5 69,1 27.9 3.0 13.4 0.53 0.19 0 .0 1 8 0.32 71
63 • 64 73.9 24.4 1.7 15 0.60 0.27 0 .0 1 11 0.44 56

Overall Average: 62.0 34.8 3.1 13.1 0.52 0.3 0 .0 1 7.3 0.29 41.3
Avg Upper Unit (0 to -60 feet bgs): 60.9 35.9 3 3 12.9 0.51 0.3 0 .0 1 6.9 0.28 39 8

Avg Lower Unit (-60+ feet bgs): 73.9 24.4 17 15 0-60 0.27 0 .0 1 11 0.44 56
Averages for MFG-B2 and MFG-B3

Overall Average: 54.4 42.7 3.0 1 1 .0 0.44 0.3 0 .0 1 6.7 0.27 36.1
Avg Upper Unit (0 to -60 feet bgs): 55.2 41.3 3.6 10.9 0.43 0 . 2  1 0 .0 1 5.6 0 .2 2 40.6

Avg Lower Unit (-60+ feet bos): 59.6 38 5 1.9 1 2 .0 048 0.3 0 .0 1 9.1 0.36 40.5
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
2.5-3
5/25/01 
Natalie Morrow

sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture /  Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

slfications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (gj

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1
2O

Cobble 0 0 0 . 0 0 . 0 1 0 0 . 0

2 50.8 50,800 2 . 0 Pebble 0 0 0 . 0 0 . 0 1 0 0 . 0

1 1 /2 375 37,500 1.5 Pebble 342 342 17.3 17.3 82.7
1 25.0 25.000 1 .0 Pebble 441 783 22.4 39.7 60.3

3/4 19.0 19,000 0.75 Pebble 138 921 7,0 46.7 53.3
1 /2 12.7 12,700 0.50 Pebble 253 1174 1 2 . 8 59.5 405
3/8 95 9,500 0.38 Pebble 142 1316 7.2 66.7 33.3
#4 4.75 4.750 0.19 Pebble 195 1511 9.9 76.6 23.4
# 8 2.36 2,360 0.09 Granule 72 1583 3.6 60.2 19.8

#16 1.18 1,180 0.05

?
e/3

Very Coarse 
Sand 36 1619 1 .8 82.1 17 9

#30 0 . 6 600 0 . 0 2 Coarse Sand 29 1648 1.5 83.5 16.5
#50 0.3 300 0 .0 1 Medium Sand 94 1742 4.8 88.3 11.7

# 1 0 0 0.15 150 0.006 Fine Sand 125 1867 6.3 94.6 5.4

# 2 0 0 0.075 75 0.003
Very Fine 

Sand 81 1928 3.1 97.7 2.3
- # 2 0 0 0 075 75 0.003 Silt & Clay Silt & Clay 45 1973 2.3 1 0 0 . 0 0 - 0

Total Weight (g) 1973 d4o(mm)= 25 d6o(mm)= 7.8 
d9o(mm)= 0.25 K=Cd5o''= 450dso’ 

C„=d4o/d9o= 100 K(ft/d)= 13,340
% Gravel 80.2

% Sand 17.5
% Sill & Clay 2.3

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (2.5-3 feet bgs) 
Grain Size Analysis

100

80

1(V
I
S

I
.1
I
I
u

0.0 10.0 100.00.1

Grain Size (millimeters)
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Boring:

Depth Interval (feet bgs): 
Date Analyzed:

MFG-B2 
5-5.5
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifi cations 
Wentworth 

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

.1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 00 100.0

1 1/2 37.5 37,500^ 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 95 95 5.1 5.1 94.9

3/4 19.0 19,000 0.75 Pebble 114 209 6 1 11.2 88.8
1/2 12.7 12,700 0.50 Pebble 281 490 15.0 26.2 73.8
3/8 9.5 9,500 0.38 Pebble 181 671 9.7 35.9 64.1
#4 4.75 4,750 0.19 Pebble 445 1116 23.8 59.7 403
#8 2.36 2.360 0.09 Granule 204 1320 10.9 70 7 29.3

#16 1.18 1,180 0.05
Very Coarse 

Sand 87 1407 4.7 75.3 24.7
#30 0.6 600 0.02 Coarse Sand 97 1504 5.2 80.5 19.5
#50 0.3 300 0.01 Medium Sand 182 1686 9.7 90.3 9.7

#100 0.16 150 0,006 Fine Sand 64 1770 4.5 94.8 5.2

#200 0.075 75 0.003
Very Fine 

Sand 40 1810 2 1 96.9 3.1
-#200 0.075 75 0 003 Silt & Clay Silt & Clay 58 1868 3.1 100.0 0.0

Total Weight (g) 1868 d4o(mm)= 8.4 dso(mm)= 6 3 
d9o(mm)= 0.30 K—Cd5o =450dgo^^= 

C„=d4o/deo= 28 K (ft/d)= 9,378
% Gravel 70.7

% Sand 26.2
V. Silt & Clay 3.1

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (5-5.5 feet bgs) 
Grain Size Analysis

100

%
60

IS.
I
I3o

40

0.0 10.0 100.01.00.1

Grain Size (millimeters)
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Boring; MFG-B2 
Depth Interval (feet bgs): 11-11.5 

Date Analyzed: S/2S/01
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Apt 
Millimeters 

(mm)

trlure / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

slfications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0.0 1000
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100 0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 189 189 10.6 10.6 89.4

3/4 19.0 19,000 0.75 Pebble 122 311 6.8 17.4 826
1/2 12.7 12,700 0.50 Pebble 273 584 15.3 32.7 67.3
3/8 9.5 9,500 0.38 Pebble 98 682 5.5 38.1 61.9
#4 4,75 4,750 0.19 Pebble 196 878 11.0 49.1 50.9
#8 2.36 2,360 0.09 Granule 76 954 4.3 53.4 46.6

#16 1.18 1,180 0.05

?
«

Very Coarse 
Sand 33 987 18 55.2 44.8

#30 0.6 600 0.02 Coarse Sand 28 1015 1,6 56.8 43.2
#50 0.3 300 0.01 Medium Sand 406 1421 22.7 79.5 20.5

#100 0.15 150 0.006 Fine Sand 224 1645 12.5 92.0 8.0

#200 0.075 75 0.003
Very Fine 

Sand 76 1721 4.3 96.3 3.7
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 67 1788 3,7 100.0 0.0

Total Weight (g) 1788 d4o(mm)= 8.5 d5o(mm)= 4.0 
dgo (mm)- 0.17 K̂ Cdso"̂  — 450d5o' 

C„=d40/d90= 50 K (ft/d)= 4,432
% Gravel 53.4

% Sand 42.9
% Silt & Clay 3.7

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter. 
1994)

MFG-B2 {11-11.5 feet bgs) 
Grain Size Analysis

100

90

00

C
g
S.
I 40

1
Ü

0.0 0.1 10.0 100.01.0

Grain Size (millimeters)
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Boring:

Depth Interval (feet bgs): 
Date Analyzed:

MFG-B2 
17.5-18
5/25/01 
Natalie Morrow

sieve /
Mesh
Size

Sieve Ape 
MKiimeters 

(mm)

i rture / Gr 
Microns 

(urn)

Bin Size 

Inches

Size Clas 
General 

Classification

slfications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0 0 0.0 100.0
2 50.8 50,600 2.0 Pebble 0 0 0.0 0.0 100 0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100,0
1 25.0 25,000 1.0 Pebble 28 28 2.0 2.0 98.0

3/4 19.0 19,000 0.75 Pebble 50 78 3.5 5.5 94.5
1/2 12.7 12,700 0,50 Pebble 107 185 7,5 13.0 87.0
3/8 9.5 9,500 0.38 Pebble 41 226 2 9 158 84.2
#4 4.75 4,750 0.19 Pebble 111 337 7.8 23.6 76.4
#8 2.36 2,360 0.09 Granule 67 404 4.7 283 71.7

#16 1.16 1,180 0.05

1

Very Coarse 
Sand 49 453 3.4 31.8 68.2

#30 0 6 600 0.02 Coarse Sand 67 520 4 7 36,5 63.5
#50 0.3 300 0.01 Medium Sand 449 969 31.5 68.0 32.0
#100 0.15 150 0.006 Fine Sand 268 1237 18.8 86.7 13.3

#200 0075 75 0.003
Very Fine 

Sand 109 1346 7.6 94.4 5.6
-#200 0,075 75 0.003 Silt & Clay Silt & Clay 80 1426 5.6 100.0 0.0

Total Weight (g) 1426 d(o(mm)= 0.55 d;o(mm)= 0.4 
d[io(mm)= 0.11 K=Cd5o'' = 450d5o'“ = 

Cu=d4o/dBo= 5 K(ft/d)= 116
% Gravel 28.3

% Sand 66.1
% SIM & Clay 5.6

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (17.5-18 feet bgs) 
Grain Size Analysis

100

BO

Is

I
Ï

%
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Boring:
Depth Interval {feet bgs>: 

Date Analyzed;

MFG-B2 
28-29
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76.200 3 0

;
o

Cobble 0 0 0.0 0.0 100.0
2 50.8 50.800 2.0 Pebble 0 0 0.0 0.0 100,0

1 1/2 37.5 37.600 1,5 Pebble 0 0 0.0 0.0 100,0
1 25.0 25,000 1.0 Pebble 0 0 0.0 0.0 100 0

3/4 19.0 19,000 0.75 Pebble 0 0 0.0 0.0 100.0
1/2 12.7 12.700 0.50 Pebble 0 0 0.0 0.0 100,0
3/8 9.5 9.500 0.38 Pebble 6 6 0.4 0.4 99,6
«4 4.75 4,750 0.19 Pebble 16 22 1.1 1.5 98.5
#8 2.36 2,360 0.09 Granule 7 29 0 5 2.0 98.0

#16 1.18 1,180 0.05

"2
to

Very Coarse 
Sand 10 39 0,7 2,7 97.3

#30 0 6 600 0.02 Coarse Sand 37 76 2.5 5.2 94.8
#50 0,3 300 001 Medium Sand 828 904 569 62.1 37.9

#100 0.15 150 0.006 Fine Sand 429 1333 29.5 91.6 8.4

#200 0.075 75 0.003
Very Fine 

Sand 78 1411 5.4 97 0 3.0
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 44 1455 3.0 100 0 0.0

Total Weight (g) 1455 d4o(mm)= 0.39 d^tmm ): 0 4 
d9o(mm)= 0,16 K=Cda,'' = 450d^^ 

Cu=d4c/dso= 2.4 K (ft/d)= 80
% Gravel 2.0

% Sand 95.0
% Silt & Clay 3 0

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits {Fetter. 
1994)

MFG-B2 (28-29 feet bgs) 
Grain Size Analysis
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Grain Size (millimeters)
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
38-39
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

;
CD

Cobble 0 0 0.0 0,0 100.0
2 50.8 50.800 2.0 Pebble 0 0 0.0 0,0 100,0

1 1/2 37.5 37,500 1,5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 85 85 4.8 4.8 95.2

3/4 19.0 19,000 0.75 Pebble 160 245 9.0 13.8 86.2
1/2 12.7 12,700 0.50 Pebble 108 353 6.1 19.9 80.1
3/8 9.5 9,500 0.38 Pebble 95 448 5.3 25.2 74.8
#4 4.75 4.750 0.19 Pebble 185 633 10.4 35,6 64.4
#8 2.36 2,360 0.09 Granule 120 753 6.8 42.4 57.6

#16 1.18 1,180 0.05

E
w

Very Coarse 
Sand 105 858 5.9 48.3 51.7

#30 0.6 600 0.02 Coarse Sand 99 957 5 6 53.9 46.1
#50 0.3 300 0.01 Medium Sand 369 1326 20.8 74.6 25.4

#100 0.15 150 0,006 Fine Sand 247 1573 13.9 88.5 11.5

#200 0.075 75 0 003
Very Fine 

Sand 111 1684 6.2 94.8 5.2
-#200 0075 75 0.003 Silt & Clay Silt & Clay 93 1777 5.2 100.0 0.0

Total Weight (g) 1777 dw(mm)= 3 dso(mm)= i,o  

Oso (mm)- 0.13 K—Cdso — 450dgĝ  
C^=d,(/d;r 23 K(ft/d)= 413

% Gravel 42.4
% Sand 52.4

•/. Silt & Clay 5.2
Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (38-39 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
51-52
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

‘rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1
1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,600 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 296 296 19.0 19.0 81.0

3/4 19.0 19,000 075 Pebble 249 545 15.9 34.9 65.1
1/2 12.7 12,700 0.50 Pebble 170 715 10.9 45.8 54.2
3/8 9.5 9,500 0.38 Pebble 86 801 5.5 51.3 48.7
#4 4.75 4,750 0.19 Pebble 167 968 10.7 62.0 38.0
#8 2.36 2,360 0.09 Granule 115 1083 7.4 69.3 30 7

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 87 1170 56 74.9 25.1

#30 0.6 600 0.02 Coarse Sand 82 1252 5.2 80.2 19 8
#50 0.3 300 0.01 Medium Sand 102 1354 6 5 86.7 13.3
#100 0.15 150 0.006 Fine Sand 92 1446 5.9 92.6 7.4

#200 0.075 75 0.003
Very Fine 

Sand 52 1498 3.3 95.9 4.1
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 64 1562 4.1 100.0 0.0

Total Weight (g> 1562 d4o(mm)= 164 d5o(mm)= lo .l 
dBo(mm)= 0.2 K=CdM = 450d5o’ 

Cu=d„o/d,o= 82 K(ft/d)= 20,434
% Gravel 69.3

% Sand 26.6
% Silt & Clay 4.1

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (51-52 feet bgs) 
Grain Size Analysis
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Boring:

Depth interval (feet bgs): 
Date Analyzed;

MFG-B2
75-76
5/25/01
Natalie Morrow

Sieve/
Mesh
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76,2 76,200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50.600 20 Pebble 0 o' 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 37 37 2.9 2.9 97.1

3/4 190 19,000 0.75 Pebble 30 67 2.4 5.3 94.7
1/2 12.7 12,700 0.50 Pebble 67 134 5.3 10.6 89.4
3/8 9.5 9.500 0.38 Pebble 79 213 6.2 16.8 83.2
#4 4.75 4,750 0.19 Pebble 144 357 11.4 28,2 71.8
#8 2.36 2,360 0.09 Granule 85 442 6.7 34,9 65.1

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 56 498 4.4 39 3 60.7

#30 0.6 600 0.02 Coarse Sand 84 582 66 45.9 54.1
#50 0.3 300 0.01 Medium Sand 343 925 27.1 72.9 27.1
#100 0.15 150 0 006 Fine Sand 224 1149 17.7 90.6 9.4

#200 0.075 75 0.003
Very Fine 

Sand 64 1213 5.0 95.7 4.3
-#200 0.075 75 0003 Silt & Clay Silt & Clay 56 1268 4.3 100.0 0.0

Total Weight (g) 1268 d4o(mm)= 1.1 d5o(mm)= 0.54 
dBo(mm)= 0.16 K=Cd5(,-'= 450dso’ “ = 

Cu=d,(/dgo- 6.9 K (ft/d)= 163
% Gravel 34.9

% Sand 60.8
% Silt & Clay 4.3

Hydraulic conductivity (K) equation obtained from Shepard’s relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (75-76 feet bgs) 
Grain Size Analysis
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Boring;

Depth interval (feet bgs): 
Date Analyzed:

MFG-B2 
77.5-78
5/25/01 
Natalie Morrow

Sieve /
Mesh
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76.200 3.0

2
5

Cobble 0 0 00 00 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 00 100.0
1 25.0 25,000 10 Pebble 0 0 0.0 0.0 100.0

3/4 19.0 19,000 0.75 Pebble 0 0 0.0 0.0 100.0
1/2 12.7 12,700 0.50 Pebble 0 0 0.0 0.0 100.0
3/8 9.5 9,500 0.38 Pebble 5 5 04 0.4 99.6
#4 4.75 4,750 0.19 Pebble 14 19 1.1 1.5 98.5
#8 2.36 2,360 0.09 Granule 128 147 102 11.7 88.3

#16 1.18 1,180 0.05

E

Very Coarse 
Sand 424 571 33.9 45.6 54.4

#30 0.6 600 0.02 Coarse Sand 230 801 18.4 64.0 36,0
#50 0.3 300 0.01 Medium Sand 307 1108 24.5 88.5 11.5
#100 0.15 150 0.006 Fine Sand 92 1200 7.3 95.8 4.2

#200 0.075 75 0.003
Very Fine 

Sand 27 1227 2.2 98.0 2.0
-#200 0.075 75 0.003 Silt & Clay Silts Clay 25 1252 2.0 100.0 0.0

Total Weight (g) 1252 d4o(mm)= 1.4 d5o(mm)= i 
dgo (mm)= 0.27 K=Cdso'̂  — 450dâô  

Cu=d4o/dso= 5.2 K (ft/d)= 450
% Gravel 11.7

% Sand 86.3
% Silt & Clay 2.0

Hydraulic conductivity (K) equation obtained from Sfiepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (77.5-78 feet bgs) 
Grain Size Analysis

100

80

1
I
8

2
401

I
1
U

0.0 0.1 1.0 10.0 100,0

Grain Size (millimeters)

2 2 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
77-77.5
5/25/01 
Natalie Morrow

sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1
ê

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 32 32 2.5 2.5 97.5

3/4 19.0 19,000 0.75 Pebble 13 45 1.0 3.5 96,5
1/2 12.7 12,700 0.50 Pebble 89 134 6.9 10.4 89.6
3/8 9.5 9,500 0.38 Pebble 62 196 4.8 15.2 848
#4 4.75 4,750 0.19 Pebble 81 277 6.3 21.4 78.6
#8 2.36 2,360 0.09 Granule 48 325 3.7 25.2 74.6

#16 1.18 1,180 0.05

E
w

Very Coarse 
Sand 88 413 68 32.0 68 0

#30 0.6 600 0.02 Coarse Sand 263 676 204 52.3 47.7
#50 0.3 300 0.01 Medium Sand 368 1044 28.5 80.8 19 2

#100 0.16 150 0.006 Fine Sand 173 1217 13.4 94.2 5.8

#200 0.075 75 0.003
Very Fine 

Sand 43 1260 3.3 97.5 2.5
-#200 0.075 75 0,003 Silt & Clay Silt & Clay 32 1292 2.5 100,0 0.0

Total Weight (g) 1292 dw(mm)= 0.9 d;o(mm)= o.6S 
dgofmm)— 0.19 K—CdsQ ™450d5o 

C„=dao/d=io= 4.7 K (ft/d)= 221
% Gravel 25.2

% Sand 72.4
% Silt & Clay 2.5

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 {77-77.5 feet bgs) 
Grain Size Analysis
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Grain Size (millimeters)
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Boring: MFG-B2 
Depth Interval (feet bgs): 79-80 

Date Analyzed: 5/25/01

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

! rture / Gr 
Microns 

(urn)

ain Size 

inches

Size etas 
General 

Classification

.sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3.0

1
CP

Cobble 0 0 0.0 0 0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.6 37,500 1.5 Pebble 221 221 14.9 14.9 85.1
1 25.0 25,000 1.0 Pebble 246 467 16.5 31.4 68,6

3/4 19.0 19,000 0.75 Pebble 236 703 15.9 47.3 52 7
1/2 12.7 12.700 0.50 Pebble 230 933 15.5 62.7 37.3
3/8 9.5 9,500 0.38 Pebble 96 1029 6.5 69.2 30.8
#4 4.75 4,750 0.19 Pebble 153 1182 10.3 79.5 20.5
#8 2.36 2,360 0.09 Granule 99 1281 6.7 86.1 13.9

#16 1.18 1,180 0.05

E
c/3

Very Coarse 
Sand 77 1358 5.2 91.3 8 7

#30 0.6 600 0.02 Coarse Sand 49 1407 3.3 94.6 5-4
#50 0.3 300 0.01 Medium Sand 30 1437 2.0 96.6 3.4

#100 0.15 150 0.006 Fine Sand 19 1456 1.3 97.9 2.1

#200 0.075 75 0.003
Very Fine 

Sand 13 1469 0.9 98.8 1.2
-#200 0.075 75 0.003 Silt &  Clay Silt & Clay 18 1487 1.2 100.0 0.0

Total Weight (g) 1487 d4o(mm)= 22 d5o(mm)= 18.4 
dgo ( m m )= 1,5 K=Cd5o'' = 4 SOdso’ 

Cu=d4o/d9o= 14.7 K(ft/d)= 54,975
% Gravel 86.1

% Sand 12.6
% Slit & Clay 1.2

Hydraulic conductivity (K) equation obtained from Stiepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MF6-B2 (79-80 feet bgs) 
Grain Size Analysis

100 - r
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I
u

0.0 0,1 1.0 10.0 100.0

Grain Size (millimeters)
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
89.90 
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 ) 0.0 0.0 100.0
2 50.8 50,800 20 Pebble 0 0 00 0.0 1000

1 1/2 37.5 37,500 1.5 Pebble 120 120 9.0 9.0 91.0
1 25.0 26,000 1.0 Pebble 94 214 7.1 16.1 83.9

3/4 19.0 19,000 0.75 Pebble 30 244 2.3 18.3 81.7
1/2 12.7 12,700 0.50 Pebble 20 264 1.5 19.8 80.2
3/8 9.5 9,500 0.38 Pebble 6 270 0.5 20.3 79.7
#4 4.75 4,750 0.19 Pebble 11 281 0.8 21.1 78.9
#8 2.36 2,360 0.09 Granule 10 291 0.8 21.8 78.2

#16 1.18 1,180 0.05

E
CO

Very Coarse 
Sand 15 306 1.1 23.0 77.0

#30 0.6 600 0.02 Coarse Sand 83 389 6.2 29.2 70.8
#50 0.3 300 0.01 Medium Sand 614 1003 46.1 75.3 24.7
#100 0.15 150 0.006 Fine Sand 245 1248 18.4 93.7 6 3

#200 0.075 75 0.003
Very Fine 

Sand 54 1302 4.1 97.7 2.3
4/200 0.075 75 0.003 Silt & Clay Silt & Clay 30 1332 2.3 100.0 0.0

Total Weight (g) 1332 d4o(mm)= 0.52 dso(mm)= 0.44 
d9o(mm)= 0.18 K=Cdso''= 4SOd6o’ 

Cu=d4o/d9o= 2.9 K(ft/d)= 116
% Gravel 21.8

%  Sand 75.9
%Sm&Clay 2.3

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (89.00 feet bgs) 
Grain Size Analysis
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Grain Size (millimeters)
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Boring:
Depth interval (feet bgs): 

Date Analyzed:

MFG-B2 
90-91
5/25/01 
Natalie Morrow

Sieve /
tulesh
Size

Sieve Ape 
fylillimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classihcation

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1
1

Cobble 0 0 0.0 0,0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 70 70 3.5 3,5 96,5
1 25.0 25,000 1.0 Pebble "56 126 2.8 6,2 93,8

3/4 19.0 19,000 0.75 Pebble 66 192 3.3 9,5 90S
1/2 12.7 12,700 0-50 Pebble 203 395 10.0 19,5 80,5
3/6 95 9,500 0.38 Pebble 152 547 7.5 27,1 72.9
#4 4.75 4,750 0.19 Pebble 504 1051 24,9 52,0 48.0
m 2,36 2,360 0.09 Granule 357 1408 17.7 69.6 30,4

#16 1.18 1,180 0.05

?

Very Coarse 
Sand 223 1631 11.0 80.7 19,3

#30 0.6 600 002 Coarse Sand 131 1762 6 5 87.1 12,9
#50 0.3 300 0.01 Medium Sand 127 1889 6.3 93.4 6.6

#100 0.15 150 0.006 Fine Sand 75 1964 3.7 97.1 2.9

#200 0.075 75 0.003
Very Fine 

Sand 28 1992 1.4 98.5 1,5
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 30 2022 1.5 100.0 0,0

Total Weight (g) 2022 d4o(mm)= 6.7 d5o(mm)= 5 
dso (mm)= 0.44 K=Cd^ = 450dso' 

C„=d4o/d8c= 15 K(ft/d)= 6,405
% Gravel 69.6

% Sand 28.9
% Sill & Clay 1.5

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (90-91 feet bgs)
Grain Size Analysis

I 
I
i
g

100

90

80

70

60

50

40

30

20

10

0
0.0 0.1 10.0 100.01.0

Grain Size (millimeters)

224

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
94-95
5/25/01 
Natalie Morrow

Sieve/
Mesh
Size

Sieve /\p« 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Cla: 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0,0 100,0
2 50.8 50.800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37.500 1.5 Pebble 0 0 0 0 0.0 100.0
1 25.0 25,000 1.0 Pebble 0 0 0.0 0.0 100 0

3/4 19.0 19,000 0.76 Pebble 0 0 0.0 0.0 100.0
1/2 12.7 12,700 0.50 Pebble 15 15 1.1 1.1 98.9
3/8 9.5 9,500 0.38 Pebble 6 21 0.4 1.5 98 5
#4 4.75 4,750 0.19 Pebble 13 34 1.0 2.5 97.5
#8 2.36 2,360 0.09 Granule 7 41 0.5 3.0 97.0

#16 1.18 1,180 0.05
Very Coarse 

Sand 8 49 0,6 3.6 96.4
#30 0.6 600 0.02 Coarse Sand 59 108 4.3 7.9 92.1
#50 0.3 300 0.01 Medium Sand 879 987 64.5 72.5 27.5

#100 0.15 ISO 0.006 Fine Sand 274 1261 20.1 92.6 7,4

#200 0.075 75 0.003
Very Fine 

Sand 63 1324 4.6 97.2 2.8
-#200 0.075 75 0.003 Silt & Clay Slit & Clav 38 1362 2 8 100.0 0.0

Total Weight (g) 1362 d<o(mm)= 0.43 dso(mm)= 038  
dso(nim)= 0.14 K=Cdso''= 450dso' 

Cu=d4o/dsK,= 3.1 K(ft/d)= 91
% Gravel 3.0

V* Sand 94.2
% Silt & Clav 2.8

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter. 
1994)

MFG-B2 (94-95 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed;

MFG-B2 
98.5-99
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

'rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Curnmulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

.1

Gobble 0 0 0.0 0.0 100.0
2 508 50,600 2.0 Pebble 0 0 0.0 00 100.0

1 1/2 37.5 37,500 1.5 Pebble 205 205 13.8 13.8 86.2
1 25.0 25,000 1.0 Pebble 171 376 11.5 25.3 74.7

3/4 19.0 19,000 0.75 Pebble 140 516 9.4 34.7 65 3
1/2 12.7 12,700 0.50 Pebble 301 817 20.2 54.9 45.1
3/8 95 9,500 0.38 Pebble 98 915 6.6 61.5 38 5
#4 4.75 4,750 0.19 Pebble 166 1081 11.2 72.6 27.4
#8 2.36 2,360 0,09 Granule 86 1167 5.8 78.4 21.6

#16 1.18 1,160 0.05

E
w

Very Coarse 
Sand 53 1220 3.6 82-0 180

#30 0.6 600 0.02 Coarse Sand 40 1260 2.7 84.7 15.3
#50 0.3 30Ô 0.01 Medium Sand 63 1323 4.2 88 9 11.1

#100 0.15 150 0.006 Fine Sand 83 1406 5 6 94 5 5.5

#200 0.075 75 0003
Very Fine 

Sand 41 1447 2.8 97.2 28
-#200 0.075 75 0 003 Sill & Clav Sill & Clav 41 1488 2.8 100.0 0.0

Total Weight (g) 1488 d«o(mm)= 17.8 dso (mm)= 15.00 
dgo(mm)= 0.27 K-Cdso"̂  -  450dsQ' 

Cu=d4o/d9o= 66 K (ft/d)= 39,243
% Gravel 78.4

Vi  Sand 18.8
% Silt & Clav 2.8

Hydraulic conductivity (K) equation obtained from Shepard’s relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (98.5-99 feet tags) 
Grain Size Analysis
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Grain Size (millimeters)
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Boiing; MFG-B2 
Depth interval (feet bgs); 104-105 

Date Analyzed: 5/25/01 
Analyzed By: Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

1 rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

.sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3.0 Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 139 139 8.4 8.4 91 6

1 1/2 37.5 37,500 1.5 Pebble 240 379 14.6 23.0 77.0
1 25.0 25,000 1.0 Pebble 385 764 23.4 46.4 53.6

3/4 19.0 19,000 0.75 S Pebble 139 903 8.4 54.9 45.1
1/2 12.7 12,700 0.50 Ü Pebble 184 1087 11.2 66.0 34 0
3/8 9.5 9,500 0.38 Pebble 89 1176 5.4 71.4 28.6
#4 4.75 4,750 0.19 Pebble 125 1301 7.6 79.0 21.0
#8 2.36 2,360 0.09 Granule 71 1372 4.3 83.4 16.6

#16 1.18 1,180 0.05
Very Coarse 

Sand 48 1420 2 9 86.3 13.7
#30 06 600 0 02 •O Coarse Sand 46 1466 2.8 89.1 10.9
#50 0.3 300 0.01 1 Medium Sand 60 1526 3,6 92.7 7 3

#100 0.15 ISO 0.006 Fine Sand 56 1582 3.4 96,1 3.9

#200 0,075 75 0.003
Very Fine 

Sand 29 1611 1.6 97 9 2.1
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 35 1646 2.1 100.0 00

Total Weight (g) 1646 d«o(mm)= 28 dso (mm)= 23
% Gravel 83.4 deo(lTim)= 0.50 K=Cdso'' = 450d5o’ “ =

% Sand 14.5 Cu=d4o/deo“ 56 K (ft/d)= 79,444
% Silt & Clay 2.1

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (104-105 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
105-105.5
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

“rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.6 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 250 25,000 1.0 Pebble 44 44 3.3 3.3 96.7

3/4 19.0 19,000 0.75 Pebble 0 44 0.0 3.3 96.7
1/2 12.7 12,700 0.50 Pebble 9 53 0.7 4.0 96.0
3/8 9.5 9,500 0.38 Pebble 2 55 0.2 4.2 95.8
#4 4.75 4,750 0.19 Pebble 6 61 0.5 4.6 954
#6 2.36 2,360 0.09 Granule 4 65 0.3 4.9 95.1

#16 1.18 1,180 0.05

?
w

Very Coarse 
Sand 192 257 14.5 19.5 80.5

#30 0.6 600 0.02 Coarse Sand 524 781 39.7 59.2 40 8
#50 0.3 300 0.01 Medium Sand 358 1139 27,1 86.3 13.7

#100 0.15 150 0.006 Fine Sand 122 1261 9.2 95.5 4.5

#200 0.075 75 0.003
Very Fine 

Sand 36 1297 2.7 98.3 1.7
-#200 0.075 75 0.003 Silt & Clav Silt & Clav 23 1320 1.7 100.0 0.0

Total Weight (g) 1320 d4o(mm)= 0.62 dso(mm)= 0.7 
doo(mm)- 0.24 K̂ Cdso"̂  = 450dgo' 

Cg=d4ofdBo= 3.4 K(ft/d)= 250
% Gravel 4.9

% Sand 93.3
%  Slit & Clay 1.7

1994)
f hydraulic conductivity to grain size for channel deposits (Fetter,

MFG-B2 (105-105.5 feet bgs) 
Grain Size Analysis
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Grain Size (millimeters)
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
107-107.5
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3.0

.1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50.800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,600 1.5 Pebble 0 0 0.0 00 100.0
1 25.0 25,000 1,0 Pebble 0 0 0.0 0,0 100.0

3/4 19.0 19,000 075 Pebble 0 0 0.0 0.0 100 0
1/2 12.7 12,700 0.50 Pebble 0 0 0.0 0.0 100.0
3/8 9.5 9,500 0.38 Pebble 0 0 0.0 0.0 100.0
#4 4.75 4,750 0.19 Pebble 6 6 0.4 0.4 99.6
#8 2.36 2,360 0.09 Granule 204 210 14.3 14.7 65.3

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 553 763 38.7 53.4 46.6

#30 0 6 600 0.02 Coarse Sand 329 1092 23.0 76.4 23.6
#50 0 3 300 0.01 Medium Sand 202 1294 14.1 90.6 9.4

#100 0.15 150 0.006 Fine Sand 85 1379 5.9 96.5 3.5

#200 0.075 75 0.003
Very Fine 

Sand 28 1407 2.0 98.5 1.5
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 22 1429 1.5 100.0 0.0

Total t/Veight (g) 1429 d,o(mm}= 1.6 d5o(mm)= 1,3 
dgo(mm)= 0.32 K̂ Cdso"̂  = 450ds2̂  

C„=d40/d90= 5 K (ft/d)= 694
% Gravel 14.7

% Sand 83.8
% Silt & Clay 1.5

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (107-107.5 feet bgs) 
Grain Size Analysts
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Boring:
Depth interval {feet bgs): 

Date Analyzed:

MFG‘B2 
109-110
5/25/01 
Natalie Morrow

Sieve/
Mesh
Size

Sieve Ap« 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76.200 3.0

1

Cobble 0 0 0 .0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 355 355 2 0 .0 20.0 80.0
1 25.0 25,000 1.0 Pebble 341 696 19.2 39.1 60.9

3/4 19.0 19.000 0.75 Pebble 224 920 12.6 51.7 48.3
1/2 12.7 12.700 0.50 Pebble 123 1043 69 58.7 41.3
3/e 9.5 9.500 0.38 Pebble 129 1172 7.3 65.9 34.1
M 4.75 4,750 0.19 Pebble 160 1322 6,4 74.4 25.6
#8 2.36 2.360 0.09 Granule 88 1410 4.9 79.3 20.7

#16 1.18 1,180 0.05

?
to

Very Coarse 
Sand 60 1470 3.4 82.7 17.3

#30 0.6 600 0.02 Coarse Sand 42 1512 2.4 85.0 15.0
#50 0.3 300 0.01 Medium Sand 63 1575 3.5 68.6 11.4
#100 0.15 ISO 0.006 Fine Sand 96 1671 5.4 94.0 6.0

#200 0.075 75 0.003
Very Fine 

Sand 55 1726 3.1 97,1 2.9
-#200 0.075 75 0.003 Silt &  Clay Silt & Clav 52 1778 2 9 100 0 0.0

Total Weight (g) 1778 dw(mm)= 25 dK,(mm)= 1 9  

d(K)(mm)= 0.25 K=Cds«'' = 4500;,'' 
Cu=d4o/d9o= 100 K(fl/d)= 57,964

% Gravel 79.3
% Sand 17.8

% Silt & Clay 2.9
Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits {Fetter, 
1994)

MFG-B2 (109-110 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B2 
111-111.5
5/25/01 
Natalie Morrow

Sieve / 
Mesh Size

Sieve Ap« 
Millimeters 

(mm)

1 rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

1 3 762 76,200 3.0

;
o

Cobble 0 0 0,0 0.0 100,0
2 50.8 50,800 2.0 Pebble 0 0 00 0.0 100 0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100,0
1 25.0 25,000 10 Pebble 208 208 12.9 12.9 87 1

3/4 19.0 19,000 0.75 Pebble 151 359 9.4 22.3 77.7
1/2 12.7 12,700 0.50 Pebble 221 580 13.8 361 63.9
3/8 9.5 9,500 0.38 Pebble 173 753 10.8 46.9 53.1
#4 4.75 4,750 0.19 Pebble 297 1050 18.5 65.3 34.7
#3 2.36 2,360 0.09 Granule 150 1200 9.3 74.7 25.3

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 100 1300 6.2 80.9 19.1

#30 0.6 600 0.02 Coarse Sand 69 1369 4.3 852 14.8
#50 0.3 300 0.01 Medium Sand 68 1437 4.2 89.4 10.6

#100 0.15 150 0.006 Fine Sand 106 1543 66 96.0 4,0

#200 0.075 75 0.003 Very Fine Sand 50 1593 3.1 99.1 0.9
-#200 0.075 75 0.003 Sill & Clav Silt & Clav 14 1607 0.9 100.0 0.0

Total Weight (g) 1607 d,o(mm)= 12 d;o(mm)= 6.5 
dso (mm)= 0.28 K=Cdso'' = 450dso' 

C„=d4o/d9o= 43 K(ft/d)= 15,373
% Gravel 74.7

% Sand 24.5
V , Silt & Clay 0.9

Hydraulic conductivity (K) equation obtained from Shepard’s relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B2 (111-111.5 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs); 

Date Analyzed:

MFG-B3 
12-13
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

?
o

Cobble 0 0 0.0 0.0 100.0
2 508 50,800 2.0 Pebble 240 240 11.3 11.3 88.7

1 1/2 37.5 37,500 1.5 Pebble 159 399 7.5 18.7 81.3
1 25.0 25,000 1.0 Pebble 260 659 12.2 31.0 69.0

3/4 19.0 19,000 0.75 Pebble 255 914 12.0 42.9 57.1
1/2 12.7 12,700 0.50 Pebble 355 1269 16.7 59,6 40.4
3/8 9.5 9,500 0.36 Pebble 155 1424 7.3 66.9 33.1
#4 4.75 4,750 0.19 Pebble 184 1608 66 75.5 24.5
#8 2.36 2,360 0.09 Granule 90 1698 4 2 79.8 20.2

#16 1.18 1,180 0.05

?
w

Very Coarse 
Sand 47 1745 2.2 82.0 18.0

#30 0.6 600 0.02 Coarse Sand 36 1781 1.7 83.7 16 3
#50 0.3 300 001 Medium Sand 148 1929 7.0 90.6 9.4
#100 0.15 150 0.006 Fine Sand 129 2058 6.1 96.7 3.3

#200 0.075 75 0.003
Very Fine 

Sand 39 2097 1.8 98.5 1.5
-#200 0.075 75 0.003 Silt & Clav Silt & Clay 32 2129 1.5 100.0 0.0

Total Weight (g) 2129 d4o(mm)= 21 dso(mm)= 3.3 
dgo (mm)= 0.30 K=Cdso'' = 450d(,^ 

C ^ - à 4 o / à s o =  70 K (ft/d)= 3,227
% Gravel 79.8

% Sand 18.7
% Silt & Clav 1.5

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (12-13 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
18-19
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Apt 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
Genera! 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3,0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 00 100.0

1 1/2 37.5 37,500 1.5 Pebble 169 169 10.2 10.2 898
1 25.0 25,000 1.0 Pebble 245 414 14.8 25.0 75.0

3/4 19.0 19,000 0.75 Pebble 177 591 10.7 35.7 64.3
1/2 12.7 12,700 0.50 Pebble 290 681 17,5 53.2 46.8
3/8 9.5 9,500 0.38 Pebble 133 1014 8.0 61.2 38 8
#4 4.75 4,750 0.19 Pebble 214 1228 12 9 74.2 25.8
#8 2.36 2,360 0.09 Granule 99 1327 6.0 80.1 19 9

#16 1.18 1,180 0.05

w

Very Coarse 
Sand 59 1386 3.6 83.7 16.3

#30 0.6 600 0.02 Coarse Sand 35 1421 2.1 85.8 14.2
#50 0 3 300 0.01 Medium Sand 71 1492 4.3 90.1 9.9

#100 0.15 150 0.006 Fine Sand 97 1589 5.9 96.0 4,0

#200 0.075 75 0.003
Very Fine 

Sand 32 1621 1.9 97.9 2.1
•#200 0075 75 0.003 Slit & Clav Silt & Clav 35 1656 2.1 100.0 0.0

Total Weight (g) 1656 d4o(mm)= 7.8 d5o(mm)= 4.5 
d9o(mm)= 0,30 K=Cdsô  = 450dso’ “ = 

C„=d4o/dgo= 26 K (ft/d)= 5,363
% Gravel 80.1

% Sand 17.8
% Slit & Clav 2.1

Hydraulic conductivity (K) equation obtained from Strepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (18-19 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
32-32.5 
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,600 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37.500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 30 30 1.9 1.9 98.1

3/4 19.0 19,000 0.75 Pebble 98 128 6.1 8.0 92.0
1/2 12.7 12,700 0.50 Pebble 139 267 8.7 16.7 83 3
3/8 9.5 9,500 0.38 Pebble 111 378 7.0 23.7 76,3
#4 4.75 4,750 0.19 Pebble 233 611 14.6 38.3 61.7
#8 2.36 2,360 0.09 Granule 191 802 12.0 50.3 49.7

#16 1,18 1,180 0.05

1

Very Coarse 
Sand 136 938 85 58.8 41.2

#30 0.6 600 0.02 Coarse Sand 109 1047 68 65.6 34.4
#50 0.3 300 0.01 Medium Sand 151 1198 9.5 75.1 24.9

#100 0.15 150 0.006 Fine Sand 163 1361 10.2 85.3 14.7

#200 0.075 75 0.003
Very Fine 

Sand 126 1487 7.9 93 2 6.8
-#200 0.075 75 0.003 Silt & Clay Silt &  Clav 109 1596 6.8 100.0 0.0

Total Weight (g) 1596 dw(mm)= 4.3 dso(mm)= 2.4 
dgo(mm)= 0.10 K=Cds£i^=450dsci’ **= 

C„=d4o/dao= 43 K(ft/d)= 1,908
% Gravel 50,3

%Sand 42.9
% Silt & Clay 6.8

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (32-32.5 feet bgs) 
Grain Size Analysis
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Boring: MFG-B3 
Depth Interval (feet bgs): 36-37 

Pate Analyzed: 5/25/01

Sieve /
Mesh
Size

Sieve Apt 
Millimeters 

(mm)

rture / Gr 
Microns 

(um)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Perceni
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 122 122 7.2 7.2 92.8
1 25.0 25,000 1.0 Pebble 64 186 3.8 10.9 89.1

3/4 19.0 19,000 0.75 Pebble 64 250 3.8 14.7 85.3
1/2 12.7 12,700 0.50 Pebble 129 379 7.6 22.3 77,7
3/8 9,5 9,500 0.38 Pebble 61 440 36 25.9 74.1
#4 4.75 4,750 0.19 Pebble 177 617 10.4 36.3 63.7
#8 2.36 2,360 0.09 Granule 147 764 8 6 44.9 55.1

#16 1.18 1,180 0.05

a

Very Coarse 
Sand 133 897 7.8 52.7 47.3

#30 06 600 0.02 Coarse Sand 104 1001 6.1 58.8 41.2
#50 0.3 300 0.01 Medium Sand 314 1315 184 77.3 22.7

#100 0,15 150 0.006 Fine Sand 202 1517 11.9 89.1 10,9

#200 0075 75 0.003
Very Fine 

Sand 90 1607 5.3 94.4 5.6
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 95 1702 5.6 100.0 0.0

Total Weight (g) 1702 d%(mm)= 3.5 dso(mm)= 1.6 
dso(mm)= 0.14 K=Cd6o’' = 450dso’ “ = 

C„=d«/dM= 25 K (ft/d)= 977
% Gravel 44.9

% Sand 49.5
% Silt & Clay 5.6

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (36-37 feet bgs) 
Grain Size Analysis
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Boring: MFG-B3 
Depth Interval (feet bgs): 40.5-41.5 

Date Analyzed: 5/25/01

1 Sieve / 
Mesh 

1 Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(um)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0,0 0,0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100 0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100,0
1 25.0 25,000 10 Pebble 0 0 0.0 0 0 100.0

3/4 19.0 19,000 0-75 Pebble 0 0 0.0 0.0 100 0
1/2 12.7 12,700 050 Pebble 0 0 0.0 0.0 100.0
3/8 9.5 9,500 0.38 Pebble 0 0 0.0 0.0 100.0
#4 4.75 4,750 019 Pebble 0 0 0.0 0.0 100.0
#8 2.36 2,360 0.09 Granule 0 0 0.0 0.0 100.0

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 0 0 0.0 0.0 100.0

#30 0.6 600 0.02 Coarse Sand 23 23 2,0 2.0 98.0
#50 0.3 300 0.01 Medium Sand 614 637 54.5 56.5 43.5
#100 0.15 150 0.006 Fine Sand 397 1034 35.2 91 7 8.3

#200 0.075 75 0.003
Very Fine 

Sand 63 1097 5.6 97.3 2.7
-#200 0.075 75 0.003 Silt & Clav Silt & Clay 30 1127 2.7 100.0 0.0

Total Weight (g) 1127 d4o(mm)= 0.37 dso(mm)= 0.3 
dgo(mm)= 0.16 K=Cdso"' = 450d5o’ “ = 

C„=dWd90= 2.3 K (ft/d)= 72
% Gravel 0.0

% Sand 97.3
% Silt & Clav 2.7

Hydraulic conductivity (K) equation obtained from Shepard's relationstiip of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (40.5-41.5 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
41.5-42
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Apt 
Millimeters 

(mm)

trture / Grain Size Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 0 0 0.0 0.0 100.0
1 25.0 25,000 1.0 Pebble 120 120 7.7 7.7 92.3

3/4 19.0 19,000 0.75 Pebble 62 182 4.0 11.7 88.3
1/2 12.7 12,700 0.50 Pebble 108 290 6.9 18.6 81,4
3/6 9.5 9,500 0.38 Pebble 68 358 4.4 23.0 77.0
#4 4.75 4,750 0.19 Pebble 154 512 9.9 32.9 67.1
#8 2.36 2,360 0.09 Granule 113 625 7.3 40.2 59.8

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 75 700 4.8 45.0 55.0

#30 0.6 600 002 Coarse Sand 67 767 4.3 493 50.7
#50 0.3 300 0.01 Medium Sand 365 1132 23,5 72.8 27,2
#100 0.15 150 0.006 Fine Sand 255 1387 16 4 89.1 10.9

#200 0.075 75 0.003
Very Fine 

Sand 87 1474 5.6 94.7 5.3
•#200 0,075 75 0.003 Silt & Clay Silt &  Clay 82 1556 5.3 100.0 0.0

Total Weight (g) 1556 d^o- 0.24 Sfso" 0.8 
dgo“  0.14 K—Cdgô  = 450dso^^^= 

C„=dWdgo= 1.7 K(ft/d)= 311 I
% Gravel 40.2

% Sand 54.6
% Silt & Clav 5.3 .. .. ... II

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (41.5-42 feet bgs) 
Grain Size Analysis
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Boring: MFG-B3 
Depth Interval (feet bgs): 43-44 

Date Analyzed: 5/25/01

Sieve / 
Mesh 
Size j

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(um)

ain Size 

Inches

Size Clas 
General 

Classification

.sifications
Wentworth

Ctassincation

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76,200 3,0 Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0.0 100.0

1 1/2 37.5 37,500 1.5 Pebble 618 618 31.3 31.3 68.7
1 25.0 25,000 1.0 Pebble 260 878 13.2 44,4 55.6

3/4 19.0 19,000 0.75 Pebble 159 1037 80 52.5 47,5
1/2 12.7 12,700 0.50 Pebble 190 1227 96 62.1 37.9
3/8 9.5 9,500 0.38 Pebble 134 1361 6.8 68.9 31.1
#4 4.75 4.750 0.19 Pebble 155 1516 7.8 76 7 23 3
m 2.36 2,360 0,09 Granule 103 1619 5.2 81.9 18.1

#16 1.18 1,180 0.05

CO

Very Coarse 
Sand 87 1706 4.4 86 3 13.7

#30 0.6 600 0.02 Coarse Sand 61 1767 3.1 894 10.6
#50 0.3 300 001 Medium Sand 74 1841 3.7 93.2 6.8

#100 0.15 150 0.006 Fine Sand 61 1902 3.1 96.3 3.7

#200 0.075 75 0.003
Very Fine 

Sand 33 1935 1.7 97.9 2.1
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 41 1976 2.1 100.0 0.0

Total Weight (g) 1976 d,o(mm)= 28 da,(mm)= 21 
dso(mm)= 0.53 K=Cdso''= 450d$o’ “ *= 

C„=d<o/d9o= 53 K(ft/d)= 68,371
% Gravel 81.9

% Sand 16.0
% Silt & Clav 2.1

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (4344 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs);

Date Analyzed:

MFG-B3 
46-47
5/25/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Apt 
Millimeters 

(mm)

irture / Gr 
Microns 

(um)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent
Retained

Percent
Passing

3 76.2 76,200 3 0

1

Cobble 0 0 0.0 00 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 0,0 100.0

1 1/2 37.5 37,500 1.5 Pebble 204 204 11.0 11.0 89.0
1 25.0 25.000 1.0 Pebble 455 659 24.4 35.4 64.6

3/4 19.0 19,000 0.75 Pebble 257 916 138 49.2 50.8
1/2 12.7 12,700 0.50 Pebble 252 1168 13.5 62.7 37.3
3/8 9.5 9,500 0.38 Pebble 123 1291 6.6 69.3 30.7
m 4.75 4,750 0.19 Pebble 161 1452 8.6 78.0 22,0
m 2.36 2,360 0.09 Granule 87 1539 4,7 82.7 17.3

#16 1.18 1,180 0,05

1

Very Coarse 
Sand 65 1604 3.5 86 1 13 9

#30 0.6 600 0.02 Coarse Sand 78 1682 4.2 90.3 9.7
#50 0.3 300 0,01 Medium Sand 81 1763 4.4 94.7 5.3
#100 0.15 150 0.006 Fine Sand 40 1803 2,1 96,8 3.2

#200 0.075 75 0.003
Very Fine 

Sand 25 1828 1.3 98.2 1,8
-#200 0.075 75 0 003 Silt 8 Clay Silt & Clay 34 1862 1.8 100,0 0,0

Total Weight (g) 1862 d4o(mm)= 23 d5o(mm)= 19 
deo(mm)= 0,60 K=Cdso’' = 450d5o’ 

C„=d4i)/d90= 38 K(ft/d)= 57,964
% Gravel 82.7

% Sand 15.5
% Silt & Clav 1.8

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (46-47 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
48-49
5/24/01 
Natalie Morrow

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(um)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulative 
Weight 

Retained (g)

Percent
Retained

Cummulative
Percent

Retained

Percent
Passing

3 76.2 76.200 3.0

1

Cobble 0 0 0.0 0.0 100.0
2 50.8 50,800 2.0 Pebble 0 0 0.0 00 100.0

1 1/2 37.5 37,500 1.5 Pebble 344 344 18.1 18.1 81.9
1 25.0 25,000 1.0 Pebble 479 823 25.2 43.2 56.8

3/4 19.0 19,000 0.75 Pebble 105 928 5.5 48.8 51.2
1/2 12.7 12,700 0.50 Pebble 184 1112 9.7 58.4 41.6
3/8 9.5 9,500 0.38 Pebble 109 1221 5.7 64.2 358
#4 4.75 4,750 0.19 Pebble 196 1417 10.3 74.5 255

2.36 2.360 0.09 Granule 96 1513 5.0 79.5 20.5

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 60 1573 3.2 82.7 17 3

#30 0.6 600 0.02 Coarse Sand 73 1646 3.8 86.5 13.5
#50 0.3 300 0.01 Medium Sand 128 1774 6.7 93.2 6.8
#100 0.15 150 0.006 Fine Sand 66 1840 3.5 96.7 3.3

#200 0.075 75 0.003
Very Fine 

Sand 28 1868 1.5 98 2 1,8
-#200 0.075 75 0.003 Silt & Clav Silt & Clay 35 1903 1.8 100.0 0.0

Total Weight (g) 1903 d4o(mm)= 27 dso(mm)= 8.4 
d9o(mm)= 0.40 K=Cdso'’ = 450d5o' 

Cu=d4o/d9o= 68 K(ft/d)= 15,076
% Gravel 79.5

% Sand 18.7
% Silt & Clay 1.8

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter. 
1094)

MF6-B3 (48-49 feet bgs) 
Grain Size Analysis
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Boring;
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
55.5-56
5/24/01 
Natalie Morrow

sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

aln size 

Inches

size Clas 
General 

Classification

slficatlons
Wentworth

Classification

Total Weight 
Retained (g)

Cummulatlve 
Weight 

Retained (g)

Percent
Retained

Cummulatlve
Percent

Retained

Percent
Passing

3 76.2 76,200 3.0

1

Cobble 0 0 0,0 0.0 100 0
2 50 8 50,800 2.0 Pebble 0 0 0.0 0 0 100 0

1 1/2 37,5 37,500 1.5 Pebble 215 215 16.1 16.1 83.9
1 25.0 25,000 1.0 Pebble 73 288 5.5 21.6 78 4

3/4 19.0 19,000 0.75 Pebble 91 379 6.8 28.5 71.5
1/2 12.7 12,700 0.50 Pebble 167 546 12.5 41.0 59.0
3/8 9.5 9,500 0.38 Pebble 73 619 5.5 46.5 53.5
#4 4.75 4,750 0.19 Pebble 194 813 14.6 61.0 39.0
#8 2.36 2,360 0.09 Granule 107 920 8.0 69.1 30 9

#16 1.18 1,180 0.05

1

Very Coarse 
Sand 70 990 5.3 74.3 25.7

#30 0.6 600 0.02 Coarse Sand 59 1049 4.4 78 8 21.2
#50 0.3 300 0.01 Medium Sand 96 1145 7.2 860 14.0
#100 0.15 150 0.006 Fine Sand 89 1234 6.7 92.6 7.4

#200 0.075 75 0.003
Very Fine 

Sand 58 1292 4.4 97 0 3.0
-#200 0.075 75 0.003 Silt & Clay Silt & Clay 40 1332 3.0 100.0 00

Total Weight (g) 1332 d4o(mm)= 13.4 dso(mm)= 8.0 
(mm)= 0.19 K—Cdgo ~450d5o ~ 

C,,=d4o/dso= 71 K(ft/d)= 13,909
% Gravel 69.1

% Sand 27.9
*/. Silt & Clay 3.0

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter. 
1994)

MFG-B3 (55.5-56 feet bgs) 
Grain Size Analysis
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Boring:
Depth Interval (feet bgs): 

Date Analyzed:

MFG-B3 
63-64 
5/24/01 
Natalie Morrow;

Sieve / 
Mesh 
Size

Sieve Ape 
Millimeters 

(mm)

rture / Gr 
Microns 

(urn)

ain Size 

Inches

Size Clas 
General 

Classification

sifications
Wentworth

Classification

Total Weight 
Retained (g)

Cummulatlve 
Weight 

Retained (g)

Percent
Retained

Cummulatlve
Percent

Retained

Percent
Passing

3 76.2 76,200 3,0

1

g

Cobble 0 0 0,0 0,0 100,0
2 50.8 50,800 2,0 Pebble 0 0 0,0 0,0 100,0

1 1/2 37.5 37,500 1,5 Pebble 143 143 7,9 7,9 92 1
1 25.0 25,000 1,0 Pebble 201 344 11,0 16 9 81,1

3/4 190 19,000 0,75 Pebble 197 541 10,8 29,7 703
1/2 12.7 12,700 0,50 Pebble 253 794 13,9 43,6 56,4
3/8 9.5 9,500 0,38 Pebble 174 968 9,6 53,2 46,8
#4 4,75 4,750 0,19 Pebble 246 1214 13,5 66,7 33,3
#8 2.36 2,360 0,09 Granule 131 1345 7,2 73,9 26,1

#16 1.16 1,180 0,05

E
w

Very Coarse 
Sand 66 1431 4,7 78,6 21 4

#30 0.6 600 002 Coarse Sand 85 1516 4,7 83,3 16,7
#50 0.3 300 0,01 Medium Sand 173 1689 9,5 92,8 7,2
#100 0,15 150 0,006 Fine Sand 76 1765 4,2 96,9 3,1

#200 0,075 75 0 003
Very Fine 

Sand 25 1790 1,4 98.3 1,7
-#200 0,075 75 0,003 Silt & Clav Silt & Clav 31 1821 1,7 100.0 0,0

Total Weight (g) 1821 d4o(mm)= 15 d5o(mm)= 11 
d0o(mm)= 0,27 K=Cdso''= 450dso’ 

C„=d4o/deo= 56 K(ft/d)= 23,524
V» Gravel 73,9

% Sand 24,4
% Silt & Clav 1,7

Hydraulic conductivity (K) equation obtained from Shepard's relationship of hydraulic conductivity to grain size for channel deposits (Fetter, 
1994)

MFG-B3 (63-64 feet bgs) 
Grain Size Analysis
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