
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2004

A simple methodology for the production of three -dimensional A simple methodology for the production of three -dimensional

models: Serotonin transporter as an example models: Serotonin transporter as an example

Paul A. Wilson
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Wilson, Paul A., "A simple methodology for the production of three -dimensional models: Serotonin
transporter as an example" (2004). Graduate Student Theses, Dissertations, & Professional Papers. 9546.
https://scholarworks.umt.edu/etd/9546

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F9546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/9546?utm_source=scholarworks.umt.edu%2Fetd%2F9546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

NOTE TO USERS

This reproduction is the best copy available.

UMI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Maureen and Mike
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly
cited in published works and reports.

**Please check "Yes" or "No" and provide signature

Yes, I grant permission yY

No, I do not grant permission _________

* *

Author's Signature:

Date: /Z / Z J / / Q o V _________

Any copying for commercial purposes or financial gain may be undertaken
only with the author's explicit consent.

8/98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A Simple Methodology for the Production of
Three-Dimensional Models:

Serotonin Transporter as an Example

by
Paul A. Wilson

B.S. Chemistry, Central Washington University, 2000
B.S. Physics, Central Washington University, 2000

A.A. Clark College, 1996
A.A.S. Electronics Engineering Technology,

ITT Technical Institute, 1990
presented in partial fulfillment of the requirements

for the degree of
Doctor of Philosophy Chemistry

The University of Montana
December 2004

Approved by:

mittee Chai

Dean, Graduate School

Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3177039

Copyright 2005 by

Wilson, Paul A.

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

UMI
UMI Microform 3177039

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Wilson, Paul A. Ph.D., December 2004 Chemistry

A Simple Methodology for the Production of Thiee-Dimensional Models:
Serotonin Transporter as an Example

Committee Chair; John M. Gerdes

A conceptually simple and clearly rigorous paradigm for finding
molecular similarity has been developed to elucidate three-dimensional (3-
D) pharmacophore templates utilizing multi-molecule constructs without
dependence upon a specific software package. A multi-molecular approach
has been taken to limit induced model bias from any single molecule. The
methodology involves the construction of a pharmacophore foundation from
the low energy conformations identified for a select set of molecules exhibiting
established potency and selectivity for the binding domain of interest. These
low energy conformations are combinatorially compared to identify one set (1
set = 1 low energy conformation from each molecule) possessing the highest
degree of similarity in 3-D space. This technique has been applied to produce a
3-D pharmacophore model of the serotonin selective reuptake inhibitor (SSRI)
binding domain of the serotonin transporter (SERT). A set of four molecules
possessing a high measure of SERT selectivity, potency and offering ample
structural diversity was identified and select conformations (non-global minima)
were attained. Similarity was based on distance space descriptions compared
using a relative difference calculation. The relative difference equation compares
the magnitudes of two measurements and produce a ratio which, in effect,
describes their similarity. Data sets with measurements on both sides of zero
may be overly, or not adequately, penalized witli consideration to the actual
magnitude between the measures. An algorithm for accomplishing a reasonable
implementation of the relative difference equation when a known value does not
exist, has been developed. A computational algorithm and programs have been
developed that, in conjunction with novel modeling methodologies, have led to
an unambiguous and descriptive 3D pharmacophore model of the SSRI binding
domain at the SERT. The predictive quality of the model was demonstrated
through application, by the design of a family of novel, highly potent SERT
inhibitor ligands (Ki < 100 pM), exemplified by 2'-methyl-6-nitroquipazine.

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Funded by tax payer dollars through grants from the NIH (NCRR COBRE P20-
RR15583 and NS39814) and NSF (Montana EPSCoR, EPS-0091995). >

Acknowledgments

John M. Gerdes Committee Chair: for years of guidance and attenuating my
impulses to leave graduate school prematurely

My Graduate Committee: John M. Gerdes, Jennifer McNulty, Don Morton, J.B.
Alexander Ross, Charles Thompson

Jennifer McNulty and Don Morton for offering interdisciplinary courses

Jennifer Parham for m any excellent discussions of C pointers and parallel
programming

Chris Odom for providing a great reference for the relative difference equation

JoAnn DeLuca for letting us use her SCI 02

Sharon Rosell - not only the best physics instructor ever, but a person who truly
cares about you

Tyson Miller for letting me bend his ear

Bill Vetter for much advice and guidance

BMW Motorrad USA and m y 1983 BMW R65 for providing an interesting,
constructive, and stress relieving hobby

The Apple Student Developer email list

Gaspare Campari

and most importantly

Melodie Weller
and the Weller and Wilson families

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preface

Development of a pharmacophore model of the serotonin selective reuptake
inhibitor (SSRI) binding domain at the serotonin transporter (SERT) came not from a
personal interest in serotonin, but from an interest in UNIX. Instead of a traditional
introduction covering the important role of SSRIs in psychiatric disorders (Vaswani),
each section incorporates an introduction to the work contained within. However, at
this point it may be enlightening to go though the nontraditional events that have led to
the work covered in this dissertation.

The computational environment this project started in almost entirely consisted
of Windows and VMS machines. However, the modeling project came with a UNIX
machine. It seemed like a good trade to produce a model in exchange for the use of a
SGI 02 running the IRIX flavor of UNIX. Then the situation changed and UNIX become
readily available.

Four important events occurred around this time. Firstly, an interest in parallel
computing was developed. Secondly, Mac OS X, a user centric operating system based
upon UNIX was released. Thirdly, it became apparent scientific tools and parallel
programs previously only available in the UNIX environment could now be ported to
the more user friendly Mac OS. Tools which used to be limited to costly machines could
now be made available on affordable machines, in essence bringing scientific research
to the masses. Lastly, school is about the student studying what they are interested in.
These four events led to the writing of a parallel scientific program which was presented
at MacHack 2003 (appendix 4.4). This program used message passing interface (MPI)
and ran on a cluster of Mac OS X machines.

What was learned from writing the parallel program and attending MacHack
was used to rewrite and improve the program. The new program was a serial program,
running only on one processor. One of the reasons for the new program being serial was
the OS X machines previously used were no longer available for turning into a cluster.
The serial program and pharmacophore modeling paradigm was presented at the 2003
annual meeting of the Society for Neuroscience.

The Society for Neuroscience (SFN) meetings are a good learning environment.
The latest in scientific computing related to the neuroscience field is on display at these
meetings. As well, these meetings provide a good opportunity to interact with other
people who are coding algorithms. As a result, the work involving the modification of
the relative difference equation, previously done on the back of a piece of paper, was
formalized and presented at the 2004 annual SFN meeting.

In summary, the model was developed out of desire to use a UNIX machine.
The modification of the relative difference equation was formalized into writing to gain
access to the SFN learning environment. Software was written out of a desire to study
something of interest and to return to the scientific community software tools that do
not require expensive machines and yearly software contracts. Hopefully the work and
source code presented here will be useful, especially those interested in pharmacophore
modeling and are budget disadvantaged.

Vaswani, M., Linda, F.K., and Ramesh, S. Role of Selective Serotonin Reuptake
Inhibitors in Psychiatric Disorders: a Comprehensive Review. Progress in
Neuro-Psychopharmacology & Biological Psychiatry. 2002, 27, 85-102

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Contents

Page

Introduction to the Methodologies for Designing and Employing a Three-
Dimensional Pharmacophore Model Based on Multiple Ligands.......................1

O verview ...1

In tro d u c tio n ...2

Approaches to M odeling ..5

The Modeling E xerc ise ...7

Model Verification ...9

The Drug Design E x e rc ise ...9

C onclusion ..11

A Simple Methodology for the Production of Three-Dimensional Models:
Serotonin Transporter as an Example..14

In tro d u c tio n ...14

M ethodology...20

R e s u l ts ..28

D iscu ss io n ..31

C onclusion ..33

The Nuances of Comparing Molecular Descriptors Using Relative Difference. 37

In tro d u c tio n ...37

The Modified Relative Difference E q u a tio n .. 41

C onclusion ..47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Implementation of Programs to Efficiently Calculate the Similarity Score for
Large Data Sets.. 52

In tro d u c tio n ...52

Development and Implementation of the Programs............................... 55

C onclusion..67

Appendix 2.1 Measurements of the three-dimensional (3D) pharmacophore
model of the serotonin selective reuptake inhibitor (SSRI) binding domain at
the serotonin transporter (SERT).. 72

Appendix 3.1 The distance space descriptors of MCN-5652 used in the
combinatorial comparison... 77

Appendix 3.2 The distance space descriptors of sertraline used in the
combinatorial comparison... 78

Appendix 3.3 The distance space descriptors of indatraline used in the
combinatorial comparison... 79

Appendix 3.4 The distance space descriptors of escitalopram used in the
combinatorial comparison... 81

Appendix 3.5 The best scoring, most similar, 251 conformational comparison
groups of the 1,297,344 combinatorial comparisons..91

Appendix 4.1 The Sybyl Programming Language (SPL) four molecule
comparison program. Calculates and saves the similarity scores for four
molecule comparisons. Only works for small data sets................................... 110

Appendix 4.2 The four molecule Perl script. Calculates and saves the similarity
scores for four molecule comparisons..116

Appendix 4.3 The three molecule Perl script. Calculates and saves the similarity
scores for three molecule comparisons.. 120

Appendix 4.4 "A Practical Comparison of Multiprocessing Libraries: Application
of MPI and OpenMP" presented at MacHack 2003, June 2003....................... 123

Appendix 4.5 The compsortall program, written in C. Calculates, sorts and saves
all similarity scores..131

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 4.6 The compsort program, written in C. Calculates and sorts all
similarity scores. Saves a user determined number of best, most similar,
scores...164

Appendix 4.7 The comp program, written in C. Calculates and saves all
similarity scores...181

Bibliography...195

V ll

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table of Figures

Figure Page

2.1 The four molecules used in model building exercise: Sertraline, MCN-
5652, Indatr aline, S-Citalopram. Defined location of A rl, Ar2, X, Terminal
Amine, Connecting Carbon, and the hetero atom shown.......................... 21

2.2 Conformational analysis (software settings and results) of Sertraline, MCN-
5652, Indatr aline, and S-Citalopram.. 23

2.3 Definitions and measurements used to describe conformations in distance
space... 24

2.4 Equation for calculating the similarity score for one conformational
comparison group through the application of relative difference. The
number of relative difference calculations for the SERT SSRI data set is
equal to 116,760,344 (1,297,344 comparison groups x 15 compared measures
X 6 combinatorial relative difference calculations per measurements). . . 25

2.5 Graph of the 1,297,344 calculated similarity scores of each conformational
comparison group sorted from low (most similar) to high (least similar).
The inset graph shows the 160 lowest similarity scores...................................26

2.6 Superposition of Sertraline, MCN-5652, Indatr aline, and S-Citalopram as the
basis for the model of the SSRI binding domain at the SERT..........................27

2.7 Conformational analysis (software settings and results) of Ibogaine.
Definitions and measurements used to describe Ibogaines in distance space.
..29

2.8 Equation for calculating the relative difference similarity score comparing
Ibogaine with the SSRI SERT model... 29

2.9 Graph of the 24 calculated relative difference similarity scores of each
conformation of Ibogaine compared with the SSRI SERT model sorted from
low (most similar) to high (least similar)..30

2.10 Superposition of the most similar scoreing conformation of Ibogaine to the
SSRI SERT model, with the model of the SSRI binding domain at the SERT.
..31

3.1 The number of non-repetitive combinatorial comparisons for each distance
space descriptor follows an arithmetic mean... 41

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 The relative error equation.. 42

3.3 Objectively, X is determined to be most similar to Y.......................................42

3.4 The relative difference equation... 43

3.5 A sample graph of the relative difference equation for x in the range of -3.0
to 3.0. Figure 3.5 shows the comparison between positive and negative can
equal positive, negative, or undefined values...44

3.6 Figure 3.6 A sample graph of a modified relative difference equation that
takes the absolute value of the denominator. The calculated value of the
modified relative difference y for 1 and x over the range of -3.0 to 3.0, has
shown that the comparison of positive and negative can equal an undefined
or high value. The value y when x 0 will always be higher than the value
y when x 0. It is indicated by the equation above that 1 and -3 or more
similar than 1 and -0.75... 45

3.7 The modified relative difference equation... 46

3.8 A sample graph of the modified relative difference equation. The modified
relative difference y for one measurement of 1 and one measurement of x
over the range of -3.0 to 3.0, is shown. When x 0, the modified relative
difference y equals 2.. 46

3.9 The limit of the relative difference between one and x, as x approaches
infinity, equals two. The relative difference between two measurements,
larger than zero, is less than or equal to two... 47

3.10 Objectively, X and Y are determined to be most the most similar objects. 48

3.11 The similarity score equation using the modified relative difference
equation. The similarity score equation can be used for calculating the
similarity between the low energy conformations of multiple molecules. 49

4.1 The modified relative difference equation used in the programs.................. 54

4.2 The number of non-repetitive combinatorial comparisons for each distance
space descriptor follows an arithmetic m ean.. 56

4.3 The Perl script and C program run times using the SSRI SERT data set. The
programs were all run on the same 2003, Apple 867 MHz G4 Powerbook
with 640 MB of RAM... 68

IX

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 The read, write, and overall run times for the compsortall at various array
sizes. The data is good for looking at general trends, but the exact number
will vary from run to run depending on memory and cache loading in
Mac OS X. This points to why a balance between theory and experiment
is desirable. The program was run on the a 2003, Apple 867 MHz G4
PowerBook with 640 MB of RAM..70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1

Introduction to the Methodologies for Designing and Employing a Three-

Dimensional Pharmacophore Model Based on Multiple Ligands.

Overview

Employing molecular models facilitates contemporary drug design.

Three types of models may be employed, including protein-, protein-ligand- and

ligand-based models. This dissertation describes the design and execution of a

ligand-based modeling methodology. Specifically, the development of a three-

dimensional (3D) pharmacophore model of the serotonin selective reuptake

inhibitor (SSRI) binding domain of the serotonin transporter (SERT) is provided.

The basis of the modeling paradigm employed is founded upon the comparison

of molecular descriptions structured from multiple distance space measurements

and geometric attributes. In turn, this allows a quantitative examination and

comparison of the 3D ligand measurements and attributes based on the use of the

relative difference equation operated in a summated manner. The comparisons

of all possible permutations of ligand conformations within sub-clusters can

be analyzed by a summed relative difference approach. Thus, manipulations

and analyses of the resultant large data can require the development of custom

software. This chapter provides an overview of the modeling paradigm and

the approach to drug design. The following three chapters encompass detailed

accounts of the ligand-based model, the relative difference approach, and

computational aspects. The specific methodology developed and employed in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this dissertation together has afforded a novel ligand-based model of the SSRI

binding domain of the SERT.

Introduction

The design of new molecules targeted towards a specific binding

domain is greatly aided by the use of a functional pharmacophore model. This

includes the design of novel ligands to act as therapeutics, diagnostic probes or

imaging agents. A design model can be based on protein structures, predicted

protein-ligand interactions an d /o r a binding region outlined by the counterpart

selective and potent ligand(s). A lock and key partnership may be used as

a figurative analogy to a protein-ligand interaction. A protein-based model

can be considered a description of the lock, including secondary and tertiary

structural lock aspects. The protein-ligand model would define the direct

structural requisites of the lock and key interaction. In other words, the protein-

ligand model would predict the interior tumbler configuration. A model based

upon one or more ligands could be thought of as a definition of the tumbler

configuration by the analyses of an overlay of multiple keys known to fit the

lock. When limited definition of the lock or protein exists ligand-based models

offer an alternative and efficacious approach for development of a functional

pharmacophore construct useful for drug design.

Though protein-ligand models are desirable, the lack of a predictive

protein crystal structure necessitates the use of a ligand-based model. This is the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

case with the protein structure of the serotonin transporter (SERT). In 2003, two

twelve-transmembrane domain proteins from the major facilitator superfamily,

that SERT is included within, were successfully crystallized (Abramson, Huang).

However, the predicted intracellular loops in the SERT sequence are not

accommodated by the published crystal structures of the Escherichia coli lactose

permease or glycerol-3-phosphate transporters (Abramson, Huang). Thus, to

build a SERT protein homology model based on these recent X-ray structures

would lead to an erroneous homology construct. Since a plausible 3D SERT

structure has yet to be proffered, a ligand-based model is required for SSRI

SERT rationale drug design. New, highly potent and selective ligands could

be therapeutic drugs or new cerebral imaging agents. These new ligands types

would promote further understanding of select disease states and psychiatric

disorders (Vaswani).

The primary goal of this dissertation was to produce a 3D model of the

SSRI binding domain at the SERT, that would enable the design of unique and

more optimal SERT specific ligands. We desired to develop a methodology for

producing the SSRI SERT model that was quantitative, rigorous and based on all

plausible ligand comparison permutations. The prospective size of the data sets

produced from this analysis approach would require the use of custom software.

Standard spreadsheet software solutions most likely would not have the capacity

to deal with the amount of data encountered.

In developing the model generation methodology three primary features

were addressed. The approach would: a) employ readily available software

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

resources (not based on a specific software package), b) be promoted by

early stage objective numerical analysis to limit subjective user input and c)

rely on minimal late stage subjective visual inspections and analysis. By not

basing the methodology on a specific software package, the approach remains

reproducible in labs with other software packages or computational resources.

Beyond initial selection of ligands to be used in the exercise (the training set),

removing direct user interaction with ligand conformational analysis by basing

methodologies on remote, calculated investigations was thought essential for

maintaining objectivity.

Our perspective has been that a model developed should provide

predictive qualities, yet may not be a true representation of the biological

(protein an d /o r ligand) motif an d /o r partnership event. Once a model has

been developed, testing its degree of predictive quality is essential such that

flawed models are avoided. Initial verification of a model can be accomplished

by comparing it with ligands known to bind at the same binding domain as the

model, but with varying degrees of potency. This leave-one-out verification step

is addressed in Chapter Two. However, the final proof of the predictive quality

comes from using the model to design novel ligands.

Ligands designed using a model in theory should possess specificity and

affinity for the binding domain of interest. The fresh ligands can be used to

improve the model through iterative refinement analysis. By altering structural

features of the ligands, such as overall size, extensions of linking atoms (e.g.

carbon), or simply adding different functional groups at periodic points about

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the structure, allows for in-depth 3D mapping of the binding domain pocket. An

end point to this recurrent design and refine cycle is reached when the spatial

resolution of the model no longer increases. Alternatively, if the protein binding

domain becomes known by X-ray determination or as a related homology model,

the model m apping exercise is also accomplished.

This chapter presents a brief background of the modeling, model

verification and new ligand design exercises. Chapter Two exemplifies the

modeling methodology. Chapter Three discusses the use of relative difference

for ligand comparison by developing a similarity score used in the modeling

methodology. Chapter Four discusses the implementation of the similarity score

in custom software development. The remaining portion of the dissertation

consists of several appendices that present the primary data obtained during the

modeling exercise. The appendices also include the source code for the software

written to enable the modeling exercise.

Approaches to Modeling

The ease of developing models based on multiple ligands has greatly

improved over the past few years. For example, the machine learning based

programs HipHop (Accelrys, Inc.) and Casp (Tripos, Inc.) takes multiple ligands

as input and automatically produce a model. Unfortunately, these programs

produce multiple models requiring further time and expense to determine

which model may possess enhanced predictive qualities. By having the user

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

place the selected ligands into the software black box without understanding the

fundamentals of pharmacophore production, this leaves the user in a quandary

when interpreting the resultant pharmacophores. However, having multiple

models may be helpful for defining and understanding different plausible

binding scenarios. Custom, numerically oriented and manual approaches can

be taken to avoid producing multiple models. In the past, SERT models have

been based on the global energy minimum conformation of a single molecule

(Rupp). The global energy minimum conformation need not be the bioactive

conformation (Martin, Nicklaus). As well, a model based on a single molecule

will only be as descriptive as the number of features presented by the single

molecule itself.

A model based upon multiple molecules provides a more comprehensive

description of the 3D binding domain space. The multiple molecule approach

is based on comparing seemingly dissimilar molecules that possess high

affinity and specificity of selected binding domain to identify the optimal

superposition. In the past, this approach has based comparisons on either

subjective visual inspections or root means square (RMS) similarity calculations

(Mottola, Gundertofte). The approach employed here describes the generation

of multi-molecule composite assemblages using distance space descriptors with

comparison of those descriptors using relative difference.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The Modeling Exercise

The comparison of training set molecules (ligands) to identify the optimal

superposition is actually an analysis of select low energy conformations of the

molecules. In order to accomplish this, all plausible low energy conformations

of each molecule must be found. Typically, low energy conformation are defined

as those conformations whose energy is less than or equal to 30 kilocalories

above the global energy minimum conformation of the molecule (Rupp). It is a

good idea to use multiple techniques to insure full descriptive coverage of ligand

conformational space. For example, multiple conformation searching techniques

might include Monte Carlo and dynamics based methods. In past experience it

has been found that the use of only one conformational search method usually

does not yield a full set of the low energy ligand conformations.

The low energy conformations are described using distance space

descriptors, such as molecular distances and angles. The same set of descriptors

must exist for every molecule to allow for the inter-molecular comparisons

to occur. As well, the description must be complete and robust enough to

distinguish the differences between conformations of the same molecule. The

methodology for model building described herein is limited by the number

of common distance space descriptors used. It is possible that the molecules

chosen for the model building exercise could be so dissimilar that they

possess an inadequate number of common distance space descriptors. If this

is the case, alternative analysis techniques such as comparing specific atoms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

pharmacophore points, or volumes may become more appropriate.

Subsequently, conformational sets consisting of one conformation of each

training set molecule are formed. Then each set is combinatorially compared

by analysis of the participating conformer 3D molecular descriptors, thereby

providing a similarity score. This score describes the similarity of the ligands in

3D space and is based on the summed relative differences of the distance space

descriptions. Since the approach is based on relative difference, the lower the

similarity score the more similar the conformations are in 3D space.

Calculating similarity scores for every possible combination of the low

energy conformations quickly escalates into m any comparisons resulting in

gigabytes of data. This data then needs to be sorted in order to find the lowest

scores representing the conformations most similar in 3D space. When the data

set is too large to fit into the main memory of the computer, it can still be sorted

out-of-core memory. This entails a large amount of very slow reading and

writing operations to files. A certain amount of speed can be gained by using

a parallel file system. Additionally, run times may be improved by keeping

only a subset of the data, namely, a portion of the lowest scores. Keeping a

subset of the scores allows in-core sorting. Yet, the question remains as to how

many of the low scores are enough to fully represent a set of functional model

binding. In practice, keeping more than just the lowest score multi-ligand

conformational group is useful for understanding subtle commonalities amongst

the ligand conformations that were not used as scoring molecular descriptors.

Hence, random visual examination of the sets of conformations with increasing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

similarity scores is useful for identifying these subtle commonalities.

Model Verification

After finding an optimal superposition of ligands in 3D space, the

superposition can be used as the basis for a pharmacophore model. Preliminary

validation of the model can occur by employing previously unused (leave-one-

out) ligands (with high affinity and selectivity for the same binding domain) and

comparing them to the initial model. If one of the low energy conformations

of the ligands chosen for validation matches the model, then the model can be

used for an initial design exercise. If none of the low energy conformations of

the leave-one-out ligands match the model then the model is deemed invalid.

A non-robust model may arise as a function of distance space descriptors being

too general an d /o r too few distance space descriptors have been employed.

Further, one or more of the molecules composing the initial model may need

to be replaced in order to provide a better selection of common distance space

descriptors, and therefore, a more robust model.

The Drug Design Exercise

There are two ways to approach the new drug design exercise that

utilizes the ligand-based pharmacophore model. This can be either as a team

or as an individual effort. The more efficient of the two methods occurs when

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

experts in chemical synthesis, toxicology and metabolism work together with

the model. The other approach is for the individual researcher to take on the

design exercise alone. Potential efficiency of working in a team comes from the

ease of collectively understanding synthesis details, potential toxicity issues, logP

(lipophilicity) profiles and metabolism of the ligand, all of these variables may

be considered in one design meeting. Conversely, existing software can aid the

individual in the design of synthesis, calculation of logP values, toxicity profiles,

and metabolism of the ligands. Yet, relying on several software predictions can

pose a precarious situation to the individual drug designer.

New ligands designed against the model need to present points of

interaction with the protein at the same 3D locals as described by the model.

However, for new drug design it should be realized that it may not be necessary

to present all points of interaction described by the model. The points of

interaction that are important for the project can be decided by the design team.

The conformation of the new ligand designed by the team or individual may

require more energy than is available in the biological system to achieve the

conformation necessary for protein binding. Therefore, a conformational analysis

should be employed for each new ligand in order to identify if a low energy

conformation(s) agrees with the model. Then the new ligand motifs afforded

from the design exercise are exemplified by synthesis. Subsequently, the new

drugs are evaluated for binding affinity (e.g. Ki, competitive inhibition binding

constant) and selectivity at the SERT. These data provide proof of the predictive

qualities of the pharmacophore model for new ligand design purposes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

Conclusion

In summary, an objective and quantitative model construction

methodology based on multiple ligands has been developed for producing a

3D pharmacophore model of the SSRI binding domain of the SERT. The multi

ligand training set proffers a fairly complete description of the SSRI SERT

where a select optimal superposition serves as the foundation of the model.

The methodology for finding an optimal superposition of seemingly dissimilar

ligands in 3D space supports the use of readily available computational resources

instead of a specific software package.

The low energy conformations of ligands known to bind at the binding

domain being modeled are compared with the model to provide initial

validation. After initial confirmation of the predictive qualities of the model it

can be used as a design template. This multidisciplinary design exercise needs to

assess the ease of synthesis, potential toxicity, metabolism, and logP value of the

potential new ligand. The model can be an effective tool for the design of novel

ligands with high affinity and selectivity for the binding domain of interest.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

References

Abramson, J., Smirnove, L, Kasho, V., Verner, G., Kaback, H.R., and Iwata, S.

Structure and Meachansim of the Lactose Permease of Escherichia coli.

Science, 2003, 301, 610-615

Accelrys, Inc., San Diego, California, www.accelrys.com

Gundertofte, K., Bogeso, K.P., and Liljefors, T. A stereoselective pharmacophore

model of the serotonin re-uptake site. In: Computer-assisted lead finding

and optimization, Waterbeemd, H., Testa, B., and Folkers, G., Eds., VHCA,

Basil, and Wiley-VHC, Weinheim, 1997, pp.445-459.

Huang, Y., Lemieux, M.J., Song, J., Auer, M., Wang, D. Structure and

Meachanism of the Glycerol-3-Phosphate Transporter from Eacherichia

coli. Science, 2003, 301, 616-620

Martin, Y.C. Pharmacophore Mapping. In: Designing bioactive molecules: three-

dimensional techniques and applications, Martin, Y.C., and Willet, P., Eds.,

ACS, Washington DC, 1998, pp. 121-148.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.accelrys.com

13

Mottola, D.M., Laiter, S., Watts, V.J., Tropsha, A., Wyrick, S.D., Nichols, D.E.,

and Mailman, R.B. Conformational analysis of D1 dopamine receptor

agonists: pharmacophore assessment and receptor mapping. /. Med Chem.

1996, 39, 285-296.

Nicklaus, M.C., Wang, S., Driscoll, J.S., and Milne, C.W. Conformational changes

of small molecules binding to proteins. Bioorg. Med. Chem. 1995, 3, 411-

428.

Rupp, A., Kovar, K., Beuerle, C., Ruf, C., and Folkers, C. A new pharmacophoric

model for 5HT reuptake-inhibitors: differentiation of amphetamine

analogues. Pharma. Acta Helv. 1994, 68, 235-244.

Tripos, Inc., St. Louis, Missouri, www.tripos.com

Vaswani, M., Linda, F.K., and Ramesh, S. Role of Selective Serotonin Reuptake

Inhibitors in Psychiatric Disorders: a Comprehensive Review. Progress in

Neuro-Psychopharmacology & Biological Psychiatry. 2002, 27, 85-102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tripos.com

14

A Simple Methodology for the Production of Three-Dimensional Models;

Serotonin Transporter as Example.

Introduction

Methodologies and tools for determining molecular similarity are useful

for identifying optimal superpositions of seemingly dissimilar molecules which

bind at a common binding domain (Perkins, Papadopoulos). Considering

molecular diversity along with the varied protein binding domain motifs, the

availability of multiple methodologies and tools for finding molecular similarity

allows for the development of functional models to become more efficacious.

The investigation presented here describes a straight forward and numerical

methodology for discerning molecular similarity amongst ligands. The easy

to understand, bias limiting multi-molecule approach (Dean) has been applied

to the fabrication of 3-D pharmacophore template of the serotonin selective

reuptake inhibitor (SSRI) binding domain of the serotonin transporter (SERT).

Previous modeling endeavors and model building software, will be covered very

briefly, followed by an in-depth presentation of the approach we took to develop

a 3-D pharmacophore template.

Pioneering pharmacophore development work was solely based upon the

lowest energy (global minima) conformation of a single molecule (Rupp). The

the global conformational energy minima conformation need not be the bioactive

conformation (Martin, Nicklaus). However, molecules possessing a single low

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

energy conformation, or where the bioactive conformation is known, could be

used as the foundation for a model. The structural features of this one molecule,

or lack there of, could lend to a bias in the model (Nicklaus). Potential bias, or

descriptive inadequacies, can be avoided by using multiple, equally weighted

(showing no preference for one over another) molecules in the model building

process.

A multi-molecule approach to model building has been previously

reported (Mottola, Gundertofte). These methodologies have employed

superpositioning of molecules using such force as to introduce conformational

distortions, have used visual inspections to to subjectively determine

conformational similarity or both. Results obtained in this manner have

inherent bias, which may lead away from, instead of towards a mean result.

Introduction of subjectivity into the modeling exercise will lead to results which

are ambiguous. This can also lead to results which are not repeatable in other

labs. By employing the same force field to calculate conformational energy and

the same methodology, identical models should be reproducible at separate labs.

Advances in software (Accelrys, Tripos) have afforded users a level

of abstraction from the modeling exercise. These computational tools have

brought modeling to a wider audience, which in turn has enabled greater rate

of model production. Unless the basis of the tools are understood the increased

productivity may be in vain. Automated pharmacophore development tools

usually produce multiple plausible models. It is then up to the user to pick the

right one. This can either be done subjectively or through further testing of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

each possible model to determine which one is right. The later can be time and

resource intensive.

As a brief overview of our methodology, the approach we undertook

is based on a more descriptive multi-molecule construct. Where the multiple

molecules posses a high degree affinity and selectivity for the binding domain

of interest. A full search for all low energy conformations of each molecule was

performed and compared numerically to determine the set of conformations

that are most similar. This set of most similar conformations, consisting of one

conformation from each molecule, was superposed using minimal energy. The

approach is covered, in-depth, below.

Each of the molecules on which the model is based is able to access a

specific 3-D conformation in order to interact at the binding domain. At the

binding event, each molecule must present this conformation that is functionally

similar to the conformation presented by the other molecules at the same event.

As long as the same dynamic response is elicited. In other words, each molecule

must present a similar conformation to interact at the binding domain. If the

most similar conformations of each molecule are found, then these conformations

could represent the bioactive conformation of each molecule (Dean, Jin). This

assumes that the molecules are binding within the same binding pocket of the

binding domain.

The molecules selected (the training set) for the modeling exercise should

possess high affinity, selectivity for the binding domain of interest, structural

rigidity, structural diversity, and contain a common set of descriptors. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

common set of descriptors may be ambiguous at this point, but it will be

discussed later in detail. Theoretically, a multi-molecule construct m ust contain

two or more molecules. It has been found, using four to five molecules limits

bias while keeping the data sets small enough to be usable. Three molecules

may just provide enough information for an unbiased model, while data sets

containing six or more molecules may become too large to be usable. The time

and computational resources may not be available to deal with very large data

sets. If more molecules are found than are needed by the training set, then one

can be set aside for a later use in a simple first pass "leave one out" test of the

viability of the model.

Once the training set has been selected, conformational analysis of the

molecules occurs. All low energy conformations of each molecule must be found

for the use in the comparison step. We defined low energy conformations as

a molecular conformation resting at a local energy minima which is less than

30kcals/mol above the global energy minimum of the molecule (Rupp). It has

been argued both 30kcals/mol above the global energy minimum is too high

and the conformational energy of the protein bound structure could be as high

as 40 kcals/m ol over the global conformational energy minima in a vacuum

(Nicklaus).

Conformational analysis can be accomplished by multiple methods (eg.

molecular dynamics, Monte' Carlo, systematic, etc). It has been found that the

use of more than one of these methods ensures better coverage of conformational

space. As well, the same force field m ust be used in the minimization step of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

the conformation search routines. Using multiple force fields will lead to the

production of conformationally and energetically different, but incomparable

conformations.

Similarity is based upon an objective comparison of molecular features

in order to determine which conformations, between the molecules, are most

alike. The comparative features can range from molecular surface areas

and electrostatic fields to distance space descriptors (Jin, Greco, Crippen,

Blumenthal). We elected to use distance space descriptors. As the comparative

descriptors more completely describe the molecules, the uniqueness of each

conformation becomes numerically more apparent. The comparison of

descriptors is carried out using a combinatorial relative difference calculation.

The outcome of the calculation is a similarity score or a value representing

how similar a set of conformations are. The lower the score the more similar

the conformations in 3-D space. The purely mathematical approach provides

an objective basis as opposed to subjective decisions based upon visualization,

which can be misleading.

After numerically reaching this point, a subjective check may provide

initial validation of the modeling exercise. A superposition of the most similar

set of conformations should produce an image which visually shows the

conformations better accessing equivalent points of potential binding (better

alignment in an overlay image) than a superposition of a conformational set

with a median score. The set of conformations with the m edian score should,

in turn, provide a better overlay than the most dissimilar set of conformations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

If the lower scoring overlays do not visually provide better overlap of points

determined to plausibly be important during the binding event, then the

modeling exercise need to be repeated with changes enacted. Changes may

include using a more detailed set of descriptors, replacement of one or more of

the molecules, or removal of a molecule.

As part of this proposed methodology a first pass test of the

pharmacophore models validity is accomplished by means similar to a "leave

one out" method. A molecule not utilized in the modeling exercise is compared

with the pharmacophore for similarity. If comparison shows the leave one

out molecule is similar to the model then it becomes appropriate to spend lab

time and resource for further validation for the model. Even though only one

molecule compared with the model is written to here, it is appropriate to compare

more than one molecule with the model. The leave one out molecule can be

of low or high affinity for the binding domain of interest, but should possess

structural rigidity. A very flexible molecule inherently has many low energy

conformations and should be avoided, if possible. The number of low energy

conformations increases the possibility of finding one similar to an incorrect

model. Ibogaine was selected as the molecule to be used in our "leave one out"

test. Ibogaine has low affinity for the SSRI binding domain of the SERT (0.55 pM,

(Baumann)) and is promiscuous at other binding domains. The structural rigidity

of ibogaine extremely limits the possibilities for presenting the pharmacophore to

bind at the SSRI binding domain of the SERT, making it a good candidate for an

initial comparison with the 3-D SSRI SERT pharmacophore model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

Methodology

Four molecules were chosen (based on activity, selectivity and structure)

for modeling the 3-D pharmacophore for the SSRI binding domain at the SERT

(Figure 2.1). Conformational analysis was performed on the four molecules

using both a Monte' Carlo and a molecular dynamics methodology. The

Monte' Carlo method used was called "randomsearch" and is a part of Sybyl

6.4 (Tripos). The molecular dynamics method used was AESOP which was run

within the Sybyl 6.4 environment (AESOP). A Sybyl molecular spreadsheet was

produced for each molecule containing all the conformations found through

the multiple conformational searches. All conformations were moved to their

local conformational energy minima using the minimization routine with the

force field set at the default settings in Sybyl 6.4. Low energy conformations

were defined as conformations with energy less than or equal to 30 kcals/ mol

above the global energy minimum for the molecule. High energy conformations

were defined as conformations with energy greater than 30 kcals/m ol above

the global energy minimum for the molecule. Duplicate and high energy

conformations were eliminated from the Sybyl molecular spreadsheets resulting

in four spreadsheets, where each one contained the low energy non-duplicate

conformations of one molecule. The specific setting used in the software for the

conformational searches as well as the results of these searches can be seen in

Figure 2.2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

ce
Co

'(/)c
ce
LU

0 CO
E g)
Q

I
co
CD

co
ü
3!k_
COco
ü

c
0
(0o
x :
ü

3.
3
Ü
0
O

0
Ç
"0
Eo
o
D)
C
yç
OQ
S
CO
CO
0

o
Sîo
X:
Q .
O
N
E
IL-
(Q

8 ° -
LL

I
I I
1 ^cq O

P
§ c/3

IIa c/3I
M

m
V

I
1
1
Q

%i
g

CO
I

I
1
c/3

I
T3

I
1
I
I
I
o

s

8

I
Ia
I

I

T3

I
2

î
I
ilsil
c/3 TJ
ôj g

II
iî

I I
XI .CL) T—I

"o
§

A ^

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

Distance space descriptors were used in developing a comparable set of

descriptors for the SERT SSRI modeling endeavor (Figure 2.3). The low energy

conformations of each molecule were described using the descriptors in Figure

2.3. The descriptor measurements were obtained from and stored using Sybyl

molecular spreadsheets. The four Sybyl molecular spreadsheets containing the

measures were exported as text files to facilitate the comparisons, as described

below.

The description of each conformation of each molecule was

combinatorially compared against the descriptions of every conformation of the

other molecules. The comparison was accomplished using the relative difference

equation for the case when neither measurement is known to be correct. The

exact implementation of the formula can be seen in Figure 2.4. A lower score

indicates the conformations being compared are more similar. Descriptor

comparison was carried out using a custom written program that encompasses

the implementation of the relative difference equation. The program creates a

text file consisting of the comparison results for each descriptor and the overall

similarity score for each comparison group.

The text was loaded into the data analysis and graphing program Igor

Pro (WaveMetrics). Using Igor Pro the comparison groups were sorted by their

overall similarity score from lowest score to highest score. The graph of the

sorted scores can be seen in Figure 2.5. The 128 lowest scoring (most similar)

conformational comparison groups were various conformations of rotomers

of the same conformations. The 128th lowest scoring group was the lowest

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

I
cc
T3c
CO
(0

CO

<
COc
g

toisc
O
o

c

I
I
C/2m
pi

I
I
I
s

I00
00

I
I13

1
f
i

I
I
I
I

I
I
I
\o

I
I
.3

1
I
§

1
■§

oocs 00

VO oo
VO

1
■f

I
I
a a

I

s;s

I
8

I

§
VOCO

o
VO

!
III c/2

113

1 1II
II

\o

I

'O

f
13

§

8

ê

I
13

"=t
\o

I
.3
S'

I
I
I
d
W)

"S

I
s
2 s
I I

•i I
II
I t
i l
■g §cr Ü

II

CN

I
I I
O ^

i l

VO00o

}
1

I
I
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Defining the Conformations in Distance Space

24

Definitions Made in Sybyl 6.4 to Facilitate
Measurement Descriptions

Arl Centroid
Ar2 Centroid
Arl Axis
Ar2 Axis
YZ Plane - defined as the plane going through

both the Arl Axis and Ar2 Axis
XY Plane - defined by the Arl Axis and 2

normals that start at the connecting carbon and
are normal to the YZ Plane

XZ Plane - defined by the normals that start at
the connecting carbon and are normal to the
YZ Plane and the normals that start at the
connecting carbon and are normal to the XY
Plane

Arl Plane - defined by the Arl ring
Ar2 Plane - defined by the Ar2 ring

Descriptions Used to Describe
Conformations in Distance Space

N to Arl
N to Ar2
N to Arl Plane - absolute value
N to Ar2 Plane - absolute value
N to the Connecting Carbon
Arl Centroid to Ar2 Centroid
Arl to Ar2 Plane - absolute value
Ar2 to Arl Plane - absolute value
Angle Arl Cetroid to the Connecting

Carbon to N
Angle Ar2 centroid to the Connecting

Carbon to N
N to YZ plane - explicit value
N to XY plane - explicit value
N to XZ plane - explicit value
Plane Angle - Arl Plane to YZ plane -

explicit value
Plane Angle - Ar2 plane to YZ plane -

explicit value

Explicit disance measurments are
positive or negative depending on
where N is in the defined coordinate
system as shown.

After measurement, plane angles were
adjusted to have the angle distibution
centered at 90 degrees, with all confor
mations having a congruent placement
of zero degrees

S-Citalopram was also described with Arl and Ar2 reversed from what is shown in figure 2.1.
This reveresed description yielded much poorer similarity scores leading to the conlcusion
that the Arl and Ar2 definitions as shown in figure 1 is correct for the pharmacophore
biulding exercise.

Figure 2.3 D efinitions and m easurem ents u sed to describe conform ations
in distance space.

(+>-,+)
yz plane

(+,+.+)(-,+,+)

Arl
xy plane

Ar2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

A-v i c ' ') Vk

» = 3
Mrdc=3

IXI
M=4

Wrdc=6

r*'«— >Fj*

n=5
Wrdc~10

As the number of molecules
being compared increases the
number of relative difference
calculations increase following
an arithmetic mean.

= measure k o f molecules a
: one relative difference calculation (rdc)

n = num ber o f molecules

n - \

klràc
(«-!)(«)

similarity score =
1 d

d XM .measures rdc
I

1
I r

V !

V

+
\

where \ < i < j < number of molecules

n , = number of relative difference calculationsrdc
within a conformational comparison group

d = number of distance space descriptors
measures ^

y, = measure k of molecule a (distances, angles, etc.)

score = the calculated similarity of one conformational
comparison group

conformational comparison group = one low energy conformation
of each molecule

Figure 2.4 Equation for calculating the similarity score for one conformational
comparison group through the application of relative difference. The number of
relative difference calculations for the SERT SSRI data set is equal to 116,760,344
(1,297,344 comparison groups x 15 compared measures x 6 combinatorial relative
difference calculations per measurements).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Sorted Comparison Scores

0 .3 1 0 - ,

0 .3 0 5 -

group #1281270 contains all
four global minima conformers0 .3 0 0 -

0 .2 9 5 - group # 1 2 8
0 .7 -

0 .2 9 0 -

§ 0 .2 8 5 -

0 .2 8 0
0 .6 -O)

0 .5 -JS3u
<3

0 .4 -

group # 1 2 8 is th e b es t scoring
s e t with aligned N electron pairs0.3 -

1.2x10®0.4 0.6 1.00.0 0.2 0.8

Conformational Comparison Group Identification Number

4 more similar conformations — — less similar conformations »

Figure 2.5 Graph of the 1,297,344 calculated similarity scores of each conformational
comparison group sorted from low (most similar) to high (least similar). The inset graph
shows the 160 lowest similarity scores.

scoring instance were the lone pair of electrons on the terminal amine aligned

and therefore was selected as the basis for the SSRI binding domain of the SERT

model (appendix 2.1).

Superposition of the 128th most similar conformational set can be seen in

Figure 2.6. Superposition of the four conformations involved in a comparison

group of SSRI ligands was achieved using the multifit routine in Sybyl6.4.

In this routine, a spring constant was set between pairs of points on each

conformation. A minimum of three pairs of points between each conformation

is required. Using a large spring constant at select locations will literally force

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

S-Citalopram Indatraline MCN-5652 Sertraline
A B C D E F

distance
N to X

(angstroms)

distance
N to

Ar2 centroid
(angstroms)

distance
Arl centroid to

Ar2 centroid
(angstroms)

distance
N to

Arl centroid
(angstroms)

distance
N to

Arl Plane
(angstroms)

distance
Ar2 centroid

to X
(angstroms)

Sertraline 2.135 kcals/mol 8.737 3.720 4.822 5.949 1.352 7.611
MCN-5652 13.035 kcals/mol 8.253 3.734 4.912 5.164 1.430 7.762
Indatraline 14.532 kcals/mol 9.342 3.762 4.952 6.226 1.150 7.800
S-Citalopram 15.585 kcals/mol 11.031 4.618 4.975 7.131 1.843 8.696
average 9.341 3.959 4.915 6.118 1.444 7.967

G H I J K L

distance
hetero atom

toX
(angstroms)

distance
N to

hetero atom
(angstroms)

distance
hetero atom to

Arl plane
(angstroms)

torsion angle
between

hetero atom
and Arl plane

(degrees)

distance
hetero atom to
Ar2 centroid
(angstroms)

distance
hetero atom to
Arl centroid
(angstroms)

S-Citalopram 15.585 kcals/mol 7.051 5.098 0.489 16.4 3.713 3328
average 7.051 5.098 0.489 16.4 3.713 3.328

All m easurem ents
were taken using
Tripos Sybyl 6.4.
The conform ations
have b een energy
minimized to zero
energy ch an ge
using Sybyl 6 .4
default settings.

M N O P

distance
Arl centroid

to X
(angstroms)

torsion angle
between
Arl axis

and Ar2 Plane
(degrees)

torsion angle
between
N and

Arl plane
(degrees)

torsion angle
between
Ar2 axis

and Arl plane
(degrees)

Sertraline 2.135 kcals/mol 3.153 42.0 23.6 46.8
MCN-5652 13.035 kcals/mol 3.175 31.8 69.3 47.7
Indatraline 14.532 kcals/mol 3.153 50.9 73.2 36.3
S-Citalopram 15.585 kcals/mol 3.992 81.7 78.4 53.6
average 3.368 51.6 61.1 46.1

Figure 2.6 Superposition of Sertraline, MCN-5652, Indatraline, and S-Citalopram
as the basis for the model of the SSRI binding domain at the SERT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

the conformations together, possibly raising the potential energy of each

conformation well outside what is possible in the native biological system. In the

superposition shown in Figure 2.6, a one calorie spring constant (the minimum

allowed by the software package) was used at the minimum of three point pairs

between the conformation. The point pairs used in the multifit routine were

the two associated aromatic ring centroids and the terminal amine. Using both

the minimum number of point pairs and spring constants introduces the least

amount of energy into the system.

The low energy conformations of ibogaine were determined using the

SYBYL randomsearch (Figure 2.7). Distance space descriptors (Figure 2.7) were

used to compare ibogaine with the SSRI SERT pharmacophore using relative

difference (Figure 2.8). The calculated score was sorted from low to high (Figure

2.9). The most similar conformation of ibogaine to the SSRI SERT model was

superposed with the model (Figure 2.10). The superposition was accomplished

using the one calorie spring constants methodology described above. The three

points used in the superposition were the terminal amine, C8 and C9 as labeled

in Figure 2.7.

Results

The pharmacophore for the SSRI binding domain of the SERT is based

upon the 128th most similar group (Figure 2.5). The 128th most similar group

is the first group in which the terminal amine lone pairs of electrons align.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

Conformational Analysis of Ibogaine

SYBYL randomsearch
ring bond = 42.00 Â
minimization maximum iterations = 800
randomsearch maximum iterations = 2000
energy change cutoff = 5000K
RMS threshold = 0/003 Â
convergence threshold = 0.000
maximum hits - 32
number of searches = 1

number of low energy
conformations found = 24
energy range of
low energy conformations =
33.536 - 35.937 kcals/mol

The head group area (non-aromatic
tricyclic area) is capable of two low energy
conformations. Rotation of the methoxy and
ethyl side chains account for 12 possible low
energy conformations for each head group
conformation (2x12 = 24).

A i I plane

jC5
Terminal N

C8 C6

Measurements used in the comparison
between Ibogaine and the model of the
SSRI binding domain at the SERT

• distance from terminal amine to C8
• distance from terminal amine to Arl plane
• angle between terminal amine, C8, C5
• distance along the Arl axis from C8 to a point which is closest to the terminal amine
• distance from the point on the Arl axis which is closest to the terminal amine, to the

terminal amine
• distance from the point on the Arl axis which is closest to the terminal amine, to the

point on the Arl plane which is closest to the terminal amine

Figure 2.7 Conformational analysis (software settings and results) of Ibogaine.
Definitions and measurements used to describe Ibogaines in distance space.

measures

k = l

t r r mV - V,

V,k

n
where m = measure from model

t = measure fron test ligand
(ibogaine, in this case)

n„ number o f compared measures

= measure k o f molecules a

Figure 2.8 Equation for calculating the relative difference similarity score
comparing Ibogaine with the SSRI SERT model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Sorted Relative Differences Similarity Scores
1.30

1.25

■©— Similarity Score, Ibogaine to SSRI SERT Model

3 ' 1.20

1.15

■ <— more similar less similar —> •
1.10

205 10 15 250

Comparison identification Number

Figure 2.9 Graph of the 24 calculated relative difference similarity scores of each
conformation of Ibogaine compared with the SSRI SERT model sorted from low
(most similar) to high (least similar).

Terminal amine lone pair electron vectors had not been described by the

descriptors. Differences between the 128th group and the 127 more similar

groups are entirely accounted for by rotation of the terminal amine, X group, and

the A rl ring. The final results of the modeling exercise, a superposition of the

training set and a distance space description of the superposition are shown in

Figure 2.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

SSRI SERT Model

Ibogaine

Figure 2.10 Superposition of the most similar scoreing conformation of
Ibogaine to the SSRI SERT model, with the model of the SSRI binding
domain at the SERT.

Discussion

Considering the shape of the graph shown in figure 2.5, a small percent of the

total number of conformational comparison groups are very similar in 3D space. As

well, a small percent of the total number of conformational comparison groups are

very dissimilar in 3D space. The majority of similarity scores indicate there is a small

consistent increase in the lack of similarity going from left to right on the graph. These

properties, seem intrinsic to the type of analysis done here.

The trend in increasing similarity score should be visually apparent when a

subjective viewing of a random sampling of conformational comparison groups with

increasing similarity scores. This should be especially true if at least ten percent of the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

data occurs between the random sampling points. Upon visual inspection, subjectively

if the increasing dissimilarity is not seen the results may be classified as ambiguous.

Ambiguous results warrant close inspection before continuing the modeling exercise.

Experience, has shown an increase in the number of common distance space descriptors

will remove the ambiguity.

The model of the SERT SSRI binding domain was developed from inhibitors

which bind at the SERT, but do not transport. In theory, new molecules produced

with a reduction in the number of points of interaction between ligand and transporter,

addition of conformational flexibility, or a combination of both will lead to transportable

substances at the SERT. This could be systematically tested to achieve understanding of

the amount of flexibility and which combinations of points of interaction are necessary to

prevent transport.

Ibogaine provides some initial answers. Ibogaine is a very rigid molecule, lacks

a second aromatic ring and does not transport at the SERT. The ibogaine head group

area occupies space not defined by the SSRI SERT model. As well, the potential of the

ibogaine hetero atom to be involved in a binding event is reduced as the lone pair of

electrons are involved in aromaticity. The aromaticity of the hetero atom and excessive

molecular volume (Mottola) could explain the lower affinity of ibogaine to the SSRI

binding domain of the SERT.

Relative difference is a basic straight forward way to compare two values. The

most popular version of this equation compares an unknown value against a known value.

The equation indicates how much larger or smaller the unknown value is compared to

the known value. When relative difference is between two values of which neither value

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

may be correct, larger and smaller becomes mute. This explains taking the absolute value

of the numerator (Figure 2.3), where the magnitude between two values is important and

not whether one value is greater than the other. The denominator represents the average

between the two magnitudes of the numerator. This is accomplished by taking the

absolute value of each participant in the denominator, individually (Figure 2.3).

Conclusion

The 3-D pharmacophore template of the SSRI binding domain at the SERT

resulting from this methodology has been successfully used in several design exercises.

One of which is the design of the highly potent 2’-methyl-6-nitroquipazine SERT

inhibitor ligand (Ki = 81 pM, (Gerdes)). The simplicity and effectiveness of this

methodology allows the modeler to use any combination of a variety of readily available

inexpensive software tools to develop rigorous 3-D pharmacophore models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

References

Accelrys, Inc., San Diego, California, www.accelrys.com

AESOP developed by B.B. Masek, Zeneca, Wilmington, Delaware.

Baumann, B.H., Fable, J.P., All, S.F., Rothman, R.B., and Mash, D.C. Noribogaine

(12-hydroxyibogaineO: a biologically active metabolite of the

antiaddicitive drug ibogaine. Ann. N.Y. Acad. Sci. 2000, 914, 354-368.

Blumenthal, L.M. Theory and applications of distance geometry. Chelsea Publishing,

Bronx, 1970.

Crippen, G.M. A novel approach to calculations of conformation: distance

geometry. /. Comp. Phys. 1997, 24, 96-107.

Dean, P.M., and Perkins, T.D.J. Calculation of three-dimensional similarity. In:

Designing bioactive molecules: three-dimensional techniques and applications,

Martin, Y.C., and Willet, P., Eds., ACS, Washington DC, 1998, pp. 199-218.

Gerdes, J.M., DeFina, S.C., Wilson, P.A., and Taylor, S.E. Serotonin transporter

inhibitors: synthesis and binding potency of 2'-methyl- and 3'-methyl-6-

nitroquipazine. Bioorg. Med. Chem. Lett. 2000,10, 2643-2646.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.accelrys.com

35

Greco, G., Novellino, E., and Martin, Y.C. 3D-QSAR methods. In: Designing

bioactive molecules: three-dimensional techniques and applications, Martin,

Y.C., and Willet, P., Eds., ACS, Washington DC, 1998, pp. 219-252.

Gundertofte, K., Bogeso, K.P., and Liljefors, T. A stereoselective pharmacophore

model of the serotonin re-uptake site. In: Computer-assisted lead finding

and optimization, Waterbeemd, H., Testa, B., and Folkers, G., Eds., VHCA,

Basil, and Wiley-VHC, Weinheim, 1997, pp.445-459.

Jin, B., and Hopfinger, A.J. A proposed common spatial pharmacophore and the

corresponding active conformations of some TxA^ receptor antagonists. /.

Chem. Inf. Comput. Sci. 1994, 34,1014-1021.

Martin, Y.C. Pharmacophore Mapping. In: Designing bioactive molecules: three-

dimensional techniques and applications, Martin, Y.C., and Willet, P., Eds.,

ACS, Washington DC, 1998, pp. 121-148.

Mottola, D.M., Laiter, S., Wafts, V.J., Tropsha, A., Wyrick, S.D., Nichols, D.E., and

Mailman, R.B. Conformational analysis of D ̂dopamine receptor agonists:

pharmacophore assessment and receptor mapping. /. Med Chem. 1996, 39,

285-296.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Nicklaus, M.C., Wang, S., Driscoll, J.S., and Milne, G.W. Conformational changes

of small molecules binding to proteins. Bioorg. Med. Chem. 1995, 3, 411-

428.

Papadopoulos, M.C., and Dean, P.M. Molecular structure matching by simulated

annealing. IV. Classification of atom correspondences in sets of dissimilar

molecules. /. Comput-Aided M ol Design 1991, 4,119-133.

Perkins, T.D.J., and Dean, P.M. Molecular partial similarity using surface-

volume comparisons. In: Computer-assisted lead finding and optimization,

Waterbeemd, H., Testa, B., and Folkers, C., Eds., VHCA, Basil, and Wiley-

VHC, Weinheim, 1997, pp. 421-432.

Rupp, A., Kovar, K., Beuerle, C., Ruf, C., and Folkers, C. A new pharmacophoric

model for 5HT reuptake-inhibitors: differentiation of amphetamine

analogues. Pharma. Acta Helv. 1994, 68, 235-244.

Tripos, Inc., St. Louis, Missouri, www.tripos.com

WaveMetrics, Inc., Lake Oswego, Oregon, www.wavemetrics.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tripos.com
http://www.wavemetrics.com

37

The Nuances of Comparing Molecular Descriptors Using Relative Difference

Introduction

Comparing the low energy conformations of multiple, structurally

diverse molecules active at the same binding domain, for commonalities in

three-dimensional (3D) space can lead to a pharmacophore model for said

binding domain. Mottola et al., briefly noted performing these comparisons to

determine similarity between molecules, but lacked a detailed methodology,

in their D ̂dopamine receptor pharmacophore development work. Using

comparisons without describing how they were done makes it difficult to repeat

the experiment, and to adapt the methodology to new work. Cundertofte used

root mean square (RMS) to accomplish comparisons in developing a serotonin

(5-HT) transporter (SERT) pharmacophore model. This technique involves

comparing specific atoms that theoretically have identical locations in 3D space.

Depending upon how structurally diverse the set of molecules being compared

are, the number of identically located atoms may be very limited or non

existent. It is possible to define identical points, which are not atoms, in space.

However, in practice, this may prove difficult with current software packages

such as Sybyl (Tripos). The methodology implemented here, to overcome the

limitations of RMS, describes the molecules of interest using distance space

descriptors (Blumenthal), followed by the comparison of these descriptors using

relative difference. The relative difference equation used here has been modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

to produce the value two when a positive value is compared with zero or a

negative number. The modified relative difference equation calculates the same

values as the relative difference equation for values that are either both positive

or both negative. However, the modified equation calculates the value of two

when the two values used in the equation have opposite signs or one value

is zero. Normally the values used in the relative difference equation are both

positive. The modification provides an indicator when the values being used

in the relative difference have opposite signs or one of the values is zero. After

a brief overview of the pharmacophore building exercise, the modified relative

difference equation and resulting similarity score equation will be explained.

In this exercise, low energy conformations have been defined as the those

conformations with a conformational energy less than or equal to 30 kcals per

mol over the global energy minima (Rupp). Multiple molecules with an affinity

for the same binding domain will present points having the necessary properties

for binding at the same locations in 3D space in order to invoke the binding

event. The low energy conformations of each molecules are described using

distance space descriptors. The descriptors are compared for similarity using the

equation being developed below that calculates a similarity score for a set of low

energy conformations (Figure 3.11). A set equals one low energy conformation

from each molecule. The low energy conformation of each of the molecules

that are the most similar in 3D space are representative of the bioactive, binding

conformation. It is possible to have multiple sets of low energy conformations

that possess equal similarity. In other words, the calculated similarity scores

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

are identical. In the event multiple sets are found to have equal similarity, it

most likely stems from a distance space description that is unable to distinguish

between conformations. This points to the necessity of using sufficiently

descriptive descriptions when comparing conformations. Each conformation

is unique and should be represented by the distance space description. When

one set of low energy conformations is found to be the most similar in 3D

space these conformations can be superposed, producing the foundation for a

pharmacophore model.

Each of the four serotonin selective reuptake inhibitors (SSRI),

escitalopram, indatraline, MCN-5652, and sertraline which bind at the serotonin

transporter (SERT) were described using 15 common distance space descriptors

(primary data located in appendixes 3.1-3.4). The measurements that the

distance space descriptors are based on were taken using the Sybyl software

package. Each conformations was minimized to zero energy change using the

default force field settings in Sybyl. As stated above, distance space descriptors

such as distances, angles, and position vectors can be used to describe general

attributes of a molecule without having to compare specific points, as in RMS

comparisons. Other properties associated with the volumes and surfaces of

molecules, such as regions of charge, may also be good descriptors for use

in comparisons. Once every low energy conformation of each molecule is

described, they can be compared.

Every combinatorial comparison set, one low energy conformation from

each molecule, was compared. Within each combinatorial comparison set, each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

descriptor was combinatorially compared. The total number of comparisons

required in this project equals the product of the low energy conformations,

number of descriptors, and the number of possible non repetitive combinatorial

comparisons for each descriptor:

12 low energy conformations of MCN-5652

X 16 low energy conformations of sertraline

X 29 low energy conformations of indatr aline

X 233 low energy conformations of escitalopram

X 15 descriptors

X 6 non repetitive combinatorial comparisons for each descriptor

(6 pairwise relative difference calculations for each descriptor)

= 116,760,960 comparisons

The number of non-repetitive combinatorial comparisons for each

descriptor follows an arithmetic mean (Figure 3.1). The end result of

these comparisons is an objective determination of which combinatorial

conformation set is the most similar in 3D space and can serve as the basis for a

pharmacophore model of the SSRI binding domain of the SERT.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

/

^ r d c ~ 1 0

K/«— > F / v K P ^ V!

/ \ IXI.
M=3

M rdc=3 M rdc=6

= measure k of molecules a
= one relative difference calculation (rdc)

n = number of molecules

total number of relative
= difference calculations per = ̂ = — — —

distance space descriptor i=\
Figure 3.1 The num ber of non-repetitive combinatorial comparisons for each
distance space descriptor follows an arithmetic mean.

The Modified Relative Difference Equation

Distance space descriptors, are essentially measurements used to describe

an object and can be compared using the relative difference equation (Wilson).

Figure 3.2 shows the relative error equation when one value is known to be

correct. The relative error and relative difference equations calculate a unit-less

value. The units in the numerator and denominator cancel. The calculated value

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

is representative of the deviation between two measurements. The smaller this

value is, the more similar the two measurements are (see the examples in Figure

3.3). Regardless of the initial magnitude of the measurements, the resultant

relative differences will have similar magnitudes. This allows for these values,

representative of the similarity between two measurements, to be summed

without unduly weighting larger measurements.

relative error=
measure—actua

actual

Figure 3.2 The relative error equation.

Object Y is know to be the correct size.
Is object X or object Z most similar to
object Y?

Subjectively, in this example, one should
be able to see that object X is most simi
lar to object Y.

Objectively, this similarity between
objects can be determine by using
relative difference. The equation used
for the special case when one object
is known to be correct is referred to as
relative error. The calculations using
the equation shown in figure 3.2 can be
seen at the bottom of this figure. Lower
values indicate greater similarity. The
calculations show that object X is most
similar to object Y.

X

angle 0 = 72°
a - 58 mm
b = 27 mm

Y

angle 0 = 75° angle 0 = 65°
a = 60 mm a = 45 mm
b = 30 mm b = 20 mm

X Y comparison

Z Y comparison

72°-75°

75'
+

58mm—60mm 27mm—30mm
60mm

65°—75° 45mm—60mm
+

30mm

20mm-30mm
75° 60mm 30mm

Figure 3.3 Objectively, X is determ ined to be m ost similar to Y.

=0.04+0.03+0.10=0.17

=0.13+0.25+0.33=0.71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

relative difference^
measure. ̂—measure^

 ̂measure ̂-\-measure ̂^

V y

Figure 3.4 The relative difference equation.

In the case of developing a pharmacophore model there are no known

correct values. The relative difference equation used in the case when there are

no known values can be seen in Figure 3.4. The denominator in this relative

difference equation is the average of the two values. In essence the relative

difference equation for the case when there are no known correct values, says the

correct values is halfway between the two measurements.

Normally the relative difference between a positive number and a

negative number would not be calculated, because the numbers normally

compared using relative difference are magnitudes, non-vector, directionless

quantities. However, it would be useful in comparing distance space

descriptions of molecules to be able to define a plane through the molecules, take

measurements from a common point in the molecules to the plane, define which

side of the plane the point is on, and have the comparison of points on opposite

sides of the plane result in a high (bad) score. In the graphs, the measurements

are one and x. The calculated relative difference of one and x is y. The calculated

value of y corresponds to the values of the relative differences over the range of

X on the graph. Looking ahead at the eventual summing of values to create an

overall similarity score, unlike Figure 3.5, the summed values need to be positive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

30.0

1—X

- ’ ’ ‘ n r .

20.0

10.0

- 10.0

- 20.0

-30.0

-3.0 - 2.0 1.0 0.0 1.0 2.0 3.0

Figure 3.5 A sample graph of the relative difference equation for x in the
range of -3.0 to 3.0. Figure 3.5 shows the comparison betw een positive and
negative can equal positive, negative, or undefined values.

Taking the absolute value of the denominator (Figure 3.6) solves the

problem of calculating negative y values. However, a problem still exists when

comparing positive and negative values, a vertical asymptotes occurs when the

denominator equals zero. While the denominator equaling zero may not have

a high likelihood, the regions of high relative difference on either side of the

asymptote are encountered on occasion. Figure 3.6, shows that the comparison

of negative and positive values will always have worse score than when positive

values are compared. It is possible for a negative and positive value to be closer

together than two positive values, though the relative difference equation would

not indicate this. As well, the points between -0.5 and -2.0 score much worse

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

30.0

l - x

20.0

y
10.0

0.0

-3.0 - 2.0 1.0 0.0 1.0 2.0 3.0

X
Figure 3.6 A sample graph of a modified relative difference equation that
takes the absolute value of the denominator. The calculated value of the
modified relative difference y for 1 and x over the range of -3.0 to 3.0, has
shown that the comparison of positive and negative can equal an undefined
or high value. The value y w hen x < 0 will always be higher than the value
y w hen x > 0. It is indicated by the equation above that 1 and -3 or more
similar than 1 and -0.75.

than values that are m uch further to the left.

One solution would be to assign an equal penalty, or weight, to all

comparisons of a positive value with zero or a negative value. Another solution

would be to take the absolute value individually for each member of the

denominator (Figure 3.7) calculates the value two when one measurement is

positive and the other measurement is equal to zero, or is negative (Figure 3.8).

The modified relative difference equation shown in Figure 3.7 still calculates the

same value as the relative difference equation for the cases when both values

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

are either positive and negative. Besides having one simple equation that works

in the cases of interest, the penalty value two is only slightly higher, than the

highest relative difference (Figure 3.4) that can be calculated for two positive

values (Figure 3.9). Most importantly, this modified relative difference equation

modified relative difference=
measure ̂—measure^

measure + measurer
\

V 7

Figure 3.7 The modified relative difference equation.

y

l-x
2.0

1.0

0.0

-3.0 - 2.0 - 1.0 0.0 1.0 2.0 3.0

X
Figure 3.8 A sample graph of the modified relative difference equation.
The modified relative difference y for one measurement of 1 and one
measurement of x over the range of -3.0 to 3.0, is shown. When % < 0, the
modified relative difference y equals 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

when jc> 1,

1—x
lim , .
JC-^oo / ^ >

l - x = x — l

= 2
l-\-x

V

V
x+1

= 2
/

y
Figure 3.9 The limit of the relative difference between one and x, as x approaches
infinity, equals two. The relative difference between two measurements, larger
than zero, is less than or equal to two.

can be used to objectively determine the similarity between objects (Figure 3.10).

The quality and the quantity of distance space descriptors will have an effect on

wether or not the similarity score indicates the similarity of objects.

Conclusion

To summarize, a modified relative difference equation (Figure 3.7) has

been created which calculates a relative difference value equal to the traditional

method when comparing values that are either both positive or both negative.

However, when one value is positive and one is negative, or zero, the difference

score is set to the value of two. Sybyl measures distances as both positive and

negative values. Whether a value is positive or negative is seemingly arbitrarily

assigned by Sybyl. In this case, the absolute value of the data must be taken

before the data is used in order to produce meaningful results. It m ust also be

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

Which two object are the most similar?

Subjectively, in this example, one should
be able to see that object X and object Y
are the most similar.

Objectively, this similarity between
objects can be determine by using
relative difference. The calculations
using the modified relative difference
equation shown in figure 3.7 can be
seen at the bottom of this figure. Lower
values indicate greater similarity. The
calculations show that object X and
object Y are the most similar.

X Y

X Y comparison

X Z comparison

Y Z comparison

angle 0 = 72°
a = 58 mm
b = 27 mm

|72°-75°| |58OTm-60w/n| |27/n/n-30mm|

angle 0 = 75° angle 0 = 65°
a - 60 mm a = 45 mm
b - 30 mm b = 20 mm

72“+ 75° 5Snm+ 60mm 21mm+ 30mm
2

|72°-65°

2
|58»im-45mw|

2
|27mm-20mmj

72° + 65° 58mm + 45mm 21mm+ 20mm
2

75°-65°

2

|6Gmm-45mm|

2
|30mm-20mm|

75° + 65° 60mm + 45mm 30mm + 20mm
2 2 2

= ^ + r ^ ^ + i^ ^ = 0 .1 4 + 0 .2 9 + 0 .4 0 = 0 .8 3 70° 52.5mm 25mm

Figure 3.10 Objectively, X and Y are determ ined to be m ost the m ost
similar objects.

determined if it would be best to move the entire data set into the positive domain

by added a value to each datum. The ability to add a penalty when points are

defined to be on either side of an arbitrary origin can be useful for determining

similarity. The penalty could be any value. Defining the penalty as two will add

to the overall similarity score (larger score, less similar) while keeping the relative

differences of the other measurements from being overpowered.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

The ability to calculate a score (Figure 3.11] that depicts the lack of

similarity when comparing positive and negative values has proven useful in

comparing low energy conformations of SSRIs for similarity (appendix 3.5).

Initial results of the modeling exercise were ambiguous. Random conformational

clusters with decreasing similarity were visually inspected and the calculated

decreasing similarity was not visually apparent. By using the penalty with

distances measured on either side of a plane defined through the molecules, the

results of the similarity scores were no longer ambiguous.

similarity score =
1

d xn .measures rdc

dmeasures

I S
where 1 < f < j < number of molecules V

n , = number of relative difference calculations
rdc

within a conformational comparison group

d = number of distance space descriptors
measures
(X

K = measure k of molecule a (distances, angles, etc.)

score = the calculated similarity of one conformational
comparison group

conformational comparison group = one low energy conformation
of each molecule

In this case,

number of molecules = 4

- V - '1 k k
\

K + K
2

/

n
rdc

d

r \
4
2

15
measures

Figure 3.11 The similarity score equation using the modified relative difference
equation. The similarity score equation can be used for calculating the similarity
between the low energy conformations of multiple molecules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

All functions were graphed using Igor Pro.

WaveMetrics, Inc., Lake Oswego, Oregon, www.wavemetrics.com

References

Blumenthal, L.M. Theory and applications of distance geometry. Chelsea Publishing,

Bronx, 1970.

Cundertofte, K., Bogeso, K.P., and Liljefors, T. A stereoselective pharmacophore

model of the serotonin re-uptake site. In: Computer-assisted lead finding

and optimization, Waterbeemd, H., Testa, B., and Folkers, G., Eds., VHCA,

Basil, and Wiley-VHC, Weinheim, 1997, pp. 445-459.

Mottola, D.M., Lalter. S., Watts, V.J., Tropsha, A., Wyrick, S.D., Nichols, D.E., and

Mailman, R.B. Conformational analysis of dopamine receptor agonists:

pharmacophore assessment and receptor mapping. /. Med Chem. 1996, 39,

285-296.

Rupp, A., Kovar, K., Beuerle, G., Ruf, C., and Folkers, G. A new pharmacophoric

model for 5HT reuptake-inhibitors: differentiation of amphetamine

analogues. Pharma. Acta Helv. 1994, 68, 235-244.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wavemetrics.com

51

Tripos, Inc., St. Louis, Missouri, www.tripos.com

Wilson, J.D. Physics Laboratory Experiments. D.C. Heath and Company,

Lexington, 1986, pp. 9-10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tripos.com

52

Implementation of Programs to Efficiently Calculate the Similarity Score for

Large Data Sets

Introduction

The methodology for developing a pharmacophore model based

upon multiple molecules described in the previous chapters is based upon

the combinatorial comparison of low energy conformations. The number of

comparisons required by this methodology can only be accomplished through

the development of custom software. After a quick introduction to the modeling

exercise, the rest this chapter will sequentially in chronological order cover the

custom software developed for accomplishing the comparisons.

There can exist multiple molecules which both have a high affinity and

selectivity for a single binding domain. A set of low energy conformations is

one low energy conformation of each of the selected molecules that binds to this

domain. The set of low energy conformations which are the most similar on

three-dimensional (3D) space are representative of each molecules conformation

at the time of the binding event. In this study, low energy conformations were

defined as those conformations with a conformational energy of less than or

equal to the global energy minima plus 30 kcals per mol (Rupp 1994, Nicklaus

1995). The binding domain of interest was the serotonin selective reuptake

inhibitor (SSRI) binding domain at the serotonin transporter (SERT). The

superposition of the most similar low energy conformations of select SSRIs

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

provided a good basis for a 3D model of the SSRI binding domain at the SERT.

The combinatorial comparison of all low energy conformations between

the molecules, that is necessitated by this approach to developing a 3D

pharmacophore model, can produce data sets that are too large to be analyzed

using typical solutions which are limited by computer memory. Typical

solutions effected by this problem include spreadsheet programs such as Excel

(Microsoft), and, for Tripos users, solutions which use the Sybyl Programming

Language (SPL) (Tripos). The combinatorial comparison of all low energy

conformations compares each low energy conformation with all other low

energy conformations of the other molecules. A conformational comparison

group can be defined as consisting of one low energy conformation of each

molecule. In the work presented here, a conformational comparison group

consists of one low energy conformation from each of the following SSRI's:

escitalopram, indatr aline, MCN-5652, and sertraline. The total number of

conformational comparison groups is equal to the product of the number of low

energy conformations of each molecule. For the SSRI SERT data the product

of 233 low energy conformations of escitalopram, 29 low energy conformations

of indatr aline, 12 low energy conformations of MCN-5652 and 16 low energy

conformations of sertraline equals 1,297,344 conformational comparison groups.

To determine similarity, every low energy conformation of each molecule

is described using multiple distance space descriptors (distances and angles).

These distance space descriptors are then compared to determine similarity. If

the distance space descriptors are adequate then every low energy conformation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

will have a distinct description. Within each conformational comparison groups

a set of combinatorial comparisons m ust take place for each one of the distance

space descriptor. These comparisons are accomplished using relative difference.

The equation in Figure 4.1 shows how the comparisons take place and the

similarity score is generated for each conformational comparison group. The

lower the similarity score the more similar the conformational comparison group

is in 3D space.

It is easy to see how the ensuing data set could outgrow the capabilities

of a prepackaged solution, such as Excel, and lead to the need for a

custom solution. The desire to extend the methodology for developing 3D

similarity score
d x n ,measures rdc

measures

I I /
i,j K + y / \

k k

where 1 < / < j < number of molecules ^ ^

n , = number of relative difference calculationsrdc
within a conformational comparison group

d = number of distance space descriptorsmeasures
V = measure k of molecule a (distances, angles, etc.)

score = the calculated similarity of one conformational
comparison group

conformational comparison group = one low energy conformation
of each molecule

Figure 4.1 The modified relative difference equation used in the programs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

pharmacophore models beyond the SSRI binding domain at the SERT, led to the

need for the custom solution to be generalized in order to work in other cases.

For instance, the more generalized solution would be able to handle changes

in the number of descriptors, molecules and low energy conformations. After

discussing the algorithm for calculating similarity scores the path to the current

solution, from SPL to Perl to the C programming language, will be covered.

Development and Implementation of Similarity Score Calculating

Programs

Referencing the equation shown in Figure 4.1, the relative difference

is calculated for every distance space descriptor between each low energy

conformation in a conformational comparison group. The number of relative

difference calculations per descriptor increases following an arithmetic series

(Figure 4.2). As the number of molecules increases the number relative

difference calculation significantly increases. The algorithm calculates all of the

combinatorial relative differences for a descriptor, sums the relative differences

and divides this sum by the number of combinatorial relative difference

calculations. This value can be thought of as an intermediate score and is

produced for each distance space descriptor. Each one of the combinatorial

relative differences, intermediate scores, is summed and divided by the number

of distance space descriptors to produce the similarity score for a conformational

comparison group.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

J Lyf rl<—>r/ i'i’ÿ A 4 ‘ rf
/ \ IXI

Vî — V̂k Vk̂ — V̂k
n=3 n=4

/ lr d c = 3 A%rdc=6 ^ r d c = 1 0

Vk = measure k of molecules a
= one relative difference calculation (rdc)

n = number of molecules

total number o f relative
= difference calculations per = ^ ̂ ^ — — — —————

distance space descriptor / = 1 2

Figure 4.2 The number of non-repetitive combinatorial comparisons for each
distance space descriptor follows an arithmetic mean.

In the implemented algorithm, after the similarity score has been

calculated for a conformational comparison group, the last molecule in the set of

molecules being compared is incremented to the next low energy conformation.

The similarity score is calculated for this new conformational comparison group

and the last molecule, again, increments to the next low energy conformation.

Once the last low energy conformation of the last molecule is reached, the last

molecule is reset to its first low energy conformation and the second to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

last molecule increments to its next low energy conformation. It is easiest to

think of the action of a mechanical odometer to understand this process, which

repeats until a similarity score has been calculated for all combinatorial of

conformational comparison groups.

In the case of a four molecule comparison, as was done here, after the

first similarity score is calculated the fourth molecule is incremented to the next

low energy conformation and the next similarity score proceeds to be calculated.

When the final low energy conformation of the fourth molecule is reached

during this increment and calculate process, the fourth molecule resets back to its

first low energy conformation and the third molecule increments to its next low

energy conformation. After the ensuing similarity score calculation the fourth

molecule increments again to its next low energy conformation. This process

repeats until all four molecules have reached there last low energy conformation.

The original work for this project, searching conformational space

and developing molecular spreadsheets which contained the low energy

conformations and the distance space descriptors, was done in Sybyl. It follows

that the first implementation of the algorithm described above would be in SPL.

One benefit of SPL is, it can work directly with the Sybyl molecular spreadsheet

files. The SPL program (appendix 4.1) read the data from four Sybyl molecular

spreadsheets, performed the calculations, and placed the results into a fifth

molecule spreadsheet. The program was tested and worked on small data sets.

Due to Sybyl molecular spreadsheets having a large footprint in memory, and

with the SSRI SERT data set consisting of 1,297,344 conformational comparison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

groups, after running for hours the scratch disk on the SGI server would fill to

capacity and the computer would stop rurming before the program completed.

The other drawback with the SPL program was even though it handled various

numbers of descriptors and low energy conformations, it was written to only

work with four Sybyl molecular spreadsheets. Explicitly, it could only calculate

a similarity score for four molecules, no more or no less.

A Perl script was written which dealt w ith the memory problem but still

only worked with four molecules (appendix 4.2). The Perl script reads data from

comma delimited text files, which required the Sybyl molecular spreadsheets

to be exported as comma delimited text files. Fortunately, Sybyl provides a

mechanism for exporting molecular spreadsheets as comma delimited text

files. Each row in the exported text files contains the row name from the Sybyl

molecular spreadsheet and is unique for each low energy conformation. The

label is followed in comma delimited form by all of the column data for that row.

The Perl script reads a row from each of the four data files into memory,

performs the calculations, and write the results into a new file. This row by row

approach uses very little memory but results in constant file reading and writing.

From a performance stand point, reading and writing to files is always one of the

slowest routines on a computer.

The comma delimited text file produced by the Perl script contains

the four labels followed by the results of the combinatorial relative difference

calculation for each descriptor and lastly the similarity score. The text file

produced by the Perl script from SSRI SERT data set contained 1,297,344 rows.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

where each row representing one possible conformational comparison group.

Each row contained four labels, 15 intermediate scores and one similarity score.

On a 2003, 867 MHz G4 12 inch Apple Powerbook, the Perl script takes 13.5

minutes to run and produces a file approximately 510 megabyte (MB) in size.

Within this 510 MB comma delimited text file, the nearly 1.3 million rows are not

in any particular order with regards to the similarity scores.

A lower numeric similarity score is representative of a conformational

group which is more similar in 3D space. Therefore, it would be helpful to sort

the conformational groups in ascending order according to similarity score. Two

ways of sorting a data set of this size include, 1) using the UNIX sort command,

and 2) using Igor Pro (Wavemetrics). The advantage Igor Pro has is it will

produce a tabular view and a graph of the sorted data.

Though, neither the SPL program or Perl script sort the data, the Perl

script has an advantage in that it would run to completion. Similar to the SPL

program, the Perl script could readily deal with a change in the number of

descriptors and low energy conformations (the number of rows and columns

in the data files) read from the data files. However, the Perl script still could

not deal with a differing number of input files. Though, at one point, the script

was physically modified to read three data files and perform a three molecule

comparison (appendix 4.3).

The desire to produce a platform independent program which would

calculate a similarity score for any number of molecules and and have an

improvement in performance led to the development of the C program currently

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

being used in our lab. Preliminary work was done using a different algorithm

for storing calculated data, accepted any number of data files for comparison,

dynamically allocated memory at run time, and was written in both serial and

parallel forms. This preliminary set of programs, which can be read about in

appendix 4.4, was written to explore dynamic memory allocation and parallel

computing ideas using the C programming language, message passing interface

(MPI), and OpenMP.

This history led to the following list of requirements for the current

program:

1) the capability to use any number (3 or more) data files for input

2) dynamically allocate memory at run time,

3) calculate all combinatorial similarity scores,

4) sort all similarity scores in ascending order,

5) if necessary sort similarity score out of core,

6) potential for easy cross platform implementation,

7) potential for easy implementation of multiprocessing, and

8) better performance than previously achieved through Perl scripting.

The potential for cross platform compatibility and multiprocessing were

the two reasons the C programming language was chosen as the language of

choice for this program. The C language provides performance, cross platform

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

compatibility through the gcc compiler, and support within the MPI community.

Fortran would have been another good choice due to its inherent calculation

performance and the provisions in MPI implementations for Fortran. The lack

of free compilers, such as gcc, for Fortran 90 or newer across multiple platforms

was the reason Fortran was not chosen.

In the C program, extensive use of C pointers were required in order to

deal with dynamic memory calculations, allow for faster sorting and allow for

more logical data and storage indexing. The program dynamically allocates

memory, at run time, for storing the information read from the input data files.

Storing the data required for the relative difference calculations in memory,

instead of reading it from a file as needed, decreases data access time improving

the performance of the program. It is not always possible to store the calculated

scores (the output data) in memory. There may be much more output data than

available memory. The user is given control over how much of the output data

will be stored in memory. The program then allocates the appropriate amount of

memory. This is handled in three different ways in the three C programs which

were written. Before going into the differences between the three programs, it

is important to talk about the implementation of the similarity score calculations

(Figure 4.1), which is the same in all three programs.

Calculation of the similarity score is accomplished identically in all

three C programs. The similarity score for one conformational comparison

group is accomplished with three nested loops. The inner two most loops

cycle through the combinatorial relative difference calculations for one distance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

space descriptor. The outer loop cycles though the descriptors and calculates

the intermediate scores. These three loops are are nested inside a fourth loop

which controls the order the low energy conformations are combined to create

conformational comparison groups.

In essence, the forth loop combinatorially builds the combinatorial

comparison groups. The first time through the loop, the first low energy

conformation of each molecule is used to make up the conformational

comparison group. The second time through the loop the last molecule

is incremented to its next low energy conformation creating the next

conformational comparison group. In this case, last refers to the last command

line argument when the program was invoked. For example, invoking the

program at the command line in the following manner escitalopram is the last

molecule (forth molecule) and MCN-5652 is the first molecule: " . /com psort. /

M CN -5652.txt./sertraline.txt./indatraline.txt./escitalopram.txt" As explained

before, the the forth loop continues repeating, the last molecule continues

to iterate through its low energy conformations until its last low energy

conformation is reached. At this point the last molecule resets back to its first

low energy conformations and the second to the last molecule (indatraline),

increments to its next low energy conformation. This process of incrementing

and reseting continues until the similarity score for the conformational

comparison group containing the last low energy conformation of each

molecule is calculated. The process of incrementing though all combinatorial

combinations of low energy conformations between the molecules is analogous

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

to the way a mechanical odometer works. Besides the calculation of the

similarity score, concatenation of the labels of each conformational comparison

group, placement of the concatenated label, intermediate scores and similarity

score into an array takes place in the forth loop.

Algorithm analysis for four nested loops indicates the asymptotic

maximum upper bound (O) is equal to the maximum loop iterations raised to

the power of four. However, the number of iterations of the three inner loops

will always remain very small in comparison with the number of iterations of the

fourth loop. This means O will actually be less than four. Changing to an out

of core program, where the data is not all held in main memory, the file reading

and writing becomes the overshadowing slow step at runtime.

Chronologically, the first program written, compsortall (appendix 4.5),

meets all of the requirements listed above. Plus, in ascending order of the

similarity scores writes the labels, intermediate scores and similarity scores

for all conformational comparison groups to a comma delimited text file. The

program prom pts the user for a number of similarity scores to calculate before

sorting, allowing for the calculations to take place in main memory (in core). The

program calculates the similarity scores in sets of this size until all scores have

been calculated.

More specifically, three arrays of equal size are created. The size of these

arrays is determined from the number of similarity scores to calculate provided

by the user. Array one stores the labels, intermediate scores, and similarity

scores that have just been calculated. Array two holds labels, intermediate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

scores, and similarity score read from a temporary file. Array three holds the

same information before it is written to a temporary file. Inside the fifth loop, the

labels, intermediate scores, and similarity scores are placed in array one. When

array one fills up it is sorted in ascending order of the similarity score using

the quicksort algorithm (Baase, Weiss). The first time this happens, all of the

information contained in array one is written to a temporary file. The second

time this happens the information in the temporary file is read into array two.

Array two and array one are merge sorted (Baase, Weiss) into array three. When

array three fills up it is written to a second temporary file. Array three will fill

twice. The first time array three is written to the second temporary file, the file

will be created and written to from its beginning. The second write to the file

will be appended to the end of the file. The third time array one fills up, the

second temporary file will read into array two in two sets, and first temporary

file will be re-created and written to in three sets. This process of calculating,

quicksorting, file reading, merge sorting, and file writing continues until the last

set of similarity score calculations is reached. This final set of calculations will be

smaller than array one, but the same process will occur, with the exception that

array three will write to the output file. The name of the output file is provided

by the user at runtime. The final result, is a text file containing the concatenated

labels, intermediates scores, and similarity scores, in ascending order, for all

conformational comparison groups.

The implementation of the merge sort, quicksort, and file reading and

writing in the program compsortall have been optimized for better performance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

The merge sort described above is a special case where both data sets being

merged are already sorted and is the fastest form of the merge sort. The pivot

for the quicksort routine comes from a median-of-three (Weiss) routine instead

of just using the first element of the array. Using the median-of-three, the first,

middle, and last elements are sampled and the median value is chosen as the

pivot. Using the median value increases the chances the value of the chosen

pivot is in the middle of the data set. This is important for the performance of

quicksort. Experimentally, in this application, the C function/scan/was found

to be faster than the UNIX read routine. In the code read is still being used for

reading the input data files, and fscanf is being used to read the temporary files.

The input data files a relatively small and read provides adequate performance in

this situation. The C functionfprintf is used to write to the temporary files and

output file. This function provides a convenient way to format the text in these

files.

Even with optimization, the file reading and writing necessary to produce

a file containing all conformational comparisons groups sorted in ascending

order, may be too time consuming for data sets larger than the SSRI SERT data

set. This can be especially true during early experimentation when descriptions

may not yet be developed adequately and m any trials of similarity score

calculation and sorting are likely to occur. To provide a less time consuming

alternative, the program compsort (appendix 4.6) was written. The program

compsort is very similar to compsortall in that it calculates and sorts the

similarity scores for all conformational comparison groups. It differs in that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

it only keeps, and subsequently writes to a file, a portion of the lowest (best)

scoring conformational comparison groups.

Similar to the compsortall program the compsort program prompts the

user for the number of similarity score to calculate in main memory before

sorting. The program also prom pt the user for the number of similarity scores

to keep and write to the output file. This program only has one array which

holds both the calculated scores and sorted scores. The array is initialized at the

necessary size to hold both the number of similarity scores calculated in a set

plus the number of scores to keep. The sorted scores which will be eventually

saved are kept at the beginning of the array and the set of calculated scores take

up the rest of the array. The section of the array holding the scores to be saved

is initialized with a large number, 1,000,000 specifically. After the first set of

similarity score calculations is complete the whole array is sorted using quicksort

and the median-of-three pivot described above. The quicksort routine moves the

large numbers, initialized at the beginning of the array, to the end of the array

and low similarity scores to the beginning of the array. During the subsequent

calculation and sort cycles the lowest scores end up at the beginning of the array.

After the similarity scores have been calculated, and sorted for all conformational

comparison groups, the program writes the user determined number of lowest

similarity scores to keep from the beginning of the array to the output file.

The last version of the program, comp (appendix 4.7), just calculates

the similarity scores for all conformational comparison groups in sets of size

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

determined by the user. Once a set of similarity scores have been calculated

they are written to an output file. In practice, due to all similarity scores being

written to the output file instead of just a subset, the program takes longer to

run than compsort. The comp program can be good for small data sets where

the similarity scores will be imported into a spreadsheet program, such as Igor

Pro, for sorting and graphing. As well the comp program serves as basis for

those people who want to write their own sorting routines or use the UNIX sort

command.

Conclusion

In conclusion, SPL, Perl and C were used to write a total of six programs

to accomplish the task of comparing low energy conformations to determine

the conformational comparison group, most similar in 3D space. SPL proved

inadequate for this task and Perl proved to have limited performance. C

provided the best performance and lends itself to cross platform compatibility

and future multiprocessing work. Figure 4.3 shows the overall runtimes for the

Perl script and three C programs when calculating the similarity scores for the

SSRI SERT data set.

The serial C program can be made parallel much the same was as was

done in appendix 4.4. The outer loop of the four nested loops can be split among

multiple processes. Little interprocess communication would need to occur.

Initially each process would need a copy of the data to work on and which

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

Program Run Times Using the SSRI SERT Data Set

0.00 100 200 300 400 500
time in seconds

600 700 800 900

rnsM:/liiiole%rule*;]Perl script
compsortall program
compsort program, 100,000 lines saved, 450,000 lines per calculation set
comp program

Figure 4.3 The Perl script and C program run times using the SSRI SERT data
set. The programs were all run on the same 2003, Apple 867 MHz G4 PowerBook
with 640 MB of RAM.

iterations of the outer loop to accomplish. The processes would then only need

to communicate once more to send the calculated similarity score to process zero.

The final communication would have to broken up into many small messages in

the case MPI due to the limited size of messages. Unbuffered messages or MPI-2

may solve this issue.

In Mac OS X a C variable of type double is eight bytes and a variable of

type char is one byte, the size of the similarity score calculation, read and write

arrays used in the compsortall program can be calculated. On a 867 MHz 04

12 inch Apple Powerbook with 640 MB of RAM running Mac OS 10.3.5, for the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

SSRI SERT data set virtual memory will start to be used when the arrays reach

about 550,000 lines in size. When this happens performance degrades. The time

required for reading and w riting/appending the temporary files are shown in

Figure 4.4, along with the over all run times for the SSRI SERT data at varying

array sizes. One thing that is clear from this graph is the impact that one less

out of core sorting cycle at 650,000 lines per array will have on run time, even

though virtual memory is being used at this point. The file containing all of

the concatenated labels, intermediate scores, and similarity scores for the SSRI

SERT data set sorted in ascending order is 453.6 MB in size. It is clear calculating

similarity scores for every conformational comparison group, even for data sets

much larger than the SSRI SERT data set, is practical. However, if all similarity

scores are to be sorted and saved in to a file in a timely manner, both large and

fast, possible parallel, file systems will be required.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

850 10
800 10
750 10
700 10
650 10
600 10

A 550 10
500 10

■M 450 10
400 10
350 10

' i 300 10
g 250 10

200 10
150 10
100 10

Temporary File Read and Wnte Times, Overall Run Times

400 500 600
time in seconds

1000

' temporary 61e read times
' temporary file write times
total run time, using the SSRI SERT data set

Figure 4.4 The read, write, and overall run times for the compsortall at
various array sizes. The data is good for looking at general trends, but the
exact number will vary from run to run depending on memory and cache
loading in Mac OS X. This points to why a balance between theory and
experiment is desirable. The program was run on the a 2003, Apple 867
MHz G4 PowerBook with 640 MB of RAM.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

References

Baase, S., Van Gelder, A. Computer Algorithms Introduction to Design and Analysis.

Addison-Wesley, Menlo Park, CA, 2000

Igor Pro, WaveMetrics, Inc., Lake Oswego, Oregon, www.wavemetrics.com

Microsoft Corporation, Redmond, Washington, www.microsoft.com

Nicklaus, M.C., Wang, S., Driscoll, J.S., and Milne, G.W. Conformational changes of

small molecules binding to proteins. Bioorg. Med. Chem. 1995,3,411-428.

Rupp, A., Kovar, K., Beuerle, G., Ruf, C., and Folkers, G. A new pharmacophoric model

for 5HT reuptake-inhibitors: differentiation of amphetamine analogues. Pharma.

Acta Helv. 1994, 68, 235-244.

Tripos, Inc., St. Louis, Missouri, www.tripos.com

Weiss, M.A. Data Structures and Algorithm Analysis in C. Menlo Park, CA, 1997.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wavemetrics.com
http://www.microsoft.com
http://www.tripos.com

72

distance between distance from
angle between

Arl centroid, Ar2
distance from
Arl to the axial distance from distance from

Arl centroid and Arl centroid to centroid and the X group on Arl centroid Arl centroid
Ar2 centroid Ar2 piane inner Ar2 axial C the Arl axis to hetero atom to N
(angstroms) (angstroms) (degrees) (angstroms) (angstroms) (angstroms)

Sertraline 2.135 kcals/mol 4.822 1.924 35.900 3.153 5.949
MCN-5652 13.035 kcals/mol 4.912 1.430 33.660 3.175 5.164
Indatraline 14.532 kcals/mol 4.952 1.886 29.350 3.153 6.226
S-Citalopram 15.585 kcals/mol 4.975 2.462 30.680 3.992 3.328 7.131

average 4.915 1,925 32J98 3.368 3.328 6.117

distance between distance from
angle between

Ar2 centroid, Arl
distance from
Ar2 to the axial distance from distance from

Arl centroid and Ar2 centroid to centroid and the X group on Ar2 centroid Ar2 centroid
Ar2 centroid Arl plane inner Arl axial C the Arl axis to hetero atom to N
(angstroms) (angstroms) (degrees) (angstroms) (angstrorræ) (angstroms)

Sertraline 2.135 kcals/mol 4.822 2.042 35.390 7.611 3.720
MCN-5652 13.035 kcals/mol 4.912 1.985 33.110 7.762 3.734
Indatraline 14.532 kcals/mol 4.952 1.556 31.970 7.800 3.762
S-Citalopram 15.585 kcals/mol 4.975 1.905 28.420 8.696 3.713 4.618

average 4.915 1.872 32222 7.967 3.713 3.959

distance between distance from angle between
distance from
N to the axial distance from distance from

N and the N to the N, Arl centroid and X group on N to the Ar2 centroid
Arl centroid Arl plane the Inner Arl axial C the Arl axis to hetero atom to N
(angstroms) (angstroms) (degrees) (angstroms) (angstroms) (angstroms)

Sertraline 2.135 kcals/mol 5.949 1.352 34.590 8.737 3.720
MCN-5652 13.035 kcals/mol 5.164 1.430 17.230 8.253 3,734
Indatraline 14.532 kcals/mol 6.226 1.150 11.360 9.342 3.762
S-Citalopram 15.585 kcals/mol 7.131 1.843 15.270 11.031 5.098 4.618

average 6.117 1.444 19.613 9.341 5.098 3.959

distance between distance from
angle between

hetero atom, Arl
distance from
hetero atom to distance from distance from

Arl centroid and hetero atom to centroid and the the axial x group Ar2 centroid hetero atom
hetero atom Arl plane Inner Arl axial C on the Arl axis to hetero atom to N
(angstroms) (angstroms) (degrees) (angstroms) (angstroms) (angstrryns)

Sertraline 2.135 kcals/mol
MCN-5652 13.035 kcals/mol
Indatraline 14.532 kcals/mol
S-Citalopram 15.585 kcals/mol 3.328 0.489 31.490 7.051 3.713 5.098

average 3.328 0.489 31.490 7.051 3.713 5.098

Sertraline 2.135 kcals/mol
MCN-5652 13.035 kcals/mol
indatraline 14.532 kcals/mol
S-Citalopram 15.585 kcals/mol

average

torsion angle
Ar2 plane to Arl

(front side outer C,
Ar2 outer axial C,
Ar2 inner axial C,

Arl centroid)
(degrees)
42.000
31.800
50.900
81.700
51.600

torsion angle
Arl plane to Ar2

(front side outer C,
Arl outer axial C,
Arl inner axial C,

Ar2 centroid)
(degrees)
46.800
47.700
36.300
53.600
46.100

torsion angle
Arl plane to N

(front side outer C,
Arl outer axial C,

Arl Inner axial C, N)
(degrees)
23.600
69.300
73.200
78.400
61.125

torsion angle
Arl plane to hetero

(front side outer C,
Arl outer axial C,
Arl inner axial C,

hetero atom)
(degrees)

16.400
16.400

Appendix 2.1 Measurements of the three-dimensional (3D) pharmacophore
model of the serotonin selective reuptake inhibitor (SSRI) binding domain at the
serotonin transporter (SERT).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

I N . r o N . 00 CD
P e g c j (M r o c\j

^ < g) < M < M (\ifg < MSiM

OT*D « S

O Lrt CD r g -«t
CO 0 0 CO o U)
CO CD CD <y> cn
rj t- o ID c
■g- CO ID N . ID

E gf *

O . o

0

CD 00 CD 0> K
O 00 «- N

CO r q e g r -co ̂ ̂ ̂ ̂

E g ^
P *n ^ ^

m %
^ O CD e g ID
<\j e o CO <D eg CD CO ̂

p a
jo g eg eg eg ID ID

o e g I— ID N . r~
CO CD 0> CD CD ^ ̂ ̂ "4"

ir
nil
CM

S

> E g u

l i i
2 9 9 S oo o o o o
CO CO O) D . CD

if S E

mI e g N CO CO TT
P N t - e g CD
■{- o CO ID CD CD
g) e g e g o T-̂

R»

HS'
CD ^ CD r - N
^ CD e g f o r -

ID ID CO 1 ^ CD

«<

S mI I I
^<2

E o g. X s '

B ||li
2 8 Ï Î

eo ID CD eg CO ID N. ID O) CO"11 neo eo eo eo eo

1
o #O o E s

11 1 1
w s 8

1 m
.X
%

s
P

eg
g 5 ë 1

l*l§

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

00 'Cf IM CO 00
00 f - O CO CO
CD tJ- lO T—
CO n ! CD CO CD
Tj- ^ fo to ’«r

r o (D (\ l 0 0 CD
m (O N CD «—
N CD CD e q CD
<\i cvj eg eg fsj

t— ^ T— m tn fO ^ o N- lO
<D r-; e g f q » - m "4" "4" '(f ̂

o> w SS

o

£ ! 2 < l o c o r - c o e g
p i _ 3 3 m c o c o c N J c o

e g cm CO l o eg
■4- CO lO O N-
O OÎ l o <y> CO

° s ï\j r j CM m Ln
00 a> <T> OÏ oi" &

■5 E

moKui

a .

ral

s

> B o

i t -
^ïïl

i P s

“ g<

o o o S o
0 0 N r q CD
CD N CD e n CO
^ ^ CO lO ^

If i n
s s E

E &
O W>

^ P sS.

ID i n O CD N
O O r - o O

CO r-^ ^ 0C3

<5

2<"a> a ,

= g02
I s '

O "4" e g 0 0 CD
eg CO CO T— i n
N D- rs- CD CD
(O CO CO ■4' <0

i ill*
0 8] < %

r - e g o CD N
«— CD O O) CO
c D N c q c q c D

g) N N N CO N

if
a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

E ë s K
5

iî=
S> W C W

■c .Î2 2 g

E 5 ,
<T> 00 m CD co 0> o N. o ■4* in t\j CD <D co
CÔ CD 0> 00 d cg CD CD N. CD

h*- o CD CO fO K CO CNJ N. Oco to eg co O

N N CD eo OJÇOONO oq CD r- 00
4" 4" CD CD LO

o o CD o ro O) eo CD N T—LO eg eo eg CD

eg o O co 4- m eo m 4- eo 4" ^ 00 4"

OD 4" CD T - N 4 CD eg co «—
Ô> ui ui CD N CD

ço 75

î̂ ?Qin

(ÔZ 5

b :
iE-S i o.-
i-ë <

W

mR:l i i l
HHI i

’ C c Z

lO eo CD r CD CD 4- eg CD o CD lo 4" eo r-
eo d d d r-̂

i -o
H- g — o 4- eg co CD

^4 ^

i
B

aE I

Pli
CO 00

88

co S3 4 g 4N eg eo . eo
oô oô CD H CD

, i | l '

II
eg E

ils

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

W flJ
fO CO N. NI

!li|w re

l|ll^
i l H *V) re

X o

00 CO
CO COtoco

22«t

Egg
9#
o oi2«r §

allfl ro CO

E^ % S
^ q 5 u im »

B:

§ i

II*

f t ,

a c

E S

pa &
II
i l l

8 -s? g < £ I @ paII ° E

i r i

IÜÎ
o

2 2 99
CD t o

S3

CÔ CO

0 0 00
CTï CT>
O O

_8
1 :^ 1 ^

IS
1 1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

I

f
1I
I
•S
T3

ÏÏvO

i

I
1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

S

s

Ir
1
1
eu

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s

s

79

s

II
I
ë
•S
T5
;3

I
f
i

i
a

9

I
CO
en

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

a

î i
I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s

s

81

S %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

Î
s
g 1 1

s
1 1 I 1 1 1 1 1 1 I 1 I a I 1 1 1 1 1 # Is cx

S I 3 a
g
$ CO a s i 2 I 3 o)

a a a 5CM 1
9
a

«?
a 3 g CO

a
à
ft É

Bg 1 s a CO a a a a a CO g a ft a ft a
1 1 4

i
-â

I Î 1 1 I
a
I 1

g
s

a
a 88 1

a
S

i
5 1 1 1 I 1

ft
s ft

a
8

a
8 1 1 1 I

1 1

-I
5
Q 1 1 1

a
I 1 1 i i

I 1 1
a
iq

I
«?

a
; I ! I I9

a
i

s
s 1 1 I ! 1 I

s
I i

1
Qz 1 i §

1 1 1 1 1 I 1 ! g i 1CO I I
1s 19 1 I 1 I 1 I

Î i

1
2z 1 I # 1 1

9 1 1
a
g° I 1 § I 1CO ICO 1

ft
1

i
I

I
° I I 1 I I I9

8
3

ft
1

Î S

o

f
8 za

1
I

1
S

1
a 1 Ia i

1
I 1

a
a

1 Î
a
1 1a

I
§a i

i
1 I

a

o
8
a 1 1 1 i i 1

I
È I

<D
S

s
5

0

Î
1 z

B i
1

Î

a

1

a

1
1
g Î

a

1
Î
a 1 1 1

1
i ! I ! I

8 1
;

I I 1

ft

I I 1a

s
1 1

1

g
S

1

-1
5B
S 1 1 Ic\i 1 1 1 1

a
S 1 1CO I 1 1oj

a
sc\i

1oq
a
S 1 1CM

a
1 1 1CO I I ICM ICM I

;
5
§ 1

s I s u? o> r- p a a a a 9 a a a ft ft ft a ft a a
1 1 i 1 1

Oi
c\i a g °CO 3 S I 1 1 1 8 1 3 g i 8 1 I 5 i i

S s I i g a 5 a a a is # g ft a ft a a a a a a 8
1 < 1 : 1 1 3 3 3 I I I 1 i 3 3 i 1 1

CM
3

•«ij-
3 1 I 1 1

8
Ü

Î !
1

g § a a a a a a a a a g s Si g a a a ft- ft ft
1 sz 1 1 1 8 1 3 I 1 1 1 i 1 1 3 i I 3 1 1 I i s ft

LO I

i

S
s
f
1

1
t3z I 1 1 1

s1 I 1
a
I 1

a
1 1

gLO 1 1 Î 1 1
a
r%CM 1 1CO 8 1 1CM 1 1 I

P
1 -I

I s 1 1 lO r a a a g a a a K a i a i % ft
1 1 B 1 ; i 3 % 1 i g 1 g 8 3 1 g 1 g I 1 8 1 1 8 s 1 1

1
so 1 i 1 1 I 1 1 I 1 1 1

is I 1CO 1 i 1 1 1 1 1 1 i 1 i
■ë Z k CO ri < iri CÔ 2 lO «-! 2 2 3 2 2 CD 2 2 2 LO 2
g I s a § s a a a § a E !;z ; a % g ft ° ? ft
1 az 1 gr-Z I s 3 I g aCD 3 1 1 2 s 1 I 1

g
CD 8 1 iCD s 2 1 iCD 1

? ? ? g, 1, *, g, 3, 3, 1, : Î
1 1 I io Î i I ; i S'Î Î

1 i S'3
1 1 I

o 1' ?
! ; 1 1

CÔ ! ! ! 1 1 ! ! ! ! i ! ! !
CNJ a a a a a 5 a a a 5 a a s a a ft a 8 ? ft ft s ft

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s

83

a S

ë

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

84

s % a o S 1— o 05 8 S M- 8 8 8
:1
8- f 1 i I I I I i i

§= i i 1 I i i #
0
1 9 E

0
1

0
1 1 i # i I ICD CO ft I ft s 9 S3 8 5 a 1 i S

i oô i g s< $ ft CM S 8 9 CM LO 8 CM
s s o a o o a a S a g S a S

O re 1 1 g S ft ft a § LÔ S g !$ S C g a I CM a § S 9 g g §g- g -t -a. i g g # i % i g i
o
ë E 8 i a g FZ E g g g 8 ëa> (0 ft g I s R E g 1 1 1

9
5 i g cô S 2 i I od 5< co œ CO cô g 8 a 00 oo

I
1 1 S ft s p: S3 8 s 8 03

8
8 a 8 8 g

o
g g g i g g i g i p2 9 8 ft E i 0 ft g at a g a 1 fe a 9 # oo LO ft g i 5 a 9 S g i 0 g ft § a 5

s ë z Æ 9 9 9 9 9 9 T T 9 9 9 3 9 9 9 9 9 9 9 9 9 9 3

8
- I
> 1 § I a S i 8 9 i 8 g S i g îo a g S ft Pô g g

1 5 8, g i i a a g i 8 I § E S g g ft ft i g i g
S i « g 5 9 9 co 9 K 3 E g i g cd 2 2 CM s g 2 2 2 cd 2 i

8
IN I ft g g s 8 s a ft s ft ft S 8 i s S s

s
1

>- ft g
o
g § g o i s 8 g S ft 8 ft a 9 i E

1 I 3 3 2 2 I CM S LO 9 1 B i g 5
o
2 2

W
cd cd 9 2 S g 3 2 g

Ü
■I i 1 a ft g s 1 8 § U5 #

g g fe a I 1 I i
ft

ii o R s i LO CO i 1 g 8 g o i g s CM S g ft a 8 g
I 1 1 B I s s i 5 1 i i i S

9
a I 1 5 i 8 S

a I I B I
2 cri 3 a i

Ü
g i i ft g s 1 8 a 9 § ft I a a 9 1 a ft s 0 ft

1 i s 9 s i s # ft g 8 g g 8 i a a a g a g a 9a s z 1 § 2 E 5 E 5 i g 3 s I E 2 E B ft 1 a 2 i I
5 5 1 B g s ft a a g g 9 ft 9 s g 9 a ft ft ft s a co 05 g

1 1 i
8 § < 1 a 5 ft % g S CO 9 a ft a a ft 8 a 8 a 8 8 a CM
1 1

B
CJ CD

1 ” g 1 a g a a a a g g ft i a ft i i § ft ft fe i § iCO < 3 CM CM CM 2 CM CM CM
§ 1 '«>

t o È Ë S g a 9 oo
g g

s
aë i s ft S S g 05 i g E s ft a 8 g s

1 « g s a ft ft io S g S a a i # ft E ft a a g g a i s a ECO < cd CM CM CM CM CM 2 2 2 CM 2 2 2 2

S Î oo 5 g g S g 9 a g g r. ft g g a g 8 S co oo
I % oô s g g i E 8 9 ft § 8 5 g i 9 ft g 9 8 i 5 9 ig i i S co ft a 3 gg i i § E a a E g a a S i œ i i ft ft< LO 3 3 3 3 ■«t Mji 3 3 3 MJ= 3 3 ■sp 3 3 3o

g Î a s Ë a S co g s ft g s Ë R 15: t M, fc 81 S i § g g i ft 8 i g a 1 g ft g g $ § S a g fta 1 ft g § ft i § a a g g i ft 9 i E g LO § ft g i g
z 8 LO ud cd ■M- 3 cd 3 id LO ■«it 3 2 3 5 3 3 ■«t 3 3 3 5 5

1 - I -g
s

o ft a 9 f2 S 9 s ft a 2 s g
1 g s a i g g ft 8 i ft E a S g g $ 8 g 3 E 9 ë

1 « B a fe g a g g a g U5 ft a 1 9 E 8 E g g S ICO z 3 co CM 2 3 2 3 2 5 5 cd 2 2

1 1
I 1 1

g g g I g g ft 9 S g
i

a a s ft g a a g g g
g È B g ft 1 ft ft g 9 i s g g a a g ft i i s a » a § iCO z 3 2 cd cd cd 2 cd 2 5 cd 2 2 2 cd 2 2 2

1 <n S Z <7> ft ft g a 8 S a s a ft a 8 M3 a 8 s§ < « i i M p- 3 s ft g s g s s a i g § g i ft ft i i S•§ B g ft g § g ë ft g 0 g E 8 ft i i°
g g s gz 3 cd LO cd 3 2 cd 2 LO 2 id 2 2 S LO 2 2 2 2 2

î S co ft g a 8 g ft !g $ 03 03 a ft a 03§ < E § p: LO s g ft m 8 g 8 i E E g g co i g 5 ft g OJ g
g B ft gg S ft o g g ë E g i g g E ë i g E 8 i g Iz 3 cd cd cd t--' S cd cd 5 2 S 2 S 2 2 ° 2 2

! 1 5 5 ! ! 5 ! % ! ! ! ! ! ! ! ! ! ! ! ! , 1, ! ! ! ,
& 3 & & & & & & & & & & & & & & & & & & s,
1

03
8 1 1 1 1 1 1 1 "i

co
s 1 1 1 1 S

?
S 1 1 1 1

core
g 1 14 - , - , -S, ■̂, ■̂1 - , ■̂, -S, s . - ,

a s i i g g g g a 8 ft ft i g g g i g 9 g g g a i aCM CM CM c\i CM CM CM CM CM CM CM c\i CM CM 2 2 2 CM CM 2 2 CM 2 2

î Î Î î î î î î ï î Î î î l î î î î î ï ï î î ï ï
1

g
g

O
g

o
g 1 1 1 f 1 î

8-
g

&

5 f 1 f i î
&S f f 1

8-S &8 î î<r> (/) co co CO CO CO CO CO CO CO CO CO CO co co CO co co CO CO CO CO CO CO

ft fî fS S2 8 8 5 8 8 s a 8 8 8 8 S S 8 8 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

g

i

% g % % ê

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

s

86

i

g g g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

s 5

S

S i

% %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

a

S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

s
S

s s

g

s

s g ! g g %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

S
s

S

5

iS

S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

s

I

I
I
f
I
I
in
CM

I
%
B

î
I
i!
in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

s

dsKs
34*3
ages

r t i i
y iia *22% *11%

s

SR=!<Ï

S

ses S s p o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

■■gP ?o g 1 g 8 8 g a te a
8 g g i g a a a a a a(O 2 0 2 2 2 0 0 0 CD 2 2

IÎ%Bi 1 g s g g i g a g % a ;
S tso. g g g g g a a a a a a a< S 2 2 2 2 2 0 2 2 2

B s g s g s g g g te g sn g%i nf s g rog 5î s g g g i § g te awsa s S S S s s g g g N a a a a< § § § § § 2 2 § 0 2 2 2

I1 ;1rsi 3 co s f ? f & te f? S g gs€B g s $ g g g i g g a # S $z 2 2 CD CD 2 2 0 CD 2s1s r >- S g S g S œ s s S sO)gë XBz S S g s ro g S i
1 i a

1
a i

S i 1 6 æ g S a g g g S 8 gsg g sy 9! g g S M p 8 gz O 2 ,—ï 2 0 2 2 CD 2 2 2
s
ofz ffi a g g g g te

&s gc2 ? g 9 g 9 g 1 g 5 s te 5 gy O 0 0 0 0 CD 0 0 0 CD CD CD CD CD
p> So•S’ LO S § S R % iS 2:5 %o K 9 i coi g 3 te te 1c co GO <0 00 CO 00 co 00 s co co CO 00 coy o 0 0 0 0 0 0 0 CD CD 0 CD CD

g1 1
8 < § S S g g s te s g g■°s(N 9 !? 9 ? 9 $ S 8 te lO te g< O 0 CD 0 0 0 0 0 CD 0 CD
g1 1S?n 1 g g g S g g g g te g a g

n B ° g ° g ° g g g a a a a ° a< 0 2 0 CD 2 CD CD 2 2gS s g ° g g i te i te g
8 fS s g S g g co g 8 te te g g g■o< ë P 2 2 2 2 2 2 2 A 2 2

p8
o c S g g S g g te te as zy S g g R g s à w te g g a te
8 2 2 2 2 2 50 2 2 2 § 2 2 2 §g!

1 i g? 8 s g g a 9 P P g g ? g■ë 8 a & g g g 8 g g g g a teca 5 0 5 5 CD 5 2 0 5 CD 5 CD 5
SgrJ?R# æ g s g g 5 g g i a g a g

8 a Ri a g a a a a a a a %<dz o 0 2 0 2 2 0 2 2 CD CD 2 2 2cS g k S !$ S Zô g a a
t i< s g S æ É g te g g g g te teg B g g g g g g g te K g g g te2 § § § 2 CD 2 2 2 2P8 < % g g g g ? g ; te a g g
8 fB g g g 8 s 8 s 8 g g g teT3 0 0 0 0 0 0 CD CD

ïA ,»'41 i## sS5# §500 g%55 8'# S9#5 8325 # s!;:'
*11%# 1*11%#*11%

s|i|
*11%*11%*11%

”1- ̂ EiiJl*11%Mil*11%
Slii'iUl*11%

\̂M g e'
*11'%

n-s g e'
Mi*11%PII*11%

s; g g E5 g a g cô a g a g g te

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

5355
tess's' S-,ç2 3

A W*11%

aids

8

S i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

11%

S

S

s

4345
3^*3

S g &

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

g g te g g s i i i te i i sJ5-g I i g S g § B B B B a 1<0 3 2 2 2 2 2 2 2 2 CD 2 2 2 2

i
s
I i u5 g i g i s w g s S g te te te

1 1 o. g I I 1 1 % 1 I 1 a a 0< 3 2 2 2 2 2 2 CD 2 2
Bg 8 Î8 s a 8 s g 05 fe a 8 a 8

E■q. f i ë <op: i g te o g a i a ë i g i gas <0 1 s s s S s I s i s s s i< § § § § 2 2 2 2
•15 8 1

i i 8I 1 s i S i i g g cô 8 s0>ë B g g g g g g g g g g g g gz S 2 2 2 2 2 2 2 2 2 2 2 CD CD
8 i

1 t s 05 te te S g ■n ir> s te g
■ë s

S 8 g S S
i §

s P
i

8 8
i

1 Î
8
1

1
1 te i 1 i s i te 8 8 i â io 9 B g i cô i 1 te i 1 te i g tez o 2 CD 2 CD 2 CD 2 CD 2 2

I
Q)g) S

o
a■s z CD I i § 1 g i i ë i i §8 cd< 1

B 1 # 1 1 B S i I B S I i i8 O O CD CD CD CD CD CD CD CD CD CD
£ s

Ü
g S 2: S OÏ S

s § g 1 o i § COoo i S i O ë % is g cô g co g g § P P P 8 a8 o CD CD o o CD o O o CD CD CD o

I
8 1 1
1 i 5 CO cS S o5 îô c3 15 gg T—

V) § S os 05 LÔ Ri 05P % Ë a s OO
1 5 § g g X g lÔ g P a P g U5

< o O CD CD CD CD CD CD CD
8

s
g 1

I B S s s S R! R! !Btoi "5 § S COi S 5 c§ § S i i §5 ë
1 R 8 i

oR g i g § g i B i< o CD CD CD 2 CD CD CD 2 S 3
S 2 cô te c3 S fS te a s£ ë < % gy s i g g i te 8 g a8 .1 B g co g co g a a g cop a co 8 R

■o< i § g g g g 2 g 2 g 2 g g g

£ 1 o
Ü
g B Ri s a s LÔ 2 g

§ a COg cog 05 co g s s g g i co sg cC g S 5 g s £ a g te i te te i8 3 3 <D CD CD 2 o 2 CD 2 CD
8

=
1 t a 1 i ? 18 I § s i g a a a 8 te 8

ë 1 B E i g 1 g a g te a a te a a te
cd z o 5 CD 5 CD 5 CD 5 S 5 5 o 2

8
8 1 i

i i i8 1 § 5 a a a S a g g te 8 OT
1 s g a RI B a B a B a B B a a B(d Z o 2 CD 2 2 CD o 2
8 s Ê5 a S s a i S g a te a g a ai B g i cô te i a g a g a8 S i g i 8 § i

OJg g g i g § I 1§ 2 § 2 CD 2 2 2 2 2
8 cô ES te S g S g 2 S a a§ 1 < § i s S i S g g S § g g s1 %B s s lÔ s g g 8 LT5 g 8 lÔ g-o z CD o CD CD CD CD o CD CD CD CD CD

iS Jl'a ,Jl4 ite’l'l Jl i, ,*'44 ,*'44 ,Ji4 ,*'44 ite'4̂i ,s'i4 Ji4
4355 &s44AS4244 4#55 i 5 %

Sii'g

4244 4355
P § 'i

^ ^ 5
5®§'°' s 5 %

4so'5iS Bïi'î■ ^Js'i
o'̂ .co CO ©'■̂

i S l i ’i S ll'i Ifi
*11%

”'|j?

1 % i^ l i
*11% Mil*11%

M
*11 i

I s l l
*11% *11%

M l
*ii'%

s te 8 s a a a a a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

fCI I
S

I I 1 1 I 1
8

1 1 1 I 1Ô) <N 2 2 2 2 2 2 2 2

1 1
«
f

B
-1
S

1
1 1 1 1 1 I 1 I 1 1 1 1

a
1 1

% ë,
B
I 1 1 8 I 1 1 1 S te 1 1 I s ibi g is a.
5 Si I 1 s 1 1 I s I I I 1 I I 1

; :1Q-1
1rs 8 E 8 8 a te a a 8 8 8 8

■°sZ 1 1 w 1 1 i i I 1 1 1 1 I 1

1 t I -I>: a a a a 8 8 teh>TOB a a a a s 1 1 i a a CD a a a

I 1 1
i

i g a 8
1

s
1 Ï 1 i 1 a 1 1 1

z 2 2 2 2 CD CD CD 2 2 2 2 2

I Î B
S

0
1
8

zB
1 1o i0 1

CD
10 1

CD
#
CD

1
CD

I
CD

1
CD

i 1
CD

1
CD

i
CD

I i
B
5

o
Î
8

B 1o Io
ICO
CD

1
0

S
I
CD

a
I
CD

1
CD

1
CD

S
CD

I
CD

1
CD

8
te
CD

a
CD

I 1
1

1

1
5B
s 1 1 1

gg 8 a
1 1 1 1 1 1

CD
1
CD

1

I i
g1
1

1
sB
5 1 1o ! I 1 1 i

a
1 1

CD
i 1 1

8

1 1

1 1
SB I 1 I i 1 i 1 a 1 1

tea 1 1
< 2 *=>. 0 2 P 2 2 2 P P

I 1
sz

Ü
f
1 1 I 1 I 1 1 1 1 1 I I

CD
1
CD

1
CD 1

I 1

g1
1

1
sB
z ! ! 1 I 1 1 1 1 1 ! ! 1 1 1

CD

; 1

g
S1

a a * * a s g 8 a 8 8 g 8 s
1 B

z I I I I 1 1 i 1 1 I I R 8 1

1 1
SBz 1 1 I 1 Î i I i 1 Î 1 1 1 i

1 1
iB Îo 1o 1

CD
I
CD

1
CD

I
CD

1
CD

1
CD

1
CD

1
CD

I
CD

1
CD

1
CD

I
,«'41

m
"'“I's'
M ilSliS

,*'41
4345

w

I l f
i l l
i l l*11%

i f

*11%
1
ilJ l*11%H i!

1i i |f*iii

i
a i
*11%

A

2

M il*11%

I

1

1
i4 Îl*11%

^ îï|

i 'i i
S ïiî

i f
i i |l*11%

i f

i !
i i i i
*11%

8 8 8 a s 8 0 0 8 8 g a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

III

S

253s i *

i l t i

1SÎ

K l*

1 5̂14
5K:

3##9

i r
&43a l8 = Î5̂

ïî'il'

%ill
H I"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

S a g te te o g S tî a te
M £ R a s s a a a a a 0 % te ë aË § Ë a M a a a B 1 a 0 Ë a i I‘(A o 2 o 2 2 o CD o CD CD
Bg 1 S3 a a te te S CO S te1 t f I 0 a 0 a 0 “ <oi s 1 §

C/) s ■ 5 . S R a a â 0 a 1 a a 0 a a a 0< s 2 CD 2 2 CD CD CD CD CD CD 2
B2 g cô a te g g te a y~ a a R Ê

8 ■q. f i 1 s g S te s s & 5 g te g S teV> 0> cs
< Si I I I I 2 i I I I I I i I i
S 1

Et S te S g te te R g te te g te 3 te<D ><B I i I s i s i i g g i 5 g I2 2 2 2 2 2 2 § 2 2 CD 2

2 I 1
§ 2 § s S S a a s I te a a I te S IBz g g g g a a te g g g cô g

s 1 a8 g- â g te te 0 a S g te te g g
(A (D B a a a a I B i a B 0 a E a az 2 2 2 2 2 2 2 2 CD 2 2

1 f s
Ü

f z i a te a te g i te t e R t e te
CS < E

c 2 2 2 1 t e 2 a 3 i te 2 S te t e8 <D o CD CD CD CD CD CD CD CD d CD CD CD

2 s
o
■I % R S % S g a § R

O s 5 § B o i i i s a g § 0
c rZ g

o
g p P g P p LO S)

3
P P g

8 CD CD CD CD CD CD CD CD CD CD d CD CD CD

8 1 1
I 1 B i g S S S s
O)

1 §
O
CO S g 1 i Ë s g ë g R

1 p p P co CO 3 p P g p 3 p a CO

< CD CD CD CD CD o o d CD CD

8 1 1
I g B s a 5 cô a a
(A

1 ■i a co OS g a 05 COS g S
1 R ° i 0 Ë 0 a R a I § 1 0< 2 3 3 2 3 2 3 2 CD 2 3 2

2 i s 1 I I 1 :î I I B g p 2 5
i 1

B a oo te te P S OT te S te 2 s cô cô
< O CD 2 2 2 i 2 2 g 2 I

2 §
Ü
■I s te g a s g g R a8 .1 o a te a a te i i ?â g § aC te te te te te te a a g te a 1 te te
8 CD o ci CD CD 2 2 3 2 2 CD 2g

8 1 t
8 1 § s te a S te te a g N g h- a a

ë 1 B te te te 2 2 te te te ? 2 te i 2 2(d CD CD CD 5 d CD

8 1 I
1 1 1 5 i te te a R g te te g R g te a

s a a te a a te a 2 a te 2 g
«JZ CD CD CD CD CD CD

8 S te a i i g 2 0 te 0 g0 1
< g a a S te a Ë 0 a a g gS 0 0 0 te te 0 I I I I 0 g te te§ 2 2 2 2 2 2 2 2

8 CO te a a 5 a }5 s 0§ g S aI S < g 3 3 i te 3 S 0 i to
LÔ g i8 B <o co co te te co p g g p p te p te=5 CD CD CD o CD CD CD CD CD CD CD CD CD

i i
334: i ï #

,«'4!15s, s,
aSSS.̂'SSgi i Ë

S s g'3

Ë

S

iiÊ '
I4 5 |
i s S l ï IJ 'il

Ë

,«'41I5s,^
a s #
3 8 «'g,
ilJ l
*11%

sg#!

Ë *11%

g~,55
" 1 . 8 e '

i i J l
*ii% i

i | ï , |

Ë
i l î
y i i s

5*23
lli% i

s s a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

ï f 45 ^45

" I

5533

i l±êL-*as%

h f

if
®,i
ill%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

344a
*11%

s

,«'4^
4 5 4 5 4 3 4 5

I 4 | J
Lo'se'g

E " ,ï s '=

0%%#
*11% *ed%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

= 5 R S s S CO 8 Ë s teMR § S s S te te g § g g g g g g
CÔ CO 2 CO 2 co

CD 2 co
CD 2 2 2 2 Cl co

CD
co
CD

§

B

s 1 æ N 8 g P 5 g te 8 R 8 s p: §8 3 5 Q. 2 2 8 8 a a 8 8 8 8
< 2 2 2 CD 2 2 3 3 2 2 0 CD
B R te te te S g 8 8 a 8 8 8

i 1 ü 1 â
1 1

tes I
gS 1 i i 1 1 ï ; i ICD i Si 2 2 S 2 s 2 s s0 s s 2 2 s

I 1 Î
1 3 8 R te R R s 1 te s i g te a■oBz 1 s 2 2 I i 2 i 2 2 2 2

s 1
8 I 1 R R te te R R 0 a E E g a Ë Ë

B
z

CNJ
3 g N g g g te g g g g

s 1
i Î 1 Ç # i i

°
1 P F g

§ # g
°

1 ; i i
z 2 2 2 2 2 2 2 2 2 2

§ B
OJ

0
1 z

te te R a a R a !;: i te te R R
CO cd < I s 8 8 8 8 g gy CD O CD CD CD 0 CD 0 CD CD CD CD

I I
B

Ü

f B 1 1 S 1 g i te
g

i i g 1 I

I CD O
coCD CO

CD CD
■sr
CD

co
CD

co
CD

5
CD

TT
CD

co
CD

CO
CD

■sr
CD

■sj-
CD

P o1 1
81 sR<

B I I i i i
g
te S 8 ; g # i i g■8S CD CD CD CD CD CD CD CD CD CD CD

S1 1
1 1 1 s a 1 ; ; 1

te
o ; i ; i ; i P P-85 CO 2 2 CO

CD 2 2 cr\{ 2 a 2 2 2

s 1 S
o I 1 I 1 I 1 P I ; p i I P P8 1 i o 2 o 2 1 2 o I I 0 1 2 2

R 1 s0
w
1 N i % i i 8 g I f 1 i i 1 I
i i te

o i i i S te
CD s 8

CD i s i 8
CD i

S !

1 1

g

1
Is

te
1

te

g
CD i 1

CD i
te

g
CD I

1
CD

a
g
CD

g

i
CD

1
CD i

a

I
a

1
CD

R

I 1 lO S g 8 gg 8 8 % 8 SI§1 i
<c
B g § g

o
9 1 1 1

0

ë 1 g 1 8
■cd z CD 2 2 CD CD

1 1
S
B
z

E
1

E
1 id I

1
I

1
I i

CD
1
d

I
CD

I
<=>

id
1
CD

i
CD

1
CD

1 1
TD

5
B
z

1
CD

I
LCD

O
1
CD

R
R

R
lÔ

CD

te
UD

te
R
CD

i
CD

R
CD

9

i
CD I

te
R
CD

I
CD I

, ï ' 4 B , J i ' 4 , s ï 4 , ï ' 4 4 , r ' l 4 , ï ' 4 ^ i , y i 4 , y l ' 4 , J l ' 4 , r ' l l , s ' l 4

4 : 4 4

I I il 4 h 5 1 4 # 4 5 4 5 4 5 i Ë

4 # 4 5 5355

% # i i”,S £ g'i "fi £'i Sîl'i' "lï'i 2'lls'
f l t l*11%

"fi £'i' 2111'11 #*11% I #*11%i» ,îl*11%#4%#*11%im*11%!S |I*11%m I4%l*1 1% i #yiis P II*11%
s !B te p a p te 5 te te 8 g te

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

t11 I 1
R
I

fe
I 1 1 1 1 1

CD
1
CD

1
CD

1
CD 1 1

CD

s
ss 1 a ? E 2 ? 9 s? ? a a PC gs g§■s.!3 8 # 0 8 8 8 8 a 08 8< 2 2 CD 2 2 2 CD CD CD CD CD CD CD

I1f
s
i 1 I 1

R
I 1 1a Ia 1a Ia 1a

I
0 1 1 1 1a< § 2 CD 2 § 2 2 2 2 2 2

0>I
s sN ffi s § Ç a a g E 05 R a s?o€B a 0 a g M a CO$ ë 6 a s s a

z 2 2 2 2 CD CD CD CD CD 2 2
s1I Î 1 0 a 0 a s 8 a 9 a 9 9 g a aB

z ÎN 2 2 2 2 2 2 2 S 2 2 2
<DI

s=; M ZÔ s s a a g a S a S r S E Ë
CO 3 B i i i i 0 0 0 0 É 8 0 E te É

z 2 2 2 2 3 2 3 2 2 CD

BÜf a a a e %*sS8B 1
o

a
o

I
CD

0

1
CD

R
05
CD

E
CD

R g R

CD

05
g

CD

g

CD

fc
CD

1 1
CD

o
Ü
te1f 51B

1
o

1
o

1
CD

1
CD

1
CD

1
CD

1
CD

1
CD

1
CD

1
CD

1
CD

1
CD

I 1
CD

I 11
1

1
Io I a i 1 E I P P a 1 CM P 1 a1S CO CO CO CO CO

CD
CO

CD
CO

CD
CO

CD
CO CO CO

CD
s
CD

s

I 11tS 5 g E 2 8 s s S a S 8 ?1 B5 1 I I § I 1 1 S S
CD I 1 i

CD

s
CD

s
2

11
S
B5 I«=> 1O I

o
Ig 12 12 12 12 1I

1O 12 12 12
890

11B
z

o
Î§ 1

CD
Io 1 1 1 1 I 1 1

CD
i
CD 1 1 1

CD 1
%11

B
4 a te a E CM 8 a S a

CA €1
<
B E

CD
E
CD

E
CD

E
CD

I
CD

1
CD 1 1 1 1 1

CD
1
CD 1 1®

i 1 S s> So S s s S LOs1«<
B 0 0 1 1 i 1 1 É i i 1 I 8 0

8
z CD 2 CD

I 1S
B 1 1 I 1 I 1 I 1 1 1 1 a 1z

O O CD o o 2 2 2 2 2 0 2 2
1i 5

B
z 1o

9
i
CD

1
CD

1
CD

1
CD

1
CD

aË
CD

1
CD

1
CD

1
g1
CD

1
CD

1
CD

1
Jl'g, Jl'g, ,S'1E| Jl'g, Jl'g, Jl'e, s'i'5 te'l'4 te'l'44345434543455̂455̂ 4543455345534553455545 53454545 4345%S39 *439 *439 *43935393439 34392*6# 2*̂8'29̂8'29s#2*̂8'22582*682i6828882SÜ8'

r f a > 'F a , S344
^ 1 - S E 2"ili 2i||̂ 2ii S'’‘Sli £ E I 2 1 ' Z'M I
P,|l P lî Pl,î i^lî 044#I4|l 044*m 04%#044#ÎS|| MJii 044#*11%*gW%*11%*11%*11%*11%*11%*11%*11%*11%*11%*11%*11%*1^S a i Ë a i R E E R E E te

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

5 5 4 5 5 Ï 5 4
3 4 * 9

i ‘| É ' a s # ;
", J « 'gi ” 1 2 ' Ë

0 4 % # 0 4 4 #
* 1 1 % * 1 1 %

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

f
1 I 1 ! 1§ 1COCD 1

S

1

Ë
CO

CO

1
1
2

S
2

1
2

1COCD
1CO

1
2

1 Ï I

s

1
S

i
S! I 1 1 1 1 1 ! 1 1 I 1 1 Î 1

1 Î f

B

1
s

-I 1

1 1 1

a

1 1 1 i 1

1 1

s

Î i S

1

a

1 i
I 1 1

-I

B
1

§

1

fe
a
o

i
1 1 I

s
iCD 1 1

Ë

1 I g

1

R

1 1

I 1 Î

1

B
1 1 I 1 1 i I 1 I I 1 1 I

1

I
st Î

-1

B
z 1 I

s

I 1 1 ! i 1CD 1 1 1CD I 1 1

I I
BS

o

Î
8

z
B

I
o

Î
o

I
o

iCD iCD 1CD 1CD
1
CD 1Ô 1CD iCD iCD ICD 1CD

I i
B5

o

Î
8

z
B

I
o

1
o

I
o

1
CD

1
CD #CD iCD 1CD iCD 1CD CD 1CD iCD 1CD

1 Î'■o
1§01

-15
BS I 1

o

IlO
o

9
CD

9
1 1 I 9iCD iCD 1

te
i I

1 1

s
g

1

i
i
B5 I R

1

g

1

R

1 1 1 ÎCD 1
o

a

1 1
CD

8

1
CMICD 1

I Î 15 1§ ii Ii
1
1 1g 11 1I 1i I§ I1 1§ 12 12

te82
11s

0g1
8 I I I

o
1CD 1 1

g
1 1 I 1 1 1 1 1

11
s
g

1
1s
B I i I 2 i I 1 1 i g I 1 1 1

I 1
8
g

1
-I5
B
z !

I
1

1
1

0

1 1 1 I I 1
§
i 1 1 1 1

I 1s
B Î 1 ! 1 Î i1 1

a

1 I ! ! Î ! 1
I 15

Bz
s I

o
ICD CD 1 g

5
CD

g

CD 1CD ICD CD 1CD 1
CD

ICD 1CD
s'l'4II

i'

*11%

i
i ! w w

i
Ë

II
Ë

i
M l

W ll 1

i
I Ê

1
11

Ï
■

i

1

II
1a 2 a 2 2 2 2 2 1 a a a a a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

s

0 1 1 #

Mil5s,3-s

M M

:Sg;

Ë

M K I I I

lîi
5|â-
i î i î

1.1 i,§

0#!#

°ta

l i f .

Ë

s

ïi
c o 1 ^ 1 0

#3*
#25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

i- g R § g iî ■«d- s — 05
k S g g g à g g OO o CM g
m coCD 2 R 3 2 o COCD 2 2 o S S O S

po<bS
gp s fS Si R CM a R %

gt i B.Q.rsi a a R Ë i 0 0 a S 0 0 0 0 0< d 2 R CD 2 2 ex 2 2 2 2 2 2 2
s CM go g a a R g R R

t i à a a CO R 9 oâ a 8 8 8 8 a a
S o. f g R N R R a R R 8 8 8 a a< d 2 2 2 2 2 2 2 2 2 2

1 i Ë Ë a a a R g a a a a te Ëggi X Ë a a a Ë te te Ë te g te g te R
z f? 2 2 2 g M 2 2 2 2 2 2 2

s 1
s >- % 9 g g g g Ë sO)%.<« Ë Ë Ë S Ë Ë 8 Ë Ë Ë Ë SBZ

CO
B B g 2 o 8 8 8 g g 8 8 A g

8 1
8 MM R a a a Ë 9 9 a g 8 Ë Ë R0)ë B g a a a a a g a g g g g g gz d 2 o o 2 2

£aB
Ü
te a !B a a S g a a8 te 8 o 0 0 00 oa 0 g a 0 a 00 0 a a
■= S a "«f g a ■'d' g a g
8 O CD o CD CD CD CD CD CD CD CD CD

P B
ü
.te s a g S s: S S S S8 8 O i R i CM Ë i co O O g 0 i gs a oo CD a oo co OOS CO OOO co CO oo OO
8 CD o o CD o o O o CD CD CD CD CD

I 1

§
g
i

i
i a 0 0 te a n s g te g gT3 S?Si a a Ë a a 9 9 R 9 Ë a Ë 9< CD CD CD CD CD CD CD CD CD CD O

8
S?1

SPï R s cS cS o5 S Si S
■B g i i g œ mI F g 0 S 9 a Ë8 a a a à a te COte 8 te te te te te te< d 2 2 2 2 2 2 2 2 2 2

œï te Ë g R g S S UD 9 s
1 1 B 8 Ë a S 5) w S a a 0 s a a
■O< R R d d d 2 d d g R R o 2 2

pP
ü
.f % R 9 a a a oo S aHs $ § og I a i a g o§ i 0 g gc a te te a te te te te te te te tey CD CD CD 2 2 2 2 2 o CD CD d 2 2

Si 1
c
t u5 s a g a ay s <f $ S 0 0 a 0 i a 0 I S S Ë ËT3 B LO !o a P a R P a te te te te tert d 2 2 O O 2 2 2 CD

9?o>

I 1
g
F a Ë a a R Ë te Ë g S a te te te

8 B R R a R g g R g g te g aOTz d d CD CD 2 CD o
0>CM Ë s co 9 oo R s a a a s

s S< g g a g a g Ë E
(A ë Z 2 ë ë Ë 2 2 2 ë 2 ë Ê 2 2 2œ S Ë g a % 8 s a a a SeS< S S te 0 s g i R te E te 8 g gswB S a LO 9 a lO 9 a UD UD 9 9 UD UD■oz CD CD O CD CD o CD CD CD CD CDi

33s'iï II s'i'ï

4*4:II .^41
5355 ï Nia#

5355
*344 SÎf

Bi3 #̂

4 f i

Ë Ëï

gg'e';
i j i
*11%

5*%=Ëï Ë*lW%

%3%=ËMilyĝ%
iifi
yiis Ëy#Ë%"l|'i

WlSlis Ë Ëyiis
a CM cd a Si a te c3 g cô s?a CM CM g w CM g g w R) CM o3 CM

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

ti
H u

Î.Ï,as]
i i i i

5^5

lags

“iS.'

Ill
% !

if “ iS .„

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Appendix 4.1 The Sybyl Programming Language (SPL) four molecule compari
son program. Calculates and saves the similarity scores for four molecule com
parisons. Only works for small data sets.

Program: m sc_4_m olecules.spl
author: Paul A. W ilson
email: pwilson@ cobrem ail.itrc.um t.edu
date o f latest version: A ugust 22, 2004
date o f origination: late 1990s
#
Sybyl Program m ing Language - run from w ithin the Sybyl program by Tripos
#
Change the path and nam e of table files below in the code as appropriate.
In practice this program uses all available m em ory including scratch
space, until the system crashes m aking this program unusable in m ost cases.
#

m olecular sim ilarity com parison

UIM S D EFIN E M ACRO m sc SybylBasic

SETVAR TA_PRECISION 9

Change the path and nam e of these table files as appropriate

SETVAR tb ll_ file /hom e/pw ilson/sybyl/5H T3/sertraline/sertraline_low _energy_conform ations.tbl
SETVAR tbl2_file /hom e/pw ilson/sybyl/5H T3/M CN -5652/m cn_5652_low _energy_conform ations.tbl
SETVAR tbl3_file /hom e/pw ilson/sybyl/5H T3/indatraline/indatraline_low _energy_conform ations.tbl
SETVAR tbl4_file /hom e/pw ilson/sybyl/5H T3/s-citalopram /s_citalopram _low _energy_conform ations.tbl

SETVAR tb ll sertraline_low_energy_conform ations
SETVAR tbl2 m cn_5652_low _energy_conform ations
SETVAR tbl3 indatraline_low_energy_conform ations
SETVAR tbl4 s_citalopram _low_energy_conform ations

SETVAR colum n_num ber 0

SETVAR row _tblI I
SETVAR row_tbl2 I
SETVAR row_tbl3 I
SETVAR row_tbl4 I

SETVAR cell_value_tbll
SETVAR cell_value_tbl2
SETVAR cell_value_tbl3
SETVAR cell_value_tbl4

TABLE NEW
TABLE REN A M E U M SS_I com parisons
TABLE COLUM N APPEND STRING C O L_I

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

I l l

TABLE COLU M N _APPEN D STRING C 0 L _ 2
TABLE COLUM N_APPEND STRING C 0L _3
TABLE COLU M N _APPEN D STRING C 0L _4

SETVAR com parisons_row 0
SETVAR com parison_coIum n_prefix COL_
SETVAR colum n_num ber 0
SETVAR com parisons_coIum n_num ber 4
SETVAR com parisons_colum n_nam e % cat($com parison_coIum n_prefix $column_number)

TABLE OPEN $tb ll_file
TABLE OPEN $tbl2_file
TABLE OPEN $tbl3_file
TABLE OPEN $tbl4_file

SETVAR points_to_row _nam e_tbIl 0
SETVAR points_to_row_nam e_tbI2 0
SETVAR points_to_row_nam e_tbI3 0
SETVAR points_to_row _nam e_tbl4 0

SETVAR point_to_coIum n_in_com parisons 1

the colum n loop

TABLE DEEAULT $ tb ll

FOR current_coIum n_in_spreadsheet IN % table((*) colum n number)

SETVAR com parisons_row 0

SETVAR com parisons_colum n_num ber % M A TH ($com parisons_colum n_num ber + 1)
SETVAR com parisons_colum n_nam e % cat($com parison_colum n_prefix $com parisons_colum n_num ber)

TABLE DEEAULT com parisons
TABLE CO LUM N_APPEND EXPLICIT_DATA $com parisons_colum n_nam e
TABLE DEFAULT $ tb ll
SETVAR colum n_num ber % M ATH($colum n_num ber + 1)

table one row loop

TABLE DEFAULT $ tb ll
SETVAR points_to_row _nam e_tbll 0
SETVAR current_row _in_spreadsheetl 1
SETVAR row _tb ll 0

FOR current_row _in_spreadsheetl IN % table((*) row number)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

TABLE DEFAULT $ tb ll
SETVAR row _tb ll % M A TH ($row _tbll + 1)
SETVAR points_to_row _nam e_tbll % M A TH ($points_to_row _nam e_tbll + 1)
SETVAR row _nam e_tbll % table($points_to_row _nam e_tbll row name)

SETVAR cell_value_tbll % rcell($row _tbll $current_colum n_in_spreadsbeet)
SETVAR cell_value_tbll % A B S($celI_vaIue_tbll)

table two row loop

TABLE DEFAULT $tbl2
SETVAR points_to_row _nam e_tbl2 0
SETVAR current_row _in_spreadsheet2 1
SETVAR row tbl2 0

FOR current_row _in_spreadsheet2 IN % table((*) row number)

TABLE DEFAULT $tbl2
SETVAR row_tbI2 % M ATH($row_tbl2 + 1)
SETVAR points_to_row _nam e_tbl2 % M ATH($points_to_row_nam e_tbl2 + 1)
SETVAR row_nam e_tbl2 % table($points_to_row _nam e_tbl2 row name)

SETVAR cell_value_tbl2 % rcell($row _tbl2 $current_colum n_in_spreadsheet)
SETVAR cell_value_tbl2 % ABS($cell_value_tbl2)

#first com parison

SETVAR first_difference % M A TH ($cell_value_tbll - $cell_value_tbl2)
SETVAR absolute_value_first_difference % ABS($first_difference)
SETVAR first_com parison % M ATH($absolute_value_first_difference / (($cell_value_tbll + $cell_value_
tb l2) /2))

table three row loop

TABLE DEFAULT $tbl3
SETVAR points_to_row _nam e_tbl3 0
SETVAR current_row _in_spreadsheet3 1
SETVAR row tbl3 0

FOR current_row_in_spreadsheet3 IN % table((*) row number)

TABLE DEFAULT $tbl3
SETVAR row_tbl3 % M ATH($row_tbl3 + 1)
SETVAR points_to_row _nam e_tbl3 % M ATH($points_to_row_nam e_tbl3 + 1)
SETVAR row_nam e_tbl3 % table($points_to_row _nam e_tbl3 row name)

SETVAR cell_value_tbl3 % rcell($row_tbl3 $current_colum n_in_spreadsheet)
SETVAR cell_value_tbl3 % ABS($cell_value_tbl3)

second com parison

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

SETVAR second_difference_l % M ATH($cell_value_tbll - $cell_value_tbl3)
SETVAR absolute_value_second_difference_l % A B S($second_difference_l)
SETVAR second_com parison_l % M A TH ($absolute_value_second_difference_l / (($cell_value_tbll +
$cell_value_tbl3) / 2))

SETVAR second_difference_2 % m ath($cell_value_tbl2 - $cell_value_tbl3)
SETVAR absolute_value_second_difference_2 % ABS($second_difference_2)
SETVAR second_com parison_2 % M ATH($absolute_value_second_difference_2 / (($cell_value_tbl2 +
$cell_value_tbl3) 12))
table four row loop

TABLE DEFAULT $tbl4
SETVAR points_to_row _naine_tbl4 0
SETVAR current_row _in_spreadsheet4 1
SETVAR row_tbl4 0

FO R current_row _in_spreadsbeet4 IN % table((*) row number)

TABLE DEFAULT $tbl4
SETVAR row_tbl4 % M ATH($row_tbl4 + 1)
SETVAR points_to_row _nam e_tbl4 % M ATH($points_to_row_nam e_tbl4 + 1)
SETVAR row_nam e_tbl4 % table($points_to_row _nam e_tbl4 row name)

SETVAR cell_value_tbl4 % rcell($row _tbl4 $current_colum n_in_spreadsheet)
SETVAR cell_value_tbl4 % ABS($cell_value_tbl4)

third com parison

SETVAR third_difference_l % M ATH($cell_value_tbll - $cell_value_tbl4)
SETVAR absolute_value_third_difference_l % ABS($third_difference_l)
SETVAR third_com parison_l % M A TH ($absolute_value_third_difference_l / (($cell_value_tbll +
$cell_value_tbl4) / 2))

SETVAR third_difference_2 % M A TH ($celLvalue_tbl2 - $cell_value_tbl4)
SETVAR absolute_value_third_difference_2 % ABS($third_difference_2)
SETVAR third_com parison_2 % M ATH($absolute_value_third_difference_2 / (($cell_value_tbl2 +
$cell_value_tbl4) / 2))

SETVAR third_difference_3 % M ATH($cell_value_tbl3 - $cell_value_tbl4)
SETVAR absolute_value_third_difference_3 % ABS ($third_difference_3)
SETVAR third_com parison_3 % M ATH($absolute_value_third_difference_3 / (($cell_value_tbl3 +
$cell_value_tbl4) / 2))

SETVAR total_com parison % M ATH(($first_comparison + $second_com parison_l + $second_com pari-
son_2 + $third_com parison_l + $third_com parison_2 + $third_com parison_3)/6)

row labelling loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

TABLE DEEAULT com parisons
SETVAR com parisons_coIum n $current_colum n_in_spreadsheet

IF % EQ ($current_colum n_in_spreadsheet 1)

SETVAR com parisons_row % m ath($com parisons_row + 1)
TABLE RO W _APPEN D $com parisons_row

SETVAR new vall % wcell($com parisons_row $com parisons_coIum n $row_nam e_tbIl)
SETVAR com parisons_colum n % M A TH($com parisons_colum n + 1)
SETVAR newvalZ % wcell($com parisons_row $com parisons_colum n $row_name_tbI2)
SETVAR com parisons_colum n % M ATH($com parisons_coIum n + 1)
SETVAR new val3 % w cell($com parisons_row $com parisons_coIum n $row_name_tbI3)
SETVAR com parisons_colum n % M ATH($com parisons_colum n + 1)
SETVAR newvaI4 % w cell($com parisons_row $com parisons_coIum n $row_name_tbl4)
SETVAR com parisons_coIum n % M ATH($com parisons_colum n + 1)

SETVAR newvalS % wcelI($com parisons_row $com parisons_coIum n $total_comparison)

ELSE

SETVAR com parisons_row % m ath($com parisons_row + 1)
SETVAR com parisons_colum n % M ATH($current_colum n_in_spreadsheet + 4)
SETVAR new valé % wceIl($com parisons_row $com parisons_coIum n $total_comparison)

ENDIF

ENDFOR

ENDFOR

ENDFOR

ENDFOR

ENDFOR

TABLE DEFAULT com parisons
SETVAR com parisons_colum n_num ber % M A TH($com parisons_coIum n_num ber + 1)
SETVAR com parisons_colum n_nam e % cat($com parison_colum n_prefix $com parisons_colum n_num ber)
TABLE COLUM N_APPEND EXPLICIT_DATA $com parisons_colum n_nam e
SETVAR com parisons_row 1

FOR com parisons_row IN % table((*) row number)
SETVAR total_total 0
SETVAR colum n num ber 5

W HILE % LT($colum n_num ber $com parisons_colum n_num ber)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

SETVAR cell_value % rcell($com parisons_row $column_number)
SETVAR total_total % M ATH($total_total + $cell_value)
SETVAR colum n_num ber % M ATH($colum n_num ber + 1)
END W HILE

SETVAR divisor % M ATH($colum n_num ber - 5)
SETVAR total_total % M ATH($total_total / $divisor)
SETVAR new val? % w cell($com parisons_row $com parisons_coIum n_num ber $totaI_total)
SETVAR com parisons_row % M ATH($com parisons_row + 1)

ENDFOR

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

Appendix 4.2 The four molecule Perl script. Calculates and saves the similarity
scores for four molecule comparisons.
#!/usr/bin/perl

Program: m sc_4_m olecules.pl
authors: Paul A. W ilson, Larry Beintem a
em ail: pw ilson@ cobrem ail.itrc.um t.edu
date o f latest version: A ugust 22, 2004
date o f origination: late 1990s
#
Sybyl Program m ing Language - run from w ithin the Sybyl program by Tripos
#
Change the path and nam e of the input files below in the code as appropriate.
As well, changethe nam e of the ouput files as appropriate.
space, until the system crashes m aking this program unusable in m ost cases.
#
In Short: This program com pares the rows in data files developing a score
for each set o f rows (set - one row from each data file). A text file is
w ritten containing all com parisons. Each row in the output file contains
in com m a delim ited form at the label from each label field follow ed by the
score for each field and finally the total score. This version of the
program does not sort the sim ilarity scores.
#
sim ilarity score = (summation from m easure 1 to total num ber of m easures (
summ ation of from data file 1 to total num ber of data files ((IVab - VacI /
((IVabI + IVacl)/2)) / num ber of com binatorial)))
Vab = m easure a of datafile b
Vac = m easure a o f datafile c
#

Do com pares a row at a tim e on the follow ing 4 files (spreadsheets)
These are com m a delim ited files, first colum n is label, rest are numbers
NOTE: Perl array elem ent indices start at 0 !

Time file
Change the path and nam e as appropriate
open(TI, “>tim es_4_m olecule.out”)
II die “U nable to open file tim es.record for tim e recording”

start tim e
$start = time();

Input files
Change the path and nam e of these input files as appropriate
$ fl = “./M CN _5652_nq3.txt”;
$f2 = “./Sertraline_nq3.txt” ;
$f3 = “./Indatraline_nq3.txt”;
$f4 = “./S-Citalopram _nq3.txt”;

Output file

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

117

Data output file, change the path and nam e as appropriate
open(0F ,”>m sic_4_output.txt”) II die “U nable to open file test.output for output”;

Error output file, change the path and nam e as appropriate
If everything is going well this file w ill rem ain em pty
open(EF,”>test_4_m olecule.error”) II die “U nable to open file test.error for output”

Open file for row loop through first file
o pen (F H l,”< $ f l”) I I die “U nable to open file $ f l for input”;
$ flcn t = 0;
w hile (<FH1>)

{
chop;
($ labell,@ row _fhl) = split(“,”,$_);
$flcnt++;

Open file for row loop through second file
open(FH2,”<$f2”) I I die “U nable to open file $f2 for input”;
$f2cnt = 0;
while (<FH 2>)

{
chop;
($label2,@ row_fh2) = split(“,”,$_);
$f2cnt++;

First com parison, do entire row
for ($cn=0; $cn<=$#row _fh2;$cn++)

{
molecule 1 com pared w ith m olecule 2
$com pl_ l[$cn] = abs($row _fhl[$cn] - $row_fh2[$cn]) /
((abs($row _fhl[$cn]) + abs($row_fli2[$cn])) / 2);

}

Open file for row loop through third file
open(FH3,”<$f3”) I I die “U nable to open file $f3 for input”;
$f3cnt = 0;
while (<FH3>)

{
chop;
($label3,@ row_fh3) = split(“ ,”,$ J ;
$f3cnt++;

Second com parison, do entire row
for ($cn=0; $cn<=$#row_fh3;$cn++)
{
m olecule 1 com pared w ith m olecule 3
$com p2_l [$cn] = abs($row _fhl[$cn] - $row_fh3[$cn]) /
((abs($row _fhl[$cn]) + abs($row_fh3[$cn])) / 2);

m olecule 2 com pared w ith m olecule 3
$comp2_2[$cn] = abs($row _fh2[$cn] - $row_fh3[$cn]) /
((abs($row_fh2[$cn]) + abs($row_fh3[$cn])) / 2);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Open file for row loop through fourth file
open(FH4,”<$f4”) II die “U nable to open file $f4 for input” ;
$f4cnt = 0;
while (<FH 4>)
{
chop;
($label4,@ row_fh4) = split(“ ,”,$ J ;
$f4cnt++;
$ocnt++;
$total_total = 0;
$format = “% s,% s,% s,% s” ;

Third com parison, do entire row
for ($cn=0; $cn<=$#row_fh4;$cn++)

{
m olecule 1 com pared w ith m olecule 4
$com p3_l[$cn] = abs($row _fhl[$cn] - $row_fh4[$cn]) /
((abs($row _fhl[$cn]) + abs($row_fh4[$cn])) / 2);

m olecule 2 com pared w ith m olecule 4
$comp3_2[$cn] = abs($row_fh2[$cn] - $row_fh4[$cn]) /
((abs($row_fh2[$cn]) + abs($row_fli4[$cn])) / 2);

m olecule 3 com pared w ith m olecule 4
$comp3_3[$cn] = abs($row_fh3[$cn] - $row_fh4[$cn]) /
((abs($row_fh3[$cn]) + abs($row_fh4[$cn])) / 2);

$tot_comp[$cn] = ($ c o m p l_ l [$cn] + $com p2_l [$cn] +
$com p2_2[$cn] + $com p3_l [$cn] + $comp3_2[$cn] +
$com p3_3[$cn]) / 6;

$total_total += $tot_comp[$cn];
$form at .= “,% s”;
}

sim ilarity score
D o the final new colum n now, we have the data for the row already
$divisor = $#row_fh4 + 1; # N um ber of num erical columns
$total_total = $total_total / $divisor;

$form at .= “,% s”;
$format .= “\n ”;
Print out the row for the new spreadsheet
printf O F $form at,$labell,$label2,$label3,$label4,@ tot_com p,$total_total;

} #end FH4
close FH4;

} #end FH3
close FH3;

} #endF H 2
close FH2;

} #end F H l
close F H l;

end tim e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

$end = timeO;
$truns = $end - $start;
#start tim e, end tim e, total tim e w ritten to file
print TI “start run tim e is “, scalar localtim e($start), “\n ”;
print TI “end run tim e is “, scalar localtim e($end), “\n ”;
print TI “total run tim e is “, $truns, “ seconds \n ”;
close TI;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

Appendix 4.3 The three molecule Perl script. Calculates and saves the similarity
scores for three molecule comparisons.
#!/usr/bin/perl

Program : m sc_4_m olecules.pl
authors: Paul A. W ilson, Larry Beintem a
email: pw ilson@ cobrem ail.itrc.um t.edu
date of latest version: A ugust 22, 2004
date o f origination: late 1990s
#
Sybyl Program m ing Language - run from within the Sybyl program by Tripos
#
Change the path and nam e of the input flies below in the code as appropriate.
As well, changethe nam e of the ouput files as appropriate.
space, until the system crashes m aking this program unusable in most cases.
#
In Short: This program com pares the rows in data files developing a score
for each set o f rows (set - one row from each data file). A text file is
written containing all com parisons. Each row in the output file contains
in com m a delim ited form at the label from each label field follow ed by the
score for each field and finally the total score. This version of the
program does not sort the sim ilarity scores.
#
sim ilarity score = (summation from m easure 1 to total num ber of m easures (
summ ation of from data file 1 to total num ber of data files ((IVab - VacI /
((IVabI + IVacl)/2)) / num ber of com binatorial)))
Vab = m easure a of datafile b
Vac = m easure a o f datafile c
#

D o com pares a row at a tim e on the follow ing 3 files (spreadsheets)
These are com m a delim ited files, first colum n is label, rest are numbers
NOTE: Perl array elem ent indices start at 0 !

Time file
Change the path and nam e as appropriate
open(TI, “>tim es_3_m olecule.out”)
II die “U nable to open file tim es.record for tim e recording”

start tim e
$start = timeO;

Input files
$ f l = “./Sertraline_nq3.txt”;
$f2 = “./Indatraline_nq3.txt”;
$f3 = “./S-Citalopram _nq3.txt”;

Output file
D ata output file, change the path and nam e as appropriate

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

121

open(OF,”>m sc_3_output.txt”) Il die “U nable to open file test.output for output”;

Error output file, change the path and nam e as appropriate
If everything is going well this file will rem ain em pty
open(EF,”>test_3_m olecules.error”) II die “U nable to open file test.error for output”;

Open file for row loop through first file
open (F H l,”< $ f l”) I I die “U nable to open file $ f l for input”;
$ flcn t = 0;
w hile (<FH1>)

{
chop;
($ labell,@ row _fhl) = split(“,”,$_);
$flcnt++;

Open file for row loop through second file
open(FH 2,”<$f2”) I I die “U nable to open file $f2 for input”;
$f2cnt = 0;
while (<FH 2>)
{
chop;
($label2,@ row_fh2) = split(“,”,$_);
$f2cnt++;

First com parison, do entire row
for ($cn=0; $cn<=$#row_fh2;$cn++)
{
m olecule 1 com pared w ith m olecule 2
$ co m p l_ l [$cn] = abs($row _fhl[$cn] - $row_fh2[$cn]) /
((abs($row _fhl[$cn]) + abs($row_fh2[$cn])) / 2);
}

Open file for row loop through third file
open(FH3,”<$f3”) I I die “U nable to open file $f3 for input”;
$f3cnt = 0;
while (<FH3>)

{
chop;
($label3,@ row_fh3) = split(“,
$f3cnt++;
$ocnt++;

$total_total = 0;
$format = “% s,% s,% s”;

Second com parison, do entire row
for ($cn=0; $cn< -$#row _fh3;$cn++)

{
$com p2_l [$cn] = abs($row _fhl[$cn] - $row_fh3[$cn]) /
((abs($row _fhl[$cn]) + abs($row_fh3[$cn])) / 2);

$comp2_2[$cn] - abs($row_fh2[$cn] - $row_fh3[$cn]) /
((abs($row_fh2[$cn]) + abs($row_fh3[$cn])) / 2);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

$tot_comp[$cn] = ($ co m pl_ l[$cn] +
$com p2_l [$cn] + $com p2_2[$cn]) / 3;

$total_total += $tot_comp[$cn];
$form at .=
}

sim ilarity score
Do the final new colum n now, w e have the data for the row already
$divisor = $#row_fh3 + 1; # N um ber o f num erical columns
$total_total = $total_total / $divisor;

Sformat “,% s”;
$format .= “\n ”;
Print out the row for the new spreadsheet
printf OF $form at,$labell,$label2,$label3,@ tot_com p,$total_total;

} #end FH3
close FH3;

} #end FH2
close FH2;

} #end F H l
close F H l;

end tim e
$end = timeO;
$truns = Send - Sstart;
#start tim e, end tim e, total tim e w ritten to file
print TI “start run tim e is “, scalar localtime(Sstart), “\n ”
print TI “end run tim e is “, scalar localtime(Send), “\n ”;
print TI “total run tim e is “ , Struns, “ seconds \n ”;
close TI;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

A Practical Comparison of Multiprocessing Libraries
Application of MPI and OpenMP

Paul A. Wilson
pwilson@cobremail.itrc.umt.edu

Abstract
The comparative similarity between two
or more mutable entities can be deter
mined by assigning a similarity score,
based on relative difference, to every
possible variant combination between
the entities. In this specific case, a pro
gram w as written to determine the most
similar low energy conformations of
four molecules which have high efficacy
for selective inhibition at the serotonin
transporter. The large data set, 1.3 mil
lion conformational dusters, used in this
endeavor have made multithreading and
multiprocessing inviting opportunities.
The initial program has been rewritten
to either take advantage of OpenMP or
MPI. These two versions allow for the
comparison of serial, OpenMP, and MPI
strategies on dual processor Power
Macs (Mac OS 10.2) and on a nine
node, eighteen processor iinux Beowulf.
Introduction
Situations arise where sets of data need
to be compared in order to determine
subsets possessing maximum similarities
or dissimilarities. When these data sets
consist of comparable measurements, which
are relevant to the problem at hand, one
possible solution is to calculate the relative
difference within each subset of similar data
pairs. Typically the relative difference we
are familiar with is used to compare how
close an experimentally derived value is
to the known value. This is calculated by
taking a ratio of the difference between
the experimental and known value to the
known value (figure la). However, in
situations where the known value does not
exist this ratio can still be developed from
two experimentally derived values of the

same measure. It becomes the ratio of the
difference of the two values to the average
of the two values (figure lb). The numeric
values derived from these ratios are without
units and of comparable scale.

relative difference ■
m easured - V ,know n

Vknowna) relative difference when the correct value is known
measured ' knownX

relative difference — y .--------------------- ..
\ I ̂ measured ~ T̂known | / / 2 h) relative difference when the correct value is unknown

Figure 1. Relative difference equations
By comparing multiple common measures
between three objects, the two most similar
objects can be determined. The sum of
values provided by the relative difference
between each pair of common measures
provides an objective value to the amount
of similarity between the two objects.
This value solely relies on the degree to
which the objects can be described by their
common measures. The magnitude or units
of the measures do not affect the outcome.

In the specific case where the work
presented here initially took shape, four
conformationally dynamic molecules
were identified and compared. These four
molecules, commonly known as serotonin
selective reuptake inhibitors (SSRls), inhibit
the reuptake of serotonin from the synaptic
cleft by blocking the serotonin transporter
(SERT) and are commonly employed in
the treatment of depression, anxiety and

A Practical Comparison of Muitiprocessing Libraries, page 1

Appendix 4.4 "A Practical Comparison of Multiprocessing Libraries:
Application of MPI and OpenMP" presented at MacHack 2003, June 2003.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

124

obsessive-compulsive disorder (OCD)
[Vaswani2002]. It is thought that each
molecule blocks the SERT through the same
mechanism and, accordingly, interacts
with the transporter at the same binding
domain. Therefore, if the most similar
conformation of each molecule is found
and subsequently compared with the most
similar coriformation of each individual
molecule within the molecular subset, key
points in transporter-ligand interaction can
be identified. These established structural
commonalities then facilitate mapping
of the SERT-SSRI binding domain. These
established structural commonalities then
facilitate mapping of the SERT-SSRI binding
domain and aid in the development of a
SERT pharmacophore to be utilized in the
design of superior SERT ligands.

measures v , - v ,

measures

where \<i<j< num ber o f m olecules

n,dc = num ber o f relative difference calculatior
w ithin a conform ational com parison gro

nmeasures = num ber o f com pared m easures

Vit = m easure k o f m olecules a

Figure 2. Similarity score
Every conformation of each molecule
must be compared with all of the
conformations of the other molecules in
order to determine the conformational
subset that is most similar. The molecules
are described using common measures
in three-dimensional distance space. The
common measurement pairs of each four
conformational sets are combinatorially

compared (figure 2) using relative
difference. The relative differences for each
measurement subset of four conformations
are then summed (figure 3). These sums
can then be used as an index of similarity
between subsets of four molecular
conformations. The smallest sum equates
to the most similar and the largest sum
equates to the most dissimilar group of
within the four conformations. The smallest
sum equates to the most similar and the
largest sum equates to the most dissimilar
group within the four conformations.

f \

n=3

rk^ t
I X I

n=4 n=5
Vt = m easure k o f m olecules a

— » = one relative dififerenee caleulation

to ta l num ber o f relative
difference calculations

number of
comparison
paire-1

= X w
« = 1Figure 3. The increase in the number of combinatorial relative difference calculations in relation to the increase in comparison pairs, follows an arithmetic series.

Serial Implementation
The program written to perform the
relative difference and similarity index
calculations reads the initial measured
data from comma delimited files. The
program uses command line arguments to
identify three or more comma delimited
data files. The other required data, such
as number of columns, number of rows
in each file, and output file name, are
obtained through interaction with the user.
Once this information is known, memory
is dynamically set aside for three one
dimensional arrays to store 1) the row labels
from each input füe, 2) numerical data from

A Practical Comparison of Muitiprocessing Libraries, page 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

input data array

input data file 1 input data file 2 input data tile 3

row I rowl rowl rowl rowl rowl row2 row2
coluinnl colunin2 column 1 columii2 column 1 coiumn2 column 1 column!

i 1—
Z l . !] 1 1

1------------ 4----------- ----------------------
- w -----------------t i j i

. i ..îj . |Ç^ 3 .|i . t • 1

i l l I I I j i j
444-1 . U ’

relative
difference
calculation

relative
difference
calculation

relative
difference
calculation

combinatorial relative difference calculation

combinatorial
relative

difference
calculation

i
!

combinatorial
relative

difference
calculation

I

combinatorial
relative

difference
calculation

r
data file 1 - row 1
data file 2 - row 1
data file 3 - row 1

column 1

data file 1 - row 1
data file 2 - row 1
data file 3 - row 1

column!

data file 1 - row 1
data file 2 - row 1
data file 3 - row 1

total score for
data file 1 - row 1
data file 2 - row 1
data file 3 - row 1

data file 1 - row 1
data file 2 - row 1
data file 3 - row 2

column 1

—

output data array
Figure 4. Graphical view of data moving from the input array through the relative difference calculation and into the output array.

each input file and 3) the numerical results
of the calculations.

Conceptually, the combinatorial relative
difference is calculated between the
matching columns of the first row of data
in each input file as depicted figure 4. After
completion of the first row, the last input
file then increments to the second row and
the other files reset to the first column of
their first rows. This continues until the
last data file reaches its final row. At which
point the next to the last data file increments
to the second row and the last data file
resets to its first row. These calculations
proceed until every row of each data file
has been compared with every other row
of the other data files. The result from each
calculation is incrementally stored in the
results array. Theoretically, the problem

is relatively simple with one only having
to keep track of indexes for the two one
dimensional input and output arrays.
Following completion of all calculations,
the labels from the label array and the
numerical data from the results array are
matched and written to a single file. Each
comma delimited row in this file contains
the row labels of the rows compared, the
combinatorial relative difference for each
column and the sum of the combinatorial
relative difference.

Four comma delimited text files were
produced during the initial stages of
the SERT pharmacophore development.
Each of these text files had 15 columns
of data and one label column. The four
files respectively had 12,16,29, and 233
rows of data, representing the low energy

A Practical Comparison o f Muitiprocessing Libraries, page 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

for(ii=l; ii<=oi; ii++)
{
for(1=1; i<=(nc); i++)

{
for(j=l; j<=argc-2; j++)

{
a = index[j];
for(k=j+l; k<=argc-l; k++)

{
b = index[k];

// relative difference
// calculation

singlemeasurerd = \
(((fabs(dataarray[a] - \
dataarray[b])) / (0.5* \
(fabs(dataarray[a] \
+ dataarray[b])))) \
+ singlemeasurerd);

} // end k
} // end j

avgSingleMeasureRD = \
(singlemeasurerd/(divisor));

totalmeasurerd = \
singlemeasurerd/(divisor) \
+ totalmeasurerd;

reldif[m]=avgSingleMeasureRD;
m = m + 1;
singlemeasurerd = 0.0;
avgSingleMeasureRD = 0.0;
for(j=l; j<=argc-l; j++)

{
a = index[j];
index[j] = a + 1;
}

} // end i

buffers = totalmeasurerd / no;

} // end ii

Listing 1. Code fragment showing the nested loop structure of the serial implementation utilized in the relative difference calculation.

conformations identified for each of the
four molecules. The product of the number
of rows, equaling 1,297,344, represents the
total number of combinatorial possibilities.
Each of these combinatorial possibilities
consists of 15 columns, with each column
containing 6 relative difference calculations
(as depicted in figure 3, n=4). Collectively,
this results in 116,760,960 relative
difference calculations for this specific data
set. Figure 5 shows the typical amount
of wall time required to complete the
calculations in serial. The times indicate
the amount of time required to calculate
15 columns of combinatorial relative
differences and, on a row-by-row basis, the
average of these 15 columns.

Parallel Implementation
Demonstrable parallel code can be a key
component leading to a project being
granted supercomputer time. Most
supercomputers follow either a distributed
memory model or a shared memory model.
It is important to understand these models
before writing parallel code.

Serial Calculation Times
2 x 1 .2 5 GHzG4

2 X 800 MHz Pentium-I

2 X 1 .0 0 GHz G4

867 MHz G4

2 x 800 MHz G4

500 MHz G3

seconds

Figure 5. Average times required to process the SERT data set in serial. Test computers: PowerMac dual 1.25 GHz 04 Mac OS 10.2.5, dual processor 800 MHz Pentium-Ill linux, Power Mac dual 1 GHz G4 Mac OS 10.2.5, PowerBook 12" 867MHz G4 Mac OS 10.2.5, Power Mac dual 800 MHz G4 Mac OS 10.2.5, PowerBook Pismo 500 MHz G3 Mac OS 10.2.5.

A Practical Comparison of Multiprocessing Libraries, page 4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

index[1] = (((numberOfRows[1] \
/ numprocs) * myid * nc));

trackindex[1] = (((numberOfRows[1] \
/ numprocs) * myid * nc));

oi = (prt / numprocs);

for(ii=(myid*oi)+l; \
ii<=((myid+l)*oi); ii++)

{
for(i=l; i<=(nc); i++)

{
for(j=l; j<=argc-2; j++)

{
a = index[j];
for(k=j+l; k<=argc-l; k++)

{
b = index[k];

// relative difference
// calculation

singlemeasurerd = \
(((fabs(dataarray[a] - \
dataarray[b])) / (0 . 5 * \
(fabs(dataarray[a] \
+ dataarray[b])))) \
+ singlemeasurerd);

} // end k
} // end j

avgSingleMeasureRD = \
(singlemeasurerd/(divisor));

totalmeasurerd = \
singlemeasurerd/(divisor) \
+ totalmeasurerd;

reldif[m]=avgSingleMeasureRD;
m = m + 1;
singlemeasurerd = 0.0;
avgSingleMeasureRD = 0 . 0 ;
for(j=l; j<=argc-l; j++)

{
a = index[j];
index[j] = a + 1;
}

} // end i

buffers = totalmeasurerd / nc;

} // end ii

Many supercomputers, including Beowulf
clusters follow a distributed memory
model. Each processor has its own memory
and its own local data. Processors, or
nodes, can communicate using common
networking technology, such as ethemet.
In theory, code following this model will
reach completion, or process data faster by
allotting more processors to the task. In the
case of a cluster, this can be achieved by
connecting more computers, or nodes.

In contrast, the shared memory model
refers to aU processors sharing conunon
memory space. This type of common
memory sharing is exemplified in dual
processor computers. Adding processors
to a shared memory space has been shown
to be challenging and incurs prohibitive
expense. In other words, unless access is
granted to a supercomputer, one is limited
to the two processors found in the typical
multiprocessor personal computer.

Communication between processes is the
slow step in parallel computing. Looking
at the nested loops of the serial code (listing
1), the two inner most loops calculate
the combinatorial relative difference for
one column of a row. In the case of the
SERT data set, every time these two loops
are completed six relative difference

Listing 2, to the left. A codefragment
showing parallelization using MPI. MPI

numbers processes starting at zero and going
to total number of processes minus one. The

first two lines of the codefragment cause
unique equidistant starting points within the
data from the first datafile to be assigned to

each process. Each process then cycles through
the outermost for loop from their unique

starting point to the point which immediately
precedes the starting point of the next process

(or the point which is equivalent to the last
row in the first datafile). The obvious problem

with this particular code occurs when the
number of rows in the first datafile are not
evenly divisible by the number of processes.

A Practical Comparison of Muitiprocessing Libraries, page 5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

calculations have been performed. Any
benefit from parallelizing these two loops
may not be seen until the number of files
being compared approaches 50. A similar
situation is present in the second most
outer loop. Every cycle through this loop
accounts for one row of the data sets being
processed. Again, benefit would not be
evident from parallelizing this loop until the
input files approach the neighborhood of a
thousand columns. For every cycle through
the outer most loop, one row of the first
data file has been compared with aU rows

Parallel Times on the Beowulf Cluster

1 node - se

seconds

Parallel times on Mac OS X Cluster
f

i i

1.,' ' 1

seconds

Figure 6. Average time required to process data in serial and in parallel. The Beowulf cluster consists nine dual 800 MHz Pentium-Ill nodes. The heterogeneous Mac OS X cluster consisted of: node 1) PowerBook G4 12" 867 MHz G4, node 2) PowerMac dual 1.25 GHz G4, node 3) Power Mac dual 1 GHz G4, node 4) Power Mac dual 800MHz G4. All Apple computers were running Mac OS 10.2.5. MPICH was the implementation of MPI running on both clusters. In the case of the Mac OS X cluster, a common shared file system had to be created. This was simulated by mounting the PowerBook's hard drive on each Power Mac and then creating a symbolic link from each PowerMac's root directory to the MPI program residing on the PowerBook's hard drive.

for(ii=l; ii<=oi; ii++)
{
for(1=1; i<=(nc); i++)

{
#pragma omp parallel for \

private(a, b, k)
for(j=l; j<=argc-2; j++)

{
a = index[j] ;
for(k=j+l; k<=argc-l; k++)

{
b = index[k];

// relative difference
// calculation

singlemeasurerd = \
(((fabs(dataarray[a] - \
dataarray[b])) / (0.5* \
(fabs(dataarray[a] \
+ dataarray[b])))) \
+ singlemeasurerd);

} // end k
} // end j

avgSingleMeasureRD = \
(singlemeasurerd/(divisor));

totalmeasurerd = \
singlemeasurerd/(divisor) \
+ totalmeasurerd;

reldif[m]=avgSingleMeasureRD;
m = m + 1;
singlemeasurerd = 0.0;
avgSingleMeasureRD = 0.0;
for(j=l; j<=argc-l; j++)

{
a = index[j];
index[i] = a + 1;
}

} // end i
buffers = totalmeasurerd / nc;

} // end iiListing 3. Codefragment with the OpenMP directive for parallelizing a loop in bold. The loop is automatically parallelized with the number of threads used during execution defined by the environment variable OMPC_NUM_ PROCS. The OMP_NESTED environment variable can be used to control parallelization of nested loops. The code was compiled with the Omni OpenMP compiler.
A Practical Comparison of Multiprocessing Libraries, page 6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

of the other data files. In the case of the
SERT data set one cycle through the outer
most loop accounts for 7,297,560 relative
difference calculations. A substantial time
savings could be attained through the
parallelization of this loop.

Message Passing interface
The Message Passing Interface (MPI)
standard was developed, in part, to allow
portability of parallel code between
supercomputers. MPI is a library for
enabling interprocess communication.
An implementation of MPI is generally
available at supercomputer centers on
distributed memory machines. Code
can easily be written and tested with
limited computing facilities and remains
highly portable to computers of greater
computational capacity.

Using MPI requires consideration
of how a program can efficiently be
split into separate processes and what
communication needs to take place between
these processes. In the case of the relative
difference program the data from the first
input file will be divided by the number of
processes. Depending on tiie number of
rows in this input file being evenly divisible
by the number of processes (processors
assign to this task), the work load will
be equally split amongst processors for
the duration of the relative difference
calculations. The variables used to keep
track of which piece of data is currently
being acted upon will need to be changed
to indicate the start point within the data
set for each process. This can be seen in the
code fragment in listing 2 with the impact of
this MPI parallelization on run times shown
in figure 6.

OpenMP
The OpenMP compiler directives and
library provide a mechanism for shared
memory parallel computing. As well,
OpenMP can be used in conjunction with
MPI to take advantage of the processing

capabilities available in clusters of dual
processor nodes. OpenMP provides easily
accessible methods for parallelizing loops,
as seen in listing 3. These methods for
loop parallelization work well with simple
loops. Mechanisms exist in OpenMP
which allow complex sections of code and
nested loops to be parallelized. In the code
shown here, the loop that cycles through
the calculation of the combinatorial
relative difference for one data point from
each input file has been parallelized. As
previously mentioned this may prove to
be useful with an increased number of
input files. In the case of the SERT data
set, there is diminished performance,
probably due to initial communication
overhead. The computation time
increased on one, two processor Beowulf
node from 16 second for serial to 80
seconds for the OpenMP version.

Conclusion
When putting in the effort to effectively
parallelize code, it is gratifying to see the
performance gains from running on four,
eight, or thirty two processors. Given the
opportunity, which is largely dependant
on the available equipment, pursuing a
MPI solution will afford a notable increase
in performance. If limited to a dual
processor machine or a shared memory
supercomputer, putting the effort into
OpenMP would be the optimum choice.

Acknowledgements
Don Morton - The Montana Rockies Center
for Computational Science (MRoCCS) at the
University of Montana
John Gerdes - The Molecular Computational
Core Facility of the NIH-COBRE Center for
Structural and Functional Neuroscience at
the University of Montana
Jennifer Parham - Department of Computer
Science, University of Montana
Melodie Weller - Department of
Pharmaceutical Science, University
of Montana

A Practical Comparison of Muitiprocessing Libraries, page 7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

Bibliography
Chandra, Rohit, et al. Parallel Programming
in OpenMP. Morgan Kaufmann Publishers,
San Francisco, CA. 2001.

Foster, Ian. Designing and Building Parallel
Programs. Addison-Wesley Publishing
Company, Reading, MA. 1995.

Gropp, William, et al. Using MPI. The MIT
Press, Cambridge, MA. 1999.

[Vaswani2002] Vaswani, Meera, et al.
Role of Selective Serotonin Reuptake
Inhibitors in Psychiatric Disorders: A
Comprehensive Review. Progress in
Neuro-Psychopharmacology and Biological
Psychiatry 27,85-102. Elsevier, New York,
NY 2003

Resources
High Performance Computing on Mac OS X
http://gravity.psu.edu/~khanna/hpc.html

MPI
http: / / www-unix.mcs.anl.gov/mpi/

MPICH
http:// www-unix.mcs.anl.gov / mpi/
mpich/

OpenMP
http://www.openmp.org/

Omni OpenMP
http:/ / phase.etl.go.jp/Omni/

GNU Portable Threads and Multithreading
Libraries
http:/ / www.gnu.org/software/pth/
related.html

A Practical Comparison of Muitiprocessing Libraries, page 8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://gravity.psu.edu/~khanna/hpc.html
http://www.openmp.org/
http://www.gnu.org/software/pth/

131

Appendix 4.5 The compsortall program, written in C. Calculates, sorts and
saves all similarity scores.
/*

Program: com psortall
version: 1.01
author: Paul A. W ilson
email: pw ilson@ cobrem ail.itrc.um t.edu
date of latest version: A ugust 22, 2004
date of origination: 2003

com mand: program nam e data file 1 data file 2 data file 3
example: ./com psortall .7MCN-5652.txt ./sertraline.txt ./indatraline.txt ./s-citalopram .txt

m inim um of three data files required, no lim it to m axim um num ber of data
files to be com pared - w ithin reason

required data file format: com m a delim ited text, first field of each row is
equivalent to a label, the rem aining fields in each row are num bers, each
field is separated by a com m a, no quotes around the labels, no spaces between
fields (commas only)

output file nam e is lim ited to a m axim um of 64 characters

In Short: This program com pares the rows in data files developing a score
for each set of rows (set - one row from each data file). Then sorts the
scores from low to high. Low scores represent the sets of rows w hich are
m ost similar. A text file is w ritten containing all com parisons in
ascending order. Each row in the output file contains the label from each
label field (first field in each data file) concatenated together follow ed
in com m a delim ited form by the score for each field and finally the total
score. Two text files are created containing interm ediary data. These
two files, called tem pfile_l and tempfile_2, can be deleted after the
program has com pleted.

This program was w ritten in response to to a project w here distance
space descriptions needed to be com pared in order to determ ine the
conform ations of four m olecules w hich w ere the m ost similar.
(see SEN 2003 A nnual M eeting, Poster Presentation 371.4 and SEN
2004 Annual M eeting, Poster Presentation 922.1, also see M achack 18,
Wilson, P.A. “A Practical Com parison of M ultiprocessing L ibraries”,
M acHack 2003, June 2003, the code is different but a lot of the ideas
remain) I am willing to share m anuscript versions of these posters in
pdf format.

Com parisons are carried out com binatorially using relative difference.
The relative difference equation was m odified slightly to enable creating
and weighting the com parison of a positive and negative m easurem ent as less
similar. Each row in each data file is com pared against each row of every
other data file. W ithin each row, each field is com pared against the
corresponding field from the rows being com pared in the other data files.
If there are 4 data files than there are 6 com parisons betw een each field
of the four rows being com pared. The relative difference score from each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

132

field is added together and divided by the num ber of fields to produce a
sim ilarity score for the for the rows being com pared.

sim ilarity score = (summation from m easure 1 to total num ber of m easures (
sum m ation of from data file 1 to total num ber o f data files ((IVab - VacI /
((IVabI + IVacl)/2)) / num ber of com binatorial)))
Vab = m easure a o f datafile b
Vac = m easure a of datafile c

The program program s structure has a legacy stem m ing from a personal interest
in out-of-core sorting, dynam ic m em ory allocation, and parallel computing.
There are three versions of this program . This one is sorts all scores using
an out of core sorting m echanism . The other two versions of the program 1)
does not sort, and 2) one sorts all but only keeps a user determ ined portion
o f the scores. The out o f core version, here, sorts a group o f calculated
scores to a file, calculates and sorts the next group of score, reads part
o f the sorted file back into memory, merges the two sets o f sorted scores
together m aintaining ascending order, and writes out to a new tem porary file.
The process is repeated until all o f the first tem porary file is read in and
all of the scores have been w ritten out to the second file. The algorithm
works well and is fast, except the file I/O step. It w ould be interesting at
som e point to look into this again, using a parallel file system (or at least
a high speed file system).

Pointers are used extensively as port o f som e of m y original notions on
dynam ically allocating m em ory and sorting.

The program was w ritten in C to provide m axim um portability. I have not tried
com piling this code on a Linux, o r any other, m achine. I have noticed this
code runs great under M ac OS 10.3 and failed when running under M ac OS 10.2.

*/

//#include <dirent.h>
#include <fcntl.h>
#include <m ath.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/erm o.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/tim e.h>
#include <sys/types .h>
#include <sys/uio.h>

// structure for holding data read from files, label and num erical descriptors
struct descriptions
{
char * labels;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

double * descriptivedata;
};

// structure for holding concatenated label and score for each descriptor
// and a total score value
struct labelscores
{
char * label;
double * reldif;
};

// from here to m ain are a set of function used for sorting
// the sorting algorithm is a quicksort, w ith a m ean of 3 used for determ ining
// the first pivot point - see D ata Structures and Algorithm
// Analysis in C by M ark A llen Weiss

// swap redirects pointers - u will point to v and v will point to u
// Swap - needs to be com piled inline for efficiency

void Swap (struct labelscores ** u, struct labelscores ** v)
{
struct labelscores temp;
temp = **u;

**v temp;
}

// insertion sort - used as part o f quicksort
// scoreisort - struct of labelscores containing scores to be sorted by the insertion sort m ethod
// n is the upper edge of of the chunk data the insertion sort is occurring on
// num decriptsis - num ber of description insertion sort,
// is equal to the num ber o f descriptive fields in the data files
// used for for m alloc of tem porary insertion sort struct o f labelscores
// totallabelelngthis - total label length insertion sort,
// is equal to the m axim um num ber of characters in concatenated labels
// used for for m alloc of tem porary insertion sort struct of labelscores

void InsertionSort(struct labelscores ** scoreisort, int n, int num descriptsis, int totlablengthis)
{
int j, p; // j and p are indexes used in the insertion sort
int descriptindexis; // an index for descriptive field
char * nullstring = “\0 ”; // nullstring needed at the end of strings

struct labelscores tem pisort; // tem porary labelscore struct used in insertion sort

tem pisort.label = (char *) m alloc(sizeof(char) * (totlablengthis)); // allocate m emory
tem pisort.reldif = (double *) m alloc((num descriptsis + 1) *sizeof(double));
(char *)tem pisort.label = strcpy(tem pisort.label, nullstring);
for(descriptindexis=0; descriptindexis < num descriptsis+1; descriptindexis++)
{
tem pisort.reldif[descriptindexis] = 0.0;
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

// insertion - copy one struct out, m ove the rest, then put the struct back w ere it goes
fo r(p= l; p<n; p++)

{
tempisort-label = strcpy (tem pisort.label, scoreisort[p]->label);
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)
{
tem pisort.reldif [descriptindexis] = scoreisort [p] ->reldif [descriptindexis] ;
}

for(j=p; ((j > 0) && (scoreisort|j-l]-> reld if [numdescriptsis] > tem pisort.reldif [numdescriptsis])) ; j -)
{
scoreisort [j]->label = strcpy(scoreisort[j]->label, scoreisort [j -1] ->label) ;
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)
{
scoreisort [j]->reldif[descriptindexis] = scoreisort [j -1] ->reldif [descriptindexis] ;
}

}
scoreisort [j] ->label = strcpy(scoreisort[j]->label, tem pisort.label);
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)

{
scoreisort[j]->reldif [descriptindexis] = tem pisort.reldif [descriptindexis];
}

}
free (tem pisort.label); // free m em ory previously m alloced
free (tempisort.reldif) ;

}

// m edian of three - selecting the pivot for the quicksort
//
// scorem edian - struct of labelscores, postion of left (first) score, postion of right(last) score
// num descriptsm - num ber o f descripts m edian of 3, the last descript field - the total sim ilarity score
// the m edian value of the three sam pled values is determ ined and return to the quicksort routine
// to be used as the pivot point

float M edian3 (struct labelscores **scorem edian, int left, int right, int num descriptsm , int totlablengthm)
{
int center;
center = (left + right) / 2; // position of the center score - m edian position

if (scorem edian[left]->reldif [numdescriptsm] > scorem edian [center]->reldif [numdescriptsm])
{
Swap(& scorem edian[left], &scorem edian[center]);
}

if (scorem edian[left]->reldif[num descriptsm] > scorem edian[right]->reldif[num descriptsm])
{
Swap(& scorem edian[left], & scorem edian[right]) ;
}

if (scorem edian[center]->reldif[num descriptsm] > scorem edian[right]->reldif[num descriptsm])
{
Swap(& scorem edian[center], &scorem edian[right]);
}

Swap (& scorem edian[center], & scorem edian[right-1]) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

return scorem edian [right-1] ->reldif [numdescriptsm] ;
}

// quicksort
// scoreqsort - the struct of labelscores to be sorted by quicksort
// leftqs, rightqs - the low er and upper boundaries of the quicksort - quicksort is recursive
// num descriptsqs - num ber of descriptive fields quicksort - used for allocating necessary m em ory
// totlablength - total label length quick sort - m axim um num ber o f characters in a label
// used for allocating necessary m em ory

void Qsort(struct labelscores **scoreqsort, int leftqs, int rightqs, int num descriptsqs, int totlablengthqs)
{
int i, j; // indexes used in quicksort

struct labelscores pivot; // labelscores struct which hold the pivot

pivot.label = (char *) m alloc(sizeof(char) * (totlablengthqs)); // allocating m em ory for pivot
pivot.reldif = (double *) m alloc((num descriptsqs-t 1) *sizeof(double));

// heart o f quicksort, pick pivot swap appropriate values to either side of pivot
if ((leftqs 4- 3) <= rightqs)
{
pivot.reldif[num descriptsqs] = M edian3(scoreqsort, leftqs, rightqs, num descriptsqs, totlablengthqs);
i = leftqs;
j = rightqs-1;
for(; ;)
{
while(scoreqsort[-t“l-i]->reldif [numdescriptsqs] < pivot.reldif [numdescriptsqs] && i < righ tqs-l)]}
w hile(scoreqsort[-j]-> reld if [numdescriptsqs] > pivot.reldif [numdescriptsqs] && j > 0){}
i f (i< j)

Swap(& scoreqsort[i], &scoreqsort[j]);
else

break;
}

Swap(& scoreqsort[i], & scoreqsort[rightqs-l]);

Qsort(scoreqsort, leftqs, i-1, num descriptsqs, totlablengthqs);
Qsort(scoreqsort, l4-l, rightqs, num descriptsqs, totlablengthqs);
}

else // if left and right a close together do an insertion sort
{
InsertionSort(scoreqsort-t-leftqs, rightqs-leftqs4-l, num descriptsqs, totlablengthqs);
}

free(pivot.label); // freeing allocated m em ory
free(pivot.reldif);
}

// start of main

int main (int argc, const char * argv[])
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

nt bufferidx; // used when determ ining if end of array reached
nt com pindex; // com parison index - w hich com parison set is being com pared
nt compindexZ; // index used for resetting score array
nt compstart; // com parison start - the starting point for each set o f com parisons
nt confindex; // conform ation index
nt descriptindex; // desciptor index - data file colum ns
nt descriptindexZ; // index used for resetting score array
nt entityindex; // id of entity one in the com parison
nt entityindexZ; // id o f entity two in the com parison
nt entityidxbuff; // entity index buffer
nt fileinidx; // file in index, index for reading tem p file
nt fileoutidx; // file out idx, index for writing tem p out
nt fileindex=l; // index used to indicate w hich data file is open
nt i; // sim ple index used in loop calculating the divisor
nt lastarraysz; // the size of the last array, the rem ainder o f calculations
nt Iseekbuffer; // buffer for file position
nt Iseekposition; // file position in data file being read
nt m axarraysz; // m axim um array size - num linescalc + num bestscore
nt maxfinsz; // m ax file in size, size of array to be read from tem porary file
nt m axfoutsz; // m ax file out size, size of array to be filled before writing to file
nt m axscoreidx; // the last com parison in a com parison set
nt numdescripts; // total num ber of descriptions = num ber o f columns in each data file
nt numcomps; // total num ber of com parison sets
nt numentities; // the total num ber of entities to be com pared = num ber of data files
nt num calcsets; // the num ber of tim es tem porary files need to be created
nt reldifidx; // relative diference index
nt tmpfileflag; // used to write to the correct tem porary file
nt calcsetidx; // index for the num ber o f tim es tem porary file created
nt totlabel; // total length, num ber of characters, o f concatenated label

nt * conform ationidx[argc-l]; // index of conform ations
nt * filedescript [argc-1] ; // array of file descriptors - data files from com m and line
nt * labellength[argc-l]; // array of the label lengths for each data file
nt * m axlabellength[argc-l]; // array of the m axim um label lengths for each data file
nt * num colum ns; // num ber of columns
nt * num confs [argc-1] ; // array of the num ber of rows in each data file
nt * tm pfilelfdp; // tem p file 1 file descriptor
nt * tmpfileZfdp; // tem p file 2 file descriptor
nt * tm pfilelpos; // tem porarily holds file position in tem p file 1
nt * tmpfileZpos; // tem porarily holds file position in tem p file 2

char * nullstring = “\0 ”; // nullstring for adding the end of lines and initialization
char * readbuffer; // read buffer for reading data files
char * stm um ber; // num erical data read from file stored as string
char * tm pfilel; // stores nam e of tem porary file 1 - tem pfile_l
char * tmpfileZ; // stores nam e of tem porary file 2 - tempfile_2

char outfilename[64]; // character array for output file nam e - m ax 65 character nam e

double descriptscore = 0.0; // the relative difference score for one com binatorial
double divisor = 0.0; // the divisor used in calculating the single m easure relative difference
double doublenum ber = 0.0; // num erical string read from data file is converted to double num ber
double singlem easureRD = 0.0; // the Relative D ifference score for a single set o f description

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

double totalm easureRD = 0.0; // the Relative Difference score for a com parison set
double totaltim e =0.0; // the total tim e in seconds used for tim ing sorts and run tim e
double totaltim ecalc = 0.0; // the total tim e in seconds used for tim ing calculation tim e
double totaltim em erge = 0.0; // the total tim e in seconds used for tim ing m erge sort tim e
double totaltim eqsort = 0.0; // the total tim e in seconds used for tim ing quick sort tim e
double totaltim ereada = 0.0; // the total tim e in seconds used for tim ing initial file read tim e
double totaltim ereadb = 0.0; // the total tim e in seconds used for tim ing post initial file read tim e
double totaltim ew rite = 0.0; // the total tim e in seconds used for tim ing file write tim e
double totaltim eoocsort = 0.0; // the total tim e in seconds used for tim ing out o f core sort tim e

FILE *outfilefd; // the output file descriptor
FILE *tm pfilelfd; // tem p file I file descriptor
FILE *tmpfile2fd; // tem p file 2 file descriptor

tim e_t starttim ecalc; // start tim e for set of calculations
tim e_t endtim ecalc; // end tim e for set of calculations
tim e_t starttim em erge; // start tim e for m erge sort
tim e_t endtim em erge; // end tim e for m erge sort
tim e_t starttim eoocsort; // start tim e for out of core sort
tim e_t endtim eoocsort; // end tim e forout o f core sort
tim e_t starttimeread; // start tim e for a tem porary file read
tim e_t endtim eread; // end tim e for a tem porary file read
tim e_t starttim eqsort; // start tim e for quicksort
tim e_t endtim eqsort; // end tim e for quicksort
tim e_t starttim etotal; // start tim e for total run tim e
tim e_t endtim etotal; // end tim e for total run tim et
tim e_t starttimewrite; // start tim e for a tem porary file write
tim e_t endtim e write; // end tim e for a tem porary file write

struct descriptions ***conform ation; // struct w hich stores all the data from the data files

struct labelscores **score; // struct w hich stores concatenated labels and scores
struct labelscores **filein; // struct w hich stores labels and scores from tem p file read
struct labelscores **fileout; // struct w hich stores labels and scores to w rite to tem p file
struct labelscores scorebuffer; // a buffer to tem porarily store scores in

// initial m em ory allocation and variable initialization
readbuffer = m alloc(sizeof(char));
stm um ber = m alloc (sizeof (char) * 16); // this needs to be increased if num bers are

// m ore than 15 digits plus 1 N U LL string

tm pfilel = m alloc(10 * sizeof (char)); / /1 0 characters - tem pfile_l
tmpfile2 = m alloc(10 * sizeof (char)); / /1 0 characters - tempfile_2
tm pfilel = “tem pfile_ l”;
tmpfile2 = “tem pfile_2”;
tmpfileflag = 1;

tm pfilelfdp = (int *) m alloc(sizeof (int)) ;
tmpfile2fdp = (int *) m alloc(sizeof(int));

tm pfilelfd = (FILE *) m alloc (sizeof (int));
tmpfile2fd = (FILE *) m alloc(sizeof(int));

num colum ns = (int *) m alloc (sizeof (int)) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

*filedescript = (int *) maIIoc(sizeof(int) * (argc -1)) ;

tm pfilelpos = (int *) m alloc(sizeof(int));
tmpfileZpos = (int *) m alloc(sizeof(int));

num entities = argc -1 ;
confindex = 0;
num com ps - 1;
totlabel = 1;

// print inform ation to the screen w hich will help the user answ er the
// first three questions they are asked by the program
printf(“\n\n\nThis program is going to calculate X num ber of scores, “);
printf(“\nsort those scores, and writes them to a tem porary file, and then “);
printf ("\ncalculates the next X num ber of scores. This latest set of X ”);
printf(“\nscores are sorted together w ith X scores read from the tem porary “);
printf (“\nfile, and as soon as X scores have been sorted they are written to “);
printf (“\na new tem porary file. This continues until all X calculated scores “);
printf (“\nand the first tem porary file have been sorted and w ritten to “);
printf (“\nthe second tem porary file. This process continues calculating, “):
printf (“\nreading from, and writing to tw o tem porary files until all scores “);
printf (“\nhave been calculated, sorted and w ritten to an output file in “);
printf (“\nascending order.\n”);

printf (“\nThe answers given to the next three question will determ ine “):
printf (“\nhow m uch m em ory is allocated. R em em ber there are lim its “);
printf (“\nto how m uch m em ory can be allocated to a single application “):
prin tf(“\nand virtual m em ory is slower than physical memory. “);
printf(“\nYou are about to be asked for the num ber of scores to be “);
printf (“\ncalculated betw een writes to a tem porary file. This is also “);
printf (“\nthe num ber of scores to read from the tem porary file at a time, “);
printf (“\nand the num ber of scores to write to the second tem porary file “);
printf (“\nat a tim e.\n”);
printf (“\nThe product o f 3X accounts for a majority of the m em ory used “);
printf (“\nby this program . Calculating X num ber o f scores, reading X”):
prin tf(“\nnum ber of scores, and writing X num ber of scores at a tim e”);
printf(“\n allows for the program to rem ain w ithin a lim ited m em ory”);
prin tf(“\nfootprint. A n exam ple value that has proven useful to the”);
prin tf(“\nauthor is; X = 500000. “);
prin tf(“\nThis values should be changed according to your data set,”);
printf (“\nneeds, and physical memory.Vn”);

// ask for and obtain the num ber of conform ational sets to calculate
// between the “sort and store” steps
printf (“\nH ow m any scores do you w ant to calculate before sorting, “);
p rin tf(“\nreading from, and w riting to tem porary files? “);
scanf(“% i”, & m axarraysz);

maxfinsz = m axarraysz; // setting out of core file in and file out arrays
m axfoutsz = m axarraysz; // the sam e size as m axarraysz, prevents possible

// problem s from having different size arrays

// allocating m em ory for input data array
conform ation = (struct descriptions ***) m alloc (sizeof (struct \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

descriptions **) * num entities);

// determ ined from arguments on com and line
prin tf(“\nThe num ber of data files = % i\n”, numentities);

// asking for the num ber of colum ns per data file
printf (“\nW hat is the total num ber of colum ns in each file? “);
scanf(“% i”, (int *)& num colum ns);

num descripts = (int)num colum ns -1 ;
prin tf(“\nEach file has % i colum ns, 1 label colum n and %i description columnsAn”, \
(int)numcolumns, num descripts);

// allocating m em ory and loading the data arrays

for (entityindex=0; entityindex < num entities; entityindex++)
{
m axlabellength[entityindex] = (int *)m alloc(sizeof(int));
*m axlabellength[entityindex] = 0;
if (((int)filedescript[fileindex] = (open(argv[fileindex], 0_R D 0N L Y))) < 0)
{
perror(argv [fileindex]) ;
exit(EXIT_FAILURE);
}

// asking for the num ber of rows in the current data file being read
prin tf(“\n\nfile %s is open\n”, argv[fileindex]);
printf (“How m any rows are in this file? “);
scanf(“% i”, (int *)& num confs[entityindex]);
printf (“There are % i rows representing % i conform ations in this file.\n”, \
(int) num confs [entityindex], (int)num confs[entityindex]) ;

// allocating m em ory for the array of pointers to conform ations
conform ation [entityindex] = (struct descriptions **) m alloc \
((sizeof (struct descriptions *) * (int)num confs[entityindex]));

Iseekposition = 0;

// allocating m em ory for a conform ation s structure and descriptors
for(confindex=0; confindex < (int)numconfs [entityindex] ; confindex++)
{
conform ation [entityindex] [confindex] = (struct descriptions *) malloc \

((sizeof (struct descriptions)));
conform ation[entityindex][confindex]->descriptivedata = (double *) \

m alloc(sizeof(double) * num descripts);

// allocating m em ory for a conform ation s structure label
labellength[entityindex] = (int *) m alloc (sizeof (int)) ;
fflush(NULL);
^readbuffer = ‘\0 ;
*labellength[entityindex] = 0;
lseekbuffer=lseekposition;

// counting num ber of characters in label
// fscan w ould be faster and was used for file I/O in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

// out-of-core sortng program
w hile(*readbuffer != ' ' && *readbuffer !=)
{
lseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read((int)filedescript[fileindex], readbuffer, 1);
*labellength[entityindex] = *labellength[entityindex] 4-1;
lseekposition++;
}

if (*m axlabellength[entityindex] < *labellength[entityindex])
{
*m axlabellength[entityindex] = *labellength[entityindex];
// printf (“\nm axim um label length = % i\n”, *m axlabellength[entityindex]) ;
}

// allocating m em ory for label - depends on label m axim um length
conform ation[entityindex][confindex]->labels = \
(char*) m alloc (sizeof (char) * *labellength[entityindex]);

// reading, concatenating, and storing label
fflush(NULL);
*readbuffer = ‘\0 ;
Iseekposition = Iseekbuffer;
descriptindex = 0;
while (*readbuffer != ‘ ‘ && * readbuffer != ',)
{
lseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read ((int) filedescript [fileindex], readbuffer, 1);
if(*readbuffer != ',)
{
(char *)conf orm ation [entityindex] [confindex] ->labels = \
stm cat(conform ation[entityindex][confindex]->labels, readbuffer, 1);
}

lseekposition+4-;
}

// resetting and reading num erical descriptor data from data files
// data read as string and converted to double - strtod
w hile(*readbuffer != ‘\n && *readbuffer != ‘\0)
{
fflush(NULL);
*readbuffer = \0 ;
*stm um ber = ‘\0 ;
while(*readbuffer != ‘, && *readbuffer != ‘ ‘ && *readbuffer != ‘\n)
{
lseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read((int)filedescript[fileindex], readbuffer, 1);
if (*readbuffer != ', && *readbuffer != ‘ ' && *readbuffer != ‘\n)
{
stm um ber = stm cat(strnum ber, readbuffer, 1);
lseekposition++;
}

}
doublenum ber = strtod(stm um ber, NULL);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

conform ation [entityindex] [confindex] ->descriptivedata [descriptindex] =\
doublenumber;
descriptindex++;
Iseekposition++;
I

}
fileindex = fileindex + 1 ; // finished reading from data file m ove to next file
}

// asking for and obtaining nam e of output file
fflush(NULL);
printf (“\n\nEnter file nam e for results to be stored in; “);
scanf(“% s”, (char *)& outfilename);
printf (“The results will be saved in % s\n”, outfilename);

starttim etotal = tim e (NULL); // start tim e for total tim e

// calculating total num ber of com parisons and m axim im um total label length
for (entityindex=0; entityindex < num entities; entityindex++)
{
num com ps = num com ps * (int) num confs [entityindex] ;
totlabel = totlabel + *m axlabellength[entityindex] ;
}

numcalcsets = (numcom ps/maxarraysz) ; // num ber of sets of calculations
// num ber of out o f core sorts

// if num ber of com parisons is less than the size of a set o f calculations
if (maxarraysz > numcomps)
{
m axarraysz = numcomps;
maxfinsz = numcomps;
m axfoutsz = numcomps;
num calcsets = 0;
tmpfileflag = 3;
}

/ / calculate the size of the last set of com parisons
lastarraysz = num com ps - (numcalcsets * m axarraysz);

// allocate m em ory for score array and initialize
score = (struct labelscores **) m alloc (sizeof(struct labelscores *) \
* (int)maxarraysz);

for(com pindex=0; com pindex <= maxarraysz; com pindex++)
{
score[compindex] = (struct labelscores *) m alloc(sizeof(struct\
labelscores));

score[com pindex]->label = (char *) malloc(sizeof(char) * (totlabel + num entities));
score[com pindex]->reldif = (double *) m alloc ((numdescripts+1) * sizeof (double));
for(descriptindex=0; descriptindex < num descripts+1; descriptindex++)
{
score [com pindex]->reldif [descriptindex] = 0.0;
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

}

// allocate m em ory for file in array and initialize
filein = (struct labelscores **) m alloc (sizeof (struct labelscores *) \
* (int)maxfinsz);

for(com pindex=0; com pindex <= maxfinsz; com pindex++)
{
filein[compindex] = (struct labelscores *) m alloc (sizeof (struct)
labelscores));

filein [compindex] ->label = (char *) m alloc (sizeof (char) * (totlabel + numentities));
filein [com pindex]->reldif = (double *) m alloc ((numdescripts+1) * sizeof(double));
for(descriptindex=0; descriptindex < num descripts+1; descriptindex++)
{
filein [com pindex]->reldif [descriptindex] = 0.0;
}

}

// allocate m em ory for file out array and initialize
fileout = (struct labelscores **) m alloc (sizeof (struct labelscores *) \
* (int)maxfoutsz);

for(com pindex=0; com pindex <= maxfoutsz; com pindex++)
{
fileout[compindex] = (struct labelscores *) m alloc (sizeof (struct)
labelscores));

fileout[com pindex]->label = (char *) m alloc(sizeof(char) * (totlabel + num entities));
fileout[com pindex]->reldif = (double *) m alloc((num descripts+1) * sizeof(double));
for(descriptindex=0; descriptindex < num descripts+1; descriptindex++)
{
fileout[com pindex]->reldif [descriptindex] = 0.0;
}

}

// allocating m em ory for scorebuffer
scorebuffer.label = (char *) m alloc(sizeof(char) * (totlabel + num entities));
scorebuffer.reldif = (double *) m alloc((num descripts+1) *sizeof(double));

// memory allocation for m ain com plete
printf (“)nm alloc com plete - m em ory allocated)n”);

// calculate and print the num ber of com binatorial com parisons per each set of
// desriptors in a com parison set
divisor = 3;
for(i=3; i<num entities; i++)
{
divisor = divisor + i;
}

printf(“)n)nThere are % .0f possible com parisons for each descriptive field”, divisor);
printf (“)nin each com parison set)n)n”);

// initializing variables before relative difference calculation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

entityindex = 1; // first entity
entityindexZ = 0; // second entity
descriptscore = 0.0;
descriptindex = 1; // description being com pared
singlem easureRD = 0.0;
totalm easureRD - 0.0;
com pstart = 0;
(int)conform ationidx[entityindex] = 0; // conform ation of entity one
(int)conform ationidx[entityindexZ] = 0; // conform ation of entity two

for(entityindex=0; entityindex < num entities; entityindex++)
{
(int) conform ationidx [entityindex] = 0;
}

// loop through num ber of calculation sets appropriate am ount o f times
for(calcsetidx=0; calcsetidx < num calcsets; calcsetidx++)
{
starttim ecalc = tim e(NULL); // start tim e for calculation set
// loop through the appropriate space in the score array for
// storing newly calculated relative difference score
for(com pindex=0; com pindex < maxarraysz; com pindex++)
{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
// loop through entity x
for (entityindex=0; entityindex < num entities - 1 ; entityindex++)
{
// loop through entity y
for (entityindex2=entityindex+l; entityindexZ < num entities; entityindex2++)
{
// calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs((float)conform ation[entityindex]\
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex] - \
(float) conform ation [entityindexZ])
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex])) /)
(0.5 *)
(fabs((float)conform ation[entityindex])
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex]) +)
fabs((float)conform ation[entityindex2])
[(int) conform ationidx [entityindexZ]] ->descripti vedata [descriptindex]))) +)
descriptscore;
} // end entity y

} // end entity x

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlem easureRD ;
singlem easureRD = 0.0;
// keep running total for total m easure relative difference score

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

totalm easureRD = (descriptscore / divisor) + totalm easureRD;
descriptscore = 0.0;
} // end description loop

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;
totalm easureRD = 0.0;

// concatenate and store the label o f the com parison set aka com parison group
(char *)scorebuffer.label = strcpy(scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities - 1)); \
entityidxbuff <= entityindex; entityidxbuff++)
{
(char *)scorebuffer.label = \
strcat(scorebuffer.label, \
conform ation [entityidxbuff] [(int) conform ationidx [entityidxbuff]] ->labels) ;

if (entityidxbuff < entityindex)
{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart of keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity
// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all o f the entities will cause every conform ation to
// be com pared w ith every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int)conform ationidx[argc-2] = (int)conform ationidx[argc-2] + 1;

if((int)conform ationidx[argc-2] >= (int)numconfs[argc-2])
{
for (confindex = (argc-2); confindex > 0; confindex—)
{
if ((int) conform ationidx [confindex] >= (int) num confs [confindex])
{
(int)conform ationidx[confindex] = 0;
(int) conform ationidx [confindex-1] = (int) conform ationidx [confindex-1] + 1;
}

}
}

// putting a label w ith the scores
score [com pindex]->label = strcpy (score [compindex] ->label, scorebuffer.label) ;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
score [compindex] ->reldif [descriptindex] = scorebuffer.reldif [descriptindex] ;
}

} // end of num com ps com putational group loop

endtim ecalc = tim e (NULL); // end tim e for set o f com parison claculations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

totaltim ecalc = endtim ecalc - starttim ecalc; // total tim e for calculations
printf(“\n\n% i com parisons have been com pleted”, m axarraysz * (calcsetidx+1));

starttim eqsort = tim e(NULL); // start tim e for quicksort

// quicksort
Qsort(score, 0, m axarraysz-1, num descripts, totlabel + num entities);
endtim eqsort = tim e(NULL); // end tim e for quicksort
totaltim eqsort = endtim eqsort - starttim eqsort; // total tim e for quicksort
printf ("\n%i com parisons of been calculated in % .0f seconds and sorted in % .0f seconds”, \
maxarraysz, totaltim ecalc, totaltim eqsort);

starttim ewrite = tim e (NULL); // start tim e for first tem p file write

// the results of the first set o f com parisons are w ritten to tem pfile_l
if (calcsetidx == 0)
{
if ((tm pfilelfd = fopen (tm pfilel, “w t”)) == NULL)

{
printf (“\ncan not open % s\n”, tmpfileZ);
exit(2);
}

fflush(NULL);
for(com pindex=0; com pindex < m axarraysz; com pindex++)
{
fprintf(tm pfilelfd , “% s\n”, score[com pindex]->label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fprintf(tm pfilelfd , “% .12f\n”, score[com pindex]->reldif[descriptindex]);
}

}
tmpfileflag = 2;
fclose (tmpfile 1 fd) ;

endtim ewrite = tim e (NULL); // end tim e for first tem pfile_l write
totaltim ewrite = endtim ewrite - starttimewrite; // total tim e for write
printf("\n% i lines w ritten to tem pfile_l in % .0f seconds”, m axarraysz, totaltimewrite);

}

// after the first set o f com parisons tem p files are read from and w ritten to
else
{
starttim eoocsort = tim e(N ULL); // start tim e for out o f core sort
starttim eread = tim e(NULL); // start tim e for out o f core sort
ffiush(NULL);

// if tem p file flag == 1 write to tem pfile_l and read from tempfile_2
if (tmpfileflag == 1)
{
// open tem pfile_l for writing
if ((tm pfilelfd = fopen(tm pfilel, “w t”)) == NULL)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

I
prin tf("\ncan not open % s\n”, tm pfilel);
exit(2);
}

//open tem pfile_2 for reading
if (((FILE *)tm pfile2fdp = (fopen(tmpfile2, “r”))) < 0)

{
perror(tmpfile2);
exit(EXIT_FAILURE);
}

// initialize variables and rew ind tempfile_2
bufferidx = 0;
rewind ((FILE *)tmpfile2fdp);
bufferidx = 0;

// read maxfinsz lines from tem pfile_2 into filein array
for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;
fscanf((FILE *)tmpfile2fdp, “% s”, filein [fileinidx]->label);
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)

{
fscanf((FILE *)tmpfile2fdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein[fileinidx]->reldif[reldifidx] = doublenumber;
}

}
if (fgetpos ((FILE *)tm pfile2fdp, (fpos_t *)tmpfile2pos) 1= 0)

{
perrorC 'fgetpos error”);
}

endtim eread = tim e (NULL); // end file read tim e
totaltim ereada = endtim eread - starttimeread; // total tim e for initial file read
printf("\n% i lines read from tem pfile_2 in % .0f seconds”, maxfinsz, totaltim ereada);

fileinidx = 0;
// read, merge, and w rite until all scores calculated to this point
for(com pindex=0; com pindex <= calcsetidx; com pindex++)

{
starttim em erge = tim e (NULL);
for(fileoutidx=0; fileoutidx < maxfoutsz; fileoutidx++)

{
// if the calculated scores have all been put into the
// fileout array, then w rite the data left in the
// filein array into the fileout array
if (bufferidx >= maxarraysz)

{
fileout[fileoutidx]->label = filein [fileinidx] ->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

{
fileout[flleoutidx]->reldif[descriptindex] = filein [fileinidx]->reldif [descriptindex];

}
if (fileinidx < m axfinsz-1)

{
fileinidx++;
}

}
// if the data in the filein array has been w ritten to the file out array
// then read m ore data from the tem p file into the filein array
else if (fileinidx >= maxfinsz)

{
// if there is still new data to be read from the tem porary file
// read it into the filein array, if the com pindex is less than
// the calcsetidx then this is true
if (compindex < calcsetidx)

{
starttim eread = tim e (NULL); // start tim e for reading from tempfile
if (fsetpos ((FILE *)tmpfile2fdp, (fpos_t *)tmpfile2pos) != 0)

{
perror (“fsetpos error”);
}

for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tmpfile2fdp, “% s”, filein [fileinidx] ->label) ;
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)

{
fscanf((FILE *)tmpfile2fdp, “%s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein[fileinidx]->reldif[reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *)tmpfile2fdp, (fpos_t *)tmpfile2pos) != 0)

{
perrorC 'fgetpos error”);
}

fileinidx = 0;
fileou tidx-;

endtim eread = tim e (NULL); // end tim e for reading
totaltim ereadb = endtim eread - starttimeread; // total read time
printf(“\n% i lines read from tem pfile_2 in % .0f seconds”, maxfinsz, totaltim ereadb);
}

// if all of the data has been read from the tem porary file then
// put w hat is left o f the calculated data into the fileout array
else

{
fileout [fileoutidx]->label = score [bufferidx] ->label ;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

{
fileout[fileoutidx] ->reldif [descriptindex] = score[bufferidx] ->reldif [descriptindex] ;
}
bufferidx = bufferidx + 1;

}
}

// if score is less than filein then write it to fileout
else if (score[bufferidx]->reldif[num descripts] < filein[fileinidx]->reldif[numdescripts])
{
// printf(“\n less than”);
fileout[fileoutidx]->label = score[bufferidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
fileout[fileoutidx]->reldif [descriptindex] = score[bufferidx]->reldif [descriptindex];
}
bufferidx - bufferidx + 1;

}
// if score is greater the filein then w rite filein to fileout
else if (filein[fileinidx]->reldif [numdescripts] <= score[bufferidx]->reldif [numdescripts])
{
// printf(“\n greater than or equal”);
fileout[fileoutidx]->label = filein [fileinidx] ->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
fileout[fileoutidx]->reldif [descriptindex] = filein[fileinidx]->reldif [descriptindex] ;
}
fileinidx++;

}
}

endtim em erge = tim e (NULL); // end m erge tim e
totaltim em erge = endtim em erge - starttimemerge; // total m erge time
if (totaltim ereadb > 0)

{
// if read occurred in m iddle of m erge then subtract read tim e from
// m erge tim e to produce tim e for just the m erging activity
totaltim em erge = totaltim em erge - totaltim ereadb;
totaltim ereadb = 0;
}

prin tf(“\nm erge sorting %i scores com plete in % .0f seconds”, maxfoutsz, totaltimem erge);

starttim ewrite = tim e(NULL); // start tim e for tem p file write
for(fileoutidx=0; fileoutidx < m axfoutsz; fileoutidx++) // w rite to tem p file

{
fprintf (tm pfilelfd, “% s\n”, fileout[fileoutidx]->label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

I
fprintf (tmpfile Ifd , “%. 12f\n”, fileout [fileoutidx] ->reldif [descriptindex]) ;
}

}
endtim ewrite = tim e (NULL); // end tim e for tem p file write
totaltim ew rite = endtim ewrite - starttim ewrite; // total w riting time
printf(“\n% i lines w ritten to tem pfile_l in % .0f seconds”, maxfoutsz, totaltim ewrite);
}

tmpfileflag = 2;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

fclose(tm pfilelfd); // close tem pfile_l
fclose(tmpfile2fd); // close tempflle_2

endtim eoocsort = tim e(NULL); // end out of core sort tim e
totaltim eoocsort = endtim eoocsort - starttim eoocsort; // total ooc sort tome
printf C'\n%i sim ilarity scores sorted out of core in % .0f seconds”, \
m axarraysz * (calcsetidx+1), totaltim eoocsort);
}

// if tem p file flag == 2 w rite to tempfile_2 and read from tem pfile_l
else if (tmpfileflag == 2)
{
// open tem pfile_2 for writing
if ((tmpfile2fd = fopen(tmpfile2, “w t”)) == NULL)
{
printf (“\ncan not open % s\n”, tmpfile2);
exit (2);
}

// open tem pfile_l for reading
if (((FILE *)tm pfilelfdp = (fopen (tm pfilel, “r”))) < 0)
{
perror(tm pfilel);
exit(EXIT_FAILURE);
}

// initialize variables and rew ind tempfile_2
rewind ((FILE *)tm pfilelfdp);
bufferidx = 0;

// read maxfinsz lines from tem pfile_l into filein array
for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;
fscanf((FILE *)tm pfilelfdp, “% s”, filein[fileinidx]->label);
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)
{
fscanf((FILE *)tm pfilelfdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein [fileinidx]->reldif [reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *)tm pfilelfdp, (fpos_t *)tm pfilelpos) != 0)
{
perrorC 'fgetpos error”);
}

endtim eread = tim e (NULL); // end file read tim e
totaltim ereada = endtim eread - starttimeread; // total tim e for initial file read
printf(“\n% i lines read from tem pfile_l in % .0f seconds”, maxfinsz, totaltim ereada);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

fileinidx = 0;
// read, merge, and w rite until all scores calculated to this point
for(com pindex=0; com pindex <= calcsetidx; com pindex++)
{
starttim em erge = tim e (NULL);
for(fileoutidx=0; fileoutidx < m axfoutsz; fileoutidx++)
{
// if the calculated scores have all been put into the
// fileout array, then w rite the data left in the
// filein array into the fileout array
if (bufferidx >= maxarraysz)
{
fileout[fileoutidx]->label = filein[fileinidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif[descriptindex] = filein[fileinidx]->reldif [descriptindex];
}

if (fileinidx < maxfinsz-1)
{
fileinidx++;
}

}
// if the data in the filein array has been w ritten to the file out array
// then read m ore data from the tem p file into the filein array
else if (fileinidx >= maxfinsz)
{
// if there is still new data to be read from the tem porary file
// read it into the filein array, if the com pindex is less than
// the calcsetidx then this is true
if (compindex < calcsetidx)
{
starttim eread = tim e(NULL); // start tim e for reading from tempfile
if (fsetpos ((FILE *)tm pfilelfdp, (fpos_t *)tm pfilelpos) != 0)
{
perror (“fsetpos error”);
}

for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx - 0;
fflush (NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tm pfilelfdp, “% s”, filein[fileinidx]->label);
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)
{
fscanf((FILE *)tm pfilelfdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL) ;
filein[fileinidx]->reldif[reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *)tm pfilelfdp, (fpos_t *)tm pfilelpos) != 0)
{
perrorC 'fgetpos error”);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

}
fileinidx = 0;
fileoutidx—;
endtim eread = tim e(NULL); // end tim e for reading
totaltim ereadb = endtim eread - starttim eread; // total read time
printf("\n% i lines read from tem pfile_l in % .0f seconds”, maxfinsz, totaltim ereadb);
}

// if all of the data has been read from the tem porary file then
// put w hat is left o f the calculated data into the fileout array
else
{
fileout [fileoutidx]->label = score[bufferidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif [descriptindex] = score[bufferidx]->reldif [descriptindex];
}

bufferidx = bufferidx + 1 ;
}

}
// if score is less than filein then w rite it to fileout
else if (score[bufferidx]->reldif[num descripts] < filein[fileinidx]->reldif[num descripts])
{
// printf(“\n less than”);
fileout[fileoutidx] ->label = score[bufferidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif [descriptindex] = score [bufferidx]->reldif [descriptindex];
}
bufferidx = bufferidx + 1;

}
// if score is greater the filein then w rite filein to fileout
else if (filein[fileinidx]->reldif[numdescripts] <= score[bufferidx]->reldif[num descripts])
{
// printf(“\n greater than or equal”);
fileout[fileoutidx]->label = filein[fileinidx] ->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx] ->reldif [descriptindex] = filein[fileinidx] ->reldif [descriptindex] ;
}
fileinidx++;

}
}

endtim em erge = tim e (NULL); // end m erge tim e
totaltim em erge = endtim em erge - starttimemerge; // total m erge time
if (totaltim ereadb > 0)
{
// if read occurred in m iddle of m erge then subtract read tim e from
// m erge tim e to produce tim e for ju st the m erging activity
totaltim em erge = totaltim em erge - totaltim ereadb;
totaltim ereadb = 0;
}

prin tf(“\nm erge sorting % i scores com plete in % .0f seconds”, m axfoutsz, totaltim em erge);

starttim ewrite = tim e (NULL); // start tim e for tem p file write

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

for(fileoutidx=0; fileoutidx < maxfoutsz; fileoutidx++) // w rite to tem p file
{
fprintf(tmpfileZfd, “% s\n”, fileout[fileoutidx]->label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fprintf(tm pfile2fd, “% .12f\n”, fileout[fileoutidx]->reldif[descriptindex]);
}

}
endtim ewrite = tim e (NULL); // end tim e for tem p file write
totaltim e = endtim ewrite - starttimewrite; // total w riting time
printf(“\n% i lines w ritten to tempfile_2 in % .0f seconds”, m axfoutsz, totaltime);
}

tmpfileflag = 1;
fclose(tmpfile2fd); // close tempfile_2
fclose(tm pfilelfd); // close tem pfile_l

endtim eoocsort = tim e (NULL); // end out o f core sort tim e
totaltim eoocsort = endtim eoocsort - starttim eoocsort; // total ooc sort tome
printf (“\n% i sim ilarity scores sorted out o f core in % .0f seconds”, \
m axarraysz * (calcsetidx+1), totaltim eoocsort);
}

}

// reset the com binatorial calculation array
com pstart = com pstart + m axarraysz;
for(com pindex2=0; com pindex2 < m axarraysz; com pindex2++)
{
for(descriptindex2=0; descriptindex2 < num descripts + 1; descriptindex2++)
{
score [com pindex2]->reldif[descriptindex2] = 0.0;
}

}
// prin tf(“\narray reset”);
}

endtim etotal = tim e (NULL); // end tim e before last array
totaltim e = endtim etotal - starttim etotal; // total tim e before last array
prin tf(“\n\ntotal tim e before last array % .0f seconds”, totaltim e);

// start o f last array
printf(“Vnstarting last set o f %i calculations”, lastarraysz);

starttim ecalc = tim e (NULL); // start tim e for last array calculation time

// loop through the appropriate space in the score array for
// storing new ly calculated relative difference score
for(com pindex=0; com pindex < num com ps-com pstart; compindex++)
{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

// loop through entity x
for (entityindex=0; entityindex < num entities -1 ; entityindex++)
{
// loop through entity y
for (entityindex2=entityindex+l; entityindex2 < num entities; entityindex2++)
{
// calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs((float)conform ation[entityindex]\
[(int) conform ationidx [entityindex]] ->descripti vedata [descriptindex] - \
(float) conform ation [entity index2]\
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex])) / \
(0.5 * \
(f abs ((float) conform ation [entityindex])
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex]) +)
fabs ((float) conform ation [entity index2])
[(int) conform ationidx [entity index2]] ->descripti vedata [descriptindex])))+)
descriptscore;
} // end entity y

} // end entity x

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlem easureRD ;
singlem easureRD = 0.0;

// keep running total for total m easure relative difference score
totalm easureRD = (descriptscore / divisor) + totalm easureRD ;
descriptscore = 0.0;
} // end of description loop

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;
totalm easureRD = 0.0;

// concatenate and store the label o f the com parison set aka com parison group
(char *)scorebuffer.label = strcpy(scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities -1)) ;)
entityidxbuff <= entityindex; entityidxbuff++)
{
(char *) scorebuffer.label =)
strcat(scorebuffer.label,)
conform ation[entityidxbuff][(int)conform ationidx[entityidxbuff]]->labels);

if (entityidxbuff < entityindex)
{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart o f keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all of the entities will cause every conform ation to
// be com pared w ith every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int)conform ationidx[argc-2] = (int)conform ationidx[argc-2] + 1;
if ((int) conform ationidx [argc-2] >= (int)numconfs[argc-2])
{
for (confindex = (argc-2); confindex > 0; co n fin d e x -)
{
if((int)conform ationidx[confindex] >= (int) num confs [confindex])
{
(int) conform ationidx [confindex] = 0;
(int) conform ationidx [confindex-1] = (int) conform ationidx [confindex-1] + 1;
}

}
}

// putting a label w ith the scores
score [com pindex]->label = strcpy (score [com pindex]->label, scorebuffer.label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
score[com pindex]->reldif [descriptindex] = scorebuffer.reldif [descriptindex] ;
}

} // end of com pindex com putational group loop

endtim ecalc = tim e (NULL); // end tim e for final set o f calculations
totaltim ecalc = endtim ecalc - starttim ecalc; // total tim e final set of calcs

// all com binatorial com bination of conform ations have been com pared at this point
printf(“\n\n% i com parisons have been com pleted”, numcomps);

starttim eqsort = tim e(NULL); // start tim e for quicksort

// quicksort
Qsort(score, 0, num com ps-com pstart-1, num descripts, totlabel + numentities);
endtim eqsort = tim e (NULL); // end tim e for quicksort
totaltim eqsort = endtim eqsort - starttim eqsort; // total tim e for quicksort
printf C'\n%i com parisons of been calculated in % .0f seconds and sorted in % .0f seconds”, \
lastarraysz, totaltim ecalc, totaltim eqsort);

m axscoreidx = num com ps - com pstart; // redefining m axscoreidx to be representative of
// the sm aller last array size

starttim eoocsort = tim e(N ULL); // start tim e for out o f core sort
starttim eread = tim e (NULL); // start tim e for out o f core sort
fflush(NULL);

// if temp file flag == 1 write to outfile and read from tempfile_2
if (tmpfileflag - 1)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

// open outfile for writing
if ((outfilefd = fopen(outfilenam e, “w t”)) == NULL)
{
printfC '\ncan not open % s\n”, outfilename);
exit(2);
}

//open tem pfile_2 for reading
if (((FILE *)tm pfile2fdp = (fopen(tmpfile2, “r”))) < 0)
{
perror(tmpfile2);
exit(EXIT_FAILURE);
}

// initialize variables and rew ind tempfile_2
bufferidx = 0;
reldifidx = 0;
*readbuffer = ‘\0 ;
rew ind ((FILE *)tmpfile2fdp);
bufferidx = 0;

// read maxfinsz lines from tem pfile_2 into filein array
for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tmpfile2fdp, “% s”, filein[fileinidx]->label);
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)
{
fscanf((FILE *)tmpfile2fdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein[fileinidx]->reldif [reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *)tmpfile2fdp, (fpos_t *)tmpfile2pos) != 0)
{
perrorC 'fgetpos error”);
}

endtim eread = tim e (NULL); // end file read tim e
totaltim ereada = endtim eread - starttim eread; // total tim e for initial file read
printf(''\n% i lines read from tempfile_2 in % .0f seconds”, maxfinsz, totaltim ereada);

fileinidx = 0;
// read, merge, and w rite until all scores calculated to this point
for(com pindex=0; com pindex <= calcsetidx; com pindex++)
{
starttim em erge = tim e (NULL);
for(fileoutidx=0; fileoutidx < m axfoutsz; fileoutidx++)
{
// if the calculated scores have all been put into the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

// fileout array, then write the data left in the
// filein array into the fileout array
if (bufferidx >= maxscoreidx)
{
fileout[fileoutidx]->label = filein [fileinidx] ->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
fileout[fileoutidx]->reldif[descriptindex] = filein[fileinidx] ->reldif [descriptindex] ;

}
if (fileinidx < maxfinsz-1)
{
fileinidx++;
}

}
// if the data in the filein array has been w ritten to the file out array
// then read m ore data from the tem p file into the filein array
else if (fileinidx >= maxfinsz)
{
// if there is still new data to be read from the tem porary file
// read it into the filein array, if the com pindex is less than
// the calcsetidx then this is true
if (com pindex < calcsetidx)
{
starttim eread = tim e (NULL); // start tim e for reading from tempfile
if (fsetpos ((FILE *)tmpfile2fdp, (fpos_t *)tmpfile2pos) != 0)
{
perror (“fsetpos error”);
}

for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tmpfile2fdp, “% s”, filein[fileinidx]->label);
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)
{
fscanf((FILE *)tmpfile2fdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein [fileinidx]->reldif [reldifidx] = doublenumber;
}

}
if (fgetpos ((FILE *)tmpfile2fdp, (fpos_t *)tmpfile2pos) != 0)
{
perrorC 'fgetpos error”);
}

fileinidx = 0;
fileoutidx—;

endtim eread = tim e (NULL); // end tim e for reading
totaltim ereadb = endtim eread - starttimeread; // total read time
printf(“\n% i lines read from tem pfile_2 in % .0f seconds”, maxfinsz, totaltim ereadb);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

}
// if all o f the data has been read from the tem porary file then
// put w hat is left of the calculated data into the fileout array
else
{
fileout[fileoutidx]->label = score [bufferidx] ->label ;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout [fileoutidx]->reldif [descriptindex] = score[bufferidx]->reldif [descriptindex] ;
}

bufferidx = bufferidx + 1;
}

}
// if score is less than filein then write it to fileout
else if (score[bufferidx]->reldif [numdescripts] < filein[fileinidx]->reldif[numdescripts])
{
// printf(“\n less than”);
fileout[fileoutidx]->label = score [bufferidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx] ->reldif [descriptindex] = score[bufferidx] ->reldif [descriptindex] ;
}
bufferidx = bufferidx + 1;

}
// if score is greater the filein then write filein to fileout
else if (filein[fileinidx]->reldif[numdescripts] <= score [bufferidx]->reldif [numdescripts])
{
// printf(“\n greater than or equal”);
fileout[fileoutidx]->label = filein[fileinidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx] ->reldif [descriptindex] = filein [fileinidx] ->reldif [descriptindex] ;
}
fileinidx++;

}
}

endtim em erge = tim e (NULL); // end m erge tim e
totaltim em erge = endtim em erge - starttim em erge; // total m erge tim e
if (totaltimereadb > 0)
{
// if read occurred in m iddle of m erge then subtract read tim e from
// m erge tim e to produce tim e for ju st the m erging activity
totaltim em erge = totaltim em erge - totaltim ereadb;
totaltim ereadb = 0;
}

if (com pindex < calcsetidx) // m axfoutsz m erge tim e not last merge cycle
{
prin tf(“\nm erge sorting %i scores com plete in % .0f seconds”, m axfoutsz, totaltim em erge);
}

if (compindex == calcsetidx) // lastarraysz m erge tim e last m erge cycle
{
printf(“\nm erge sorting %i scores com plete in % .0f seconds”, lastarraysz, totaltim em erge);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

starttim ewrite = tim e(NULL); // start tim e for tem p file write
if (compindex < calcsetidx) // w rite all fileout if not last w rite cycle
{
for(fileoutidx=0; fileoutidx < maxfoutsz; fileoutidx++) // w rite to tem p file loop
{
fprintf (outfilefd, “% s,”, fileout[fileoutidx]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)
{
fprintf (outfilefd, “%. 12f,”, fileout[fileoutidx] ->reldif [descriptindex]) ;
}

fprintf (outfilefd, “% .12f\n”, fileout[fileoutidx] ->reldif [numdescripts]) ;
}

endtim ewrite = tim e (NULL); // end tim e for tem p file write
totaltim e = endtim ewrite - starttimewrite; // total w riting time
printf(“\n% i lines w ritten to output file in % .0f seconds”, maxfoutsz, totaltime);
}

else if (compindex == calcsetidx) // w rite part o f fileout on last write cycle
{
for(fileoutidx=0; fileoutidx < lastarraysz; fileoutidx++) // w rite to tem p file loop
{
fprintf (outfilefd, “% s,”, fileout[fileoutidx] ->label) ;
for(descriptindex=0; descriptindex < num descripts; descriptindex++)
{
fprintf (outfilefd, “%. 12f, ”, fileout [fileoutidx] ->reldif [descriptindex]) ;
}

fprintf (outfilefd, “%. 12f\n”, fileout[fileoutidx] ->reldif [numdescripts]) ;
}

endtim ewrite = tim e (NULL); // end tim e for tem p file write
totaltim e = endtim ewrite - starttimewrite; / / total w riting tim e
printf(“\n% i lines w ritten to output file in % .0f seconds”, lastarraysz, totaltime);
}

}
fclose(outfilefd); / / close outfile
fclose(tmpfile2fd); // close tempfile_2

endtim eoocsort = tim e(NULL); // end out o f core sort tim e
totaltim eoocsort = endtim eoocsort - starttim eoocsort; // total ooc sort tom e
printf(“\n% i sim ilarity scores sorted out of core in % .0f seconds”, \
lastarraysz, totaltim eoocsort) ;
}

// if temp file flag == 2 w rite to outfile and read from tem pfile_l
else if (tmpfileflag == 2)
{
// open outfile for writing
if ((outfilefd = fopen(outfilenam e, “w t”)) == NULL)
{
prin tf(“\ncan not open % s\n”, outfilename);
exit(2);
I

// open tem pfile_l for reading
if (((FILE *)tm pfilelfdp = (fopen(tm pfilel, “r”))) < 0)
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

perror(tm pfilel);
exit(EXIT_FAILURE);
}

// initialize variables and rew ind tem pfile_l
bufferidx = 0;
reldifidx = 0;
*readbuffer = ‘\0 ;
rew ind ((FILE *)tm pfilelfdp);
bufferidx = 0;

// read maxfinsz lines from tem pfile_l into filein array
for (fileinidx = 0; fileinidx < maxfinsz; fileinidx++)

{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tm pfilelfdp, “% s”, filein [fileinidx] ->label) ;
for(reldifidx=0; reldifidx <= num descripts; reldifidx++)

I
fscanf((FILE *)tm pfilelfdp, “% s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein[fileinidx]->reldif[reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *)tm pfilelfdp, (fpos_t *)tm pfilelpos) != 0)
{
perrorC 'fgetpos error”);
}

endtim eread = tim e (NULL); // end file read tim e
totaltim ereada = endtim eread - starttimeread; // total tim e for initial file read
printfC'\n% i lines read from tem pfile_l in % .0f seconds”, maxfinsz, totaltim ereada);

fileinidx = 0;
// read, merge, and w rite until all scores calculated to this point
for(com pindex=0; com pindex <= calcsetidx; com pindex++)

{
starttim em erge = tim e (NULL);
for(fileoutidx=0; fileoutidx < maxfoutsz; fileoutidx++)

{
// if the calculated scores have all been put into the
// fileout array, then w rite the data left in the
// filein array into the fileout array
if (bufferidx >= maxscoreidx)

{
fileout[fileoutidx]->label = filein[fileinidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif [descriptindex] = filein [fileinidx]->reldif [descriptindex];
}

if (fileinidx < maxfinsz-1)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

{
fileinidx++;
}

}
// if the data in the filein array has been w ritten to the file out array
// then read m ore data from the tem p file into the filein array
else if (fileinidx >= maxfinsz)

{
// if there is still new data to be read from the tem porary file
// read it into the filein array, if the com pindex is less than
// the calcsetidx then this is true
if (com pindex < calcsetidx)
{
starttim eread = tim e (NULL); // start tim e for reading from tempfile
if (fsetpos ((FILE *)tm pfilelfdp, (fpos_t *)tm pfilelpos) != 0)

{
perror (“fsetpos error”);
}

for(fileinidx = 0; fileinidx < maxfinsz; fileinidx++)
{
reldifidx = 0;
fflush(NULL);
*readbuffer = ‘\0 ;
*filein[fileinidx]->label = ‘\0 ;

fscanf((FILE *)tm pfilelfdp, “% s”, filein[fileinidx]->label);
for(reldifidx=0; reldifidx <= numdescripts; reldifidx++)
{
fscanf((FILE *)tm pfilelfdp, “%s”, stm um ber);
doublenum ber = strtod (stmumber, NULL);
filein[fileinidx]->reldif [reldifidx] = doublenum ber;
}

}
if (fgetpos ((FILE *) tmpfile I f dp, (fpos_t *)tm pfilelpos) != 0)
{
perrorC 'fgetpos error”);
}

fileinidx = 0;
fileoutidx—;
endtim eread = tim e (NULL); // end tim e for reading
totaltim ereadb = endtim eread - starttim eread; // total read time
printf(“\n% i lines read from tem pfile_l in % .0f seconds”, maxfinsz, totaltim ereadb);
}

// if all of the data has been read from the tem porary file then
// put w hat is left o f the calculated data into the fileout array
else
{
fileout[fileoutidx]->label = score[bufferidx]->label;
for(descriptindex=0; descriptindex <= numdescripts; descriptindex++)
{
fileout[fileoutidx]->reldif[descriptindex] = score[bufferidx] ->reldif [descriptindex] ;
}

bufferidx = bufferidx + 1;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

}
}

// if score is less than filein then write it to fileout
else if (score[bufferidx]->reldif[num descripts] < filein[fileinidx]->reldif[numdescripts])
{
// printf(“\n less than”);
fileout[fileoutidx]->label = score [bufferidx] ->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif [descriptindex] = score[bufferidx]->reldif [descriptindex];
}
bufferidx = bufferidx + 1;

}
// if score is greater the filein then w rite filein to fileout
else if (filein[fileinidx]->reldif[numdescripts] <= score[bufferidx]->reldif [numdescripts])
{
// printf(“\n greater than or equal”);
fileout[fileoutidx]->label = filein [fileinidx]->label;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)
{
fileout[fileoutidx]->reldif [descriptindex] = filein [fileinidx]->reldif [descriptindex];
}
fileinidx++;

}
}

endtim em erge = tim e(NULL); // end m erge tim e
totaltim em erge = endtim em erge - starttimemerge; // total m erge time
if (totaltim ereadb > 0)
{
// if read occurred in m iddle of m erge then subtract read tim e from
// m erge tim e to produce tim e for ju st the m erging activity
totaltim em erge = totaltim em erge - totaltimereadb;
totaltim ereadb = 0;
}

if (com pindex < calcsetidx) // m axfoutsz m erge tim e not last merge cycle
{
printf(“\nm erge sorting %i scores com plete in % .0f seconds”, m axfoutsz, totaltim em erge);
}

if (com pindex == calcsetidx) // lastarraysz m erge tim e last m erge cycle
{
printf(“\nm erge sorting %i scores com plete in % .0f seconds”, lastarraysz, totaltim em erge);
}

starttim ewrite = tim e (NULL); // start tim e for tem p file write
if (compindex < calcsetidx) // w rite all fileout if not last write cycle
{
for(fileoutidx=0; fileoutidx < m axfoutsz; fileoutidx++) // w rite to tem p file loop
{
fprintf(outfilefd, “% s,”, fileout[fileoutidx]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)
{
fprintf(outfilefd, “% .12f,”, fileout[fileoutidx]->reldif[descriptindex]);
}

fprintf(outfilefd, “% .12An”, fileout[fileoutidx]->reldif[num descripts]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

}
endtim ewrite = tim e (NULL); // end tim e for tem p file write
totaltim e = endtim ewrite - starttim ewrite; // total writing tim e
printf(“\n% i lines w ritten to output file in % .0f seconds”, m axfoutsz, totaltime);
}

else if (compindex == calcsetidx) // w rite part o f fileout on last write cycle
{
for(fileoutidx=0; fileoutidx < lastarraysz; fileoutidx++) // w rite to tem p file loop
{
fprintf(outfilefd, “% s,”, fileout [fileoutidx]->label) ;
for(descriptindex=0; descriptindex < num descripts; descriptindex++)
{
fprintf(outfilefd, “% .12f,”, fileout[fileoutidx]->reldif[descriptindex]);
}

fprintf(outfilefd, “% .12f\n”, fileout[fileoutidx]->reldif[num descripts]);
}

endtim ewrite = tim e(NULL); // end tim e for tem p file write
totaltim e = endtim ewrite - starttimewrite; // total writing tim e
printf(“\n% i lines w ritten to output file in % .0f seconds”, lastarraysz, totaltime);
}

}
fclose(outfilefd); / / close outfile
fclose(tm pfilelfd); // close tempfile_2

endtim eoocsort = tim e (NULL); // end out of core sort tim e
totaltim eoocsort = endtim eoocsort - starttim eoocsort; // total ooc sort tome
printf(“\n% i sim ilarity scores sorted out of core in % .0f seconds”, \
lastarraysz, totaltim eoocsort) ;
}

// if tmpfileflag == 3 then the num ber of calculations are less than the size
// o f the score array - all of the out o f core stuff is skipped and this
// section writes out the scores to the outfiles - outfile is opened for writing

else if (tmpfileflag == 3)
{
printf(“\ntem p files not used\n”);
// open outfile for w riting
if ((outfilefd = fopen(outfilenam e, “w t”)) — NULL)
{
printf(“\ncan not open % s\n”, tmpfile2);
exit(2);
}

// loop writes all calculations to outfile
for(com pindex=0; com pindex < m axfoutsz; com pindex++)
{
fprintf(outfilefd, “% s,”, score [compindex]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
fprintf (outfilefd, 12f,”, score [compindex] ->reldif [descriptindex]) ;
}

fprintf (outfilefd, “%. 12f\n”, score [compindex] ->reldif [numdescripts]) ;
}

fclose(outfilefd); // close outfile

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

}

endtim etotal = tim e (NULL); // end total tim e
// total run tim e m inus user input part o f the program and tim e to free m em ory
totaltim e = endtim etotal - starttim etotal; // total run tim e
printf(“\n\ntotal tim e % .0f seconds\n\n”, totaltime);

// freeing m em ory
printf(“\nstarting to free m em ory\n”);
for(entityindex=0; entityindex < num entities; entityindex++)
{
for(confindex=0; confindex < (int)num confs[entityindex]; confindex++)
{
free (conform ation [entity index] [confindex]->labels) ;
free(conform ation[entityindex][confindex]->descriptivedata);
free(conform ation[entityindex] [confindex]) ;
}

free (conform ation [entityindex]) ;
}

free (conformation) ;

for(com pindex=0; com pindex < maxarraysz; com pindex++)
{
free(score[com pindex] ->label) ;
free (score [compindex] ->reldif) ;
free(score[com pindex]);
}

free(score);

free(scorebuffer.reldif) ;
free(scorebuffer.label) ;

printf(“\nm em ory free\n\n”);

return (0);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

Appendix 4.6 The compsort program, written in C. Calculates and sorts all
similarity scores. Saves a user determined number of best, most similar, scores.
/*

program: com psort
version: 1.01
author: Paul A. W ilson
email: pw ilson@ cobrem ail.itrc.um t.edu
date of latest version: A ugust 11, 2004
date of origination: 2003

com mand: program nam e data file 1 data file 2 data file 3
example: ./com psort ./M CN-5652.txt ./sertraline.txt ./indatraline.txt ./s-citalopram .txt

m inim um of three data files required, no lim it to m axim um num ber of data
files to be com pared - w ithin reason

required data file format: com m a delim ited text, first field of each row is
equivalent to a label, the rem aining fields in each row are num bers, each
field is separated by a com m a, no quotes around the labels, no spaces between
fields (commas only)

output file nam e is lim ited to a m axim um of 64 characters

In Short: This program com pares the rows in data files developing a score
for each set o f rows (set - one row from each data file). Then sorts the
scores from low to high. Low scores represent the sets of rows w hich are
m ost similar. A text file is w ritten containing X num ber of the lowest
scoring sets o f rows. The num ber o f rows X is determ ine by the user.
Each row in the output file contains the label from each label field
(first field in each data file) concatenated together follow ed in com m a
delim ited form by the score for each field and finally the total score.

This program was w ritten in response to to a project w here distance
space descriptions needed to be com pared in order to determ ine the
conform ations of four m olecules w hich w ere the m ost similar.
(see SEN 2003 Annual M eeting, Poster Presentation 371.4 and SEN
2004 Annual M eeting, Poster Presentation 922.1, also see M achack 18,
W ilson, P.A. “A Practical Com parison of M ultiprocessing L ibraries”,
M acH ack 2003, June 2003, the code is different but a lot of the ideas
remain) 1 am w illing to share m anuscript versions of these posters in
pdf format.

Com parisons are carried out com binatorially using relative difference.
The relative difference equation was m odified slightly to enable creating
and weighting the com parison of a positive and negative m easurem ent as less
similar. Each row in each data file is com pared against each row of every
other data file. W ithin each row, each field is com pared against the
corresponding field from the rows being com pared in the other data files.
If there are 4 data files than there are 6 com parisons between each field
of the four rows being com pared. The relative difference score from each
field is added together and divided by the num ber of fields to produce a
sim ilarity score for the for the rows being com pared.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

165

sim ilarity score = (sum m ation from m easure 1 to total num ber of measures (
sum m ation of from data file 1 to total num ber of data files ((IVab - VacI /
((IVabl + IVacl)/2)) / num ber of com binatorial)))
Vab = m easure a of datafile b
Vac = measure a of datafile c

The program program s structure has a legacy stem m ing from a personal interest
in out-of-core sorting, dynam ic m em ory allocation, and parallel computing.
The program was originally w ritten to produce an output file containing all
scores in sorted order from low to high (copies of this program can be made
available, the algorithm was interesting, fast (except the file I/O step)).
D ue to the out-of-core m echanism I used, though fast, was not fast enough
to be useful for large data sets. It w ould be interesting at som e point to
look into this again, using a parallel file system (or at least a high speed
file system). The version here is a com prom ise which calculates a set
num ber of scores, sorts the scores and retains a set num ber of the lowest
scores, calculate the next set num ber of scores, sorts the new score w ith the
saved scores and again only retains a set num ber of the low est scores.

Pointers are used extensively as port o f som e of m y original notions on
dynam ically allocating m em ory and sorting.

The program was w ritten in C to provide m axim um portability. I have not tried
com piling this code on a Linux, or any other, m achine. I have noticed this
code only runs under M ac OS 10.3 and failed when running under M ac OS 10.2.

*/

//#include <dirent.h>
#include <fcntl.h>
#include <m ath.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/errno.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/tim e.h>
#include <sys/types.h>
#include <sys/uio.h>

// structure for holding data read from files, label and num erical descriptors
struct descriptions
{
char * labels;
double * descriptivedata;
};

// structure for holding concatenated label and score for each descriptor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

// and a total score value
struct labelscores
{
char * label;
double * reldif;
};

// from here to m ain are a set of function used for sorting
// the sorting algorithm is a quicksort, w ith a m ean of 3 used for determ ining
// the first pivot point - see D ata Structures and Algorithm
// Analysis in C by M ark A llen Weiss

// swap redirects pointers - u will point to v and v will point to u
// Swap - needs to be com piled inline for efficiency

void Swap (struct labelscores ** u, struct labelscores ** v)
t
struct labelscores temp;
tem p = **u;

**v = temp;
}

// insertion sort - used as part o f quicksort
// scoreisort - struct o f labelscores containing scores to be sorted by the insertion sort m ethod
// n is the upper edge of o f the chunk data the insertion sort is occurring on
// num decriptsis - num ber of description insertion sort,
// is equal to the num ber o f descriptive fields in the data files
// used for for m alloc of tem porary insertion sort struct o f labelscores
// totallabelelngthis - total label length insertion sort,
// is equal to the m axim um num ber o f characters in concatenated labels
// used for for m alloc of tem porary insertion sort struct o f labelscores

void InsertionSort(struct labelscores ** scoreisort, int n, int num descriptsis, int totlablengthis)
{
in t j, p; / / j and p are indexes used in the insertion sort
int descriptindexis; // an index for descriptive field
char * nullstring = “\0 ”; // nullstring needed at the end of strings

struct labelscores tempisort; // tem porary labelscore struct used in insertion sort

tem pisort.label = (char *) m alloc(sizeof(char) * (totlablengthis)); // allocate m emory
tem pisort.reldif = (double *) m alloc((numdescriptsis + 1) *sizeof(double));

// initialize tem pisort
(char *)tem pisort.label = strcpy (tem pisort.label, nullstring);
for(descriptindexis=0; descriptindexis < num descriptsis+1; descriptindexis++)

{
tem pisort.reldif [descriptindexis] = 0.0;
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

// insertion - copy one struct out, m ove the rest, then put the struct back were it goes
fo r(p - l ; p<n; p++)
{
tem pisort.label = strcpy (tem pisort.label, scoreisort[p]->label);
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)
{
tem pisort.reldif [descriptindexis] = scoreisort[p]->reldif [descriptindexis];
}

for(j=p; ((j > 0) && (scoreisort [j -1] ->reldif [numdescriptsis] > tem pisort.reldif [numdescriptsis])) ; j -)
{
scoreisort []]->label = strcpy (scoreisort []]->label, scoreisort [j -1] ->label) ;
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)
{
scoreisort [j]->reldif [descriptindexis] = scoreisort [j -1] ->reldif [descriptindexis] ;
}

}
scoreisort[j]->label = strcpy (scoreisort [j]->label, tempisort.label);
for(descriptindexis=0; descriptindexis <= num descriptsis; descriptindexis++)
{
scoreisort []]->reldif [descriptindexis] = tem pisort.reldif [descriptindexis] ;
}

}

free(tem pisort.label); // free m em ory previously m alloced
free(tem pisort.reldif) ;

}

// m edian of three - selecting the pivot for the quicksort
//
// scorem edian - struct of labelscores, postion of left (first) score, postion of right(last) score
// num descriptsm - num ber o f descripts m edian of 3, the last descript field - the total sim ilarity score
// the median value of the three sam pled values is determ ined and return to the quicksort routine
// to be used as the pivot point

float M edian3 (struct labelscores **scorem edian, int left, int right, int numdescriptsm)
{
int center;
center = (left + right) / 2; // position of the center score - m edian position

if (scorem edian[left]->reldif[num descriptsm] > scorem edian [center]->reldif [numdescriptsm])
{
Swap(«fescoremedian[left], & scorem edian[center]);
}

if (scorem edian[left]->reldif[num descriptsm] > scorem edian[right]->reldif[num descriptsm])
{
Swap(& scorem edian[left], & scorem edian[right]) ;
}

if (scorem edian[center]->reldif[num descriptsm] > scorem edian[right]->reldif[num descriptsm])
{
Sw ap(& scorem edian[center], & scorem edian[right]);
}

S wap (& scorem edian [center], & scorem edian [right-1]) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

return scorem edian[right-1] ->reldif [numdescriptsm] ;
}

// quicksort
// scoreqsort - the struct of labelscores to be sorted by quicksort
// leftqs, rightqs - the low er and upper boundaries of the quicksort - quicksort is recursive
// num descriptsqs - num ber of descriptive fields quicksort - used for allocating necessary m em ory
// totlablength - total label length quick sort - m axim um num ber of characters in a label
// used for allocating necessary m em ory

void Qsort(struct labelscores **scoreqsort, int leftqs, int rightqs, int num descriptsqs, int totlablengthqs)
{

in t i ,] ; / / indexes used in quicksort

struct labelscores pivot; // labelscores struct w hich hold the pivot

pivotdabel = (char *) m alloc(sizeof(char) * (totlablengthqs)); // allocating m em ory for pivot
pivot-reldif = (double *) m alloc((num descriptsqs+l) *sizeof(double));

// heart of quicksort, pick pivot swap appropriate values to either side o f pivot
if ((leftqs + 3) <= rightqs)
{
pivot-reldif [numdescriptsqs] = M edian3 (scoreqsort, leftqs, rightqs, numdescriptsqs);
i = leftqs;
j = rightqs-1;
for(; ;)

{
w hile(scoreqsort[++i]->reldif[num descriptsqs] < pivot.reldif[num descriptsqs] && i < rightqs-!){}
w hile(scoreqsort[-j]-> reld if [numdescriptsqs] > pivot.reldif [numdescriptsqs] && j > 0){]
if (i< j)

Swap (&scoreqsort[i], & scoreqsort|j]) ;
else

break;
}

Swap(& scoreqsort[i], & scoreqsort[rightqs-l]);

Qsort(scoreqsort, leftqs, i-1, num descriptsqs, totlablengthqs);
Qsort(scoreqsort, i+1, rightqs, num descriptsqs, totlablengthqs);
}

else // if left and right a close together do an insertion sort
{
InsertionSort(scoreqsort4-leftqs, rightqs-leftqs+1, num descriptsqs, totlablengthqs);
}

free(pivot.label); // freeing allocated m emory
free (pivot-reldif);

}

// start of m ain

int m ain (int argc, const char * argv[])
{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

nt calcsetidx; // index for w hich set o f calculation (comparisons) is current
n t com pindex; // com parison index - w hich com parison set is being com pared
nt com pstart; // com parison start - the starting point for each set o f com parisons
n t confindex; // conform ation index
nt descriptindex; // desciptor index - data file colum ns
nt entityidxbuff; // entity index buffer
nt entityindex; // id of entity one in the com parison
nt entityindexZ; // id of entity two in the com parison
nt fileindex=l; // index used to indicate w hich data file is open
nt i; // sim ple index used in loop calculating the divisor
nt lastarraysz; // the size of the last array, the rem ainder o f calculations
nt Iseekbuffer; // buffer for file position
n t Iseekposition; // file position in data file being read
nt m axarraysz; // m axim um array size = num linescalc + num bestscore
nt num bestscore; // the num ber of best scores to keep after sorting
nt numcalcsets; // the num ber of sets of calculations
n t numcomps; // total num ber of com parison sets
nt numdescripts; // total num ber of descriptions = num ber of colum ns in each data file
nt numentities; // the total num ber of entities to be com pared = num ber of data files
n t numlinescalc; // the num ber o f scores to calculate before sorting
n t totlabel; // total length, num ber of characters, of concatenated label

nt * conform ationidx[argc-l]; // index of conform ations
nt * filedescript[argc-l]; // array of file descriptors - data files from com m and line
n t * labellength[argc-1] ; / / array o f the label lengths for each data file
n t * m axlabellength [argc-1] ; // array of the m axim um label lengths for each data file
nt * num colum ns; // num ber of columns
nt * num confs[argc-l]; // array of the num ber of rows in each data file

char * nullstring = “\0 ”; // nullstring for adding the end of lines and initialization
char * readbuffer; // read buffer for reading data files
char * stm um ber; // num erical data read from file stored as string

char outfilename[64]; // character array for output file nam e - m ax 65 character nam e

double descriptscore; // the relative difference score for one com binatorial
double divisor; // the divisor used in calculating the single m easure relative difference
double doublenum ber; // num erical string read from data file is converted to double num ber
double singlem easureRD; // the Relative D ifference score for a single set of description
double totalm easureRD; // the Relative D ifference score for a com parison set
double totaltim e; // the total tim e in seconds used for tim ing run tim e
double totaltim ecalc; // the total tim e in seconds used for tim ing calculation tim e
double totaltim esort; // the total tim e in seconds used for tim ing sorts tim e

FILE *outfilefd; // the output file descriptor

tim e_t starttim eintcalc;
tim e_t endtim eintcalc;
tim e_t starttimeintsort;
tim e_t endtim eintsort;

/ / m arks start tim e of com binatorial calculations
// m arks end tim e of com binatorial calculations
// m arks start tim e of sort

// m arks end tim e of sort
tim e_t starttim einttot; // m arks start tim e before calculations being
tim e_t endtim einttot; // m arks end tim e after output file is written

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

struct descriptions ***conform ation; // struct which stores all the data from the data files

struct labelscores **score; // struct w hich stores concatenated labels and scores
struct labelscores scorebuffer; // a buffer to tem porarily store scores in

// some initial m em ory allocation and variable initialization
readbuffer = m alloc(sizeof(char));
stm um ber = m alloc(sizeof(char) * 16);

num colum ns = (int *) m alloc(sizeof(int));
*filedescript = (int *) m alloc (sizeof (int) * (argc - 1));

numentities = argc -1 ;
confindex = 0;
num com ps = 1;
totlabel = 1;

// print inform ation to the screen w hich will help the user answer the
// first two questions they are asked by the program
printf(“\n\n\nThis program is going to calculate X num ber of scores, “);
printf(“\nsort those scores, save the best Y scores and then “);
printf ("\ncalculates the next X num ber of scores.\n”);

printf(“\nThe answers given to the next two question will determ ine “);
printf (“\nhow m uch m em ory is allocated. R em em ber there are lim its “);
printf (“\nto how m uch m em ory can be allocated to a single application “);
prin tf(“\nand virtual m em ory is slow er than physical memory. “);
printf (“\nYou are about to be asked for the num ber of scores to be “);
printf (“\nsaved and the the num ber of scores to calculate betw een sorts “);
printf(“\nThese two num ber added together will account for a majority “);
printf (“\nof the m em ory used by this program . Calculating only X many “);
p rin tf(“\nscores at a tim e allows for the program top rem ain w ithin a “);
printf (“\nlim ited m em ory footprint. Values that have proven useful to “);
printf (“\nthe author are: X = 1000000 and Y - 200000. These values “);
printf (“\nshould be changed according to your data set, needs, and “);
printf (“\nphysical m em ory.\n”);

// ask for and obtain the num ber o f conform ational sets to calculate
// between the “sort and store” steps
printf(“\nH ow m any scores do you w ant “);
printf (“\nto calculate betw een sorts? “);
scanf(“% i”, & num linescalc);

// ask for and obtain the num ber o f low est scores to keep
printf (“\nH ow m any of the low est (best) “);
printf (“\nscores w ould you like to save? “);
scanf(“% i”, & num bestscore);

m axarraysz = num bestscore + num linescalc; // m axim um size of array of structs

// allocating m em ory for struct conform ation
conform ation = (struct descriptions ***) m alloc (sizeof(struct \

descriptions **) * numentities) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

prin tf(“\n\nThe num ber of data flies = % i\n”, numentities);

// asking for the num ber of colum ns per data file
printf (“\n\nW hat is the total num ber of colum ns in each file? “);
scanf(“% i”, (int *)& num colum ns);
printf (“\nThere are %i colum ns.\n”, (int)numcolumns) ;

num descripts = (int)num colum ns -1 ;
prin tf(“\nEach file has 1 lable colum n and %i description colum ns.”, \

numdescripts);

// allocating m em ory and loading the data arrays

for (entityindex=0; entityindex < num entities; entityindex++)
{
m axlabellength[entityindex] = (int *)m alloc(sizeof (int)) ;
*m axlabellength [entityindex] = 0;
if (((int)filedescript[fileindex] = (open(argv[fileindex], 0_R D 0N L Y))) < 0)

{
perror(argv[fileindex]) ;
exit(EXIT_FAILURE);
}

// asking for the num ber of rows in the current data file being read
printf(“\n\n\nfile % s is open”, argv[fileindex]);
printf (“\nH ow m any rows are in this file? “);
scanf(“% i”, (int *)& num confs [entityindex]) ;

printf (“\nloading % i rows of data from file”, (inf)num confs[entityindex]) ;

// allocating m em ory for the array of pointers to conform ations
conform ation [entity index] = (struct descriptions **) m alloc \
((sizeof (struct descriptions *) * (int) num conf s [entityindex])) ;

Iseekposition = 0;

// allocating m em ory for a conform ation s structure and descriptors
for(confindex=0; confindex < (int)num confs[entityindex]; confindex++)
{
conform ation [entityindex] [confindex] = (struct descriptions *) malloc \

((sizeof (struct descriptions)));
conform ation [entityindex] [confindex]->descriptivedata = (double *) \

malloc(sizeof(double) * num descripts);

// allocating m em ory for a conform ation s structure label
labellength[entityindex] = (int *)m alloc(sizeof(int));
fflush(NULL);
*readbuffer = ‘\0 ;
*labellength[entityindex] = 0;
lseekbuffer=lseekposition;

// counting num ber of characters in label

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

172

// fscan w ould be faster and was used for file I/O in the
// out-of-core sortng program
while(*readbuffer != ' ' && *readbuffer !=)
{
Iseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read((int)filedescript[fileindex], readbuffer, 1);
*labellength[entityindex] = *labellength[entityindex] -t 1;
Iseekposition+H-;
}

if (*m axlabellength[entityindex] < *labellength[entityindex])
{
*m axlabellength [entityindex] = *labellength[entityindex];

// printfC '\nm axim um label length = % i\n”, *m axlabellength[entityindex]) ;
}

// allocating m em ory for label - depends on label m axim um length
conform ation[entityindex][confindex]->labels = \
(char*) m alloc (sizeof (char) * *labellength[entityindex]);

// reading, concatenating, and storing label
fflush (NULL);
*readbuffer = ‘\0 ;
Iseekposition = Iseekbuffer;
descriptindex = 0;
w hile(*readbuffer != ‘ ‘ && *readbuffer != ',)

{
lseek((int)flledescript[flleindex], Iseekposition, SEEK_SET);
read ((int) filedescript [fileindex], readbuffer, 1);
if(*readbuffer != ',)
{
(char *)conform ation[entityindex][confindex]->labels = \
stm cat(conform ation[entityindex][confindex]->labels, readbuffer, 1);
}

Iseekposition-H-t;
}

// resetting and reading num erical descriptor data from data files
// data read as string and converted to double - strtod
w hile(*readbuffer != ‘\n && *readbuffer != ‘\0)

{
fflush(NULL);
*readbuffer = \0 ;
*stm um ber = ‘\0 ;
while(*readbuffer != ', && *readbuffer != ' ' && *readbuffer != ‘\n)
{
Iseek(dnt)filedescript[fileindex], Iseekposition, SEEK_SET);
read((int)filedescript[fileindex], readbuffer, 1);
if (*readbuffer != ‘, && *readbuffer != ‘ ‘ && *readbuffer != ‘\n)

{
stm um ber = stm cat(stm um ber, readbuffer, 1);
lseekposition4-4-;
}

}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

doublenum ber - strtod(stm um ber, NULL);
conform ation[entityindex][confindex]->descriptivedata[descriptindex]=\
doublenumber;
descriptindex++;
lseekposition++;
}

}
fileindex = fileindex + 1; // finished reading from data file m ove to next file
}

// asking for and obtaining nam e of output file
fflush(NULL);
printf (“\n\n\nEnter file nam e for results to be stored in: “);
scanf(“% s”, (char *)&outfilename);
printf (“\nThe results w ill be saved in % s\n”, outfilename);

starttim einttot = tim e (NULL); // start tim e for total tim e

// calculating total num ber o f com parisons and m axim im um total label length
for (entityindex-0; entityindex < num entities; entityindex++)

{
num com ps = num com ps * (int)num confs[entityindex];
totlabel = totlabel + *m axlabellength[entityindex];
}

num calcsets = (num com ps/num linescalc); // num ber of sets o f calculations

// if num ber of com parisons is less than the size of a set o f calculations
if (numlinescalc > numcomps)

{
m axarraysz = num bestscore + numcomps;
num calcsets = 0;
com pstart = numcomps;
}

// calculate and print the size of the last set of com parisons
lastarraysz = num com ps - (numcalcsets * numlinescalc);
printf(“\n\n% i sets o f % i calculations and”, num calcsets, numlinescalc);
p rin tf(“\none last set of % i calculations”, lastarraysz);
prin tf(“\nw ill be done”);

// allocate m em ory for score array and initialize
score = (struct labelscores **) m alloc (sizeof(struct labelscores *) \
* (int)maxarraysz);

for(com pindex=0; com pindex < num bestscore; com pindex++)
{
score [compindex] = (struct labelscores *) m alloc(sizeof(struct\
labelscores));

score[compindex] ->label = (char *) m alloc (sizeof (char) * (totlabel + numentities));
score[com pindex]->reldif = (double *) m alloc((num descripts+1) * sizeof(double));
for(descriptindex=0; descriptindex < num descripts+1; descriptindex++)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

{
// initializing w ith a big num ber helps guarantee low scores m ove into this
// part of the array w here the low est scores are kept
score[com pindex]->reldif [descriptindex] = 1000000.0;
}

}
for(com pindex=num bestscore; com pindex <= m axarraysz; compindex++)

{
score[compindex] = (struct labelscores *) m alloc(sizeof(struct\
labelscores));
score [com pindex]->label = (char *) m alloc(sizeof(char) * (totlabel + num entities));
score[com pindex]->reldif = (double *) m alloc ((num descripts+1) * sizeof (double));
for(descriptindex=0; descriptindex < num descripts+1; descriptindex++)

{
score[com pindex]->reldif [descriptindex] = 0.0;
}

}

// allocating m em ory for scorebuffer
scorebuffer.label = (char *) m alloc (sizeof (char) * (totlabel + num entities));
scorebuffer.reldif = (double *) m alloc((num descripts+1) *sizeof(double));

// m em ory allocation for m ain com plete
prin tf(“\n\n\nm alloc com plete - m em ory allocated”);

// calculate and print the num ber of com binatorial com parisons per each set of
// desriptors in a com parison set
divisor = 3;
for(i=3; i<num entities; i++)

{
divisor = divisor + i;
}

prin tf(“\n\n\nThere are % .0f possible com parisons for each descriptive field”, divisor);
printf (“\nin each com parison set\n\n”);

// initializing variables before relative difference calcualtion
entityindex = 1; // first entity
entityindexZ = 0; // second entity
descriptscore = 0.0;
descriptindex = 1; // description being com pared
singlem easureRD = 0.0;
totalm easureRD = 0.0;
com pstart = 0;
(int)conform ationidx[entityindex] = 0; / / conform ation o f entity one
(int)conform ationidx[entityindexZ] = 0; // conform ation of entity two

for (entity index=0 ; entityindex < num entities; entityindex++)
{
(int) conform ationidx [entity index] = 0;
}

// loop through num ber of calculation sets appropriate am ount o f times

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

for(calcsetidx=0; calcsetidx < num calcsets; calcsetidx++)
{
starttim eintcalc = tim e(NULL); I I start tim e for calculation set
Iseekposition = 0;
// loop through the appropriate space in the score array for
// storing new ly calculated relative difference score
for(com pindex=num bestscore; com pindex < m axarraysz; compindex++)

{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
// loop through entity x
for (entityindex=0; entityindex < num entities - 1 ; entityindex++)

{
I I loop through entity y
for (entityindex2=entityindex+l; entityindexZ < num entities; entityindexZ++)

{
// calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs((float)conform ation[entityindex]\
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex] - \
(float) conform ation [entityindexZ] \
[(int)conform ationidx[entityindexZ]]->descriptivedata[descriptindex])) / \
(0.5 * \
(fabs((float)conform ation[entityindex]\
[(int) conform ationidx [entityindex]] ->descripti vedata [descriptindex]) + \
fabs((float)conform ation[entityindexZ]\
[(int) conform ationidx [entityindexZ]] ->descripti vedata [descriptindex]))) + \
descriptscore;
} // end entity y

} // end entity x

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlemeasureRD;
singlem easureRD = 0.0;

// keep running total for total m easure relative difference score
totalm easureRD = (descriptscore / divisor) + totalm easureRD;
descriptscore = 0.0;
} // end description loop

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;
totalm easureRD = 0.0;

// concatenate and store the label o f the com parison set aka com parison group
(char *) scorebuffer.label = strcpy (scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities -1)) ; \
entityidxbuff <= entityindex; entityidxbuff++)

{
(char *)scorebuffer.label = \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

strcat(scorebuffer.label, \
conform ation[entityidxbuff][(int)conform ationidx[entityidxbuff]]->labels);
if (entityidxbuff < entityindex)

{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart o f keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity
// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all of the entities w ill cause every conform ation to
// be com pared w ith every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int) conform ationidx [argc- 2] = (int)conform ationidx[argc-2] + 1;

if((int)conform ationidx[argc-2] >= (int)numconfs[argc-2])
{
for (confindex = (argc-2); confindex > 0; confindex—)

{
if ((int) conform ationidx [confindex] >= (int) num conf s [confindex])

{
(int) conform ationidx [confindex] = 0;
(int)conform ationidx[confindex-l] = (int) conform ationidx [confindex-1] + 1;
1

}
}

// putting a label w ith the scores
score[com pindex]->label = strcpy(score[com pindex]->label, scorebuffer.label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
score[com pindex]->reldif [descriptindex] = scorebuffer.reldif [descriptindex] ;
}

} // end of num com ps com putational group loop

// tracking the correct starting place in the data after each calculation set
com pstart = com pstart + (maxarray sz-numbestscore) ;

printf("\n% i total com parisons have been com pleted”, com pstart);

endtim eintcalc = tim e(NULL); / / end calculation tim e
totaltim ecalc = difftim e(endtim eintcalc, starttim eintcalc); // calculation tim e
starttim eintsort = tim e (NULL); // start tim e for sort

// call quick sort - sort all of the low scores to the beginning of the array
Qsort(score, 0, m axarraysz-1, num descripts, totlabel + numentities);

/ / end tim e o f sort, subtract from start tim e and print total tim e o f sort
endtim eintsort = tim e (NULL); // end tim e for sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

totaltim esort = difftim e (endtimeintsort, starttim eintsort); // sort tim e
prin tf(“\n\ncalculation tim e = % .0f seconds, sort tim e = % .0f seconds\n\n”, \
totaltim ecalc, totaltimesort);
} // end of calcset calculation set loop

// start of last array
prin tf(“\nstarting last set o f % i calculations”, lastarraysz);

starttim eintcalc = tim e (NULL); // start tim e for last array calculation time

// loop through the appropriate space in the score array for
// storing new ly calculated relative difference score
for(com pindex=num bestscore; com pindex < num com ps-com pstart+num bestscore; com pindex++)

{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
// loop through entity x
for (entityindex=0; entityindex < num entities -1 ; entityindex++)

{
// loop through entity y

for (entityindex2=entityindex+l; entityindex2 < num entities; entityindex2++)
{
// calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs ((float) conform ation [entityindex] \
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex] - \
(float)conform ation[entityindex2]\
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex])) / \
(0.5 * \
(fabs((float)conform ation[entityindex]\
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex]) + \
fabs((float)conform ation[entityindex2]\
[(int) conform ationidx [entityindex2]] ->descriptivedata [descriptindex]))) + \
descriptscore;
} // end entity 2

} // end entity

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlem easureRD;
singlem easureRD = 0.0;

// keep running total for total m easure relative difference score
totalm easureRD = (descriptscore / divisor) + totalm easureRD ;
descriptscore = 0.0;
} // end of description loop

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

totalm easureRD = 0.0;

// concatenate and store the label of the com parison set aka com parison group
(char *) scorebuffer.label = strcpy (scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities - 1)); \
entityidxbuff <= entityindex; entityidxbuff++)

{
(char *) scorebuffer.label = \
strcat(scorebuffer.label, \
conform ation[entityidxbuff][(int)conform ationidx[entityidxbuff]]->labels);
if (entityidxbuff < entityindex)

{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart of keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity
// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all of the entities will cause every conform ation to
/ / be com pared with every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int)conform ationidx[argc-2] = (int) conform ationidx [argc-2] + 1;
if ((int) conform ationidx [argc-2] >= (int)numconfs[argc-2])

{
for (confindex = (argc-2); confindex > 0; co n fin d e x -)

{
if ((int) conform ationidx [confindex] >= (int) num conf s [confindex])

{
(int)conform ationidx[confindex] = 0;
(int) conf orm ationidx [confindex-1] = (int) conform ationidx [confindex-1] + 1;
}

}
}

// putting a label w ith the scores
score [com pindex]->label = strcpy (score [compindex] ->label, scorebuffer.label);
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
score[compindex] ->reldif [descriptindex] = scorebuffer.reldif [descriptindex] ;
}

} // end of com pindex com putational group loop

// all com binatorial com bination of conform ations have been com pared at this point
printf(“\n\n% i total com parisons have been com pleted”, com pstart + lastarraysz);

endtim eintcalc = tim e (NULL); // end last array calculation tim e
totaltim ecalc = difftim e(endtim eintcalc, starttim eintcalc); // calculation tim e
starttim eintsort = tim e(NULL); // start tim e for sort

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

// call quick sort - sort all o f the low scores to the beginning of the array
Qsort(score, 0, num com ps-com pstart-1 +num bestscore, num descripts, totlabel + numentities);

// end tim e of sort, subtract from start tim e and print total tim e of sort
endtim eintsort = tim e (NULL); // end tim e for sort
totaltim esort = difftim e (endtimeintsort, starttim eintsort); // sort tim e
printf (“\n\ncalculation tim e = % .0f seconds, sort tim e = % .0f seconds\n\n”, \
totaltim ecalc, totaltimesort);

// w riting low est scores and corresponding labels to output file
p rin tf(“\n\n\nwriting %i low est scores to file % s”, num bestscore, outfilename);

if ((outfilefd = fopen(outfilenam e, “w t”)) == NULL)
{
prin tf(“\ncan not open % s\n”, outfilename);
exit (2);
}

for(com pindex=0; com pindex < num bestscore; com pindex++)
{
fprintf (outfilefd, “% s,”, score[com pindex]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
fprintf (outfilefd, “% .12f,”, score[com pindex]->reldif[descriptindex]);
}

fprintf (outfilefd, 12f\n”, score [compindex] ->reldif [numdescripts]) ;
}

fclose(outfilefd);

// end tim e for all calculation, sorting, and writing output file
endtim einttot = tim e (NULL);
totaltim e = difftim e (endtimeinttot, starttimeinttot);
prin tf(“\n\n\ntotal tim e to calculate, sort and w rite output file = % .0f seconds\n\n”, totaltime);

// freeing m em ory

printf (“\nstarting to free memoryXn”);
for(entityindex=0; entityindex < num entities; entityindex++)

{
for(confindex=0; confindex < (int)num confs[entityindex]; confindex++)

{
free (conform ation [entityindex] [confindex] ->labels) ;
free(conform ation[entityindex] [confindex]->descripti vedata) ;
free(conform ation[entityindex] [confindex]);
}

free (conform ation [entityindex]) ;
}

free(conform ation) ;

for(com pindex=0; com pindex < m axarraysz; com pindex++)
{
free (score [compindex] ->label) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

free (score [compindex] ->reldif) ;
free (score [compindex]) ;
}

free (score);

free(scorebuffer.reldif) ;
free (scorebuffer. label) ;

printf (“\nm em ory free\n”);

return (0);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

Appendix 4.7 The comp program, written in C. Calculates and saves all
similarity scores.
/*

Program: com p
author: Paul A. W ilson
email: pw ilson@ cobrem ail.itrc.um t.edu
date of latest version: A ugust 15, 2004
date of origination: 2003

com mand: program nam e data file 1 data file 2 data file 3
example: ./comp ./M CN-5652.txt ./sertraline.txt ./indatraline.txt ./s-citalopram .txt

m inim um of three data files required, no lim it to m axim um num ber of data
files to be com pared - w ithin reason

required data file format: com m a delim ited text, first field of each row is
equivalent to a label, the rem aining fields in each row are num bers, each
field is separated by a com m a, no quotes around the labels, no spaces between
fields (commas only)

output file nam e is lim ited to a m axim um of 64 characters

In Short: This program com pares the rows in data files developing a score
for each set of rows (set - one row from each data file). A text file is
written containing all com parisons. Each row in the output file contains
the label from each label field (first field in each data file)
concatenated together follow ed in com m a delim ited form by the score for
each field and finally the total score. This version of the program does
not sort the sim ilarity scores. See com psort and com psortall for score
sorting in ascending order.

This program was w ritten in response to to a project w here distance
space descriptions needed to be com pared in order to determ ine the
conform ations of four m olecules w hich w ere the m ost similar.
(see SFN 2003 Annual M eeting, Poster Presentation 371.4 and SEN
2004 Annual M eeting, Poster Presentation 922.1, also see M achack 18,
W ilson, P.A. “A Practical Com parison of M ultiprocessing L ibraries”,
M acH ack 2003, June 2003, the code is different but a lot o f the ideas
remain) I am w illing to share m anuscript versions of these posters in
pdf format.

Com parisons are carried out com binatorially using relative difference.
The relative difference equation was m odified slightly to enable creating
and weighting the com parison of a positive and negative m easurem ent as less
similar. Each row in each data file is com pared against each row of every
other data file. W ithin each row, each field is com pared against the
corresponding field from the rows being com pared in the other data files.
If there are 4 data files than there are 6 com parisons betw een each field
of the four rows being com pared. The relative difference score from each
field is added together and divided by the num ber of fields to produce a
sim ilarity score for the for the rows being com pared.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mailto:pwilson@cobremail.itrc.umt.edu

182

sim ilarity score = (sum m ation from m easure 1 to total num ber of m easures (
sum m ation of from data file 1 to total num ber of data files ((IVab - VacI /
((IVabl + iVacl)/2)) / num ber o f com binatorial)))
Vab = m easure a of datafile b
Vac = m easure a o f datafile c

The program program s structure has a legacy stem m ing from a personal interest
in out-of-core sorting, dynam ic m em ory allocation, and parallel computing.
There are three versions of this program . This one does not sort sim ilarity
scores. The other tw o versions of the program 1) sorts all scores using
an out o f core sorting m echanism , and 2) one sorts all but only keeps a user
determ ined portion of the scores.

Pointers are used extensively as port o f som e of m y original notions on
dynam ically allocating m em ory and sorting.

The program was w ritten in C to provide m axim um portability. I have not tried
com piling this code on a Linux, or any other, m achine. I have noticed this
code runs great under M ac OS 10.3 and failed when running under M ac OS 10.2.

*/

//#include <dirent.h>
#include <fcntl.h>
#include <m ath.h>
#include <stddef.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/erm o.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/tim e.h>
#include <sys/types.h>
#include <sys/uio.h>

// start o f m ain
int main (int argc, const char * argvQ)

{

// structure for holding data read from files, label and num erical descriptors
struct descriptions

{
char * labels;
double * descriptivedata;
};

// structure for holding concatenated label and score for each descriptor
// and a total score value

struct labelscores
{
char * label;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

double * reldif;
};

nt calcsetidx; // index for w hich set o f calculation (comparisons) is current
nt confindex; // com parison index - w hich com parison set is being com pared
nt com pindex; // com parison index - w hich com parison set is being com pared
nt compindexZ; // index used for resetting score array
nt compstart; // com parison start - the starting point for each set of com parisons
nt descriptindex; // desciptor index - data file colum ns
nt descriptindexZ; // index used for resetting score array
nt entityindex; // id o f entity one in the com parison
nt entityindexZ; // id of entity two in the com parison
nt entityidxbuff; // entity index buffer
nt fileindex=l; // index used to indicate w hich data file is open
nt i; // sim ple index used in loop calculating the divisor
nt lastarraysz; // the size of the last array, the rem ainder of calculations
nt Iseekposition; // file position in data file being read
nt Iseekbuffer; // buffer for file position
nt m axarraysz; // m axim um array size = num linescalc + num bestscore
nt numcalcsets; // the num ber of sets o f calculations
nt numcomps; // total num ber of com parison sets
nt numdescripts; // total num ber o f descriptions = num ber of columns in each data file
nt numentities; // the total num ber of entities to be com pared = num ber of data files
nt totlabel; // total length, num ber of characters, o f concatenated label

int * conf orm ationidx [argc-1]; // index of conform ations
int * filedescript[argc-l]; // array of file descriptors - data files from com m and line
int * labellength[argc-l]; // array of the label lengths for each data file
int * m axlabellength[argc-l]; // array of the m axim um label lengths for each data file
int * numcolumns; // num ber of columns
int * num confs[argc-1]; // array of the num ber of rows in each data file

char * nullstring = “\0 ”; // nullstring for adding the end of lines and initialization
char * readbuffer; // read buffer for reading data files
char * stm um ber; // num erical data read from file stored as string

char outfilename [64]; // character array for output file nam e - m ax 65 character nam e

double descriptscore; // the relative difference score for one com binatorial
double divisor; // the divisor used in calculating the single m easure relative difference
double doublenumber; // num erical string read from data file is converted to double num ber
double singlem easureRD; // the Relative Difference score for a single set o f description
double totalm easureRD; // the Relative D ifference score for a com parison set
double totaltim e; // the total tim e in seconds used for tim ing sorts and run tim e

FILE *outfilefd; // the output file descriptor

tim e_t starttim ecalc; // start tim e for set o f calculations
tim e_t endtim ecalc; // end tim e for set o f calculations
tim e_t starttimetotal; // start tim e for total run tim e
tim e_t endtim etotal; // end tim e for total run tim et
tim e_t starttim ewrite; // start tim e for a tem porary file write
tim e_t endtim ewrite; // end tim e for a tem porary file write

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

struct descriptions ***conform ation; // struct w hich stores all the data from the data files

struct labelscores **score; // struct w hich stores concatenated labels and scores
struct labelscores scorebuffer; // a buffer to tem porarily store scores in

// initial m em ory allocation and variable initialization
readbuffer = m alloc(sizeof (char)) ;
stm um ber = m alloc(sizeof(char) * 16); // this needs to be increased if numbers are

// m ore than 15 digits plus 1 N U LL string

num colum ns = (int *) malloc(sizeof(int)) ;
*filedescript = (int *) m alloc(sizeof(int) * (argc - 1));

num entities = argc -1 ;
confindex = 0;
num com ps = 1;
totlabel = 1;

// print inform ation to the screen which will help the user answ er the
// first three questions they are asked by the program
printf (“\n\n\nThis program is going to calculate X num ber of scores, “);
printf (“\nw rite the results to the output file, and then calculate the “);
prin tf(“\nsthe next X num ber of scores. This latest set o f X scores are”);
printf (“\nappended to the end of the output file. This repeats until all “);
printf (“\nscores are calculated and w ritten to the output file.\n”);

printf (“\nThe answ er given for the next question will determ ine “);
printf (“\nhow m uch m em ory is allocated. R em em ber there are lim its “);
printf(“\nto how m uch m em ory can be allocated to a single application “);
prin tf(“\nand virtual m em ory is slow er than physical memory. “);
printf (“\nYou are about to be asked for the num ber of scores to be “);
printf (“\ncalculated betw een writes to the output file.\n”);

printf (“\nThe num ber of scores (X) calculated between writes to the output “);
prin tf("\nfile accounts for a m ajority o f the m em ory used by this program .”);
printf (“\nCalculating X num ber of scores at a tim e allows the program “);
printf("\nallow s for the program to rem ain w ithin a lim ited m em ory”);
prin tf(“\nfootprint. A n exam ple value that has proven useful to the”);
prin tf(“\nauthor is: X = 500000. This value should be changed according”);
printf(“\nto your data set, needs, and physical m em ory\n”);

// ask for and obtain the num ber o f conform ational sets to calculate
// between writes to the output file
prin tf(“\nH ow m any scores do you w ant to calculate before “);
printf (“\nw riting to the output file? “);
scanf(“% i”, & maxarraysz);

// allocating m em ory for input data array
conform ation = (struct descriptions ***) m alloc (sizeof(struct \

descriptions **) * num entities);

// determ ined from argum ents on com and line
printf(“\nThe num ber of data files = % i\n”, numentities);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

// asking for the num ber of colum ns per data file
printf (“\nW hat is the total num ber o f colum ns in each file? “);
scanf(“% i”, (int *)& num colum ns);
printf (“\nThere are %i colum ns An in each file”, (int)numcolumns);

num descripts = (int) num colum ns -1 ;
printf (“\nEach file has 1 lable colum n and % i description colum ns An”, \

numdescripts);

// allocating m em ory and loading the data arrays

for (entityindex=0; entityindex < num entities; entityindex++)
{
m axlabellength[entityindex] = (int *)m alloc(sizeof(int));
*m axlabellength [entityindex] = 0;
if (((int)filedescript[fileindex] = (open(argv[fileindex], 0_R D 0N L Y))) < 0)

{
perror(argv[fileindex]) ;
exit(EXIT_EAILURE);
}

// asking for the num ber of rows in the current data file being read
prin tf(“\n\nfile % s is open\n”, argv[fileindex]);
printf (“H ow m any rows are in this file? “);
scanf(“% i”, (int *)& num confs [entityindex]) ;
printf (“There are % i rows representing %i conform ations in this file An”, \
(int) num confs [entityindex], (int) num confs [entityindex]) ;

// allocating m em ory for the array of pointers to conform ations
conform ation [entityindex] = (struct descriptions **) m alloc \
((sizeof(struct descriptions *) * (int)num confs[entityindex])) ;

Iseekposition = 0;

// allocating m em ory for a conform ation s structure and descriptors
for(confindex=0; confindex < (int)numconfs [entityindex] ; confindex++)

{
conform ation[entityindex] [confindex] = (struct descriptions *) malloc \

((sizeof (struct descriptions)));
conform ation[entityindex][confindex]->descriptivedata = (double *) \

malloc (sizeof (double) * num descripts);

// allocating m em ory for a conform ation s structure label
labellength[entityindex] = (int *)m alloc(sizeof(int));
fflush(NULL);
*readbuffer = AO ;
*labellength[entityindex] = 0;
lseekbuffer=lseekposition;

// counting num ber of characters in label
// fscan would be faster and was used for file I/O in the
// out-of-core sortng program
w hile(*readbuffer != ‘ ‘ && *readbuffer != ',)

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

lseek((int)flledescript[fileindex], Iseekposition, SEEK_SET);
read((int)flledescript[fileindex], readbuffer, 1);
*labellength[entityindex] = *labellength[entityindex] + 1;
lseekposition++;
}

if (*m axlabellength[entityindex] < *labellength[entityindex])
{
*maxlabellength[entityindex] = *labellength[entityindex];
// printf(“\nm axim um label length = % i\n”, *m axlabellength[entityindex]);
}

// allocating m em ory for label - depends on label m axim um length
conform ation[entityindex] [conhndex] ->labels = \
(char*) m alloc(sizeof(char) * *labellength[entityindex]);

// reading, concatenating, and storing label
fflush(NULL);
*readbuffer - ‘\0 ;
Iseekposition = Iseekbuffer;
descriptindex = 0;
w hile(*readbuffer != ‘ ‘ && *readbuffer != ',)

{
lseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read((int)filedescript[fileindex], readbuffer, 1);
if(*readbuffer != ',)

{
(char *)conform ation[entityindex][confindex]->labels = \
stm cat(conform ation[entityindex][confindex]->labels, readbuffer, 1);
}

lseekposition++;
}

// resetting and reading num erical descriptor data from data files
// data read as string and converted to double - strtod
while(*readbuffer != ‘\n && *readbuffer != ‘\0)

{
ffiush(NULL);
*readbuffer = \0 ;
*stm um ber = ‘\0 ;
w hile(*readbuffer != ', && *readbuffer != * ' && *readbuffer ! - ‘\n)

{
Iseek((int)filedescript[fileindex], Iseekposition, SEEK_SET);
read ((int) filedescript [fileindex], readbuffer, 1);
if (*readbuffer != ', && *readbuffer != ‘ ‘ && *readbuffer != ‘\n)

{
strnum ber = strncat(stm um ber, readbuffer, 1);
lseekposition++;
}

}
doublenum ber = strtod (strnumber, NULL);
conform ation[entityindex][confindex]->descriptivedata[descriptindex]=\
doublenumber;
descriptindex++;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

lseekposition++;
}

}
fileindex = fileindex + 1; // finished reading from data file m ove to next file
}

// asking for and obtaining nam e of output file
ffiush(NULL);
printf(“\n\nEnter file nam e for results to be stored in: “);
scanf(“% s”, (char *)&outfilename);
printf(“\nThe results w ill be saved in % s\n”, outfilename);

starttim etotal = tim e (NULL); // start tim e for total tim e

// calculating total num ber of com parisons and m axim im um total label length
for (entityindex=0; entityindex < num entities; entityindex++)

{
num com ps = num com ps * (int)num confs[entityindex];
totlabel = totlabel + *m axlabellength [entityindex] ;
}

num calcsets - (num com ps/m axarraysz);

// if num ber of com parisons is less than the size of a set of calculations
if (maxarraysz > numcomps)

{
m axarraysz - numcomps;
numcalcsets = 0;
}

// calculate the size of the last set of com parisons
lastarraysz = num com ps - (numcalcsets * m axarraysz);

// allocate m em ory for score array and initialize
score = (struct labelscores **) m alloc (sizeof(struct labelscores *) \
* (int)maxarraysz);

for(com pindex=0; com pindex < m axarraysz; com pindex++)
{
score[compindex] = (struct labelscores *) m alloc(sizeof(struct\
labelscores));

score[com pindex]->label = (char *) m alloc(sizeof(char) * (totlabel + num entities));
score[com pindex]->reldif = (double *) m alloc((num descripts+1) * sizeof(double));
for(descriptindex=0 ; descriptindex < num descripts+1; descriptindex++)

{
score[com pindex]->reldif [descriptindex] = 0.0;
}

}

// allocating m em ory for scorebuffer
scorebuffer.label = (char *) m alloc(sizeof(char) * (totlabel + num entities));
scorebuffer.reldif = (double *) m alloc((num descripts+1) *sizeof(double));

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

// m em ory allocation for m ain com plete
printf(“\nm alloc com plete - m em ory allocated\n”);

// calculate and print the num ber of com binatorial com parisons per each set of
// desriptors in a com parison set
divisor = 3;
for(i=3; i<num entities; i++)

{
divisor = divisor + i;
}

printf(“\n\nThere are % .0f possible com parisons for each descriptive field”, divisor);
printf(“\nin each com parison set\n\n”);

// initializing variables before relative difference calculation
entityindex - \ \ I I first entity
entityindexZ = 0; // second entity
descriptscore = 0.0;
descriptindex = 1; // description being com pared
singlem easureRD = 0.0;
totalm easureRD = 0.0;
com pstart = 0;
(int)conform ationidx[entityindex] = 0; // conform ation of entity one
(int)conform ationidx[entityindex2] = 0; // conform ation of entity two

for(entityindex=0; entityindex < num entities; entityindex++)
{
(int) conform ationidx [entityindex] = 0;
}

// loop through num ber of calculation sets appropriate am ount o f times
for(calcsetidx=0; calcsetidx < num calcsets; calcsetidx++)

{
starttim ecalc = tim e(NULL); // start tim e for calculation set
// loop through the appropriate space in the score array for
// storing new ly calculated relative difference score
for(com pindex=com pstart; com pindex < m axarraysz+com pstart; compindex++)

{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
// loop through entity x
for (entityindex-0; entityindex < num entities -1 ; entityindex++)

{
// loop through entity y
for (entityindex2=entityindex+l; entityindex2 < num entities; entityindex2++)

{
// calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs ((fioat)conf orm ation [entityindex])
[(int) conf orm ationidx [entityindex]] ->descripti vedata [descriptindex] - \
(float)conform ation[entityindex2]\
[(int) conf orm ationidx [entity index2]] ->descripti vedata [descriptindex])) / \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

(0.5 * \
(fabs((float)conform ation[entityindex]\
[(int) conf orm ationidx [entityindex]] ->descripti vedata[descriptindex]) + \
fabs ((float) conform ation [entityindex2]\
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex]))) + \
descriptscore;
} // end entity 2

} // end entity

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlem easureRD;
singlem easureRD = 0.0;

// keep running total for total m easure relative difference score
totalm easureRD = (descriptscore / divisor) + totalm easureRD;
descriptscore = 0.0;
} // end descriptindex

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;
totalm easureRD = 0.0;

// concatenate and store the label of the com parison set aka com parison group
(char *)scorebuffer.label = strcpy(scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities -1)) ; \
entityidxbuff <= entityindex; entityidxbuff++)

{
(char *)scorebuffer.label = \
strcat(scorebuffer.label, \
conform ation [entityidxbuff] [(int) conf orm ationidx [entityidxbuff]] ->labels) ;

if (entityidxbuff < entityindex)
{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart of keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity
// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all of the entities w ill cause every conform ation to
// be com pared w ith every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int)conform ationidx[argc-2] = (int)conform ationidx[argc-2] + 1;

if((int)conform ationidx[argc-2] >= (int)numconfs[argc-2])
{
for (confindex = (argc-2); confindex > 0; confindex—)

{
if((int)conform ationidx[confindex] >= (int)numconfs[confindex])

{

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

(int) conf orm ationidx [confindex] = 0;
(int) conf orm ationidx [confindex-1] = (int) conf orm ationidx [confindex-1] + 1;
}

}
}

// putting a label w ith the scores
score [compindex-compstart] ->label = strcpy (score [compindex-compstart] ->label, scorebuffer.label) ;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
score[com pindex-com pstart]->reldif [descriptindex] = scorebuffer.reldif[descriptindex];
}

} // end of num com ps com putational group loop

endtim ecalc = tim e (NULL); // end tim e for set of com parison claculations
totaltim e = endtim ecalc - starttim ecalc; // total tim e for calculations
printf(“\n\n% i total com parisons have been com pleted”, m axarraysz * (calcsetidx+1));
printf(“\n% i com parisons of been calculated in % .0f seconds”, \
m axarraysz, totaltime);

starttim ewrite = tim e (NULL); // start tim e for w rite to output file

// open outfile for writing
if ((outfilefd = fopen(outfilenam e, “a”)) == NULL)

{
printf(“\ncan not open % s\n”, outfilename);
exit(2);
}

// loop w rites/appends calculations to outfile
for(com pindex=0; com pindex < m axarraysz; com pindex++)

{
fprintf(outfilefd, “% s,”, score [compindex]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
fprintf(outfilefd, “% .12f,”, score[com pindex]->reldif[descriptindex]);
}

fprintf (outfilefd, “% .12f\n”, score [compindex] ->reldif [numdescripts]) ;
}

fclose(outfilefd); // close outfile

endtim ewrite = tim e (NULL); // end tim e for w rite to output file
totaltim e = endtim ewrite - starttim ewrite; // total tim e for file write
printf(“\n% i lines w ritten to the output file in % .0f seconds”, \
maxarraysz, totaltim e);

// reset the com binatorial calculation array
com pstart = com pstart + m axarraysz;
for(com pindex2=0; com pindex2 < m axarraysz; com pindex2++)

(
for(descriptindex2=0; descriptindex2 < num descripts+1; descriptindex2++)

{
score [compindex2] ->reldif [descriptindex2] = 0.0;
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

}
// printf(“\narray reset”);
}

endtim etotal = tim e(NULL); // end tim e before last array
totaltim e = endtim etotal - starttim etotal; // total tim e before last array
printf(“\n\ntotal tim e before last array % .0f seconds”, totaltime);

// start of last array
printf(“\nstarting last set o f %i calculations”, lastarraysz);

starttim ecalc = tim e(NULL); // start tim e for last array calculation time

// loop through the appropriate space in the score array for
// storing new ly calculated relative difference score
for(com pindex=com pstart; com pindex < com pstart+lastarraysz; compindex++)

{
// loop through descriptions being com pared
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
// loop through entity x
for (entityindex=0; entityindex < num entities -1 ; entityindex++)

{
// loop through entity y
for (entityindex2=entityindex+l; entityindex2 < num entities; entityindex2++)

{
I I calculate relative difference score for each com binatorial
// descriptor com parison
descriptscore = \
(fabs ((float) conf orm ation[entityindex]\
[(int) conf orm ationidx [entityindex]] ->descripti vedata [descriptindex] - \
(float) conf orm ation [entity index2] \
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex])) / \
(0.5 * \
(fabs((float)conform ation[entityindex]\
[(int)conform ationidx[entityindex]]->descriptivedata[descriptindex]) + \
fabs((float)conform ation[entityindex2]\
[(int)conform ationidx[entityindex2]]->descriptivedata[descriptindex]))) + \
descriptscore;
} // end entity 2

} // end entity

// calculate and store single m easure relative difference score
singlem easureRD = descriptscore / divisor;
scorebuffer.reldif [descriptindex] = singlem easureRD;
singlem easureRD = 0.0;

// keep running total for total m easure relative difference score
totalm easureRD = (descriptscore / divisor) + totalm easureRD;
descriptscore = 0.0;
} I I end of description loop

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

// calculate and store total m easure relative difference score
// this is the sim ilarity score
scorebuffer.reldif [numdescripts] = totalm easureRD / numdescripts;
totalm easureRD = 0.0;

// concatenate and store the label of the com parison set aka com parison group
(char *)scorebuffer.label = strcpy(scorebuffer.label, nullstring);
for (entityidxbuff = (entityindex - (numentities -1)) ; \
entityidxbuff <= entityindex; entityidxbuff++)
{
(char *) scorebuffer.label = \
strcat(scorebuffer.label, \
conform ation[entityidxbuff][(int)conform ationidx[entityidxbuff]]->labels);

if (entityidxbuff < entityindex)
{
strcat(scorebuffer.label, “_ ”) ;
}

}

// heart of keeping the indexes pointing to the right place in the
// conform ation data - loop through conform ations of last entity
// until the last conform ation of the last entity is reached. Then
// increm ent the second to the last entity to the next conform ation
// and decrem ent the last entity to its first conform ation. Following
// this through all o f the entities will cause every conform ation to
// be com pared w ith every conform ation of the other entities.
// This is som e w hat analogous to a m echanical odom eter (or counter)
(int)conform ationidx[argc-2] = (int)conform ationidx[argc-2] + 1;
if((int)conform ationidx[argc-2] >= (int)numconfs[argc-2])

{
for (confindex = (argc-2); confindex > 0; confindex-)

{
if((int)conform ationidx[confindex] >= (int) num confs [confindex])

{
(int) conf orm ationidx [confindex] = 0;
(int) conf orm ationidx [confindex-1] = (int) conf orm ationidx [confindex-1] + 1;
}

}
}

// putting a label w ith the scores
score [com pindex-com pstart]->label = strcpy(score[com pindex-com pstart]->label, scorebuffer.label) ;
for(descriptindex=0; descriptindex <= num descripts; descriptindex++)

{
score [compindex-compstart] ->reldif [descriptindex] = scorebuffer.reldif [descriptindex] ;
}

} // end of com pindex com putational group loop
endtim ecalc = tim e (NULL);
totaltim e = endtim ecalc - starttimecalc;
printf(“\n\n% i com parisons have been com pleted”, num com ps);
printf(“\n% i com parisons of been calculated in % .0f seconds”, \

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

lastarraysz, totaltime);

starttim ewrite = tim e(N ULL); // start output file w rite tim e
// open outfile for writing
if ((outfilefd = fopen(outfilenam e, “a”)) == NULL)

{
printf(“\ncan not open % s\n”, outfilename);
exit(2);
}

ffiush(NULL);
// loop appends last array calculations to outfile
for(com pindex=0; com pindex < lastarraysz; com pindex++)

{
fprintf (outfilefd, “% s,”, score[com pindex]->label);
for(descriptindex=0; descriptindex < num descripts; descriptindex++)

{
fprintf (outfilefd, “% .12f,”, score[com pindex]->reldif [descriptindex]);
}

fprintf(outfilefd, “% .12f\n”, score[com pindex]->reldif[num descripts]);
}

f close (outfilefd); // close outfile

endtim ewrite = tim e (NULL); // end output file w rite tim e
totaltim e = endtim ewrite - starttimewrite; // total file w rite tim e
printf(“\n% i lines w ritten to the output file in % .0f seconds”, \
lastarraysz, totaltim e);

endtim etotal = tim e (NULL); // end total tim e
totaltim e = difftim e(endtim etotal, starttimetotal);
printf(“\n\ntotal tim e % .0f seconds\n\n”, totaltime); // total run tim e

// freeing m emory

printf(“\nstarting to free m em ory\n”);
for(entityindex=0; entityindex < num entities; entityindex++)

{
for(confindex=0; confindex < (int) num confs [entityindex] ; confindex++)

(
free(conform ation[entityindex] [confindex]->labels) ;
free(conform ation[entityindex] [confindex] ->descriptivedata) ;
free (conform ation [entityindex] [confindex]) ;
}

free(conform ation[entityindex]) ;
}

free (conformation) ;

for(com pindex=0; com pindex < lastarraysz; com pindex++)
{
free (score [compindex] ->label) ;
free (score [compindex] ->reldif) ;
free(score[com pindex]) ;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

}

free (score);
free(scorebuffer.reldif) ;
free(scorebuffer.label) ;

printf(“\nm em ory free\n”);

printf(“\nD one!\n”);

return (0);
}

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

Bibliography

Accelrys, Inc., San Diego, California, www.accelrys.com

AESOP developed by B.B. Masek, Zeneca, Wilmington, Delaware.

Baumann, B.H., Fable, J.P., All, S.F., Rothman, R.B., and Mash, D.C. Noribogaine

(12-hydroxyibogaineO: a biologically active metabolite of the

antiaddicitive drug ibogaine. Ann. N.Y. Acad. Sci. 2000, 914, 354-368.

Baase, S., Van Gelder, A. Computer Algorithms Introduction to Design and Analysis.

Addison-Wesley, Menlo Park, CA, 2000

Blumenthal, L.M. Theory and applications of distance geometry. Chelsea Publishing,

Bronx, 1970.

Crippen, G.M. A novel approach to calculations of conformation: distance

geometry. /. Comp. Phys. 1997, 24, 96-107.

Dean, P.M., and Perkins, T.D.J. Calculation of three-dimensional similarity. In:

Designing bioactive molecules: three-dimensional techniques and applications,

Martin, Y.C., and Willet, P., Eds., ACS, Washington DC, 1998, pp. 199-218.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.accelrys.com

196

Gerdes, J.M., DeFina, S.C., Wilson, P.A., and Taylor,S.E. Serotonin transporter

inhibitors: synthesis and binding potency of 2'-methyl- and 3'-methyl-6-

nitroquipazine. Bioorg. Med. Chem. Lett. 2000,10, 2643-2646.

Greco, G., Novellino, E., and Martin, Y.C. 3D-QSAR methods. In: Designing

bioactive molecules: three-dimensional techniques and applications, Martin,

Y.C., and Willet, P., Eds., ACS, Washington DC, 1998, pp. 219-252.

Gundertofte, K., Bogeso, K.P., and Liljefors, T. A stereoselective pharmacophore

model of the serotonin re-uptake site. In: Computer-assisted lead finding

and optimization, Waterbeemd, H., Testa, B., and Folkers, G., Eds., VHCA,

Basil, and Wiley-VHC, Weinheim, 1997, pp. 445-459.

Jin, B., and Hopfinger, A.J. A proposed common spatial pharmacophore and the

corresponding active conformations of some TxA^ receptor antagonists. /.

Chem. Inf. Comput. Sci. 1994, 34,1014-1021.

Martin, Y.C. Pharmacophore Mapping. In: Designing bioactive molecules: three-

dimensional techniques and applications, Martin, Y.C., and Willet, P., Eds.,

ACS, Washington DC, 1998, pp. 121-148.

Microsoft Corporation, Redmond, Washington, www.microsoft.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.microsoft.com

197

Mottola, D.M., Laiter, S., Watts, V.J., Tropsha, A., Wyrick, S.D., Nichols, D.E., and

Mailman, R.B. Conformational analysis of dopamine receptor agonists:

pharmacophore assessment and receptor mapping. /. Med Chem. 1996, 39,

285-296.

Nicklaus, M.C., Wang, S., Driscoll, J.S., and Milne, G.W. Conformational changes

of small molecules binding to proteins. Bioorg. Med. Chem. 1995, 3, 411-

428.

Papadopoulos, M.C., and Dean, P.M. Molecular structure matching by simulated

annealing. IV. Classification of atom correspondences in sets of dissimilar

molecules. /. Comput.-Aided Mol. Design 1991, 4,119-133.

Perkins, T.D.J., and Dean, P.M. Molecular partial similarity using surface-

volume comparisons. In: Computer-assisted lead finding and optimization,

Waterbeemd, H., Testa, B., and Folkers, G., Eds., VHCA, Basil, and Wiley-

VHC, Weinheim, 1997, pp. 421-432.

Rupp, A., Kovar, K., Beuerle, G., Ruf, C., and Folkers, G. A new pharmacophoric

model for 5HT reuptake-inhibitors: differentiation of amphetamine

analogues. Pharma. Acta Helv. 1994, 68, 235-244.

Tripos, Inc., St. Louis, Missouri, www.tripos.com

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tripos.com

198

Vaswani, M., Linda, F.K., and Ramesh, S. Role of Selective Serotonin Reuptake

Inhibitors in Psychiatric Disorders: a Comprehensive Review. Progress in

Neuro-Psychopharmacology & Biological Psychiatry. 2002, 27, 85-102

WaveMetrics, Inc., Lake Oswego, Oregon, www.wavemetrics.com

Weiss, M.A. Data Structures and Algorithm Analysis in C. Menlo Park, CA, 1997.

Wilson, J.D. Physics Laboratory Experiments. D.C. Heath and Company,

Lexington, 1986, pp. 9-10.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.wavemetrics.com

	A simple methodology for the production of three -dimensional models: Serotonin transporter as an example
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461732696.pdf.KcLyt

