
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1996

Aggregating raster polygons derived from large remotely sensed Aggregating raster polygons derived from large remotely sensed

images images

Steve Barsness
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Barsness, Steve, "Aggregating raster polygons derived from large remotely sensed images" (1996).
Graduate Student Theses, Dissertations, & Professional Papers. 1487.
https://scholarworks.umt.edu/etd/1487

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F1487&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/1487?utm_source=scholarworks.umt.edu%2Fetd%2F1487&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike

MANSFIELD LIBRARY

The University of IVIONXANA

Pennission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant pennission
No, I do not grant permission

Author's Signatur^J^gC-^

Date

Any copying for commercial purposes or financial gain may be undertaken only witl
the author's explicit consent.

Aggregating Raster Polygons

derived from

Large Remotely Sensed Images

by

Steve Barsness

Department of Computer Science, University of Montana

For the Degree of Master of Computer Science

University of Montana

Fall, 1996

Approved by

C\?
chairman. Board of Examiners

Dean, Graduate School

1/20/16

Date

UMI Number: EP34744

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT

UMI EP34744

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against
unauthorized copying under Title 17, United States Code.

ProOuest*

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Bareness, Steven J, M.S., September 1995 Computer Science

Aggregating Raster Polygons derived from Large Remotely Sensed

Director: Dr. Ray Ford

Remotely sensed satellite imagery produces rasters (also
called grids or matrices) of numerical pixels (or cells).
Rasters of raw data are typically processed to form images.
As sensing technology has advanced, the available rasters have
gotten larger and larger, e.g., containing more than 50
million 8 bit pixels. Several types of transformation from
raster to image are currently used in various applications,
including a class of transformations that identify raster
polygons (or areas) which represent spatial regions of similar
characteristics, as designated by contiguous pixels with equal
class values. An important operation in the formation of
these images is the aggregation of small raster polygons into
larger, adjacent ones. This operation is necessary because
small areas may represent "noise", or because the scale of
areas may provide information too detailed for analysis in the
application domain. This paper examines the algorithmic
properties of aggregation, as used in particular applications
that create images representing large scale vegetation cover.
The paper focuses on two object-oriented implementations which
efficiently address the space and time complexity inherent in
aggregating large images. Particular attention is given to a
novel class of designs created by the author.

Key words: image processing, raster polygon, object oriented
design, merge.

Images

ii

Acknowledgment s

This project is a synthesis of the work and ideas of many

people.

The most important contribution was made by Dr. Ray Ford who

originally defined the aggregation paradigm, developed a vocabulary

to describe it, and produced the first solutions. He introduced

this interesting problem as secondary material in two classes on

object oriented design, thus allowing me to contribute my ideas.

Other faculty also provided valuable input.

Dr. Alden Wright provided the idea of reinserting areas which

change size during the merge process back into a binary heap, thus

providing a way to do dynamic reordering which was previously

unexplored.

Dr. Ford and Dr. Zhenkui Ma indirectly convinced me that the

entire image need not be loaded into memory, thus providing the

basis for tBABA, the sliding threshold sized Image band which will

likely be the basis for future work on very large images.

Dr. Nick Wilde introduced the breadth first traversal with a

queue in his data structures course. This is the foundation for

the area traversal method that is the basis of all the ABA

variations.

Dr. Roland Redmond and his co-workers provided test data and

expert opinion as to the quality of the resultant images.

And of course, the University of Montana Computer Science

Department provided the hardware and software platform to develop

implementations.

Contents

Abstract i

Acknowledgments ii

1 Introduction to Image Aggregation 1

2 Related Work 4
2.1 Syracuse University's Region Growing 4
2.2 California's Similarity Filtering 6
2.3 ESRI's 'eliminate and nibble' 7
2.4 University of Tennessee's Area Identification

3 The University of Montana's Aggregation Paradigm

4 Design Implementation Comparisons 14
4.1 Object Orientation 14
4.2 Row by Row (RBR) vs Area by Area (ABA) 15

5 Worst Case Analysis of ABA 27
5.1 ABA with Static Ordering (sABA) 27
5.2 ABA with Dynamic Ordering (dABA) 31
5.3 ABA with Sliding Threshold Band (tBABA) 34

6 Performance and Comparison Tests 35
6.1 Test Platform and Test Data 35
6.2 Performance Test Summary 36
6.3 Pixel Difference Comparisons 37
6.4 Pixel Similarity Comparisons 37

7 Conclusion 40

8 References 42

Appendix A Performance Test Results 43

Appendix B Pixel Difference Comparisons 49

Appendix C Pixel Similarity Comparisons 53

Appendix D Before and After Image Prints 59

iv

1 Introduction to Image Aggregation.

The analysis of remotely sensed, digital imagery is important

in many diverse applications, ranging from medical diagnosis to

ecosystems management. Satellite imagery has become particularly

important in ecosystem modeling. Data representing electromagnetic

reflectance of the earth's surface provides a way to analyze

information about large areas at relatively low cost. The

inventory and monitoring of land cover, existing vegetation cover,

wildlife habitat, and geomorphic change are just a few current

applications.

Remotely sensed imagery consists of datasets collected from

rectangular geographic areas called 'scenes'. Each dataset is in

the form of a grid of constituent cells or pixels that correspond

to approximately square areas on the ground. From a remote

platform, data indicating the reflectance measured from within

several electromagnetic (EM) bands are assigned to each

corresponding cell. A typical cell size, as used in the work here,

corresponds to a 30 meter square area on the ground. Other sizes,

both larger and smaller, are also common [10] .

Data can be collected from several different EM bands by more

complex sensors, then numerically combined to produce a single

value for each cell. Classification is a basic operation which

combines the raw sensor data for each cell along with other

information about the cell to determine a cell class member value.

Class membership is usually represented by a single integer drawn

from a fixed range, usually smaller than the original data range.

For example, 24 bits of raw data per cell can be classified into

1

an 8-bit value representing membership in one of up to 256 disjoint

sets. Classification may be directed by a problem domain

specialist, which is called supervised classification, or it may

directed automatically by the properties of the data itself, which

is called unsupervised classification. Once all cell values have

been classified, the rectangular collection of classified data

values is called an Image.

In this paper, we are concerned with processing that involves

classification of large datasets to produce large images. Large,

by today's standards, means images with more than 50 million 8 bit

pixels (e.g., a 7500 x 7500 grid). The large number of pixels in

such images forces us to look for higher level entities in the

image, which we call raster polygons or simply areas.

As a simple explanation of areas, consider assigning a unique

color (a false color, not the actual color) to each classified data

value in an image, then displaying the result on a graphics

monitor. Areas with the same color stand out as polygon shaped

regions. The goal in our analysis is to identify these areas, then

to refine the image to reduce the large numbers of single pixels or

areas smaller than some threshold size that are typically present.

Intuitively, areas represent contiguous collections of pixels

with common properties. In the application considered here, the

property of interest is land cover. Large images that contain a

myriad of small areas yield databases of impractical size, which

greatly complicates analysis and/or corresponding 'ground truthing'

of the dataset. Thus, in addition to simple classification, it is

also useful to transform large images with many small areas into

images with aggregated larger areas, thereby reducing the data

2

3

volume to an manageable level. Our work focuses on image

aggregation which is based on area size and other attributes. We

assume that a minimum mapping unit (MMU) defines the minimum

acceptable size of a remaining area. We explore aggregation rules

based on the 'similarity' between areas; we want to aggregate a

too-small area with the 'most similar' big-enough neighboring area.

The University of Montana Wildlife Spatial Analysis Laboratory is

concerned with applications in which aggregation governed by rules

that describe relationships between classified data values and

high-level entities. Such an approach treats aggregation as a

distinct process that follows classification, i.e., operating on

classified data values, not the originally sensed data values.

We describe in detail two designs for implementing

aggregation efficiently for large images. The designs are referred

to as row-by-row area bounded (RBR) and area-by-area (ABA) . We

examine one particular implementation of RBR and three

implementations of ABA: ABA with static ordering (sABA), ABA with

dynamic ordering (dABA), and ABA with a sliding threshold band

(tBABA). Prior to discussing these algorithms, we review other

similar types of aggregation processes that have been developed

elsewhere, then formally define the aggregation problem that we are

solving.

2 Related Work

2.1 Syracuse University's Region Growing

Researchers at Syracuse University have developed a technique

which they refer to as region growing [3]. Heterogenous regions,

composed of differing pixel values, are systematically grouped into

regions exhibiting greater homogeneity according to some

homogeneity function H(R). As illustrated in Figure 2.1, H(R) is

a boolean function that evaluates true when the region in question

exhibits a range between the minimum and maximum that does not

exceed a threshold value T.

Syracuse's region growing proceeds in two stages, the split

stage and the merge stage. The split stage is described as

follows: "At first, each pixel is considered a homogeneous square

region of size 1x1. Then every group of four adjacent pixels is

tested for homogeneity. If the homogeneity criterion is satisfied,

the four square regions are combined into one larger square region

of size 2x2. Next, every group of four adjacent square regions of

size 2x2 is tested for homogeneity. If the homogeneity criterion

is satisfied, the four square regions are combined into one larger

square region of 4x4, and so on... The split stage terminates when

the whole image is one square region size NxN, or when no more

square regions can be merged." [3]

The merge stage is described as: "The merge is achieved by

reformulating the region growing problem as a weighted, un-directed

graph problem, where the vertices of the graph represent the

regions in the image, and the edges represent the neighboring

relationship between these regions." [3] At each iteration in the

4

6 7 1 3

8 6 5 4

C
Q

8 5 5

7 8 6 6

/

\

true, if for till point pmrs and («7,S'a)
ll/Ĉ 'iiyi) - < 2'-

foist^ othcnvise.

M iq
6 7 1 3

8 *6 5 4

3 a S fi

7 8 6 G

S 6

6 7

B 6

8 8

1 c

(I))

Square regiojis: {a) al si art of llii; sptil S'îiije. (1>) nffcr lirsL ajid Jiiial split iteration

6 ^
6 6

3 ;

1 E

Ti-^(D

5 1
n-u H

5 (

E 6

lb)

5 7

? 6
8 ' S

•? g
) fi
6 é

(0

6 7
iq
1 3

4 8 *6 5
%

3 a S fi
7 9 6 G

ÙD

Rç.'sipns: (ei) iit of the îjiers^ (b) After first nicrfic llLTiiLionj (t) secourt
iUTîillu]];. (d) nfter third nnd Rnal i(fraiion

5

Region Growing: top, the homogeneity function;
middle, the split stage with a threshold of 3;
bottom, the merge stage. [3]

Figure 2 . 1

6

merge stage, a region merges with the neighbor that best satisfies

the homogeneity criterion. The merge stage continues as long as it

can select neighbors that satisfy the homogeneity criterion.

Region growing is essentially a form of unsupervised

classification that looks only to set individual pixel values. The

technique produces images that are very different than ours. It

doesn't derive the final image from the properties of homogeneous

areas containing only one class value, but instead uses

heterogenous regions containing many similar class values.

Syracuse has implemented a parallel algorithm to perform

region growing, running on Connection Machines CM-2 and CM-5. It

is difficult to compare region growing with our aggregation

technique. In the general case, H(R) is 0(n^2) where n is the

number of pixels in R. Every pixel in R must be compared to every

other. In our aggregation, the manipulation of comparable 'areas'

is 0(n).

2.2 California's Similarity Filtering

Another aggregation technique comes from California's

Department of Forestry [2], described as 'similarity filtering'.

This filtering technique involves passing a 3x3 'window' over each

pixel, and then determining the value of the central pixel as some

function of its eight neighbors. A wide range of selection

functions can be considered. Most easily understood is modal

filtering, illustrated in Figure 2.2, which chooses the most

numerous value in a 3x3 window as the value of the central pixel.

California's technique involves use of a more complex selection

7

Input Image

1 2 3

2 4 3

2 2 2

OUTPUT Image

1 2 3

2 2 3

2 2 2

Modal filtering: iVIove a window over every pixel, replacing
the center pixel with the most common neighbor

Figure 2.2

function designed to select the most similar neighbor.

Assuming a small filtering window which can be analyzed in

constant time, similarity filtering will be faster than our

aggregation technique that is based on areas, i.e. strictly 0(N^2)

where N is the dimension of a square image. However, as a pixel by

pixel operation similarity filtering suffers from area boundary

distortion that is common in all filtering techniques. It is

useful in some types of image enhancement, but not area formation.

2.3 ESRI's 'eliminate and nibble'

Two additional aggregation techniques that are commonly used

are ESRI's [1][6] 'eliminate' and 'nibble' functions. These are

operations implemented in the software package Arc/Info, and thus

are attractive because they are preprogrammed and relatively

inexpensive to perform. 'Eliminate' is a vector technique where

the small area to be eliminated is dissolved into the neighbor with

which it has the longest common border. 'Nibble' is a raster

8

technique where neighbor selection is computed point by point via

a minimum Euclidean distance applied to each point data value.

Neither technique performs aggregation directed by user-specified

similarity criterion. Neither technique supports automated

processing based on the concept of a minimum mapping unit, i.e. a

human operator must identify and eliminate/nibble all small areas

away one by one.

2.4 Tennessee's Area Identification

Work at The University of Tennessee [4] focuses on the same

sort of area identification we do, but does no aggregation. They

describe recursive and pseudo-recursive area identification using

a stack, building areas incrementally as they are encountered; this

is the same as the area identification method used in our RBR.

Most of the focus in [4] is on the implementation of a parallel

algorithm for area identification suitable to run on a Connection

Machine (CM-5). The performance results reported in [4] describe

relatively small artificially constructed images, so it isn't clear

how their approach performs in practice, with large images

containing a real mix of large and small areas.

3 Montana's Aggregation Paradigm

3.1 Image aggregation Overview

The starting point for our approach to aggregation is that

areas are identified in a classified image, each small area will be

moved in toto into a 'target' neighboring area, that this process

will start with the smallest areas, and continue until all the

areas in the image are as large as a specified threshold size that

defines the MMU (threshold + 1 = MMU). Thus the fundamental unit

of aggregation is an area composed of classified pixels, not a

filtering window.

Conceptually, the aggregation process can be described in four

steps :

1) input the original image, threshold size, and other
problem parameters;

2) identify all the areas in the image and partition into
disjoint sets containing to-be-merged areas (TBMs) and
the survivor areas (SURV);

3) process each TBM in a specified order, first identifying
the target neighbor (TN) that will receive the TBM's
pixels, and then effect the merge, which modifies the
image to delete the TBM and expand the TN;

4) output the final image which will contain only areas as
large or larger than the threshold.

To elaborate, consider aspects of this process in more detail.

3.2 Area Identification

In 'area identification', the word 'identify' is used loosely.

Identification must somehow record areas, but the extent to which

information is saved to facilitate future access to the area (e.g.

to read or change its pixel values, or lookup size and location)

9

can vary widely.

Identification must be based on pixels which have the same

data values as their 'neighboring pixels', but there are several

potential definitions of 'neighbor'. Here we use the 'NEWS'

definition of neighboring pixels, an acronym for North, East, West,

and South which in Figure 3.1, considers only orthogonally adjacent

pixels to be neighbors. Other definitions of neighboring pixels

such as those that include 'diagonal neighbors' are possible, but

are not used here.

The result of identification is the formulation of a set of

areas, each which includes only neighboring pixels of the same data

value. With 8-bit data, pixel values vary between 0 and 255.

However, there may be millions of areas, and each requires a unique

area identifier. Conceptually, identification can also imply

construction of a list (possibly ordered) of those identifiers

which reference an area descriptor that stores other attributes for

each area, and thus facilitates future lookup of the properties of

a given area.

3.3 Partitioning and ordering

Given area identification, partitioning into TBMs and SURVs

is simple. The user specifies an area threshold size that can be

used as the basis for partitioning; additional special cases, such

as designated 'no merge' data values can also be specified. Since

partitioning is based on size, it is natural (but not mandatory)

to save each area's size as it is identified.

The determination of proper merge ordering is a more complex

10

11

issue. Objectively, there is no 'right' or 'wrong' order. If

there is a correct order to merge the TBMs, it is application-

specific. TBMs could be merged randomly, from smallest to largest,

from largest to smallest, or ordered based on some other property.

Here we consider three different ordering schemes : arbitrary

ordering (order based on an algorithm-specific 'first encounter'),

smallest to largest with the size fixed during area identification

(static ordering), and smallest to largest with the size based on

current area size (dynamic reordering). Each produces different

resultant images.

3.4 TBM Mergers

Once an appropriate order is determined, we can address the

details of processing a particular TBM, i.e., we find its

appropriate TN, then effect the merge. A TBM will "have one or more

adjacent areas, so some function of the neighboring areas will be

used to select the TN. The merge itself can be accomplished by

modifying pixel values in an image, modifying an area descriptor,

or both. Figure 3.2 illustrates replacing the TBM's pixel's values

with the pixel value of the TN. Following processing of all TBMs,

the image may need to be reconstructed (i.e. if descriptors only

are changed), before the final aggregated image is output to disk.

Within this simple paradigm there are two additional subtle

aspects to consider. The aggregation process changes the size and

other attributes of areas as it progresses, e.g., each merger

increases the size of the TN. For orderings that are based on TBM

area attributes, this raises the question of exactly how/when the

12

order is computed. This is the distinction between static and

dynamic TBM ordering. In another special circumstance, when an

area is merged, one or more disjoint neighbors can have the same

data value as the TN. Following the merge, we can end up with two

neighboring areas that have the same data value, and thus could

also be merged. We refer to this as the cascade merge problem.

Figure 3.2 illustrates the cascade problem. There are two TNs with

a class value of 5; either or both of these could be merged with

the TBM. Other examples could have more than two candidate TNs.

Even with a specific application, the choice of merge order

and the treatment of how to handle cascades may be arbitrary, and

different choices may yield different final images. To achieve a

fully deterministic, implementation-independent result, many

choices must be made rigidly by convention. However, within the

constraints of the hardware platforms and the chosen algorithm,

seemingly arbitrary choices may be easy to implement in some

situations, and impossible in others.

The following is a list of conventions with which our

implementations and performance test comply:

1. We use the 'NEWS' definition of neighboring pixels, extended
to include both a pixel's neighbors and an area's neighbors.

2. We define areas greater or equal in size to the threshold as
survivors.

3 . We generally assume that merge order proceeds from smallest to
largest with ties being decided by lexicographic order, i.e.
the North-most-West-most point in the area. However, we also
consider variations on this theme in implementations that
reflect arbitrary ordering, static ordering based on original
size, and dynamic ordering based on current size.

4. We assume that no cascade processing is done, i.e., that
neighboring same-valued areas produced by a merger are left as
separate areas.

13

N

no yes no

yes X yes

no yes no

S

The NEWS définition of
a 'neighbor' to X

Figure 3.1

Image

The same group of areas
after a merge. The neighbor
most similar to the TBM had
an image value of 5.

knoge

&Teas before a merge

Figure 3.2

4.0 Design Implementation Comparisons

4.1 Object Orientation

To designs have emerged to implement the Area Aggregation

paradigm. The first was done by Ray Ford in 1993 [1], in a design

referred to as row-by-row area bounded (RBR) and the basis of a

number of implementations [1,6,8]. Subsequently, in 1996 a group

of Ford's students--myself and Dale Hamilton--produced an

alternative object oriented design and implementation which will be

referred to as area-by-area processing (ABA). In all studies of

aggregation for large imagery, it is obvious that internal memory

demands impose a real constraint on the implementation. Therefore,

the primary goal of both RBR and ABA designs is to minimize memory

utilization; a secondary goal is to achieve fast run times. Early

implementation of RBR demonstrated that is possible to process

large images (e.g. 8000x8000) on simple workstations; later

versions of RBR and ABA have dramatically reduced both memory and

time costs.

To highlight the similarities and differences between the two

designs, functional descriptions of the constituent objects can be

used as a basis of comparison.

RBR's objects: ABA's objects:
Image Image
AreaContainer
Area
AreaFinder
AreaMerger
Point
S imilarityTab1e
NoMergeTable
TargetSelect
PointSet
NeighborList

AreaContainer
Area
AreaFinder
AreaMerger
Point
SimilarityTable
NoMergeTable
TargetSelection
BitMap
PointQueue

Figure 4.1

14

15

4.2 RBR vs ABA Comparisons

The underlined objects in Figure 4.1 highlight the central

differences between the two designs. In both designs, a Point is

a column-row coordinate pair referencing a pixel in the Image.

RBR's PointSet is conceptually a collection of points that refer to

equal and adjacent values in the image. Each Area contains exactly

one PointSet. There are various ways that an implementation may

describe an Areas ' s Points, e.g. a list of points, or a list of

column runs as illustrated in Figure 4.2. Generally, complex

encodings allow large areas to be represented with relatively feu-

bytes of storage, however, such encodings can be cumbersome to

decode and encode when PointSets are merged. All existing versions

of RBR represent Pointsets as autonomous, explicit objects in some

manner.

1 2 3 4 Polygon defined by
value 2:

1 2 2 3 2 rowl: (i;2) (4>l)

2 3 2 2 2 rov/2: CIA

3 12 4 2 row3: Ç12) (AA)

4 2 2 4 7 row4:(l̂

column runs may save space for areas
wtth contiguous cdtmn pixels

The RBR represents PointSets as
column runs which can save space
in large areas.

Figure 4.2

16

As an alterative representation, ABA uses the Image itself to

avoid saving explicit pointsets. ABA's references are to actual

components of the image. The advantage to RBR's autonomy is that

PointSets may be discarded when they are no longer needed, as would

be the case when an Area becomes a survivor. ABA's pixel

collection resists autonomy because, in the Image, areas exhibit

mutual definition. For example, if one area's pixel value is

changed to that of its neighbor, this must change the size and

shape of one or more areas. Area representations can never be

discarded.

Another major difference between the two designs' objects is

the determination of an Area's neighbors. All versions of RBR

maintain a discrete object for each area called a NeighborList.

The NeighborList may be discarded when an area becomes a survivor,

but it must be kept 'current' in the course of other merges as long

as an area is smaller than the threshold. ABA determines an Area's

neighbors when needed, during merge target selection, by re

examining the TBM in the current image. During re-examination, ABA

uses a PointQueue to traverse the TBM, and a BitMap to ensure that

each pixel in the TBM is visited only once. Image values different

from the TBM's are considered as candidate for target neighbor.

Such a determination of neighbors is often referred to as 'on-

demand' processing, vs. the 'lookup' provided by an explicit

NeighborList.

The other objects in both designs have similar functionality,

and therefore are named the same, but because they are acting on

central objects which are fundamentally different, their

specifications vary slightly and their implementations vary

17

greatly.

The Image in both designs is similar; both view the image as

a byte matrix. The RBR approach is concerned with exploiting the

maximal amount of information available from each new row in order

to avoid having to store the whole image in memory at any time.

Thus, after reading a new row, RBR attempts to do significant Area

identification and possibly merging. Therefore, a basic behavior

of RBR's AreaFinder is to retrieve one row from the Image, then

process it before moving to the next row.

Early versions of ABA (sABA and dABA) read the entire Image

into memory, select a pixel value, and 'follow it around' to

identify an area, thus accessing the image randomly. However,

later versions incorporate some aspects similar to row-by-row

processing to avoid holding the entire Image in memory at once.

Both RBR and ABA designs can be adapted to process sequences of

rows representing horizontal 'bands' of the image as a group,

rather than single rows. While reading the image sequentially at

row R, only T+1 (threshold+1) rows below R are necessary to

identify TBM's and only T+1 rows above R are necessary to merge the

TBMs. Thus a relatively narrow band of the image needs to be in

memory at any one time. Band processing is in the RBR

implementations of Guo [6] and Ma [8] . Our implementation of this

threshold band method is referred to as tBABA.

In both designs. Area identification is accomplished by an

AreaFinder object, but implementations vary greatly. The RBR

design holds at least two rows from the image, scans the current

row one pixel at a time, left to right, and compares the current

pixel value to the values in the pixels to the left and above (in

18

the previous row) . Then one of four actions is taken, as

illustrated in Figure 4.3: 1) a new Area is created and the point

is added to the Area's PointSet; 2) the current point is added to

the Area (and PointSet) to the left; 3) the current Point is added

to the Area (and PointSet) above; 4) the left and above areas are

merged and the current point is added to the resultant area. The

status of an area is updated each time its size changes. At the

end of each row the set of bounded areas can be identified, where

a known area that has no pixels in the current row must be bounded.

Once an area is bounded, it can be determined to be a TBM or SURV,

and can be processed on-the-fly. Thus, by the time the last row

in the Image is processed, the area identification, and possibly

the merge, are complete.

ABA' S Area identification is completely different. After the

entire Image (or partial band) is read into memory, all bits

corresponding to pixels in a BitMap are initialized to ones. The

BitMap has the same dimensions as the Image. In the Image, an area

can be thought of as a graph, where neighboring pixels with the

same image value are considered to be neighbors or children (after

an order has been imposed on the graph) of a parent pixel (see

Figure 4.4). As such, an area's pixels can be traversed (visited)

as a graph using a breadth-first-traversal. Note that without

modification, the matrix representation of the Image is sufficient

to express a set of graphs. Neighboring pixels can be calculated

by simply adding or subtracting 1 from a given point's coordinates.

A PointQueue (a queue of points) is used to facilitate the breadth-

first-traversal, but explicit graphs based on pointers are not

needed (see Figure 4.5).

Design 1 Area idenTlfication.

With 2 rows in memory at once,
four possible action can occur:

1 1 1 1 c r e a t e n e w a r e a
2

1 1 1 add point to ieft area
•

1 2 1 add point to area above
1 2 — ^

1 2 add point to ieft area;
2 2 merge ieft area with

area above
RBR Area Identification

Figure 4.3

20

ABA scans the image in row-by-row, column-by-column order.

Upon finding a pixel which is marked 'unidentified' in the BitMap,

it traverses the Image's pixels in breadth first order, as

illustrated in Figure 4.6. As the traversal proceeds, when a pixel

is visited the corresponding bit in the BitMap is replaced with a

zero. Only the Northwest Point of the area and the area size are

stored as an Area attributes in the AreaContainer. The Northwest

point is used both as a unique area identifier and as a point of

reentry into the image for subsequent traversais. When the breadth

first traversal ends, ABA returns to the image to look for a new

area. When this scan finishes, the BitMap will contain all zeros

indicating that all areas have been identified.

During area identification in RBR, as each area is bounded it

is labeled as a TBM or SURV, then bin-sorted by size into T

(threshold) bins, labeled as a TBM or SURV. Thus, RBR needs no

explicit sort after area identification is completed. sABA's and

dABA's uses a binary heap to order TBMs with each identification

via insertion into the heap. ABA excludes survivors from the heap

because they are not needed in ABA's merge. tBABA bin-sorts TBM

Northwest Points into T binary heaps, with Northwest sort order

maintained in each heap.

After ordering, in either design, the AreaMerger object is

activated. The merge order depends on Area size and location.

Merging proceeds smallest to largest, and among areas with the same

size, the least Northwest coordinate in lexicographic order

determines sort order. Sort order is based on the original size of

an area in RBR and the static s ABA implementation; the dynamic dABA

implementation reinserts areas into the heap as the merge

21

progresses and area sizes change.

In the chosen order, for each TBM area, RBR uses its

NeighborList to examine the characteristics of its neighbors. By-

some function of similarity between neighboring Image values, a

merge target neighbor (TN) is chosen. The TBM contributes its

points to the TN and the TBM is deleted. However, before the merge

is complete, all the TBM's neighbor's NeighborLists must be

logically or physically updated to replace references to the TBM

with references to the TN. RBR's Image modification is

accomplished by using each area's PointSet to reconstitute the

image at the end of the whole merge process.

ABA similarly selects TBMs in specified order and uses a

similarity function, but selects candidate TN pixel values by

examining neighboring pixel values by doing a breadth-first-

traversal of the TBM in the current Image. As the traversal

progresses, the 'most similar' neighboring pixel value is saved.

The actual merge is accomplished by once again doing a breadth-

first-traversal of the TBM, to modify TBM pixels to their new

value. This process requires multiple passes through parts of the

image for each TBM (survivors are examined only once) , but does not

involve PointSet mergers, Neighborlist updates, nor Image

reconstitution because the image is modified directly.

In the dynamic reordering version dABA, when the first

traversal progresses, the size of the TBM is calculated. If the

TBM's original or previous size has not been changed, the TBM is

merged; otherwise, it is reinserted into the AreaContainer's heap

and merged later, when the TBM is re-encountered and exibits a

stable size.

22

1 1 2 3 3
1 2 2 2 2
3 2 4 2 5
3 2 2 2 5

Images can be viewed as

a cdlecHcn of graphs

(1.1) (3.1)

(1̂ (2,1) (32)

(4,1)

(5,1)

C22) (42)

(2,3) (52) (4A)

(24)

(4j3)

(4/4)

(3/4)

(1>3) (3,3) (5,3)

(U) (5/4)

Figure 4.4

23

12 3 4 5
Rosier Polygons con be Iraveised
In Breadth Rist Order
using a queue.

1
2
3

1 1 2 3 3
1 2 2 2 2
3 2 4 2 5
o o o o c

Rosier Polygons con be Iraveised
In Breadth Rist Order
using a queue.

4 3 2 2 2 5

(3,1)
Rist, seed ttie queue vtftlh o root.
Then repeatedly:
deque (visit) a pixel, and
enqueue aU ttie pixel's children.

C2̂ (4̂

(2̂) (6̂) (4,3)
i

<2̂

(3/4)
Queue
(3.1)

(3̂
t M (4;?)

t (4̂ dJS)
Î (2̂) (5JZ) (AJS>

t (5^(4^)02/4)
1 1 C24)(4^)(3^)

1 2 3 4 5 6 7 8 9 1 0
Using a queue to traverse the raster polygon formed by the image
value 2

Figure 4.5

24

tBABA interleaves area identification and area merging. A

moving memory resident band passes over the disk based image. At

a central row in the band, TBMs are identified and placed in the

AreaContainer. Then the merger immediately removes the size 1

areas and merges them, then one row back, size 2 areas are merged,

then 2 rows back, size 3 areas merged, etc. until T-1 rows back,

size T areas are merged. Then the band is advanced 1 row, and the

process is repeated. This process is illustrated in Figure 4.7.

In tBABA, when area identification sets bits in the last (T+1) row

of a BitBand (corresponding the Identification Band), such areas

are known to be a survivors. After the Image Band and BitBand are

advanced, these survivors are extended by examining the last two

rows in the Identification Band and setting the appropriate bits in

the last row of the BitBand. In this way, survivors are marked

identified and do not interfere with the identification of other

areas.

In both designs, actual TN selection depends on the

SimilarityTable, the NoMergeTable, and conceptually, the

TargetSelect objects. The SimilarityTable is a function of two

classified image values, which returns one real number that

represents the 'similarity.' The NoMergeTable is simply a way to

indicate that some class values should 'survive' no matter what

area size, i.e., a table indexed by Image values pairs that returns

a boolean value specifying whether or not to merge TBM with that

value. ABA and RBR encapsulate the TN selection logic in the

TargetSelect object.

25

ABA Area Identification. The image is scanned top to bottom, left
to right. Upon encountering an unmarked area, it is traversed in
breadth first order.

Figure 4.6

26

Image

step action

^ T merge size Ts

^ 3 merge size 3s
^ 2 merge size 2s
4- 1 merge size Is
^ 0 identify areas

merge T band Î
T+1

I

step action

^ T merge size Ts

^ 3 merge size 3s
^ 2 merge size 2s
4- 1 merge size Is
^ 0 identify areas

X L 1

step action

^ T merge size Ts

^ 3 merge size 3s
^ 2 merge size 2s
4- 1 merge size Is
^ 0 identify areas

/ ;

/ / identify T band
i /

T For each row,
perform the
steps listed above

tBABA's Image band moves across the image one row at a
time. At each row, area identification and subsequent,
ordered merging are done.

Figure 4.7

5.0 Worst Case Analysis of ABA

5.1 Worst Case Analysis of ABA with Static
Ordering (sABA), followed by a discussion of how
this applies In practice.

Given an image X with R rows and C columns, we use I=R*C as the

number of pixels, T as the threshold size, and A <= I as the number

of raster polygons. For simplicity we assume that an image

consists of 8-bit data values.

For a worst case space analysis we need to identify what

objects use significant memory, and what objects or parts of

objects must be resident at anytime. The space significant

objects and worst case estimate of their size in bytes are shown in

Table 5.1.

object space required

Image I
BitMapl 1/8
BitMap2 1/8
AreaContainer 6A
PointQueue max(R,C)*4

Table 5.1

In sABA, all these objects are coresident, and the total space

requirements is bounded by 51/4 + 6A + 4max(R,C) . Each TBM placed

in the AreaContainer requires 6 bytes, 4 bytes for its area

identifier and 2 bytes for its size. In a worse case each area is

of size 1, so that A=I. To simplify the analysis, assume that X is

square, so R=C=sqrt(I). Therefore, the worst case space

requirement is: 291/4 + 4sqrt(I). For large I, this is 7.5*1

bytes. In our experience with real images, A is usually less than

1/3. Thus, a useful rule to estimate the practical space

27

requirement is 51/4 + 61/3 + 4sqrt(I), or approximately 3.5*1

bytes.

The worst case time analysis is somewhat more difficult to

estimate due to the dynamics of the process. However, we can

consider the time to effect the aggregation as the sum of stages:

area identification, ordering, TBM merges, and Image I/O. Below,

we demonstrate that the worst case time complexity of these stages

is 0(1) + 0(1 log(I)) + 0(TI) + 0(1).

Part One: Worst Case Time for Area Identification.

The time to identify all the areas in an image is the total of time

to scan the image, plus the time to traverse all the areas. The

time to scan the image is simply I. The worst case is when every

area is of size 1. The time to traverse an area of size S pixels

is the time to read each pixel, enqueue and dequeue each point,

examine its 4 neighboring pixels, and the time to mark the bit map

as being traversed, respectively: IS + 2S + 4S + 2S = 91, which is

0(S). Thus the total time to traverse all areas is 0(1).

Part Two: Worst Case Time for Ordering.

The ordering stage is done by repeated heap insertions, known to be

Nlog(N). In worst case N=A where A<=I. Therefore, the worst case

ordering is 0(A log(A)) <= 0(1 log(I)).

Part Three : Worst Case Time for TBM Merges.

As a proof that the worst case for the merge stages is 0(TI),

consider that each merger increases a TN's size by at least 1.

Each survivor is the result of at most T mergers. Since there can

be at most I/T survivors, it takes at most (I/T)*T, or I, mergers

to bring all areas in an image to survivor size. For each merger.

28

29

an individual pixel can be referenced at most T times. Therefore,

the upper bound for the merge stage is 0(TI).

Part Four: The input and output stages are just file I/O, which is

0(1) .

The example shown in Figure 5.2 reveals the pattern of worst

case TBM merges. The image in the example is 3 columns wide and 4

rows deep, and the threshold is 6. The pixels are labeled a thru

1. The resultant image contains I/T or 2 survivors. In this

example, all TBMs are originally size 1. T mergers are needed to

bring the original areas to survivor size T. The total merge time

is the number of resultant survivors times the traversal time

forming each survivor with a series of T TBM mergers. Using sABA

the worst case to form a single survivor occurs when the TN of the

current merge becomes the TBM in the next merge which, in our

example, forces the sequence of traversais to occur that is

illustrated in Figure 5.2. From this example, it-follows that in

the general case, an individual survivor is formed by

pixel references.

A similar traversal would be made for all I/T survivors. The total

time to merge all the TBMs with sABA is I/T * T(T+1), or 0(TI).

Therefore, the worst case time analysis of the entire

aggregation is 0(1 log(I)) + 0(TI).

In practice, we can approximate this as 0(TI) for the

following reasons. Even though possible values of T can be less

than log(I), due to the constant costs in area traversal, the merge

stage dominates the aggregation process, taking about 4 times

30

longer. This reasoning is also supported by the benchmarking

results reported below, which indicate that all implementations are

very sensitive to threshold size, not just image size.

a b c Image

f e d

g h i

1 k j

traverse TBM .a to find tkf b, traversé a&aia to effect the merge?
traverse a,b to find *WI c, traverse again to merge;
traverse TBM a^b^c to find TN traverse again to merge;
traverse TBM a,to,c,d to find TN e, traverse again to merge;
traverjse TBM a,b,c^d.^e to find TN t, .traverse again, to merge;
traverse TBM a,b,c,d,e,f to form the survivor, traverse again
to reset, the Bitmap.

Figure 5,2

31

5.2 Worst Case Analysis of Area by Area with
Dynamic Reordering (dABA), followed by a
discussion of how this applies in practice.

Continuing with the sort of analysis introduced in Section 5.1, the

worst case space requirement for dynamic reordering is the same as

for static reordering, about 7.5*1 bytes.

For a worst case time analysis, the time for area

identification and ordering remain the same as sABA, 0(1) + 0(1

log(I)). However, the time required for TBM mergers is different

and more complex. The worst case is when TBM's, starting at size

1, are traversed and merged, then traversed again and reinserted

into the area heap because, during subsequent encounters, their

size has changed (this is the method used in dABA). This will

continue with size 2 areas, with size 4 areas, etc. until the TBM

becomes a survivor. Merging to area sizes other than 2'^n results

in faster, (not worst case) arrival at the survivor size. This

must be done for all I/T survivors.

As a proof that for dABA the merge stage is 0(1 log(I)),

consider that the time spent merging is the sum of time spent

referencing pixels plus the time spent reinserting areas back into

the binary heap. As with s ABA, it takes at most I mergers to bring

all size 1 areas to survivor size. With dABA every TBM is merged

into a TN that is at least as large as itself. So, any given pixel

can be referenced at most 31og(T) times. Therefore, the number of

pixel references is 0(1 log(T)). The number of reinsertions can be

no more than the number of mergers I. Each heap insertion is

0(log(I)). Therefore, in worst case, the merge stage is

32

0(1 log(T)) + 0(1 log(I)), or 0(1 log(I)); end of proof.

The example illustrated in Figure 5.3 reveals the worst case

pattern of TBM mergers. A single survivor is formed by the

following T-1 steps:

Step 1: traverse TBM a; traverse again to merge to b;
traverse TBM ab; reinsert in heap, traverse again to reset bitmap;

Step 2: traverse TBM c; traverse again to merge to d;
traverse TBM cd; reinsert in heap, traverse again to reset bitmap;

Step 3: traverse TBM e; traverse again to merge to f;
traverse TBM ef; reinsert in heap, traverse again to reset bitmap;

Step 4: traverse TBM g; traverse again to merge to h;
traverse TBM gh; reinsert in heap, traverse again to reset bitmap;

Step 5: traverse TBM ab; traverse again to merge to cd;
traverse TBM abed; reinsert in heap, traverse again to reset
bitmap;

Step 6: traverse TBM ef; traverse again to merge to gh;
traverse TBM efgh; reinsert in heap, traverse again to reset
bitmap;

Step 7; traverse TBM abed; traverse again to merge to efgh;
traverse TBM abcedfgh; recognize it as survivor; traverse again to
reset bitmap.

Image with size
l/T survivors

a b c d e f g l i

Figure 5.3

33

To reach survival size, the time spent on pixel references and

reinsertions into the heap must be considered. In the example, the

following summarizes the time spent merging as 'steps(pixel-

references+reinsertion)':

Step 1-4: 4*(6+log(I))
Step 5-6: 2*(12+log(I))
Step 7 : 1*(24+log(I))

In the general case, the time needed to merge T size 1 areas to

survival size is

log(r)-l , , , . .
I 2M3 +log(I)) ,
i=o

which simplifies to

3Tlog(r) +riog(I) -log(r) .

When multiplied by I/T survivors, the merge takes approximately

3Jlog(r) +Ilog(J)

The merge with dynamic reordering is therefore 0{Ilog(I)).

In practice, on average dABA performs slower for real images,

because the worst case for s ABA is contrived and not likely to

occur, whereas dABA's worst case reordering is closer to what

happens with real images.

34

5.3 Worst Case Analysis of Sliding ImageBand
(tBABA)

The worst case space requirements for tBABA are greatly reduced

compared to dABA and sABA. The significant objects and their

worst case space requirement are shown in Figure 5.4.

ImageBand C(2T+2)
BitBands C(2T+2)/8
AreaContainer 4CT (only Points are stored in T heaps)

Figure 5.4

The total space requirement is approximately 6*CT bytes.

The worst case time analysis follows dABA closely. Minor

differences are the time to order I areas into T heaps, which is

0(1 log(C)), and the time to shift 2(T+1) bands R times, which is

0(TR) . The total time required by tBABA is the sum of the time for

area-identification, initial ordering, band shifting, TBM mergers,

and reinsertions, or respectively

0(1) + 0(1 log(C)) + 0(TR) + 0(1 log(T)) + 0(1 log(C)),

or, assuming that TR<=I, 0(1 log(max(T,C))).

tBABA uses the same dynamic reordering as dABA. Therefore,

run times are expected to be comperable to dABA. Performance test

for small MMUs confirm that tBABA runs only slightly slower that

dABA.

6 Performance and Comparison Tests

6.1 Platform and Test Images

Performance and comparison tests were run an a IBM RS6000 43p

running at a clock speed of ISSMhz, with a 192 megabytes of

physical memory, and 512 megabytes of virtual memory. The

operating system was AIX 4.1.

Test images were chosen from a collection of Landsat Thematic

Mapper images used in vegetation cover analysis by the Wildlife

Spacial Analysis Laboratory. Specific images were selected to be

'complex' in terms of both the number of original areas and the

number of final areas. Test image names are p41r27.gis,

p41r29u.gis, and p33r28u.gis, containing the number of original

areas as approximately 13 million, 17 million, and 16 million

respectively. The dimensions of these images are (as rows x

columns), 7500x7890, 7520x7900, 6770x7136. Another test image was

constructed by combining three p33r28u.gis images, concatenated

horizontally, to produce an image having approximately 48 million

original areas and dimensions of 677 0x21408. A vertical

concatenation would not stress row oriented implementation such as

RBR/Ma.

Statistics were taken using the implementation of RBR created

by Ma [8] , along with my own s ABA, dABA, and tBABA implementations.

tBABA has not yet been optimized for speed with large MMUs, so only

partial results are reported for tBABA performance tests, i.e.,

comparisons with it were only made for T=22 (or MMU=23) .

Performance statistics were gathered from the 'gmon' program

which reports real execution time, machine execution time, space

35

utilization, and the number page faults generated. Complete

performance results are given in Appendices A, B, and C.

6.2 Performance Tests Summary

RBR/Ma, sABA, and dABA perform alike (about 15 minutes each,

clock time) on 60 megabyte images at low MMU's, i.e. 1-23 where 1

is the MMU of the original image and 23 is the MMU of the resultant

image. RBR/Ma produced runs that were a few minutes faster than

ABA in real time, but a few minutes slower in machine time. At

greater MMUs or wider images, the RBR/Ma implementation quickly

runs out of memory, but sABA and dABA continue to run. In fact,

the ABAs run a variety of MMU values, even on the test image 3

times larger than the real image. As image size increases, virtual

memory thrashing is seen in ratio of real time vs. machine time,

producing increased clock time penalties on machines with

relatively small physical memory.

As idicated by the tables in Appendix A, performance times for

RBR/Ma and sABA are approximately linear with the number of TBMs in

the input image. dABA shows a noticeable slowdown at large

threshold values, reflecting the sensitivity to 'T' discussed

above. For example, at an MMU of 1112, dABA takes 5 times longer

than sABA.

One technique that can facilitate processing for large MMUs is

to pipeline several runs with increasing MMUs, i.e. perform

aggregation processing of 1-1000 by a sequence of runs 1-23, 23-

100, 100-200, ..., 900-1000. With complex images, RBR/Ma needs at

least 3 runs to produce outputs with MMUs of 445. Though not

analyzed here, RBR/Ma's performance is much more influenced by the

36

37

number of TBM's for which descriptors must be maintained, and the

ratio of band size to threshold size. For RBR/Ma, at each stage

its run time increases while corresponding ABA run time decreases.

ABA'S run times were faster than RBR/Ma's by a factor of 8 for MMUs

of 445. Pipelining several ABA runs produced combined run times

similar to a single run to the same MMQ.

Although detailed testing has yet to be performed, the current

version of tBABA takes about 35 minutes on 60 megabyte images. It

uses very little space. Although possible, tBABA has not yet been

optimized for large MMUs as sABA and dABA have been.

6.3 Pixel Difference Comparisons

As the tables in Appendix B indicate, particularly with large

MMUs, slight differences in merge order and cascade handling can

produce very different final images. Images produced by the

various implementations at the same MMUs were compared pixel by

pixel. Pixel differences ranged between 20 percent with small

MMUs, to 66 percent with large MMUs. In terms of pixel

differences, RBR/Ma, sABA, dABA, and tBABA produced images almost

equally different. RBR/Ma compared slightly better to dABA. tBABA

compares best with dABA.

6.4 Pixel Similarity Comparisons

Processing an image with any one of the implementations

transforms each pixel value in the original image into a

corresponding pixel value in the resultant image. The similarity

38

of corresponding pixels, as defined by the similarity function, can

provide a measure of information lost from the original image

during aggregation. A pixel value transformed to one with great

similarity loses little information; a pixel value transformed to

one of less similarity loses more information.

Two resultant images can be compared by categorizing the

difference in information loss for each pixel via the similarity

difference. Rather than simply aggregating numerical differences,

we classify the differences in ranges to produce a frequency

distribution of pixel differences per category. This is

illustrated by the histogram in Figure 6.2. Although the

categories chosen are somewhat arbitrary, this technique offers a

potentially better means of comparison than numerical summation of

differences, particularly in cases where similarity values are not

uniformly spaced.

Pixel similarity comparisons are presented for MMUs 1-23 (the

smallest area in the original image is size 1, and the smallest in

the resultant image is size 23) in Appendix C to illustrate the

approach. However, we have yet to apply results from ground

truthing to this type of comparison, so it is premature to attempt

to draw conclusions from this data.

Another possible approach to image analysis using similarity

is to view the similarity function as a 'membership function' of a

fuzzy set [9] . Fuzzy set theory is sufficiently formalized to

provide many avenues of analysis that may be applicable to our work

here.

39

Similarity Table Histogram

1200 T~

QSeriesI

0 <0.1 <0.5 <1.0 <3.0 <5.0 >=5.0

category

Figure 6.1

no

Simlarity Comparisons Between 2 Images

80-â^S
70
60

30
20
10
0

0

H Series

80-â^S
70
60

30
20
10
0

0 <0.1 <0.5 <1.0 <3.0 <5.0

category

>=5.0

Figure 6.2

7 Conclusion

The objective of implementing ABA was to investigate

alternatives to RBR designs which reduce space, and possibly time,

requirements for large image aggregation. Both worst case space

analysis and performance testing reveals that tBABA implementations

can extend aggregation processing to 4 GigaByte images, even on

simple workstations. This improvement is due to the reduced space

required by the image band-processing, and the elimination of

explicit PointSets and NeighborLists. At the time of this writing,

tBABA has not been optimized for larger MMU's, so tBABA has only be

tested for small threshold values. When optimized, tBABA is

expected to run comparably to dABA with larger MMUs.

sABA and dABA extend the aggregation paradigm to images

three times larger/wider than typical (row-width bounded)

implementations of RBR can process. The breadth first traversal of

areas provides area manipulation that is fast enough to produce run

times as good as or better than RBR, without the overhead of

dynamically manipulating lots of complex internal structures. The

ABA approach extends easily to either static or dynamic ordering of

the merge sequence. All ABA versions are also relatively easy to

implement and do not maintain many complex internal structures,

which tend to be more difficult to design and implement than direct

image transformations.

With large MMU's and complex images, merge order has

significant effects on the output image. All four implementations

tested here produced final images that were different. It is easy

to simply count pixel differences between two results, but more

40

41

difficult to measure 'good' vs. 'bad' results. We have proposed

the frequency distribution of similarity differences as a possible

measure, but leave it to the application experts to assess its

effectiveness.

8 References

[1] Ford, Ray; Ma, Zhenkui; Redmond, Roland. 1993. Aggregation of
Image Classification Units for Mapping Large Areas, "Northwest
Arc/Info Users Conference."

[2] Koltun, John. 1993. Classifications of Satellite Imagery in
the Development of Wildlife Habitat Types, "Earth Observation
Magazine."

[3] Copty, Nawal; Ranka, Sanjay; Fox, Geoffrey; Shankar, Ravi.
1994. Solving the Region Growing Problem on the Connection
Marching, "NPAC Technical Report SCCS-397, Syracuse
University."

[4] Berry, Michael; Comiskey, Jane; Minser, Karen. 1993. Parallel
Cluster Analysis for Landscape Ecology Models, "Department of
Computer Science, University of Tennessee."

[5] Ford, Ray. 1994. Raster Image Aggregation in Ecosystem
Modeling, "Department of Computer Science, University of
Montana."

[6] Guo, Jin. 1993. An Object-oriented model with efficient
algorithms for Identifying and merging raster polygons,
"Masters Thesis, Department of Computer Science, University of
Montana."

[7] Ford, Ray. 1993. Automatic, Rule-Based Aggregation of
Classified Remotely Sensed Imagery, "Department of Computer
Science, Wildlife Spatial Analysis Laboratory, University of
Montana."

[8] Ma, Zhenkui, 1996. Object & Rule Based Merging Module Version
4.06, "Wildlife Spatial Analysis Lab, The University of
Montana."

[9] Gopal, Sucharila; Woodstock, Curtis; 1994. Theory and Methods
for Accuracy Assessment of Thematic Maps Using Fuzzy Sets;
"Photgrammetric Engineering & Remote Sensing, Vol. 60, No 2,
Feb. 1994 pl81-188. "

[10] Lillesand, Thomas M; Keifer, Ralph W; 1979. "Remote Sensing
and Image Interpretation."

42

Appendix A. Performance Test Results

Comparisons as reported by gmon between:
row-by-row area bound (RBR),
static ordering area-by-area (sABA),
dynamic ordering area-by-area (dABA), and
sliding threshold band area-by-area (tBABA).

MMU = 1-23
Real Time in seconds

4127 4129 3328

RBR 973 1350 1180
SABA 1403 1667 1477
dABA 1800 2272 1999
tBABA 2449 2093 1717

MMU = 1-23
Machine Time in seconds

4127

RBR 950
SABA 812
dABA 1214
tBABA 1486

4129 3328

1112 1161
903 858
1410 1350
1645 1546

MMU = 1-23
Space utilization

4127

RBR 15744
SABA 176780
dABA 17 6628
tBABA 4484

4129 3328

15804 15704
181856 177920
181400 177476
4476 4088

MMU = 1-23
Page faults

4127

RBR 54
SABA 26563
dABA 24180
tBABA 14496

1429 3328

20 2
37414 30291
38446 24656
14516 11807

43

44

Comparisons as reported by gmon between:

static ordering area-by-area (sABA), and
dynamic ordering area-by-area (dABA).

note: RBR requires more memory than is currently available

MMU = 1-445
Real Time in seconds

4127 4129 3328

sABA
dABA

2505
8116

3083
9176

2649
8834

MMU = 1-445
Machine Time in seconds

4127 4129 3328

sABA
dABA

1888
7982

2197
8249

2004
7787

MMU = 1-445
Space utilization

4127 4129 3328

sABA
dABA

177264
177812

182656
178960

180736
170780

MMU = 1-445
Page faults

4127 1429 3328

SABA
dABA

28763
27503

39208
41023

32427
34896

45

Comparisons as reported by gmon between:

static ordering area-by-area (sABA), and
dynamic ordering area-by-area (dABA).

note: RBR requires more memory than is currently available

MMU = 1-1112
Real Time in seconds

4127 4129 3328

SABA
dABA

3627
17624

4191
19356

3706
17727

MMU = 1-1112
Machine Time in seconds

4127 4129 3328

sABA
dABA

2946
16919

3458
18303

3121
17287

MMU = 1-1112
Space utilization

4127 4129 3328

sABA
dABA

177204
177748

179508
179564

180684
179660

MMU = 1-1112
Page faults

4127 1429 3328

SABA
dABA

31143
26622

38791
41045

33768
32022

Comparisons as reported by gmon between:
row-by-row area bound (RBR),
static ordering area-by-area (sABA), and
dynamic ordering area-by-area (dABA).

MMU = 23-223
Real Time in seconds

4127

RBR 2691
SABA 1142
dABA 1326

4129 3328

8542 9031
1290 1055
1310 1175

MMU = 23-223
Machine Time in seconds

4127

RBR 2646
sABA 63 6
dABA 775

4129 3328

8478 8970
656 625
808 787

MMU = 23-223
Space utilization

4127

RBR 131228
sABA 77060
dABA 77496

4129 3328

131292 130316
80776 64420
81232 64868

MMU = 23-223
Page faults

4127

RBR 124
sABA 18880
dABA 18903

1429 3328

158 69
18987 15418
19001 15341

Comparisons as reported by gmon between:
row-by-row area bound (RBR),
static ordering area-by-area (sABA), and
dynamic ordering area-by-area (dABA).

MMU = 23-445
Real Time in seconds

4127 4129 3328

RBR 6590 6078 6075
SABA 867 993 693
dABA 897 860 675

MMU = 23-445
Machine Time in seconds

4127

RBR 6481
SABA 353
dABA 357

4129 3328

5834 5575
357 307
362 314

MMU = 23-445
Space utilization

4127

RBR 176324
SABA 73728
dABA 73740

4129 3328

176772 175844
77148 60516
77160 60532

MMU = 23-445
Page faults

4127

RBR 14393
sABA 18559
dABA 18593

1429 3328

23021 22758
18706 15255
18682 15243

48

Large test image: three 33r28u.gis concatenated
horizontally:

SABA with MMU of 1112

real time : 23360 sec.
machine time : 5447 sec.
memory utilization: 182276
page faults : 838074

tBABA with MMU of 1-23

real time : 5733 sec.
machine time : 4724 sec.
memory utilization: 11364
page faults : 35475

Appendix B. Pixel Difference Comparisons

Percent Pixel Comparisons :
RBR vs sABA vs dABA

p41r27.gis

MMU = 1-23 sABA dABA
RBR 21.9 18.0
s ABA 19.5

MMU = 1-445 s ABA dABA
RBR * *
SABA 47 . 6

MMU = 1-1112 SABA dABA
RBR * *
SABA 51.4

p41r29u.gis

MMU = 1-23 sABA dABA
RBR 27.3 23.1
SABA 24.8

MMU = 1-445 s ABA dABA
RBR * *
SABA 47.0

MMU = 1112 sABA dABA
RBR * *
sABA 50.2

p33r2Bu.gis

MMU = 1-23 SABA dABA
RBR 34.4 29.3
s ABA 30.9

MMU = 1-445 sABA dABA
RBR * *
sABA 62.0

MMU = 1-1112 SABA dABA
RBR * *
sABA 66.0

* - not enough memory to run

4 9

Percent Pixel Comparisons :
RBR vs sABA vs dABA

p41r27.gis

MMU = 23-223
RBR
sABA

sABA dABA
36.5 36.0

25.6

p41r29u.gis

MMU = 23-223
RBR
sABA

sABA dABA
32.3 30.1

29.6

p33r28u.gis

MMU = 23-223
RBR
sABA

sABA dABA
41.8 39.2

38.1

p41r27.gis

MMU = 223-445 sABA dABA
RBR 41.2 40.9
sABA 27.7

p41r29u.gis

MMU = 223-445 sABA dABA
RBR 33.4 31.7
sABA 31.0

p33r28u.gis

MMU = 223-445
RBR
sABA

sABA dABA
43.5 41.3

40.3

51

Percent Pixel Difference Comparisons to tBABA at MMU = 23

p41r27.gis

RBR 18.1
SABA 19.7
dABA 6.5

p41r29u.gis

RBR 23.1
SABA 24.8
dABA 9.4

p33r28u.gis

RBR 29.4
SABA 31.0
dABA 12.3

Percent Pixel Difference Comparisons between
RBR 1-23 to dABA 23-445
and
RBR 1-23 to 23-223 to 233-445

p41r27 38.5
p41r29u 20.3
p33r28u 26.6

Appendix C. Pixel Similarity Comparisons

Tabular frequency distribution per category:

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.4w.img
file2 = /eis2/sjb/p41r27.1-23.5w.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category < = 0 47622521 80.477%
category <= 0 .1 448182 0.75738% 3 . 8795%
category < = 0 .5 1772467 2.9953% 15 .343%
category <= 1 1773764 2.9975% 15 .354%
category < = 3 4702293 7.9464% 40 .704%
category < = 5 2037392 3.443% 17 . 636%
category < = le+07 818381 1.383% 7 . 084%

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.zw.img
file2 = /eis2/sjb/p41r27.1-23.5w.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category <= 0 48515989 81.987%
category < = 0, .1 418518 0.70725% 3 . 9264%
category < = 0, .5 1609456 2.7198% 15 . 099%
category < = 1 1685589 2.8485% 15 . 814%
category <= 3 4476412 7.5647% 41 .997%
category < = 5 1830299 3.093% 17 . 171%
category < = le+07 638737 1.0794% 5. 9925%

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.4w.img
file2 = /eis2/sjb/p41r27.1-23.zw.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category <= 0 46246207 78.152%
category <= 0.1 498389 0.84223% 3.8549%
category <= 0.5 1952929 3.3003% 15.105%
category <= 1 2042121 3.451% 15.795%
category <= 3 5392448 9.1127% 41.709%
category <= 5 2230459 3.7693% 17.252%
category <= le+07 812447 1.373% 6.284%

53

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.zw.img
file2 = /eis2/sjb/p41r27.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category < = 0 48486515 81.938%
category < = 0 .1 421106 0.71163% 3. 9398%
category < = 0 .5 1622236 2.7414% 15 . 177%
category < = 1 1697604 2.8688% 15 .883%
category < = 3 4482838 7.5756% 41 . 941%
category < = 5 1816971 3.0705% 16 . 999%
category < = le+07 647730 1.0946% 6. 0601%

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.4w.img
file2 = /eis2/sjb/p41r27.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category <= 0 47516223
category <= 0.1 454814
category <= 0.5 1787864
category <= 1 1791514
category <= 3 4731197
category <= 5 2050165
category <= le+07 843223

80.298%
0.76859% 3.901%
3.0213% 15.335%
3.0275% 15.366%
7.9953% 40.581%
3.4646% 17.585%
1.425% 7.2325%

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis
filel = /eis2/sjb/p41r27.1-23.5w.img
file2 = /eis2/sjb/p41r27.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx
dimensions = 7890 columns by 7500 rows
total number of pixels = 59175000

category <=
category <=
category <=
category <=
category <=
category <=

0 55326239 93.496%
0.1
0.5
1
3
5

category <= le+07

180467 0.30497% 4.689%
678921 1.1473% 17.64%
636190 1.0751% 16.53%
1508823 2.5498% 39.203%
599452 1.013% 15.575%
244908 0.41387% 6.3633%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.4w.img
file2 = /eis3/sjb/p41r29u.1-23.5w.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7900 columns by 7520 rows
total number of pixels = 59408000

category <= 0 44680679 75.21%
category <= 0.1 143645 0.24179% 0. 97536%
category <= 0.5 889588 1.4974% 6. 0404%
category <= 1 931138 1.5674% 6. 3225%
category <= 3 3249591 5.47% 22 .065%
category <= 5 2323218 3.9106% 15 .775%
category <= le+07 7190141 12.103% 48 . 822%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.zw.img
file2 = /eis3/sjb/p41r29u.1-23.5w.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7900 columns by 7520 rows
total number of pixels = 59408000

category <= 0 45694676 76.917%
category <= 0.1 128640 0.21654% 0.93807%
category <= 0.5 773791
category <= 1 812998
category <= 3 2976817
category <= 5 2273936
category <= le+07 6747142

1.3025%
1.3685%

5.6426%
5.9285%

5.0108% 21.707%
3.8277% 16.582%
11.357% 49.201%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.4w.img
file2 = /eis3/sjb/p41r29u.1-23.zw.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7900 columns by 7520 rows
total number of pixels = 59408000

category <= 0 43162636 72.655%
category <= 0.1 146992 0.24743% 0. 90482
category <= 0.5 907677 1.5279% 5. 5873%
category <= 1 954689 1.607% 5. 8767%
category <= 3 3496789 5.8861% 21 . 525%
category <= 5 2694996 4.5364% 16 .589%
category <= le+07 8044221 13.541% 49 .517%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.zw.img
file2 = /eis3/sjb/p41r29u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7900 columns by 7520 rows
total number of pixels = 59408000

category <= 0 45675845 76.885%
category < = 0.1 128922 0.21701% 0. 93883%
category < = 0.5 773320 1.3017% 5. 6315%
category <= 1 810252 1.3639% 5. 9004%
category <= 3 2987275 5.0284% 21 .754%
category <= 5 2289342 3.8536% 16 . 671%
category < = le+07 6743044 11.35% 49 . 104%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.4w.img
file2 = /eis3/sjb/p41r29u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7 900 columns by 7 520 rows
total number of pixels = 59408000

category < - 0 44638550 75.139%
category < = 0 .1 143722 0.24192% 0. 9731%
category <= 0.5 888850 1.4962% 6. 0182%
category <= 1 933623 1.5715% 6. 3213%
category <= 3 3259991 5.4875% 22 . 073%
category <= 5 2329500 3.9212% 15 .772%
category <= le+07 7213764 12.143% 48 . 842%

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis
filel = /eis3/sjb/p41r29u.1-23.5w.img
file2 = /eis3/sjb/p41r29u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx
dimensions = 7900 columns by 7520 rows
total number of pixels = 59408000

category <= 0 53785892 90.536%
category <= 0.1 73318 0.12341% 1. 3041%
category <= 0.5 410306 0.69066% 7. 2981%
category <= 1 421300 0.70916% 7. 4936%
category <= 3 1364795 2.2973% 24 .276%
category <= 5 912971 1.5368% 16 .239%
category <= le+07 2439418 4.1062% 43 .39%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.4w.img
file2 = /eis4/sjb/p33r28u.1-23.5w.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 7136 columns by 6770 rows
total number of pixels = 48310720

category
category
category
category
category
category
category

<= 0

<= 0.1
<= 0.5
<= 1
<= 3
<= 5
<= le+07

33388271
150730
821530
1031804
3155459
2296472
7466454

69.112%
0.312%
1.7005%
2.1358%
6.5316%
4.7535%
15.455%

1.0101%
5.5053%
6.9144%
21.146%
15.389%
50.035%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.zw.img
file2 = /eis4/sjb/p33r28u.1-23.5w.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 7136 columns by 6770 rows
total number of pixels = 48310720
total-sim/total-pixels = 1.84735

category
category
category
category
category
category
category

<= 0

<= 0.1
<= 0.5
<= 1
<= 3
<= 5
<= le+07

34154504
131018
722233
932971
2948891
2293178
7127925

70.698%
0.2712%
1.495%
1.9312%
6.104%
4.7467%
14.754%

0.92552%
5.1019%
6.5905%
20.831%
16.199%
50.352%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.4w.img
file2 = /eis4/sjb/p33r28u.1-23.zw.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 713 6 columns by 6770 rows
total number of pixels = 48310720
total-sim/total-pixels = 2.19649

category <= 0 31669777 65.554%
category <= 0.1 149265 0.30897% 0. 89697
category <= 0.5 828773 1.7155% 4. 9803%
category <= 1 1074273 2.2237% 6. 4556%
category <= 3 3465399 7.1731% 20 . 825%
category <= 5 2693333 5.575% 16 .185%
category <= le+07 8429900 17.449% 50 . 658%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.zw.img
file2 = /eis2/sjb/p33r28u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 713 6 columns by 6770 rows
total number of pixels = 48310720
total-sim/total-pixels = 1.84204

category <= 0 34117740 70.621%
category <= 0.1 131592 0.27239% 0. 92716%
category <= 0.5 723607 1.4978% 5. 0983%
category- <= 1 938000 1.9416% 6. 6089%
category <= 3 2977800 6.1638% 20 . 981%
category <= 5 2307234 4.7758% 16 .256%
category < = le+07 7114747 14.727% 50 . 129%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.4w.img
file2 = /eis2/sjb/p33r28u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 713 6 columns by 6770 rows
total number of pixels = 48310720

category- < = 0 33313116 68 . 956%
category < = 0.1 152857 0. 3164% 1. 0192%
category <= 0.5 827863 1. 7136% 5. 52%
category < = 1 1035801 2 .144% 6. 9064%
category- <= 3 3168504 6. 5586% 21 . 127%
category <= 5 2308940 4. 7794% 15 .395%
category <= le+07 7503639 15 . 532% 50 . 032%

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis
filel = /eis4/sjb/p33r28u.1-23.5w.img
file2 = /eis2/sjb/p33r28u.1-23.82w.img
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx
dimensions = 7136 columns by 6770 rows
total number of pixels = 48310720

0 42368861 87.701%
0.1 79820 0.16522% 1.3434%
0.5 397958 0.82375% 6.6975%
1 483673 1.0012% 8.1401%
3 1394286 2.8861% 23.465%
5 944742 1.9556% 15.9%

category <= le+07 2641380 5.4675% 44.454%

category <=
category <=
category <=
category <=
category <=
category <=

	Aggregating raster polygons derived from large remotely sensed images
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1386343444.pdf.LyEfB

