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Bareness, Steven J, M.S., September 1995 Computer Science 

Aggregating Raster Polygons derived from Large Remotely Sensed 

Director: Dr. Ray Ford 

Remotely sensed satellite imagery produces rasters (also 
called grids or matrices) of numerical pixels (or cells). 
Rasters of raw data are typically processed to form images. 
As sensing technology has advanced, the available rasters have 
gotten larger and larger, e.g., containing more than 50 
million 8 bit pixels. Several types of transformation from 
raster to image are currently used in various applications, 
including a class of transformations that identify raster 
polygons (or areas) which represent spatial regions of similar 
characteristics, as designated by contiguous pixels with equal 
class values. An important operation in the formation of 
these images is the aggregation of small raster polygons into 
larger, adjacent ones. This operation is necessary because 
small areas may represent "noise", or because the scale of 
areas may provide information too detailed for analysis in the 
application domain. This paper examines the algorithmic 
properties of aggregation, as used in particular applications 
that create images representing large scale vegetation cover. 
The paper focuses on two object-oriented implementations which 
efficiently address the space and time complexity inherent in 
aggregating large images. Particular attention is given to a 
novel class of designs created by the author. 

Key words: image processing, raster polygon, object oriented 
design, merge. 
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1 Introduction to Image Aggregation. 

The analysis of remotely sensed, digital imagery is important 

in many diverse applications, ranging from medical diagnosis to 

ecosystems management. Satellite imagery has become particularly 

important in ecosystem modeling. Data representing electromagnetic 

reflectance of the earth's surface provides a way to analyze 

information about large areas at relatively low cost. The 

inventory and monitoring of land cover, existing vegetation cover, 

wildlife habitat, and geomorphic change are just a few current 

applications. 

Remotely sensed imagery consists of datasets collected from 

rectangular geographic areas called 'scenes'. Each dataset is in 

the form of a grid of constituent cells or pixels that correspond 

to approximately square areas on the ground. From a remote 

platform, data indicating the reflectance measured from within 

several electromagnetic (EM) bands are assigned to each 

corresponding cell. A typical cell size, as used in the work here, 

corresponds to a 30 meter square area on the ground. Other sizes, 

both larger and smaller, are also common [10] . 

Data can be collected from several different EM bands by more 

complex sensors, then numerically combined to produce a single 

value for each cell. Classification is a basic operation which 

combines the raw sensor data for each cell along with other 

information about the cell to determine a cell class member value. 

Class membership is usually represented by a single integer drawn 

from a fixed range, usually smaller than the original data range. 

For example, 24 bits of raw data per cell can be classified into 
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an 8-bit value representing membership in one of up to 256 disjoint 

sets. Classification may be directed by a problem domain 

specialist, which is called supervised classification, or it may 

directed automatically by the properties of the data itself, which 

is called unsupervised classification. Once all cell values have 

been classified, the rectangular collection of classified data 

values is called an Image. 

In this paper, we are concerned with processing that involves 

classification of large datasets to produce large images. Large, 

by today's standards, means images with more than 50 million 8 bit 

pixels (e.g., a 7500 x 7500 grid). The large number of pixels in 

such images forces us to look for higher level entities in the 

image, which we call raster polygons or simply areas. 

As a simple explanation of areas, consider assigning a unique 

color (a false color, not the actual color) to each classified data 

value in an image, then displaying the result on a graphics 

monitor. Areas with the same color stand out as polygon shaped 

regions. The goal in our analysis is to identify these areas, then 

to refine the image to reduce the large numbers of single pixels or 

areas smaller than some threshold size that are typically present. 

Intuitively, areas represent contiguous collections of pixels 

with common properties. In the application considered here, the 

property of interest is land cover. Large images that contain a 

myriad of small areas yield databases of impractical size, which 

greatly complicates analysis and/or corresponding 'ground truthing' 

of the dataset. Thus, in addition to simple classification, it is 

also useful to transform large images with many small areas into 

images with aggregated larger areas, thereby reducing the data 
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volume to an manageable level. Our work focuses on image 

aggregation which is based on area size and other attributes. We 

assume that a minimum mapping unit (MMU) defines the minimum 

acceptable size of a remaining area. We explore aggregation rules 

based on the 'similarity' between areas; we want to aggregate a 

too-small area with the 'most similar' big-enough neighboring area. 

The University of Montana Wildlife Spatial Analysis Laboratory is 

concerned with applications in which aggregation governed by rules 

that describe relationships between classified data values and 

high-level entities. Such an approach treats aggregation as a 

distinct process that follows classification, i.e., operating on 

classified data values, not the originally sensed data values. 

We describe in detail two designs for implementing 

aggregation efficiently for large images. The designs are referred 

to as row-by-row area bounded (RBR) and area-by-area (ABA) . We 

examine one particular implementation of RBR and three 

implementations of ABA: ABA with static ordering (sABA), ABA with 

dynamic ordering (dABA), and ABA with a sliding threshold band 

(tBABA). Prior to discussing these algorithms, we review other 

similar types of aggregation processes that have been developed 

elsewhere, then formally define the aggregation problem that we are 

solving. 



2 Related Work 

2.1 Syracuse University's Region Growing 

Researchers at Syracuse University have developed a technique 

which they refer to as region growing [3]. Heterogenous regions, 

composed of differing pixel values, are systematically grouped into 

regions exhibiting greater homogeneity according to some 

homogeneity function H(R). As illustrated in Figure 2.1, H(R) is 

a boolean function that evaluates true when the region in question 

exhibits a range between the minimum and maximum that does not 

exceed a threshold value T. 

Syracuse's region growing proceeds in two stages, the split 

stage and the merge stage. The split stage is described as 

follows: "At first, each pixel is considered a homogeneous square 

region of size 1x1. Then every group of four adjacent pixels is 

tested for homogeneity. If the homogeneity criterion is satisfied, 

the four square regions are combined into one larger square region 

of size 2x2. Next, every group of four adjacent square regions of 

size 2x2 is tested for homogeneity. If the homogeneity criterion 

is satisfied, the four square regions are combined into one larger 

square region of 4x4, and so on... The split stage terminates when 

the whole image is one square region size NxN, or when no more 

square regions can be merged." [3] 

The merge stage is described as: "The merge is achieved by 

reformulating the region growing problem as a weighted, un-directed 

graph problem, where the vertices of the graph represent the 

regions in the image, and the edges represent the neighboring 

relationship between these regions." [3] At each iteration in the 
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merge stage, a region merges with the neighbor that best satisfies 

the homogeneity criterion. The merge stage continues as long as it 

can select neighbors that satisfy the homogeneity criterion. 

Region growing is essentially a form of unsupervised 

classification that looks only to set individual pixel values. The 

technique produces images that are very different than ours. It 

doesn't derive the final image from the properties of homogeneous 

areas containing only one class value, but instead uses 

heterogenous regions containing many similar class values. 

Syracuse has implemented a parallel algorithm to perform 

region growing, running on Connection Machines CM-2 and CM-5. It 

is difficult to compare region growing with our aggregation 

technique. In the general case, H(R) is 0(n^2) where n is the 

number of pixels in R. Every pixel in R must be compared to every 

other. In our aggregation, the manipulation of comparable 'areas' 

is 0(n). 

2.2 California's Similarity Filtering 

Another aggregation technique comes from California's 

Department of Forestry [2], described as 'similarity filtering'. 

This filtering technique involves passing a 3x3 'window' over each 

pixel, and then determining the value of the central pixel as some 

function of its eight neighbors. A wide range of selection 

functions can be considered. Most easily understood is modal 

filtering, illustrated in Figure 2.2, which chooses the most 

numerous value in a 3x3 window as the value of the central pixel. 

California's technique involves use of a more complex selection 
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Input Image 

1  2  3  

2  4  3  
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OUTPUT Image 

1  2  3  

2  2  3  
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Modal filtering: iVIove a window over every pixel, replacing 
the center pixel with the most common neighbor 

Figure 2.2 

function designed to select the most similar neighbor. 

Assuming a small filtering window which can be analyzed in 

constant time, similarity filtering will be faster than our 

aggregation technique that is based on areas, i.e. strictly 0(N^2) 

where N is the dimension of a square image. However, as a pixel by 

pixel operation similarity filtering suffers from area boundary 

distortion that is common in all filtering techniques. It is 

useful in some types of image enhancement, but not area formation. 

2.3 ESRI's 'eliminate and nibble' 

Two additional aggregation techniques that are commonly used 

are ESRI's [1][6] 'eliminate' and 'nibble' functions. These are 

operations implemented in the software package Arc/Info, and thus 

are attractive because they are preprogrammed and relatively 

inexpensive to perform. 'Eliminate' is a vector technique where 

the small area to be eliminated is dissolved into the neighbor with 

which it has the longest common border. 'Nibble' is a raster 
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technique where neighbor selection is computed point by point via 

a minimum Euclidean distance applied to each point data value. 

Neither technique performs aggregation directed by user-specified 

similarity criterion. Neither technique supports automated 

processing based on the concept of a minimum mapping unit, i.e. a 

human operator must identify and eliminate/nibble all small areas 

away one by one. 

2.4 Tennessee's Area Identification 

Work at The University of Tennessee [4] focuses on the same 

sort of area identification we do, but does no aggregation. They 

describe recursive and pseudo-recursive area identification using 

a stack, building areas incrementally as they are encountered; this 

is the same as the area identification method used in our RBR. 

Most of the focus in [4] is on the implementation of a parallel 

algorithm for area identification suitable to run on a Connection 

Machine (CM-5). The performance results reported in [4] describe 

relatively small artificially constructed images, so it isn't clear 

how their approach performs in practice, with large images 

containing a real mix of large and small areas. 



3 Montana's Aggregation Paradigm 

3.1 Image aggregation Overview 

The starting point for our approach to aggregation is that 

areas are identified in a classified image, each small area will be 

moved in toto into a 'target' neighboring area, that this process 

will start with the smallest areas, and continue until all the 

areas in the image are as large as a specified threshold size that 

defines the MMU (threshold + 1 = MMU). Thus the fundamental unit 

of aggregation is an area composed of classified pixels, not a 

filtering window. 

Conceptually, the aggregation process can be described in four 

steps : 

1) input the original image, threshold size, and other 
problem parameters; 

2) identify all the areas in the image and partition into 
disjoint sets containing to-be-merged areas (TBMs) and 
the survivor areas (SURV); 

3) process each TBM in a specified order, first identifying 
the target neighbor (TN) that will receive the TBM's 
pixels, and then effect the merge, which modifies the 
image to delete the TBM and expand the TN; 

4) output the final image which will contain only areas as 
large or larger than the threshold. 

To elaborate, consider aspects of this process in more detail. 

3.2 Area Identification 

In 'area identification', the word 'identify' is used loosely. 

Identification must somehow record areas, but the extent to which 

information is saved to facilitate future access to the area (e.g. 

to read or change its pixel values, or lookup size and location) 
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can vary widely. 

Identification must be based on pixels which have the same 

data values as their 'neighboring pixels', but there are several 

potential definitions of 'neighbor'. Here we use the 'NEWS' 

definition of neighboring pixels, an acronym for North, East, West, 

and South which in Figure 3.1, considers only orthogonally adjacent 

pixels to be neighbors. Other definitions of neighboring pixels 

such as those that include 'diagonal neighbors' are possible, but 

are not used here. 

The result of identification is the formulation of a set of 

areas, each which includes only neighboring pixels of the same data 

value. With 8-bit data, pixel values vary between 0 and 255. 

However, there may be millions of areas, and each requires a unique 

area identifier. Conceptually, identification can also imply 

construction of a list (possibly ordered) of those identifiers 

which reference an area descriptor that stores other attributes for 

each area, and thus facilitates future lookup of the properties of 

a given area. 

3.3 Partitioning and ordering 

Given area identification, partitioning into TBMs and SURVs 

is simple. The user specifies an area threshold size that can be 

used as the basis for partitioning; additional special cases, such 

as designated 'no merge' data values can also be specified. Since 

partitioning is based on size, it is natural (but not mandatory) 

to save each area's size as it is identified. 

The determination of proper merge ordering is a more complex 

10 
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issue. Objectively, there is no 'right' or 'wrong' order. If 

there is a correct order to merge the TBMs, it is application-

specific. TBMs could be merged randomly, from smallest to largest, 

from largest to smallest, or ordered based on some other property. 

Here we consider three different ordering schemes : arbitrary 

ordering (order based on an algorithm-specific 'first encounter'), 

smallest to largest with the size fixed during area identification 

(static ordering), and smallest to largest with the size based on 

current area size (dynamic reordering). Each produces different 

resultant images. 

3.4 TBM Mergers 

Once an appropriate order is determined, we can address the 

details of processing a particular TBM, i.e., we find its 

appropriate TN, then effect the merge. A TBM will "have one or more 

adjacent areas, so some function of the neighboring areas will be 

used to select the TN. The merge itself can be accomplished by 

modifying pixel values in an image, modifying an area descriptor, 

or both. Figure 3.2 illustrates replacing the TBM's pixel's values 

with the pixel value of the TN. Following processing of all TBMs, 

the image may need to be reconstructed (i.e. if descriptors only 

are changed), before the final aggregated image is output to disk. 

Within this simple paradigm there are two additional subtle 

aspects to consider. The aggregation process changes the size and 

other attributes of areas as it progresses, e.g., each merger 

increases the size of the TN. For orderings that are based on TBM 

area attributes, this raises the question of exactly how/when the 
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order is computed. This is the distinction between static and 

dynamic TBM ordering. In another special circumstance, when an 

area is merged, one or more disjoint neighbors can have the same 

data value as the TN. Following the merge, we can end up with two 

neighboring areas that have the same data value, and thus could 

also be merged. We refer to this as the cascade merge problem. 

Figure 3.2 illustrates the cascade problem. There are two TNs with 

a class value of 5; either or both of these could be merged with 

the TBM. Other examples could have more than two candidate TNs. 

Even with a specific application, the choice of merge order 

and the treatment of how to handle cascades may be arbitrary, and 

different choices may yield different final images. To achieve a 

fully deterministic, implementation-independent result, many 

choices must be made rigidly by convention. However, within the 

constraints of the hardware platforms and the chosen algorithm, 

seemingly arbitrary choices may be easy to implement in some 

situations, and impossible in others. 

The following is a list of conventions with which our 

implementations and performance test comply: 

1. We use the 'NEWS' definition of neighboring pixels, extended 
to include both a pixel's neighbors and an area's neighbors. 

2. We define areas greater or equal in size to the threshold as 
survivors. 

3 . We generally assume that merge order proceeds from smallest to 
largest with ties being decided by lexicographic order, i.e. 
the North-most-West-most point in the area. However, we also 
consider variations on this theme in implementations that 
reflect arbitrary ordering, static ordering based on original 
size, and dynamic ordering based on current size. 

4. We assume that no cascade processing is done, i.e., that 
neighboring same-valued areas produced by a merger are left as 
separate areas. 
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4.0 Design Implementation Comparisons 

4.1 Object Orientation 

To designs have emerged to implement the Area Aggregation 

paradigm. The first was done by Ray Ford in 1993 [1], in a design 

referred to as row-by-row area bounded (RBR) and the basis of a 

number of implementations [1,6,8]. Subsequently, in 1996 a group 

of Ford's students--myself and Dale Hamilton--produced an 

alternative object oriented design and implementation which will be 

referred to as area-by-area processing (ABA). In all studies of 

aggregation for large imagery, it is obvious that internal memory 

demands impose a real constraint on the implementation. Therefore, 

the primary goal of both RBR and ABA designs is to minimize memory 

utilization; a secondary goal is to achieve fast run times. Early 

implementation of RBR demonstrated that is possible to process 

large images (e.g. 8000x8000) on simple workstations; later 

versions of RBR and ABA have dramatically reduced both memory and 

time costs. 

To highlight the similarities and differences between the two 

designs, functional descriptions of the constituent objects can be 

used as a basis of comparison. 

RBR's objects: ABA's objects: 
Image Image 
AreaContainer 
Area 
AreaFinder 
AreaMerger 
Point 
S imilarityTab1e 
NoMergeTable 
TargetSelect 
PointSet 
NeighborList 

AreaContainer 
Area 
AreaFinder 
AreaMerger 
Point 
SimilarityTable 
NoMergeTable 
TargetSelection 
BitMap 
PointQueue 

Figure 4.1 
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4.2 RBR vs ABA Comparisons 

The underlined objects in Figure 4.1 highlight the central 

differences between the two designs. In both designs, a Point is 

a column-row coordinate pair referencing a pixel in the Image. 

RBR's PointSet is conceptually a collection of points that refer to 

equal and adjacent values in the image. Each Area contains exactly 

one PointSet. There are various ways that an implementation may 

describe an Areas ' s Points, e.g. a list of points, or a list of 

column runs as illustrated in Figure 4.2. Generally, complex 

encodings allow large areas to be represented with relatively feu-

bytes of storage, however, such encodings can be cumbersome to 

decode and encode when PointSets are merged. All existing versions 

of RBR represent Pointsets as autonomous, explicit objects in some 

manner. 

1 2  3  4  Polygon defined by 
value 2: 

1 2 2 3 2 rowl: (i;2) (4>l) 

2 3 2 2 2 rov/2: CIA 

3 12 4 2 row3: Ç12) (AA) 

4 2 2 4 7 row4:(l̂  

column runs may save space for areas 
wtth contiguous cdtmn pixels 

The RBR represents PointSets as 
column runs which can save space 
in large areas. 

Figure 4.2 
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As an alterative representation, ABA uses the Image itself to 

avoid saving explicit pointsets. ABA's references are to actual 

components of the image. The advantage to RBR's autonomy is that 

PointSets may be discarded when they are no longer needed, as would 

be the case when an Area becomes a survivor. ABA's pixel 

collection resists autonomy because, in the Image, areas exhibit 

mutual definition. For example, if one area's pixel value is 

changed to that of its neighbor, this must change the size and 

shape of one or more areas. Area representations can never be 

discarded. 

Another major difference between the two designs' objects is 

the determination of an Area's neighbors. All versions of RBR 

maintain a discrete object for each area called a NeighborList. 

The NeighborList may be discarded when an area becomes a survivor, 

but it must be kept 'current' in the course of other merges as long 

as an area is smaller than the threshold. ABA determines an Area's 

neighbors when needed, during merge target selection, by re

examining the TBM in the current image. During re-examination, ABA 

uses a PointQueue to traverse the TBM, and a BitMap to ensure that 

each pixel in the TBM is visited only once. Image values different 

from the TBM's are considered as candidate for target neighbor. 

Such a determination of neighbors is often referred to as 'on-

demand' processing, vs. the 'lookup' provided by an explicit 

NeighborList. 

The other objects in both designs have similar functionality, 

and therefore are named the same, but because they are acting on 

central objects which are fundamentally different, their 

specifications vary slightly and their implementations vary 
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greatly. 

The Image in both designs is similar; both view the image as 

a byte matrix. The RBR approach is concerned with exploiting the 

maximal amount of information available from each new row in order 

to avoid having to store the whole image in memory at any time. 

Thus, after reading a new row, RBR attempts to do significant Area 

identification and possibly merging. Therefore, a basic behavior 

of RBR's AreaFinder is to retrieve one row from the Image, then 

process it before moving to the next row. 

Early versions of ABA (sABA and dABA) read the entire Image 

into memory, select a pixel value, and 'follow it around' to 

identify an area, thus accessing the image randomly. However, 

later versions incorporate some aspects similar to row-by-row 

processing to avoid holding the entire Image in memory at once. 

Both RBR and ABA designs can be adapted to process sequences of 

rows representing horizontal 'bands' of the image as a group, 

rather than single rows. While reading the image sequentially at 

row R, only T+1 ( threshold+1 ) rows below R are necessary to 

identify TBM's and only T+1 rows above R are necessary to merge the 

TBMs. Thus a relatively narrow band of the image needs to be in 

memory at any one time. Band processing is in the RBR 

implementations of Guo [6] and Ma [8] . Our implementation of this 

threshold band method is referred to as tBABA. 

In both designs. Area identification is accomplished by an 

AreaFinder object, but implementations vary greatly. The RBR 

design holds at least two rows from the image, scans the current 

row one pixel at a time, left to right, and compares the current 

pixel value to the values in the pixels to the left and above (in 
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the previous row) . Then one of four actions is taken, as 

illustrated in Figure 4.3: 1) a new Area is created and the point 

is added to the Area's PointSet; 2) the current point is added to 

the Area (and PointSet) to the left; 3) the current Point is added 

to the Area (and PointSet) above; 4) the left and above areas are 

merged and the current point is added to the resultant area. The 

status of an area is updated each time its size changes. At the 

end of each row the set of bounded areas can be identified, where 

a known area that has no pixels in the current row must be bounded. 

Once an area is bounded, it can be determined to be a TBM or SURV, 

and can be processed on-the-fly. Thus, by the time the last row 

in the Image is processed, the area identification, and possibly 

the merge, are complete. 

ABA' S  Area identification is completely different. After the 

entire Image (or partial band) is read into memory, all bits 

corresponding to pixels in a BitMap are initialized to ones. The 

BitMap has the same dimensions as the Image. In the Image, an area 

can be thought of as a graph, where neighboring pixels with the 

same image value are considered to be neighbors or children (after 

an order has been imposed on the graph) of a parent pixel (see 

Figure 4.4). As such, an area's pixels can be traversed (visited) 

as a graph using a breadth-first-traversal. Note that without 

modification, the matrix representation of the Image is sufficient 

to express a set of graphs. Neighboring pixels can be calculated 

by simply adding or subtracting 1 from a given point's coordinates. 

A PointQueue (a queue of points) is used to facilitate the breadth-

first-traversal, but explicit graphs based on pointers are not 

needed (see Figure 4.5). 



Design 1 Area idenTlfication. 

With 2 rows in memory at once, 
four possible action can occur: 

1 1 1 1  c r e a t e  n e w  a r e a  
2 

1 1 1 add point to ieft area 
• 

1 2 1 add point to area above 
1 2  — ^  

1 2 add point to ieft area; 
2 2 merge ieft area with 

area above 
RBR Area Identification 

Figure 4.3 
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ABA scans the image in row-by-row, column-by-column order. 

Upon finding a pixel which is marked 'unidentified' in the BitMap, 

it traverses the Image's pixels in breadth first order, as 

illustrated in Figure 4.6. As the traversal proceeds, when a pixel 

is visited the corresponding bit in the BitMap is replaced with a 

zero. Only the Northwest Point of the area and the area size are 

stored as an Area attributes in the AreaContainer. The Northwest 

point is used both as a unique area identifier and as a point of 

reentry into the image for subsequent traversais. When the breadth 

first traversal ends, ABA returns to the image to look for a new 

area. When this scan finishes, the BitMap will contain all zeros 

indicating that all areas have been identified. 

During area identification in RBR, as each area is bounded it 

is labeled as a TBM or SURV, then bin-sorted by size into T 

(threshold) bins, labeled as a TBM or SURV. Thus, RBR needs no 

explicit sort after area identification is completed. sABA's and 

dABA's uses a binary heap to order TBMs with each identification 

via insertion into the heap. ABA excludes survivors from the heap 

because they are not needed in ABA's merge. tBABA bin-sorts TBM 

Northwest Points into T binary heaps, with Northwest sort order 

maintained in each heap. 

After ordering, in either design, the AreaMerger object is 

activated. The merge order depends on Area size and location. 

Merging proceeds smallest to largest, and among areas with the same 

size, the least Northwest coordinate in lexicographic order 

determines sort order. Sort order is based on the original size of 

an area in RBR and the static s ABA implementation; the dynamic dABA 

implementation reinserts areas into the heap as the merge 
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progresses and area sizes change. 

In the chosen order, for each TBM area, RBR uses its 

NeighborList to examine the characteristics of its neighbors. By-

some function of similarity between neighboring Image values, a 

merge target neighbor (TN) is chosen. The TBM contributes its 

points to the TN and the TBM is deleted. However, before the merge 

is complete, all the TBM's neighbor's NeighborLists must be 

logically or physically updated to replace references to the TBM 

with references to the TN. RBR's Image modification is 

accomplished by using each area's PointSet to reconstitute the 

image at the end of the whole merge process. 

ABA similarly selects TBMs in specified order and uses a 

similarity function, but selects candidate TN pixel values by 

examining neighboring pixel values by doing a breadth-first-

traversal of the TBM in the current Image. As the traversal 

progresses, the 'most similar' neighboring pixel value is saved. 

The actual merge is accomplished by once again doing a breadth-

first-traversal of the TBM, to modify TBM pixels to their new 

value. This process requires multiple passes through parts of the 

image for each TBM (survivors are examined only once) , but does not 

involve PointSet mergers, Neighborlist updates, nor Image 

reconstitution because the image is modified directly. 

In the dynamic reordering version dABA, when the first 

traversal progresses, the size of the TBM is calculated. If the 

TBM's original or previous size has not been changed, the TBM is 

merged; otherwise, it is reinserted into the AreaContainer's heap 

and merged later, when the TBM is re-encountered and exibits a 

stable size. 
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Figure 4.4 
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Figure 4.5 
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tBABA interleaves area identification and area merging. A 

moving memory resident band passes over the disk based image. At 

a central row in the band, TBMs are identified and placed in the 

AreaContainer. Then the merger immediately removes the size 1 

areas and merges them, then one row back, size 2 areas are merged, 

then 2 rows back, size 3 areas merged, etc. until T-1 rows back, 

size T areas are merged. Then the band is advanced 1 row, and the 

process is repeated. This process is illustrated in Figure 4.7. 

In tBABA, when area identification sets bits in the last (T+1) row 

of a BitBand (corresponding the Identification Band), such areas 

are known to be a survivors. After the Image Band and BitBand are 

advanced, these survivors are extended by examining the last two 

rows in the Identification Band and setting the appropriate bits in 

the last row of the BitBand. In this way, survivors are marked 

identified and do not interfere with the identification of other 

areas. 

In both designs, actual TN selection depends on the 

SimilarityTable, the NoMergeTable, and conceptually, the 

TargetSelect objects. The SimilarityTable is a function of two 

classified image values, which returns one real number that 

represents the 'similarity.' The NoMergeTable is simply a way to 

indicate that some class values should 'survive' no matter what 

area size, i.e., a table indexed by Image values pairs that returns 

a boolean value specifying whether or not to merge TBM with that 

value. ABA and RBR encapsulate the TN selection logic in the 

TargetSelect object. 
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ABA Area Identification. The image is scanned top to bottom, left 
to right. Upon encountering an unmarked area, it is traversed in 
breadth first order. 

Figure 4.6 
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I 
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^ 2 merge size 2s 
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X L 1 
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^ T merge size Ts 
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perform the 
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tBABA's Image band moves across the image one row at a 
time. At each row, area identification and subsequent, 
ordered merging are done. 

Figure 4.7 



5.0 Worst Case Analysis of ABA 

5.1 Worst Case Analysis of ABA with Static 
Ordering (sABA), followed by a discussion of how 
this applies In practice. 

Given an image X with R rows and C columns, we use I=R*C as the 

number of pixels, T as the threshold size, and A <= I as the number 

of raster polygons. For simplicity we assume that an image 

consists of 8-bit data values. 

For a worst case space analysis we need to identify what 

objects use significant memory, and what objects or parts of 

objects must be resident at anytime. The space significant 

objects and worst case estimate of their size in bytes are shown in 

Table 5.1. 

object space required 

Image I 
BitMapl 1/8 
BitMap2 1/8 
AreaContainer 6A 
PointQueue max(R,C)*4 

Table 5.1 

In sABA, all these objects are coresident, and the total space 

requirements is bounded by 51/4 + 6A + 4max(R,C) . Each TBM placed 

in the AreaContainer requires 6 bytes, 4 bytes for its area 

identifier and 2 bytes for its size. In a worse case each area is 

of size 1, so that A=I. To simplify the analysis, assume that X is 

square, so R=C=sqrt(I). Therefore, the worst case space 

requirement is: 291/4 + 4sqrt(I). For large I, this is 7.5*1 

bytes. In our experience with real images, A is usually less than 

1/3. Thus, a useful rule to estimate the practical space 
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requirement is 51/4 + 61/3 + 4sqrt(I), or approximately 3.5*1 

bytes. 

The worst case time analysis is somewhat more difficult to 

estimate due to the dynamics of the process. However, we can 

consider the time to effect the aggregation as the sum of stages: 

area identification, ordering, TBM merges, and Image I/O. Below, 

we demonstrate that the worst case time complexity of these stages 

is 0(1) + 0(1 log(I)) + 0(TI) + 0(1). 

Part One: Worst Case Time for Area Identification. 

The time to identify all the areas in an image is the total of time 

to scan the image, plus the time to traverse all the areas. The 

time to scan the image is simply I. The worst case is when every 

area is of size 1. The time to traverse an area of size S pixels 

is the time to read each pixel, enqueue and dequeue each point, 

examine its 4 neighboring pixels, and the time to mark the bit map 

as being traversed, respectively: IS + 2S + 4S + 2S = 91, which is 

0(S). Thus the total time to traverse all areas is 0(1). 

Part Two: Worst Case Time for Ordering. 

The ordering stage is done by repeated heap insertions, known to be 

Nlog(N). In worst case N=A where A<=I. Therefore, the worst case 

ordering is 0(A log(A)) <= 0(1 log(I)). 

Part Three : Worst Case Time for TBM Merges. 

As a proof that the worst case for the merge stages is 0(TI), 

consider that each merger increases a TN's size by at least 1. 

Each survivor is the result of at most T mergers. Since there can 

be at most I/T survivors, it takes at most (I/T)*T, or I, mergers 

to bring all areas in an image to survivor size. For each merger. 
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an individual pixel can be referenced at most T times. Therefore, 

the upper bound for the merge stage is 0(TI). 

Part Four: The input and output stages are just file I/O, which is 

0(1) . 

The example shown in Figure 5.2 reveals the pattern of worst 

case TBM merges. The image in the example is 3 columns wide and 4 

rows deep, and the threshold is 6. The pixels are labeled a thru 

1. The resultant image contains I/T or 2 survivors. In this 

example, all TBMs are originally size 1. T mergers are needed to 

bring the original areas to survivor size T. The total merge time 

is the number of resultant survivors times the traversal time 

forming each survivor with a series of T TBM mergers. Using sABA 

the worst case to form a single survivor occurs when the TN of the 

current merge becomes the TBM in the next merge which, in our 

example, forces the sequence of traversais to occur that is 

illustrated in Figure 5.2. From this example, it-follows that in 

the general case, an individual survivor is formed by 

pixel references. 

A similar traversal would be made for all I/T survivors. The total 

time to merge all the TBMs with sABA is I/T * T(T+1), or 0(TI). 

Therefore, the worst case time analysis of the entire 

aggregation is 0(1 log(I)) + 0(TI). 

In practice, we can approximate this as 0(TI) for the 

following reasons. Even though possible values of T can be less 

than log(I), due to the constant costs in area traversal, the merge 

stage dominates the aggregation process, taking about 4 times 
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longer. This reasoning is also supported by the benchmarking 

results reported below, which indicate that all implementations are 

very sensitive to threshold size, not just image size. 

a b c  Image 

f e d  

g h i 

1 k j 

traverse TBM .a to find tkf b, traversé a&aia to effect the merge? 
traverse a,b to find *WI c, traverse again to merge; 
traverse TBM a^b^c to find TN traverse again to merge; 
traverse TBM a,to,c,d to find TN e, traverse again to merge; 
traverjse TBM a,b,c^d.^e to find TN t, .traverse again, to merge; 
traverse TBM a,b,c,d,e,f to form the survivor, traverse again 
to reset, the Bitmap. 

Figure 5,2 
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5.2 Worst Case Analysis of Area by Area with 
Dynamic Reordering (dABA), followed by a 
discussion of how this applies in practice. 

Continuing with the sort of analysis introduced in Section 5.1, the 

worst case space requirement for dynamic reordering is the same as 

for static reordering, about 7.5*1 bytes. 

For a worst case time analysis, the time for area 

identification and ordering remain the same as sABA, 0(1) + 0(1 

log(I)). However, the time required for TBM mergers is different 

and more complex. The worst case is when TBM's, starting at size 

1, are traversed and merged, then traversed again and reinserted 

into the area heap because, during subsequent encounters, their 

size has changed (this is the method used in dABA). This will 

continue with size 2 areas, with size 4 areas, etc. until the TBM 

becomes a survivor. Merging to area sizes other than 2'^n results 

in faster, (not worst case) arrival at the survivor size. This 

must be done for all I/T survivors. 

As a proof that for dABA the merge stage is 0(1 log(I)), 

consider that the time spent merging is the sum of time spent 

referencing pixels plus the time spent reinserting areas back into 

the binary heap. As with s ABA, it takes at most I mergers to bring 

all size 1 areas to survivor size. With dABA every TBM is merged 

into a TN that is at least as large as itself. So, any given pixel 

can be referenced at most 31og(T) times. Therefore, the number of 

pixel references is 0(1 log(T)). The number of reinsertions can be 

no more than the number of mergers I. Each heap insertion is 

0(log(I)). Therefore, in worst case, the merge stage is 
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0(1 log(T)) + 0(1 log(I)), or 0(1 log(I)); end of proof. 

The example illustrated in Figure 5.3 reveals the worst case 

pattern of TBM mergers. A single survivor is formed by the 

following T-1 steps: 

Step 1: traverse TBM a; traverse again to merge to b; 
traverse TBM ab; reinsert in heap, traverse again to reset bitmap; 

Step 2: traverse TBM c; traverse again to merge to d; 
traverse TBM cd; reinsert in heap, traverse again to reset bitmap; 

Step 3: traverse TBM e; traverse again to merge to f; 
traverse TBM ef; reinsert in heap, traverse again to reset bitmap; 

Step 4: traverse TBM g; traverse again to merge to h; 
traverse TBM gh; reinsert in heap, traverse again to reset bitmap; 

Step 5: traverse TBM ab; traverse again to merge to cd; 
traverse TBM abed; reinsert in heap, traverse again to reset 
bitmap; 

Step 6: traverse TBM ef; traverse again to merge to gh; 
traverse TBM efgh; reinsert in heap, traverse again to reset 
bitmap; 

Step 7; traverse TBM abed; traverse again to merge to efgh; 
traverse TBM abcedfgh; recognize it as survivor; traverse again to 
reset bitmap. 

Image with size 
l/T survivors 

a b c d e f g l i  

Figure 5.3 
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To reach survival size, the time spent on pixel references and 

reinsertions into the heap must be considered. In the example, the 

following summarizes the time spent merging as 'steps(pixel-

references+reinsertion)': 

Step 1-4: 4*(6+log(I)) 
Step 5-6: 2*(12+log(I)) 
Step 7 : 1*(24+log(I)) 

In the general case, the time needed to merge T size 1 areas to 

survival size is 

log(r)-l , , , . . 
I 2M3 +log(I) ) , 
i=o 

which simplifies to 

3Tlog(r) +riog(I) -log(r) . 

When multiplied by I/T survivors, the merge takes approximately 

3Jlog(r) +Ilog(J) 

The merge with dynamic reordering is therefore 0{Ilog(I)). 

In practice, on average dABA performs slower for real images, 

because the worst case for s ABA is contrived and not likely to 

occur, whereas dABA's worst case reordering is closer to what 

happens with real images. 
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5.3 Worst Case Analysis of Sliding ImageBand 
(tBABA) 

The worst case space requirements for tBABA are greatly reduced 

compared to dABA and sABA. The significant objects and their 

worst case space requirement are shown in Figure 5.4. 

ImageBand C(2T+2) 
BitBands C(2T+2)/8 
AreaContainer 4CT (only Points are stored in T heaps) 

Figure 5.4 

The total space requirement is approximately 6*CT bytes. 

The worst case time analysis follows dABA closely. Minor 

differences are the time to order I areas into T heaps, which is 

0(1 log(C)), and the time to shift 2(T+1) bands R times, which is 

0(TR) . The total time required by tBABA is the sum of the time for 

area-identification, initial ordering, band shifting, TBM mergers, 

and reinsertions, or respectively 

0(1) + 0(1 log(C)) + 0(TR) + 0(1 log(T)) + 0(1 log(C)), 

or, assuming that TR<=I, 0(1 log(max(T,C))). 

tBABA uses the same dynamic reordering as dABA. Therefore, 

run times are expected to be comperable to dABA. Performance test 

for small MMUs confirm that tBABA runs only slightly slower that 

dABA. 



6 Performance and Comparison Tests 

6.1 Platform and Test Images 

Performance and comparison tests were run an a IBM RS6000 43p 

running at a clock speed of ISSMhz, with a 192 megabytes of 

physical memory, and 512 megabytes of virtual memory. The 

operating system was AIX 4.1. 

Test images were chosen from a collection of Landsat Thematic 

Mapper images used in vegetation cover analysis by the Wildlife 

Spacial Analysis Laboratory. Specific images were selected to be 

'complex' in terms of both the number of original areas and the 

number of final areas. Test image names are p41r27.gis, 

p41r29u.gis, and p33r28u.gis, containing the number of original 

areas as approximately 13 million, 17 million, and 16 million 

respectively. The dimensions of these images are (as rows x 

columns), 7500x7890, 7520x7900, 6770x7136. Another test image was 

constructed by combining three p33r28u.gis images, concatenated 

horizontally, to produce an image having approximately 48 million 

original areas and dimensions of 677 0x21408. A vertical 

concatenation would not stress row oriented implementation such as 

RBR/Ma. 

Statistics were taken using the implementation of RBR created 

by Ma [8] , along with my own s ABA, dABA, and tBABA implementations. 

tBABA has not yet been optimized for speed with large MMUs, so only 

partial results are reported for tBABA performance tests, i.e., 

comparisons with it were only made for T=22 (or MMU=23) . 

Performance statistics were gathered from the 'gmon' program 

which reports real execution time, machine execution time, space 
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utilization, and the number page faults generated. Complete 

performance results are given in Appendices A, B, and C. 

6.2 Performance Tests Summary 

RBR/Ma, sABA, and dABA perform alike (about 15 minutes each, 

clock time) on 60 megabyte images at low MMU's, i.e. 1-23 where 1 

is the MMU of the original image and 23 is the MMU of the resultant 

image. RBR/Ma produced runs that were a few minutes faster than 

ABA in real time, but a few minutes slower in machine time. At 

greater MMUs or wider images, the RBR/Ma implementation quickly 

runs out of memory, but sABA and dABA continue to run. In fact, 

the ABAs run a variety of MMU values, even on the test image 3 

times larger than the real image. As image size increases, virtual 

memory thrashing is seen in ratio of real time vs. machine time, 

producing increased clock time penalties on machines with 

relatively small physical memory. 

As idicated by the tables in Appendix A, performance times for 

RBR/Ma and sABA are approximately linear with the number of TBMs in 

the input image. dABA shows a noticeable slowdown at large 

threshold values, reflecting the sensitivity to 'T' discussed 

above. For example, at an MMU of 1112, dABA takes 5 times longer 

than sABA. 

One technique that can facilitate processing for large MMUs is 

to pipeline several runs with increasing MMUs, i.e. perform 

aggregation processing of 1-1000 by a sequence of runs 1-23, 23-

100, 100-200, ..., 900-1000. With complex images, RBR/Ma needs at 

least 3 runs to produce outputs with MMUs of 445. Though not 

analyzed here, RBR/Ma's performance is much more influenced by the 
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number of TBM's for which descriptors must be maintained, and the 

ratio of band size to threshold size. For RBR/Ma, at each stage 

its run time increases while corresponding ABA run time decreases. 

ABA'S run times were faster than RBR/Ma's by a factor of 8 for MMUs 

of 445. Pipelining several ABA runs produced combined run times 

similar to a single run to the same MMQ. 

Although detailed testing has yet to be performed, the current 

version of tBABA takes about 35 minutes on 60 megabyte images. It 

uses very little space. Although possible, tBABA has not yet been 

optimized for large MMUs as sABA and dABA have been. 

6.3 Pixel Difference Comparisons 

As the tables in Appendix B indicate, particularly with large 

MMUs, slight differences in merge order and cascade handling can 

produce very different final images. Images produced by the 

various implementations at the same MMUs were compared pixel by 

pixel. Pixel differences ranged between 20 percent with small 

MMUs, to 66 percent with large MMUs. In terms of pixel 

differences, RBR/Ma, sABA, dABA, and tBABA produced images almost 

equally different. RBR/Ma compared slightly better to dABA. tBABA 

compares best with dABA. 

6.4 Pixel Similarity Comparisons 

Processing an image with any one of the implementations 

transforms each pixel value in the original image into a 

corresponding pixel value in the resultant image. The similarity 
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of corresponding pixels, as defined by the similarity function, can 

provide a measure of information lost from the original image 

during aggregation. A pixel value transformed to one with great 

similarity loses little information; a pixel value transformed to 

one of less similarity loses more information. 

Two resultant images can be compared by categorizing the 

difference in information loss for each pixel via the similarity 

difference. Rather than simply aggregating numerical differences, 

we classify the differences in ranges to produce a frequency 

distribution of pixel differences per category. This is 

illustrated by the histogram in Figure 6.2. Although the 

categories chosen are somewhat arbitrary, this technique offers a 

potentially better means of comparison than numerical summation of 

differences, particularly in cases where similarity values are not 

uniformly spaced. 

Pixel similarity comparisons are presented for MMUs 1-23 (the 

smallest area in the original image is size 1, and the smallest in 

the resultant image is size 23) in Appendix C to illustrate the 

approach. However, we have yet to apply results from ground 

truthing to this type of comparison, so it is premature to attempt 

to draw conclusions from this data. 

Another possible approach to image analysis using similarity 

is to view the similarity function as a 'membership function' of a 

fuzzy set [9] . Fuzzy set theory is sufficiently formalized to 

provide many avenues of analysis that may be applicable to our work 

here. 
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7 Conclusion 

The objective of implementing ABA was to investigate 

alternatives to RBR designs which reduce space, and possibly time, 

requirements for large image aggregation. Both worst case space 

analysis and performance testing reveals that tBABA implementations 

can extend aggregation processing to 4 GigaByte images, even on 

simple workstations. This improvement is due to the reduced space 

required by the image band-processing, and the elimination of 

explicit PointSets and NeighborLists. At the time of this writing, 

tBABA has not been optimized for larger MMU's, so tBABA has only be 

tested for small threshold values. When optimized, tBABA is 

expected to run comparably to dABA with larger MMUs. 

sABA and dABA extend the aggregation paradigm to images 

three times larger/wider than typical (row-width bounded) 

implementations of RBR can process. The breadth first traversal of 

areas provides area manipulation that is fast enough to produce run 

times as good as or better than RBR, without the overhead of 

dynamically manipulating lots of complex internal structures. The 

ABA approach extends easily to either static or dynamic ordering of 

the merge sequence. All ABA versions are also relatively easy to 

implement and do not maintain many complex internal structures, 

which tend to be more difficult to design and implement than direct 

image transformations. 

With large MMU's and complex images, merge order has 

significant effects on the output image. All four implementations 

tested here produced final images that were different. It is easy 

to simply count pixel differences between two results, but more 
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difficult to measure 'good' vs. 'bad' results. We have proposed 

the frequency distribution of similarity differences as a possible 

measure, but leave it to the application experts to assess its 

effectiveness. 
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Appendix A. Performance Test Results 

Comparisons as reported by gmon between: 
row-by-row area bound (RBR), 
static ordering area-by-area (sABA), 
dynamic ordering area-by-area (dABA), and 
sliding threshold band area-by-area (tBABA). 

MMU = 1-23 
Real Time in seconds 

4127 4129 3328 

RBR 973 1350 1180 
SABA 1403 1667 1477 
dABA 1800 2272 1999 
tBABA 2449 2093 1717 

MMU = 1-23 
Machine Time in seconds 

4127 

RBR 950 
SABA 812 
dABA 1214 
tBABA 1486 

4129 3328 

1112 1161 
903 858 
1410 1350 
1645 1546 

MMU = 1-23 
Space utilization 

4127 

RBR 15744 
SABA 176780 
dABA 17 6628 
tBABA 4484 

4129 3328 

15804 15704 
181856 177920 
181400 177476 
4476 4088 

MMU = 1-23 
Page faults 

4127 

RBR 54 
SABA 26563 
dABA 24180 
tBABA 14496 

1429 3328 

20 2 
37414 30291 
38446 24656 
14516 11807 
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Comparisons as reported by gmon between: 

static ordering area-by-area (sABA), and 
dynamic ordering area-by-area (dABA). 

note: RBR requires more memory than is currently available 

MMU = 1-445 
Real Time in seconds 

4127 4129 3328 

sABA 
dABA 

2505 
8116 

3083 
9176 

2649 
8834 

MMU = 1-445 
Machine Time in seconds 

4127 4129 3328 

sABA 
dABA 

1888 
7982 

2197 
8249 

2004 
7787 

MMU = 1-445 
Space utilization 

4127 4129 3328 

sABA 
dABA 

177264 
177812 

182656 
178960 

180736 
170780 

MMU = 1-445 
Page faults 

4127 1429 3328 

SABA 
dABA 

28763 
27503 

39208 
41023 

32427 
34896 
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Comparisons as reported by gmon between: 

static ordering area-by-area (sABA), and 
dynamic ordering area-by-area (dABA). 

note: RBR requires more memory than is currently available 

MMU = 1-1112 
Real Time in seconds 

4127 4129 3328 

SABA 
dABA 

3627 
17624 

4191 
19356 

3706 
17727 

MMU = 1-1112 
Machine Time in seconds 

4127 4129 3328 

sABA 
dABA 

2946 
16919 

3458 
18303 

3121 
17287 

MMU = 1-1112 
Space utilization 

4127 4129 3328 

sABA 
dABA 

177204 
177748 

179508 
179564 

180684 
179660 

MMU = 1-1112 
Page faults 

4127 1429 3328 

SABA 
dABA 

31143 
26622 

38791 
41045 

33768 
32022 



Comparisons as reported by gmon between: 
row-by-row area bound (RBR), 
static ordering area-by-area (sABA), and 
dynamic ordering area-by-area (dABA). 

MMU = 23-223 
Real Time in seconds 

4127 

RBR 2691 
SABA 1142 
dABA 1326 

4129 3328 

8542 9031 
1290 1055 
1310 1175 

MMU = 23-223 
Machine Time in seconds 

4127 

RBR 2646 
sABA 63 6 
dABA 775 

4129 3328 

8478 8970 
656 625 
808 787 

MMU = 23-223 
Space utilization 

4127 

RBR 131228 
sABA 77060 
dABA 77496 

4129 3328 

131292 130316 
80776 64420 
81232 64868 

MMU = 23-223 
Page faults 

4127 

RBR 124 
sABA 18880 
dABA 18903 

1429 3328 

158 69 
18987 15418 
19001 15341 



Comparisons as reported by gmon between: 
row-by-row area bound (RBR), 
static ordering area-by-area (sABA), and 
dynamic ordering area-by-area (dABA). 

MMU = 23-445 
Real Time in seconds 

4127 4129 3328 

RBR 6590 6078 6075 
SABA 867 993 693 
dABA 897 860 675 

MMU = 23-445 
Machine Time in seconds 

4127 

RBR 6481 
SABA 353 
dABA 357 

4129 3328 

5834 5575 
357 307 
362 314 

MMU = 23-445 
Space utilization 

4127 

RBR 176324 
SABA 73728 
dABA 73740 

4129 3328 

176772 175844 
77148 60516 
77160 60532 

MMU = 23-445 
Page faults 

4127 

RBR 14393 
sABA 18559 
dABA 18593 

1429 3328 

23021 22758 
18706 15255 
18682 15243 
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Large test image: three 33r28u.gis concatenated 
horizontally: 

SABA with MMU of 1112 

real time : 23360 sec. 
machine time : 5447 sec. 
memory utilization: 182276 
page faults : 838074 

tBABA with MMU of 1-23 

real time : 5733 sec. 
machine time : 4724 sec. 
memory utilization: 11364 
page faults : 35475 



Appendix B. Pixel Difference Comparisons 

Percent Pixel Comparisons : 
RBR vs sABA vs dABA 

p41r27.gis 

MMU = 1-23 sABA dABA 
RBR 21.9 18.0 
s ABA 19.5 

MMU = 1-445 s ABA dABA 
RBR * * 
SABA 47 . 6 

MMU = 1-1112 SABA dABA 
RBR * * 
SABA 51.4 

p41r29u.gis 

MMU = 1-23 sABA dABA 
RBR 27.3 23.1 
SABA 24.8 

MMU = 1-445 s ABA dABA 
RBR * * 
SABA 47.0 

MMU = 1112 sABA dABA 
RBR * * 
sABA 50.2 

p33r2Bu.gis 

MMU = 1-23 SABA dABA 
RBR 34.4 29.3 
s ABA 30.9 

MMU = 1-445 sABA dABA 
RBR * * 
sABA 62.0 

MMU = 1-1112 SABA dABA 
RBR * * 
sABA 66.0 

* - not enough memory to run 
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Percent Pixel Comparisons : 
RBR vs sABA vs dABA 

p41r27.gis 

MMU = 23-223 
RBR 
sABA 

sABA dABA 
36.5 36.0 

25.6 

p41r29u.gis 

MMU = 23-223 
RBR 
sABA 

sABA dABA 
32.3 30.1 

29.6 

p33r28u.gis 

MMU = 23-223 
RBR 
sABA 

sABA dABA 
41.8 39.2 

38.1 

p41r27.gis 

MMU = 223-445 sABA dABA 
RBR 41.2 40.9 
sABA 27.7 

p41r29u.gis 

MMU = 223-445 sABA dABA 
RBR 33.4 31.7 
sABA 31.0 

p33r28u.gis 

MMU = 223-445 
RBR 
sABA 

sABA dABA 
43.5 41.3 

40.3 
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Percent Pixel Difference Comparisons to tBABA at MMU = 23 

p41r27.gis 

RBR 18.1 
SABA 19.7 
dABA 6.5 

p41r29u.gis 

RBR 23.1 
SABA 24.8 
dABA 9.4 

p33r28u.gis 

RBR 29.4 
SABA 31.0 
dABA 12.3 



Percent Pixel Difference Comparisons between 
RBR 1-23 to dABA 23-445 
and 
RBR 1-23 to 23-223 to 233-445 

p41r27 38.5 
p41r29u 20.3 
p33r28u 26.6 



Appendix C. Pixel Similarity Comparisons 

Tabular frequency distribution per category: 

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.4w.img 
file2 = /eis2/sjb/p41r27.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category < =  0 47622521 80.477% 
category <= 0 .1 448182 0.75738% 3 . 8795% 
category < =  0 .5 1772467 2.9953% 15 .343% 
category <= 1 1773764 2.9975% 15 .354% 
category < =  3 4702293 7.9464% 40 .704% 
category < =  5 2037392 3.443% 17 . 636% 
category < =  le+07 818381 1.383% 7 . 084% 

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.zw.img 
file2 = /eis2/sjb/p41r27.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category <= 0 48515989 81.987% 
category < =  0, .1 418518 0.70725% 3 . 9264% 
category < =  0, .5 1609456 2.7198% 15 . 099% 
category < =  1 1685589 2.8485% 15 . 814% 
category <= 3 4476412 7.5647% 41 .997% 
category < =  5 1830299 3.093% 17 . 171% 
category < =  le+07 638737 1.0794% 5. 9925% 

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.4w.img 
file2 = /eis2/sjb/p41r27.1-23.zw.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category <= 0 46246207 78.152% 
category <= 0.1 498389 0.84223% 3.8549% 
category <= 0.5 1952929 3.3003% 15.105% 
category <= 1 2042121 3.451% 15.795% 
category <= 3 5392448 9.1127% 41.709% 
category <= 5 2230459 3.7693% 17.252% 
category <= le+07 812447 1.373% 6.284% 
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orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.zw.img 
file2 = /eis2/sjb/p41r27.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category < =  0 48486515 81.938% 
category < =  0 .1 421106 0.71163% 3. 9398% 
category < =  0 .5 1622236 2.7414% 15 . 177% 
category < =  1 1697604 2.8688% 15 .883% 
category < =  3 4482838 7.5756% 41 . 941% 
category < =  5 1816971 3.0705% 16 . 999% 
category < =  le+07 647730 1.0946% 6. 0601% 

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.4w.img 
file2 = /eis2/sjb/p41r27.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category <= 0 47516223 
category <= 0.1 454814 
category <= 0.5 1787864 
category <= 1 1791514 
category <= 3 4731197 
category <= 5 2050165 
category <= le+07 843223 

80.298% 
0.76859% 3.901% 
3.0213% 15.335% 
3.0275% 15.366% 
7.9953% 40.581% 
3.4646% 17.585% 
1.425% 7.2325% 

orig = /eis2/ford/d.merge/d.p41r27/p41r27.gis 
filel = /eis2/sjb/p41r27.1-23.5w.img 
file2 = /eis2/sjb/p41r27.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r27/p41r27.smx 
dimensions = 7890 columns by 7500 rows 
total number of pixels = 59175000 

category <= 
category <= 
category <= 
category <= 
category <= 
category <= 

0 55326239 93.496% 
0.1 
0.5 
1 
3 
5 

category <= le+07 

180467 0.30497% 4.689% 
678921 1.1473% 17.64% 
636190 1.0751% 16.53% 
1508823 2.5498% 39.203% 
599452 1.013% 15.575% 
244908 0.41387% 6.3633% 



orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.4w.img 
file2 = /eis3/sjb/p41r29u.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7900 columns by 7520 rows 
total number of pixels = 59408000 

category <= 0 44680679 75.21% 
category <= 0.1 143645 0.24179% 0. 97536% 
category <= 0.5 889588 1.4974% 6. 0404% 
category <= 1 931138 1.5674% 6. 3225% 
category <= 3 3249591 5.47% 22 .065% 
category <= 5 2323218 3.9106% 15 .775% 
category <= le+07 7190141 12.103% 48 . 822% 

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.zw.img 
file2 = /eis3/sjb/p41r29u.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7900 columns by 7520 rows 
total number of pixels = 59408000 

category <= 0 45694676 76.917% 
category <= 0.1 128640 0.21654% 0.93807% 
category <= 0.5 773791 
category <= 1 812998 
category <= 3 2976817 
category <= 5 2273936 
category <= le+07 6747142 

1.3025% 
1.3685% 

5.6426% 
5.9285% 

5.0108% 21.707% 
3.8277% 16.582% 
11.357% 49.201% 

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.4w.img 
file2 = /eis3/sjb/p41r29u.1-23.zw.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7900 columns by 7520 rows 
total number of pixels = 59408000 

category <= 0 43162636 72.655% 
category <= 0.1 146992 0.24743% 0. 90482 
category <= 0.5 907677 1.5279% 5. 5873% 
category <= 1 954689 1.607% 5. 8767% 
category <= 3 3496789 5.8861% 21 . 525% 
category <= 5 2694996 4.5364% 16 .589% 
category <= le+07 8044221 13.541% 49 .517% 



orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.zw.img 
file2 = /eis3/sjb/p41r29u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7900 columns by 7520 rows 
total number of pixels = 59408000 

category <= 0 45675845 76.885% 
category < =  0.1 128922 0.21701% 0. 93883% 
category < =  0.5 773320 1.3017% 5. 6315% 
category <= 1 810252 1.3639% 5. 9004% 
category <= 3 2987275 5.0284% 21 .754% 
category <= 5 2289342 3.8536% 16 . 671% 
category < =  le+07 6743044 11.35% 49 . 104% 

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.4w.img 
file2 = /eis3/sjb/p41r29u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7 900 columns by 7 520 rows 
total number of pixels = 59408000 

category < - 0 44638550 75.139% 
category < = 0 .1 143722 0.24192% 0. 9731% 
category <= 0.5 888850 1.4962% 6. 0182% 
category <= 1 933623 1.5715% 6. 3213% 
category <= 3 3259991 5.4875% 22 . 073% 
category <= 5 2329500 3.9212% 15 .772% 
category <= le+07 7213764 12.143% 48 . 842% 

orig = /eis2/ford/d.merge/d.p41r29/p41r29u.gis 
filel = /eis3/sjb/p41r29u.1-23.5w.img 
file2 = /eis3/sjb/p41r29u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p41r29/p41r29u.smx 
dimensions = 7900 columns by 7520 rows 
total number of pixels = 59408000 

category <= 0 53785892 90.536% 
category <= 0.1 73318 0.12341% 1. 3041% 
category <= 0.5 410306 0.69066% 7. 2981% 
category <= 1 421300 0.70916% 7. 4936% 
category <= 3 1364795 2.2973% 24 .276% 
category <= 5 912971 1.5368% 16 .239% 
category <= le+07 2439418 4.1062% 43 .39% 



orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.4w.img 
file2 = /eis4/sjb/p33r28u.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 7136 columns by 6770 rows 
total number of pixels = 48310720 

category 
category 
category 
category 
category 
category 
category 

<= 0 

<= 0.1 
<= 0.5 
<= 1 
<= 3 
<= 5 
<= le+07 

33388271 
150730 
821530 
1031804 
3155459 
2296472 
7466454 

69.112% 
0.312% 
1.7005% 
2.1358% 
6.5316% 
4.7535% 
15.455% 

1.0101% 
5.5053% 
6.9144% 
21.146% 
15.389% 
50.035% 

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.zw.img 
file2 = /eis4/sjb/p33r28u.1-23.5w.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 7136 columns by 6770 rows 
total number of pixels = 48310720 
total-sim/total-pixels = 1.84735 

category 
category 
category 
category 
category 
category 
category 

<= 0 

<= 0.1 
<= 0.5 
<= 1 
<= 3 
<= 5 
<= le+07 

34154504 
131018 
722233 
932971 
2948891 
2293178 
7127925 

70.698% 
0.2712% 
1.495% 
1.9312% 
6.104% 
4.7467% 
14.754% 

0.92552% 
5.1019% 
6.5905% 
20.831% 
16.199% 
50.352% 

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.4w.img 
file2 = /eis4/sjb/p33r28u.1-23.zw.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 713 6 columns by 6770 rows 
total number of pixels = 48310720 
total-sim/total-pixels = 2.19649 

category <= 0 31669777 65.554% 
category <= 0.1 149265 0.30897% 0. 89697 
category <= 0.5 828773 1.7155% 4. 9803% 
category <= 1 1074273 2.2237% 6. 4556% 
category <= 3 3465399 7.1731% 20 . 825% 
category <= 5 2693333 5.575% 16 .185% 
category <= le+07 8429900 17.449% 50 . 658% 



orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.zw.img 
file2 = /eis2/sjb/p33r28u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 713 6 columns by 6770 rows 
total number of pixels = 48310720 
total-sim/total-pixels = 1.84204 

category <= 0 34117740 70.621% 
category <= 0.1 131592 0.27239% 0. 92716% 
category <= 0.5 723607 1.4978% 5. 0983% 
category- <= 1 938000 1.9416% 6. 6089% 
category <= 3 2977800 6.1638% 20 . 981% 
category <= 5 2307234 4.7758% 16 .256% 
category < =  le+07 7114747 14.727% 50 . 129% 

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.4w.img 
file2 = /eis2/sjb/p33r28u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 713 6 columns by 6770 rows 
total number of pixels = 48310720 

category- < = 0 33313116 68 . 956% 
category < = 0.1 152857 0. 3164% 1. 0192% 
category <= 0.5 827863 1. 7136% 5. 52% 
category < = 1 1035801 2 .144% 6. 9064% 
category- <= 3 3168504 6. 5586% 21 . 127% 
category <= 5 2308940 4. 7794% 15 .395% 
category <= le+07 7503639 15 . 532% 50 . 032% 

orig = /eis2/ford/d.merge/d.p33r28/p33r28u.gis 
filel = /eis4/sjb/p33r28u.1-23.5w.img 
file2 = /eis2/sjb/p33r28u.1-23.82w.img 
sim = /eis2/ford/d.merge/d.p33r28/p33r28u.smx 
dimensions = 7136 columns by 6770 rows 
total number of pixels = 48310720 

0 42368861 87.701% 
0.1 79820 0.16522% 1.3434% 
0.5 397958 0.82375% 6.6975% 
1 483673 1.0012% 8.1401% 
3 1394286 2.8861% 23.465% 
5 944742 1.9556% 15.9% 

category <= le+07 2641380 5.4675% 44.454% 

category <= 
category <= 
category <= 
category <= 
category <= 
category <= 
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