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The Simulink environment allows rapid prototyping of complex software systems.
Because many of these systems are mission-critical, it is of utmost importance to
determine their input and output constraints. Determining input constraints is a
trivial matter, but the constraint determination of a system’s output values is a serious
and challenging problem that historically has entailed an exhaustive exploration of
the system’s input states. The work presented in this thesis recounts and extends
a research project supported by NASA whose focus was to develop a strategy to
constrain the outputs of a Simulink model. Simulink models are quite similar
to mathematical functions and therefore optimization algorithms can be applied to
constrain the outputs. Optimizations of simple mathematical functions paved the
way for random functions and finally led to the development of two optimization
algorithms. During the exploration of potential optimization algorithms, strategies
such as Monte Carlo, the simplex method, simulated annealing, and evolution strategy
were explored. In the end, a combined approach utilizing both simulated annealing
and the simplex method was compared with evolution strategy for relative strengths
and weaknesses. It was determined that the evolution strategy algorithm was more
suited to optimization of Simulink models due to its more effective usage of model
calls and to its higher success rate.
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CHAPTER 1 INTRODUCTION

1.1 Introduction

Ensuring that a software-based system performs according to its requirements in-

volves the processes of verification and validation. Verification is the process of as-

sessing to what degree the software meets the specified requirements through testing.

Validation, on the other hand, is assessing how well the software fulfills its intended

use and employs methods such as reviews and walkthroughs. While validation is crit-

ically important from the user’s standpoint, it is often the case that the verification

phase consumes more resources in its completion.

Because of the increasing speed and power of modern processors, many real-time

and mission-critical systems are now computerized. Whether found in the fire control

system of a military vehicle, the propulsion system of a communication satellite,

or in the table control system of a radiation therapy machine, embedded systems

have become ubiquitous. The pervasiveness of embedded systems requires even more

stringent and comprehensive verification to try to minimize both financial loss and

bodily harm.

In many cases, requirements documents double as a description of not only what

functionality the software must implement, but also what system behaviors are ac-

ceptable and unacceptable. For these systems, verification becomes the process of
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proving that the system exhibits no unacceptable behavior under any circumstances.

Unfortunately, the only way to completely verify an embedded system is through a

formal verification method such as exhaustive testing. In this strategy, each possi-

ble combination of the system’s inputs is systematically tested for its effect on the

system’s behavior.

Verification through exhaustive system testing, despite its thoroughness, is not

often used in practice. The reason is based on the system itself; many are quite com-

plicated, having a large number of both inputs and outputs. To exhaustively test a

system with a non-trivial number of inputs and outputs quickly explodes into a com-

binatorial nightmare. Even under the assumption that the number of input/output

combinations could be enumerated, the amount of time required to test each value in

the enumeration would be prohibitive.

Rather than attempting to exhaustively test systems, most system testers use one

or more heuristics. A heuristic is a relaxed algorithm that makes no guarantees about

runtime or quality of the results obtained, and are generally thought of as “rules of

thumb” rather than algorithms. Despite the informal nature of heuristics, in many

cases heuristic runtime and quality are both good enough for verification purposes. In

fact, heuristics can often be tailored specifically to the system under review, allowing

an even greater savings in terms of both runtime and accuracy.

Heuristics are usually designed to find an approximation to the optimal solution to

a problem given time and space constraints. To tailor one for the purpose of system

verification would involve recasting the expected system outputs into a state-space of

n+1 dimensions, where each of the n dimensions is contributed by one of the system’s

input values, and the extra dimension is contributed by one of the system’s output

values. In this way, the approximate optimal value of each of the system outputs can

be independently determined; that is, the combination of inputs that produces the
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output with the most optimal value will be discovered. Comparing this optimal value

to the expected system output will determine in part whether the system is verified.

Simulink is a software product that provides an environment used for the rapid

creation and simulation of embedded systems. Simulink models are composed of

a number of connected blocks, and each block can represent anything from a sim-

ple mathematical function to a multiple input vehicular control subsystem. The

Simulink environment includes a simulator that allows the analysis of the newly

created system dynamically.

1.2 Motivation

The original idea for this thesis came in part from research into constraint deter-

mination of simulated systems led by Dr. Joel Henry at the University of Montana.

This research, sponsored through a grant from NASA, sought to show by proof of

concept that the output constraints of a Simulink model could be determined using

heuristics; that is, that the output values of a Simulink model could be determined

to fall approximately within a specific range of values. A secondary goal of this re-

search was to determine the statistical validity of such an optimization strategy, which

would necessarily be heuristic in nature.

However, this thesis is concerned with a comparison of optimization strategies. It

was not until after the completion of the original NASA grant that the rest of this

thesis was conceived. Exposure to advanced heuristic strategies as well as the No Free

Lunch Theorem (NFLT) prompted a reopening of the investigation into optimization

techniques. The NFLT is described by Wolpert and Macready [1995] as the following:
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“all algorithms that search for an extremum of a cost

function perform exactly the same, when averaged over

all possible cost functions.”

Thus, further investigation is prudent if only to stave off an optimization heuristic’s

inevitable poor performance on a Simulink model. More to the point, for critical

embedded systems, the expectation of performance is so high and the cost of failure

is so dear both in financial and human terms, that a thorough and layered approach

to optimization is required.

1.3 Goal

The goal of this thesis is two-fold. The first main goal is to show that the opti-

mization of Simulink models is not only possible but practical. The achievement

of this goal will require the development of an optimization strategy that not only

has a manageable and realistic runtime but also provides results with a reasonable

amount of accuracy. The nature of heuristics, when combined with the complexity

of Simulink models, prevents a declaration of optimality for any heuristic. How-

ever, under the guise of proof of concept, it is possible to show the validity of a

combinatorial optimization heuristic.

The second major goal of this thesis is to determine which class of optimization

heuristics is most appropriate for constraint determination of Simulink models. In

this regard, relevant metrics including scalability, runtime, accuracy, and repeatability

will be compared for the heuristics identified as a result of the first goal of this

thesis. Scalability will be determined by examining how the number simulation calls

required to optimize the model increases with an increasing number of model inputs.

An examination of runtime will have a basis similar to scalability and will highlight

differences in the implementations of the optimization heuristics. Accuracy will be
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determined by how close the experimental results are to the actual optimal value.

Finally, the accuracy of a series of optimizations will be the basis for repeatability.

1.4 Benefits

Simulink models are the basis for mission-critical systems that find usage in satel-

lites, aircraft, and vehicles. Because of both the large financial investment involved

and the potential impact on human life, it is imperative that these systems are ade-

quately tested prior to deployment. Testing at the prototype stage with a Simulink

model is faster, more controllable, and less costly than traditional prototype testing.

As stated above, it is not feasible to simply enumerate all possible combinations of

inputs to determine the optimal configuration. Designing and implementing an op-

timization tool for Simulink models will have far-reaching effects in both financial

and safety terms.

Despite the fact that this thesis stops short of implementation of production verifi-

cation software, the knowledge gained through the research of optimization heuristics

is vital in advancing the process of verification and validation of embedded systems.

While the extension of the heuristics presented in this thesis to a general purpose

optimization application would not be trivial, the implementations created herein

provide a framework that could guide future researchers in this area.
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1.5 Thesis Organization

The rest of this thesis is organized as follows:

• Chapter 2 provides a review of key concepts used in this research.

• Chapter 3 addresses the implementations of the optimization heuristics and a

review of the experimental Simulink model used.

• Chapter 4 describes the experimental procedures used, the test data sets col-

lected, and results.

• Chapter 5 contains concluding remarks, as well as an outline for future work.
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CHAPTER 2 OVERVIEW

2.1 Optimization

The process of optimization would seem to be fairly easy to define, and a naive

definition would be

“The process of determinating a set of values for a system

that gives the best results.”

However, this simple definition is quickly entangled by the possible definitions of

best results. It is not clear exactly what will be optimized, nor what the result of the

optimization will be.

One possible resolution of this problem is to treat the process of optimization as

an examination of the input values for a system and how they affect the system’s

output. In this case, the system’s inputs are being optimized, with the result being

the unique combination of input values that produce the best system output.

A concrete example of this type of optimization is a software model of an anti-lock

braking system, which is concerned with minimizing stopping time during a braking

event. The software model would have a number of inputs, such as wheel speed,

vehicle speed, and the acceptable amount of slip. Its output of stopping time would

be determined through simulation of the software model. An optimizing algorithm

tailored for such a problem would be mainly concerned with minimizing the stopping

time, and not necessarily concerned with runtime or accuracy.
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Another resolution to the ambiguity of best results is to include in the optimization

definition the runtime of the optimizing algorithm. One way to do this is to set the

maximum allowable amount of time to spend searching for an optimal value. The

system is still being optimized, but only for a fixed amount of time. As a result, the

value determined to be optimal may be only the best value seen during the limited

optimization process rather than the true optimal value.

As an example, consider the problem of routing airplanes. Clearly, there is an op-

timal solution that only involves the airplanes and their relative positions. However,

determining the true optimal arrangement of airplanes is less important than deter-

mining a timely arrangement that is safe. Ignoring the runtime of the optimization

algorithm would likely produce overly optimal results that were too slow in arriving

to be useful. While most problems are time-sensitive to one degree or another, the

airplane routing problem is far more pressing in terms of urgency.

One final sticking point in the original definition centers on the meaning of best.

Many systems are so complex that any definition of best degenerates into best seen.

The traveling salesman problem highlights this difficulty. Even for a small number of

cities, the number of possible routes is enormous. Without analyzing every route, it

is impossible to determine whether any route is the optimal.

To combat this, statistical approaches are employed to place some qualitative value

on what exactly best means. A confidence interval analysis (see Law and Kelton

[1999]) of experimental data will provide both an error tolerance and a level of confi-

dence. The error tolerance specifies a range of values inside which the optimal value

is expected to reside, while the level of confidence denotes how confident the anal-

ysis is that the optimal value is within the bounds of the error tolerance. These

two properties together define a confidence interval and lend statistical validity to

an optimizing heuristic, with the further assumption that the data has a standard



9

distribution. This is an important assumption, as the underlying data may not be

standard; in this case, the confidence interval is not valid and other methods would

be required to qualitatively assess the results of the optimizing heuristic.

For the scope of this work, optimization refers to the process of discovering the

values of each of a Simulink model’s inputs that produce the greatest output value.

Reflecting the potential negative impact of runtime, the algorithm will be further

constrained to limit the runtime, thus producing the best seen output value. System

states analyzed in optimizing the Simulink model will be stored so that a confidence

interval analysis can be performed. In this way, the algorithm will clearly define what

the process of optimization includes, what the results of the optimization mean, and

the level of confidence that the results are truly optimal.

More formally, this work is focused on determining constraints on a Simulink

model’s output values. This overarching goal is subdivided into two optimizations

for each of the outputs. One optimization would be required to determine the global

maximum for the output while the other would search for the global minimum. In the

case of peaks, a built-in Matlab function discussed in Section 2.1.1, a constraint

determination on its output might result in the following two optimizations, where:

O1,max = 8.0752 (Output 1’s global maximum)

O1,min = −6.5466 (Output 1’s global minimum)

which then can be combined into a general result for the constraint determination:

−6.5466 ≤ O1 ≤ 8.0752
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2.1.1 Dimensionality

Dimensionality refers to the number of dimensions a function’s geometry occupies.

In simplest terms, the sum of a function’s inputs and outputs is a dimension. As an

example, consider the Matlab function peaks, whose underlying equation is shown

in Equation (2.1) and graphical representation is shown in Figure 2.1.

z =3(1− x)2e−(x2)−(y+1)2 − . . .

10(
x

5
− x3 − y5)e−x2−y2 − . . .

1

3
e−(x+1)2−y2

(2.1)
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Figure 2.1 The Matlab function peaks

As can be seen in Figure 2.1, peaks has two input dimensions, x and y, and one

output dimension z. Therefore, peaks has a dimensionality of 3. Of course, the
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dimensionality of peaks is apparent in Figure 2.1. Unfortunately, larger dimension-

ality functions are not so easily displayed visually and so the only way to determine

dimensionality is to sum the number of inputs and outputs. Simulink models are a

good example of high dimensionality systems, with the added quality of having not

only multiple inputs but multiple outputs.

Another aspect of dimensionality is the division of the input or output space. A

system’s geometry may be comprised of discrete or continuous states. A discrete

geometry would have clearly defined and separate states, while a continuous geom-

etry would have an infinite number of states. In example, if peaks had a discrete

geometry, then its allowable x and y dimension values might be

x ∈ {−3,−2,−1, 0, 1, 2, 3}

y ∈ {−5/2, −3/2, −1/2, 1/2, 3/2, 5/2}

with resulting z values being the result of drawing one of each of the x and y values

from above and applying Equation (2.1). It is not hard to see that there will be 42

possible values for z, as there are 6 allowable values for x and 7 for y.

If, on the other hand, peaks had a continuous geometry, then both the x and

y dimensions would have an infinite number of allowable values. Machine precision

would be the only limiting factor in determining whether one state was the same

or different from its next nearest neighbor. Assuming a processor allowed 3 decimal

digits of precision, then some allowable x and y dimension values might be

x ∈ {. . . ,−2.001,−2.000,−1.999,−1.998, . . .}

y ∈ {. . . , 1.706, 1.707, 1.708, 1.709, 1.710, . . .}
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Continuing the assumption to the z dimension also produces an infinite number of

values. In the case of continuous geometry, therefore, constraints on the inputs be-

come important in limiting the scope of the optimization problem. Of course, the

mathematics of infinity apply equally at all scales, but in software-based constraint

determination, such arbitrary precision is often neither necessary nor attainable. In

terms of constraints, then, the peaks x and y dimensions might be described as

−3 ≤ x ≤ 3

−3 ≤ y ≤ 3

Dimensionality will be managed in this thesis by optimizing a Simulink model

for each of its outputs separately and independently. In other words, a Simulink

model will be constrained as a series of multiple input, single output models. For each

output, a full constraint determination will be performed using only that output as a

guide to optimize the inputs. Thus, a Simulink model with inputs of {I1, I2, I3, I4, I5}
and outputs of {O1, O2, O3} will be constrained using the following ’models’

M1 = {I1, I2, I3, I4, I5, O1}

M2 = {I1, I2, I3, I4, I5, O2}

M3 = {I1, I2, I3, I4, I5, O3}

2.1.2 Combinatorics

The peaks function described above is a rather trivial one, and is relatively easy

to optimize. However, Simulink models have arbitrary numbers of both inputs and

outputs. Attempting to exhaustively evaluate them in search of optimal output values

is futile. The reason for this is the sheer number of points that would be necessary
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to examine to complete the exhaustive examination.
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Figure 2.2 Exhaustive constraint determination evaluations required based
on spacing

Figure 2.2 shows the effect of increasing the number of inputs and value spacing

on an exhaustive search. To further reinforce the point, assume that the peaks

function has a discrete geometry with spacing of ∆x = 0.1 and ∆y = 0.1. In this

case, the x and y dimensions would both contain 61 values, leading to 3721 possible

combinations. A general formula for the number of input states IS in terms of input

dimensions In and value spacing ∆In, where InU and InL are the upper and lower

constraints on input n, is shown in Equation (2.2).

IS =

(
I1U − I1L

∆I1

+ 1

)(
I2U − I2L

∆I2

+ 1

)
· · ·

(
InU − InL

∆In

+ 1

)
(2.2)

Of note in Figure 2.2 is that as the dimension spacing values diminish toward the

right of the graph, the number of required evaluations as well as the input space
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more closely approximate those values found in a continuous input space. Thus, a

continuous space can be thought of as a fine-grained discrete space.

In order to control the explosion of combinatorics for Simulink model optimiza-

tion, one or more concessions can be made. One useful concession is to limit the

precision to which the output values are optimized. Limiting precision can have a

dramatic impact on the number of evaluations required and is safe as long as the

model’s acceptable minimum precision is known.

Another important concession is to assume that model’s underlying function is

continuous and differentiable. With this assumption, the requirement of exhaustive

exploration for optimization is eased. For a continuous and differentiable function,

a location with a certain output value is likely to have adjoining points with similar

output values. This concession reduces the number of required evaluations by in-

troducing an intelligent search that samples locations of interest rather than blindly

testing every location.

One caveat for a partial search such as this is that because not all locations are

evaluated, it is possible to miss the optimal value. Although a partial search will

determine an approximate optimal value, it avoids the combinatorial problem and

allows for multiple optimizations to be performed in far less time than one exhaustive

analysis would require.

This thesis will assume that Simulink models can be represented by continuous

and differentiable functions. The main reason for this assumption is that a function

with numerous gross discontinuities could only be optimized using an exhaustive

approach. This kind of behavior would not be acceptable in any embedded system, let

alone a critical one, and so is ignored for the scope of this work. Indeed, an exhaustive

search would likely discover gross discontinuities in the search space that are otherwise

unreachable due to the system’s internal logic. While it may be obvious, another very
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important assumption is that a partial search using intelligent methods can produce

optimal value results similar to those obtained using an exhaustive method. For

without this assumption, there would be no impetus for research in this area.

2.2 Deterministic algorithms

An algorithm is comprised of a finite set of commands that will not only accomplish

some task but also finish in a finite amount of time. Deterministic algorithms are

one such class of algorithms, and it is these kinds of algorithm that make up the

vast majority of existing algorithms. The usefulness of deterministic algorithms lies

in their repeatability and predictability. Such an algorithm, when given a particular

starting state and input values, will always terminate at the same end state. All the

states encountered during the execution of the algorithm will be identical as well.

As an example, consider the steepest descent algorithm [Avriel, 2003]. The layout

of the steepest descent algorithm is as follows:

While the optimal value has not been found

1. Determine the output value of the current location

2. Determine the output values of all adjacent locations

(a) If none of the adjacent locations has an output value closer

to the optimal value than the current location, then the

current location is the optimal value

(b) Otherwise, the adjacent location whose output value is far-

thest from the current location is the new current location

End While

It is not hard to see how this algorithm might fare in optimizing peaks. In a

typical example, if the algorithm were given an initial location of (−1.0, 1.0, 0.2289)
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and assuming the input spacing were ∆x = ∆y = 0.5, the possible moves from this

position and their respective descent values are shown in Table 2.1.

x y z ∆z
-1.5 1.0 -0.8639 -1.0928
-1.0 1.5 2.6076 2.3787
-0.5 1.0 2.7942 2.5653
-1.0 0.0 -1.6523 -1.8812

Table 2.1 Potential moves from (−1.0, 1.0, 0.2289)

x y z ∆z
-1.0 1.0 0.2289 -2.5653
-0.5 1.5 6.1956 3.4014
0.0 1.0 3.6886 0.8944
-0.5 0.0 1.4796 -1.3146

Table 2.2 Potential moves from (−0.5, 1.0, 2.7942)

The next step would depend on whether the algorithm was configured to be maximum-

seeking or minimum seeking. In the case of a minimum seeking configuration, the

two points with negative values for ∆z would be compared, resulting in a movement

to (−1.0, 0.0,−1.6523). For this example, however, the algorithm will be used to find

the global maximum. With the assumption of a maximum-seeking algorithm, the

selection of (−0.5, 1.0, 2.7942) is correct. From this new locale, the possible moves

and their descent values are shown in Table 2.2.

In this case, as in the previous one, there are two possible moves toward the global

maximum, and the one chosen is (−0.5, 1.5, 6.1956). Looking at the possible moves

from this position gives values shown in Table 2.3.
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This examination reveals that there is only one move that improves on the current

position. Making that choice gives the values shown in Table 2.4. As can be seen,

there are no legal maximum seeking moves. The algorithm then terminates, returning

the global maximum value of (0.0, 1.5, 7.9966).

x y z ∆z
-1.0 1.5 2.6076 -3.5880
-0.5 2.0 4.5569 -1.6387
0.0 1.5 7.9966 1.8010
-0.5 0.0 1.4796 -4.7160

Table 2.3 Potential moves from (−0.5, 1.5, 6.1956)

x y z ∆z
-0.5 1.5 6.1956 -1.8010
0.0 2.0 5.8591 -2.1375
0.5 1.5 6.2513 -1.7453
0.0 0.0 0.9810 -7.0156

Table 2.4 Potential moves from (0.0, 1.5, 7.9966)

It should be easy to see that restarting the algorithm at the original initial location

would produce the same results. At no point in the algorithm are random choices

or other stochastic methods employed, and so the internal logic of the algorithm

will shape its execution and transition between states. Equivalent initial states will

produce equivalent termination states as well as equivalent intermediary states. In

other words, the steepest descent algorithm is a deterministic optimizing algorithm

whose ability to optimize is dependent only on the initial conditions supplied to it.
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2.2.1 The simplex method

The simplex method, also known as the Nelder-Mead method, is a deterministic

algorithm based on a simplex [Nelder and Mead, 1965]. For a function having an

input space having n dimensions and an output space of m dimensions, a simplex

is an ordered collection of n + m vertices . Each vertex is an ordered collection of

values from each of the input and output dimensions. The simplex method operates

by identifying the weakest vertex or vertices in the simplex and moving them to more

optimal locations.

z = x2 + y2 (2.3)

In a trivial example, an optimization of a function such as the one shown in Equa-

tion (2.3) that has n = 2 input dimensions and m = 1 output dimension would require

a simplex s of size n+m = 3. The simplex would be a series of ordered tuples having

the form (x, y, z), as shown below.

s = {(x1, y1, z1), (x2, y2, z2), (x3, y3, z3)}

A simplex placed in the function space might have the vertices

s = {(−1, 2, 5), (1, 1, 2), (0, 0, 0)}

The graph of such a simplex is shown in Figure 2.3. Note that in technical terms

a simplex is a convex hull of all its vertices, but for the simplex method the lines

between the vertices are mainly to highlight the simplex’s shape and their only role

is in the determination of the movement of the simplex about the function space.

The vertices within the simplex are ordered in descending optimality of the output
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Figure 2.3 A simplex placed in the function space

values. If the object of optimization of the trivial function described above were to

determine the global minimum, then the simplex would be ordered as

s = {(0, 0, 0), (1, 1, 2), (−1, 2, 5)}

If, on the other hand, the goal were to find the global maximum, then the simplex

would be ordered as

s = {(−1, 2, 5), (1, 1, 2), (0, 0, 0)}

The way in which a simplex is used to optimize a function is by moving the worst

of its vertices to a better location. Usually, as will be shown, only the single worst

vertex is moved; however, in certain conditions all but the best vertex are moved.

The result of these movements is that the overall optimality of the simplex improves

with each iteration.
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A general description of the simplex method is given below. Note that the following

algorithm uses a simplex s where vertices are arranged from most optimal vertex to

least and n refers to the number of vertices contained within the simplex:

s = V1, V2, · · · , Vn−1, Vn
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While the optimal value has not been found

1. Arrange the vertices in optimal-descending order

2. Reflect Vn (the worst vertex) through the other vertices’ mean, producing Vr

3. If the new vertex Vr is the best of the vertices in the simplex

(a) Reflect and grow the new vertex Vr, producing Vr2

(b) If the new vertex Vr2 is still the best

i. The simplex is now ordered s = {Vr2, V1, V2, · · · , Vn−1}

(c) Else keep the originally reflected vertex value (Vr)

i. The simplex is now ordered s = {Vr, V1, V2, · · · , Vn−1}

4. Else if the new vertex’s value Vr is better than the second-worst vertex Vn−1

(a) Keep the reflected vertex Vr

(b) The simplex is now ordered s = {V1, · · · , Vr, · · · , Vn−1}

5. Else

(a) Reflect and shrink the worst Vn, producing Vrs

(b) If the new vertex Vrs is better than the second-worst vertex Vn−1

i. Keep the reflected and shrunk vertex Vrs

ii. The simplex is now ordered s = {V1, · · · , Vrs, · · · , Vn−1}

(c) Else shrink the worst vertex Vn toward the other vertices’ mean, producing Vs

i. If the new vertex Vs is better than the second-worst vertex Vn−1

A. Keep the shrunk vertex Vs

B. The simplex is now ordered s = {V1, · · · , Vs, · · · , Vn−1}

ii. Else, contract all vertices toward the best vertex, producing {V2c, · · · , Vn}

iii. The simplex has the vertices s = {V1, V2c, · · · , V(n−1)c, Vnc}

End While
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Reflection in the algorithm above entails determining the mean of all the vertices

other than Vn. The mean is a temporary vertex, Vm, that allows a line v to be created

from Vn to Vm. This line is then extended through Vm an equal distance to its original

length. The end of this line is considered the reflection of Vn because Vm acts as a

mirror, reflecting Vn to Vr.

Reflection and growing begins with the reflection described above. Rather than

extending the line an equal amount, however, the line is extended twice its original

length past Vm after reflecting. Reflection and shrinking has a similar mechanism,

but in this case the line is extended past Vm by half its original length. Figure 2.4

shows the reflection-based vertex movements.

ReflectReflect and shrink

Reflect and grow

V
n

V
m

Figure 2.4 Simplex method reflection-based movements

Shrinking reduces the extension even further by setting the new vertex Vs as halfway

between Vn and Vm. Lastly, contraction involves moving each vertex halfway toward

the best vertex. These operations are shown in Figure 2.5(a) and Figure 2.5(b).

With the exception of the contraction movement, all of the simplex movements

result in an improvement of at least one of the simplex’s vertices. This feature makes
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Figure 2.5 Simplex method shrink and contract movements

the simplex attractive as an optimizing strategy because other strategies make no

such guarantee. In addition, one of the defining characteristics of the simplex is its

ability to adapt its shape to match the function space. In example, as the simplex

encounters a region of relative flatness, its shape will expand to cross that region

efficiently by using reflect and grow movements. Likewise in constricted regions, the

simplex will use contracting movements to reduce its size enough to fit in those areas.

Because of its adaptability and its constant improvement, the simplex method is

useful in quickly and accurately determining optimal values.

However, there are a caveats. The simplex method is designed to find an optimal

value, but whether this value is the global optimum or simply a local optimum cannot

be determined. Furthermore, slight variations in the initial conditions can have a

major impact on the algorithm results. Consider the peaks function as optimized

by the simplex method with the following initial simplex s:

s = {(2.125, 1.25, 0.2804), (2.5, 0.5, 0.2292), (3.0, 1.0, 0.0124)}

The result of such an optimization is shown in Figure 2.6. Note that the peaks

geometry has been rotated 90◦CW to better display the simplex’s movements. As

would be expected, the simplex method has found the global maximum value, and
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Initial simplex

Figure 2.6 Simplex method finding the peaks global maximum

has done so in 11 movements. However, slightly modifying the initial simplex to

s = {(2.5, 0.5, 0.2292), (2.25, 1.25, 0.1858), (3.0, 1.0, 0.0124)}

produces a much different result. Referring to Figure 2.7, it is obvious that although

the simplex method has finished in 6 movements, it has found a local maximum rather

than the global maximum. Thus, the simplex method is sensitive to variations in ini-

tial conditions. This behavior is problematic, as it implies that successful optimization

using this method would require suitable initial conditions. But knowing what initial

conditions are suitable is itself an optimization problem.

Several solutions to these problems present themselves. One solution is to employ

multiple simplices with the assumption that one or more of them has suitable initial

conditions. While this will improve the chances of finding the global maximum, there

is no guarantee that any of the simplices will do so. Furthermore, it reduces the

usefulness of the algorithm by significantly increasing its runtime. Another problem

is determining an appropriate number of simplices to use.
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The obvious solution is to determine suitable initial conditions and then optimize

using one simplex. In other words, if the simplex starts in the right area, it will

consistently and accurately determine the global maximum. This approach has the

benefit of maximizing the usefulness of the simplex method in terms of its quick

runtime, but is complicated by the problem of determining the initial conditions.

Initial simplex

Figure 2.7 Simplex method finding the peaks local maximum

2.3 Stochastic algorithms

Whereas a deterministic algorithm is defined by its repeatability and consistency, a

stochastic algorithm is defined by its non-repeatability. Stochastic algorithms involve

an element of randomness in one or more of their decisions, which over the course

of repeated executions of an algorithm can lead to many more states than would be

seen by a similar algorithm that was deterministic in nature. Whereas deterministic

algorithms, given specific initial conditions, will produce one answer regardless of the

number of times they are executed, stochastic algorithms when given the same initial

conditions have the potential to produce unique answers with each execution. This
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is not necessarily a weakness of deterministic algorithms, however, because they can

easily be given different initial conditions with each execution.

As an example of a stochastic algorithm, recall the Steepest Descent algorithm dis-

cussed in Section 2.2. Converting this deterministic algorithm to a stochastic one can

be done in various ways, and one such way might involve the introduction of a random

choice into the decision of which new location to move to. Such a modification, which

can be thought of as Stochastic Descent, is shown algorithmically below. Note that

the Stochastic Descent algorithm has been created for the purpose of instruction and

to show the differences between deterministic and stochastic algorithms.

While the optimal value has not been found

1. Determine the output value of the current location

2. Determine the output values of all adjacent locations

(a) If none of the adjacent locations has an output value closer

to the optimal value than the current location, then the

current location is the optimal value

(b) Otherwise, randomly choose one of the adjacent locations

with an output value closer to the optimal value than the

current location to be the new current location

End While

The above algorithm can be used as a guide to optimize peaks. Using the same

initial conditions as those presented in the original discussion of the Steepest Descent

algorithm, which were an initial location of (−1.0, 1.0, 0.2289) and input spacing of

∆x = ∆y = 0.5, the possible moves from this position and their respective descent

values are shown in Table 2.5.

Assuming the algorithm is maximum seeking, then there are two possible moves.
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Of the two moves, (−0.5, 1.0, 2.7942) is randomly chosen as the new position. The

new legal moves from this position are shown in Table 2.6.

In this case there are two legal moves toward the global maximum, and a random

choice between them results in a movement to (0.0, 1.0, 3.6886). From this position,

the possible moves are shown in Table 2.7.

At this point there is only one legal move toward the global maximum, resulting

in a move to (0, 1.5, 7.9966). Looking at the possible moves from this position gives

the values shown in Table 2.8.

As can be seen, there are no legal maximum seeking moves. The algorithm then

terminates, returning the global maximum value of (0.0, 1.5, 7.9966). Note that in this

example, both Steepest Descent and Stochastic Descent found the global maximum in

3 movements. However, a subsequent optimization of peaks using Steepest Descent

might proceed through the locations shown in Table 2.9.

x y z ∆z
-1.5 1.0 -0.8639 -1.0928
-1.0 1.5 2.6076 2.3787
-0.5 1.0 2.7942 2.5653
-1.0 0.0 -1.6523 -1.8812

Table 2.5 Potential moves from (−1.0, 1.0, 0.2289)

x y z ∆z
-1.0 1.0 0.2289 -2.5653
-0.5 1.5 6.1956 3.4014
0.0 1.0 3.6886 0.8944
-0.5 0.0 1.4796 -1.3146

Table 2.6 Potential moves from (−0.5, 1.0, 2.7942)
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x y z ∆z
-0.5 1.0 2.7942 -0.8944
0.0 1.5 7.9966 4.3080
0.5 1.0 2.9344 -0.7542
0.0 0.0 0.9810 -2.7076

Table 2.7 Potential moves from (0.0, 1.0, 3.6886)

x y z ∆z
-0.5 1.5 6.1956 -1.8010
0.0 2.0 5.8591 -2.1375
0.5 1.5 6.2513 -1.7453
0.0 0.0 0.9810 -7.0156

Table 2.8 Potential moves from (0, 1.5, 7.9966)

In the preceding trivial example, the difference in the results obtained by Stochastic

Descent and Steepest Descent are negligible. The true differences become apparent

as both the number of dimensions increase and the input spacing decreases. Even

considering the simplicity of the example, tracing the Stochastic Descent algorithm

through all of its possible courses reveals that it can visit a total of 6 locations as

compared to Steepest Descent’s 4 locations.

Stochastic optimizing algorithms benefit from enhanced exploration abilities that

come at the expense of runtime. Because a stochastic algorithm employs random

chance to guide some aspect of its execution, it will encounter dead-ends, false trails,

and other phenomena that delay the termination of the algorithm. Some algorithms,

such as Monte Carlo, experience further delaying of termination because they do not

always move from one location to another during each iteration.
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Movement x y z
1 -1.0 1.5 2.6076
2 -0.5 1.5 6.1956
3 0.0 1.5 7.9966

Table 2.9 An alternate route to the global maximum

2.3.1 Monte Carlo

The Monte Carlo method is a classic stochastic algorithm that is often used for

relaxation techniques in system simulation [Robert and Casella, 2004]. At the heart

of the Monte Carlo method is the concept of the random walk, which involves moving

randomly from one location to another. The random movement is constrained to

be within a certain radius of movement around the current location. The following

algorithm describes the workings of the Monte Carlo method.

While the optimal value has not been found

1. Select a new location that is inside the radius of movement of

the current location

2. If the new location has an output value closer to the optimal

value than the current location, then the new location becomes

the current location

3. Otherwise, the new location is discarded in favor of the current

location

End While

The radius of movement and its relation to the current point is shown in Figure 2.8.

When a random point is drawn during the execution of the Monte Carlo method, the

radius of movement defines the area in which the new point must reside. In this
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Figure 2.8 The Monte Carlo radius of movement

example, the radius is actually a square, but any closed shape will suffice. The

current point need not even be in the center of the radius of movement either, as it

is in the figure.

To optimize a function such as peaks, the Monte Carlo method requires an initial

location and a radius of movement. As an example, consider the first few iterations

with initial location (−1.0, 1.0, 0.2289) and a square radius of movement defined by

|xn − xc| ≤ 1.0

|yn − yc| ≤ 1.0

where (xc, yc) defines the current point’s input values and (xn, yn) defines the new

point’s input values. Furthermore, assume that peaks is a continuous function.
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Drawing a point randomly from within the radius of movement might result in

(−1.8041, 0.7395,−1.2384). This point is clearly inferior to the original point, so

no movement occurs. Table 2.10 shows this first iteration and continues until the

fifth iteration.

Iteration
Current Point New point

x y z x y z
1 -1.0000 1.0000 0.2289 -1.8041 0.7395 -1.2384
2 -1.0000 1.0000 0.2289 -0.7253 1.6291 4.6568
3 -0.7253 1.6291 4.6568 -0.2345 1.1578 5.2304
4 -0.2345 1.1578 5.2304 0.4125 0.9875 2.9479
5 -0.2345 1.1578 5.2304 0.4125 1.8125 6.1716
...

...

Table 2.10 A typical Monte Carlo optimization of peaks

As can be seen from Table 2.10, the efficiency of Monte Carlo can be quite low.

Of the five iterations presented, only three discovered points that brought the algo-

rithm closer to the global maximum. This problem can be further compounded by

proximity to a global maximum. As the distance between the current point and the

global maximum decreases, so does the probability that a randomly chosen point will

improve on the current point. In fact, at the global maximum the probability of

improvement is 0.

This is not so much a liability as an interesting property of the Monte Carlo method,

and can be leveraged to produce a more efficiency-stable algorithm. By incorporating

a strategy called the One-fifth rule, the Monte Carlo method can maintain more rea-

sonable levels of runtime efficiency by reducing or expanding the radius of movement

according to the following scheme:
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The One-fifth rule

1. Calculate the algorithm’s efficiency Ie as the ratio of iterations

resulting in a movement Im to the total number of iterations It

2. If Ie < 1/5 then reduce the radius of movement by some factor

(2 is typical)

3. ElseIf Ie > 1/5 then increase the radius of movement by some

factor (2 is typical)

4. Else the radius of movement is appropriately scaled and does

not need adjusted

Figure 2.9 Monte Carlo finding the peaks global maximum

The proper use of the One-fifth rule requires the Monte Carlo algorithm to pause

periodically to evaluate the current value of the radius movement. Of course, longer

periods between pauses will make the One-fifth rule less effective in stabilizing the

efficiency of the algorithm. In any event, the Monte Carlo method employing the One-

fifth rule is limited to around one movement for every five iterations, which makes it

significantly less attractive for optimization than the simplex method.
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Figure 2.10 Monte Carlo finding a peaks local maximum

With the One-fifth rule, a simple terminating condition would be when the radius

of movement shrinks below a threshold value. This works because as the algorithm

approaches the global maximum, fewer iterations will result in a movement. As the

efficiency drops, the One-fifth rule triggers a reduction in the radius of movement,

thereby focusing the algorithm on a smaller area. The implication is that a smaller

area from which to draw a new random point is more likely to contain a point that

improves on the current point. If, on the other hand, the efficiency remains low, fur-

ther reductions in the radius of movement will result either in algorithmic termination

or enough of a focusing to raise the efficiency.

Another shortcoming of Monte Carlo is that, like the Simplex method, it will ter-

minate at a local maximum. Monte Carlo also exhibits the classic stochastic behavior

in which equivalent initial conditions will sometimes produce different results. As can

be seen in Figure 2.9, the Monte Carlo method is able to find the global maximum.

However, restarting the method with the same initial conditions also produces the

results shown in Figure 2.10. Fortunately, there are extensions to Monte Carlo that
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address all of the inadequacies previously discussed.

2.3.2 Simulated Annealing

Simulated annealing mimics the metallurgical technique of annealing [Kirkpatrick

et al., 1983]. Annealing is the process of heating a material and then slowly cooling

it to reduce the number and size of defects in the material. The introduction of

heat causes the atoms in the material to gain thermal energy. This increase in energy

allows the atoms more freedom of movement throughout the material’s higher internal

energy states. The slow cooling process affords the atoms more opportunity to wander

to and settle in a lower energy state than they were in before the heating and cooling

began. Thus, annealing has the effect of reducing the overall internal energy of the

material as each atom seeks its own local minimum of internal energy.

In the case of simulated annealing, the material is the function to be optimized

and the atoms are points in the function’s input space. Simulated annealing is an

extension of the Monte Carlo method that adds the ability to move to less optimal

points. An example of the simulated annealing algorithm is shown below:
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While the optimal value has not been found

1. Select a new location xn that is inside the radius of movement

of the current location xc

2. If xn has a value closer to the optimal value than xc, then

xc = xn

3. Otherwise, draw a uniform random number pr and compare that

number to the value pb produced by the Boltzmann distribution

for the current system temperature and change in cost function

(a) If pr ≤ pb then xc = xn

(b) Otherwise, xc is kept and xn is discarded

End While

There are a number of new terms contained in the above algorithm that require

explanation. The first new term is system temperature. Considering that metallur-

gical annealing first heats and then slowly cools the material, simulated annealing

must also account for the concept of temperature. Simply put, the system temper-

ature in simulated annealing is a value that starts high and then is slowly reduced.

Obviously, there is no actual temperature or heating involved in simulated annealing;

it is only a mechanism whereby the real-world process of annealing can be modeled

for optimization purposes.

The cost function (CF ) for the purpose of optimization is the value of the output

dimension being optimized. In general terms, the cost function is a mechanism that

allows each point in the function’s input space to be compared in some way to other

points. For optimizing Simulink models, only the proximity to the global maximum

is important, so the cost function is simply the output value corresponding to a

specific set of input values. The change in the cost function (∆CF ) is calculated

as the difference between the current point’s output value and the newly calculated
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point’s output value.

The Boltzmann distribution is the formula linking the system temperature and

the change in cost function, and produces a probability distribution. Equation (2.4)

shows the Boltzmann distribution formula, with On and Oc representing the output

values of the new point and current point respectively, and T representing system

temperature.

p = e−(|On−Oc|/T) (2.4)

Figure 2.11 shows the shape of the Boltzmann distribution with respect to cost

function change while Figure 2.12 shows the Boltzmann distribution with respect

to system temperature. As can be seen in Figure 2.11, higher temperatures equate

to a higher probability of acceptance with small changes in the cost function being

accepted most often. Even moderate changes in the cost function are accepted more

than half the time at high system temperatures. However, as the system temperature

cools, the probability of acceptance for all but the smallest changes in cost function

drop precipitously. At the lowest system temperatures, the probability of acceptance

is so low that few non-optimal moves are accepted, resulting in behavior reminiscent

of Monte Carlo.

Another term associated with simulated annealing is the cooling schedule, which

governs the initial and final system temperatures as well as the rate at which the

system is cooled. Determining appropriate values for initial and final system temper-

atures is critical to avoid excessive amounts of early stage random search and late

stage loitering. One way to do so is to assume that early stages of the algorithm

should accept non-optimal values at a certain average rate [Kirkpatrick, 1984]. After

taking a number of samples from peaks as shown in Table 2.11 and assuming 80

percent of non-optimal values are accepted, then the initial system temperature can
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Figure 2.11 The Boltzmann distribution for various values of ∆CF

be estimated as

T0 = −|∆CF |
lnp

= − 2.7268

ln(0.80)
= 12.2199 (2.5)

A similar mechanism can be used to determine final system temperature. Again

resorting to random sampling, this time with the assumption that 10 percent of non-

optimal values are accepted, the final system temperature is estimated as

Tf = −|∆CF |
lnp

= − 2.7268

ln(0.10)
= 1.1842 (2.6)

Now that the initial and final system temperatures are known, it remains only to

determine the cooling schedule itself. Of utmost importance is allowing the system to

cool slowly enough to allow it to attain a lower energy state than it started with. A
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simple but effective cooling schedule is one involving a geometric progression, which

of course can be described for initial system temperature T0 and cooling rate αc as

T0, T0αc, T0αc
2, T0αc

3, . . . , T0αc
n

which can be more concisely described by Equation (3.3).

Tn = T0α
n
c (2.7)

The cooling schedule can be implemented by adjusting the system temperature ei-

ther after each iteration or after a set number of iterations. Both strategies are shown

in Figure 2.13, and the major difference is that the latter is useful if the algorithm is

already pausing for other operations such as radius of movement adjustment. Also,
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Sample
Point Values

∆CF ∆CF
x y z

1
0.8191 -0.2945 0.0000 – –
-2.8080 -0.7454 -0.0390 -0.0390 -0.0390

2
-2.8080 -0.7454 -0.0390 – –
-1.7669 0.0308 -2.1083 -2.0692 -1.0541

3
-1.7669 0.0308 -2.1083 – –
0.0442 -1.4535 -5.6265 -3.5182 -1.8755

4
0.0442 -1.4535 -5.6265 – –
0.0974 -1.7941 -6.0885 -0.4620 -1.5221

5
0.0974 -1.7941 -6.0885 – –
0.1466 -1.8086 -6.0921 -0.0037 -1.2184

...
...

100
0.2636 -1.6367 -6.5360 – –
0.2503 -1.6039 -6.5415 -0.0055 -2.7268

Table 2.11 Sampling peaks to determine initial system temperature

the cooling rate values for pausing algorithms can be lower than those needed for

non-pausing algorithms.

Because simulated annealing allows non-optimal movements to be made, it is ca-

pable of escaping local maxima and finding the global maximum value. To do so,

the system needs to be cooled slowly so that the algorithm can accrue enough non-

optimal moves to escape from the vicinity of a local maximum. An example of the

ability of simulated annealing to escape a local maximum is shown in Figure 2.14.

In Figure 2.14, the algorithm has been initialized very close to a local maximum and

with a low system temperature. Even considering the low temperature, the algo-

rithm quickly descends from the local maximum and begins ascending toward the

global maximum.
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2.3.3 Evolution Strategy

Evolution strategy simulates the biological process of evolution to search for global

maxima [Beyer and Schwefel, 2002]. Rather than focusing on one random walker like

Monte Carlo and simulated annealing, evolution strategy creates and maintains a pop-

ulation of individuals. In its simplest implementation, a population of two individuals

is created that produces results similar to Monte Carlo. This is no coincidence, as

evolution strategy is an extension of Monte Carlo that includes multiple walkers and

mechanisms that facilitate their exploration of the input space. Indeed, the standard

implementations of evolution strategy include concepts such as self-adaptation and

recombination to produce better results [Eiben and Smith, 2003].

In evolution strategy it is common to use (µ, λ) or (µ + λ) to describe the process

of survivor selection. Note that in both cases, µ refers to the number of individuals

in the population while λ refers to the number of children generated during each

generation. During the survivor selection phase at the end of each generation, the µ

individuals are all replaced by the µ fittest individuals in the survivor pool. In the

generational case of (µ, λ), the survivor pool contains only the λ children, whereas in

the steady-state model of (µ + λ), the survivor pool contains the full population of

µ + λ individuals.

For example, Monte Carlo can be described as a (1 + 1) evolution strategy imple-

mentation. The current point would be the parent, and the new point would be the

child. The comparison of the two points to determine which is more optimal is the

same as placing both the parent and the child into the survivor pool to determine the

more fit individual.

The difference between these two strategies lies mainly in the fact that (µ, λ) selects

survivors from the children only while the latter strategy selects survivors from the
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entire population of parents and children. The generational model is better able to

leave local minima and to respond to a dynamic cost function than is the steady-

state model. Additionally, the generational model supports self-adaptation, but the

steady-state model hinders it by allowing misadapted individuals the possibility of

survival from one generation to the next.

An example of a (µ, λ) evolution strategy algorithm is shown below:

While the population has not converged

1. Mutate each genotype in the current population of µ individuals

2. Select parents from the current population to participate in re-

combination

3. Create λ new individuals through recombination of the selected

parents

4. Rank the λ children according to their fitness

5. Select the µ fittest children to replace the current population

End While

In biology a distinction is drawn between a genotype and a phenotype, and in

evolution strategy the mechanism mapping one to the other is called representation.

A genotype is defined as the blueprint for the creation of the phenotype through

representation. Conversely, the phenotype is defined as the representation of the

genotype. Evolution strategy aims to optimize the phenotype by selecting the most

fit genotypes.

Referring again to the peaks function, a genotype would include one object gene

for each of peaks ’s functional input dimensions. In other words, a peaks -specific

genotype would require two object genes because peaks requires two input values

to calculate an output value. This would produce an object genotype x having the
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form 〈xx, xy〉. The object genes all contribute to the representation of the phenotype.

Several genotypes are shown below:

x1 = 〈−1.000, 1.000〉

x2 = 〈−0.908, 2.983〉

The genotype also contains strategy information in the form of real-valued genes.

This information is used during the course of the algorithm to mutate population

genotypes into new genotypes. In the case of uncorrelated mutation with n step

sizes, one strategy gene for each of the object genes is included in the genotype. For

peaks, the strategy genotype σ would have the form 〈σx, σy〉. Each strategy gene

is responsible for the mutation of its respective object gene. A complete genotype

would be represented as a vector with the complete object genotype followed by the

complete strategy genotype, as shown in the general case below

〈x1, x2, . . . , xn, σ1, σ2, . . . , σn〉

and also for the specific case of peaks:

〈xx, xy, σx, σy〉

The object genes of the initial population of µ individuals are randomly drawn

from a uniform distribution about the input space. Each of the strategy genes is

then calculated as a percentage of the size of the input space for that gene. It is

important to initialize the strategy genes to large enough values so that mutation will

be effective. Because the strategy genes will self-adapt, erring on the side of caution by

choosing larger values for the strategy genes will only delay convergence. Table 2.12
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contains a representative population for µ = 5 with the initializing percentage for

the strategy genes equal to 1/2 of their input dimension’s range. Note also that the

convention will be to label the nth parent as pn and the nth child as cn. Because the

children have not yet been generated, only parent individuals appear in Table 2.12.

Individual
Object genes Strategy genes
xx xy σx σy

p1 0.6926 -0.5658 3.000 3.000
p2 1.7516 2.6128 3.000 3.000
p3 2.5309 2.5014 3.000 3.000
p4 1.4292 -0.5384 3.000 3.000
p5 -1.9424 2.3619 3.000 3.000

Table 2.12 Evolution strategy initial population for peaks

Mutation is the first major phase in which the population participates during an

evolution strategy optimization. Mutation operates on both the object genotype and

the strategy genotype of each individual in the population. Uncorrelated mutation

with n step sizes allows each input dimension to evolve independently of the others.

The first step in the mutation phase is to mutate the strategy genotype. Equa-

tion (2.8) gives the formula for this transformation, where τ ′ ∝ 1/
√

2n and τ ∝ 1/
√

2
√

n.

σ′i = σi · eτ ′·N(0,1)+τ ·Ni(0,1) (2.8)

Note the two components of the exponent term. The first, τ ′ · N(0, 1), represents

a common base mutation that allows for a general mutation of the genotype and

involves a random number N(0, 1) drawn from the standard normal distribution.

The second term, τ · Ni(0, 1), represents a gene-specific mutation that allows each

input dimension to mutate and evolve independently. In the latter case, Ni(0, 1) is a

random number drawn from the standard normal distribution for each gene.
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The next step in the mutation phase is to mutate the object genotype using the

newly mutated strategy genotype. Again, Ni(0, 1) represents a random number drawn

for each gene in the object genotype, and the formula is shown in Equation (2.9). To

prevent the strategy genes from approaching too close to zero, a limiting function is

used, as shown in Equation (2.10).

x′i = xi + σ′i ·Ni(0, 1) (2.9)

σ′i < ε0 ⇒ σ′i = ε0 (2.10)
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Figure 2.15 The standard normal distribution

By drawing numbers from the standard normal distribution, the mutations are

statistically expected to be near the original values. However, the randomness of the

drawing allows large mutations to occur with lower probability the farther from the

original values they occur. Figure 2.15 demonstrates this property for 10,000 normally

distributed random points and also shows the effect of having an independent strategy

gene for each object gene. The result of this effect is that as the genotypes evolve and
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self-adapt, the strategy genes will guide the direction and magnitude of mutation.

The results of the mutation phase are detailed in Table 2.13. Again, only parents

appear because the children have not yet been generated.

Individual
Object genes Strategy genes
xx xy σx σy

p1 -0.3294 -0.4881 3.6227 2.4940
p2 1.0034 2.0773 1.3791 5.0388
p3 2.5909 0.1509 2.4934 3.0830
p4 1.4807 -1.7841 6.4834 2.1462
p5 -2.9084 1.0328 1.3504 2.4796

Table 2.13 Evolution strategy population after mutation

After the mutation phase, the recombination phase begins. Evolution strategy

employs a uniform random parent selection method. A uniform random selection

provides each member of the µ individuals in the existing population an equal chance

to pass on their genes to one or more of the λ children, regardless of fitness. In

the most basic version of recombination, two parents are randomly selected from the

population and recombined to produce one new child. Thus, the production of λ new

children would require λ pairs of parents.

The exchange of genetic information through recombination can be performed us-

ing a discrete or an intermediary mechanism. In discrete recombination, the child’s

genotype is composed of genes that are randomly chosen from the parents’ genotypes,

while intermediary recombination passes the average of the parents’ genes to the child.

Thus, for parents p1 and p2, a child c would be created using

ci =





(p1,i+p2,i)

2
intermediary recombination

p1,i or p2,i chosen randomly discrete recombination

(2.11)
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for each gene i ∈ {1, . . . , n}. Furthermore, recombination can act globally or locally.

In global recombination, a new set of parents is selected for each gene in the new

child, while local recombination uses one pair of parents per child.

Evolution strategy usually uses global recombination to produce the µ children.

The actual process of global recombination is broken down into two subprocesses:

global discrete recombination of the object genes and global intermediary recombina-

tion of the strategy genes. Note that during the recombination process, the children

are kept separate from the parents, and so only parents are involved in the recombi-

nation process. Producing new children using local recombination and the mutated

population from Table 2.13 might result in the values shown in Table 2.14. Performing

global recombination on the same parent population might result in the values shown

in Table 2.15. In both tables the emphasized gene values are the ones participating

in recombination.

Note that in Table 2.14 that two parents recombine to produce a child. For example,

the parents p5 and p2 recombine to produce the child p5. The parent p2 contributes

its xx object gene, the parent p5 contributes its xy object gene, and both contribute

to the strategy genes of the child. It is also possible for a parent to contribute both

its object genes to a child during recombination, as is shown for the children c2, c3,

and c4.

The next step in the process is to select the survivors and discard the rest of the

population. This is the point at which the children genotypes are mapped to pheno-

types for ranking purposes. Recall that evolution strategy employs either generational

(µ, λ) or steady-state (µ + λ) survivor selection. Using the generational method, the

fittest µ of the λ children are selected to survive. Note that this selection is determin-

istic and is based only on the relative fitnesses of the children. Table 2.16 shows the

generational ranking and survivor selection of a population of children where (µ, λ)
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Individual
Object genes Strategy genes
xx xy σx σy

p5 -2.9084 1.0328 1.3504 2.4796
p2 1.0034 2.0773 1.3791 5.0388
c1 1.0034 1.0328 1.3647 3.7592

p5 -2.9084 1.0328 1.3504 2.4796
p4 1.4807 -1.7841 6.4834 2.1462
c2 -2.9084 1.0328 3.9169 2.3129

p5 -2.9084 1.0328 1.3504 2.4796
p3 2.5909 0.1509 2.4934 3.0830
c3 2.5909 0.1509 1.9219 2.7813

p5 -2.9084 1.0328 1.3504 2.4796
p4 1.4807 -1.7841 6.4834 2.1462
c4 -2.9084 1.0328 3.9169 2.3129

p5 -2.9084 1.0328 1.3504 2.4796
p5 -2.9084 1.0328 1.3504 2.4796
c5 -2.9084 1.0328 1.3504 2.4796

Table 2.14 Evolution strategy population after local recombination

= (5, 10). The less often used steady-state method ranks the union of the children

and the parents and selects the fittest µ individuals to survive. Table 2.17 shows a

steady-state ranking and survivor selection for a population of parents p and children

c where (µ + λ) = (5 + 5). For both tables, the ranking has already been completed

and only the individuals in the survivor pool are shown.

For peaks, the genotype to phenotype mapping mechanism is

z = peaks (xx, xy)

so that the child c3 = 〈1.5678, 2.1278, 0.1254, 6.3985〉 in Table 2.16 would have a

phenotype z, of

z = peaks (1.3598,−0.5283) = 2.6687
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Individual
Object genes Strategy genes
xx xy σx σy

p1 -0.3294 -0.4881 3.6227 2.4940
p2 1.0034 2.0773 1.3791 5.0388
p3 2.5909 0.1509 2.4934 3.0830
p4 1.4807 -1.7841 6.4834 2.1462
p5 -2.9084 1.0328 1.3504 2.4796

c1 -0.3294 0.1509 3.9312 2.7813

p1 -0.3294 -0.4881 3.6227 2.4940
p2 1.0034 2.0773 1.3791 5.0388
p3 2.5909 0.1509 2.4934 3.0830
p4 1.4807 -1.7841 6.4834 2.1462
p5 -2.9084 1.0328 1.3504 2.4796

c2 -2.9084 2.0773 1.9219 2.6146

Table 2.15 Evolution strategy population after global recombination

The final facet of evolution strategy implementation to be discussed is selection

pressure. Selection pressure refers to the competition among individuals to be among

those chosen to survive. It is analogous to biological selection pressure, in which a

population of individuals must compete for limited resources. In evolution strategy,

selection pressure is high, with

µ

λ
=

1

7

High selection pressures significantly reduce the number of generations required for

a single superior individual to take over a population. Known as the takeover time,

it is calculated using the formula in Equation (2.12). For a typical population size of

(15, 100), the takeover time would be τ ∗ ≈ 2. In other words, only two generations

would be necessary for one copy of a superior individual to take over the population.

The general shape of the selection pressure curve is shown for various values of µ in
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Individual
Genotype Phenotype

Rank
xx xy z

c3 1.3598 -0.5283 2.6687 1
c9 0.6432 0.7793 1.5291 2
c5 -0.3605 2.6003 1.2084 3
c7 2.0354 0.7727 0.7276 4
c2 -1.0798 2.7606 0.2431 5

Survival threshold
c8 -2.1974 -1.7572 0.0364 6
c4 1.4674 -1.3923 -0.3302 7
c10 -0.7771 0.4509 -0.9450 8
c1 -1.7162 0.8610 -1.1207 9
c6 1.1000 -1.7246 -2.1497 10

Table 2.16 Evolution strategy population showing generational survivor se-
lection

Figure 2.16

τ ∗ =
ln λ

ln(λ/µ)
(2.12)
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Individual
Genotype

Phenotype Rank
xx xy

p1 -0.3294 -0.4881 3.5099 1
c3 1.3598 -0.5283 2.6687 2
p2 1.0034 2.0773 1.9283 3
c5 -0.3605 2.6003 1.2084 4
c2 -1.0798 2.7606 0.2431 5

Survival threshold
p3 2.5909 0.1509 0.2029 6
p5 -2.9084 1.0328 -0.0195 7
c4 1.4674 -1.3923 -0.3302 8
p4 1.4807 -1.7841 -0.6583 9
c1 -0.3294 0.1580 -1.1207 10

Table 2.17 Evolution strategy population showing steady-state survivor se-
lection
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CHAPTER 3 METHODS

This chapter details the implementations that were written throughout the course

of the research discussed in this paper. Because the objective was to create a proof-of-

concept constraint determination tool for use with Simulink models, all of the imple-

mentations were written in Matlab. Any interested readers are encouraged to email

the author (chap.alex@hotmail.com) or Dr. Joel Henry (joel.henry@mso.umt.edu)

for any source code written for this research.

3.1 The MATLAB function peaks

Much of the early research into useful optimization strategies relied on the peaks

function, and while it was discussed in Section 2.1.1, it is worthwhile to reiterate

and expand here. As was stated before, peaks is a Matlab built-in function whose

internal function is given in Equation (3.1). Its geometry is reprinted in Figure 3.1.

z =3(1− x)2e−(x2)−(y+1)2 − . . .

10(
x

5
− x3 − y5)e−x2−y2 − . . .

1

3
e−(x+1)2−y2

(3.1)

Recall that peaks has two input dimensions and one output dimension, produc-

ing a function whose inputs and outputs are continuous. Its dimensionality makes
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Figure 3.1 The Matlab function peaks

visualization of any optimizing algorithms easy and informative. In addition, it is

a function in both mathematical and computer science terms. It is a mathematical

function because each set of inputs produces one and only one output value. It is

a function by computer science standards because it can be called with a parameter

list, and upon completion it returns a value. This feature is important also because

Simulink models have a similar form, in that they also are called with a parameter

list and return a set of values.

One of the most interesting features of peaks is that it has multiple local maxima

and minima, making it attractive as a test bed for potential optimization strategies.

Any strategy that can successfully and repeatedly optimize peaks is obviously bet-

ter suited to Simulink model optimization than a strategy that gets stuck in local

maxima. Although the full range of real values can be passed into peaks, the input
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space is effectively limited by the construction of the internal function to values be-

tween ±3. The cleverly designed function produces a rather bland, featureless output

geometry for any input values outside ±3. This conveniently constrains the input

space and allows the development of strategies without having to account for large

input spaces prematurely.

One final note about peaks is that rather than calling it directly from the optimiz-

ing algorithm, Matlab allows the use of function pointers. This convenience allows

the algorithms to be developed using a generic function pointer that can point to any

function desired. In example, the following code shows a function call to peaks

function z = eval_peaks(point)

z = peaks(point(:,1), point(:,2));

end

The consequence of directly calling a function from within the optimizing algorithm

is the difficulty in maintaining the source code as the function to be optimized is

changed. Delving into the code to make all the necessary changes is both time-

consuming and fraught with dangers. At the heart of the problem is the need to

change the algorithm’s treatment of the function to be optimized. The need for code

modification cannot be eliminated, but its impact can be minimized.

Using a function pointer as the function to be optimized allows the full range of

code modification without the issues normally involved. By encapsulating all the

function-specific code into its own function and pointing the optimizing algorithm to

that function, the optimizing algorithm code can remain unchanged no matter what

function is being optimized. The following code snippet shows this concept:
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function z = eval_func(func, point)

z = func(point);

end

Note that the first parameter to the function is the function pointer to the code that

handles the actual function call. The second parameter is a data structure containing

all the input values necessary to call the function.

This approach introduces more complexity than the previous approach because the

optimizing algorithm must be written with as much generality as possible. Every

variable must be an array, a struct, or other generic data structure that can store ar-

bitrary amounts of information, and the custom function code must be able to retrieve

this information reliably. However, this generality allows the optimizing algorithm’s

usefulness to extend well beyond its initial scope. In addition, such generality in

design mimics the object-oriented model of code reuse.

Much of the work involving optimization of peaks was later found to be insuf-

ficient in the optimization of Simulink models. This early work is included here

for completeness and to show the process of research and experimentation that was

conducted in this area.

3.1.1 Monte Carlo

The first method explored was Monte Carlo because its simplicity made it a natural

first choice for a potential optimization strategy. The initial implementation of this

optimization strategy involved one walker (see Figure 3.2), but was quickly modified

to include multiple walkers (see Figure 3.3). For this limited implementation, the

One-Fifth rule was ignored and the radius of movement was set at an arbitrary value

of 0.1. As can be clearly seen from Figure 3.3, using multiple walkers is prudent
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when implementing Monte Carlo because of its tendency to find local maxima, as

was mentioned in Section 2.3.1.
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Figure 3.2 Monte Carlo with one walker

−2

0

2

−3
−2

−1
0

1
2

3

−6

−4

−2

0

2

4

6

8

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Figure 3.3 Monte Carlo with multiple walkers

Another issue that was resolved in this early work was to determine an appropriate

stopping condition. The method used was a percent difference between the most

recent move’s output and the previous location’s output. In example, for two points

pp and pc, which are the previous and current locations respectively, then the percent

change is 854.18 percent, as shown below.
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pp = (−1.4532, 2.7897, 0.0838)

pc = (−.9875, 2.4568, 0.7996)





|0.7996− 0.0838|
0.0838

= 8.5418

The stopping condition would compare this value to some preset minimal value,

such as 0.01 for 1 percent or 0.001 for .1 percent. This naive approach was found

later to be wanting, and a more appropriate stopping condition is presented in a later

section. As a preview of the reasoning, any output geometry that is flat will cause

premature stopping even if the walkers are still moving. This is because the relative

difference in output value extrema may only differ by a few percent. In addition, care

must also be taken to check for a stopping condition only if the walker has moved.

For obvious reasons, the percent difference will be zero if the walker has not moved

during an iteration.

Figure 3.4 Boundary conditions for a uniform random movement

One final issue that arose in this early work was the handling of walker movement
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Figure 3.5 Boundary conditions for a normal random movement

near boundary conditions. The behavior of a walker near one or more boundaries is

much different than a movement in open space. Figure 3.4 shows potential uniform

random movements from (2.75,−2.75, 0) with a radius of movement of

|xn − xc| ≤ 0.5

|yn − yc| ≤ 0.5

The obvious question is what to do with the newly generated points that are clearly

outside input boundaries. One potential solution is to consider any move beyond the

boundary as a non-optimizing move and reject it. Thus, as a walker approaches a

boundary, a larger percentage of potential moves will be rejected and less movement

will occur. Another solution is to project the movement onto the boundary itself, as

shown in Figure 3.6. Using the well-known similar triangles relations, the location
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Figure 3.6 Resolving boundary condition issues using similar triangles

pn1 can be calculated from

pn1 = pc + min

(
pB − pc

p1 − pc

)
(p1 − pc) (3.2)

where all the points are in vector form, pB is the value at the crossed boundary, and

the min term is calculated for each input dimension and the smallest resulting value

is used. For p1, which only crosses one boundary, pB = 3.00. In this case the min

function reduces to a trivial fraction. The location of pn1 is

pn1,x = 2.75 +
(

3.00−2.75
3.50−2.75

)
(3.5− 2.75) = 3.00

pn1,y = −2.75 +
(

3.00−2.75
3.50−2.75

)
(−2.00− (−2.75)) = −2.50

resulting in pn1 = (3.00,−2.50). The next potential location, p2, crosses two bound-
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aries. The min function is no longer trivial, and both dimensions must be checked.

(
pB,x−pc,x

p2,x−pc,x

)
=

(
3.00−2.75
3.50−2.75

)
= 1/3

(
pB,y−pc,y

p2,y−pc,y

)
=

(
−3.00−(−2.75)
−4.00−(−2.75)

)
= 1/5

The minimum border crossing produces 1/5 as the limiting ratio, and so the new

location pn2 is

pn2,x = 2.75 + (1/5) (3.5− 2.75) = 2.90

pn2,y = −2.75 + (1/5) (−4.00− (−2.75)) = −3.00

resulting in pn2 = (2.90,−3.00).

Other techniques involve discarding the current point in favor of a newly chosen

random point or treating the boundaries as mirrors against which new locations reflect

back into the search space. However, these techniques favor interior locations over

boundary locations. Considering the optimization of Simulink models is a black-box

endeavor, favoring interior points over boundary points is not necessarily a successful

strategy. By allowing the search to include the boundaries through limiting ratios, a

more complete search can take place.

3.1.2 Simplex method

The next major implementation was of the simplex method, again attempting to

optimize peaks. In this case, the stopping condition was more involved than the

percent difference calculation used in the original Monte Carlo implementation. The

centroid of a simplex is the mean of all the vertices in the simplex, and is similar

to the center of mass for the simplex. Using the centroid as a reference point, the

distances to each vertex in the simplex were summed to get an overall length for
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the simplex. When the overall length dropped below a set value, the simplex was

considered to have converged. The value of the convergence threshold was set to

0.01. For an example, see Table 3.1.

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2

0

2

−2

0

2

−10

−5

0

5

10

Figure 3.7 Simplex method with one simplex

Vertex
Vertex values centroid C ||V − C|| ∑ ||V − C||

Vx Vy Vz Cx Cy Cz

V1 2.50 -1.75 0.0063
0.500 -1.75 -1.535

2.5250
8.0662V2 -1.00 -1.5 0.1483 2.2685

V3 0.00 -2.00 -4.7596 3.2727

Table 3.1 Determining simplex size for convergence

Figure 3.7 shows a typical result from the first attempt at optimization of peaks

using the simplex method. It quickly became apparent that one simplex would not be

sufficient to optimize peaks, so the implementation was modified to include multiple

simplices. Figure 3.8 shows typical results from a multiple simplex optimization.

Disappointingly, even multiple simplices were not enough to optimize peaks.
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Figure 3.8 Simplex method with five simplices

3.2 The random function

The main contributor to the creation of the random function generator was the de-

ceptively simple geometry of peaks. While at first glance peaks is a good candidate

for optimization, the global maximum is rather large and so controls a significant

portion of the input space. Because the global maximum has a powerful influence

over the function’s geometry, it leads to overly positive optimization results. Also,

the geometry of peaks is well-known and relatively uncomplicated. As a conse-

quence, otherwise general optimization strategies could be inadvertently modified to

optimize peaks. In essence, the familiarity of peaks could drive the construction of

an optimization strategy and therefore destroy its generality.

To combat these two serious issues, a random function generator was implemented.

Its purpose was to randomly generate a two-input, one-output function similar to

peaks. The similarity to peaks allowed visualization of optimization attempts,

which provided valuable feedback regarding strengths and weaknesses of the optimiz-
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ing algorithms.

At the heart of the random function generator was a matrix of random numbers.

The matrix was generated as the basis for the random function’s output values. The

granularity of the matrix was defined as the value spacing for each input dimension.

As an example, consider a random function for which the input constraints are equal

to those for peaks and a granularity of ∆X = ∆Y = 1. The matrix of random

numbers would be a 7-by-7 matrix of values, as shown below. Note that the first

entry, (.5162), would be the output value corresponding to an input of (−3.00,−3.00),

while the second entry, (.3693), would correspond to an input of (−2.00,−3.00).

z(x, y) =




.5162 .3693 . . . .3342 .8259

.2252 .0295 . . . .4341 .3353

...
...

...
...

...

.9706 .4331 . . . .0641 .6237

.8215 .6111 . . . .5217 .2679




Of course, Matlab ’s random number generator produced pseudo-random num-

bers. That meant that there was some underlying order to the sequence of numbers

produced by the random number generator. Because of the underlying order, it was

possible to force Matlab to reproduce a sequence of random numbers. This process

is known as setting the random seed, and was used to be able to reproduce the same

random function at different times and locations.

Once the random output matrix was generated, it was passed through a series

of discrete Laplacians. The discrete Laplacian had the effect of aging the output

geometry in much the same fashion as wind and rain age the landscape. Finally, the

output matrix was scaled to produce an arbitrary output geometry. Thus, a random



65

Rangex −3 ≤ x ≤ 3
Rangey −3 ≤ y ≤ 3
Rangez −10 ≤ z ≤ 10

Granularity 3
Age 0

−3
−2

−1
0

1
2

3

−3
−2

−1
0

1
2

3

1

2

3

4

5

6

7

8

9

Figure 3.9 Random function generation example I

function could be generated with arbitrary input and output geometries. Two such

random functions are shown in Figure 3.9 and Figure 3.10.

3.2.1 Simplex method

The simplex method implementation received an overhaul in an attempt to im-

prove on its optimizing ability. The largest impediment to its use as an optimizing

algorithm is its inability to escape local maxima. With this in mind, momentum

was incorporated into the simplex method. The idea of simplex momentum draws

from the real-world concepts of inertia and momentum and is displayed graphically

in Figure 3.11.

Starting from the original location P0, a movement to P1 creates a momentum

vector in that direction. A subsequent movement to P2 is further displaced by the

momentum vector generated in the original move from P0 to P1. The amount of dis-

placement due to momentum depends only on the percentage of the previous move-
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Figure 3.10 Random function generation example II

ment that contributes to momentum, and is typically a percentage between 0 percent

and 100 percent. A momentum contribution of 50 percent would result in a movement

from P1 to P2a, while a contribution of 100 percent would result in a movement from

P1 to P2b.

For a simplex, momentum is based on the centroid rather than any single vertex.

The difference between two successive simplices’ centroids determines the magni-

tude and direction of momentum. A sequence of simplex movements in the presence

of 50 percent momentum contribution is shown in Figure 3.12. The initial sim-

plex S1 = {P2, P3, P1} has a momentum vector of V1 = 〈0, 0〉. It moves to simplex

S2 = {P4, P2, P3}, which produces a momentum vector of V2 = 〈0.5, 0.5〉. The next

movement would be to S3 = {P5a, P4, P3}, but the momentum vector contributes

an additional displacement from P5a to P5b. The new simplex S3 = {P5b, P4, P3}
has a momentum vector V3 = 〈−0.0833, 0.9167〉. The final movement shown is to

S4 = {P6b, P5b, P3} due to the contribution of V3.

With the additional displacements due to momentum, walkers can escape local
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Figure 3.11 Momentum’s effect on point movement
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Figure 3.12 Momentum’s effect on simplex movement
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maxima. Naturally, the contribution of momentum needs to be large enough to escape

a local maximum and its area of influence. However, too large a value for momentum

will cause the simplex to precess around a potential global maximum rather than

converge. This sensitivity and the marginal gains due to its use ultimately led to the

rejection of momentum as an extension to the simplex method.

3.2.2 Simulated annealing

Simulated annealing was the next optimizing algorithm implemented. Nearly all of

the techniques and strategies learned from the previous attempts were incorporated

into the simulated annealing implementation. Because simulated annealing is an

extension to the Monte Carlo method, much of the original code was reused. That

allowed the easy incorporation of a static radius of movement, and a dynamic radius

of movement was also implemented whose basis was the One-Fifth rule.
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Figure 3.13 Simulated annealing with 1 walker
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Figure 3.14 Simulated annealing with 3 walkers

Simulated annealing follows a different route to completion than Monte Carlo. Be-

cause it is possible for simulated annealing to move to less optimal locations, it is the

system temperature that determines when the algorithm will finish. If a static radius

of movement is implemented, then the system temperature is the only determining

factor for algorithm termination. However, if a dynamic radius of movement is im-

plemented, then a second terminating condition can be enforced for walkers whose

radius of movement has become smaller than some threshold value.

For this work, simulated annealing was implemented to allow an arbitrary number

of walkers. Figure 3.13 shows simulated annealing with one walker, while Figure 3.14

employs three walkers. For this work, both static and dynamic radii of movement

were implemented and tested for their usefulness in optimizing the random function.

The cooling schedule, shown as the stepped line in Figure 2.13, was a geometrically

decreasing progression of the form
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Ti+1 =





αc ∗ Ti mod (i, I/T) = 0

Ti mod (i, I/T) 6= 0

(3.3)

where αc = 0.95 and the initial and final system temperatures were calculated by a

taking a number of random samples and applying Equation (2.5) and Equation (2.6).

Furthermore, the maximum number of iterations until termination, Imax, was set to

1500, and the number of iterations between temperature changes, I/T , was calculated

using the formula shown in Equation (3.4).

I/T =

⌊
Imax ·

(
log αc

log (Tf/T0)

)⌋
(3.4)

One side effect of using the floor function in Equation (3.4) is that it introduces an-

other terminating condition to simulated annealing. For example, consider the data

in Table 3.2. Recalling that the temperature is changed after I/T = 32 iterations and

knowing from Equation (2.7) that n = 45 temperature changes occur between T0 and

Tf , then 32 ∗ 45 = 1440 iterations are required to cool from the initial system tem-

perature to the final system temperature. Thus, the maximum number of allowable

iterations, the final system temperature, or the radius of movement can all cause the

algorithm to terminate.

T0 13.25
Tf 1.27
αc 0.95

Imax 1500
I/T 32

Table 3.2 Example data for determination of cooling schedule

To determine an adequate number of random samples to use for these calculations,

an exponential growth formula was used. This formula was based on the observation,
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Figure 3.15 Number of samples required to determine system temperature

shown graphically in Figure 3.15, that if s regularly spaced samples were taken for

each input dimension, then the number of samples N needed for d dimensions would

be

N = sd (3.5)

Sample Number of dimensions, d
spacing, s 2 3 4 · · · 10

2 4 8 16 · · · 210

3 9 27 81 · · · 310

4 16 64 256 · · · 410

...
...

...
...

. . .
...

10 100 1000 10000 · · · 1010

Table 3.3 Number of samples needed to determine system temperatures

This relationship is shown in Table 3.3. For the optimization of the random func-

tion, s = 10 was used, which required at least 100 random samples to determine

system temperatures. One important note is that only sample pairs that produced a

non-optimal move were included in N .
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3.2.3 Combined approach

The combined approach is a novel approach to function optimization. It is a multi-

ple stage algorithm that starts with simulated annealing and finishes with the simplex

method. The main reason behind the implementation of the combined method was

simulated annealing’s poor performance with respect to runtime. In the worst case

simulated annealing has an exponential runtime, which makes it infeasible as an op-

timizing strategy for functions of high dimensionality.
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Figure 3.16 The combined approach

Simulated annealing’s performance is very tightly linked with system temperature.

High system temperature performance is essentially random due to the large number

of non-optimal moves that are accepted. Little progress toward the global maximum

is made during this phase. Likewise, little progress is made during the lower system

temperatures. Low system temperatures will still allow slightly non-optimal moves,

producing a precession around the global maximum as shown in Figure 3.17. It is

the midrange system temperatures that make the most progress toward the global

maximum.
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Figure 3.17 Low temperature simulated annealing precession
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The high temperature range was eliminated altogether and because the low tem-

perature performance was similar to Monte Carlo, it was replaced by the simplex

method. This modification produced a general performance curve that is shown in

Figure 3.18. Note that the simulated annealing phase begins with Th, the high system

temperature, and ends at Tc, the low system temperature. Upon the completion of

the simulated annealing phase, the simplex method initializes and terminates in the

usual way.
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Figure 3.18 The combined approach performance curve

The idea behind the combined method is to contain the inefficiency of simulated

annealing at its temperature extremes. It is not so important to finish at the global

maxima using simulated annealing as it is to get finish at a location under its influence.

If simulated annealing can terminate at an appropriate location, then the simplex
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method can reach the global maximum from that location much more quickly and

accurately.

Obviously, care must be taken when choosing Th and Tc. The choice of Th will

mainly influence the runtime because it controls the amount of random searching

performed. The choice of Tc is more important, as it controls the transition between

simulated annealing and the simplex method. A Tc value that is too high may cause

simulated annealing to terminate prematurely, resulting in a lower probability of the

simplex method reaching the global maximum. For this work, the values of Th and

TC were chosen using Equation (3.6) and Equation (3.7) to maximize the efficiency

of simulated annealing without sacrificing any of its ability to explore the function’s

geometry.

T0 = −|∆CF |
lnp

= − 2.7268

ln(0.80)
= 12.2199 (3.6)

Tf = −|∆CF |
lnp

= − 2.7268

ln(0.10)
= 1.1842 (3.7)
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Figure 3.19 Walker positions at the end of the simulated annealing phase
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Figure 3.20 Simplex positions at the start of the simplex method phase

This implementation of the combined approach employed multiple walkers in the

simulated annealing phase. Because the random function had a dimensionality of

three, three walkers were used. In addition, the most optimal point seen during the

simulated annealing phase was tracked (see Figure 3.19). At the beginning of the

simplex method phase, four simplices were created (see Figure 3.20). Each of the

simplices had one of the final points from the simulated annealing phase as a vertex

and the other vertices were randomly chosen. This multiple walker/simplex approach

was used to further increase the probability of finding the global maximum.

The reason for multiple simplices was to minimize the impact of the premature

completion of the simulated annealing phase. Because the simulated annealing phase

was not run to convergence, it was possible that one or more final walker locations

was at or near a local maximum at the algorihtm’s completion. By creating multiple

simplices, the independence of each walker could be preserved during the simplex

method phase. In addition, the amount of agreement or disagreement between the

simplices at the end of the simplex phase could uncover more information about the

effectiveness of the combined approach.
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3.3 The Simulink ABS brake model

The ABS brake model is a built-in Matlab Simulink model. It models the anti-

lock braking system in a vehicle and is shown in Figure 3.21. Essentially a Simulink

model is a series of blocks that are wired together, not unlike a circuit diagram.

Whereas the components of a circuit diagram strictly model electrical structures

such as resistors and inductors, the components of a Simulink model can represent

anything from constants to functions to entire flight control subsystems. Each block

can contain one or more variables as well as an internal state. Some models are

completely self-contained with their own data stores, but the ABS model relies on

variables stored in the Matlab workspace.

The ABS model is attractive for testing optimization algorithms because it models

a familiar system and also because it has modest number of inputs. Furthermore,

its output, stop time, is the amount of time required for the vehicle to come to rest

from its initial velocity. Thus, the goal of optimizing the ABS model would be to

determine the combination of input values that minimize the stopping time.
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Figure 3.21 The ABS braking Simulink model

Because the ABS model relies on Matlab workspace variables, any of the variables
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that it relies on can be considered an input dimension. This allows the ABS model

to attain a range of dimensionalities limited only by the number of variables required

to simulate the model. The variables used by the ABS model can be partitioned into

vehicle-specific variables and ABS-specific variables. It makes little sense to optimize

the ABS model using any of the vehicle-specific variables as input dimensions, as

they are outside the control of the ABS model. For this reason and also to limit the

scope of the experimentation, only the variables shown in Table 3.4 were considered

for inclusion in the input space.

Block Name Variable
1/I I

Desired relative slip slip const
Brake Pressure PBmax
Force & Torque Kf

ctrl ctrl
Hydraulic Lag TB

Table 3.4 Possible ABS model input dimensions

The ABS model was simulated for dimensionalities ranging between 3 and 7. For

the dimensionality of 3, only the I and slip const variables were included as input

dimensions and the rest were given constant values. For the dimensionality of 8, all

of the variables in Table 3.4 were included in the input space. The input dimensions

included in each of the ABS model configurations are shown in Table 3.5. Note that

in each case, the single output dimension was stop time.

The ABS braking model was originally configured to set its variables, simulate a

braking event, and graphically display the results. To modify the model to allow

optimization activities, the normal behaviors were removed and constraints were cre-

ated for each of the input dimensions. The constraints, shown in Table 3.6, were

designed such that the original values for each variable fell roughly in the center of



79

Dimensionality Input Dimensions

3 {I, slip const}
4 {I, slip const, PBmax}
5 {I, slip const, PBmax, Kf}
6 {I, slip const, PBmax, Kf, ctrl}
7 {I, slip const, PBmax, Kf, ctrl, TB}

Table 3.5 ABS model input dimension configurations

its respective input dimension’s range. In example, the original ABS braking model

value for slip const was 0.2, and so the range for its input dimension was set to

0 ≤ slip const ≤ 0.5.

Dimension Lower constraint Upper constraint

I 0.5 10
slip const 0 0.5
PBmax 100 2000

Kf 0.5 2
ctrl 0.5 2
TB 0.01 1

Table 3.6 ABS model input dimension constraints

The input dimension constraints were set to the values shown in Table 3.6 to mimic

what an inexperienced tester might do under similar circumstances. In fact, the value

for TB was deliberately chosen so that the original model value of TB = 0.01 became

the lower bound of its range. This skewed choice of range values should also illuminate

an optimization algorithm’s performance at the input boundary.

3.3.1 Combined approach

The combined approach required very little modification to optimize the ABS brak-

ing model, because of the decision to use function pointers rather than actual functions

in the algorithm. Nevertheless, the experimentation with the random function gen-
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erator illuminated some deficiencies in the combined approach that were addressed

in ABS braking model implementation. The first major modification involved the

determination of the cooling schedule.

Recall that for the random function the determination of the upper and lower sys-

tem temperatures involved approximating a regular division of the two input dimen-

sions by randomly sampling points from the input space. For example, subdividing

each input dimension into two sub-dimensions, as in Figure 3.15, produces four points.

By randomly sampling points until four non-optimal moves are recorded, the average

magnitude of a non-optimal move could then be calculated. This value was then used

to determine Th and Tc using Equation (3.6) and Equation (3.7).

While this approach may be appropriate for low dimensionality Simulink mod-

els, complex models will spend more time determining system temperatures than

is feasible. In fact, even for the six input dimensions of the ABS braking model,

this approach quickly becomes burdensome. To combat this exponential problem,

a short-circuit mechanism was implemented that allowed the sampling to terminate

early. The stopping condition was again based on a percent difference, but was not

checked until the actual number of random samples had surpassed
√

N . Specifically,

the number of divisions per input dimension was set to s = 10, and the percent

difference threshold was set to 0.1 percent.

This approach allowed the input space to be adequately sampled so that appropriate

system temperatures could be determined. It also kept the amount of over-sampling

to a minimum by allowing the temperature determination algorithm to terminate

early if no significant temperature changes have been made. While this strategy is

by no means ideal, it was a good heuristic that produced system temperatures that

allowed the simulated annealing phase to remain competitive in terms of number of

model calls.
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Another departure from the random function implementation of the combined ap-

proach concerned the number of walkers employed by the simulated annealing phase.

In light of the simplex method’s requirement of n + m starting vertices, where n and

m refer to the number of input and output dimensions respectively, n + m− 1 walk-

ers were employed in the simulated annealing phase. By treating a multiple-output

Simulink model as a series of single output models, the value of m could be set to

1. This produced a requirement of n walkers during the simulated annealing phase

and n + 1 vertices for the simplex method phase. The remaining vertex was created

from the best point seen during the simulated annealing phase.

The decision to reduce the number of simplices was based on the observation that

the simplex method phase of the original combined approach implementation was

wasting model calls. Had the goal been to discover all of the global and local maxima,

then the use of multiple simplices would have been warranted. Considering the sim-

ulated annealing phase was also returning the best point seen, then only one simplex

was needed in any event and so the others were removed from the implementation.

3.3.2 Evolution Strategy

The implementation of an evolution strategy algorithm for the optimization of

the ABS braking model followed the outline given in Section 2.3.3. It employed a

(µ, λ) = (105, 15) generational model for children creation and survivor selection.

The object parameters for the initial population were all randomly chosen from the

input space, and the strategy parameters were chosen using the formula given in

Equation (3.8), where In is the nth input dimension with upper and lower range

constraints In,U and In,L and σn is its corresponding strategy parameter.

σn =
In,U − In,L

2
(3.8)
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Considering that the input ranges will likely have dissimilar ranges and scales,

separate values for the minimum strategy parameter value ε0 were kept. This resulted

in an array of values of the form (ε0,1, ε0,2, . . . , ε0,n). Equation (3.9) shows the formula

used to create the array.

ε0,i = .001(Ii,U − Ii,L) (3.9)

As a further constraint on the strategy parameters, any changes that resulted in

more than a five-fold reduction of a strategy parameter was limited to that value.

This additional requirement was designed to ease boundary condition behavior in

which an individual would be crippled by a severe but otherwise acceptable reduction

in one or more of its strategy parameters. In essence, the ε0,n value was designed

to limit the long-term value of the strategy parameters, while the second constraint

worked in the short-term to moderate the value of strategy parameters.

Mutation was performed first on the strategy parameters and then on the object

parameters for each individual in the population. The values for τ ′ and τ are given

in Equation (3.10), where n was the number of strategy parameters.

τ ′ = 1/
√

2n (3.10)

τ = 1/
√

2
√

n (3.11)

Any boundary crossings as a result of mutation were handled using Equation (3.2),

with both the object and strategy parameters receiving adjustments. The object

parameters are scaled according to the similar triangles method shown in Figure 3.6,

while the strategy parameters become the product of the previous strategy parameter
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values and the minimum boundary crossing ratio. Table 3.7 shows the adjustments

made for an individual that crosses both the I and slip const upper boundaries of the

two-input ABS braking model. In this case, the minimum boundary crossing ratio is

rmin = 0.2.

State
Object genes Strategy genes
I slip const σI σslip const

before mutation 9.000 0.400 0.200 1.250
after mutation 12.000 0.900 0.375 0.875

after adjustment 9.600 0.500 0.040 0.250

Table 3.7 Evolution strategy boundary crossing example

Recombination of the object parameters was accomplished using global discrete

recombination. For the strategy parameters, global intermediary recombination was

used. In the case of the strategy parameters, two parents were selected to participate

in each global intermediary recombination, resulting in the child having the average

of the two parents’ parameters. Finally, survivor selection was generational with a

selection pressure of µ/λ = 7.

This implementation of the evolution strategy algorithm was limited to complet-

ing 50 generations before termination. To determine whether the population had

converged, first the maximum and minimum values for each input dimension were

determined. Next, the mean value for each input dimension was calculated. Finally,

the normalized spread NSnwas calculated for each input dimension In using the for-

mula given in Equation (3.12), where max(In) and min(In) represent the maximum

and minimum input dimension values, respectively, currently held by individuals in

the population. If the normalized spread value was not within 1 percent for all input

dimensions, then the population had not converged and the algorithm would continue.
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Table 3.8 shows a representative population of individuals being considered for

convergence and Table 3.9 shows the calculations made to determine the convergence

of each input dimension. Note that for convergence, only the object parameters are

important and the strategy parameters are ignored.

NSn =

∣∣∣∣
max(In)−min(In)

mean(In)

∣∣∣∣ (3.12)

As can be seen, it is clear that the input dimension I has converged to within 0.96

percent, while the input dimension slip const has converged to within 2.172 percent.

Using the minimum convergence value of 1 percent as a guide, the population has not

converged due to the slip const input dimension.

Individual
Object genes
I slip const

1 0.520 2.93
2 0.524 2.61
3 0.522 2.50
4 0.523 2.72
5 0.519 2.36

Table 3.8 Evolution strategy population data

Metric
Input dimension
I slip const

max 0.5240 2.93
min 0.5190 2.36
mean 0.5216 2.624

NS 0.0096 0.2172

Table 3.9 Evolution strategy convergence data
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3.3.3 Experimental setup

This section describes the experimental setup for comparing the effectiveness of

the algorithms described in Section 3.3.1 and Section 3.3.2. Five experiments were

run for each algorithm, and the specifics of each experiment are given in Table 3.10

and Table 3.11. For example, the first experiment run required the ABS braking

model to be configured to have two input dimensions and then each algorithm ran

100 complete optimizations of the model.

Experiment Input Dimensions Optimizations

1 {I, slip const} 100
2 {I, slip const, PBmax} 100
3 {I, slip const, PBmax,Kf} 100
4 {I, slip const, PBmax,Kf, ctrl} 100
5 {I, slip const, PBmax,Kf, ctrl, TB} 100

Table 3.10 ABS braking model experiment specifics for the combined ap-
proach

Experiment Input Dimensions Optimizations

1 {I, slip const} 100
2 {I, slip const, PBmax} 100
3 {I, slip const, PBmax,Kf} 100
4 {I, slip const, PBmax,Kf, ctrl} 100
5 {I, slip const, PBmax,Kf, ctrl, TB} 100

Table 3.11 ABS braking model experiment specifics for evolution strategy

In each experiment, the total running time of the algorithm, the total number of

model calls, and both the best point seen and all final points were recorded. From the

combined approach’s perspective, the final point was the centroid of the simplex at the
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conclusion of the simplex method. In the case of evolution strategy, the most optimal

point in the final generation was recorded as the final point. In addition, the number

of iterations completed were recorded for each algorithm. For the combined approach,

the number of iterations and model calls were recorded separately for the simulated

annealing and simplex algorithms, while for the evolution strategy algorithm, the

number of generations were recorded. Table 3.12 shows the struct returned at the end

of the evolution strategy optimization algorithm and its members, while Table 3.13

shows the data structure returned at the end of the combined approach optimization

algorithm.

Data structure Member Data description

stats

es time Algorithm runtime
nfc Number of model calls

max vertex
Best point seen
(not in final generation)

num generations Number of generations

best individual
Most optimal point
(in final generation)

Table 3.12 Evolution strategy optimization result data structure
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Data structure Member Data description

stats

sa time Simulated annealing runtime
si time Simplex method runtime
sa n Simulated annealing model calls
si n Simplex method model calls

sa max vertex
Best point seen during the
simulated annealing phase

sa iterations
Number of iterations during
the simulated annealing phase

sa final points
Final locations of the
simulated annealing walkers

si final points
Centroid of the final
simplex from the simplex method

Table 3.13 Combined approach optimization result data structure
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CHAPTER 4 RESULTS

In this chapter, the results of all the work described in the previous chapters will

be shown. Section 4.1 presents the results of the early research, in which algorithms

useful for the optimization of peaks were explored. Section 4.2 builds on these

results and presents the results of optimizing a random function with the combined

approach algorithm. Finally, Section 4.3 presents a comparison between the combined

approach and evolution strategy algorithms in their effectiveness in the optimization

of the ABS braking model.

4.1 peaks results

The results of the work done with the peaks function are relevant mainly for

their effect on the subsequent research. For this reason, a rigorous defense of the

merits of the methods employed when attempting to optimize peaks will not pre-

sented. Rather, this section will contain a high-level description of the experiments

and corresponding data.

The first experiment compared the relative abilities of Monte Carlo and the simplex

method in optimizing peaks. For the Monte Carlo part of the experiment, 20 inde-

pendent walkers were employed, and for the simplex method 20 independent simplices

were employed. The two methods were each run 100 times, and data was collected

for average deviation from the global maximum, the number of simplices or walkers
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that arrived at the global maximum, the runtime, and the number of function calls

made during each run.

In order to make a true comparison, the two methods were normalized with respect

to average deviation from the global maximum. In other words, calibrating runs were

used to determine appropriate terminating thresholds for both methods. First the

simplex method’s terminating condition of minimum simplex size was set to 0.01. The

Monte Carlo method was then calibrated to produce equivalent average deviations,

resulting in a minimum percent difference of 0.000001.
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Figure 4.1 Algorithmic calibration between Monte Carlo and the simplex
method

The result of this effort is shown graphically in Figure 4.1. Due to the stochastic

nature of the Monte Carlo algorithm, complete agreement between it and the simplex

method was all but impossible. Nonetheless, after calibration Monte Carlo produced

an average deviation of 0.325 percent to the simplex method’s 0.365 percent, agreeing

to within 0.020 percent over the 100 runs executed.
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Figure 4.2 shows the number of walkers or simplices that arrived at the peaks

global maximum for each algorithm. This was somewhat surprising, as the assumption

was that a stochastic algorithm would outperform a deterministic one. However,

recall that a simplex with two input dimensions has three points from which it can

potentially move in comparison to Monte Carlo’s one point. Furthermore, the simplex

method is based on constant, incremental improvement. These two facts facilitated

the simplex method’s 12.57 hits on average to Monte Carlo’s 7.9 hits, and certainly

pointed to the simplex method as having the better ability to optimize peaks.

The next metric evaluated was the number of function calls. As can be seen in

Figure 4.3, the simplex method again dominated Monte Carlo. Whereas Monte Carlo

took 12398 function calls on average to finish an optimization, the simplex method

took only 2045 function calls. Even more striking, the simplex method had a much

lower standard deviation than the Monte Carlo data (see Table 4.1). This all means

that the simplex method not only required less function calls than Monte Carlo, but

also that the simplex method was much more consistent in the number of function

calls it required.

Monte Carlo Simplex method

mean (µ) 12398 2045

std dev (σ) 1974 367

Table 4.1 Number of function calls data when optimizing peaks

Despite the observed superiority of the simplex method to Monte Carlo when opti-

mizing peaks, the simplex method was still susceptible to initial conditions. In fact,

the simplex method had an average success rate of only 62.85 percent. To combat

this problem, momentum was added to the simplex method. Separate experimental

setups were devised to test both centroid and worst-point momentum. The momen-
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Figure 4.4 The effect of momentum on average deviation in the optimiza-
tion of peaks

tum coefficient, which is the percent value of momentum’s contribution to the simplex

movement, was varied between 0 and 1. For each value of the momentum coefficient,

100 optimizing runs were executed and the results recorded.

As is readily apparent in Figure 4.4, both of the momentum schemes initially

produced results comparable to the original simplex method algorithm. However, as

the effect of momentum was increased, the momentum-based implementations began

to falter and the original algorithm dominated. Even more alarming, the worst-point

momentum algorithm degenerated so quickly and produced such poor results that its

momentum coefficient range was reduced to between 0 percent and 50 percent.

This alarming trend can be seen more clearly in Figure 4.5, in which the worst-

point algorithm appears to take an exponential shape. Also of interest in Figure 4.5

is that again neither of the momentum-based algorithms are comparable to the base

simplex algorithm. Despite these dismal results, momentum could have still been a

viable addition to the simplex method if the number of successful optimizations were
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Figure 4.5 The effect of momentum on the number of function calls

significantly better than the basic algorithm. Unfortunately, as Figure 4.6 shows,

this was not the case. In what was by now a familiar result, the centroid momen-

tum outperformed the worst-case implementation, but the original simplex algorithm

dominated.

4.2 Random function generator results

The results discovered through the optimization of peaks were deceptively op-

timistic. Because of the large area controlled by the peaks global maximum, the

number of successful simplices and the effectiveness of the algorithm were both overly

positive. When using the same algorithm to optimize a typical random function, such

as the one shown in Figure 4.7, the results were much less impressive.

The results of 100 optimization runs using the random function shown in Figure 4.7

are shown in Figure 4.8. Clearly the more convoluted function geometry is wreaking

havoc on the simplex method, producing an average success rate of only 18.95 percent.
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random function

It was for this reason that alternate algorithms and in particular simulated annealing

were explored.

Repeating the above experiment with simulated annealing instead of the simplex

method improved the average success rate to 42 percent. The results, shown graph-

ically in Figure 4.9, at first appeared to reveal a large number of successful walkers.

However, for the random function used there was a local maximum that was near

to the global maximum with respect to output value. In fact, the vertex of the lo-

cal maximum was (0.60,−3.00, 9.4258) while the vertex of the global maximum was

(−3.00, 0.00, 9.5388).

The usefulness of simulated annealing was highly dependent on the ability of the

walker to reach the global maximum value. By increasing the number of walkers

involved in the algorithm, the usefulness of the algorithm could be extended. With

multiple walkers, it was less important that every walker reach the global maximum;
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in fact, it was only important that one of the walkers do so.

Figure 4.10 shows the results of optimizing a random function using simulated

annealing with three walkers over 100 runs. Note that only the walker whose output

value is closest to the global maximum is shown for each run. As can be seen from the

figure, using just three walkers when optimizing a typical random function yielded

an average success rate of 82 percent. Also of note is that all of the runs resulted in

either a local maximum value or a global maximum value, as opposed to Figure 4.9,

in which three of the runs produced non-optimal results.
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Figure 4.11 The maximum final walker output value using simulated an-
nealing with three walkers and compressed cooling schedule

Reducing the number of iterations had little effect on the results. For the simulated

annealing results of Figure 4.9 and Figure 4.10, 3000 iterations were used. The results

obtained in Figure 4.11 required only 1500 iterations, and yielded an average success

rate of 88 percent using the best of the three walkers. Of course, reducing the number
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of iterations also required the number of iterations per system temperature to drop

from 25 to 12 to maintain equivalent cooling schedules. The important insight was

the ability to compress the cooling schedule to improve the algorithm’s efficiency with

respect to runtime.
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Figure 4.12 The maximum final output value using the combined approach

When optimizing using the combined approach, the results were even more im-

pressive. So impressive, in fact, that the average success rate was 100 percent! This

result was tempered by the fact that the combined approach, during the simulated

annealing phase, was also tracking the best point seen. Thus, the best point seen

was always being returned by simulated annealing and therefore counting toward the

success rate. Figure 4.12 shows this phenomenon. In the case of inclusion of the best

point seen, the average success rate was 100 percent, while for the exclusion of the

best point seen, the average success rate dropped to 77 percent.

Because the motivation for this part of the research was the development of a proof-
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of-concept tool, runtime and algorithmic efficiency were explored only minimally. The

focus was on creating a prototype tool for the optimization of Simulink models, and

so only the ability to optimize was explored, although a basic examination of runtime

resulted in the combined approach. In subsequent research, and in particular the

next section, the combined approach is compared to evolution strategies in a formal

manner.

4.3 ABS braking model results

The ABS braking model proved more problematic to optimize than was anticipated.

To gain some insight into possible causes and to determine the true optimal value for

each configuration of the ABS braking model, an exhaustive method was employed.

This method regularly sampled the input space for each configuration of the Simulink

model and tracked the best point seen.

Input
Number of input dimensions

2 3 4 5 6
I 0.50 0.50 0.50 0.50 0.50

slip const 0.18 0.18 0.175 0.3667 0.30
PBmax (1500) 556 290 353.3 290

Kf (1) (1) 2 2 2
ctrl (1) (1) (1) 1.90 1.55
TB (0.01) (0.01) (0.01) (0.01) 0.01

divisions 25 25 20 15 10
Stop time 13.5899 13.5899 12.3707 12.2711 12.2715

Model calls 676 17576 194481 1048576 1771561

Table 4.2 Semi-exhaustive results for all ABS model configurations

The results of these semi-exhaustive explorations are shown in Table 4.2. Note

that values shown in parenthesis were held constant. For example, during the semi-

exhaustive search of the two input ABS model, PBmax, Kf, ctrl, and TB were held



100

constant. The reason for the term semi-exhaustive is that a truly exhaustive search

would take an unreasonably long time to complete, as was discussed in Section 2.1.2.

Table 4.2 also shows the details of each semi-exhaustive search for the ABS model’s

true optimal value. Note that the divisions term represents the number of equal

divisions made on each input dimension. For an input dimension r whose range is

1 ≤ r ≤ 10, subdividing this range into 5 equal divisions would result in the following

six sample points:

(1, 2.8, 4.6, 6.4, 8.2, 10)

For example, the two-input model configuration required an exploration of 262

input states while the six-input model required 116. The values discovered during the

semi-exhaustive search stand in sharp contrast to the values determined as a result of

optimization. Table 4.3 shows the optimization results obtained using the combined

approach, while Table 4.4 shows the results obtained using the evolution strategy

algorithm. Note that in both cases, the number of model calls presented was the

number of model calls required during the run in which the most optimal stopping

time was discovered.

Input
Number of input dimensions

2 3 4 5 6
I 0.500 0.5008 0.5877 0.5007 0.5927

slip const 0.1966 0.3655 0.2336 0.3447 0.1709
PBmax (1500) 504.7888 252.6435 252.6811 256.8028

Kf (1) (1) 2.000 2.000 1.9698
ctrl (1) (1) (1) 1.6855 0.8451
TB (0.01) (0.01) (0.01) (0.01) 0.01

stop time 13.5108 13.4994 12.2400 12.2267 12.2494
Model calls 3154 4670 6317 6138 9178

Table 4.3 Combined approach results for all ABS model configurations

In all configurations except the two-input model, both stochastic algorithms re-
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quired far fewer model calls in determining the most optimal output value. In ad-

dition, the output values returned using the two algorithms were superior to those

values determined using the semi-exhaustive search.

Input
Number of input dimensions

2 3 4 5 6
I 0.500 0.500 0.500 0.500 0.500

slip const 0.1965 0.1966 0.2015 0.3662 0.3192
PBmax (1500) 508.4308 252.6701 1989.4 1924.00

Kf (1) (1) 2.000 2.000 2.000
ctrl (1) (1) (1) 1.8967 1.6529
TB (0.01) (0.01) (0.01) (0.01) 0.01

stop time 13.5107 13.5062 12.2267 12.271 12.271
Model calls 960 1275 1695 1485 2430

Table 4.4 Evolution strategy results for all ABS model configurations

Another complicating factor was the shape of the ABS model’s output geometry, an

example of which is shown in Figure 4.13. The ABS model’s output geometry often

contained features such as troughs, ridges, and plateaus, but rarely contained a single

optimal value. A notable exception that does contain a single optimal value is shown

in Figure 4.14. These results were different enough from the assumptions made about

the random function generator that they had a major impact on the effectivenesses

of the two algorithms implemented. Another interesting phenomenon observed was

a region of output geometry that was featureless, as shown in Figure 4.15.

The first comparison metric was the number of model calls required to optimize the

ABS braking model. As shown in Figure 4.16 for the two-input ABS braking model

configuration, evolution strategy performed better than the combined approach. Re-

calling that for the two-input configuration the combined approach performed a max-

imum of 3000 model calls during the simulated annealing phase (2 walkers for 1500

iterations), then it is clear that the simplex method contributed very little to the
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Figure 4.13 Six-input ABS model output geometry showing plateaus and a
trough
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Figure 4.15 Featureless six-input ABS model output geometry
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Figure 4.16 Number of model calls to optimize the ABS model with two
input dimensions
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overall number of function calls. Also of note is the high variability of the evolution

strategy results; however, considering the upper limit for number of model calls when

using evolution strategy is 5250 (105 children for 50 generations), then the results for

the two-input model are encouraging for evolution strategy.
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Figure 4.17 Number of model calls to optimize the ABS model with six
input dimensions

The results of optimizing the six-input ABS braking model configuration are shown

in Figure 4.17. In this case, the combined approach performed a maximum of 9000

model calls during the simulated annealing phase (6 walkers for 1500 iterations) while

again the evolution strategy required a maximum of 5250 model calls. As can be seen

from Figure 4.17, much more variability can be seen in the combined approach results.

In addition, many of the runs required less than 9000 model calls. The reason for

this surprising result was early walker completion due to the use of dynamic radii of

movement. Recall that the walkers’ radii of movement were governed by the One-
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Figure 4.18 Average number of model calls to optimize all ABS model con-
figurations

Fifth rule. Thus, as a walker’s radius of movement shrank below a threshold value,

the algorithm terminated the walker early. As for the evolution strategy results

in Figure 4.17, a larger percentage of runs completed all 50 generations without

converging. Despite this increase, the evolution strategy algorithm still managed to

outperform the combined approach with respect to number of model calls required.

The results of the 100 runs for each configuration were averaged and are shown in

Figure 4.19. Note that the average number of model calls for the combined approach

has the beginnings of an exponential shape. This is not surprising, as the main

contributing factors to the number of function calls when using the combined approach

are the system temperature determination and the simulated annealing phase.

Certainly the simulated annealing phase’s contribution is linear, because the num-

ber of model calls due to simulated annealing is simply the product of the maximum
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Figure 4.19 Optimal stopping times for the ABS model with two input di-
mensions
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mination on the combined approach
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number of iterations and the number of input dimensions. However, for a system with

D input dimensions where each dimension has s regularly spaced samples, the number

of model calls NMC required to determine system temperature is exponential in na-

ture (see Equation (4.1)). Because the ABS braking model has a low dimensionality,

the exponential effect is minimal, but as Figure 4.20 shows, the exponential nature of

the temperature determination algorithm is emergent and will eventually dominate.

NMC = sd (4.1)

In Figure 4.20, the recorded data is plotted along with a curve generated using the

formula shown in Equation (4.2), where s = 10. Equation (4.2) represents the total

number of model calls for the simulated annealing phase and includes two terms. The

first term is the contribution of the walkers over 1500 iterations and the second term

is the contribution due to the system temperature determination algorithm.

NMC = 1500D +
√

10D (4.2)

In comparison, the average number of model calls for evolution strategy has a

roughly asymptotic shape. Of course, as the number of input dimensions increases,

it is logical to assume that the average number of model calls will approach the

maximum number of model calls allowable using evolution strategy. Furthermore,

the evolution strategy’s data point to the fact that it is superior to the combined

strategy in terms of model calls required to optimize the ABS braking model.

The next metric by which the two algorithms were compared was the accuracy of

the optimal value produced during each of the 100 runs. Because the output value

was real-valued and also because of floating-point concerns, the determining factor

for a successful optimization was agreement with the true optimal value to within
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0.05 percent. For example, the two-input ABS braking model optimal stopping time

was 13.5107, so any runs whose stopping time was 13.5175 or less was considered to

have successfully optimized the model.

As can be seen for the two-input results shown in Figure 4.19, both algorithms

produced a large number of successful runs. Surprisingly, the combined approach

outperformed the evolution strategy algorithm. The combined approach succeeded

95 percent of the time while the evolution strategy algorithm produced a success rate

of 81 percent. Also of note was the fact that evolution strategy produced the most

optimal stopping time of 13.5107 seconds while the combined approach was slighly

behind with a stopping time of 13.5108 seconds.
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Figure 4.21 Optimal stopping times for the ABS model with six input di-
mensions

The six-input results shown in Figure 4.21 were even more striking. According

to the data, the combined approach succeeded in 55 percent of the runs while the
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evolution strategy algorithm produced a meager 35 percent success rate. Also notable

for this dataset is the fact that the combined approach produced an unexpectedly

optimal stopping time of 12.2494 seconds. This appeared to be needle-in-the-haystack

behavior, as none of the other optimization runs for either algorithm produced such

a short stopping time.
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Figure 4.22 Number of successful optimizations for all ABS model configu-
rations

Overall, the combined approach appeared to be more effective in discovering the op-

timal stopping time than the evolution strategy algorithm (see Figure 4.22). However,

the disparity in the number of model calls between the two optimization strategies

required another metric to be examined. Figure 4.23 shows the ratio of the average

number of model calls to the number of successful optimizations for both strategies.

For this metric lower values are more desirable, because an algorithm that produces

a lower value implies that it makes more efficient use of each model call than does
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Figure 4.23 Ratio of the average number of model calls to successful opti-
mizations for all ABS braking model configurations
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an algorithm with a higher ratio. According to Figure 4.23, the evolution strategy

algorithm is more effective than the combined approach.

Number of input dimensions 2 3 4 5 6
Maximum number of model calls 1096 3309 3185 3486 3281

Table 4.5 Limitations placed on the simulated annealing phase’s number of
model calls

To further explore this idea, a second set of runs was taken for the combined ap-

proach. For this new dataset, the combined approach had its simulated annealing

phase limited to calling the model only as many times as the evolution strategy algo-

rithm did on average. The maximum numbers of model calls for each configuration

are shown in Table 4.5. Note that although the simulated annealing phase was con-

strained, the cooling schedule and system temperatures were adjusted so that in every

case a full optimization was performed.

Once the algorithms were balanced by equalizing the number of model calls, a

strikingly different picture emerged. The average number of model calls shown in

Figure 4.24 reflects the balance between the algorithms. The disparity between the

two algorithms for the six-input ABS braking model was due to the emerging expo-

nential behavior of the system temperature determination algorithm.

Because the simulated annealing phase went through fewer iterations, less explo-

ration of the input geometry was possible. As the system temperature cooled and

the exploration transformed into exploitation, the incomplete exploration had a neg-

ative impact. As can be seen in Figure 4.25, the evolution strategy algorithm has

become the dominant algorithm. Thus, when the algorithms are balanced, the evo-

lution strategy algorithm will be more likely than the combined approach to produce

the optimal value.

Returning finally to the ratio of number of model calls to the number of successful
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Figure 4.24 Average number of model calls to optimize all ABS model con-
figurations, balanced algorithms

2 3 4 5 6
20

30

40

50

60

70

80

90

100

number of input dimensions

nu
m

be
r 

of
 s

uc
ce

ss
fu

l o
pt

im
iz

at
io

ns

combined approach
evolution strategy

Figure 4.25 Number of successful optimizations for all ABS model configu-
rations, balanced algorithms
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Figure 4.26 Ratio of the average number of model calls to successful opti-
mizations for all ABS braking model configurations, balanced
algorithms

runs, Figure 4.26 shows that the evolution strategy algorithm is again superior to

the combined approach. Interestingly, despite the severe handicap thrust upon the

combined approach, it produced results quite similar to those found in Figure 4.23.

Because each experiment involved repeated optimization runs, the results of the

100 optimizations could be used to calculate confidence intervals for the algorithms.

The optimized output values from each run were used as the sample population. For

each confidence interval analysis, the level of confidence was allowed to take values

ranging between 95 percent and 100 percent and the corresponding error tolerance

was calculated using Equation (4.3), where s was the standard deviation of the sample

population, n as the size of the sample population, and zα/2 was determined using a

table of normal probabilities found in [Billingsley and Huntsberger, 1986].
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ET =
zα/2 · s√

n
(4.3)

Figure 4.27 compares the confidence interval analysis results for the optimization

of the two-input model. The figure shows that the two algorithms produced similar

confidence intervals, with the combined approach having a smaller interval. In fact,

for two input dimensions, the combined approach’s confidence interval was 49.28

percent smaller than the evolution strategy’s confidence interval. The algorithms

traded positions for the six-input model, as shown in Figure 4.28. One difference for

the six-input model was that the evolution strategy’s confidence interval was only

29.87 percent smaller than the combined approach’s confidence interval.
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Figure 4.27 Comparing confidence interval data for the two-input ABS
model

In terms of error tolerance, neither of the algorithms was the clear winner (see
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Figure 4.28 Comparing confidence interval data for the six-input ABS
model

Number of Combined Evolution
input dims Approach Strategy

2 0.0018 0.0035
3 0.0207 0.0001
4 0.0036 0.0073
5 0.0034 0.0080
6 0.0283 0.0199

mean (µ) 0.0116 0.0078
std dev (σ) 0.0121 0.0075

Table 4.6 Comparison of error tolerances at 95 percent level of confidence
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Table 4.6). In three out of the five model configurations, the combined approach

outperformed the evolution strategy algorithm. However, the evolution strategy al-

gorithm had a lower mean and standard deviation over all the model configurations

than the combined approach. Furthermore, the combined approach had the largest

overall error tolerance (0.0283 for the six-input model), while the evolution strategy

had the lowest overall error tolerance (0.0001 for the three-input model).

One last comparison between the two algorithms involved their execution times.

Figure 4.29 shows the result of dividing the average algorithm runtime by the average

number of model calls for the two algorithms. For example, the two-input combined

approach experiment produced an average execution time of 132.8329 seconds and

an average of 1178.5 model calls. Dividing these two numbers yields an average of

0.1127 seconds per model call.
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Figure 4.29 Comparing average execution time per model call for all model
configurations
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As can be seen from Figure 4.29, the evolution strategy algorithm was slightly

slower than the combined approach. This can be explained by the fact that the

evolution strategy algorithm required more complex processing of the population than

did the combined approach. At the end of each the evolution strategy’s generations,

the children were sorted in order of their fitnesses to determine the survivors. There

was no such sorting in the combined approach, thus allowing the combined approach

to run slightly faster than the evolution strategy algorithm.
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CHAPTER 5 CONCLUSIONS AND FUTURE

DIRECTIONS

5.1 Conclusions

It is clear from the analysis of the experimental data that in the case of optimiza-

tion of a low dimensionality Simulink model the evolution strategy algorithm was

superior to the combined approach. Not only did the evolution strategy algorithm

require less model calls on average than the combined approach, it also made more

effective use of each model call. In addition, although initial data pointed to the

combined approach’s superiority in optimal value determination, after balancing the

algorithms it was seen that it was the evolution strategy algorithm that had the bet-

ter success rate. The confidence interval data also pointed to the evolution strategy’s

superiority.

In fact, the only metric that favored the combined approach was the average ex-

ecution time per model call data. However, it should be noted that neither of the

algorithms presented were code-optimized. In other words, both algorithms were ba-

sic implementations that contained no specialized code to reduce runtime or processor

load. Such an optimization of the source code would likely have benefited the evo-

lution strategy algorithm greatly, especially for the sorting routines of the survivor

pool creation.

There are other qualitative considerations that further bolster case for the evolution
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strategy’s superiority. Whereas the simulated annealing algorithm is rather abstract

and difficult to grasp, the idea behind evolution strategy is quite simple. Assuming

an expert were given a choice between the two algorithms, it is likely they will choose

evolution strategy simply on the basis of their understanding of the algorithms.

In further support of this conclusion, consider the number of tunable parameters

contained in an evolution strategy algorithm. Selection pressure, population size,

number of generations, and convergence threshold are the parameters that have the

largest effect on the algorithm, and all are comprehensible with little explanation.

Contrast that with the many abstract tunable parameters in simulated annealing,

such as the cooling schedule, upper and lower system temperature thresholds, and

initial and minimum radius of movement values.

Clearly, then, evolution strategy is quantitatively and qualitatively superior to the

combined approach. Unfortunately, its success rate was disappointingly low. Further

tuning of the evolution strategy algorithm would be required to increase the success

rate, but this would defeat its general-purpose construction. Future work will need to

address this shortcoming if the evolution strategy algorithm is ever to see commercial-

grade implementation.

5.2 Future Directions

Certainly a valid avenue of future research would be the extension of the evo-

lution strategy algorithm to higher dimensionality Simulink models. A necessary

part of such research would be the discovery of a mechanism to overcome the al-

gorithm’s observed lackluster performance for higher dimensionality ABS braking

model configurations. Possible mechanisms might be a higher selection pressure, a

larger population, or even more generations before termination. In addition, a more
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stable interface between the algorithm and the Simulink model would need to be

constructed. This would not be a trivial implementation, as many Simulink models

initialize their blocks and variables with internal scripts.

The algorithm presented in this work employed uncorrelated mutation, but evolu-

tion strategy is capable of incorporating correlated mutation. Correlated mutation

would further enhance the population members’ ability to explore the input space by

allowing the standard normal distribution to rotate off-axis. This rotation would have

an effect similar to the simplex’s ability to adapt to suit the input space geometry.

Considering the reason behind the creation of the combined approach, another in-

teresting area of research would be the independent optimization of a Simulink model

using several different algorithms. The independent optimization results would then

be combined and analyzed to produce more accurate results. Many different models

could be optimized using this approach, because although no single algorithm would

be efficient for every model, combining the strengths of various algorithms would

overcome their weaknesses. In example, a Simulink model could be independently

optimized using both simulated annealing and evolution strategy. By comparing and

contrasting the results of each optimization, a more confident conclusion might be

reached.
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