
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1989

Software cost estimation of the Advanced Training System Software cost estimation of the Advanced Training System

project using three computer-based models project using three computer-based models

Douglas Poteat
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Poteat, Douglas, "Software cost estimation of the Advanced Training System project using three
computer-based models" (1989). Graduate Student Theses, Dissertations, & Professional Papers. 5501.
https://scholarworks.umt.edu/etd/5501

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5501&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5501?utm_source=scholarworks.umt.edu%2Fetd%2F5501&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976
Th i s is a n u n p u b l i s h e d m a n u s c r i p t in w h i c h c o p y r i g h t

s u b s i s t s , A n y f u r t h e r r e p r i n t i n g o f i t s c o n t e n t s m u s t b e
APPROVED. BY THE AUTHOR.

M a n s f i e l d L i b r a r y
U n i v e r s i t y o f M o n t a n a
Date: 1989

Software Cost Estimation of the Advanced Training System
Project Using Three Computer-Based Models

By
Douglas Poteat

B.S., Wofford College, 1974

Presented in Partial Fullfillment
of the Requirements for the Degree of

Master of Business Administration

University of Montana

1989

Approved by:

, Chairman, Board /of Exami

UMI Number: EP40965

All rights reserved.

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40965

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

TABLE OF CONTENTS
LIST OF I L L U S T R A T I O N S iv

LIST OF TABLES v

Chapter
I. Introduction 1

Background 1
Purpose and Value of the Study 2
Methodology 2
Sources of D a t a 3
Limitations of the Investigation 3
Assumptions 5
Organization of Paper 5

II. Description of the Software Project 6
General Concept 6
Specific Characteristics 9

III. Development of the PRICE-S Analysis 15
Background of the M o d e l 15
Build-Up of the Input Values 17
Results of A n a l y s i s 25
Sensitivity of Schedule 32

IV. Development of the REVIC/COCOMO Analysis . . . 36
Background of the M o d e l 36
Build-Up of the Input Values 37
Results of A n a l y s i s 48
Sensitivity of the S c h e d u l e 51

ii

V. Development of the Softcost-Ada Analysis . . . 54
Background of the M o d e l 54
Build-Up of the Input Values 55
Results of A n a l y s i s 67
Sensitivity of the S c h e d u l e 71

VI. Comparison of the R e s u l t s 74
Summarization of Inputs 74
Dollar Amounts 77
S c h e d u l e .. 80
E f f o r t .. 81
Productivity 81
Comparison to the Program Office Estimate . . 84

VII. Summary of Findings and Conclusions 86
Appendices

1. PRICE S Questions and A n s w e r s 89
2. MIX, NEW DESIGN, NEW C O D E 92
3. Phases and Cost Element D e f i n i t i o n s 95
4. REVIC Model Survey 103
5. Softcost-Ada S u r v e y 112

Sources Consulted 120

iii

LIST OF ILLUSTRATIONS

Figure Page
1. PRICE S Best Judgment 27
2. PRICE S Worst C a s e 29
3. PRICE S: Schedule Sensitivity 34
4. REVIC/COCOMO: Schedule Sensitivity 53
5. Softcost-Ada: Schedule Sensitivity 73
6. PRICE S/REVIC/Softcost:

Best Judgment/Worst C a s e 78
7. Calculated Schedule: Best Judgment 82
8. Calculated Schedule: Worst Case 83

iv

LIST OF TABLES

Table Page
1 . ATS Module Breakout 14
2. PRICE S Best Judgment as a Percent of

Total Dollars by Functional Category . . . 26
3. PRICE S Best Judgment as a Percent of

Total Dollars by Software Project Phase . 28
4. PRICE S Worst Case as a Percent of

Total Dollars by Functional Category . . . 30
5. PRICE S Worst Case as a Percent of

Total Dollars by Software Project Phase . 30
6. PRICE S Schedule Sensitivity Results 33
7. REVIC/COCOMO Best Judgment as a

Percent of Total Dollars by
Software Project Phase 49

8. REVIC/COCOMO Schedule Sensitivity Results . . 52
9. SOFTCOST-ADA Best Judgment as a

Percent of Total Dollars by
Software Project Phase 69

10. SOFTCOST-ADA Schedule Sensitivity Results . . 72
11. Overall Software Cost Model

Input Comparison 75-76
12. Comparison of Grouped Phases of

a Software Project as a Percent of
Total Dollars Estimated 80

13. Differences Using the 1987 Program Office
Software Estimate as the Baseline 85

v

CHAPTER I
INTRODUCTION

Background
One of the critical challenges confronting the

Department of Defense, from the present to the next century,
is the proper management of the rapid growth area of
software development. In the past the software acquisition
process has been characterized by cost and schedule
overruns. Original projections of cost are often based on
traditional engineering projections of required manpower.
Within the last few years, automated parametric models have
been officially accepted as providing more consistent
estimates.1 The basis of these models is statistical
research into previous development efforts. Defense
contractor proposals are now including, for government
evaluations, results from these parametric projections.

This paper provides an analysis using three automated
costing models. The paper determines the range of cost for
a new Advanced Training System (ATS) software development

1 Elizabeth K. Bailey, Thomas P. Frazier, and John W.
Bailey, A Descriptive Evaluation of Automated Software
Cost-Estimation Models IDA Paper P-1979 (Washington, DC:
Institute for Defense Analyses, October 1986), 37.

1

2

project. The new project will be managed at the Air Force
Systems Command (AFSC) Human Systems Division located at
Brooks Air Force Base, Texas.

Purpose of the Research
The purpose of the study is to estimate range of costs

of a software project, using three separate computer-based
models. Previous efforts to estimate the cost of the
Advanced Training System used only man-hour evaluations.
The concern from the Air Force Cost Center is that these
earlier assessments have not used recognized automated cost
models, which are based on detailed studies of historical
research and development (R & D) information. The results
from the analysis should produce more consistent cost
figures. The immediate usefulness of the paper will be
valuable since it will serve as a basis for the fair market
cost/price of the contract between the potential software
developer and the Federal Government.

Methodology
The method used consisted of obtaining from the

assigned engineers and systems analysts, an explanation of
the project in terms of "descriptors" used by each of the
three computer-based models. Descriptors are the method of
characterizing the software to the estimating models. The

3

descriptors are presented and defined in the sequence of
input into the model. The other critical information needed
for the parametric models is the estimated lines of software
code. The procedure was to ask specific questions and to
use survey type forms for a unanimous group decision. The
result of the procedure was to obtain (1) the best judgment
and, (2) the worst case input values.

Sources of Data
Data gathering was limited to the above cited technical

team assigned to the project. Expert advice on the computer
models was obtained from the source of the models and the
Air Force Cost Center.

Limitations of the Investigation
The limits of the study may be grouped into three brief

categories. These are the boundaries of the study, the
uniqueness of Ada projects, and proprietary information.

As the title states, the required hardware for the
Advanced Training System will not be estimated in this
study. The focus is only on the development of the
software. The ATS will use off-the-shelf equipment and
these prices are relatively easy to confirm.

The ATS requires the use of Ada. The unique aspects of
Ada software projects, as compared to other efforts using

4

different computer languages, are not fully known.
Therefore, this area will not be addressed. All three
models have been recommended by the Air Force Cost Center.

The equations used in PRICE-S and Softcost-Ada are
proprietary. This is considered an impairment in reviewing
the mathematical principles. Further, it is not possible to
verify that the REVIC program correctly uses the
Constructive Cost Model (COCOMO) estimating equations, since
the source coding is not available.2

Another limitation was the large number of variables
for a sensitivity analysis. A sensitivity analysis modifies
one computer input value for the model, while holding other
elements constant. The result is to observe the impact on
the total cost. The process is repeated for all inputs.
Due to the number of possible variables to be altered,
especially with three models, another method was selected.
The low/high alternative is perhaps a more useful way to
obtain the cost range when multiple cost models are used.3
The procedure is to specify the best judgment value, and the
worst case. The worst case will display the higher cost.

2 Common literature usage dictates "COCOMO model" even
though the "MO" is referencing the word "model."

3Mike Helton, Software Cost Analyst, Air Force Cost
Center, interviewed by author, 16 January 1989,
Washington, D. C,, telephone conversation, Air Force Cost
Center, Washington, D. C.

5

The outcome is normally effective. Limited sensitivity
analysis will be performed on the schedule of the project.

Assumption s
The basic assumption was made that the low/high

approach is adequate for the purpose of this paper, given
that three estimating methods are employed.

An important assumption was also made regarding the
lines of code (L O C). The assumption is the estimate by the
engineers for the lines of code is correct. Almost all
parametric models use projections for the amount of software
code, to establish the magnitude of the project. A
descriptive assessment of the software modules is provided
in Chapter II.

Organization of Paper
Chapter two describes the software project in concept

and characteristics. Chapter three provides the first of
three different software estimates, starting with the PRICE-
S. Chapter four continues the study with the COCOMO/REVIC
model. Chapter five provides an analysis using the
Softcost-Ada Model. Chapter six compares the results,
including the original engineering estimate. The final
chapter is the summary of findings, conclusions, and
recommendations.

CHAPTER II
DESCRIPTION OF THE SOFTWARE PROJECT

General Concept
Air Training Command (ATC), the ultimate user of the

new system, is one of the largest training organizations in
the world. It is responsible for all Air Force technical
training. Currently, the command teaches over 6,000 courses
and trains 176,000 technical students per year. The ATC
units affected by the Advanced Training System are at six
geographically separated bases. The prime reason for the
existence of these bases is the technical training.4

The current major problem of conducting training is the
immense classroom instruction time required. As the
technology level of aerospace equipment has increased, the
complexity of the courses has also dramatically risen. In
practical terms, the effect has been increasing job demands
for maintaining accuracy in course content, developing newer
courses, and actively instructing more material. For
example, it has been estimated that between the years 1985

4 Department of the Air Force, Headquarters Air Training
Command, Operational Concept Document for the Advanced
Training Systems ([San Antonio, Texas}: U.S. Department of
the Air Force, Headquarters Air Training Command, 26 October
1987), 11.

6

7

and 2000 the training emphasis will shift to the applied
mechanical and electrical engineering fields. This will
account for a net increase of 30 percent in the number of
required instructional hours.5 Another consideration is the
lead time for developing qualified instructors.

To respond to the challenge, the Air Force desires
advanced automation incorporating the use of Ada to answer
the future needs. Therefore, the objective of the Advanced
Training System is to increase the effectiveness and
efficiency of training provided by the Air Training
Command.6

The programming of ATS will be capable of utilizing
off-the-shelf computers, thus no hardware development is
contemplated. The training system will serve as the
comprehensive, state-of-the-art training system for the Air
Force. It must also be entirely written in a new computer
language, Ada. The Defense Department is mandating the Ada
usage in all new programs. The hope is to reduce the
resources required to support multiple computer languages,
in the latter years of software projects.7 The future

5 Ibid., 11.
6 Ibid., 9.
7 S. D. Conte, H. E. Dunsmore, and V. Y. Shen, Software

Engineering Metrics and Models (Reading, Massachusetts: The
Benjamin/Cummings Publishing Company, Inc., 1986), 14-15.

maintenance expense of software represents a considerable
percentage of the total software life cycle cost.8

One desired goal in the development of ATS is to build
highly portable software. The concept of portability refers
to software capable of being written once and moved to many
different types of computers. To rewrite code or maintain
multiple versions is a more costly endeavor. Minor
interfacing software will be used and may require
modification. Further, the system must employ a modular
concept to allow easy tailoring and flexibility at the
various bases.

The Advanced Training System must perform a variety of
functions. First, it must provide an authoring system. The
authoring system may be considered a word processing system
with advanced capabilities. These features would include
graphics, and other aids to the educational writer. The
authoring system would be used to build basic instructional
material. Second, it must enhance the management of
trainees. This would include monitoring trends for
individual students, as well as class performance. The
generation, evaluation, and scoring of tests would also be
required. Third, it must assist the management of training
resources. The scheduling of instructors, classes, and

8C. R. Vick and C. V. Ramamoorthy, e d ., Handbook of
Software Engineering (New York: Van Nostrand Reinhold
Company Inc., 1984), 197.

9

classrooms has always been a demanding task. The system
should perform these examples of routine administrative
tasks.9

Specific Characteristics
The software must have a "System Level." This would

almost be analogous to a Disk Operating System for a
microcomputer. However, under the existing concept, this
system will actually be operating in concert with the real
disk operating system, Unix. Unix will be used at three
levels of computers. The lowest level, used by a student or
typical instructor, would be at a microcomputer. The middle
layer would use a minicomputer to supervise base operations.
A comparable concept would be the administration of a
college. The overall monitoring device for the Air Training
Command will be a mainframe computer. The System Level must
provide a strong interfacing ability for the distributed
data base. Interfacing would be software of one computer
interacting with the software of another. A distributed
data base is a network of computers in which each terminal
can support, or at least update, information on the data
base software.

9Operational Concept Document for the Advanced Training
Systems, p p . 1-50.

10

The next functional delineation would be the "System
Controls." This area of the software is really part of the
System Level software. It was extracted for the analysis,
because it represents a significant percentage of the lines
of code with dissimilar characteristics. One major function
of the System Controls is to provide security to insure
decreased access at each of the lower levels. The security
will require more data storage and retrieval than the System
Level portion of ATS.

The third type of category is the "Management"
software. Essentially, this portion of the software will
direct almost all operations. One of the prime functions of
the management software will be to develop a training plan
for each discipline. The purpose of the plan is to insure
complete coverage of school objectives on a scheduled basis.
One may consider the analogy of a business school, tracking
not only the subject of the course, but also the
micro-detailed information. A specific example of the
degree of detailed information would be investment finance
theories. Last, it will update instructor records to
document courses they have taught and annotate their
educational background upon completion of additional
training.

Fourth, "Student Management" will assign the student to
various courses and track attendance. More importantly, it

11

will monitor the performance of each student, their
permanent records (transcripts, etc.), and the performance
of a particular class. The significant concept is that the
software is student oriented.

"Authoring" is designed to be a desktop publishing
system that is more comprehensive than word-processing. The
current goal is to build a system for persons with a minimum
knowledge of computers. It must be remembered the
instructor will be an expert in his/her field, but not
necessarily computer-oriented. Additionally, with the
expected high turnover of military members due to relocation
and retirement, the authoring system needs to be easy to
use. In this module, the art of presentation will be
optimized to achieve the greatest benefit to the student. A
link to an "expert system" may be a future capability of the
software. This approach would allow expertise of former
instructors to be utilized.

"Delivery" will, simply stated, transmit the courseware
and interact with the student. Courseware is the lesson
plan presented from software in either text format,
information pictorials, or self-paced tutorial tests.
However, the conceived delivery software will perform more
than communication services. With the application of
artificial intelligence, the presentations will be modified
based on the individual’s previous performance. The

12

software will thus simulate the method an instructor would
use. It should also restore the student to the ending
location from a previous session, even on different
computers at different bases. It must verify the students
identification number against the data base to determine
what access to courseware they may have. Finally, the
software should update the data base to reflect the current
progress of the student, including test scores and the
position in training schedule.

"Testing" will present material to the student and it
will be interactive. The software will orient the test
question in various styles using artificial intelligence to
increase the benefit to the student. For further test
generation, the module will choose randomly from the pool of
questions meeting the learning objective. Later, the
Testing software can administer the tutorial lessons using
computer-aided instruction, be "on-line" for actual tests,
or produce copies of tests for the instructor. The variety
of output devices would include simple laser printers and
computer produced slides. Since the Testing module is test
oriented, the history of the test question and the entire
test will be produced along with the statistical
information. The history would be maintained to increase
the effectiveness of the lecture and to suggest possible
changes.

13

"Evaluation" will be a unit of the software devoted to
the analysis. Two types of analysis are needed: internal
and external. Internal evaluation, as described by Air
Training Command, is a review of how the students are
performing on a selected training objective. External
evaluation is examining the method of instruction. It is a
procedure of appraising the training material and the
presentation technique.

The final unit of software required is the "Data Base
Management System." Since existing software is available to
meet the distributed data base requirements, this item may
be purchased. For purposes of the lines of code estimation,
a commercial data base product, Oracle, was used as an
analogous system.10

Table 1 displays the lines of software code that must
be written for the final program, according to the above
specific description of requirements. Additional
information is presented by lower levels. The LOC is also
estimated by units of 500 or 3000. However, the data does
reflect the engineers’ detailed reasoning in the lines of
code estimate.

10 Dan Conners, to Human Systems Division/YAT, 13 April
1987. Memorandum for the Record. Brooks Air Force Base,
T e x a s .

Table 1
ATS Module Breakout 14

LOC
500 3000 SUBTOTAL

System Level
Operating System Interface 0 1 3,000
Ada Language Interface 0 6 18,000
Ada Development Tools 0 2 6,000
Network Interfacing 0 0 0
Workstation Interfacing 30 0 15,000
Database Report/Query Language 3 2 7,500
Courseware Conversion 0 2 6,000

System Controls 67 5 48,500

Management
Training Plan Development 55 0 27,500
Resource Management 12 0 6,000
Instructor Management 6 0 3,000
Manage Course Material 12 0 6,000

Student Management 74 8 61,000

Authoring
Support Inputs 15 10 37,500
Intergrate Inputs 3 1 4,500
Support Outputs 21 5 25,500

Delivery
Computer Aided Instruction 0 2 6,000
Database Interaction 3 1 4,500

Testing
Test Item Pool 5 2 8,500
Test Instrument Records 6 1 6,000
Perform Tests On-Line 2 0 1,000
Score Off-Line Tests 1 0 500

Evaluation
Internal 9 4 16,500
External 1 4 12,500

TOTAL

TOTALS

55.500

48.500

42.500

61.000

67.500

iu,5uu

16.000

29,000

330,500

Note: LOC denotes Lines of Code

CHAPTER III
DEVELOPMENT OF THE PRICE-S ANALYSIS

Background of the Model
The basic PRICE model for hardware was developed in the

1960’s by the RCA Government Systems Division (GSD) as an
internal management method to cross-check the conventional
engineering assessment of costs. It rapidly became accepted
as the standard throughout the GSD business units such as
the Government Communications Systems, Missile and Surface
Radar, Astro-Electronics and Automated Systems divisions of
the company. With the apparently successful application of
the PRICE model to several highly visible U.S. defense
programs, including the Space Shuttle and the B-l bomber
electronics, its use spread to industry as well as the
Federal Government. In 1975, RCA established PRICE Systems
as a self contained business unit within GSD. Later, the
scope of PRICE was expanded to include software (PRICE S),
total life cycle support costs (hardware/PRICE HL,
software/PRICE SL), and custom microelectronic chips (PRICE

15

16

M).11 In 1987, PRICE Systems was acquired by General
Electric.

Since the PRICE models are marketed only as proprietary
items, detailed mathematical knowledge is closely guarded
and unknown.12 Other software costing experts also advise
that few equations are provided for an open, debatable
forum.13 Using a parametric approach to estimating, the
PRICE model cost estimates are not produced from labor
tables, but rather equations at the historical perspective
of projects. In essence, the modeling is based on Cost
Estimating Relationships (C ERs) that describe variations in
observations. According to PRICE Systems, their model is
more of a process approach rather than a data base where one
"fits data." In this regard, PRICE S is a dynamic system.

The latest PRICE S model (released in January 1988) is
a product resulting from several years of continued research
and refinement. It contains, according to PRICE Systems,
the known effects of the new Department of Defense Military
Standard 2167A. The document, formally known as Defense
System Software Development, is increasing costs for

11 PRICE Parametric Cost Models: An Executive Guide
(Cherry Hill, New Jersey: PRICE Systems, [undated]), pp.
1-4.

12 Conte, 329.
13 Martin L. Shooman, Software Engineering; Design.

Reliability, and Management (New York: McGraw-Hill, Inc.,
1983), 44 7.

17

software projects because of stringent documentation
requirements. More importantly, for the immediate subject,
the unique characteristics of Ada are also contained in the
PRICE S model.

Build-Up of the Input Values
General Discussion

Appendix 1 contains questions and answers pertaining to
the inputs of the PRICE S model. The number of PRICE
inputs, or descriptors, are fewer for simple projects, but
greater if the effort is complex. For example, a new
project may involve multiple computer languages, commercial
software, and existing programming which needs modification.
One common requirement in all the parametric models is an
estimate of the lines of code. It is by far the most
important parameter in software cost projections.14 One
negative aspect of PRICE S is that some descriptors appear
to overlap. This is particularly true in the skill of the
assigned contractor personnel, both individually and as a
software team.

The needs of the future software system are almost
constant. The variables are the personnel, experience, and
productivity of the winning contractor. The PRICE model
concentrates these functions in only two inputs. For the

14Vick, pp. 470-482.

18

best judgment and worst case scenarios the Complexity One
input and the Productivity Factor were changed. The impact
of these adjustments approximate the variations made in the
inputs of the other models. All remaining values for the
PRICE S inputs remain the same.

Prior to specific inputs for the ATS project, a
financial file is created to stipulate a general wage rate.
The previous engineering estimate used the same amount, as
did the other models in this paper. Exact labor categories
and wages, such as management, engineering, and others,
cannot be specified in the automated models. It is possible
to alter the average number of hours worked per month, but
this was not necessary since the PRICE S model defaults to
152 work hours per month. To establish a comparison,
REVIC/COCOMO and the Softcost-Ada parametric model also used
the 152 work hours per month.

For the actual input, PRICE S requires the software
project to be entered as units of code known as boxes. The
boxes correspond in name to the modules of software listed
in Table 1 and Appendix 2.

Specific Inputs
Language

The first input to the PRICE S model is the type of
computer language to be used for the software development.

19

Although the correct selection for our purpose is Ada,
twenty choices are possible.

Source Lines of Code
Source Lines of Code (SLOC) describes the size of the

project. The PRICE parametric model does not require the
extensive information as presented Table 1, regarding units
of 500 or 3000 lines of code.

Fraction
Fraction, or FRAC, is related to the lines of code. It

is a percentage of the lines that are not instructions to
the computers. These are either statements of data or
informational notes for programmers, and are usually a small
percentage. The principal concept is that these statements
in the software do not require work effort. In the original
process of estimating SLOC for all cost models and Appendix
2, the Fraction was assumed to be zero.

Comp lexity One
Complexity One (known as C PLX1) measures the product

familiarity, personnel skills, software tool availability
and changing requirements of the job. This input greatly
affects the calculation of an optimal schedule. Product
familiarity for ATS would mean the extent of corporate

20

experience with computer-based training and data bases.
Some companies excel in writing certain types of software,
but do poorly in developing other applications. With
respect to the personnel perspective, the descriptor is
quantifying the talent of the developers of the software.
The software engineering team may be outstanding, average,
or relatively inexperienced. Software tools are time saving
devices. An analogous example would be the use of macros
and other pre-existing templates in a personal computer
spreadsheet package, such as Lotus 1-2-3. The user does not
have to rebuild them each time. In a similar way, the
programmer can use existing software programs. Examples of
software tools would include the following:

(1) An editor to view and alter the contents of the
software

(2) The debugger to locate and correct errors
(3) A compiler which translates the programming

language into machine language
(4) An interpreter which executes the programming

language as it reads them
(5) A linker which puts together programs from several

sources
The availability of the software tools has a strong impact
on the amount of labor needed for a project. The input for
the Complexity One value is 1.1 for the best judgment. This
describes a nominal value for an Ada project. For worst
case value an adjustment was made to 1.3. The additional 20
percent represents a mix of experience in personnel talent,
including hiring new employees for the project. Further,

21

the element of changing requirements is introduced. The
parameter of 1.3 reflected the experience of the TRW
corporation in recently completed Ada projects.15

Complexity Two
Complexity Two (CPLX2) provides the model with the

complicating effects of the software and hardware
interactions. The major reason for potential problems would
be a concurrent software and hardware development effort. A
nominal value of "1" is for software projects without
complications. Increases are made for new hardware.
Hardware developed in parallel demands even greater value
increments. The ATS projects will use existing commercial
computers, therefore the input is 1.

Productivity Factor
The efficiency, productivity, and skill levels are

captured by the Productivity Factor or PROFAC. It describes
the ability of the individuals or team assigned to the
project. According to PRICE Systems, overlap does exist
between Complexity One and the Productivity Factor. Both
are important in determining the final cost of the
development. The best judgment value of PROFAC was judged

15 Jim O t t e , Cost Analyst, PRICE Systems, interviewed by
author, 24 February 1989, Dayton, Ohio, telephone
conversation, Dayton, Ohio.

22

to be 5.2, while the worst case used 4.0. An inverse
relationship is present in the grading scale. The range for
commercial software projects is from 8.0 to 4.0. The PROFAC
for aerospace applications begins at 5.0 and continues to
3.0. The inputs used in this study were based on current a
verbal assessment from PRICE Systems.16

Mix . New Desig n . New Code
The three above descriptors are very related. All of

them require seven numbers to input into the PRICE S model.
Each of the seven positions represents a type of application
of the software. The numbers correspond to a decimal
fraction, with the entire line equal to one. The
application ranges from simple data storage and retrieval to
intricate mathematical operations. The amount of work to be
accomplished for the design, and coding or programming
varies for each type of application. The Mix input explains
how the software is to be used. Complex software is more
expensive than unsophisticated programs. The New Design
conveys how much new architecture and engineering is needed.
New Code indicates the amount of programming and typing that
is necessary. It may be possible to use existing design and
code from previous software projects. However, with the
Advanced Training System, all new design and code is needed.

16Otte, interviewed by author, 24 February 1989.

23

Appendix 2 displays the modules of the software with the
Mix, New Design, and New Code values converted into
percentages of required application.

Platform
Platform plays a major role in the computations of

costs and schedules in the PRICE models. As one increases
the importance of the operating environment, the software
must be better. Therefore, platform is a function of the
testing and ultimately, the contract. It is approximately
equal to Required Software Reliability in the REVIC/COCOMO
model. The eight possible values identify operating
locations of the software. The Platform for the ATS project
is identified as a Military-Specification (MIL-SPEC) ground
site. The input value is 1.2.

Management Complexity
The effects of developing software at multiple

corporate locations and even multinational projects are
noted by Management Complexity. Also known as CPLXM, this
input is rarely changed from the normal value of 1. The ATS
program will be constructed at one location.

Integration (Internal and External)
Integration, in creating software, is to combine

smaller units of code into larger ones. The critical aspect
of integration is insuring the unified program works
correctly. The PRICE S parametric model has two entries for
Integration. The difference is based on the idea of the
Computer Software Configuration Item or C S C I . This is the
level where software is managed and tracked, from the formal
changes to the programming and documentation. It is a
relatively new concept in software writing. Integration
within a CSCI is internal. External Integration is the
combining of two or more CSCIs. All integration for the ATS
software was judged to be simple. The Integration value
range is 0 to 1. Values less than .5 describe a non-
difficult effort of uniting the software. Based on
suggestions from a member of the General Electric PRICE
staff, the internal value is .1 and the external number is
.3.*7

Utilization
Utilization (UTIL) describes the extra effort needed to

overcome limited computer processor capabilities. It is

* 7 Earl King, Senior Analyst, Operations Staff, PRICE
Systems, interview by author, 16 May 1988, Moorestown, New
Jersey, telephone conversation, PRICE Systems, Moorestown,
New Jersey.

25

expressed as a decimal fraction of the total memory capacity
used. The range of values is from greater than zero to less
than 1. At amounts greater than .5, increases in cost can
be expected. For ATS, the nominal value of .5 was assumed.
Processor limitations for computer-based training will not
exi s t .

Schedule
The schedule for the baseline scenario (or base case)

for all parametric models was the time calculated by the
particular model. The calculated schedule is the optimal
time for the type and amount of work to be performed.
Theoretically, for software development, a reduction from
the optimal schedule of time would increase costs. A
sensitivity analysis of the schedule was later accomplished.
The starting date for the PRICE S model was March 1989.

Results of Analysis
Dollar Amounts

Best Judgment
The total for the software development effort, with the

calculated schedule, is $42.5 million (constant 1989
dollars). The PRICE S model produces a variety of other
information for the estimator. By using the various output
options, the model can provide the financial requirements by

26

functional category. These categories would be roughly
equivalent to departments in the corporation. Examples
would include the senior engineering known as Systems
Engineering and Program Management, and the design section.
For the purpose of comparison, the dollars were converted to
percentages. Table 2 contains these amounts. Definitions
of categories are contained in Appendix 3.

TABLE 2
PRICE S BEST JUDGMENT AS A

PERCENT OF TOTAL DOLLARS BY FUNCTIONAL CATEGORY

Functional Category Percent of Total Dollars
Design 33.8
Coding/Programming 21.8
Data 7 .9
Systems Engineering and Program Management 18.8
Quality Assurance 8.7
Configuration 9.1

Figure 1 provides the profile of anticipated spending by
functional category over the government fiscal years. It
exhibits the estimated amounts of money spent for six
functional areas from 1989 through 1994.

Other monetary data are also available in the PRICE S
results for the phases of a software project. The phases of
the effort normally proceed in a timely sequence. However,
the exact duration of the phases will vary depending on the
uniqueness of the software and the requirements. The later

Fig. 1

a?sar & ffsr jm&rnwr
*18. 000

NOMINAL SCHEDULE ($ IN THOUSANDS)

*16.000

*14.000

*12.000

*10.000

*8.000

*6.000

*4.000

*2.000

FISCAL YEAH

f l CONFIG

■ Q/A

ID SE/PM

B DATA

□ CODING

M DESIGN

28

phases may have some concurrent actions. Table 3 provides
the amounts required by phases for the best judgment
parameters. Appendix 3 also lists the phases of a software
project.

TABLE 3
PRICE S BEST JUDGMENT AS A

PERCENT OF TOTAL DOLLARS BY SOFTWARE PROJECT PHASE*
Phase of the Pro ject Percent of Total Dollars

System Concept
System and Software Requirements
Software Requirements
Preliminary Design
Detailed Design
Code and Testing
CSCI Testing
System Testing
Operational Test and Evaluation
System Integration

•Phases arranged in time sequence

Worst Case
With the worst case inputs, the cost model is forced to

the higher amount of $61.6 million, or a 45 percent
increase. The percentages of funding required for the
functional categories, and by phases, changed only by
insignificant amounts. These are depicted in tables 4 and
5, respectively. Figure 2 depicts the prospective worst
case cost of functional categories. The areas of Design and
Coding have particularly changed compared to Figure 1.

2.0
3.0

14.9
11.3
18.0
13. 5
19. 1
6.0
2.7
9.4

Fig. 2

*18,000

*16,000

89

p /r iff s Mwrsr msjf
NOMINAL SCHEDULE ($ IN THOUSANDS)

*14,000

*12,000

*10,000

*8,000

*6,000
*4,000

*2,000

90 91 92
FISCAL YEARS

93 94

B CONFIG

■ Q/A

ID SE/PM

■ DATA

□ CODING

M DESIGN

30

TABLE 4
PRICE S WORST CASE AS A

PERCENT OF TOTAL DOLLARS BY FUNCTIONAL CATEGORY

Functional Category Percent of Total Dollars
Design 33.5
Coding/Programming 21.3
Data 8.1
Systems Engineering and Program Management 19.0
Quality Assurance 8.8
Configuration 9.2

TABLE 5
PRICE S WORST CASE AS A

PERCENT OF TOTAL DOLLARS BY SOFTWARE PROJECT PHASE

Phase tof the Project Percent.of Total Dollars
System Concept 2.1
System and Software Requirements 3.2
Software Requirements 15.6
Preliminary Design 11.7
Detailed Design 18.5
Code and Testing 13.0
CSCI Testing 18.4
System Testing 5.8
Operational Test and Evaluation 2.6
System Integration 9.1

Schedule
The parametric model, using the best judgment inputs,

calculated an optimum schedule of 38 months for the project.
The worst case descriptors caused the duration of the effort
to increase by seven months, to a total of 45 months. This
favorably compares to the program office schedule of 42

31

months. The desired schedule of the program did specify
fixed periods for the phases.

Effort
Effort is the total quantity of person-months in a

project. The effort divided by the months of the schedule
would equal the average number of individuals needed for a
project. PRICE S estimates the best judgment would require
3,644 person-months. The worst case increases the
requirement to 5,295.

Productivity
Productivity is expressed in the PRICE model as an

obscure factor. It ranges from 4.0 for complex military
software, to 7.0 for commercial programming products. Most
cost models for software estimate the lines of code produced
per person-month. PRICE Systems indicates no mathematical
relationship exists to successfully convert to the apparent
standard measurement criteria.18 The best judgment inputs
for the ATS program indicated a Productivity Factor of 5.2.
The worst case was calculated at 4.0. These lower values,

18 Claude Wilton, Senior Analyst, West Coast Operations
Staff, PRICE Systems, interview by author, 27 February 1989,
Los Angeles, California, telephone conversation, PRICE
Systems, Los Angeles, California.

32

suggesting intricate software, are within a valid range for
a military Ada language program.19

Sensitivity o f Schedule
Dollar Amounts and Schedule

To determine the sensitivity and impact of decreasing
the schedule, varying percentages of the nominal schedule
were imposed on all the parametric models. These reductions
are to 95, 85 and 75 percent of the nominal amount.
Further, a 42 month period desired by the Program Office was
included in the sensitivity analysis. The effect of
reducing the calculated schedule in the best and worst cases
is shown in table 6, and graphically in Figure 3. As the
schedule decreases in the PRICE S inputs, the costs for the
project will generally increase. Minor changes in the
schedule will also display a modest financial rise.
However, the effect is lost due to rounding. An additional
increase was encountered due to the Program Office schedule
possessing fixed periods for the various software phases.
The cost growth of roughly 39 percent, from the 95 percent
of nominal schedule (43 months), to the duration requested
by the Program office (42 months), can be attributed to the
inefficiency of having a fixed schedule.

19Wilton, interviewed by author, 27 February 1989.

33

TABLE 6
PRICE S SCHEDULE SENSITIVITY RESULTS

(CONSTANT 1989 $ IN MILLIONS)

Best Judgment Worst Case
Dollars Months Dollars Months

Nominal $42.5 38 $61.6 45
95% of Nominal 42.5 36 61.6 43
85% of Nominal 45.0 32 65.0 38
75% of Nominal 50. 1 29 72.9 34
Program Office

Schedule 58.0 42 85 .9 42*

* Schedule with fixed time periods for phases of the project.

The trend with respect to the functional categories
displays a consistent pattern in both the best judgment and
worst cases. As the schedule is reduced, expenditures for
Design, Data, and Systems Engineering and Program Management
decline. Steady increases of two to three-tenths of a
percent are noted in Quality Assurance costs. Advances of
seven to eight-tenths of a percent occur regularly in
funding needs for Configuration. The situation of short
schedules apparently demands more rework in the area of
information management and formal tracking of the project.

Productivity
The Productivity Factor remains constant in the best

judgment situations at 5.2. The worst case factor was

Fig. 3 3^

PRICE S
SCHEDULE SENSITIVITY

100 M IL L IO N S (C O N S T A N T F Y 8 9 $)

6 5 .0

1 1
4 2 .5

1 1
100%

(N O M IN A L)
95% 85%

SCHEDULE
75% PO E

(4 2 M O N T H S)

B E S T J U D G M E N T H S W O R S T CASE

35

stable at 4.0. Thus, no productivity loss or increase can
be measured in a sensitivity analysis with PRICE S.

CHAPTER IV
DEVELOPMENT OF THE REVIC/COCOMO ANALYSIS

Background of the Model
The REVIC computer program is an automated version of

the COCOMO software cost estimating model. COCOMO was
developed by Dr. Barry Boehm and published in his book
Software Co st Economics in 1981. It is the most complete
and well-documented of all the models. By strict
interpretation, Dr. B oehm’s model is not truly automated.
It has three levels: basic, intermediate, and detailed. The
REVIC program is based on the intermediate level. The
COCOMO model is not formed by regression methods--but by
experience, cost estimating relationships, and trial and
error. The data base used to derive the model consisted of
63 programs written in different languages such as Fortran,
Cobol, PL/1 and Joval from 1964 to 1979, primarily at TRW
Systems, Inc. The program sizes varied from 2000 to
1,000,000 lines of code excluding comments.20 The sample
projects were divided into three separate complexities
defined by product type, certain attributes of the project,

20 Conte, 303.
36

37

and by the team's talent.21 The software programs varied
from the scientific and business areas to the supervisory
and control type of software. The research into the cost
drivers was based on the Delphi-type technique.22 Although
the model is heavily used, there has been an absence of
published verification of the model using completed software
projects.2 3

Build-Up of the Input Values
General Discussion

The survey for the REVIC/COCOMO cost model is attached
as Appendix 4. With this parametric program, twenty-two
inputs and the lines of code projections are necessary to
estimate. Unlike PRICE S, the REVIC version of COCOMO has
default multipliers. The default multipliers, or
descriptors, are the nominal value. The projected lines of
code by the module name are also needed. One sophisticated
feature missing from the model is automated warnings. In
PRICE S, the warnings indicate the values used are either
too low or too high for the other given parameters.
Additionally, the cost analyst cannot adjust or calibrate

21 Tom DeMarco, Controlling Software Projects:
Management, Measurement & Estimation. Foreword by Barry W.
Boehm (New York: Yourdon, Inc., 1982), 163.

22 C onte, 303.
2 3 Ibid., 304.

38

the program based on historical information. This may be
accomplished in PRICE but only with extensive data and
parametric expertise.24 All acronyms for the descriptors in
REVIC are in capitalized letters.

Specific Inputs
Analyst Capability

The first REVIC input was the Analyst Capability or
ACAP. It is an attempt to quantify team skills of the
software engineers. The model stresses that the assessment
is not simply a measure of the analysts* years of experience
but effectiveness, as well. The analysts to which it is
referring will plan the software architecture and produce
the overall initial design requirements for the project.
The possible value permits a total range of five selections
from two lower categories--the nominal amount, and two
stronger team skill appraisals. The chosen value for the
best judgment, without the knowledge of who may win the
contract, is the nominal amount. The worst case selection
was determined to be low.

Programming Team Capability
The next value to be judged was the capability of the

programming team or PCAP, It is intended to be an

24 Helton, interviewed by author, 16 January 1989.

39

evaluation of the programming team. The programming
department will be the individuals who accomplish the
detailed design after the preliminary design of the
engineers. They also will write the actual code, and later,
merge the various components of the code. The merging is
the integration and testing phase. The five values are
categorized by mathematical percentiles. The best judgment
was assumed to be nominal. The higher cost producing worst
scenario was critiqued as very low.

Pro.iect Application Experience
The Project Application Experience or AEXP is an

assessment of the development and design t eam’s familiarity
with projects of this type. Specifically, this would
reference computer-based training. The estimate is the
average amount in years. The least input is less than four
months, the nominal input is rated at three years, and the
highest at twelve years. Due to the lack of broad computer
aided training knowledge of the potential bidders, the
nominal experience level was chosen from the possible five
options for all cases.

Language Experience
The LEXP factor is used to record the programming

crew’s exposure to the computer language. Ada has been in

40

existence for several years, but until recently, waivers
have been granted in the Defense Department for using other
software languages. The effect is that the experience level
in industry is not extremely high. The five ratings range
from no experience to a maximum of more than two years. The
nominal input was again selected for the best judgment and
the worst case.

Execution Time Constraints
The computer, or more correctly, the central processing

unit (CPU), alternates between the fetch cycle for locating
the instructions, and the execution cycle where it performs
the instructions. The execution is defined merely as the
processing of the instruction. This input (TIME) measures
as a percentage, the available time of the CPU that will be
used by the software. Four selections are available from no
restriction on execution time to a 60 to 95 percent
utilization. With the higher percentage, the design of the
code is more complex, requiring increased manpower in the
project. For example, software for a fighter p lane’s radar
electronics would need to be rapidly processed, thus the
input value would be a high percentage. Computer-based
training does not have timing constraints. The best
judgment position, as well as the worst case, is the very
low parameter.

41

Main Storage Constraints
The storage capacity of the computers that will

ultimately use the newly designed software is also an
important consideration in the estimate. When memory
storage is limited, the software must be designed to operate
with greater efficiency with respect to the amount of code.
The reduction requires more effort in design and coding for
either the initial design or a redesign, because the code is
too large. Extra effort may be required in the quality
control aspect of the project. Four possibilities are
presented for the Main Storage Constraints input, STOR. The
envisioned training system has no restrictions on memory.
Both the expected and worst case input values are identical
at nominal.

Virtual Machine Volatility
During the design of a software project an almost

simultaneous hardware development effort can be underway.
The Virtual Machine Volatility or VIRT is intended to
ascertain how much change will be present in the design and
development of the hardware. The frequency of these changes
causes fluctuations in the software design. As more
hardware modifications occur, increased manpower is consumed
to maintain compatibility. The Advanced Training System
will use existing commercial computers. Thus, the input of

42

machine volatility is very low for the best judgment and
worst case.

Computer Turnaround Time
The factor of computer turnaround time (TURN) measures

the intended computer response interval where the final
software will operate. A lower rating would indicate a
faster time for processing, either to print or perform other
action. The range is from six minutes to a very slow time
of twelve hours. The best judgment input for Advanced
Training System is low. If one considers the student
waiting for computer interaction, the worst case scenario is
nominal. At the nominal selection, 60 percent of the
computer processor time would be available for the software.

Requirement Volatility
The aspect of rework in software design is entered into

the cost model by the requirements volatility (R V O L) factor.
This input attempts to estimate the customer specified
changes during the life of the software development project.
Formally these changes are known as Engineering Change
Proposals (E C P s). The impact can be significant in total
cost increases. ECPs require changes in engineering
manpower, time for management oversight, and the preparation
of the ECP itself, including legal review. The customer in

43

the ATS program is the Air Training Command. Five choices
are again present in the REVIC model from redirection to
major redirections. The best judgment preference is high.
The higher cost option for the worst case is very high.

Required Software Reliability
An increasing concern in the development of computer

programs is required software reliability. The input of
RELY will indicate to the model the appropriate level
demanded. As the need for reliability increases, so does
the human effort to test the software for problems,
potential design flaws, and rework. The lower reliability
would equate to a slight inconvenience if the software
fails, as in internally produced testing programs. The
stricter reliability would cover the spectrum from severe
financial loss to potential life threatening situations, as
in the software designed for nuclear power plant operations.
The optimum reliability for computer-based training in both
situations is nominal.

Data Base S ize
The input for DATA to determine the design effects of

large data bases that must be maintained and manipulated.
The four choices are present from low to very high. The
Advanced Training System will have extremely large and

44

multiple data bases. The best judgment and the worst case
values must be very high.

Software Product Complexity
To quantify the degree of difficulty, the software

product complexity (CPLX) value is employed. Six selections
are possible. The low range presents merely simple computer
routines. The midrange choices increase the mathematical
requirements. The upper limit of complexity emphasizes
scientific applications. The difficulty of intelligent
computer-based training indicates high for best judgment and
for the worst case.

Required Reusability
One of the basic reasons to shift to the use of Ada in

the Department of Defense is the hope of producing reusable
software. To construct computer code for reuse requires
more labor in design and perhaps programming. The input for
required reusability, or RUSE, has four levels. The range
starts with no reuse, increasing ultimately to utilization
of the software in any other project. The opinion regarding
reuse of the ATS software dictates a best judgment position
of high and a worst case position of very high.

45

Modern Programming Practices
Modern Programming Practices, entered as MODP in the

computer model, signifies a management style to programming.
The applied use of standardized planning techniques in the
code, such as data flow diagrams and structured
architecture, increases efficiency of the project. It also
decreases concerns regarding compatibility of modules.
Modularity is the programming technique of constructing
software as several discrete parts.25 MODP has five
categories ranging from no use to routine application of the
methods. The reason the best judgment selection is very
high can be rationalized. The approach to writing Ada is
modular. The worst case is high, since the winner of the
ATS contract may not have fully implemented the modern
management style to programming.

U s e of Software Tools
As previously explained under the Complexity One input

of the PRICE S model, software tools are labor saving
utility computer programs. They are written for the
language in development efforts. The cost estimator using
the REVIC model has seven graduated choices for TOOL. The
selection for both best judgment and worst case is nominal.

25 Ibid., 197.

46

Classified Security Application
The model permits two options for classified security

application (S E C U) , either unclassified or classified. The
classified environment involves the "need to know"
principle. Individuals are given information directly
related to their work. Since compatibility is a function of
information, a classified project is inherently more
expensive due to waste or possible rework. A computer-based
training project does not require a security classification.
The best judgment and worst case opinions are identical.

Management Reserve for Risk
The input for management reserve (RISK) allows the

operator of the model to insert a percentage for
uncertainty. The parametric models of this paper are being
calculated either without management reserve, or at very low
if it is a mandatory input, for comparison purposes. In the
final determined price of a project, management reserve may
be added for contingencies.

Required Dev e lopment Schedule
The REVIC model defaults to a nominal or an expected

normal project development schedule. The input SCED may be
used to force a compression of the nominal schedule, but not
lower than 75 percent. In software development, a reduction

47

in the normal schedule will increase the cost. The best
judgment will use the calculated schedule. The worst case
will also employ the calculated schedule for those
particular inputs. Lesser schedules for the effort were
assumed in the sensitivity analysis.

Software Development Mode
The COCOMO model categorizes software development mode

into three types. These are organic, embedded, and semi
detached. The organic is a smaller size software effort
with relaxed schedule requirements. For example, software
built for internal use by a corporation. Embedded software
is at the other extreme. It is normally a large development
process. The schedules are very demanding in this
environment. The level or degree of innovation is very
high. Semi-detached is a compromise position on the
spectrum.26 The REVIC adaptation of the COCOMO theories
includes this feature. The best judgment and worst case is
for the semi-detached mode.

Hours per Person-month
The REVIC model also permits flexibility in altering

the person-month hours. The assumed hours per month are 152
unless the cost estimator changes the value. No change was

48

implemented for calculation regarding ATS. The yearly
amount is equal to 1,824 hours. The upper limit of the
model could be 248 hour per month, or a yearly total of
2,976.

The. Cost p er Person-hour
An important constant in the comparison of the

parametric models is the average cost per worker. The
composite amount used in all the computer-based estimates
and the previous person-hour approach is $71.41. All
results, including the original program estimate, were later-
inflated using the approved Department of Defense inflation
rates. For inflating constant year 1987 dollars to constant
year 1989, the multiplicative factor is 1.072.27 The model
will otherwise assume an average total cost rate of about
$135 thousand per year (a minor difference).

Results of Analysis
Dollar Amounts

.Best Judgment
The REVIC model estimates the Advanced Training System

project will cost $29.3 million (constant 1989 dollars), at
the nominal (calculated) schedule. Functional categories

27 Letter from Mr. Joseph T. Wagner, HQ Air Force
Systems Command (AFSC) /Cost Analysis (ACC) to all AFSC
Product Divisions, 19 December 1988.

49

are not addressed in the results. However, the amount for
phases as a percent of the total effort are calculated and
presented in table 7. The names of the phases are different
in REVIC than the Military Standard 2167A, and therefore,
PRICE S. They are also reduced in number. For clarity, the
military standard labels have been substituted in the table.

TABLE 7
REVIC/COCOMO BEST JUDGMENT AS A

PERCENT OF TOTAL DOLLARS BY SOFTWARE PROJECT PHASE*

Phase o f the Project Percent of Total Dollars

System Concept
System and Software Requirements
Software Requirements
Preliminary Design
Detailed Design
Code and Testing
CSCI Testing
System Testing
Operational Test and Evaluation
System Integration

*Phases arranged in time sequence

Worst Case
The cost results for the Advanced Training System under

the worst conditions, according to the REVIC/COCOMO model is

N/A

9.0
17.2
21 . 6
16.4

16.4
N/A

19.4

50

$109.7 million (constant 1989 dollars). This represents a
substantial increase of 275 percent. The pattern of
percentages in the software development phases remained
constant.

Schedule
The calculated schedule for the best judgment base case

is 82.9 months, or almost twice the desired schedule of the
ATS Program Office. The duration outcome for the worst case
is 131.7 months. The variation is a four-year increase.

Effort
Optimistically, the best judgment position indicates

2,513 person-months of effort. The staffing level under
this environment would vary from 14 to 51 individuals. The
worst case effort climbs to 9,428 person-months, with the
minimum number of personnel more than doubling to 33. The
growth rate of the maximum staff follows the identical
ratio, producing the number of 122 persons.

Productivity
The REVIC/COCOMO model measures productivity in Source

Lines of Code per person-month. The number is for the
average size of staff in the software producing firm
directly working for the completion of the project. The

51

value for the Advanced Training System is 160 for the base
case under the best judgment conditions. The worst case
decreased the amount by 73 percent, to 42.8 lines of code
per month.

Sensitivity of the Schedule
Dollar Amounts and Schedule

The effect of reducing the optimal calculated schedule
is displayed in Table 8 (also see Figure 4). The table
indicates the relative increases in cost in the best
judgment and worst case are almost equal as a percentage.
The model was unable to accept the Program Office estimate
of 42 months for the project. The amount is less than 75
percent of the calculated schedule. The table also
indicates the increases in the best judgment and worst case
are almost equal as a percentage.

52

TABLE 8
REVIC/COCOMO SCHEDULE SENSITIVITY RESULTS

(CONSTANT 1989 $ IN MILLIONS)

Best Judgment Worst Case
Dollars Months Dollars Months

Nominal $29. 3 82.9 $109.7 131. 7
95% of Nominal 29. 3 78.8 109.7 125. 1
85% of Nominal 31. 6 70 .4 135.0 111.9
75% of Nominal 35 . 9 62 . 2 135.0 98.8
Program Office

Schedule N/A* 42* * N/A 42* *

* The REVIC model is not capable of reducing the schedule
below 75% of the nominal.
**Schedule with fixed time periods for phases of the
project.

Productivity
Under the best judgment conditions, the highest

productivity was obtained at 160.5 lines of code per
person-month. Compressing the schedule to 85 percent of the
nominal decreased the productivity by 8 percent. At 75
percent of the nominal schedule, the productivity decreased
by an additional 12 percent. The highest productivity rate
for the worst case was 42.8 lines of code per month. Only
one decline, at the 85 percent of the nominal schedule, was
detected. The total decrease of the worst case was
identical to the previous best judgment amount of 19
percent.

Fig. 4- 53

REVIC/COCOMO
SCHEDULE SENSITIVITY

1 6 0
M IL L IO N S (C O N S T A N T F Y 8 9 $)

1 4 0 -

120

100
109.7 109.7I

1

100%
(N O M IN A L)

95% 85%

SCHEDULE
75%

B E S T J U D G M E N T W O R S T CASE

CHAPTER V
DEVELOPMENT OF THE SOFTCOST-ADA MODEL ANALYSIS

Background of the Model
The Softcost-Ada cost estimating model is a product

from Reifer Consultants, Inc. in Torrance, California. It
was introduced in 198? and is being used by 17 organizations
in three nations. The program is compatible with
International Business Machines* personal computers, using a
Microsoft Disk Operating System (MS-DOS). Originally, the
program was developed based upon a detailed statistical
analysis of 75 completed Ada projects in five aerospace
firms. Later, it was tested against a data base
representing 12 million lines of delivered code.28
According to Donald Reifer, the primary developer of the
model, a basic assumption of the program is that cost
decreases with the size of the software being developed due
to productivity gains (in contrast with the COCOMO model).29
Other models, including COCOMO, assume the costs will

28 Personal letter from Douglas Willens, Marketing
Director, Reifer Consultants, Inc., to author, 25 January
1989.

29 Donald J. Reifer, "Ada’s Impact: A Quantitative
Assessment" (Torrance, California: Reifer Consultants,
Inc., 10 September 1987), 8-9.

55

increase because of the added complexity of inter-group
communication. Further, unlike COCOMO, Softcost-Ada assumes
that the major factors which affect cost (cost drivers) do
not act independently.30 In Dr. B oehm’s COCOMO model, and
therefore the COCOMO-based REVIC automated version, the cost
drivers are only multipliers.

Build-Up of the Input V a lues
General Discussion

The Softcost-Ada cost model survey is listed as
Appendix 5. Twenty-eight inputs are presented to the
estimator in four basic areas. The estimated amount of the
lines of code are also required to reflect the magnitude of
the project. The descriptors are very similar to the
REVIC/COCOMO model. Unlike the REVIC, this model is
oriented to Ada. Consequently, the survey was more
meaningful to the government software personnel. Unlike the
two previous parametric models, the Softcost-Ada descriptors
or inputs do not have acronyms.

30Donald J. Reifer, "Softcost-Ada: User Experiences
and Lessons Learned at the Age of One" (Torrance,
California: Reifer Consultants, Inc., 15 May 1988), 7.

56

Specific Inputs
Type of S o ftware System

The first input for the Softcost-Ada model is for the
type of software. The types may be broadly grouped into
five categories. The first includes military applications
such as command and control, telecommunication, and
avionics. This obviously represents the bulk of defense
related work. However, the second type of scientific and
testing software also share a large percent of the military
budget. The third is utility software labeled as tools.
This category consists of small programs. General
automation and data processing systems are very large and
are analogous to systems used by banks or similar
institutions. The final category of "other" was suggested
for computer-based training by the source of the model.31

System Architecture
The second requirement for the Softcost-Ada model is to

identify how the operating system will perform in
relationship to the hardware and the type of data base. The
input describes the anticipated hardware environment. The
seven options of choices range from a centralized and single
computer to a distributed data base with numerous computers.
The Advanced Training System will have multiple layers of

31 Helton, interviewed by author, 16 January 1989.

57

computers. Each layer, and almost each computer, will have
a data base of files.

Numbe r of Software Organizations
The next input for the Softcost-Ada model is the number

of organizations that must interact for a successful
project. As the number increases, the communication and
time to communicate rises dramatically. Organizations
include consultants, government test agencies, and
customers. The numbers selected are three for best
judgment, and four for worst case.

Organizational Interface Complexity
The degree of difficulty in dealing with the various

organizational computer connections is the topic of this
input. The complexity of communication grows as the number
of interfaces increase. Further, the geography of the
customer has an effect on the difficulty and cost of the
project. The Advanced Training System will use multiple
geographically distributed locations. The best judgment and
the worst case impression indicate the use of the high and
very high, respectively. Very high would be the most costly
of the five choices.

58

Required Development Schedule
Softcost-Ada also allows flexibility in the approach to

the anticipated schedule. The middle position of the five
values is the nominal schedule. No documentation is
provided to determine the definition of the average time.
However, one may alter the model to compress the amount to
85 or even 75 percent of the nominal schedule. The converse
is also available at 120 and the upper limit of 130 percent
of the average. Compressing the schedule to less than the
normal time, requires tasks to be performed before all
information is available. Effort must be later expended to
insure compatibility in the software project. If the
schedule is lengthened, work may require more time than
usual without any improvement in software features quality.
The best judgment position and the worst case used the
calculated schedule produced by the model. The compressed
schedules are reserved for the sensitivity analysis.

Resource A vailability
The resource availability input recognizes the

limitation of assets committed to one project. The range of
five possibilities covers the variety from austere
facilities, equipment, and staff, to a technology-enriched
office and a very capable software department. The
increased communication of local area networks is identified

59

in the upper two choices. Improved facilities and
especially increased staff capabilities result in a more
efficient operation and a lower ultimate cost.

Secu r ity Requirements
Reifer Consultants have interpreted security

requirements in their model to be a description of the final
software and physical security. This is contrast with the
simple COCOMO/REVIC viewpoint of classified or unclassified.
With six selections, one may choose none, from a range of
increasing security levels. Computer-based training should
have secure data bases. No other security requirement
exists. The nominal value is the preference for both the
best judgment decision and the worst case.

Degree of Standardization
Since this particular model is tailored for the Ada

language, the level of programming standardization is
required. A current problem in the industry, regarding Ada
programming, is standardization. The upper levels of choice
in the cost model have very detailed military guidelines.
Commercial standards are considered the normal level of use.
The required amount of standardization is high for both the
best judgment condition and the worst case.

60

Scope of Support
The cost aspects of customer relations and product

support are conveyed to the model with the scope of support.
With four degrees of support, only the maximum level of
support is considered for both the high and low estimates.
The Federal Government requires extensive cost and schedule
reporting on contracts other than Firm Fixed Price (FFP)
agreements. The ATS contract will not be a FFP situation;
therefore, the highest rating identifies these mandatory
requirements.

Use of Modern Software Methods
Regarding use of Modern Software Methods, the Softcost-

Ada descriptor is equivalent to Modern Programming Practices
in the REVIC model. The possible number of selections are
the same. The best judgment and worst case positions for
both models remain constant at high and very high,
respectively.

Use of Peer Reviews
Quality control is the subject of peer reviews. The

government has formalized the review process to include
multiple management and technical evaluations in the area of
software inspections. The management oversight would
inquire into established company procedures. For example,

61

questions might be asked such as, "How is work actually
authorized?" Further, "Are expenses, which are pooled into
overhead, allowed by the Federal Government for defense
related work?" The technical inspection would be in-depth
to the extent of comparing the existing military standards
to statements of work in the contract. The only preference
suitable for both best judgment and the worst situation is
the highest review criteria.

Use of Software Tools/Environments
The Use of Software Tools is present {as in the

COCOMO/REVIC program) with six possible options. The model,
being specifically for Ada projects, highlights more
technical terms. The word "environment" simply implies an
automated surrounding of software tools. The selections are
nominal for both.

Software Tool/Environment Stability
The Ada programming environment is currently evolving

with better software tools. The problem in the past has
been a capable compiler (a software tool) for the computer
language. The primary reason is the relatively young age of
Ada. The input of stability measures two aspects in the
possible six selections. First, it measures the rework that
is required because of defective software tools. Secondly,

62

the model quantifies the added cost from the inefficiency
perspective, i.e., the extra work that is needed. The
appraisal for the tool/environment stability is very high
for best judgment. The conjecture for the worst position is
high. Greater stability indicates reduced costs for the
project.

Ada Usage Factor
Ada is anticipated to have a higher initial cost than

other computer languages. The usage factor addresses the
possibility that multiple languages may be used in the
development of the software programming. Although the five
choices range from 50 to 100 percent, the Advanced Training
System is required to be Written totally in Ada. The very
high factor is the only option that applies.

Product Complexity
The Product Complexity parallels the Software Product

Complexity of the previous model. Potential software is
divided into six increasingly difficult mathematics and
logic routines, according to Softcost-Ada. As compared to
COCOMO/REVIC, this model clarifies the explanations of the
logic and library descriptors. Further, the Reifer model
amplifies awareness to time sensitive and concurrent tasks

63

performed by the software. The ATS programming will be in
the extra high range of complexity.

Requirements Volatility
Requirements Volatility possesses the same meaning as

the phrase in the REVIC parametric model. The current model
also describes the five selections, but in percentages of
known requirements versus more general expressions of
change. The selected inputs are equivalent. The best
judgment and worst cases are high with the possibility of
great change in requirements.

.Degree, of Optimization
The amount of optimization is similar to the REVIC

parameter of "Time." It measures the efficient use of the
processor. The effectiveness of the central processing unit
(CPU) is rated as a fraction of the potential full use.
Increased work in the software design and coding should
produce a more efficient use of the processor. The best
judgment recommendation is nominal. The worst case was also
viewed as being nominal. If more processor capacity is
needed, off-the-shelf computers are viewed as the less
expensive alternative to more software design effort.

64

Regree of Real-Time
Real Time can have slight variations in definition. As

applied by Softcost-Ada, it refers to the programming
reacting so rapidly that it depends on other instantaneous
software operations to perform well. Five alternatives are
given to describe the type of desired software. The
relationship of work effort to the Degree of Real Time in
software is simple. Real time requires more labor and more
talent. The best judgment selection is nominal, and the
worst case is identical.

Degree of Reuse
Inherently, the language of Ada is structured for ease

of "reuse." It is possible, however, to design and write
the coding for easier reuse. The additional cost for the
planned modular coding could be viewed as an investment.
For computer-based training the situation may not
immediately demand the anticipated reuse. However,
designing software for reuse in later training programs may
be more economical for the future. Of the five
alternatives, the selection for best judgment and worst case
is extra high.

65

Data... .base. Size
Data base size is also an input for the Ada specific

model. The method for calculating the size is the same, as
well as the possible range in the selection choices. The
proper decision is to use only the largest size for the ATS
program in the low and high predictions.

Ada Exper ience Profile
The input for experience in the computer language is

similar to the REVIC Language Experience factor. The intent
is to gauge the effectiveness of the software team.
However, the REVIC/COCOMO measured only time. The Softcost-
Ada method to determine experience is to use the number of
completed projects in the Ada language. A stipulation in
the ATS contract requires successful completion of three
projects.

Analyst Capability
This is identical to the previous parametric model.

With the classification divided by mathematical percentile,
the government technical team chose the nominal value for
the best judgment. For the worst case, the very low value
was selected. Both favorably compare to the REVIC model’s
inputs.

66

Applications Experience
Application Experience parallels the REVIC/COCOMO

model. The inputs are duplicated at nominal for the best
case and low for the worst scenario.

Ada Environment Experience
No equivalent exists in the previous cost model, or

specifically in PRICE S, for familiarity with the software
tools. These utility programs are collectively known as an
environment. The best judgment position was estimated at
nominal. The worst situation would only merit a low rating.

Ada Language Experience
Softcost-Ada measures the duration the average software

worker has been writing with the Ada language, similar to
the method used in REVIC/COCOMO cost model. The experience
input, to some degree, appears redundant to the following
parameter of methodology. The government software
specialists recommended nominal and low for the best/worst
positions, respectively.

Ada Methodology Experience
Software engineering studies suggest the development

process of Ada efforts is unlike other software languages.
Exposure to the design methods significantly reduces total

67

program costs. The effect has been compared to the learning
curve phenomenon taught in business courses. Of the three
automated cost models, the input for Ada Methodology
Experience is the most distinctive. Curiously, the choice
for experience is not clear in months and years of
experience. However, a technical paper authored by Donald
Reifer, the ultimate source of the Softcost-Ada model,
recognizes the number of completed projects--a different
criterion. Only the nominal option was selected for both
low and high cost conditions.

Team Capability
Although Team Capability in the COCOMO/REVIC parametric

model identifies only programming teams, the Reifer
Consultants cost model recognizes more. The higher values
are assigned for participatory and interdisciplinary team
approaches to problem solving. It identifies a highly
involved style of software engineering in the development
process. The nominal value was selected for both cases.

Results of Analysis
Dollar Amounts

Best Judgment
The estimate for the best judgment, with the calculated

schedule, is $32.3 million (constant 1989 dollars). The

68

model does not precisely estimate functional categories,
such as design or programming. It allocates percentages to
four areas. These are development, management,
configuration, and quality. Management is 10 percent of
development, with the others being approximately 5 and 6
percent, respectively. The phases of the project are also
identified differently from the Military Standard 2167A,
PRICE S, or the REVIC/COCOMO model. For clearness, the
Softcost-Ada phases in Table 9 are approximately listed in
the format of the military standard.

69

TABLE 9
SOFTCOST-ADA BEST JUDGMENT AS A

PERCENT OF TOTAL DOLLARS BY SOFTWARE PROJECT PHASE*4

Phase of the Project Percent of Total.Dollars
System Concept N/A
System and Software Requirements
Software Requirements
Preliminary Design 50.0
Detailed Design
Code and Testing 15.0
CSCI Testing
System Testing 35.0
Operational Test and Evaluation
System Integration N/A

•Phases arranged in time sequence.
♦According to Reifer Consultants, these percentages, as

calculated by the model, do not vary under any
circumstances.3 2

Worst Case
The worst case descriptors produced an amount of $71.9

million (constant 1989 dollars). The total is 2.24 times
the best judgment scenario. The functional areas and phases
did not change in the allocation of required financial
resources.

32 Pat Kane, Software Engineer, Reifer Consultants,
Inc., interviewed by author, 7 March 1989, Torrance,
California, telephone conversation, Torrance, California.

70

Schedule
Softcost-Ada forecasts a schedule of 60.1 months for

the best judgment values. The inputs for the worst case
increase the total software development time to 80.9 months.

Effort
The best judgment result for the person-months of

effort is 2,774.9. The average staffing level is over 46
persons. The worst case values altered the amount to 6,182
months of work. The higher average staffing level is 76
individuals. A major feature of Softcost-Ada is a tabular
matrix for the relationship of effort and confidence levels.
The model theorizes as the number of person-months increase,
a greater confidence is expected to complete the work on the
proper schedule. Surprisingly, the calculated schedules for
both the low and high scenarios have a confidence of less
than 50 percent. The maximum level of confidence is
approximately 85 percent.

Productivity
The values of productivity are extremely similar to the

REVIC/COCOMO amounts. The lines of code per person-month
are 106 and 47.6 for the best and worst cases, respectively.
However, Softcost-Ada actually provides a range. For each
schedule adjustment the range scale will vary. Further,

71

each value in the range has a probability. The probability
appears to be a function of the effort. As the number of
person-months of effort increases, the confidence level
grows, but the effectiveness of the average employee
decreases.

Sensitivity of the Schedule
Dollar Amounts and Schedule

The calculated schedule in the Softcost-Ada model was
reduced to analyze the changes in cost. The outcome is
presented in table 10, as well as Figure 5. The increase in
cost, as the schedule decreases to 75 percent of the nominal
amount, is greater as a percent in the best judgment
scenario. The situation reverses when the Program Office
estimate of 42 months is used.

72

TABLE 10
SOFTCOST-ADA SCHEDULE SENSITIVITY RESULTS

(CONSTANT 1989 $ IN MILLIONS)

Best Judgment Worst Case
Dollars Months Dollars Months

Nominal $32 . 3 60. 1 $71 . 9 80.9
95% of Nominal 37.0 57.1 81.3 76.9
85% of Nominal 39 . 6 51. 1 86.8 68.8
75% of Nominal 42 . 5 45.1 93.2 60. 7
Program Office

Schedule 44.4 42.0 115.7 42*

* Schedule with fixed time periods for phases of the project.

Productivity
The highest productivity with the best judgment was the

previously mentioned 106 lines of code per person-month.
The amount decreased by roughly 6 percent with each
reduction in the calculated schedule. The final
productivity loss was only 3 percent from the 75 percent of
nominal schedule to the Program Office desired duration for
the program. The worst case productivity was only 47 lines
of code per month for the nominal, and 95 percent of nominal
schedule. The rate of decrease in productivity parallels
the best judgment outcome with one exception. The exception
is from the 75 percent of nominal to the 42 months requested
by the Program Office. The change represents a 20 percent
d r o p .

Fig. 5 73SOFTCOST-ADA
SCHEDULE SENSITIVITY

120

100

M IL L IO N S (C O N S T A N T F Y 8 9 $)

115.7

71.9

100%
(N O M IN A L)

95% 85% 75% PO E
(4 2 M O N T H S)SCHEDULE

B E S T J U D G M E N T H i W O R S T CASE

CHAPTER VI
COMPARISON OF THE RESULTS

Summarization of Inputs
The last three chapters have shown some similarities

and many differences with respect to the inputs for the
three cost models examined. Table 11 highlights some of the
major differences in input between the models. The software
descriptors for PRICE S are unique, unlike Softcost-Ada
which is similar in approach to the COCOMO-based REVIC
model. The latter parametric models have numerous
descriptors which serve as simple multipliers. All models
use the major cost driver of lines of code for the
determination of project magnitude. Reliability is also a
common characteristic with the models merely having a
different name for their input. Another principle in the
cost consideration is schedule. The PRICE model requires
the start date only or the start date plus the details for
any of the phases. The REVIC and Softcost-Ada models
require only an expert opinion as to the degree of schedule
compression. One must compare the schedule calculated by
the model to the desired time in months. The inputs for
personnel in the PRICE model are consolidated into two

74

Table 11

OVERALL SOFTWARE COST MODEL INPUT COMPARISON

Categories
PRICE S

Similiar Characteristics

REVIC Softcost-Ada

Major
Cost Driver

Reliability

Hardware
Limitation

Lines of Code

Platform

Utilization

Lines of Code

Required Reliability

Main Storage and
Execution Time
Time Constraints

Lines of Code

Product
Complexity

Degree of
Optimization

-oLn

Table 11-Continued..

Categories

Schedule

Personnel

Mix of the
Type of Code
General
Hardware
Description
Management
Reserve

OVERALL SOFTWARE COST MODEL INPUT COMPARISON

Dissimiliar Characteristics

PRICE S

Actual Dates:
Start date only, or
with more information

PROFAC and
Complexity One

Described by
Percentage

N/A

Optional
(Actual
Percentage)

REVIC

Expert Opinion

Analyst Capability,
Team Capability,
Application and
Language Experience

N/A

N/A

Required
(not Percentage)

Softcost-Ada

Expert Opinion

Multiple experience
factors (Language,
Methodology, etc.)

N/A

System Architecture

Required
(not Percentage)

77

parameters. The other models need more parameters to
describe the capability of the programmers and engineers.
Various types of software are inherently more costly than
others. PRICE S addresses the issue; however, the REVIC and
Softcost-Ada models indicate the impact is minimal or cannot
be calculated.

Dollar Amounts
The variation in final totals of the software models is

surprising, as a reasonable cost range does not emerge. The
best judgment inputs produced the smallest size of variation
at $16.2 million. The highest amount of $42.5 million,
calculated by the PRICE S program, is almost twice the
amount estimated by the REVIC version of COCOMO. In
contrast, Softcost-Ada is only 10 percent more than the
REVIC. The worst case distribution is a significantly
larger variation of $47.8 million. However, the PRICE and
REVIC/COCOMO models reverse the previous order. PRICE S
assumes the lower estimated position at $61.6 million, while
REVIC is 78 percent more ($109.7 million). Softcost-Ada
retains the middle position at 16.7 percent above the
PRICE S generated amount.

Figure 6 depicts a global view of the cost analysis of
all models for both scenarios. Under any circumstances
costs rise as the schedule is decreased. PRICE S is

Fig. 6 78

PRICE S/REVIC/SOFTCOST
BEST JUDGMENT/WORST CASE

M IL L IO N S (C O N S T A N T F Y 8 9 $)
1 4 0

120

100

1

i

1

100% 95%
(N O M IN A L)

85%

SCHEDULE
75% PO E

(4 2 M O N T H S)

BST PRICE ■ WST PRICE ill BST REVIC
WST REVIC I H BST SOFT □ WST SOFT

79

consistently the highest for the best judgement and
constantly the lowest for the worse case. The REVIC/COCOMO
model results indicate the lower cost projections for the
best judgement set of assumptions. It also displays extreme
sensitivity to the parameters for the worse case by
producing exceptionally high forecasts. The REVIC model was
not accomplished for the Program Office Estimate of 42
months due to limitations of the computer program.

Another element in the comparison of dollar amounts is
the allocation of financial resources in the various phases
of a software project. The models are relatively consistent
in the dispersion of money as a percentage (reference Table
12). However, the models do not consistently address all
stages of software development identified in the Military
Standard 2167A. Therefore, the phases must be grouped to
establish any relationship. Further, only PRICE S estimates
the System Concept phase and the Operational Test and
Evaluation period of the project. The other models assume
these costs do not require forecasting.

80

TABLE 12
COMPARISON OF GROUPED PHASES OF A SOFTWARE PROJECT

AS A PERCENT OF TOTAL DOLLARS ESTIMATED

Phases * Parametric Models

PRICE S** REVIC Softcost
Best/Worst

System and
Software Requirements

Software Requirements 47.2/49 47.8 50
Preliminary Design
Detailed Design
Code and Testing 13.5/13 16.4 15

* Phases defined in Military Standard 2167A accounting for
the remaining percentages would include:

Systems Concept
CSCI Testing
System Testing
Operational Testing and Evaluation
Systems Integration

**Only PRICE S has different percentages for the best
judgment and worst case inputs.

Insufficient information is available from all the
*models to compare the allocation of money to the various

functional categories of labor.

Schedule
PRICE S consistently calculates the shortest schedule

of the models. It also has the smallest difference between

81

the best judgment and worst case situations at 18 percent
(reference Figures 7 and 8). The REVIC parametric model
possesses the longest schedule in both scenarios. Further,
the variation in the magnitude of the results, at 59
percent, is also the greatest. Softcost-Ada estimates are
between the two extremes for the schedule length.
Additionally, its low and high differences are in the
moderate position.

The Program Office schedule of 42 months is supported
by PRICE S. Radical results opposing this shorter project
duration exist with the other parametric models. With
respect to the schedule analysis, a recognizable
relationship between the financial amount estimated and the
calculated schedules does not exist.

Effort
Effort is another expression of cost. It is simply a

measurement in person-hours. The relationship of effort in
the three models is identical in comparison to the dollar
amounts.

Productivity
The PRICE S Productivity Factor cannot be used in a

direct comparison. The concept of the PRICE S factor is
useful, but only in relation to other PRICE estimates. The

Fig. 7 82

CALCULATED SCHEDULE
BEST JUDGMENT

P R IC E S

R E V IC /C O C O M O

S O F T C O S T -A D A

PO E

138

4 2

8 2 .9

60.1

0 2 0 4 0 6 0 8 0 1 0 0

M O N T H S

PROGRAM O FF IC E ESTIMATE (POE) SHOW N FOR COMPARISON

Fig. 8 83

CALCULATED SCHEDULE
WORST CASE

P R IC E S - 4 5

R E V IC /C O C O M O 131.7

80.0S O F T C O S T -A D A -

PO E - 4 2

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0

M O N T H S

PROGRAM O FF IC E ESTIMATE (POE) 8H O W N FOR COMPARISON

84

factor is merely on an arbitrary scale. With the other
models productivity is calculated in source lines of code
produced per month by the average software worker. The
REVIC model projected 160.5 lines for optimal circumstances.
The worst case achieved only 42.8 lines per month.
Softcost-Ada forecasted 106 and 47.6, respectively in the
low/high appraisals. A 51.4 percent difference between the
two latter models, in the best judgment scenario, changes to
an 11 percent difference for the severe conditions. No
clear conclusion may be inferred from the productivity data.

Comparison to the Program Office Estimate
The Program Office estimate (POE) approached the

software development project using a completely different
method. Accordingly, only the final totals may be compared
with the results of the parametric models. The innovative
procedure used program management software for a personal
computer. Work was entered as tasks, and arranged in the
sequence in which they must be performed. The amount of
needed hours to accomplish the tasks was also recorded. The
initial result of person-hours by fiscal year was exported
to an electronic spreadsheet program. Within the
spreadsheet computer program, it was possible to add the
hours and multiply by a composite wage rate ($71.41). The
original software estimate was written in 1987, therefore,

85

the total was inflated for two years to reflect constant
year 1989 dollars.

The adjusted program office estimate, excluding general
and administrative expenses and profit, is $24 million. If
one uses this estimate as the baseline, the following
variations arise as shown in Table 13. All parametric
estimates for software development are higher than the
program office estimate by at least 22.1 to 77.1 percent.

TABLE 13
DIFFERENCES USING THE 1987 PROGRAM OFFICE

SOFTWARE ESTIMATE AS THE BASELINE
($ ARE CONSTANT 1989, IN MILLIONS)

Best Judgment Worst Case

PRICE S
REVIC/COCOMO
SOFTCOST-ADA

Differences
in

Dollars
$18.5

5.3
8.3

Percent
Increase

77.1
2 2 , 1
34.6

Differences Percent
in Increase

Dollars
$37.6
85 . 7
47.9

157.0
357.1
199.6

* The nominal (calculated) schedule results are used for the
comparison.

Clearly, the focus of the review of Table 13 should be
on the best judgment situation. A government estimate is
constructed to determine funding requirements and cannot be
based on the worst case assessments.

CHAPTER VII
SUMMARY OF FINDINGS AND CONCLUSIONS

The software costs obtained from these models are
consistently higher than the Program Office software
development cost estimate. Due to the POE methodology of
using estimated man-hours, the only comparison possible is
with the final financial total. The models produce a best
judgment range from 22 to 77 percent greater than the POE
using their calculated schedule. This would suggest
probable cost growth above the previously anticipated
amount.

Projections by REVIC and Softcost-Ada forecast a much
longer development schedule than the 42 months desired by
the program office. The differences in estimating the time
to complete the software project may account for the
variation in cost forecasts of the models. With respect to
the sensitivity of time, the models also indicate an
increase in costs for reductions below the schedule
calculated by the model to complete the ATS project.
However, a decrease of 5 percent or less in the schedule may
not have a significant effect. The PRICE S outcome has
suggested the planned times for phases should be considered

86

87

forecasts and not precise deadlines. The artificially
scheduled times could increase costs. A conclusion may be
inferred from the sensitivity analysis, that a review of the
schedule requirements should be performed.

Regarding the issue of timing expenditures by software
development phase, the parametric models are almost
identical. Approximately 50 percent of funding will be
spent from the system requirements phase to the detailed
design of the project. However, the remaining 50 percent is
spread basically among the latter phases of testing,
evaluation and integration. The models also differ in
approaches to these phases and the allocation of percentages
of required funding (refer to Table 12).

No firm conclusion was established in regard to the
cost of the Advanced Training System. The range of cost
estimates for the best judgement scenario and the calculated
schedule was from $29.3 to 42.5 million. Without a
reasonably consistent number, the determination of the exact
amount above the from the Program Office estimate cannot be
made. The software cost models clearly indicate an increase
of resources is needed when compared to the Program Office
cost estimate.

Automated models can also estimate the approximate
magnitude of cost for timely managerial decisions.33 This

33Helton, interviewed by author, 16 January 1989.

88

paper has concentrated on a best judgement and worst case
approach in estimating software development costs. A
recommendation for further study should include a
sensitivity analysis for the software descriptors of the
various models. The purpose would be to isolate the major
determinants of cost and any potential inconsistencies. An
Air Force Cost Center review is currently underway to
determine the accuracy of the parametric models in Ada
language projects. The research involves numerous completed
software programs. It will also analyze the limitations of
models based on personal computers (REVIC and Softcost-Ada)
versus the more complex ones hosted on mainframes (PRICE
S).34 Additional studies into ATS should also incorporate
these findings.

34Helton, interviewed by author, 16 January 1989.

90

PRICE S Questions and Answers

1. Question: What is the magnitude of the project with
respect the lines of software code?
Answer: In 1987, the lines of code was estimated at
approximately 330,000 (the estimate summary is provided in
Table 1 of the paper). The forecast, based on expert
opinion, introduces the software by function although the
final result may differ to some degree.

2. Question: What is the character of the project (Program
Application)?
Answer: The project will be an advanced computer-based
training application. The final result will be highly
interactive with the student. Another viewpoint may state
the software will be a massive state-of-the-art data base.

3. Question: What is the degree of New Design and Code
(How much new work is needed?)
Answer: No current software architecture or programming
code is available to use in the Advanced Training System.
Therefore, everything must be built.

4. Question: Who will do the work (Productivity)?
Answer: As always in a government program, this is the
greatest concern. One simply does not know.

5. Question: What hardware constraints (Utilization)?
Answer: No hardware constraints for ATS. A cheaper
alternative to more design and coding is to purchase "off-
the-shelf" hardware. In an airplane, one may not be able to
use this alternative due to weight or space limitations.

6. Question: Are customer specifications and reliability
requirements very high?

91

Answer: The military has extensive reviews for software
development projects. The issue of reliability would be
less of a cost driver.

7. Question: What complicating factors exist (Development
Environment)?
Answer: Due the intense demand for the system the
development time is only 42 months. Further, the ATS is
also a distributed data base which is a rather new concept.

93

MIX, NEW DESIGN, NEW CODE

System Level Subsystem

APPLICATION
Data Storage and Retrieval
Real Time Command and Control
String Manipulation
Operating Systems

New Development
MIX DESIGN CODE
30 % 100 % 100
10 % 100 % 100
30 % 100 % 100
30 % 100 % 100

System Controls Subsystem

APPLICATION
Data Storage and Retrieval
On-line Communications
Mathematical Operations
String Manipulation

100 %

New Development
MIX DESIGN CODE
40 % 100 % 100
10 % 100 % 100
20 % 100 % 100
30 % 100 % 100

100 %
Management Subsystem

MIX
New Development

DESIGN CODE
On-line Communications
Operating Systems

Student Management Subsystem

APPLICATION
Data Storage and Retrieval
String Manipulation

90 % 100 % 100
10 % 100 % 100

100 %

New Development
MIX DESIGN CODE
50 % 100 % 100
50 % 100 % 100

100 %

94
(Continued)

MIX, NEW DESIGN, NEW CODE

Authoring Subsystem
New Development

APPLICATION MIX DESIGN CODE
Data Storage and Retrieval
Interactive Operations
String Manipulation

40 %
20 %
40 %

100 %

100 %
100 %
100 %

100 %
100 %
100 %

Delivery Subsystem
New Development

APPLICATION MIX DESIGN CODE
Data Storage and Retrieval
Interactive Operations
String Manipulation

50 %
10 %
40 %

100 %

100 %
100 %
100 %

100 %
100 %
100 %

Testing Subsystem
New Development

APPLICATION
Data Storage and Retrieval
Interactive Operations
Mathematical Operations
String Manipulation

MIX
50 %
10 %
10 %
30 %

100 %

DESIGN
100 %
100 %
100 %
100 %

CODE
100 %
100 %
100 %
100 %

Evaluation Subsystem
New Development

APPLICATION MIX DESIGN CODE
Data Storage and Retrieval
Mathematical Operations
String Manipulation

40 %
20 %
40 %

100 %

100 %
100 %
100 %

100 %
100 %
100 %

96

PHASE AND COST ELEMENT DEFINITIONS*
PHASE DEFINITIONS

System Concept
The system concept phase is the initial planning and concept
exploration phase for the system. During this initial
phase, customer operational requirements are evaluated and
refined through the use of feasibility and trade-off studies
and analyses. These studies may be conducted on several
different solutions, from which one will be chosen. The
requirements for the selected solution will be documented in
the Preliminary System Segment Specification. The
Preliminary System Segment Specification is the prime
deliverable product from this phase and will be evaluated by
the customer at the System Requirements Review. Successful
completion of this review completes the System Concept
phase. Although the Preliminary System Segment
Specification contains both hardware and software initial
requirements, the PRICE S model only estimates the cost
associated with the software requirements.

System Software Requirements Analysis
This phase is a continuation of the previous phase in
defining the system software requirements. The Preliminary
System Segment Specification is completed, and Computer
Software Configuration Items (CSCI) are identified. Trade
off analysis, and architecture and feasibility studies are
accomplished to assist in completing the Preliminary
Software Requirements Specification and Preliminary
Interface Requirements Specifications. The Operational
Concept Document is completed, depicting the mission
requirements of the system, and how it will be supported
within its operational environment. The Software
Development Plan, which states how the software effort will
be managed and controlled is also completed. The System
Design Review is conducted at the end of this phase, with
the purpose of reviewing the above documents for
consistency, understandability and traceability. The
system’s Functional Baseline is a product of this phase.

Software Requirements Analysis
During this phase, all Computer Software Configuration Item
(CSCI) requirements stated in the System Segment

97

Specification are evaluated and defined. Functional,
performance and database requirements for each CSCI are
identified and defined, along with formal testing
requirements. Engineering requirements for each CSCI are
documented in the Software Requirements Specification.
Internal and external CSCI interface requirements are
defined, along with formal testing requirements, and are
documented in the Interface Requirements Specification. At
the completion of this phase, the Software Specification
Review is conducted by the customer. The purpose of this
review is to ensure that all requirements are allocated to
the appropriate CSCI. This is accomplished by the customer
reviewing the Software Requirements Specification and the
Interface Requirements Specification for consistency,
understandability and traceability of all system
requirements defined, and allocated to each CSCI. The
System Allocated Baseline results from this phase.

Preliminary Design
The Preliminary Design phase consists of producing a top
level software design for each Computer Software
Configuration Item (CSCI). This CSCI top level design
depicts the functions that will be performed along with
identifying mathematical models, data and function flows of
the software. This is accomplished by allocating the
requirements from the Software Requirements Specification
and the Interface Requirements Specification to the Top
Level Computer Software Components (TLCSC) and Lower Level
Computer Software Components (LLCSC) within each CSCI. The
Software Top Level Design Document contains all top level
design information for each CSCI, including processing and
TLCSC interface relationships. This document should
demonstrate that all top level requirements for each CSCI
have been evaluated and allocated as they relate to the
Software Requirements Specification, and Interface
Requirements Specification. Effort is also expended during
this phase in completing the System Integration and Test
Plans, and CSCI Software Test Descriptions. Preliminary
versions of the Computer Resources Integrated Support
Document, Computer Systems Diagnostic Manual, Computer
Systems Operators Manual and The Software Users Manuals are
completed and submitted to the customer for review during
the Preliminary Design Review. At the completion of this
phase, a Preliminary Design Review is accomplished, ensuring
that the requirements allocation from each CSCI to TLCSCs
and LLCSCs are adequate and meet the system requirements.
The Software Test Descriptions will also be reviewed,

98

ensuring that the means of data recording, reduction, and
analysis methods are acceptable.

Detailed Design
This phase consists of decomposing each CSCI Software Top
Level Computer Software Component requirement allocated
during the preliminary design phase, down to specific
components and units, where each unit performs a single
function. Database and internal and external interface
designs are completed. This phase should result in a "code
to" design document. This process is documented in the
Software Detailed Design Document. Unit test requirements,
test responsibilities, test cases in terms of expected
results and evaluation criteria, and schedules for unit
testing of all CSCs will be documented in the software
development files. Test cases for each formal CSCI test
will also be developed and documented in the Software Test
Description. Preliminary versions of the Firmware Support
Manual, and the Software Programmers Manual are also
completed and submitted to the customer for review at the
Critical Design Review. The Critical Design Review is
conducted at the end of this phase for each CSCI. The
purpose of this review is to ensure that all requirements
have been allocated to the respective CSCI units, and to
review unit testing and CSCI level testing procedures and
documentation.

Code and Test
The objective of this phase is to produce a deliverable
source and object code for each unit that comprises the
CSCI. All units are coded in accordance with the code
standards described in the Software Development Plan. Unit
test is conducted in accordance with procedures developed
during the detailed design and the results are documented in
the software development files. The purpose of the tests is
to ensure that all logic and algorithms employed by each CSC
are correct and that the CSC satisfies its specified
requirements. Computer Software Component integration and
test is accomplished during this phase, prior to the Test
Readiness Review. All test results will be reviewed during
the Test Readiness Review conducted to ensure that the
system is ready for CSCS integration and Functional
Configuration Audit.

99

CSCI Testing
During this phase, formal tests are conducted for each CSCI
to demonstrate to the customer that the CSCI satisfies its
allocated requirements. All testing will be conducted by
independent personnel and results are documented in the
Software Test Report. After the testing is complete, the
code is prepared for delivery as specified in the Software
Requirements Specification and the Functional Configuration
Audit and Physical Configuration Audit are performed. After
authenticated completion of these two audits, the Software
Specification for the CSCI is entered into the Product
Baseline, and CSCI developmental Configuration is complete.
System Test
Previous to this phase, the software was tested against the
CSCI Software Requirements Specification, only. During this
phase, hardware/software integration takes place and syistem
test, ensuring that the system meets the requirements stated
in the System Segment Specification. All tests of the
systems will be conducted by personnel who are independent
from the individuals responsible for the development. The
objective of this phase is to verify that the system
performance of the hardware and software configuration items
comply with hardware and software development specification,
operational requirements, and interface requirement
specifications. At the successful completion of this phase,
the development article is provided to the customer.

Operational Test and Evaluation
During this phase, the system is tested by the operational
users or a designated customer test group, with the purpose
of testing the operational effectiveness and suitability of
the deployed system. Flight tests and other special tests
occur during this phase. Deficiencies identified during
this phase may result in additional development activity or
modifications to the system.

COST ELEMENT DEFINITIONS
Throughout the software development process, six major
functions or elements of costs are performed, all of which
are essential to the success of the project.

100

Design
The design cost element contains all costs attributed to the
software engineering design department. These costs include
Engineering supervision, technical and administrative
support and vendor liaison required for software development
ef fort.

Programming
The programming cost element contains all costs attributed
to writing the source code and subsequently testing it.

101

Data
This cost element contains all costs associated with
software deliverable documentation. This includes
responding to the "Contractor Data Requirements List" (CDRL)
which contains requirements for delivery of all
requirements, design, maintenance, and user manuals, i.e.,
Systems Segment Specification, Top Level Design and Detailed
Design Specifications, Programmer and user manuals, etc.

System Engineering/Project Management
This element includes the System Engineering to define the
software, and the Project Management effort required to
manage the software development project. The system
engineering activity encompasses the effort to define the
system requirements, and the integrated planning and control
of the technical program efforts of the design engineering,
specialty engineering development of test procedures, and
system oriented testing and problem resolution. Project
Management efforts include managing the software development
program in accordance with all procedures identified in the
Software Development Plan, design review activities, and
administrative duties.

Quality Assurance
This cost element includes the effort required to conduct
internal reviews and walkthroughs to evaluate the quality of
the software and associated documentation. Activities
included in this element are evaluation of the Software
Development Plan, software development library, and the
Software Configuration Management Plan.

Configuration Control or Configuration Management
This activity involves the determination, at all times, of
precisely what is and is not an approved part of the system.
To accomplish this, it is necessary to perform three tasks.
The first involves incorporating requirements and
specifications into the Functional and Allocated Baselines.
Once a document has been incorporated into the baseline,
changes may only be made through the configuration control
task. This task involves the evaluation of changes, and
corrections to the baseline. Finally, it is necessary to
provide for the dissemination and control of approved
baseline material. Configuration Control also reviews the

102

test procedures and ensures compliance with test plans and
speci ficat ion.

“Extracted from the PRICE S Reference Manual 1987, pp A-l to
A-5 .

104

SURVEY RESULTS
COCOMO/REVIC PROJECT FACTORS

ANALYSTS CAPABILITY - ACAP
ACAP measures the system engineers capability as a team
average. The analysts define the software architecture and
produce the preliminary design specifications. This
includes requirements identification and decomposition as
well as preliminary design of the Computer System
Configuration Item (CSCI) and its component Computer
Subsystem Components.
Enter the two letter code from the table below which best
describes the capabilities of the entire team. Note that
the rating does not necessarily correspond to years of
experience, but rather attempts to quantify skills.
RATING EXAMPLES
________ VL New personnel with no experience (15%)
Worst LO Functional team with low effectivity (35%)
_Best NM Average team with nominal effectivity

(55%)
________ HI Strong team with good effectivity (75%)
 ______ VH Strong team with many top people (90%)

PROGRAMMING TEAM CAPABILITY - PCAP
PCAP measures the capability of the programmers who will be
the ones that actually perform the detailed CSCI/CSC design
during the critical design phase of the contract and
write/test the physical code during the coding and
integration testing phases. Enter the two letter code that
best describes the capabilities of the programming team.
RATING EXAMPLES
_______ VL 15TH PERCENTILE TEAM
Worst LO 35TH PERCENTILE TEAM
Best NM 55TH PERCENTILE TEAM
 HI 75th PERCENTILE TEAM
 VH 90TH PERCENTILE TEAM

105

PROJECT APPLICATION EXPERIENCE - AEXP
AEXP attempts to measure the familiarity of the design and
development team with this specific program. Enter the two
letter code which best describes the experience of the
overall team with projects of this type.
RATINGS EXAMPLES
________ VL
 LO
Both NM

________ HI
________ VH

NO EXPERIENCE (less than 4 months)
LIMITED EXPERIENCE (1 year)
NOMINAL EXPERIENCE (3 years)
BETTER THAN AVERAGE (6 years)
EXPERTS (more than 12 years)

LANGUAGE EXPERIENCE - LEXP
LEXP measures the design and programming team’s experience
with the language that will be used to implement the design
in the software. Enter the two letter code which best
describes the team’s experience.
RATINGS

Both

EXAMPLES
VL
LO
NM
HI
VH

NEVER USED BEFORE
LESS THAN 1 YEAR EXPERIENCE
AT LEAST 1 YEAR EXPERIENCE
2 YEARS EXPERIENCE
MORE THAN 2 YEARS EXPERIENCE

EXECUTION TIME CONSTRAINTS - TIME
TIME measures the approximate percentage of available CPU
execution time that will be used by the software. Enter the
two letter code that best describes the approximate amount
of utilization.
RATINGS EXAMPLES
Both VL NO CONSTRAINTS ON EXECUTION TIME
_______ LO NO CONSTRAINTS ON EXECUTION TIME
_______ NM FOR 60% UTILIZATION
 HI FOR 70% UTILIZATION
_______ VH FOR 85% UTILIZATION
______ XH for 95% or more

106

MAIN STORAGE CONSTRAINTS - STOR
STOR measures the amount of constraint imposed on the
software due to main memory limitations in the target
computer. If memory is a problem, more time must be spent
on design and coding. Enter the two letter code that best
describes this system’s main storage constraints.
RATINGS EXAMPLES
Both NM NO MEMORY CONSTRAINTS

________ HI FOR 70% UTILIZATION
________ VH FOR 85% UTILIZATION
________ XH FOR 95% OR HIGHER UTILIZATION

VIRTUAL MACHINE VOLATILITY - VIRT
VIRT measures the amount of changes the host and target
computers are experiencing during the design and development
phases. The more the system changes during these phases,
the more work is required to keep the software design and
code compatible with the system’s hardware and software.
Enter the two letter code which best describes the frequency
of changes to both the development and target computer’s
hardware and software.
RATINGS EXAMPLES
Both VL NO CHANGES EXPECTED
_______ LO ONE CHANGE EVERY 6 MONTHS
_______ NM ONE CHANGE EVERY 3 MONTHS
 HI ONE CHANGE EVERY MONTH
_______ VH SEVERAL CHANGES EVERY MONTH
_______ XH CONCURRENT DEVELOPMENT - CONSTANTLY

CHANGING

107

COMPUTER TURNAROUND TIME - TURN

TURN measures the time spent waiting for the host, or
developmental computers, to complete an action such as a
compile or printing a listing. Enter the two letter code
which best describes the development environment.
RATINGS EXAMPLES

VL LESS THAN 6 MINUTES
Best LO LESS THAN 30 MINUTES
Worst NM LESS THAN 4 HOURS

HI MORE THAN 4 HOURS
VH MORE THAN 12 HOURS

REQUIREMENTS VOLATILITY - RVOL
RVOL measures the amount of project design and development
rework that is the result of changes in customer specified
requirements. This factor can have a very large effect on
the total development time and effort, but should be used
very carefully. Most projects will be put on contract after
negotiations based on the known requirements. The
expectation is that any changes in requirements will result
in an Engineering Change Proposal (ECP) which will adjust
the contract price accordingly. This factor compensates for
the extra system engineering and management effort to
evaluate the changes in requirements, estimate the design
impacts, prepare the ECPs, and change the software. This
factor should not be used to arbitrarily built in a
management reserve, instead use the Mgmt Reserve for Risk
factor.
RATINGS EXAMPLES
 LO ESSENTIALLY NONE
________ NM SMALL, NONCRITICAL REDIRECTIONS
Best HI OCCASIONAL MODERATE REDIRECTIONS
Worst VH FREQUENT MODERATE OR OCCASIONAL MAJOR

REDIRECTIONS
________ XH FREQUENT MAJOR REDIRECTIONS

108

REQUIRED SOFTWARE RELIABILITY - RELY
RELY quantifies the required reliability of the finished
software. As the required reliability increases, more time
must be spent in the critical design and testing phases.
Enter the two letter code which best describes the required
reliability of the finished system in terms of what effects
the software failure would have on the user.
RATINGS

Both

EXAMPLES
VL
LO
NM
HI
VH

SLIGHT INCONVENIENCE
EASILY RECOVERABLE LOSS
MODERATE RECOVERABLE LOSS
FOR MIL-STD OR HIGH FINANCIAL LOSS
FOR POSSIBLE LOSS OF LIFE

DATA BASE SIZE - DATA
DATA attempts to determine the effects on the software
development due to the size of the data base which must be
maintained and manipulated. Enter the two letter code which
best describes the size and complexity of the program’s data
base effort.
RATINGS EXAMPLES
________ LO VERY SMALL EFFORT (DB BYTES/PROGRAM DSI

< 1 0)
________ NM NOMINAL SIZE EFFORT (10<= D/P <100)
________ HI LARGE AND COMPLEX EFFORT (100<= D/P <1000)
Both VH THE LARGEST (D/P =>1000)

109

SOFTWARE PRODUCT COMPLEXITY - CPLX
CPLX attempts to quantify the complexity of the software
product to be developed. Use the examples below to select
the two letter code that best describes the required
software’s complexity.
RATINGS

Both

EXAMPLES
VL
LO
NM
HI
VH
XH

OFFLINE SIMPLE PRINT ROUTINES
OFFLINE DATA PROCESSING
DATA PROCESSING AND MATH ROUTINES
SOME H/W I/O AND ADVANCED DATA STRUCTURES
REAL TIME APPLICATIONS AND ADVANCED MATH
EXTREMELY COMPLEX SCIENTIFIC PROCESSING
SUCH AS SIGNAL PROCESSING AND EPHEMERIC
CALCULATIONS

REQUIRED REUSABILITY - RUSE
RUSE measures the extra effort needed to generalize software
modules when it must be developed specifically for reuse in
other software packages. Enter the two letter code that
best describes the required reusability of this software.
RATINGS EXAMPLES
________ NM NOT FOR REUSE ELSEWHERE
Best HI REUSE WITHIN SINGLE-MISSION PRODUCTS
Worst VH REUSE ACROSS SINGLE PRODUCT LINE

 HX REUSE IN ANY APPLICATION

MODERN PROGRAMMING PRACTICES - MODP
MODP quantifies the use of modern programming practices such
as structured design, data flow diagrams, data dictionaries,
etc. Enter the two letter code which best describes this
program’s use of such practices.
RATINGS EXAMPLES
________ VL NO USE OF MPPs
________ LO BEGINNING USE OF MPPs
________ NM SOME USE OF MPPs BY MORE EXPERIENCED TEAM

MEMBERS
Worst HI GENERAL USE OF MPPs BY ALL TEAM MEMBERS
Best VH ROUTINE USE OF MPPs WITH STRONG COMPANY

TRAINING

110

USE OF SOFTWARE TOOLS TOOL
TOOL measures the use of automated software tools such as
CASE (computer aided system engineering) tools, Ada
Programming Support Environments, etc. Enter the two letter
code which best describes the use of tools in this program.
RATINGS

Both

EXAMPLES
VL
LO
NM
HI
VH
XII
XX

VERY FEW, PRIMITIVE TOOLS
BASIC MICRO TOOLS
BASIC MINI TOOLS
BASIC MAXI TOOLS
EXTENSIVE TOOLS, LITTLE INTEGRATION
MODERATELY INTEGRATED ENVIRONMENT (UNIX OR
MAPSE)
FULLY INTEGRATED ENVIRONMENT (APSE)

CLASSIFIED SECURITY APPLICATION - SECU
SECU measures the extra work required to develop software
either in a classified security area, or for a classified
security application.
Note that this factor does not relate to the certification
of security processing levels, as specified by the NSA. Use
the complexity factor to account for that type of
application. Enter the two letter code which describes this
program’s environment.
RATINGS EXAMPLES
________ VL
 LO
Both NM UNC LASSIFIED

________ HI CLASSIFIED (SECRET, TOP SECRET)
________ VH
________ XH

Ill

MANAGEMENT RESERVE FOR RISK - RISK
RISK allows you to add in a percentage factor to account for
varying levels of program risk. This factor should only be
used very carefully to assess the upper limits of program
costs. Enter the two letter code as desired. Normally,
this value should be left at VL.
RATINGS EXAMPLES
Both VL VERY LOW PROGRAM RISK (GROUND SYSTEMS)

________ LO LOW PROGRAM RISK (MILITARY SPEC GROUND
SYSTEMS)

________ NM MEDIUM PROGRAM RISK (UNMANNED AIRBORNE
SYSTEMS)

________ HI HIGH PROGRAM RISK (MANNED AIRBORNE
SYSTEMS)

________ VH . VERY HIGH PROGRAM RISK (UNMANNED SPACE
APPLICATIONS)

________ XH EXTRA HIGH PROGRAM RISK (MANNED SPACE
APPLICATIONS)

REQUIRED DEVELOPMENT SCHEDULE - SCED
SCED measures the effects that schedule compression or
stretchout have on the total effort. Forcing the schedule
below the nominal schedule predicted by the model will
always increase the total effort. The model will not let
you force the schedule below approximately 75% of the
nominal schedule it calculates. You cannot change this
factor in this screen. It is automatically calculated as a
percentage of the nominal schedule whenever you use any of
the options from the constraint menu, such as forcing the
total schedule or specifying the staffing/schedule per
development phase.
Note: The Best Judgment and the Worst Case used the
calculated schedule. The Program Office schedule is 42
months.

113

SURVEY RESULTS
SOFTCOST - ADA PROJECT FACTORS

TYPE OF SOFTWARE SYSTEM
.1) Automation System
.2) Avionics System
.3) Command & Control System
.4) Data Processing System
.5) Environment/Tool System

6) Scientific System
7) Simulation System
8) Telecommunica

tions System
9) Test System

10) Other
Note: Reifer Consultants suggested "Other" for the ATS
program.

SYSTEM ARCHITECTURE
______1) Centralized (single processor)
______2) Tightly-coupled (multiple processor)
______3) Loosely-coupled (multiple processor)
______4) Federated (functional processors communicating via

a b u s)
______5) Distributed (centralized database)
Both 6) Distributed (distributed database)
______7) Other

NUMBER OF SOFTWARE ORGANIZATIONS
Enter the number of organizations that will be involved in
the software effort (e.g., development, test, Q.A., etc).
Best Judgment: 3 organizations
Worst Case : 4 "

ORGANIZATIONAL INTERFACE COMPLEXITY
RATING EXAMPLES
________ VL Single interface with collocated customer
________ LO Single interface with single customer
________ NM Multiple internal and single external

interfaces
Best HI Multiple internal and external interfaces
Worst VH Multiple geographically distributed internal

and external interfaces

114

REQUIRED DEVELOPMENT SCHEDULE
RATING EXAMPLES
________ VL 75% of nominal schedule
________ LO 85% of nominal schedule
Both NM Nominal schedule

________ HI 120% of nominal schedule
________ VH 130% of nominal schedule
Note: The base case used the nominal schedule

RESOURCE AVAILABILITY
RATING EXAMPLES
________ VL Extreme equipment, facility and staff

limitations
________ LO Computer shared and remotely accessible. Less

than 30% of staff available when needed.
________ NM Interactive access to dedicated computer

resources. Less than 50% of staff available
when needed.

________ HI Dedicated facilities with multiple LAN-
servers/worker. Less than 70% of staff
available when needed.

Both VH Software Factory with multiple LAN-
servers/worker. Skilled staff available when
needed.

SECURITY REQUIREMENTS
RATING EXAMPLES
________ LO None
Both NM Database integrity

________ HI Physical security
________ VH Demonstrably correct trusted system

Physical security
________ EH Verifiably correct trusted system

Physical security

DEGREE OF STANDARDIZATION
RATING EXAMPLES
________ VL None
________ LO Use Ada programming standards
________ NM Use commercial life cycle standards
Both HI Use tailored military standards

________ VH Use untailored military standards

115

SCOPE OF SUPPORT
RATING

Both

EXAMPLES
LO No support to nonsoftware organizations
NM Liaison support to nonsoftware organizations
HI Extensive support to system test organizations
VH Extensive support to system engineering and

test organizations. CSSR/CSCSC reporting
requirements.

USE OF MODERN SOFTWARE METHODS
RATING EXAMPLES
_________ VL No use
_________ LO Structured programming
_________ NM Object-oriented design plus structured

programming
Best HI Ada packaging methods used as part of an

overall structured methodology
W o rst VH Integrated life cycle methodology which

exploits Ada reusability concepts

USE OF PEER REVIEWS
RATING EXAMPLES
________ VL No use
________ LO Quality inspections/audits
________ NM Design and code walkthroughs
________ HI Design and code inspections
Both VH Peer management reviews, design and code

inspections

USE OF SOFTWARE TOOLS/ENVIRONMENTS
RATING EXAMPLES
________ VL Basic Ada language tools
________ LO MAPSE, plus access to host tools
Both NM MAPSE, plus access to host/target tools

________ HI APSE as part of the environment
________ VH APSE as the development environment
________ EH Full, integrated, life cycle APSE

116

SOFTWARE TOOL/ENVIRONMENT STABILITY

RATING EXAMPLES
________ VL Buggy compiler. APSE change every 2 weeks
________ LO Stable but incapable compiler. APSE change

every month. New tool rate 1 per week.
________ NM Stable compiler. APSE change every 3 months.

New tool rate 1 per month.
Wors.t HI Stable compiler. APSE change every 4 months.

New tool rate 1 per quarter.
Best VH Stable compiler capable of tasking. APSE

change every 6 months. New tool rate 1 per
quarter.

________ VH Stable and fully capable compiler. APSE
change every 6 months. New tool rate 1 per 6
months.

ADA USAGE FACTOR
RATING

Both

EXAMPLES
VL Less than 50% of the software written in Ada
LO Less than 75% of the software written in Ada
NM Less than 85% of the software written in Ada
HI Less than 95% of the software written in Ada
VH 100% of the software written in Ada

PRODUCT COMPLEXITY
RATING

Both

EXAMPLES
VL Straight line code.

Structures. Sxmple
LO

NM

HI

VH

EH

Standard types. General
 - . JT* +■ V*xiu^/xc aia uii » No tasking.

Simple Operators. Standard types. General
Structures. Simple math. Simple data
manipulation. No tasking
Straight forward logic. Generics and standard
structures.
Standard I/O. Simple Tasking.
Highly nested logic. Numeric Types.
Libraries of packages and generics.
Complicated I/O. Concurrent tasking.
Stochastic logic. Unique types. Libraries of
packages, tasks and generics. Sophisticated
math and I/O. Rendezvous.
Dynamic resource allocation. Unique types.
Special libraries. Time dependent task
scheduling. Multiple exception handlers.
Optimization and efficiency concerns.

117

REQUIREMENTS VOLATILITY
RATING

Both

EXAMPLES
LO Essentially no changes
NM Over 60% of requirements are well established
HI Over 50% of requirements are well established
VH Over 30% of requirements are well established
VH Less than 30% of requirements are well

establi shed

DEGREE OF OPTIMIZATION
RATING EXAMPLES
________ LO Uses maximum of 50% of available processor

resources
Both NM Uses maximum of 75% of available processor

resources
 HI Uses maximum of 85% of available processor

resources
________ VH Uses maximum of 95% of available processor

resources
________ EH Uses more than 100% of available processor

resources

DEGREE OF REAL-TIME
RATING
Both

EXAMPLES
LO Essentially batch response
NM Interactive with limited Ada tasking
HI Interrupt driven with tasking in milliseconds
VH Concurrent tasking with rendezvous in

milliseconds
EH Concurrent tasking with rendezvous in

nanoseconds

DEGREE OF REUSE
RATING EXAMPLES

Both

LO
NM
HI
VH

EH

Essentially no packaging for reuse.
Less than 10% of software packaged for reuse.
Less than 20% of software packaged for reuse.
Very High - Less than 30% of software
packaged for reuse. Effective use of package,
generic and task library units.
Over 30% of software packaged for reuse.
Extensive use of package, generic and other
library units.

118

DATA BASE SIZE
RATING EXAMPLES

LO Database (bytes) as a % of total program size
NM

< 19
Database (bytes) as a % of total program size

HI
< 100
Database (bytes) as a % of total program size

Both VH
< 1000
Database (bytes) as a % of total program size
> 1000

ADA EXPERIENCE PROFILE
Enter the average number of Ada projects completed by the
team that will be assigned to this project. A project is
defined as a delivery of a product packaged and prepared
using Ada concepts (Ada P D L , a software build, etc.).
Average Number: 3

ANALYST CAPABILITY
RATING EXAMPLES
Worst VL Bottom (15th percentile)

LO Below average (35th percentile)
Best NM Average (60th percentile)

HI Top performer (80th percentile)
VH Superstar (90th percentile)

APPLICATIONS ljypPD T TTMr'E'

RATING EXAMPLES
Worst
Best

VL
LO
NM
HI
VH

Less than
Less than
Between 1
Between 3

4 months experience
1 year of experience
- 3 years experience
- 6 years experience

Over 6 years experience

ADA ENVIRONMENT EXPERIENCE
RATING EXAMPLES
_________ VL Less than 3 months experience
Worst LO Between 3 - 6 months experience
Best NM Between 6 - 12 months experience

_________ HI Over 1 year of experience

119

ADA LANGUAGE EXPERIENCE
RATING
Worst
Best

EXAMPLES
VL Less than

Between 3
Between 6
Between 1

LO
NM
HI
VH

3 months experience
- 6 months experience
- 12 months experience
-2 years experience

Over 2 years experience

ADA METHODOLOGY EXPERIENCE

RATING EXAMPLES
________ VL Less than
_______ LO Between 3
Both NM Between 6
 HI Between 1

VH

months experience
6 months experience
12 months experience
2 years experience

Very High - Over 2 years experience

TEAM CAPABILITY
RATING EXAMPLES
________ VL Not used
________ LO Design teams
Both NM Programming teams

________ HI Participatory teams
________ VH Interdisciplinary teams

Sources Consulted

Bailey, Elizabeth K . , Thomas P. Frazier, and John W. Bailey.
A Descriptive Evaluation of Automated Software Cost-
Estimation Models IDA Paper P-1979. Washington, DC:
Institute for Defense Analyses, October 1986.

Conners, Dan. Memorandum for the Record. Presented to Human
Systems Division/YAT, 13 April 1987. Brooks Air Force
Base, Texas.

Conte, S. D . , H. E. Dunsmore, and V. Y. Shen. Software
Engineering Metrics and Models. Reading,
Massachusetts: The Benjamin/Cummings Publishing
Company, Inc., 1986.

DeMarco, T o m . Controlling Software Projects:__ Management.
Measurement & Estimation. Foreword by Barry W. Boehm.
New York: Yourdon, Inc., 1982.

Department of the Air Force, Headquarters Air Training
Command. Operational Concept Document for the Advanced
Training System. [San Antonio, T X] : U.S. Department
of the Air Force, Headquarters Air Training Command, 26
October 1987.

Helton, Mike, Software Cost Analyst, Air Force Cost Center,
interviewed by author, 16 January 1989, Washington,
D. C., telephone conversation, Air Force Cost Center,
Washington, D. C.

Kane, Pat. Software Engineer, Reifer Consultants, Inc.,
interviewed by author, 7 March 1989, Torrance,
California, telephone conversation, Torrance,
California.

King, Earl, Senior Analyst, Operations Staff, PRICE Systems.
Interview by author, 16 May 1988, Moorestown, New
Jersey. Telephone conversation. PRICE Systems,
Moorestown, New Jersey.

Otte, Jim. Cost Analyst, PRICE Systems, interviewed by
author, 24 February 1989, Dayton, Ohio, telephone
conversation, Dayton, Ohio.

PRICE Parametric Cost Models: An Executive Guide. Cherry
Hill, New Jersey: PRICE Systems [undated].

PRICE S Reference Manual. Moorestown, New Jersey: RCA
Corporation, 1987.

120

121

Reifer, Donald J. "Ada’s Impact: A Quantitative Assessment"
Torrance, California: Reifer Consultants, Inc. 10
September 1987.

_________ "Softcost-Ada: User Experiences and Lessons
Learned at the Age of One" Torrance, California:
Reifer Consultants, Inc., 15 May 1988.

Shooman, Martin L. Software Engineering: Design.
Reliability, and Management. New York: McGraw-Hill,
Inc., 1983.

Vick, C. R . , and C. V. Ramamoorthy., ed. Handbook of
Software Engineering. New York: Van Nostrand Reinhold
Company Inc., 1984.

Wagner, Joseph T. Headquarters Air Force Systems Command
(AFSC) /Cost Analysis (ACC) Letter to all AFSC
Product Divisions, 19 December 1988.

Willens, Douglas. Marketing Director, Reifer Consultants,
Inc., Personal letter to author, 25 January 1989.

Wilton, Claude. Senior Analyst, West Coast Operations Staff,
PRICE Systems, interview by author, 27 February 1989,
Los Angeles, California, telephone conversation, PRICE
Systems, Los Angeles, California.

	Software cost estimation of the Advanced Training System project using three computer-based models
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

