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ABSTRACT
The productivity of natural even- and multi-aged ponderosa pine (Pinus ponderosa) 

stand structures was compared based on leaf level physiological factors responsible for 
production. Leaf area index (LAI), stem volume increment, specific leaf area, leaf 
nitrogen, and leaf water potential were compared between the stand structures in western 
Montana and central Oregon. LAI and mean annual volume increment were relatively 
higher in the even-aged stands, suggesting higher growing space occupancy compared to 
multi-aged stands.

Specific leaf area and leaf nitrogen content were significantly different between the top 
and bottom crown thirds in even-aged stands. Smaller ranges in specific leaf area and 
leaf nitrogen content between top and bottom thirds in multi-aged stands suggest higher 
foliage production efficiencies throughout the crowns compared to those in even-aged 
stands. Higher vertical stratification of crowns in multi-aged stands enhance the three- 
dimensional growing space availability and also reduced the stand-level competition for 
light and moisture.
Pre-dawn leaf water potential was comparatively higher in multi-aged structures than in 

even-aged throughout the growing season. A late summer pre-dawn leaf water potential 
lower than -1.6 MPa, in even-aged stands indicate that trees might have very limited 
photosynthesis due to moisture limited stomatal closure. Higher water stress in even- 
aged stands could be a combined effect of stand density and structure. The long-term 
water-use efficiency estimated from carbon isotope discrimination suggest the top third of 
crowns in even-aged stands were more water-use efficient compared to multi-aged 
structures. Prolonged periods of water stress, lower than -1.6 MPa, could result in 
decreased foliage and tree productivity in even-aged stands despite their higher water-use 
efficiency.

Results from this study suggest that stand structure is an important factor influencing 
stand productivity. Diverse vertical stratification of tree crowns in stands reduce the 
competition for available growing space, especially light and soil moisture and could 
result in enhanced leaf, tree, and stand productivity.
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Chapter 1 

Introduction

Traditionally, land managers have practiced even-aged silviculture to increase 

wood production in a short rotation period which is perceived to be simpler and cheaper 

compared to multi-aged silviculture. Even-aged and multi-aged silviculture produces 

diverse stand structural characteristics. Multi-aged stand (stand with two or more age 

classes) structures can meet a variety of resource management objectives not met by 

even-aged structures (O’Hara 1996). In the recent past, public preference for multi-aged 

stand structures has increased due to many reasons such as visual qualities, better wildlife 

habitat, recreational demands, and continuous site protection, etc. The comparative 

productivity in terms of wood production per unit area of even-aged and uneven-aged 

silvicultural systems is a controversial issue. Although most comparative studies have 

indicated that even-aged structures were more productive, virtually no studies reported 

any causal mechanism why such difference exists. In an era of ecosystem management, 

the paradigms regarding the relative merits of traditional even-aged and multi-aged 

structures need to be justified with some physiological basis for long-term sustainability 

of these management systems rather than based on empirical comparisons of volume 

productivity.

Ponderosa pine is a species that can be managed in pure even-aged as well as 

multi-aged structures. In many parts of the northwest, due to past selection harvesting, 

many existing ponderosa pine stands have multi-aged structures and could be easily 

managed for meeting a variety of structure-related objectives. The suitability of a

1
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particular stand structure to increase productivity has to consider the climate and 

physiographic conditions o f a site.

Soil and climate are the most important factors governing primary production on a 

site. The potential site productivity (amount of carbon fixed per unit area) depend on the 

available growing space and is generally represented and quantified by maximum leaf 

area index (O’Hara 1988). The leaf area index of a stand can be influenced by stand 

structure. Therefore managing stand structure could directly influence the productivity of 

a site.

In this dissertation research, pure even-and multi-aged ponderosa pine stand 

structures were compared in terms of leaf level physiological attributes affecting tree and 

stand production which are directly modified by stand structures. The study was 

conducted in two different geographical areas to address the following major objectives:

1) Leaf area, crown structure and aboveground primary production in even- and multi

aged ponderosa pine stands growing on similar site conditions were compared to examine 

whether the total aboveground primary production (stored carbon) is different in these 

two stand structures; 2) To estimate the variation in specific leaf area and leaf nitrogen 

within and between tree crowns growing in even- and multi-aged stand structures to 

examine whether the foliage production efficiencies are different under varying 

structures; 3) To compare the differences in soil water status and foliage water-use 

efficiencies in even- and multi-aged ponderosa pine stands to relate the influence of stand 

structure on tree and stand productivity.

The overall study objectives are examined in detail in three separate chapters and
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a general conclusion based on these results is presented in chapter 5. The results from the 

study have many potential benefits especially to provide the land managers with an 

insight regarding the important factors to be considered while managing stands for 

varying structures in ponderosa pine ecosystems.
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Chapter 2

Stand Structure and Its influence on Leaf Area Index and Productivity 
in Ponderosa Pine Stands

ABSTRACT

Climate-related physiological and stand structural characteristics are important 
factors that influence the production efficiency of trees. The productivity in terms of stem 
volume increments, basal area increments and total aboveground biomass was compared 
between even- and multi-aged ponderosa pine stands (unmanaged) in western Montana 
and central Oregon. Stand density and canopy cover percentage were higher, mean tree 
crown projection area and live crown percentage were slightly lower in the even-aged 
stands. Leaf area index (LAI) and mean annual stem volume increments were not 
significantly higher in the even-aged stands on sites of a medium aridity index (t-tests, a 
= 0.05). On better quality sites (high aridity index) the even-aged stands had significantly 
higher LAI and mean annual volume increments, suggesting the multi-aged stands on 
better sites were not occupying the site’s full growing space compared to the even-aged 
stands. With similar LAI, the foliage production efficiency measured in terms of stem 
volume growth per unit leaf area (volume growth efficiency) was higher in multi-aged 
stands compared to even-aged stands. Basal area growth efficiency (basal area growth 
per unit leaf area) was lower in multi-aged stands. The different trend between volume 
and basal area growth efficiencies for the multi-aged stands was due to variation in the 
distribution and tree sizes. The mean aboveground tree biomass was higher in multi-aged 
stands in western Montana but not in central Oregon. The understory vegetation biomass 
was generally higher in multi-aged stands. The influence o f stand structure related 
factors to enhance leaf, tree and stand productivity was described using a conceptual 
model.

Keywords', stand structure, even-aged, multi-aged, leaf area index, growth efficiency, 
production efficiency.
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2.1. INTRODUCTION

Stand structure, or the physical and temporal distribution of trees in a stand 

(Oliver and Larson 1996), is an important parameter for stand production and utilization. 

Generally, trees in a stand arrange their foliage to maximize solar energy harvest, at 

minimum, to balance the maintenance respiration costs. Manipulating stand structure for 

increased canopy light interception increases leaf and stand productivity (biomass or 

volume growth) in stands where light is limited. O’Hara (1989, 1996) found large 

differences in stand growth efficiency due to stand structure or the arrangement of tree 

sizes. The total production per unit leaf area or growth efficiency (Waring and 

Schlesinger 1985; O’Hara 1988) of a tree varies depending upon its relative crown 

position compared to its neighbors. The gross primary production in a stand is the 

product of stand leaf area (leaf area index) and leaf production efficiency. In addition to 

stand volume or biomass production, stand structure also influences wildlife habitat, 

aesthetics, recreational, and hydrological recharges in a forest.

In this chapter, total leaf area and net aboveground primary production in even- 

and multi-aged ponderosa pine stand structures (unmanaged) on similar site conditions 

were compared to determine the influence of stand structure on productivity of pure, 

shade-intolerant species. Total stand aboveground productivity in terms of stem volume 

and basal area increments, live crown biomass, total aboveground tree- and understory 

biomass were compared between the even- and multi-aged stands in two study locations. 

Stand stricture related factors that influence leaf-level physiological attributes to enhance 

leaf, tree, and stand production efficiencies were discussed using a conceptual model.
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2.1.1. Leaf Area Index

Leaf area index (LAI) represents the foliage area (m2) per land area (m2) on a site, 

and is directly influenced by the climate, soil, and other edaphic factors. The total leaf 

area on a site is an important variable determining stand production, because of its 

relation to light interception (Cannell et al. 1987). Total stand leaf area also represents 

the limiting factors in stand growth relationships (Waring 1983; Binkley and Reid 1984; 

Oren et al. 1987; O’Hara 1988, 1989; Long and Smith 1992). The total available, three- 

dimensional growing space on a site can also be interpreted to be represented by the 

maximum (potential) leaf area (O’Hara 1988). Stands continue to increase leaf area 

toward the maximum until they reach a state o f equilibrium (Moller 1947; Marks and 

Bormann 1972; Grier and Running 1977; Long and Smith 1984,1992), which is also 

described as the potential LAI. LAI, less than its potential is considered as occupied 

growing space (O’Hara 1988,1996). The potential leaf area on a site also depends on 

species composition, but should be constant across similar site qualities for a given 

composition. O’Hara (1996) found that multi-aged ponderosa pine stands carry slightly 

lower LAI and slightly higher growth efficiency compared to even-aged stands.

However, studies to explore the potential/occupied leaf area in multi-aged stand 

structures are of recent origin (O’Hara et al. (in press), Koilenberg 1997).

2.1.2. Production Efficiency of Foliage

The production efficiency of foliage can be defined as the amount of carbon 

produced per unit leaf area. This is also known as growing space efficiency (O'Hara
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1988, 1989), and can be used as an index to compare the growth and vigor of trees in a 

stand. O'Hara (1988) used leaf area based growth efficiency to compare various thinning 

treatments in even-aged stands. Growth efficiency was also used to compare the 

competition of understory vegetation (Oren et al. 1987), silvicultural and managemental 

treatments like selection harvesting (O’Hara 1996; Koilenberg 1997) and fertilization etc. 

(Binkley and Reid 1984).

Trees allocate photosynthate to different sinks: production of new foliage, 

branches, roots, stems, and reproductive organs on a priority basis (Waring and Running 

1998). Generally, stem diameter growth is a low priority compared to other sinks.

During periods of stress, trees produce comparatively little stem diameter growth. This 

sometimes makes it difficult to quantify the leaf production efficiency in instances where 

production of protective chemicals became the priority due to forest health reasons. The 

term production efficiency is a measure of gross primary production without respiration 

requirements per unit leaf area. An accurate measurement of this efficiency index is 

difficult on a stand-level basis for comparative studies, hence growth or growing space 

efficiency (stem volume increment or basal area growth per unit leaf area) is used as an 

alternative index for comparison (O’Hara 1988).

One of the major factors influencing foliage production efficiency is the amount 

of absorbed photosynthetically active radiation (Doley 1982). The potential absorbed 

radiation differs greatly due to differences in physiographic and structural characteristics 

(Kaufinann and Ryan 1986). Manipulation of stand structure using silvicultural tools like 

thinning, partial harvesting, etc., increases available growing space to remaining trees in a
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stand. The increased available growing space, if fully utilized, can enhance the canopy 

photosynthesis of the residual trees in a stand.

Stand production directly depends production efficiency of component trees and 

their foliage. The production efficiency (growth efficiency) can be also determined 

indirectly by measuring specific leaf area (leaf area per unit dry biomass) o f needles. 

Specific leaf area (SLA) is closely related to leaf photosynthetic capacity (Gutschick and 

Wiegel 1988). The increased availability of radiation at the canopy top increases the leaf 

biomass concentration per unit area. The availability of light, water, and nutrients during 

leaf expansion is an important determinant of SLA (Tucker and Emmingham 1977). 

Mooney et al. (1978) and Specht and Specht (1989) reported that canopy average SLA 

decreases with increasing aridity.

Site water potential is another important factor which affects the physiology and 

production efficiency of leaves on a stand. The production efficiency of conifers in the 

northwest largely depends on the availability of water, mainly because northwest conifers 

grow in water limited ecosystems, especially during late summer months (Running 1976). 

The environmentally driven water translocation from soil to atmosphere through plants is 

an important ecosystem processes. Increased site and plant moisture availability results 

in increased photosynthesis, provided other factors are optimal.

Stand density significantly influences leaf water potential. Higher stand density 

results in increased leaf area and decreased water potential. Low water potential results 

in decreased photosynthesis. Donner and Running (1986) reported that water potential 

increased in thinned lodgepole stands compared to the controls, and could result in 21%
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greater seasonal photosynthesis (using an ecosystem simulation model).

Plants generally optimize leaf nitrogen to maximize photosynthesis (Field and 

Mooney 1986; Evans 1989). Canopy average leaf nitrogen per unit area is highly 

correlated to canopy transmittance (Pierce et al. 1994). Trees translocate nitrogen 

differently through different seasons. Pierce et al. (1994) reported that leaf nitrogen was 

higher during August-September compared to March-June. Leaf nitrogen content is 

directly related to photosynthetic capacity because of its requirement in the construction 

of essential enzymes in the Calvin Cycle, which is mainly concentrated in the thylakoids 

of leaves (Evans 1989). There is a strong relationship between nitrogen and RuBp 

carboxylase (Ribulose 1,5-bisphosphate carboxylase) and chlorophyll. Changes in the 

leaf nitrogen content mainly influence the RuBp carboxylase and the rate o f 

photosynthesis. Increased nitrogen fertilization has found increased growth in plants due 

to higher rates of photosynthesis in nitrogen limited ecosystems (Linder and Troeng 

1980; Brix 1981; Sheriff et al. 1986; Linder 1987; Gower et al. 1993).

In addition to these physiological factors, leaf arrangement, orientation, and 

density are other important structural characteristics influencing leaf and tree production 

efficiencies. Manipulation of canopy structure could lead to morphological and 

physiological changes in leaves due to variations in canopy light and moisture 

availability.
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2.2. METHODS 

2J2.1. Site Selection

The study was conducted in western Montana and central Oregon during the 

summers of 1995 and 1996. In western Montana, stands were sampled on the Lolo 

National Forest (Ninemile and Lolo Ranger Districts), on State lands near Florence and 

Tarkio, the University of Montana's Lubrecht Experimental Forest, and a nearby private 

holding (Figure 2.1). Pure multi-aged stands are common in drier habitat types in 

western Montana, but due to fire suppression for the past several decades, interior 

Douglas-fir has come increasingly abundant both in understory and overstory 

composition on many sites (Amo et al. 1995). Study plots were located at elevations 

from approximately 850 to 1250 m, and from 46° 37' to 47° 06'N latitude, and 113 ° 23' 

to 114° 47'W longitude. The stands were located primarily on Pseudotsuga menziesii 

climax series (Pfister et al. 1977). Stands were predominantly pure ponderosa pine with 

an occasional inclusion of interior Douglas-fir. All the sample plots were located on 

south to southeast aspects with slopes ranging from 2 to 30% (Table 2.1).

In central Oregon, stands were sampled on Deschutes, Fremont, and Winema 

National Forests (Figure 2.1). The elevations ranged from 1330 to 1540 m , latitudes 

from 43° 13' to 43° 52'N, and longitudes from 1210 8' to 121 ° 48' W. The sample plots 

were selected on Pinus ponderosa plant associations on pumice soils as part of the High 

Cascades Province (Franklin and Dymess 1973). Many of the ponderosa pine stands in 

central Oregon were seriously defoliated by pandora moths’ outbreak (Coloradia 

pandora Blake) during 1992-95. Special attention was given to selection of stands which
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were attacked at a minimal level by examining the stand/trees for the number of needle 

age classes. Stands with trees less than 4 year’s needles were not selected. The plant 

associations were identified as per the guides by USDA Forest Service for each sampling 

area (Hoplins 1979a, 1979b, Volland 1988). The sample plots were located on ail aspects 

on slopes ranging from 2 to 12% (Table 2.1).
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Table 2.1. Characteristics of the even-aged and multi-aged sample plots selected in 
different locations in western Montana and central Oregon. Habitat types for 
western Montana were identified as per Pfister et aL (1977) and for central Oregon 
USDA Forest Service for each plant association and published in guides for 
sampling area by Hopkins (1979a, 1979b) and Volland (1988).

Location Plot Size(ha) Habitat type Elevation (m) Aspect Slope% # of trees
Sweeny Creek Rd. MT IE 0.1 PSME/FEID 1105 E 2 58
Sweeny Creek Rd, MT 1M 0.1 PSME/FEID 1106 E 3 26
Tarkio. MT 2E 0.1 PS ME/CAGE 855 S 2 57
Tarkio. MT 2M 0.1 PSME/CAGE 855 S 2 34
Ninemile Rd. MT 3E 0.1 PIPO/FEID-FESC 975 SE 4 183
Ninemile Rd. MT 3M 0.1 PIPO/FEID-FESC 975 SE 7 89
Lubrecht, MT 4E 0.1 PSME/SYAL-SYAL 1230 S 30 114
Lubrecht, MT 4M 0.1 PSME/VACA 1256 SE 11 70
Blue Mountian. MT 5E 0.1 PIPO/FEID-FESC 1130 S 20 61
Blue Mountian. MT 5M 0.1 PSME/CARU-AGSP 1145 SE 28 50
Potter’s Ranch. MT 6E 0.1 PSME/CARU-PIPO 1200 S 5 314
Potter's Ranch, MT 6M 0.1 PSME/CARU-PIPO 1205 S 2 94
Bend-Ft. Rock, OR 101M 0.1 PIPO/PUTR-ARPA/STOC 1290 E 5 55
Bend-Ft. Rock. OR 10 IE 0.04 PIPO/PUTR-ARPA/STOC 1295 E 10 45
Paulina Lake Rd. OR I02M 0.1 PIPO/PUTR-ARPA/STOC 1444 W 7 47
Paulina Lake Rd. OR 102E 0.04 PIPO/PUTR-ARPA/STOC 1438 S 11 41
Chemult. OR I03M 0.1 PIPO/PUTR/STOC 1457 s 8 42
Chemult. OR 103E 0.04 PIPO/PUTR/STOC 1463 s 12 32
Fremont. OR I04M 0.1 PIPO/PUTR/FEID 1436 SE 2 51
Fremont. OR 104E 0.04 PIPO/PUTR/FEID 1436 SE 3 31
Silver Lake Rd, OR IOSM 0.1 PIPO/PUTR-ARTR/SIHY 1356 N 3 16
Silver Lake Rd. OR I05E 0.04 PIPO/PUTR-ARTR/SIHY 1378 N 4 14
Silver Lake Rd. OR I05EO 0.1 PIPO/PUTR-ARTR/SIHY 1359 N 2 17
Silver Lake Rd, OR 106M 0.1 PIPO/PUTR/ARAR/FEID 1402 NW 5 11
Silver Lake Rd. OR I06E 0.04 PIPO/FEID 1387 N 3 35

Key to species abbrevations: PSME = Pseudotsuga menziesii var. glauca; FEID = Festuca idahoertsis; CAGE = Carex 
geyeri; PIPO = Pinus ponderosa: FESC = Festuca scabrella; SYAL = Symphoricarpos albus; VACA = Vaccinium 
caespitosum; CARU = Calamagrostis rubescens: AGSP = Agropyron spicatum; PUTR = Purshia tridentata: ARPA = 
Arctosiaphylos patula: STOC = Stipa occidentals: ARTR = Artemisia tridentata var. tridentata; SIHY = Sitanion 
hystrix: ARAR = Artemisia arbuscula. Plot symbols E = Even-aged. M = Multi-aged, EO = Even-aged old growth.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

2.2.2. Site Water Balance and Aridity Index

The long-term average climatic data from nearby weather stations were used to 

calculate the site water balance for the study sites in western Montana and central 

Oregon. Site specific annual average precipitation data for the selected sites in central 

Oregon was estimated from the precipitation map developed for the state of Oregon using 

PRISM model (Daly et al. 1994). Site water balance is expressed as aridity index, which 

is the ratio of precipitation (P) to potential evaporation (PE). The potential evaporation 

(PE) was computed using the methodology reported by Linacre (1977) as follows 

PE (mm day'1) = 700 Tm / (100 - A) + 15 (T - Td) / (80 - T)

Where Tm = T + 0.006h, h is elevation (m); T = mean temperature; A = latitude; Td = 

mean dew point temperature.

Table 2.2. A summary of the long-term average climatic data for the study sites in 
western Montana and central Oregon.

Location of Base weather Mean annual Annual temp. (°F) Aridity
study sites station precip. (cm) Min. Max. Index
Sweeny creek Stevensville, MT 33 30.9 58.3 0.22
Ninemile Missoula, MT 33 32.2 56.4 0.25
Lubrecht Lubrecht, MT 45 26.2 52.8 0.35
Tarkio Superior, MT 41 32.5 59.6 0.29
Bend-Ft. Rock Bend, OR 45 32.3 60.4 0.28
Pauline Lake Rd.. Bend, OR 50 31.0 60.4 0.31
Fremont Fremont, OR 30 24.4 60.4 0.19
Silver Lake Rd.. Fremont, OR 30 24.4 60.4 0.19
Chemult Chemult, OR 65 26.2 58.2 0.43
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2.2.3. Plot-Level Sampling

The general stand selection criteria included fully stocked, pure even-aged and 

multi-aged ponderosa pine stands (unmanaged) at close proximity with similar site 

quality. The stands were not treated for past 15 years from the year of sampling to 

eliminate bias in stand productivity estimation. Six pairs of even- and multi-aged stands 

were selected in each region. The even-aged plots were sampled in second-growth 

ponderosa pine stands in both locations. In central Oregon, an old-growth even-aged 

stand was also sampled in addition to the six second-growth even-aged stands. The 

multi-aged stands were created by the past selection cutting treatments on most sites. A 

0.1 ha size circular sample plot (17.8 m radius) was located in each stand. In central 

Oregon, the even-aged plots were 0.04 ha (11.3 m radius). The reduction in sample plot 

size in even- aged stands is due to approximately similar variances in LAI in even-aged 

plots of sizes 0.1 ha and 0.04 ha. Larger plot size (0.1 ha) was selected in multi-aged 

stands due to higher structural and spatial heterogeneity.

2.2.4. Tree Measurements

Within each sampled plot, each tree was measured for its total height (m) and the 

height up to live crown base (m) using a clinometer. From these two heights, live crown 

percentage (LCP) for each tree was calculated. Each tree was assigned a stratum and 

crown class using the procedure described by Smith (1986) and Oliver and Larson 

(1996). Trees in the uppermost canopy layer of multi-aged stands were assigned as 

stratum A, which are also called as emergents, and those in the main canopy layer as
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stratum B. Subsequent layers below the stratum B are called stratum C and D. In the 

even-aged stands, most of the trees were grouped in stratum B and assigned a crown class 

based on its crown position in that stratum. The crown classes were dominant, co

dominant, intermediate, and suppressed. The diameter at breast-height (dbh) was 

measured at 1.37 m height from ground level. Trees with dbh^3 cm on each plot were 

cored on north and east sides. The cores were projected to sunlight to distinguish the 

sapwood and the heartwood boundaries. The sapwood radius was measured on each core 

to the nearest 0.5 mm from the heart wood boundary to the tip of previous year’s growth. 

Trees taller than breast-height, but below 3 cm dbh, were cored only on the north side.

The diameter and sapwood radius of trees shorter than 1.37 m were measured 

immediately below the iower-most branch forming the live crown. The bark thickness on 

each tree was measured using a bark gauge to the nearest mm at points closer to sapwood 

measurements. The number of bark measurements and their positions followed the 

guidelines for sapwood estimation.

Breast-height age was determined from ring counts made in the field on cores 

which extended to the pith. In general, the ages of trees of different sizes and 

clumps/cohorts in multi-aged, and on fewer trees in even-aged were determined to know 

the bounds of age classes in each stand. In western Montana 27% of trees in the multi

aged plots were cored for age compared to 5% in the even aged. Approximately 47% of 

trees in the multi-aged and 30% in the even-aged were aged in central Oregon. Cohort 

number was assigned to each tree in a plot from tree ages following the method 

described by O'Hara (1996). Stand density measures in terms of total basal area per ha
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(nr/ha), trees per ha, and quadratic mean diameters (cm) were calculated for both 

structures. Stand density index (SDI) was also calculated for all stands using an equation 

from Long and Daniel (1990) to avoid bias in non-normal diameter distributions.

2.2.5. Crown Projection Area Estimation

The crown radius o f each tree in the sampled plots was measured on north and 

east direction from the tree base. The crown projection area was then calculated from the 

average crown radius for each tree and added to calculate the canopy cover percentage in 

both structures.

The vertical stratification of tree heights and crown lengths in a typical even-aged 

and multi-aged stand sampled in western Montana (Figure 2.2) and central Oregon 

(Figure 2.3) was diagramed using the graphic capability of the TSTRAT computer 

program developed by Latham et al. (in press).
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Figure 2.2. The vertical stratification of tree heights and crown lengths in ponderosa pine 
stands in western Montana (A: Even-aged, B: Multi-aged).
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2.2.6. Leaf Area Estimation

The sapwood area (cm2) at breast-height was determined for each tree from the 

average length of two sapwood measurements taken from the cores from each tree. The 

individual tree leaf area (m2) was estimated from sapwood area using sapwood-leaf area 

prediction equations developed by O'Hara and Valappil (1995) for western Montana and 

central Oregon. Plot- and stand-level all-sided LAI was determined from individual tree 

leaf area. The sapwood-leaf area prediction equation may under-predict leaf area for 

larger sized trees due to smaller sapwood area increments at breast-heights compared to 

smaller sized trees, whereas leaf area may be overestimated for smaller diameter sized 

class trees (O'Hara 1996).

2.2.7. Tree Volume Estimation

2.2.7.I. Models for Past Five years Height Growth

Five years height (cm) and radial growth (0.5mm) were measured on trees 

destructively sampled for developing sapwood-leaf area prediction equations for western 

Montana and central Oregon (O’Hara and Valappil 1995). In Montana, an additional 8 

trees were destructively sampled during 1996 to increase the sample size to a total o f 56 

trees. These trees ranged in dbh from 1.2 cm to 46.7cm. A total of 62 trees ranging from 

1.6 cm to 34.8 cm was sampled in central Oregon. Multiple linear regression equations 

to predict the past 5-year height increment were developed separately for western 

Montana and central Oregon.
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2J.J.2. Total Stem Volume

The total stemwood volume (ft3) was estimated from diameter and height for the 

measurement year and for the five years previous using generalized volume equations, 

and then converted to cubic meters. In western Montana, unpublished volume equations 

for trees greater than 80 yr of age and trees less 80 yr of age developed by Champion 

International Corporation were used. In central Oregon the volume equation published 

by DeMars and Barrett (1987) were used. Average annual stem volume increment during 

a period of 5 years was used for productivity comparisons.

2.2.8. Growth Efficiency

The growth efficiency in terms of stem volume increment per unit leaf area was 

compared between the structures as a measure for tree and stand production efficiency. 

Basal area growth per unit leaf area (basal area growth efficiency) was also compared 

between the structures. Compared to basal area growth efficiency, volume growth 

efficiency is a more meaningful estimate for comparison o f tree growth efficiency 

because it incorporates height and diameter growth. Individual tree volume and basal 

area increments were estimated in cm3 and mm2, respectively.

2.2.9. Stand Biomass Estimation

2.2.9.I. Tree biomass

Total tree biomass in both locations was estimated using a general equation for 

ponderosa pine by Gholz (1982). Total live crown biomass was calculated by adding the
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total foliage and branch biomass estimated using separate equations. Total stem biomass 

was the sum of estimated total stem wood biomass and total stem bark biomass. The sum 

of total live crown biomass and total stem biomass was the total tree biomass. Location 

specific equations with certain limitations were also used to compare the live crown 

biomass under both structures. In western Montana, the live crown biomass in even-and 

multi-aged stands was estimated using two separate equations for crown classes 

developed by Brown (1978). In central Oregon, separate equations for total foliage and 

total live branch biomass developed by Cochran (1984) for thinned second-growth 

ponderosa pine stands were used for estimating the live crown biomass. Total stem 

volumes estimated using location specific equations together with live crown biomass 

were compared between the even- and multi-aged stands in both locations.

2.2.9J2. Understory Vegetation Biomass

The understory vegetation biomass was sampled between the last week of July 

and first week of August 1996 in western Montana and central Oregon respectively. In 

both even- and multi-aged stands, the understory vegetation was sampled on 2 m2 circular 

sub-plots. Three 2 m2 sub-plots, each at 120,240, and 3600 azimuth were established at 

distances of 9,13.5, and 4.5 m respectively from the plot center in the even-aged plots in 

western Montana. Whereas in central Oregon, the distances from the plot center were 6, 

9, and 4.5 m on 120,240, and 3600 azimuths respectively. The reduction in distance 

from the plot center to the sub-plots at each azimuth in even-aged stands in central 

Oregon was due to a smaller sample plot radius compared to western Montana. For
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multi-aged stands in both locations, six 2 m2 sub-plots each at 60,120, 180,240,300 and 

3600 azimuth were established at distances o f 6 and 12 m alternatively starting from 600 

azimuth. On each sub-plot, all the aboveground vegetation excluding trees were clipped 

and dried at 70° for 2 days. Plot-level total understory vegetation biomass was calculated 

by adding all the sub-plots biomass. The total biomass per ha in both structures were 

estimated by summing the overstory tree biomass and understory vegetation biomass for 

each plot.

2.2.10. Data Analysis

T-tests with a  = 0.05 were used to test the difference in the means for stand and 

tree variables between even- and multi-aged stands. Difference in means between the 

two study locations was also compared using t-tests. A significance level of 

a = 0.05 was used to determine the selection o f independent variables for the multiple 

regression models.

2.3. RESULTS

2.3.1. Stand Density

Stand density was higher in the even-aged stands in both study locations. The 

trees per hectare ranged from 570 to 3140 in even-aged and from 260 to 940 in multi- 

aged stands in western Montana. In central Oregon, it ranged from 160 to 1100 in even- 

aged and from 100 to 540 in multi-aged stands (Table 2.3A & B).
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Table 2J(A  & B). Trees per hectare (TPH), Quadratic mean diameter (QMD), 
Basal area per hectare (BA) m2/ha, Stand density index (SDI), and Canopy cover 
percentage (CC) in even- and multi-aged stands. E = Even-aged, M = Multi-aged, 
EO = Even-aged Old-growth. A: western Montana, and B: central Oregon.

A

Plot No.&ID TPH QMD (cm) BA(m2/ha) SDI CC {%)

IE 580 21.5 21.0 445 69
lM 260 39.3 31.6 506 70

2E 570 27.7 34.5 659 54
2M 340 32.6 28.5 499 59

3E 1830 15.1 32.7 764 78
3M 890 20.7 30.0 587 79

4E 1140 20.4 37 2 794 94
4M 700 20.4 22.9 451 66

5E 610 25.6 31.5 625 71
5M 500 29.1 33.1 593 69

6E 3140 11.9 34.8 918 82
6M 940 21.0 32.4 636 67

B
Plot No. &ED TPH QMD (cm) BA (m2/ha) SDI CC (%)

101E 1100 23.9 50.6 1019 76
101M 540 28.0 34.0 586 64

102E 1025 222 39.8 838 65
102M 420 24.8 18.9 358 36

103E 800 28.5 50.9 970 53
103M 420 35.0 40.4 646 54

104E 750 23.0 32.3 656 42
104M 510 24.9 24.9 455 34

105E 350 33.2 30.4 546 32
105EO 160 46.9 32.9 517 37
105M 160 37 2 17.4 274 25

106E 875 23.4 38.7 764 47
I06M 100 43.1 16.0 261 21
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The mean basal area was higher but not significant for even-aged stands (31.9 nr/ha) 

compared to multi-aged (29.8 m2/ha) stands in western Montana. In central Oregon, the 

even-aged stands had a significantly higher mean basal area (39.4 m2/ha) compared to the 

multi-aged (25.3 m2/ha) stands. The mean stand density index (SDI) for even- and multi

aged stands in western Montana was 701 and 545, respectively. In central Oregon, the 

mean SDI was 759 for even-aged stands compared to 430 for multi-aged stands.

2.3.2. Age Classes

The mean breast-height age for the second-growth even-aged stands was higher in 

western Montana (85) compare!! to central Oregon (68). In central Oregon, the average 

breast-height-age in the old-growth even-aged stand was 124 years. For multi-aged 

stands in western Montana and in central Oregon, the mean breast-height age for the 

different cohorts ranged from 35 to 280, and from 23 to 254 years, respectively.
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Table 2.4. Number of trees, mean age at breast-height (137 m), mean total height, 
mean live crown percentage (LCP), mean leaf area per tree, and mean tree growing 
space efficiency (GSE) per year (cmVm2) for even- and multi-aged plots in western 
Montana. E = Even-aged, C = Cohort, C l = oldest and C4 = youngest

PLOT 1 PLOT 2 PLOT 3

E Multi-aged E Multi-aged E Multi-aged

Cl C2 C3 C4 Cl C2 C3 Cl C2

No. of trees 58 5 7 10 4 57 13 12 9 183 2 87

Mean Age (bh) 80 178 132 80 45 81 153 79 63 88 219 80

Mean Height (m) 13.6 24.0 22.1 17.5 8.4 203 26.8 17.7 14.4 11.5 22.0 11.5

Mean LCP 51.5 66.0 58.5 60.0 56.4 41.6 61.7 51.9 47.6 32.9 68.4 46.8

Mean LA (m2) 80 513 305 147 41 128 282 112 65 36 301 58

Mean Tree GSE 
(cnrVm2)

68.5 48J3 61.8 793 37.6 92.0 82.6 115 75.7 503 101 49.6

(cont.)

PLOT 4 PLOTS PLOT 6

E Multi-aged E Multi-aged E Multi-aged

Cl C2 C3 Cl C2 Cl C2 C3

No. of trees 114 l 9 60 61 40 10 314 2 83 9

Mean Age (bh) 76 280 71 35 84 85 35 99 150 81 49

Mean Ht (m) 14.5 323 17.9 9.3 16.1 17.9 4.6 9.0 27.4 13.6 8.1

Mean LCP 0.5 75.5 57.3 50.3 50.7 54.4 48.0 33.7 633 41.1 402

Mean LA (m2) 68 839 197 50.4 126 188 113 243 535 62.9 19

Mean Tree GSE 
(cm3/m2)

67.9 833 75.6 70.9 66.6 76.5 42.1 453 723 57.6 38.5
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2 3 3 . Canopy Cover Percentage

Stand level canopy cover estimated using individual tree crown projection area 

was generally higher in even-aged stands in both locations (Table 23A & B). In western 

Montana, the mean canopy cover was higher for even-aged (75 %) stands but not 

significantly different compared to multi-aged stands (68 %) (t-tests, P = 0.325). In 

central Oregon, the even-aged stands (50 %) had higher canopy cover compared to the 

multi-aged (39 %) stands (P = 0.240). The mean canopy cover for all even-aged stands 

was not significantly higher compared to multi-aged stands for both locations combined 

(t-tests, a = 0.05).

2.3.4. Crown Projection Area

Compared to multi-aged stands, the individual tree crown projection area was 

smaller in even-aged stands. The mean crown radius of trees in even-aged stands was 

significantly lower compared to those in multi-aged stands (t-tests, a = 0.05) in both 

locations (Table 2.6).

2.3.5. Live Crown Percentage

The mean live crown percentage was smaller for even-aged stands (Montana = 37 

%, Oregon = 53 %) compared to multi-aged stands (Montana = 49 %, Oregon = 64 %). 

The even- and multi-aged stands had significantly (P < 0.005) different LCP in western 

Montana and central Oregon (Table 2.6). An analysis with the data collected for a 

previous study published by O’Hara (1996) also indicated the mean LCP for even-aged
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stands was significantly lower (48 %) compared for the multi-aged stands (52 %) in 

western Montana (t-tests, P < 0.001).

Table 2.6. Mean leaf area (m2), mean live crown percentage, and mean crown 
radius in even- and multi-aged stands in western Montana and central Oregon. 
Means followed by different letters for each location were significantly different (t- 
tests, a = 0.C5).

W. Montana C. Oregon

Even-aged Multi-aged Even-aged Multi-aged

No of trees 787 363 212 215

Min. Leaf area (m2) 1.71 1.44 1.92 1.92

Leaf area (m2) 52.95 102.78 113.84 135.25

Max. Leaf area (m2) 344.51 839.39 785.24 1712.31

LCP 37* 49b 53* 64b

Crown Radius (m) 1.20c 1.66d 1.43c 1.59d

The vertical stratification of crown lengths from a typical even- and multi-aged 

stand sampled in western Montana (Figure 2.2) and central Oregon (Figure 23) 

indicates the crowns in multi-aged stands are widely stratified compared to those in even- 

aged stands.

2.3.6. Leaf Area

The average leaf area per tree in even-aged stands was significantly lower in 

western Montana (53 m2) compared to central Oregon (114 m2). Whereas in multi-aged 

stands, the average tree leaf area was higher in central Oregon (135 m2) than in western
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Montana (103 m2) (Table 2.6). In both locations, the mean tree leaf area in even-aged 

stands was lower compared to multi-aged stands. The average tree leaf area in multi-aged 

stands tends to vary greatly depending on the percentage of smaller sized trees (younger 

cohorts) in the stands. The oldest cohort had the highest mean leaf area in western 

Montana (262 m2) and central Oregon (667 m2) (Table 2.4 &2.5). In general, the 

cohorts leaf area in multi-aged stands decreased with reduction in cohort age.

2.3.7. Leaf Area Index

In western Montana and central Oregon all-sided leaf area index was higher but 

not significant for the even-aged stands compared to the multi-aged ones (t-tests, P >

0.05) (Table 2.7). Higher LAI in the even-aged stands compared to the multi-aged stands 

were also reported by O’Hara (1996), but the mean LAI was slightly lower for both 

structures excepting the even-aged stands in central Oregon.
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Table 2.7. Mean all-sided LAI comparison between even- and multi-aged stand 
structures in western Montana and central Oregon (t-tests, a = 0.05).

Structure Study Area LAI SD n P-value

W. Montana
Even-aged 7.0 1.2 6

0.265Multi-aged 6.3 0.8 6

C. Oregon
Even-aged 7.4 1.9 7

0.053
Multi-aged 4.9 2.2 6

The comparison of LAI between the two study locations for even- and multi-aged 

stands indicated that the mean LAIs for even-aged (P = 0.18) or multi-aged stands (P = 

0.66) were not significantly different between western Montana and central Oregon. The 

large difference in aridity index values among the sites in central Oregon compared to 

western Montana resulted in a wide difference in mean LAI for the even- and multi-aged 

stand structures in central Oregon. In central Oregon, 50 % of the sites were on drier sites 

(aridity index < 0.20) and one pair (about 16 %) on a wet site (aridity index > 0.40). All 

sites in western Montana were medium aridity (aridity index > 0.20 and < 0.40).

2.3.8. Estimation of Past Height Increment

The regression model for predicting past 5-year height growth (cm) for western 

Montana used radial growth (mm) as the independent variable, whereas for central 

Oregon the model used live crown percentage, radial growth (mm), and natural logarithm 

of total height as independent variables.
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Table 2.8. Leaf area index, mean annual volume increment, basal area growth, 
volume and basal area growth efficiencies for ponderosa pine stands. WM = 
western Montana, CO = central Oregon, E = Even-aged, M = Multi-aged, EO = 
Even-aged Old-growth, MAV = Mean annual volume increment, BAGR = Basal 
area growth, VGE = Volume growth efficiency, and BAGE -  Basal area growth 
efficiency.

Location Plot ST Size
(ha)

Trees LAI MAV
(m3/ha)

BAGR
(m2/ha)

VGE 
(cm3 /m2)

BAGE
(mm2/nr)

WM 1 E 0.1 54 4.7 3.5 0.37 76 8
WM 1 M 0.1 25 6.3 3.9 0.24 62 4
WM 2 E 0.1 57 7.3 7.4 0.57 101 8
WM 2 M 0.1 34 5.6 5.3 0.37 94 7
WM 3 E 0.1 183 6.6 3.9 0.43 58 6
WM 3 M 0.1 89 5.9 3.6 0.30 61 5
WM 4 E 0.1 114 7.8 5.8 0.57 75 7
WM 4 M 0.1 70 5.6 4.2 0.43 74 8
WM 5 E 0.1 61 7.7 5.2 0.47 67 6
WM 5 M 0.1 50 7.7 5.5 0.43 72 • 6
WM 6 E 0.1 314 7.6 4.1 0.59 53 8
WM 6 M 0.1 94 6.5 4.5 0.38 70 6
CO 101 E 0.04 44 9.7 7.4 0.68 76 7
CO 101 M 0.1 54 7.0 5.8 0.41 81 6
CO 102 E 0.04 41 7.9 6.1 0.65 77 8
CO 102 M 0.1 42 4.0 3.6 0.36 91 9
CO 103 E 0.04 32 10.1 11.3 0.91 112 9
CO 103 M 0.1 42 7.9 7.7 0.54 98 7
CO 104 E 0.04 30 5.8 3.9 0.44 67 8
CO 104 M 0.1 51 4.6 3.2 0.31 71 7
CO 105 E 0.04 14 5.5 3.7 0.37 67 7
CO 105 EO 0.1 16 5.9 4.5 0.23 76 4
CO 105 M 0.1 16 2.6 2.1 0.16 80 6
CO 106 E 0.04 35 6.5 4.4 0.47 67 7
CO 106 M 0.1 10 3.1 2.2 0.11 71 4
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The model explained 59 and 75% of the variation in 5-year height growth for ail trees in 

western Montana and central Oregon, respectively. Separate regression models to predict 

past 5-year height growth for upper and lower canopy strata trees did not improve the 

predictive power in terms of R2 and standard error compared to the overall model for 

both locations.

23.9. Growth Efficiency

2.3.9.1. Volume Growth Efficiency

The volume growth efficiency (VGE) measured in terms of annual volume 

increment (cm3) per unit leaf area (m2) was higher in 50% of the even-aged stands in 

western Montana and 15% in central Oregon (Table 2.8). The overall mean VGE for 

even-aged and multi-aged stands was similar (72 cm3/ m2) in western Montana. For 

central Oregon the mean VGE for even-aged stands was 78 compared to 82 cm3/ m2 in 

multi-aged stands.

23.9.3. Basal Area Growth Efficiency

The mean basal area growth efficiency (BAGE) was lower in multi-aged 

compared to even-aged stands in both locations (Table 2.8). In western Montana, the 

mean BAGE for even- and multi-aged stands was 7 and 6 mm2 /m2, respectively. In 

central Oregon, the mean BAGE for even-aged stands was 8 mm2 /m2 compared to 6 mm2 

/m2 for multi-aged stands.
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23.10. Tree Volume and Biomass

23.10.1. Stem Volume Increment

The mean annual stem volume increment was higher, but not significant for even- 

aged stands (5.5 m3/ha) compared to multi-aged stands (4.6 m3/ha) on medium aridity 

sites (t-tests, P = 0.18) from both locations combined. The mean values for even- and 

multi-aged stands in western Montana were 4.5 and 5.0 m3/ha, respectively (t-test, P = 

0.49). On drier sites (aridity index < 0.20) the mean was higher for even-aged stands (4.1 

m3/ha) than multi-aged stands (2.5 m3/ha).

2.3.10.2. Total Stem Volume

The mean stem volume per ha was higher in multi-aged stands compared to even- 

aged stands in western Montana (Table 2.9). In central Oregon, the mean volume was 

low in multi-aged stands than in even-aged stands. For both locations combined, the 

mean stem volume was higher in even-aged (220 m3/ ha) compared to multi-aged stands 

(207 m3/ha).

2.3.103. Live Crown Biomass

The live crown biomass calculated using site specific equations indicated the 

multi-aged stands in western Montana had higher mean crown biomass (39 tonne ha'1) 

compared to the even-aged stands (27 tonne ha'1) (Table 2.9). In central Oregon the 

even-aged stands (49 tonne ha'1) had comparatively higher live crown biomass than the 

multi-aged stands (33 tonne ha'1).
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Table 2.9. Total stem volume, live crown biomass, and tree biomass in even- and 
multi-aged stands in western Montana and central Oregon. WM = Western 
Montana, CO = Central Oregon, SS = Stand Structure, E = Even-aged, M = Multi
aged, EO = Even-aged Old-growth.

Location Plot
No

SS Separate equations for 
both location

Gholz’s equation 
(kg/ha)

Total stem Live crown 
volume (m3/ha) biomass (kg/ha)

Live crown 
biomass

Total
biomass

WM 1 E 122.6 20435 16912 57948
WM 1 M 248.9 45854 38142 138412
WM 2 E 275.3 26718 31938 111864
WM 2 M 243.3 37024 30060 107249
WM 3 E 189.2 20739 23729 79970
WM 3 M 205.7 31050 28548 100521
WM 4 E 235.5 28302 30013 102929
WM 4 M 165.6 26736 22439 79428
WM 5 E 205.3 31361 27528 95576
WM 5 M 244.1 41610 34287 122016
WM 6 E 162.5 18425 21609 70669
WM 6 M 235.7 31073 31654 111960
WM All E 198.4 24330 25286 86493
WM All M 223.9 35558 30855 109930
CO 101 E 318.3 62278 43315 150288
CO 101 M 257.2 41869 38069 137026
CO 102 E 214.0 45718 32184 110366
CO 102 M 127.7 21377 18893 67055
CO 103 E 394.1 68072 47174 165188
CO 103 M 343.9 52022 50718 185080
CO 104 E 146.1 33137 27516 95397
CO 104 M 139.3 26520 26017 92778
CO 105 E 151.8 31781 30269 107101
CO 105 EO 245.0 38157 41645 152258
CO 105 M 121.6 19056 23213 85427
CO 106 E 184.7 39692 34480 120508
CO 106 M 145.1 19185 25630 96045
CO All E 237.8 44244 37536 132882
CO All M 189.1 30005 30424 110569
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The mean crown biomass estimated using Gholz (1982) generalized equation had similar 

trend for even- and multi-aged stands. The means for even-aged stands in western 

Montana and for multi-aged stands in central Oregon had similar live crown biomass 

using both methods of calculation.

23.10.4. Total Tree Biomass

Total tree aboveground biomass for the even- and the multi-aged stands followed 

the same pattern for live crown biomass in both locations (Table 2.9). The total tree 

biomass for even-aged stands was 95 and 146 tonne ha'1 in western Montana and central 

Oregon, respectively. The values for multi-aged stands were 121 and 122 tonne ha'1 in 

western Montana and central Oregon, respectively. The overall mean aboveground tree 

biomass for both locations combined was similar (121 tonne/ha) for even- and multi-aged 

stands.

2.3.11. Understory Vegetation Biomass

In general, the understory vegetation biomass was higher in multi-aged stands 

than even-aged stands (Table 2.10).
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Table 2.10. Understory vegetation biomass in even- and multi-aged ponderosa pine 
stands. WM = Western Montana, CO = central Oregon. E = Even-aged, M = Multi
aged.

Location Plot No Understory biomass (kg/ha)
Even-aged Multi-aged

WM 1 294 744
WM 2 1387 1392 •
WM 3 202 526
WM 4 688 1261
WM 5 959 636
WM Mean 706 912
CO 101 27 1123
CO 102 28 2476
CO 103 377 686
CO 104 168 372
CO 105 518 458
CO Mean 224 1023

The overall mean for multi-aged stands (967 kg/ha) was almost double compared to even- 

aged stands (464 kg/ha). There was very little relationship between LAI and understory 

biomass (r = 0.09) in western Montana, whereas in central Oregon a negative linear 

relationship between LAI and understory biomass (r = -0.41) was evident. For all stands, 

there was a linear negative relationship (r = -0.30 ) between LAI and understory biomass 

(Figure 2.4).
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Figure 2.4. Relationship between LAI and understory biomass for even- and multi-aged 
ponderosa pine stands in western Montana and central Oregon.
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2.4. DISCUSSION

Higher stand density in terms of trees per ha in the natural even-aged stands, was 

characterized with low live crown percentage, leaf area, crown projection area, and crown 

biomass, indicating higher levels of competition for growing space. The basal area and 

total sapwood area in even-aged stands were very similar to multi-aged stands due to 

higher stand densities. Reduction in stand density in the even-aged stands may increase 

the available growing space, which would have improved the average tree characteristics 

similar to those in multi-aged stands. In the even-aged lodgepole pine (Pinus contorta) 

stands, Long and Smith (1984) reported that the average crown diameter and depth 

increased with mean tree size and decreased with stand density. The mean tree leaf area 

for multi-aged stands was greatly influenced due to the variations in size structure and 

age classes. Leaf area on trees with similar ages but from different stand structures 

indicated that trees from even-aged stands carry comparatively lower leaf area than those 

from multi-aged stands (Table 2.4&2.S). This could mainly be due to stand density 

related competition, which is greater in the even-aged than the multi-aged stands. In 

central Oregon, most of the multi-aged stands had lower stocking density, but the 

proportion of larger sized trees was higher compared to western Montana. The 

distribution of trees by diameter and height classes in the multi-aged stands is an 

important factor to be considered for stand comparison, even though both structures have 

similar basal area or SDL

The mean canopy cover in even-aged stands was higher compared to multi-aged 

stands in both locations. Higher stocking densities in the even-aged stands compared to
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the multi-aged stands resulted in higher mean canopy cover. A large sized tree or an old- 

growth tree generally occupies more growing space compared to small and medium 

sized trees. Higher proportions of old-growth or larger sized trees in a stand could 

sometimes result in lower canopy cover and tree density. This may be the reason for 

lower canopy cover and TPH for the even-aged old-growth stand in central Oregon. The 

comparison between old-growth and second-growth even-aged stands on a similar site in 

central Oregon indicated that both stands carry similar LAI but different TPH, QMD,

SDI, and canopy cover percentage.

Similar LAI in even- and multi-aged stands indicates the maximum LAI that 

could be supported on similar quality sites is not significantly different between even- 

and multi-aged structures. Slightly higher mean LAI for the even-aged stands in central 

Oregon could be due to higher potential growing space in few sites with high aridity 

index compared to western Montana. The LAI on a site directly depends on the site 

growing space, which is limited by climatic and edaphic factors. The stands at Chemult 

(plot 103), had the highest aridity index and also had the highest LAI for even-aged and 

multi-aged stands in central Oregon.

In central Oregon, 50% of the stands were on relatively drier habitat types (aridity 

index < 0.20). The multi-aged stands on those drier sites were characterized with some 

old-growth and second-growth trees and practically no regeneration. The understory 

vegetation was abundant with antelope bitterbrush (Purshia tridentata), and basin big 

sagebrush (Artemisia tridentata). Competition for growing space, especially for soil 

moisture might have been the limiting factor for lack of new regeneration on those sites.
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Low stand LAI on drier (arid) sites brought down the overall mean LAI for the multi

aged stands in central Oregon.

In western Montana, the even-aged stands had comparatively higher LAI than the 

multi-aged stands. This could be due to lower stand density in older cohorts and higher 

in younger cohorts (cohorts 3 & 4) in the multi-aged stands. The trees belongs to 

younger cohorts in the multi-aged stands may not be fully utilizing the growing space 

created from past stand treatments (examples: Plot 2, 4, and 6 in western Montana and 

Plot 101,102, 103, and 104 in central Oregon). Whereas the corresponding, even-aged 

plots had higher numbers of second-growth trees, resulted in larger sapwood area and 

LAI. A proportionally larger number of trees in older cohorts and fewer in younger 

cohorts might result in higher LAI in the multi-aged stands compared to the even-aged 

stands (Plot 1, Table 2.4). A multi-aged stand with four times more larger-sized trees 

compared to young second-growth trees had similar LAI as in the corresponding even- 

aged stand (Plot 5, Table 2.4). The comparison between stand structures with similar 

LAI on similar sites describes more clearly the effect o f canopy architecture on tree and 

stand productivity.

The diverse pattern in volume growth efficiency between even- and multi-aged 

stands could be for different reasons. For example, the multi-aged stand in Plot 1 in 

western Montana had several large-sized trees, resulting in a higher sapwood and LAI. 

For a larger sized tree, the annual radial increment at breast-height might be very small. 

The smaller radial growth would predict a lower 5-year height increment from the height- 

growth model, where the height growth model depends on 5-year radial growth
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increments. This resulted in a lower stand volume increment and volume growth 

efficiency. In contrast, if the even-aged stand was fully stocked with medium sized trees, 

this would have resulted in a higher radial growth, 5-year height growth, stand volume 

increment, volume and basal area growth efficiencies. This could be the reason for 

higher VGE and BAGE for the even-aged stand in the Sweeny Creek site in western 

Montana.

A comparison between even- and multi-aged stands with similar LAI indicated 

that multi-aged stands tend to produce higher stand volume increment and VGE (Plot 5). 

Overstocked even-aged stands tend to have smaller radial growth because height growth 

becomes the highest priority over diameter growth on trees competing heavily for 

growing space. Small radial growth results in low 5-year height growth (predicted), and 

therefore low volume increment and volume growth efficiency (Plot 3E and 6E).

However, the stand basal area growth efficiency in even-aged could be higher due to high 

stand densities compared to multi-aged stands. The even-aged stand in Plot 103 in 

central Oregon was fully stocked with reasonably good radial growth. The mean annual 

radial growth was about 1 mm and had the highest VGE and BAGE compared to other 

even-aged stands in central Oregon. In general, depending on the size structure of trees 

in a stand, the VGE could change considerably between stands with similar LAI.

In western Montana, the mean total stem volume was higher for multi-aged stands 

due to many large sized trees compared to even-aged stands. In central Oregon, 50 % of 

the multi-aged stands were understocked (low LAI), resulted in a lower mean total stem 

volume and volume increments for the multi-aged stands. Even though the mean basal
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area was similar for even- and multi-aged stands in western Montana, higher tree heights 

in multi-aged stands resulted in larger stem volumes.

In western Montana, the mean live crown biomass was higher for multi-aged 

stands, even though the mean basal area was slightly lower compared to even-aged 

stands. At the same time, the mean leaf biomass was lower in the multi-aged stands 

compared to even-aged stands. This indicates that the total branch biomass should be 

higher in multi-aged stands compared to even-aged stands. So the estimated VGE based 

only on the stem volume increments may not indicate the actual tree volume increments 

per unit tree leaf area. By taking into consideration the total branch volume increments, 

together with stem volume increments, the multi-aged stands might have larger volume 

increments per leaf area compared to even-aged stands.

The comparison between live crown biomass using Gholz’s and Cochran’s 

equations for central Oregon indicated that Cochran’s equations estimated comparatively 

higher live crown biomass for both even- and multi-aged stands, except for the stands 

from drier habitat types. For the stands in drier habitat types, Gholz’s equations produced 

higher live crown biomass. This could be due to two reasons: 1) Gholz’s and Cochran’s 

equations were developed from ponderosa pine stands growing in two different 

geographical regions; 2) Cochran’s equation was developed from second-growth 

ponderosa pine trees of sizes ranging between 5.3 cm and 38.7 cm dbh. The multi-aged 

stands in drier habitat types of central Oregon had many large-sized old-growth trees and 

relatively lower estimated live crown biomass. Despite the differences, both equations 

had a general trend for a higher mean live crown biomass for the even-aged stands
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compared to multi-aged stands. The mean live crown biomass for multi-aged stands in 

central Oregon was lower due to lower stand densities. In western Montana, both 

Gholz’s and Brown’s equations estimated approximately similar amounts of live crown 

biomass. The mean live crown biomass estimated using Gholz’s equation was slightly 

higher for even-aged stands and about 13% less for multi-aged stands compared to 

Brown’s equations.

The mean total overstory trees biomass estimated using Gholz’s equation 

indicates that in central Oregon the even-aged stands had higher tree biomass. This is due 

to higher mean basal area and LAI for the even-aged stands in central Oregon compared 

to western Montana. This could also be due to differences in water balance between the 

two locations. The multi-aged stands in central Oregon had lower basal area than in 

western Montana, but the mean total tree biomass for multi-aged stands was similar in 

both locations. This may be because, in central Oregon, the majority of the stands’ basal 

area was from large sized trees compared to western Montana.

The trees allocate more biomass for stem and branch production in multi-aged 

stands due to different canopy structure. In multi-aged stands, trees produce more 

lateral branches to capture maximum available 3-dimensional growing space, whereas 

the trees in even-aged stands are limited to explore the horizontal growing space due to 

higher density related competition from neighbor trees. Higher levels of competition for 

horizontal growing space may favor height growth over lateral branches on trees in even- 

aged stands. Silvicultural treatments like thinning increases growing space availability 

(light and soil moisture) in stands. A reduction in stand density also increases soil
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moisture due to enhanced canopy interception of ra in fall and snow. Higher light and soil 

moisture levels increases gross photosynthesis if other growth factors like soil nutrients 

status are not limited. Improved light and moisture availability also results in lower 

needle specific leaf area (cm2/gm). Leaves with lower specific leaf area have 

comparatively more volume of mesophyll tissues containing chlorophyll (Waring 1985) 

and more carboxylase per unit area (Jones 1992). Shade leaves or leaves with higher 

SLA have markedly reduced capacity for electron transport through photosystems, when 

expressed on a chlorophyll basis, Boardmann et al. (1975) reported that about 14 times 

higher electron transport in chloroplasts extracted from sun plants than those from shade 

plants. Several studies have reported the negative relationship between specific leaf area 

and photosynthesis in plant species. Manipulation of stand structure to increase the 

foliage production efficiency (low SLA) may also result in higher tree- and stand-level 

productivity (Figure 2.5).
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The multi-aged stands had comparatively lower LAI and higher understory 

vegetation biomass on both locations. The overall negative linear relationship ( r = -0.30) 

between LAI and understory vegetation biomass indicates that a reduction in overstory 

biomass or canopy cover increases the understory vegetation biomass due to higher 

available growing space for the understory species. This could also suggest that 

distribution pattern of biomass between perennial overstory trees and seasonal understory 

vegetation is directly related to its overstory stand structure.

2.5. CONCLUSIONS

Leaf area index (LAI) in the even- and multi-aged stands largely depends on the 

climate and edaphic factors on that site. The total stand biomass production on a site is 

related to its LAI. The production efficiency of foliage in a stand is related to available 

growing space and stand structure. The production efficiency of foliage in terms of stem 

volume growth per unit leaf area was higher in multi-aged stands. Trees with similar 

ages, but from different stand structures, had significantly different leaf area, live crown 

percentage, crown projection area, and growing space efficiency, suggesting that trees in 

multi-aged structures have increased available growing space compared to those in even- 

aged stand structures. The increased growth factors for the trees in multi-aged stands 

could be attributed to lower stocking level and diverse vertical stand structure.

Several other factors also influence the production efficiency of leaves. Creating 

more available growing space in a stand increases individual tree production. At the 

same time, low stocking levels decrease stand-level volume growth/production. This
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could be the main reason for low LAI and mean stem volume increments in the multi

aged stands. When LAI is similar for the even- and multi-aged stands, the influence of 

stand structure on production became more obvious. On good quality sites (ex: high 

aridity index), when soil moisture is not a limiting factor, stand LAI and stem volume 

increments tend to increase in the even-aged stands. On water limited sites, the even- 

aged stand structure could result in higher levels of competition for soil moisture, and 

may reduce individual tree as well as stand production. Even though most of the study 

sites in western Montana were on sites with relatively medium aridity index, the low LAI 

and stem volume increments for few of the multi-aged stands were mainly due to low 

stocking levels compared to the adjacent even-aged stand. Relatively lower stocking in 

multi-aged stands provide higher understory vegetation biomass compared to even-aged 

stand structure. Higher understory biomass may increase the wildlife carrying capacity. 

Diverse crown stratification in multi-aged stands may have different above- and 

belowground biomass allocation patterns compared to single strata even-aged stands.

Total biomass including both above- and belowground components should be taken into 

consideration while comparing the net productivity in multi-aged vs. even-aged 

structures.
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Chapter 3

Specific Leaf Area and Leaf Nitrogen Measures for Comparative 
Productivity in Even- and Multi-aged Ponderosa Pine Stands

ABSTRACT

Leaf level physiological differences due to stand structures were examined in 
even- and multi-aged ponderosa pine (Pinas ponderosa) stands in western Montana and 
central Oregon. Leaf area and its arrangement are important factors determining tree and 
stand productivity. Specific leaf area (cm2/gm) and leaf nitrogen content were examined 
at different crown heights on trees in even- and multi-aged stands. Trees belonging to 
different strata in even- and multi-aged structures were selected and one- to three-year-old 
needle samples were collected from top, middle, and bottom crown thirds to determine 
the specific leaf area (SLA). SLA for the top third was lowest and increased down 
through the crown in both structures. Multi-aged stands were characterized by lower 
SLA at different crown thirds compared to even-aged stands. The range between top and 
bottom third mean SLA was the greatest for even-aged stands, even though the live 
crown percentage was the lowest. Two- and three-year-old needles had the lowest SLA 
in western Montana and central Oregon respectively. Compared to the even-aged stands, 
multi-aged stands had the lowest PAR interception, indicating higher levels of PAR 
beneath the canopy. Leaf nitrogen content (area basis) was the highest in top crown third 
and decreased down through the crown. In western Montana, two-year-old needles had 
the highest leaf nitrogen content in both structures, whereas three-year-old needles in 
even-aged stands had the highest leaf nitrogen in central Oregon. Low SLA and high leaf 
nitrogen content indicate physiologically more productive needles. A negative linear 
relationship between volume increment and SLA indicates low SLA leads to increased 
production. Comparatively lower SLA for crown thirds in multi-aged stands is not an age 
factor, but rather an age-related structural phenomena. These results suggest that 
managing stands with diverse vertical structure is an important factor to increase tree and 
stand productivity.

Keywords: ponderosa pine, specific leaf area, leaf nitrogen, needle age, even-aged, multi
aged, photosynthetically active radiation, stand structure, stand productivity.
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3.1. INTRODUCTION

Stand productivity of even- and multi-aged (stands with two or more age classes) 

structures or stands has always been a subject of controversy. Most previous studies were 

based on empirical yield reports. Comparative studies emphasizing physiological factors 

responsible for stand productivity under these silvicultural systems has not been ma<i<» in 

the past. Soil and climate are the most important biophysical factors limiting plant 

growth and productivity. If the variation in these factors is minimal, stand production 

efficiency in terms of carbon fixed per unit leaf area depends on the degree of site 

occupancy and stand structure. Stand structure is the physical and temporal distribution 

of trees and other components of a forest (Oliver and Larson 1996).

Total stand production depends on the production efficiency of trees in a stand 

and the number of trees. Stand structure modifies the micro-climate controlling the 

physiological functioning of a stand. It has been found that stands with many age groups 

and diverse vertical structure have slightly greater growth efficiency compared to even- 

aged stands (O’Hara 1996). Leaf area index (LAI) has been used as a measure of 

occupied growing space on a site (O’Hara 1988). On similar sites, stands having similar 

LAJ but varied vertical crown structure can result in different leaf level physiological 

characteristics that leads to changes in tree and stand productivity. Specific leaf area (leaf 

area per unit dry biomass) and leaf nitrogen content are two important physiological 

surrogates for available growth factors: light, temperature, water, and nutrients in a stand.

In this paper, comparative differences in leaf-level physiological characteristics 

like specific leaf area (SLA) and leaf nitrogen content were examined within the crowns
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of even- and multi-aged stand structures to relate the differences in these foliar 

measurements to tree- and stand- level productivity. Ponderosa pine (Pinus ponderosa), 

a light-demanding tree species, is managed under both even- and multi-aged stand 

structures. The objectives of the study were: 1) To test whether specific leaf area (SLA), 

a surrogate measure for photosynthetic efficiency, varies significantly between crowns in 

even-aged and multi-aged ponderosa pine stands; 2) To examine the range in SLA 

between crown thirds of trees in these stand structures; 3) To measure the 

photosynthetically active radiation (PAR) available at 1 m above ground level and its 

influence on distribution of SLA and productivity in even- and multi-aged ponderosa pine 

stands; 4) To determine the difference in total leaf nitrogen content between and within 

crowns of trees in even- and multi-aged ponderosa pine stands; and 5) To examine the 

relationship between tree mean SLA and volume increment, SLA and crown height, and 

SLA and leaf nitrogen in both even- and multi-aged stands.

3.2. BACKGROUND

3.2.1. Specific Leaf Area and Photosynthesis

Leaf area per unit dry biomass (cm2/gm) in a plant is arranged to maximize solar 

energy harvest and photosynthesis. SLA describes the concentration of plant leaf 

biomass relative to its area within a plant canopy (Janecek et al. 1989; Pierce and 

Running 1994), and it acts as an important link between the stored carbon and water cycle 

within a plant. SLA has been found to be closely related to canopy photosynthetic 

capacity (Gutschick and Wiegel 1988; Ellsworth and Reich 1993). Studies have reported
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that upper canopy parts of trees are more productive compared to others (Ellsworth and 

Reich 1993). Generally, the top section of a tree crown receives maximum solar radiation 

compared to middle and lower sections. Therefore, a similarity in SLA within a tree’s 

crown indicates approximately equal crown productivity, suggesting SLA can be used as 

to compare the production potential of trees in different stand structures.

Plants grown in water limited environments typically have reduced SLA in 

comparison to the same species grown in non-water limited environments (Pierce and 

Running 1994; Jose and Gillespie 1997). Hollinger (1989) demonstrated that SLA 

increased as canopy depth and Amax (light saturated photosynthetic rate under non- 

limiting environmental conditions) decreased. SLA varies largely within and between 

plants ( Mooney et al. 1978; Norman and Campbell 1989) depending on species, age, 

and light environments (Fitter and Hay 1987; Nobel and Hartsock 1981). Farnsworth and 

Ellison (1996) found that in red mangrove (Rhizophora mangle) the leaf anatomy was 

insensitive to light environments, but leaf length, width, specific leaf area, and summer 

maximum photosynthetic rates varied between sun and shade leaves in the neo-tropical 

mangrove forests at Wee Wee Cay, Belize, increasing SLA and decreasing total biomass 

were found when increasing shade levels in loblolly pine (Pinas taeda), white pine (Pinus 

strobus) by Groninger et al. (1996). But they also reported that quantum efficiency, dark 

respiration, and light compensation points were not reduced in trees under shade 

treatments. Intra-specific variation of SLA reflects the phenotypic plasticity of Quercus 

ilex in different habitats and demonstrated the ability of plants to respond adequately to 

changing environmental factors by altering leaf morphology (Gratani 1996). In beech
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(Fagus sylvatica) seedlings, Larsen and Buch (1995) reported that mesophyll thickness 

and stomata density were significantly varied among provenances due to differences in 

light.

Ducrey (1994) found higher maximum photosynthesis of sun-grown seedlings 

than shade-grown seedling in seven tropical rain forest species from Guadeloupe (French 

West Indies). He also reported a reduction in maximum photosynthesis and an increase 

in apparent quantum yield with higher SLA (when plants were more shaded). Grace et al. 

(1987) used SLA for modeling canopy net photosynthesis in Pinus radiata stands to 

account for the variation in rates of net photosynthesis due to physiological and 

morphological state of individual shoots throughout the canopy. Klinka et al. (1992) 

reported a decreased growth in terms of height increment, lateral branch growth, and 

growth at the base of the current leader, and higher SLA due to lower levels of irradiance 

in Pacific silver fir (Abies amabilis) and subalpine fir (A. lasiocarpa) forests in 

northwestern North America. In Finland, Nygren and Kellomaki (1983) reported that 

shading increased SLA and decreased the leaf mesophyll thickness in young birches such 

as Betula pendula and B. Pubescens. They also reported the maximum photosynthetic 

rate and light intensity for photosynthetic saturation were decreased in shading, and were 

associated with an increase in SLA and a decrease in chlorophyll amount per unit of leaf 

area.

3.2.2. Leaf Age

Borghetti et al. (1986) reported a decrease in SLA with leaf age and from base to
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apex of the crown in an unthinned 25 yr old Douglas-fir plantation in Florence. Italy. 

Shelton and Switzer (1984) reported that within the canopy of loblolly pine stands, the 

SLA was greatest for current fascicles in the lower canopy and least for older fascicles in 

the upper canopy. Gilmore et al. (1995) reported significantly different SLA between 

foliage age classes showing a decreasing trend with an increase in leaf age in Abies 

balsamea trees in the Penobscot River Valley, Maine. In Scots pine in The Netherlands. 

Hees et al. (1993) reported that SLA decreased with needle age and increased with crown 

depth. Pereira et al. (1992) reported that the differences between the photosynthetic 

capacity of adult and juvenile leaves of Eucalyptus globulus seedlings in optimal water, 

nutrients, and in non-irrigated, unfertilized control treatments were largely explained by 

the lower SLA of adult leaves.

3.2.3. Stand Structure, Light Intensity and Canopy Extinction Coefficient (k)

Tree foliage intercepts most of the light captured by the canopy and increased 

foliage area increases light interception (Cannell et al. 1987). The availability of light in 

a canopy determines the amount of net photosynthesis (PSN) under non-limited moisture 

and nutrient environments. Stand structure, tree species, stem density, leaf morphology, 

leaf density, and leaf orientation affect the availability of solar radiation at different 

canopy heights. When light passes through a canopy, some of the incident radiation gets 

absorbed by the canopy and the rest is reflected. A good portion of the unabsorbed 

radiation filters down through the canopy layers. The rate at which foliage absorbs 

radiation depends on the type of species. This rate is known as the light extinction
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coefficient ‘k!. The k varies due to types of canopies as well as due to variations in 

vertical distribution of canopy foliage (Sampson and Smith 1993). Several studies have 

found low extinction coefficients associated with increased canopy depth and LAI 

(McIntyre et al. 1990; Gholz et al. 1991; Smith et al. 1991). In the simplest approach, the 

penetration of visible light through an accumulated layer of foliage (a uniform spongy 

medium of chlorophyll) approximates the Beer-Lambert law (Waring 1985).

The extinction coefficient k can be considered an efficiency coefficient because, 

for each unit of LAI. a canopy with a higher k will intercept more light (Oker-Blom and 

Kellomaki 1983). The difference in extinction coefficients in two stand structures with 

different LAI can be calculated using this method assuming that light attenuation occurs 

through a homogeneous media of foliage with a specific depth and property (Campbell 

1977). Light transmission within the canopy is influenced by leaf properties and canopy 

structure or LAI (Ross 1981; Campbell and Norman 1989). In many instances, the 

canopy heterogeneity due to structure, stem surface area, sun angle, and foliage clumping, 

cause more complexity in estimation of k. At maximum solar elevation, the value of k 

for conifers varies between 0.40 to 0.65 (Jarvis and Leverens 1983).

3.2.4. SLA, PAR, and Leaf Nitrogen

For evergreen conifers, mass-based Amax was less correlated with leaf nitrogen 

compared to broad leaved deciduous trees, whereas on an area basis there was no 

correlation in the evergreen conifers (Reich et al. 1995). It was also reported that both 

leaf N and Amax on a mass basis were correlated with SLA; in contrast, area-based leaf
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N scaled tightly with SLA, but area-based Amax did not because of low Amax per unit N 

in the evergreen conifers. They also stated that trees with lower SLA and longer leaf life 

spans tend to have lower Amax per unit leaf N and a lower slope and higher intercept of 

Amax-N relation than do species with shorter leaf life span and higher SLA. Midgley

(1995) reported an inverse relation in SLA and leaf nitrogen with rainfall in South 

African forest species. In a thinning study in British Columbia, Wang et al. (1995) 

reported that increased PAR and foliar nitrogen concentration and decreased SLA for 

lower stand density levels compared to very high density of paper birch ([Betula 

papyrifera).

3.3. METHODS

3.3.1. Site Selection

The study was conducted in western Montana and central Oregon to examine the 

influence of stand structure related variations in leaf physiology in ponderosa pine. In 

western Montana, the study plots were located at elevations of approximately 850 to 1250 

m. The latitude and longitude ranged from 46° 37' to 47° 06'N and 113° 23' to 114° 

47'W, respectively. The long-term average climatic data for the sites were given in 

Table 2.2. The stands were located primarily on Pseudotsuga menziesii climax series 

(Pfister et al. 1977), and were predominantly pure ponderosa pine with an occasional 

inclusion of interior Douglas-fir (Pseudotsuga menziesii var. glauca) less than 5%. All 

the sample plots were located on south to southeast aspects between a slope of 2 to 30%. 

The even-aged stands were primarily on second growth ponderosa pine forests.
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In central Oregon the study plots were located at elevations between 1330 to 1540 

m. The latitude and longitudes of the study locations range from 43° 13' to 43° 52'N 

and 121 ° 8' to 121 ° 48' W, respectively. The long-term average climatic data from 

nearby weather stations were used to characterize the study sites (Table 2.2). The sample 

plots were selected on Pinus ponderosa plant associations on pumice soils as part of the 

High Cascades Province (Franklin and Dymess 1973). Many of the central Oregon 

stands were seriously defoliated by pandora moth outbreak (Coloradia pandora Blake) 

during 1992-95. Special attention was given to choose the sample plots on stands which 

were attacked at a minimal level by examining the stand/trees for the number of years’ 

needle whorls. Stands with trees less than 4 year’s needles were not selected. Pure multi

aged ponderosa pine stands are common in central Oregon due to partial cutting and 

deliberate selection silviculture. The plant associations were identified as per the guides 

by USDA Forest Service for each sampling area (Hoplins 1979a, 1979b, Volland 1988). 

The sample plots were located on all aspects between slopes ranging from 2 to 12%.

3.3.2. Plot Selection

Pure paired even- and multi-aged ponderosa pine stands at closer proximity (for 

similar site condition) were selected in both study locations. The selected stands were not 

treated for 15 years prior to the year o f sampling to eliminate bias in stand productivity.

In western Montana, six pairs of even and multi-aged plots were identified, whereas in 

central Oregon five pairs. A 0.1 ha size circular sample plot (17.8 m radius) was selected 

randomly on all the identified stands in western Montana and central Oregon except the
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even-aged stands in central Oregon. The plot size in the even-aged stands in central 

Oregon was 0.04 ha (11.3 m radius). This is due to approximately similar variances in 

estimated LAI between plot sizes 0.1 ha and 0.04 ha in even-aged stands. Larger plot 

size was selected in multi-aged stands due to higher structural and spatial heterogeneity.

3 3 3 . Tree Measurements

Within each sampled plot, the trees were measured for their diameter (dbh) in cm 

at 1.37 m from ground level, total height (m), and the height up to live crown base (m). 

From the two heights, live crown length and live crown percentage for each tree was 

calculated. In each stand, the trees were grouped into different canopy strata based on 

their total heights and their relative position in the canopy. Generally, in even-aged 

stands most of the trees were grouped into a single stratum in both locations. But in 

western Montana, for SLA analysis, a few shorter trees were grouped as EV-2 (lower 

stratum) in addition to the major group EV-1. In multi-aged stands there were up to four 

strata levels which were designated MA-1, MA-2, MA-3, and MA-4 representing the 

tallest to the shortest, respectively. Each tree was also assigned a crown class using the 

procedure described by Smith (1986).

Trees were cored at breast height on their north and east sides. The radial growth 

for the past five years was measured to the nearest 0.5 mm on both increment cores to 

calculate mean annual volume increments (methodology described in Chapter 2) on all 

trees. Breast height age was determined from ring counts made in the field on cores
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which extended to the pith. Based on tree age classes identified in each stand, cohort 

number was also assigned to trees in each plot using the method described by O'Hara

(1996).

33.4. PAR Measurements

PAR was measured in both structures using a Decagon Sunfleck Ceptometer 

(model SF-80, Decagon Devices, Incorporated) during June and July of 1996 in western 

Montana and central Oregon, respectively. The measurements were made on dear, sunny 

days between ± one hour of solar noon. In western Montana and central Oregon a total of 

eight pairs of even and multi-aged stands were sampled for PAR measurements. In each 

stand, a 400 m2 (20 m x 20 m) square plot with grids at 2 m intervals was used. PAR was 

measured on points marked on each grid line at an interval of 4 m. The measurements 

were taken from east to west following a boustrephedon sampling design to avoid time 

related bias between adjacent measurement points. At each point, the PAR was taken as 

an average of eight readings between 0 to 360° at 45° interval. A total of 66 

measurements were taken for each plot and completed on the same day in both stands.

An average “open condition” PAR was determined for each stand from two 

measurements taken, right before and soon after the measurements inside the canopy.

The ratio of PAR inside the canopy to open were calculated for each stand. The canopy 

light extinction coefficient ‘k’ was estimated using the Beer-Lambert equation.
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(Eq. 3.1) -k = ln(II/I0)/SLAI

Where I0 = PAR outside the canopy (open condition), I* = PAR measured beneath (inside) 

the canopy, and 2LAI is the (projected) leaf area index. The projected LAI for each 

stand was approximated by dividing the all-sided LAI by a factor 3.2 (Johnson 1984).

The ‘k’ was calculated in two methods: In the first method, k was calculated at each 

measurement point and averaged for the stand. But in the second method, average stand 

PAR ratio and stand projected LAI were used.

33.5. Leaf Level Measurements

In western Montana and central Oregon, five codominant trees belonging to 

different strata classes were selected from each multi-aged plot for leaf level 

physiological measurements. Three codominant trees per plot were selected in even-aged 

structure due to smaller variation in tree height and age compared to multi-aged stands.

The live crowns of trees selected for leaf level measurements were divided into 

equal thirds: top. middle, and bottom. In western Montana during the first week of 

August 1995, a fully exposed 1-2 cm thickness terminal twig with a minimum three 

year’s needle whorls was shot down from each crown third. Needles from each twig 

were immediately separated into age classes and stored on ice before taken to the 

laboratory. All-sided needle surface area was calculated using a geometric technique 

developed by Johnson (1984). SLA for each crown third, as well as for each needle age 

class from crown thirds, was determined using the method described by O'Hara and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



66
Valappil (1995). In western Montana, the needle samples from all the plots were 

collected within the first week of August 1995 to reduce the variation in SLA due to 

time/seasonal changes and the same procedure was repeated in central Oregon during the 

third week of July 1996.

3.3.6. Leaf Nitrogen Estimation

Leaf nitrogen content was determined in needle samples used for SLA estimation. 

A total of 15 trees from three study sites in western Montana and 10 trees from two sites 

in central Oregon were chosen for leaf nitrogen analysis. Three multi-aged and two even- 

aged trees from each study site were selected. The dried needle samples were ground to 

40 mesh size in a Wiley Mill and about 10 mg each were wrapped in tin boats and fed 

into an elemental gas analyzer. Total leaf nitrogen content was estimated from a linear 

regression equation developed from standards of known nitrogen percentage used for 

calibration. The samples were replicated twice and the average leaf nitrogen 

concentration was expressed in mols/m2 using all-sided leaf area.

3.3.7. Data Analysis

Analysis of variance was used to compare the mean SLA and leaf nitrogen 

content between crown thirds and needle age classes. Scheffe’s multiple range test was 

used when the ANOVA hypothesis of no difference was rejected. The mean range in 

SLA between top and bottom thirds was compared between even- and multi-aged stands 

using t-tests (a = 0.05). Two sample t-tests were used to test the differences in PAR
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ratios and canopy extinction coefficients between even- and multi-aged stands. Simple 

linear regression equations were developed to predict SLA and leaf nitrogen from crown 

heights (different heights from tree base within a crown). Multiple regression procedures 

were used to predict leaf nitrogen content (mols/m2) from independent variables like 

SLA, leaf age, total height (m), crown height (m), and crown sections. Simple linear 

regression was used to develop a predictive model for volume increment from mean 

crown third SLA. A significance level with a = 0.05 was used to determine the selection 

of independent variables in regression model building.

3.4. RESULTS

3.4.1. Stand Characteristics

The even-aged stands had higher stand density compared to the multi-aged stands 

in western Montana and central Oregon. In western Montana, the trees per ha (TPH) 

ranged from 570 to 3140 in even-aged and from 260 to 940 in multi-aged stands. The 

TPH ranged from 160 to 1100, and from 100 to 540 for even- and multi-aged stands in 

central Oregon, respectively. The mean basal area for even-aged stands (31.9 m2/ha), was 

not significantly higher compared to multi-aged (29.8 m2/ha) stands in western Montana, 

but in central Oregon, the even-aged stands had significantly higher mean basal area (39.4 

m2/ha) than the multi-aged stands (25.3 m2/ha). The higher mean basal area in even-aged 

stands is due to higher stand density compared to multi-aged stands.

The mean breast height age for the second-growth even-aged stands was higher in 

western Montana (95) compared to central Oregon (71). The mean age of the trees
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selected from the different canopy strata in multi-aged stands in western Montana and 

central Oregon is given in Table 3.1. Trees in strata MA-3 and MA-4 had similar mean 

breast height age in western Montana, whereas in central Oregon, trees in different strata 

followed a distinct age pattern or cohort class. The mean LCP was significantly larger in 

multi-aged stands compared to even-aged stands in both locations (t-tests, P < 0.05). At 

the same time, the mean LCP for even-aged stands in western Montana (40) was 

significantly lower compared to central Oregon (56) stands. For multi-aged stands the 

mean LCP was 59 and 67 for western Montana and central Oregon, respectively. In both 

locations, the trees belong to each strata in multi-aged stands had LCP higher than 50%.

In western Montana, the upper most strata had the highest LCP, whereas in central 

Oregon, the third strata (MA-3) had the highest LCP.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
Table 3.1. Mean age, height, leaf area, live crown percentage (LCP), volume 
increment, and basal area for trees sampled for SLA analysis in even- and multi
aged stands in western Montana and central Oregon. The means were based on 
strata classes identified in each plot

Western Montana Central Oregon
Even-aged Multi-aged Even-aged Multi-aged

Strata EV-1 MA-I MA-2 MA-3 MA-4 EV-l MV-l MV-2 MV-3 MV-4
Number of Tree 18 7 6 7 7 12 5 6 5 2
Mean Age 95 115 83 56 55 71 179 113 62 39
Mean Strata 
Height (m) 14 25 19 12 9 17 29 21 12 6
Mean LCP 40 67 58 55 55 56 68 68 72 60
Mean Leaf 
Area (m2) 67.4 492.0 148.3 51.0 40.4 120.9 670.5 245.7 109.7 32.7
Mean Volume 
Increment (cm3) 4463 29547 13862 3331 2836 10745 68759 25020 10254 2842
Mean Tree Basal 
Area (cm2) 303 2348 716 218 179 638 3871 1305 561 189

3.4.2. Specific Leaf Area (SLA)

The mean SLA decreased with increasing crown third heights for both even- and 

multi-aged stands in western Montana and central Oregon (Figure 3.1A&B). The 

standard errors were approximately equal for all crown thirds. In both locations, the 

mean SLA for top, middle, and bottom crown thirds was significantly different in even- 

aged stands (ANOVA, P < 0.01).
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□Top 
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■  Bottom

□Top
■  Middle
■  Bottom

Even-aged Multi-aged

Figure 3.1. Distribution of mean SLA (cm2 /gm) within the crown thirds in even- and 
multi-aged ponderosa pine stands (A: western Montana, B: central Oregon). Error bars 
represent 1SE. Bars with same letter within each structure are not significantly different 
(P<0.01).
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Multiple comparisons of mean SLA for crown thirds failed to reject the null hypothesis 

that mean SLA varies more within the crown thirds of trees in even-aged stands due to 

differential radiation environments. In both locations, mean SLA in multi-aged stands 

was significantly different only between top and bottom thirds (P < 0.005) and between 

middle and bottom thirds (P < 0.01). The mean SLA for top and middle thirds was not 

significantly different (P > 0.01).

3.4.3. SLA Range

The range in mean SLA between top and bottom thirds in even-aged stands was 

15 and 17 cm2/gm in western Montana and central Oregon, respectively (Table 3.2). In 

multi-aged stands, the range was 10 and 9 for western Montana and central Oregon, 

respectively. The even-aged stands had a significantly larger range in mean SLA 

between top and bottom thirds than multi-aged stands in both study locations (t-tests; P < 

0.01). The standard deviations were similar for each structure in both locations.

In western Montana, the mean SLA for top thirds in even-aged stands was slightly 

lower than multi-aged stands (Figure 3.1). But the middle and bottom thirds in even- 

aged had higher mean SLA than multi-aged stands. In central Oregon, multi-aged stands 

had lower SLA for all crown thirds than corresponding thirds in even-aged stands. The 

differences between corresponding thirds in even- and multi-aged stands were larger in 

central Oregon than in western Montana.
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Table 3.2. Descriptive statistics for the range in mean SLA (cm z/gm) from top to 
bottom thirds of trees in even- and multi-aged stands in western Montana and 
central Oregon. Means followed by different letters for each location were 
significantly different (t-tests, a = 0.05).

Western Montana Central Oregon

Even-aged Multi-aged Even-aged Multi-aged

No of trees 18 29 13 19

Minimum 3.6 1.3 3.2 0.1

Mean SLA 15.0* 9.5* 173b 8.9b

Maximum 30.4 21.3 26.7 18.7

SD 6.8 5.7 7.2 5.4

3.4.4. SLA and Crown Heights

A negative linear relationship was evident between the crown heights and mean 

SLA for all trees in both structures combined (Figure 3.2A). The overall model for 

western Montana had a better predictive power in terms of R2 compared to that in central 

Oregon (Figure 3.2B). Regression models to predict mean SLA at different crown 

heights were more robust in multi-aged stands than even-aged structure in both locations 

(Figure 3.3,3.4). The model for multi-aged structure in western Montana explained 72% 

of the variation in mean SLA using natural logarithm of crown heights (m), whereas in 

central Oregon an untransformed model explained 45% of the variation in SLA from 

crown heights. In both locations, the even-aged structure did not yield a good predictive 

model.
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Figure 3.2. Relationship between crown heights and mean SLA for both even- and multi
aged stands. A: western Montana, B: central Oregon. •  Even-aged o Multi-aged.
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Figure 3.3. Relationship between crown height and mean SLA in western Montana (A: 
Multi-aged stands, B: Even-aged).
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Figure 3.4. Relationship between crown height and mean SLA in central Oregon (A: 
Multi-aged, and B: Even-aged).
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3.4.5. SLA and Crown Strata

The mean SLA distribution within crowns of various strata was compared without 

considering cohort class in both study locations (Figure 3.5A & B). The even-aged 

stands in western Montana had two canopy strata (EV-1, EV-2) based on their total 

height distribution, even though they belong to a single cohort class. Both strata had 

similar SLA for middle and bottom thirds (Figure 3.5A). However, for the top third, the 

upper stratum (EV-1) had low SLA compared to the lower strata (EV-2). The SLA for 

the top crown third in the lower stratum was very similar to the middle thirds in both 

strata of the even-aged stands. The bottom thirds in both strata had almost identical SLA.

The four canopy strata identified in the multi-aged stands in western Montana had 

a decreasing trend in SLA with increasing strata heights (Figure 3.5A). In both 

locations, the mean SLA for the top third in MA-1 and MA-2 were lower than the top 

third in the even-aged stands. However, in western Montana, the bottom third SLA in 

MA-3 and MA-4 was higher than the bottom third in even-aged stands. Relatively high 

standard error for the means in central Oregon was due to smaller sample size.

3.4.6. SLA and Needle Age

The SLA for different needle age groups was examined without considering 

variations in SLA due to crown positions. Most o f the ponderosa pine trees retained up to 

three years needle whorls and sometimes four to five years on more productive sites.
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Figure 3.5. Distribution of mean SLA (cm2 /gm) within the crown thirds for different 
strata on even- and multi-aged ponderosa pine stands. A: western Montana, B: central 
Oregon. EV-1 and EV-2 are the upper and lower strata in even-aged stands. MA-1, MA- 
2. MA-3, and MA-4 represent four different strata levels from upper most to lowest in the 
multi-aged stands. Error bars represent 1SE.
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Needle ages from one to three years were compared across till the sites in both structures. 

One-year-old needles had the highest SLA for even- and multi-aged stands in both 

locations (Figure 3.6). In western Montana, the lowest SLA was for two-year-old (Age 

2) needles compared to other age groups. In central Oregon, the SLA decreased with an 

increase in needle age in both structures.

3.4.7. Canopy Extinction Coefficient ‘k ’

The mean canopy extinction coefficient k estimated using plot-level average 

method was significantly higher in even-aged stands compared to multi-aged stands (t- 

tests, P = 0.026). In central Oregon, the mean k was higher in even-aged stands using 

both methods (Table 33). When calculated for each measurement point, k was higher in 

both structures compared to plot-level average method. Generally, the mean k is higher 

in even-aged stands compared to multi-aged stands using both methods.
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Figure 3.6. Distribution of mean SLA (cm2/gm) within the needle age groups in even- 
and multi-aged ponderosa pine stands. A: western Montana, B: central Oregon. Error 
bars represent 1SE. Bars with same letters within each structure are not significantly 
different (P < 0.01).
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3.4.8. PAR Ratio

The PAR ratio, (PAR beneath the canopy divided by “open” PAR) was 

significantly higher in multi-aged stands compared to even-aged stands in central Oregon 

(Table 33). In western Montana, the ratio was higher in multi-aged stands, but was not 

significant. When the mean ratio was compared between structures in both locations 

together, multi-aged stands had significantly higher PAR ratios (0.55) than even-aged 

(0.41) stands.

Table 33 . Mean extinction coefficient (k) and mean PAR ratio calculated for even- 
and multi-aged stands in western Montana (MT) and central Oregon (OR). 
Different letters for structures within a location indicate significantly different 
means.

Mean Extinction Coefficient (k) Mean PAR Ratio

Point based Plot level Plot level

Even-aged Multi-aged Even-aged Multi-aged Even-aged Multi-aged

MT -0.53 -0.53 -0.43 -0.38 0.41 0.48

OR -0.56 -0.51 -0.361 -0.3 l b 0.41* 0.61b

All -0.54 -0.52 -0.401 -0.34b 0.41* 0.55b

3.4.9. Leaf Nitrogen

Mean leaf nitrogen content was the highest for top thirds, and the lowest for 

bottom thirds in even and multi-aged stands in both locations. Leaf nitrogen content was 

not significantly different between crown thirds in multi-aged stands in either study 

location (Table 3.4). However, it varied significantly between top and bottom thirds in
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Table 3.4. Descriptive statistics for leaf nitrogen content for top, middle, and 
bottom crown thirds in even- and multi-aged stands in western Montana. Leaf 
nitrogen content was expressed in mols/m2. Different letters within a structural 
group denote significantly different means (ANOVA; P < 0.01).

Ton Middle Bottom
Even-aged Mufti-aged Even-aged Muiti-aged Even-aged Muffcaged

n 17 27 18 27 18 27
Min. N 65.0 56.1 63.3 60.5 62.4 61.0
Max. N 103.0 119.0 92.8 127.5 94.2 115.0
MeanN 89.4* 86.3 84.0 84.3 79.6I> 80.1

SO 7.9 15.1 8.2 16.0 8.2 13.8

Table 3.5. Descriptive statistics for leaf nitrogen content for top, middle, and 
bottom crown thirds in even- and multi-aged stands in central Oregon. Leaf 
nitrogen was content expressed in mols/m2. Different letters within a structural 
group denote significantly different means (ANOVA; P < 0.05).

Top Middle Bottom
Even-aged Mum-aged Even-aged Mum-aged Even-aged Multi-aged

n 12 18 9 18 12 18
Min. N 91.7 75.2 81.4 80.8 73.5 75.0
Max. N 107.2 116.1 95.8 125.2 97.0 124.2
M ea n N 99.6* 96.8 89.6b 96.8 81.8° 90.7

SD 5.9 13.0 3.7 12.7 6.8 14.8

even-aged stands in western Montana (ANOVA; P < 0.01). In central Oregon it 

decreased significantly from top to bottom thirds in the even-aged stands (ANOVA, P < 

0.05). The mean leaf nitrogen content at the top crown third was higher in even-aged 

stands than multi-aged stands. The nitrogen content decreased about 11% between top 

and bottom in even-aged stands, whereas in multi-aged stands it decreased by 7%.
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3.4.10. Leaf Nitrogen and Needle age

The mean leaf nitrogen content was higher for two-year-old needles (Age 2) in 

both even and multi-aged stands in western Montana (Table 3.6). Whereas three-year- 

old needles (Age 3) had the lowest amounts of nitrogen among all ages. In central 

Oregon, three-year-old needles from even-aged stands had the highest leaf nitrogen, 

whereas for multi-aged stands, leaf nitrogen content decreased as age increased (Table 

3.7). However, in both locations, the means were not significantly different between the 

age groups (P = 0.05) in both structures, indicating that all ages had relatively similar leaf 

nitrogen content.

Table 3.6. Descriptive statistics for leaf nitrogen content for three needle age classes 
(Age 1, Age 2, and Age 3) in even- and multi-aged stands in western Montana. Leaf 
nitrogen content was expressed in mols/m2. The means were not significantly 
different between age groups in both even- and multi-aged stands (ANOVA; P > 
0.05).

Age1 Age 2 Age 3
Even-aged i Multi-aged Even-aged MuKi-aged Even-aged Multi-aged

n 18 27 17 27 18 27
Min. N 72.3 62.0 75.4 63.3 62.4 56.1
Max. N 98.8 127.5 94.7 119.0 103.0 106.9
M eanN 83.9 85.6 87.5 85.5 81.5 79.6

SD 7.2 14.5 6.0 15.3 11.9 15.0
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Figure 3.7. Relationship between crown height and leaf nitrogen content (area basis) for 
trees both in even- and multi-aged stands in A: western Montana, B: central Oregon.
•  Even-aged o Multi-aged.
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Table 3.7. Descriptive statistics for leaf nitrogen content for three needle age classes 
(Age 1, Age 2, and Age 3) in even- and multi-aged stands in central Oregon. Leaf 
nitrogen content was expressed in mols/m2. The means were not significantly 
different between age groups in even- and multi-aged stands (ANOVA; P > 0.05).

Ag© 1 , Age 2 , Ag<8 3
Even-aged Mortgaged Even-aged Muftt-aged Even-aged Multi-aged

n 11 18 11 18 11 18
Min.N 73.5 75.0 77.3 78.5 74.8 75.2
Max. M 107.2 115.2 105.3 125.2 107.1 119.5
Mean ff 90.0 96.7 89.6 95.0 91.6 92.6

SO 9.3 12.7 9.4 14.9 10.7 13.6

3.4.11. Leaf Nitrogen and Crown height

A positive linear relationship between crown height and leaf nitrogen content was 

evident from all trees in western Montana (Figure 3.7A) and central Oregon (Figure 

3.7B). The simple linear regression model to predict leaf nitrogen content at various 

crown heights in western Montana was similar (R2 = 0.39, SEE = 9.6) to central Oregon 

(R2 = 0.44, SEE = 9.2) in terms of R2 and SEE. The predictive power of the overall 

models in terms of R2 was lower due to poor correlation between crown heights and leaf 

nitrogen, in even-aged stands than in multi-aged stands. Separate models for multi-aged 

stands to predict leaf nitrogen content from SLA had higher predictive power than overall 

models in both locations. For western Montana and central Oregon the R2 and SEE for 

the multi-aged stands were 0.44,10.6 and 0.56, 8.9, respectively.
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3.4.12. Leaf Nitrogen and SLA

A negative linear relationship was observed between SLA and leaf nitrogen (area 

basis) for all trees under both structures. Simple linear regression model had lower 

predictive power (R2̂  0.38, SEE = 9.6) in western Montana (Figure 3.8A) than in central 

Oregon (R2 = 0.57, SEE = 8.0; Figure 3.8B). A separate model for multi-aged stands 

had higher R2 compared to the overall models in both locations (western Montana: R2 = 

0.46, SEE = 10.4 and central Oregon R2 = 0.58, SEE = 8.7). Poor relationship between 

SLA and leaf nitrogen content resulted in low coefficient o f determination (R2) for even- 

aged stands.

The stepwise procedure to develop multiple regression models to predict leaf 

nitrogen from SLA, crown height, stand structure, total stand height, live crown height, 

crown sections, and leaf age, identified SLA and leaf age as the independent variables in 

western Montana (Table 3.8). In central Oregon, models with independent variables like 

SLA, leaf age, crown length (m), and total height (m) resulted in the best predictive 

model for all structures as well as for individual structures.
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Table 3.8. Multiple regression models for predicting leaf nitrogen content (mols/mz) 
from different independent variables for even-, multi-aged, and for all structures. 
MT = western Montana, OR = central Oregon, ALL = both structures combined 
MA = multi-aged, EA = even-aged, CLM = crown length (m), THM = total height 
(m).

Location ST N(mols/m2) = R2 SEE n
MT ALL 173.20-5.46* AGE-0.87*SLA 0.50 8.6 129

MT MA 175.53-5.61 * AGE-0.90*SLA 0.55 9.5 76

MT EA 162.67-4.82* AGE-0.75*SLA 0.32 13 53

OR ALL 188.87-6.55* AGE-0.93*SLA-1.5*CLM+1.0*THM 0.72 6.5 87

OR MA 170.53-5.83*AGE-0.75*SLA-2.8*CLM+2.0*THM 0.71 7.3 54

OR EA 220.25-6.14* AGE-0.92*SLA-6.7*CLM+1.9*THM 0.81 4.2 33

3.4.13. SLA and Volume Increment

A linear negative relationship between annual volume increment and mean tree 

SLA was observed for all trees (Figure 3.9) in both locations. The relationship was 

stronger in multi-aged stands (Figure 3.10). For all trees, the model predicted 38% of the 

variation in volume increment (transformed to natural logarithm) from their mean tree 

SLA (R2 = 38%, SEE = 3 cm3). In multi-aged stands, the model had relatively a higher 

predictive power (R2 = 53%, SEE = 2 cm3) than even-aged stands. The lower R2 of the 

overall model was due to poor relationship between SLA and volume increment in even- 

aged stands.
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3.5. DISCUSSION

The lowest SLA for top crown thirds in both even- and multi-aged stands is due to 

higher interception of unlimited solar radiation compared to other part of the crown. 

Increasing SLA as crown height decreases (from top to bottom crown thirds) indicates 

that the incident radiation at the top of the canopy gets attenuated while passing down 

through the canopy layers. Comparatively lower radiation at bottom thirds resulted in 

higher SLA than top thirds in both structures. Hager and Sterba (1985) also reported 

variations in SLA within a crown at various heights due to different expositions to light 

in the canopy. Ellsworth and Reich (1993) reported that LMA (Leaf Mass Area), which 

is the opposite of SLA, decreased continuously by over twofold from upper to lower 

canopies in closed deciduous forests of sugar maple (Acer saccharum) in southwestern 

Wisconsin, USA. They also reported that light attenuation in the forest occurred 

primarily in the upper and middle portions of the canopy. This explains the highest SLA 

for bottom crown thirds in even- and multi-aged stands. In multi-aged stands, because of 

higher live crown ratios, the trees carry longer live-crowns compared to the even-aged 

stands. The mean SLA for the bottom third in multi-aged stands was lower than even- 

aged stands in both locations despite shorter live crowns in even-aged stands. This could 

be due to relatively similar radiation loads even at the bottom thirds of the crowns in 

multi-aged stands. This is also supported by higher PAR ratios at breast height in the 

muiti-aged compared to the even-aged stands. The lower canopy extinction coefficient in 

multi-aged stands also confirms these findings, indicating higher light environments 

beneath the live crowns in multi-aged stands. This could be due to: 1) The multi-aged
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stands have relatively lower LAI; and 2) Lower stand density in terms of stems per ha 

resulted in larger canopy gaps. Generally, the crown thirds in multi-aged stands were 

larger compared to even-aged stands. The similarity between the top and middle third 

SLA indicated that the trees were not mutually shaded even at their mid-crown positions. 

Comparatively lower PAR ratios in even-aged stands is due to canopy structure and LAI 

distribution within a canopy.

In western Montana, the mean SLA for crown thirds in both even- and multi-aged 

structures was comparatively higher than in central Oregon due to differences in climate 

and soil between the study regions. Compared to western Montana, 50 % o f the sampled 

trees in central Oregon were on relatively less arid sites (aridity index < 0.20). It has 

been reported that higher soil moisture availability increases leaf thickness, resulting in 

lower SLA (Pierce and Running 1994; Jose and Gillespie 1996).

Trees with shorter crown lengths are assumed to have less variation in SLA 

between top and bottom crown thirds. But a larger range in SLA between the top and the 

bottom thirds in even-aged stands compared to multi-aged stands indicates significantly 

lower light environments at the bottom thirds. This could be due to increased mutual 

shading in the canopy in the even-aged structures. A larger range in SLA despite shorter 

live crown ratios in even-aged stands also indicates higher competition for available light 

and moisture compared to multi-aged structures. Increased competition for these growth 

factors resulted in thinner leaves.

In western Montana, the mean SLA for top thirds was slightly lower in even-aged 

stands than in multi-aged stands, indicating maximum light interception at the top layers
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of the even-aged canopy. The continuous canopy layer from crowns o f similar height 

trees may function like a uniform (spongy) leaf surface, and the percentage of light 

absorbed might be relatively higher compared to the discontinuous canopies in multi

aged stands. Generally, most of the direct incident radiation gets absorbed by the 

continuous canopy, and some gets reflected back due to differences in needle morphology 

and orientation (Jones 1992). Due to less vertical stratification of crowns, the trees might 

mutually shade at the middle and bottom thirds of the crowns in even-aged structures, 

resulting in thinner leaves (higher SLA). The multi-aged stands characterized by wider 

distribution of crowns in the vertical dimension, and larger canopy gaps might result in 

higher iiradiance across the crowns compared to even-aged structures. This could also be 

the reason for comparatively lower SLA for bottom thirds in multi-aged than in even- 

aged stands.

The linear negative relationship between mean SLA and crown height may exist 

only in stands where trees are competing for available light. In open grown stands, due to 

unlimited radiation environments, the relationship may not be as strong as in closed 

stands. The poor relationship between mean tree SLA and crown heights in even-aged 

stands may be attributed to continuous canopy layers in even-aged structures, 

considerably reducing the available light beneath the top layer. A large variation in SLA 

in even-aged stands at similar crown heights could also result in poor predictive 

relationship.

The strata level comparison also indicates that generally, the upper strata tend to 

have the lowest crown SLA, and the bottom strata the highest. In multi-aged stands, a
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higher mean SLA for trees in the lower canopy strata (MA-3 and MA-4) compared to 

those from upper strata also indicates lower production potentials. The lower growth 

efficiency (production potential) for the trees in the lower canopy strata also supports the 

findings by O’Hara (1996) that the youngest cohorts are the least efficient in single 

species multi-cohort stands.

The lowest SLA for Age 2 needles in western Montana indicates that two-year-old 

needles in ponderosa pine are physiologically more productive (photosynthetically 

efficient) compared to other needle age groups. A comparative study on the effect of 

needle age on photosynthesis in ponderosa pine by Helms (1970) found that two-year-old 

needles was more photosynthetically efficient than current, three-year-old or four-year- 

old needles. The lowest SLA in central Oregon was for three-year-old needles (Age 3), 

which may be due to differences in climate and soil conditions compared to western 

Montana. In comparatively drier climates of western Montana, ponderosa pine trees tend 

to retain a lower number of leaf whorls (ages) than in central Oregon. Multi-aged 

structures had higher LCP in both study locations. Higher tree leaf area (due to higher 

LCP) in multi-aged stands could also result in a higher number of two-year-old needles 

per tree. This could also contribute to higher photosynthesis in multi-aged stands 

compared to even-aged stands. In even-aged stands, due to closed canopies and relatively 

shorter crown lengths, the trees may be competing more for incident radiation. Whereas 

in multi-aged stands the competition for available light at various crown positions may be 

lower due to longer crowns and higher vertical arrangements of foliage. This illustrates 

that three dimensional structural variation in even and multi-aged stands are important
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determinants of distribution of SLA within tree crowns. Therefore, the distribution and 

the range in mean tree SLA could be used as a strong variable to predict the production 

potentials o f crowns in different stand structures.

A higher level of leaf nitrogen content at the top crown third also indicates higher 

production potentials, because leaf nitrogen content is a strong correlate of photosynthetic 

capacity in C3 plants ( Field and Mooney 1986; Evans 1989). The leaf nitrogen content 

influences the availability of N-based enzymes in photosynthetic activities in leaves.

The general trend in decreasing leaf nitrogen (area basis) from top to bottom thirds was 

similar to that in SLA. These results are very similar, to those reported by Ellsworth and 

Reich (1993), and Hollinger (1989). A smaller range in leaf nitrogen content between top 

and bottom crown thirds in multi-aged trees also indicates a similar production efficiency 

for all thirds of a crown. Compared to multi-aged stands, trees in even-aged stands might 

be translocating maximum leaf nitrogen to the top thirds to maximize net photosynthesis. 

Presence of higher radiation loads and ieaf nitrogen contents might increase the 

photosynthesis in the top third of crowns compared to other thirds in even-aged stands. 

This is also supported by lower SLAs for top thirds in even-aged stands. Higher leaf 

nitrogen content as well as lower SLAs for two-year-old needles in western Montana 

suggests that two-year-old needles are the most productive needle age group.

Leaf nitrogen content and crown heights were more related in multi-aged stands 

than in even-aged. The negative linear relationship between SLA and leaf nitrogen 

content (area based) indicates higher leaf nitrogen for lower SLA. This relationship was 

not very strong in even-aged stands, where SLA varied significantly from top to bottom
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thirds. Multi-aged stands characterized by lower SLAs and higher leaf nitrogen contents 

could have higher tree level photosynthetic capacity compared to even-aged stands. 

Ellsworth and Reich (1993) also reported a positive linear relationship between LMA 

and leaf nitrogen contents. The poor relationship between SLA and leaf nitrogen in even- 

aged stands indicates that a change in SLA (due to difference in light availability) may 

not be proportionally affecting the leaf nitrogen content in the middle and bottom crown 

thirds. A moderate relationship between SLA and volume increments for trees from all 

structures indicate that the variations in volume increments may not be exclusively 

predicted from a change in mean tree SLA due to the poor relationship between SLA and 

volume increments in even-aged stands. However, a stronger relationship between these 

variables in multi-aged stands suggests that the volume increments can be better predicted 

in multi-aged stands than in even-aged stands due to lower variations in tree mean SLA.

3.6. CONCLUSIONS

The results of the study suggest that the distribution of specific leaf area and leaf 

nitrogen content within a tree crown is closely related to the canopy light environments. 

LAI and stand structure are two major factors governing light distribution inside a 

canopy. Trees in multi-aged stand structures have lower SLA at the top, middle, and

the SLA for crown thirds tends to differ significantly due to high variability in canopy 

light levels. Higher vertical stratification of live crowns and a relatively low stand LAI, 

in multi-aged stands increases the PAR beneath the canopy. Unlimited availability of soil

bottom thirds due to similar radiation environments. In even-aged stand structure,
v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96
moisture and nutrients in stands with structures which permit more uniform light levels 

could result in higher leaf and tree productivity. Significantly lower SLA and higher leaf 

nitrogen content in two-year-old needles in ponderosa pine indicates that they are more 

productive compared to other needle age groups. Therefore, stand structures with higher 

proportion of two-year-old needles could also result in higher tree and stand productivity. 

The closed canopies of even-aged stands are characterized by trees with comparatively 

shorter live crowns due to higher competition for incident radiation than in multi-aged 

stands. Whereas higher vertical stratifications in multi-aged structures provide increased 

light availability and higher production potentials, indicated by low SLAs.

Higher photosynthetic efficiency reported in needles with low SLA suggests that 

SLA could be used an index for foliage production efficiency. Higher foliage and tree- 

level production efficiencies indicated by low SLA is not necessarily an age factor, rather 

an age related structure. By manipulating the crown structures for higher light 

interception at different canopy layers, the gross primary production (amount of 

photosynthate produced) per unit leaf area can be increased in stands with different 

structures.
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Chapter 4

Water Stress and Carbon Isotope Discrimination in Even- and 
Multi-aged Ponderosa pine Stand Structures

ABSTRACT

Plant water status is one of the major factors controlling leaf level gas exchange in 
conifers. Moisture limitation could result in significantly lower leaf, tree, and stand 
productivity. The influence of stand structure on leaf-water potential was examined on 
ponderosa pine trees growing in the even- and multi-aged structures. Pre-dawn leaf water 
potential was measured on a few selected trees under both structures using the pressure 
chamber technique during the growing season of 1995 and 1996. Long-term water-use 
efficiency of the needles was estimated from the stable carbon isotope discrimination 
analysis. The even-aged stands were under relatively higher water stress than the 
adjacent multi-aged stands during the earlier part of the growing season. Whereas during 
the later part, the water stress in the even-aged stands was significantly higher compared 
to the multi-aged stands (P < 0.05). Trees from the even-aged stand structures 
discriminate significantly less compared to those from the multi-aged structures. The top 
thirds of the crown in the even-aged stands (17.58 Vc) had the lowest discrimination, 
suggesting the top portions of crowns were more water-use efficient. Comparatively 
higher water stress in the even-aged stands due to higher leaf area indices might induce a 
selective pressure for high water-use efficient crowns in the even-aged stands than the 
adjacent multi-aged stands. Prolonged periods of water stress, lower than -1.6 MPa 
during the growing season could Tesult in low tree and stand productivity in the even- 
aged structures despite its higher water-use efficiency. Despite the difference in stocking 
level, diverse crown arrangement and structure-related ecophysiolgical advantages could 
also be a possible reason for lower water stress in the multi-aged stands compared to the 
even-aged stands growing on similar site conditions.

Keywords : ponderosa pine, pre-dawn leaf water potential, carbon isotope discrimination, 
water-use efficiency, stand structure, leaf area index.
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4.1. INTRODUCTION

Ponderosa pine {Pinus ponderosa) has been considered a drought resistant species 

due to its ability to grow in drier climates. The drought resistance is partly attributed to 

its desiccation resistance and partly from water retention (Bassman 1988). Ponderosa 

pine stores considerable amounts of water in both heartwood and sapwood (Parker 1954). 

The presence of similar amounts of water in heartwood and sapwood in ponderosa pine 

gives an advantage in water storage compared to many other gymnosperms (Parker 1969. 

Stewart 1967). Loupshinsky (1975) reported that the stomates of ponderosa pine close 

completely in the dark compared to other western conifers like Douglas-fir. which 

remained open and transpiring about 26% to 42% of day time values. The maximum leaf 

conductance reported in ponderosa pine was 0.32 cm s-1 (Komer et al. 1979). and showed 

no difference between needle age classes (Running 1976).

The water potential decreases by late summer in many ponderosa pine habitat 

types in the northern Rocky Mountains due to longer periods with fewer summer 

precipitations. During the periods of high water stress, stand density and structure 

become an important factor affecting photosynthesis and productivity. Donner and 

Running (1986) reported significantly higher leaf water potential in the thinned lodgepole 

pine stands than in the unthinned controls in Montana. The ecosystem simulation model. 

DAYTRANS/PSN produced 21% greater seasonal photosynthesis due to higher plant 

water potential and additional solar radiation available in the thinned stands. In another 

study in ponderosa pine in the Black Hills of South Dakota, Schmid et al. (1991) reported 

no significant differences in water potential among different levels of stand density.
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During late summer in northwestern Montana, Petersen and Maxwell (1987) found 

decreasing soil water content in relation to the total foliage of herbs and shrubs in the 

ponderosa pine stands. Pothier and Margolis (1990) reported higher pre-dawn water 

potentials in the thinned stands of balsam fir and paper birch than the unthinned controls. 

Many thinning studies have reported higher water potential in thinned stands due to 

reduced leaf area and increased canopy interception for snow and rainfall than unthinned 

controls (Donner and Running 1986).

Generally, even-aged stands are maintained to fully occupy the site potential 

growing space, whereas the merchantable portions of uneven-aged stands are maintained 

at less than fiill occupancy for regeneration (Baker et al. 1996). This could sometimes 

result in comparatively higher tree density in even-aged stands than multi-aged stands. 

Most of the natural even-aged stands sampled in western Montana and central Oregon 

were developed on multi-aged stands after past selection cuttings. The stands established 

after a major disturbance regime support many small to medium size even-aged trees. 

Whether from higher stand density or from full site occupancy by fewer trees, the even- 

aged stands may experience higher water stress relatively earlier in the growing season 

than the multi-aged stands, especially in water-limited environments of the northern 

Rockies. Comparatively less stratification of crowns in even-aged stands could result in 

higher competition for many of the site resources like: light, water, and nutrients than in 

multi-aged stands. The difference in the arrangement of tree crowns in even-aged and 

multi-aged stand structures could modify the micro-environments inside the canopies, 

which could also result in different canopy moisture demands and gas exchange rates.
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Ponderosa pine has been well studied in terms of many physiological attributes 

relating to its drought resistance (Bassman 1988). Most of the studies were focused at 

tree-level physiology, growth, and establishments. Influence of stand structure on various 

physiological attributes has not been studied in the past. In this chapter, the dynamics of 

water stress and the long term water-use efficiencies on trees in even-aged and multi-aged 

stand structures were examined: 1) to determine whether trees in both stand structures 

could continue normal rates of gas exchange throughout the growing season in the water 

limited environments of the northern Rockies; and 2) to examine the long-term water-use 

efficiency relationships of trees in even-aged and multi-aged stand structures using 

carbon isotope discrimination analysis.

4.2. BACKGROUND

4.2.1. Water-Related Physiology in Ponderosa Pine

Physiological adjustments in water-relations and photosynthesis determine the 

relative drought resistance in ponderosa pine (Bassman 1988). The drought resistance in 

a species is attributed to its morphological and physiological adaptations. The rooting 

depth and the amount of rhizosphere are other important factors related to plant moisture 

status. In addition to great rooting depths in ponderosa pine, presence of numerous sinker 

roots (Parker 1969) also contribute to water absorption during droughts.

The stomata controls the movement of water from plants to the atmosphere. The 

rate of water loss directly depends on stomatal conductance. A gradient in absolute 

humidity between the needles and the air immediately surrounding the needles is a major
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factor controlling the stomatal conductance (Running 1976; Kaufmann 1982; Jones 

1992). The lower the gradient, the higher the stomatal conductance. The total leaf 

conductance is dependent on xylem pressure potential, soil water status, atmospheric 

humidity and the air and leaf temperatures (Jones 1992).

The rates of stomatal conductance and transpiration are different for species, and 

primarily depend on soil and plant water status. Plant moisture stress is assumed to 

represent an integration of soil and internal plant water status (Running 1976). 

Transpiration rates in Scots pine (Pinus sylvestris) decreased considerably with an 

increase in soil moisture tension of one to two bars (Rutter and Sands 1958; Jarvis and 

Jarvis 1963). In ponderosa pine, Lopushinsky and Klock (1974) reported a reduction in 

transpiration (% of maximum) of 38, 12 and 2.5 for decreased soil water potential o f -0.5, 

-1.0, -2.0 MPa, respectively. Lopushinsky (1969) observed that stomates of ponderosa 

pine close at a threshold xylem pressure potential of -1.65 MPa. Wambolt (1973) 

reported a high correlation between leaf xylem pressure potential and stand density, 

elevation, percentage sand, temperature, relative humidity and vapor pressure deficit in 

ponderosa pine stands. In the planted ponderosa pine seedlings, Baldwin and Barney 

(1976) reported a high correlation between leaf water potential and air temperature, vapor 

pressure deficit, soil moisture, and aspect.
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Figure 4.1. Relative changes in photosynthesis of ponderosa pine in response to 
decreasing soil water potential (redrawn from Cleary 1971).
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Many studies have reported the direct relationship between leaf water status and 

rate of photosynthesis. Puritch (1973) reported a decline in net photosynthesis in four 

Abies species native to Canada due to water stress. In ponderosa pine, Cleary (1971) 

reported rapid decline in photosynthetic rates with decreases in xylem pressure potentials 

beyond -1.5 MPa (Figure 4.1).

4.2.2. Carbon Isotope Discrimination and Water-Use Efficiency

Leaf-level instantaneous water-use efficiency (WUE) has been defined as ratio of 

photosynthetic carbon produced to transpirational water loss, and the long-term WUE is 

the total plant dry matter produced to total amount of water used over the same period. In 

simpler terms, WUE is the ratio of assimilation rate to transpiration rate (A/E). In water 

limited environments, plants are thought to be under selective pressure for higher water- 

use efficiency (Cowan 1982; Passioura 1982; Donovan and Ehleringer 1994). WUE is 

considered an important factor of drought tolerance (Sun et al. 1996), which is directly 

related to leaf conductance (g).

Instantaneous measurements of WUE vary within and between plant species over 

time (Cowan 1988). Long-term water use efficiency estimation from stable carbon 

isotope ratios in plant organic matter has been a relatively recent approach (Farquhar et 

al. 1982; Farquhar and Richards 1984; Hubick and Farquhar 1987; Johnson et al. 1990; 

Knight et al. 1994; Sun et al. 1996). In ponderosa pine, Monson and Grant (1989) 

suggested that ponderosa pine has acquired improved water-use efficiencies and lower 

transpiration rates at the expense of reduced maximum photosynthesis rates to adapt in
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drier habitat types. Sun et al. (1996) reported a positive correlation between carbon 

isotope ratio (613C) and long term water-use efficiency and productivity in white spruce 

(Picea glauca (Moench) Voss) seedlings. A strong negative correlation between carbon 

isotope discrimination (A) and traditional measures of WUE was reported by Farquhar et 

al. (1989 reviewed); and Zhang and Marshall (1994).

It has been found that plants with C3 photosynthetic pathway discriminate against 

the stable isotope i3C as they fix C 02 (Zhang and Marshall 1994). Farquhar et al. (1982, 

1989) reported a linear relationship between A and the ratio of intercellular C02 (C,) to 

atmospheric C02 (C J  concentration. Since the carbon incorporated in the needles is the 

integrated assimilation over a period of time, the A provides the long-term average 

estimates of C/Ca , and therefore is a long-term indicator of plant metabolism. Plants 

with higher capacity for C02 assimilation by their mesophyll tissue could result in 

decreased amounts of C02 in the intercellular air spaces of leaves (C,). This could also be 

considered as high C 02 assimilation per unit of water transpired or high water-use 

efficiency (WUE). Therefore, a low C/Ca ratio indicates high WUE and lower 

discrimination.

Genetic variation and population differences in terms of WUE using carbon 

isotope discrimination were examined in many native conifers of the north-central 

Rockies (Marshall and Zhang 1994; Zhang et al. 1993; Zhang and Marshall 1994). But 

the relationship between carbon isotope discrimination (A), WUE and dry matter 

production under different stand structures has not been examined in the past.
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43 . METHODS 

43.1. Study Area

The study was primarily conducted in western Montana, but a one-time pre-dawn 

leaf water status was measured during July 1996 in central Oregon. Even- and multi

aged (stands with two or more age classes) ponderosa pine stands selected for stand-level 

productivity comparison (Chapters 2 and 3) was used for water potential measurements in 

both locations. Five pairs of even- and multi-aged plots were sampled in western 

Montana, whereas four pairs in central Oregon. The site characteristics are presented in 

Table 4.1. The long-term climatic data for the study sites were given in Table 2.2.

4.3.2. Leaf W ater Potential

In western Montana, a total of Sve trees from each multi-aged stand belonging to 

different crown strata/cohort classes were selected for pre-dawn leaf water potential 

measurements. Three representative trees were only selected from even-aged stands due 

to less variation in the crown strata. Trees belonging to codominant crown class were 

only selected from both structures to reduce the influence of tree vigor in leaf water 

status. The selected trees were measured for their diameter (cm) at breast height (dbh,

1.37 m), total height (m), height to the base of live crown (m), using standard forest 

inventory equipments.
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Table 4.1. General stand characteristics of the even- and multi-aged plots sampled 
in western Montana and central Oregon. Habitat types for western Montana were 
identified as per Pfister et aL (1977) and for central Oregon as per USD A Forest 
Service for each plant association and published in guides for sampling area by 
Hopkins (1979a, 1979b,) and Volland (1988).

Location Plot Habitat type Elev(m) Aspect SIope% LAI TPH BA(m2/ha)
Sweeny Creek Rd, MT IE PSME/FHD 1105 E 2 4.7 580 21.0

Sweeny Creek Rd. MT 1M PSME/FEID 1106 E 3 6.3 260 31.6

Tarkio. MT 2E PSME/CAGE 855 S 2 7 3 570 34.5

Tarkio. MT 2M PS ME/CAGE 855 S 2 5.6 340 28.5

Ninemile Rd, MT 3E PIPO/FEID-FESC 975 SE 4 6.6 1830 32.7

Ninemile Rd. MT 3M PIPO/FEID-FESC 975 SE 6 5.9 890 30.0

Lubrecht. MT 4E PSME/SYAL-SYAL 1230 S 30 7.8 1140 37 2

Lubrecht. MT 4M PSME/VACA 1256 SE 11 5.6 700 22.9

Blue Mountain, MT 5E PIPO/FEID-FESC 1130 S 20 7.7 610 31.5

Blue Mountain. MT 5M PSME/CARU-AGSP 1145 SE 28 7.7 500 33.1

Bend-Ft Rock. OR 10IM PIPO/PUTR-ARPA/STOC 1329 E 5 9.7 540 34.0

Bend-Ft. Rock. OR 101E PIPO/PUTR-ARPA/STOC 1335 E 10 TO 1100 50.6

Chemuit, OR I03M PIPO/PUTR/STOC 1533 S 8 7.9 420 40.4

Chemult, OR I03E PIPO/PUTR/STOC 1539 S 12 10.1 800 50.9

Fremont, OR 104M PIPO/PUTR/FEID 1475 SE 2 4.6 510 24.9

Fremont, OR 104E PIPO/PUTR/FEID 1475 SE 3 5.8 750 32J

Silver Lake Rd, OR 105M PIPO/PUTR-ARTR/SIHY 1396 N 3 2.6 160 17.4

Silver Lake Rd. OR 105E PIPO/PUTR-ARTR/SIHY 1417 N 4 5.5 350 30.4

Silver Lake Rd.OR 105EO PIPO/PUTR-ARTR/SIHY 1399 N 2 5.9 160 32.9

Key to species abbrevations: PSME = Pseudotsuga meraiesit var. glauca; FEID = Festuca idahoensis; CAGE = Carex geyeri\ PIPO = 

Pima ponderosa; FESC = Festuca scabrella; SYAL = Symphoricarpos albus\ VACA = Vaccinium caespitosum; CARU =

Calamagrostis rubescens; AGSP = Agropyron spicatum: PUTR = Purshia tridentata; ARPA = Arctostaphylos patula', STOC = Stipa 

occidentalism ARTR = Artemisia tridentata var. tridentata. SIHY = Sitanion hystrixr, ARAR = Artemisia arbuscula. Plot symbols E 

= Even-aged, M = Multi-aged. EO = Even-aged Old-growth.
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Pre-dawn leaf water potential measurements were taken at monthly intervals 

during the last week of June, July, August and September 1995 in western Montana. In 

central Oregon, one time measurement was taken from the selected sites during the middle 

of July 1996. In western Montana, three o f the study sites previously sampled during 

1995 were revisited during the last week in July and August 1996 to confirm the pattern in 

pre-dawn water potential measurements between the structures. During each month, the 

measurements from all plots were completed within a period of three days to avoid the 

variations in pre-dawn water potential due to changes in time and weather conditions.

A sample twig from the middle of the selected tree’s crown was removed using a 

shot gun. Generally a well exposed/extended twig was chosen to determine the m aximum  

level of water stress. A fully intact needle was randomly selected from the twig for pre

dawn measurement. A pressure chamber was used for determination of leaf water 

potential using standard techniques (Ritchie and Hinckley 1975). In case of large 

difference in the pre-dawn water potential measured in two needle samples, a third sample 

was used to confirm the measurements.

4.33. Carbon Isotope Discrimination

The needle samples from western Montana were only used for carbon isotope 

analysis. Plots with different stand densities and mean mid summer pre-dawn water 

potentials were selected for sample collection. One-year-old needles from the top and 

bottom crown thirds were used for the isotope ratio analysis. A pilot study using the 

needle samples from top, middle and bottom crown thirds of trees from both structures
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indicated a significant difference in carbon isotope ratios between top and bottom thirds 

(ANOVA; P = 0.05) but the means between top and middle or middle and bottom were 

not significantly different in both structures. A  total of 48 samples from 24 trees were 

analyzed for the carbon isotope ratios.

The needles without their fascicles were oven-dried at 70° C for 48 hours and 

ground in a Wiley Mill to a size 40 mesh. The samples were analyzed for the relative 

abundance of ,3C and ,2C using an isotope ratioing mass spectrometer at the Stable Isotope 

Ratio Facility for Environmental Research at the University of Utah, Salt Lake City.

Stable carbon isotope ratio (613 C) of the plant sample was expressed as the ratio relative 

to PeeDee Belemnite standard (Craig 1957). The absolute isotopic composition of the 

plant sample was measured by the mass spectrometer as the deviation of the isotopic 

composition of the plant material from the standard (PeeDee Belemnite).

(Eq. 4.1) 6p C /J  = ( R p - R , ) /  R,*1000

= (Rp / R, - 1) *1000

where 6p is the carbon isotopic ratio of the plant material, Rp is the molar abundance ratio 

(l3C/l2C) of the plant material, R, is the molar abundance ratio (I3C/12C) of the standard.

The carbon isotope discrimination (A, °/OQ) in the needle samples was calculated 

using the following equation.

(Eq. 4.2) A = 6 1-6p/l+6p
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where 6, is the carbon isotopic ratio of air (assumed to be -8 °/O0 ).

The ratio of intercellular (C,) to atmospheric (CJ concentration of C 02 in the 

needle samples were calculated from the quantitative relationship proposed by Farquhar et 

al. (1982).

(Eq. 43) A = a + (b - a) C, /  C,

where a (= 4.4°/^) is the fractionation occurring due to diffusion in air and b (= 27°/00) is 

the net fractionation caused by ribulose- 1,5-bisphosphate carboxylase oxygenase 

(Rubisco).

4.3.4. Data Analysis

The mean pre-dawn water potential for the even- and multi-aged stands for each 

site as well as for the different months was compared using paired t-tests at a = 0.05 

significance level. The carbon isotope ratio and discrimination (A) were also compared 

using t-tests. Significance of stand structure and crown position to carbon isotope 

discrimination were examined using a two-way analysis of variance (P = 0.05). The 

stepwise procedure in multiple regression technique was used to develop models to predict 

carbon isotope discrimination from the possible independent variables. A significance 

level of P = 0.05 was used as the criteria for selecting independent variables for model 

building. Pearson’s correlation method was used to detect the relationship between SLA 

and carbon stable isotope discrimination (A) for both stand structures.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



115
4.4. RESULTS

4.4.1. Pre-Dawn Leaf Water Potential

Pre-dawn leaf water potentials for the different months o f the growing season 

during 1995 indicated that water stress was low during the last week of June in both even- 

and multi-aged stands. The overall mean values for the even- and multi-aged stands in 

western Montana were -0.42 and -0.49 MPa, respectively (Figure 4.2). Water stress was 

significantly higher in the even-aged stands compared to the multi-aged stand (t-tests, P < 

0.05) at the Ninemile study site in western Montana (Table 4.2). The even-aged stand at 

the Lubrecht site had the highest basal area, leaf area (Table 4.1) and water stress 

compared to other stands. However, the multi-aged stand also had similar water potential 

despite its lower LAI and stand density compared to the even-aged.

The water potentials in most of the study sites were about -1.00 MPa during the 

last week in July. The even- and multi-aged stands had significantly different water 

potentials. The lowest water potential (the highest stress) was measured at the Blue 

Mountain study site. The mean July water potential for the even-aged stand was -1.83 

MPa and for the multi-aged stand -1.67 MPa.
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Table 4.2. Mean pre-dawn leaf water potentials daring Jane, July, August, and 
September 1995 for the even- and multi-aged stands at various locations in western 
Montana. The water potential is expressed in negative Mega Pascals (-MPa). All 
monthly pre-dawn water potentials between the structural types at each location are 
significantly different except for those indicated with the letter ‘a’ (t-tests, a = 0.05).

LOCATION STRUCTURE JUNE 95 JULY 95 AUGUST 95 SEPTEMBER 95

Sweeney
Creek

Even-aged 0.39a 1.07 1.49 0.95a

Multi-aged 0.51a 0.96 1.29 0.91a

Tarkio
Even-aged 0.45a 1.23 1.66 0.87a

Multi-aged 0.41a 1.09 1.36 0.91a

Ninemile
Even-aged 0.69 1.54 1.65 1.22a

Multi-aged 0.44 1.42 1.37 1.07a

Lubrecht
Even-aged 0.73a 1.12 1.66 0.98

Multi-aged 0.69a 0.85 1.35 0.65

Blue Mtns.
Even-aged 0.34a 1.83 1.72 0.85a

Multi-aged 0.29a 1.67 1.44 0.82a
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According to Lopushinsky (1969) and Cleary (1971) the ponderosa pine trees in both 

structures might have completely stopped the gas exchange due to stomatal closures. The 

stand level July average for the even- aged (-1.36 MPa) structure was significantly higher 

compared to the multi-aged (-1.16 MPa) stands in western Montana (t-tests, P = 0.006).

The second sets of measurements taken from three study sites during July 1996 

had similar pattern in pre-dawn water potential for July 1995 (Figure 4.2, Table 43). The 

mean for the even- and multi-aged stands was -1.24 and -0.93 MPa, respectively. The 

even-aged stands had significantly higher water stress compared to the multi-aged stands 

(t-tests, P < 0.001).

During the last week in August 1995, 1996 the stands were at their peak in water 

stress in both structures. Similar to the trends in previous months, the even-aged stands 

had higher mean water stress compared to the multi-aged stands. The mean water 

potentials for 1995 and 1996 were -1.64 MPa, -1.36 MPa (t-tests, P < 0.001) and -1.62 

MPa, -1.17 MPa (t-tests, P < 0.001), respectively for the even-, multi-aged stands in 

western Montana.

The measurements taken during the late growing season (September) indicated 

comparatively lower water stress in both structures. The mean pre-dawn water potential 

for the even- and multi-aged stands was -0.96 MPa and -0.85 MPa, respectively (t tests, P 

= 0.015).
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Table 4 3 . Mean pre-dawn leaf water potential measurements during July, August 
1996 for even- and multi-aged stands at three locations in western Montana. The 
water potential is expressed in negative Mega Pascals (-MPa). All monthly pre-dawn 
water potentials between structural types at each location are significantly different 
except for those indicated with letter ‘a’ (t-tests, a  = 0.05).

LOCATION STRUCTURE JULY 96 
(-MPa)

AUGUST 96 
(-MPa)

Ninemile
Even-aged 1.22 1.72

Multi-aged 1.04 1.16

Lubrecht
Even-aged 1.13 1.50

Multi-aged 0.89 1.24

Blue Mountain
Even-aged 1.38 1.68

Multi-aged 0.88 1.09
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The overall comparison between the structures for all the sites indicated 

comparatively higher water stress in the even-aged stands than multi-aged stands. During 

July 1995, both even- and multi-aged stands in the Sweeny Creek study site had 

reasonably higher water potential compared to other sites in western Montana. Similar^  

during the last week in September 1995 both even- and multi-aged stands had 

approximately equal water potentials, except the stands at the Lubrecht site.

The pre-dawn leaf water potential measured dining the middle of July 1996 at the 

four sites in central Oregon indicated that the stands were not experiencing water stress 

compared to the sites in western Montana (Figure 43). The plot level averages for water 

potential in the even and multi-aged stands were not significantly different at a  = 0.05 

level (t-tests). The even-aged stand at the Chemult (Plots 103) study site had 

comparatively low water potentials than its corresponding multi-aged stand. However, 

there was a difference in slope between the even- and the multi-aged stands, which might 

have influenced in the soil water status in those study plots. The study site at the Fremont 

National Forest (Plot 104) had similar but the highest mean water potential (-0.50 MPa) 

among the other sites. The mean pre-dawn water potential for the even (-0.70 MPa) and 

multi-aged (-0.71 MPa) stands in central Oregon during July 1996 was substantially lower 

compared to the mean values in western Montana during both July 1995 and 1996.
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Figure 4.3. The mean value for pre-dawn leaf water potential measured during the middle 
of July 1996 in central Oregon in different study plots.
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4.4.2. Carbon Isotope Discrimination and WUE

The carbon isotope discrimination ratio analysis indicated that trees in the even- 

aged stands discriminate significantly less compared to the multi-aged stands at 95 percent 

confidence level (t-tests). The comparison between the top and bottom crown 

thirds indicated that in even-aged stands, the top thirds discriminate significantly lower 

than the bottom thirds (Table 4.4). Whereas in the multi-aged stands, the discrimination 

was also higher for the bottom thirds, but not significantly different than the top thirds.

The mean A values for the top and bottom thirds in the even-aged stands were 17.58 %o 

and 18.06 0/m, respectively. Whereas the mean for the multi-aged stands were 17. 9/ °/oo 

and 18.26 °/00 for the top and bottom thirds, respectively. The whole tree crown 

comparison in both structures indicated significantly higher discrimination in the multi

aged stands compared to the adjacent even-aged stands.
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Table 4.4. Mean carbon isotope discrimination (A) and Ci/Ca for top and bottom 
crown thirds in the even- and mnlti-aged ponderosa pine stands in western Montana. 
Means followed by different letters for a structure were significantly different (t-
tests).

Structure Crown Third n A (%o) Ci/Ca

Even-aged
Top 12 17.58a 0.58a

Bottom 12 18.06b 0.60b

Multi-aged
Top 12 17.97a 0.60a

Bottom 12 18.26a 0.61a

Even-aged Whole Crown 24 17.82a 0.59a

Multi-aged * Whole Crown 24 18.12b 0.61b
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Table 4.5. Two-way analysis of variance table for isotope discrimination of needles 
by stand structure (even- and multi-aged) and crown sections (top and bottom 
thirds) in western Montana during summer 1995.

Source of Variation df Sum of Mean- F-ratio Probability
Square Square

Stand Structure (SS) 1 1.033 1.033 5.303 0.026
Crown Section (CS) 1 1.733 1.733 8.900 0.005
SS*CS 1 0.114 0.114 0.586 0.448
Error 44 8.567 0.195

The results from two-way analysis of variance indicated that, at 0.05 level of 

significance, trees from both structures and their crown thirds significantly discriminate 

the carbon isotopes (Table 4.5). It was also found that the interaction between stand 

structure and crown thirds had no significant effect on discrimination.

Higher carbon isotope discrimination in the even-aged compared to multi-aged 

stand structures, indicated that the trees in the even-aged stands were more water-use 

efficient compared to the multi-aged stands. Lower discrimination for top thirds compared 

to bottom thirds also indicated that top thirds of the crowns were water-use efficient. 

Relatively higher discrimination for top and bottom thirds o f the crown in multi-aged 

stands than in even-aged stands also suggested that the amount of carbon produced per 

water transpired in the needles from top and bottom crown thirds in the multi-aged stands 

were comparatively lower than in even-aged stands.
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Figure 4.4. Mean and one standard error for the carbon isotope ratio for top and bottom 
crown thirds of even- and multi-aged stands in western Montana (n = 12).
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Pairwise comparison of similar crown thirds between even- and multi-aged 

structures indicated that the top thirds in the even-aged stands were s ignificantly higher 

water-use efficient compared to multi-aged stands. However, the water-use efficiency for 

bottom thirds in even- and multi-aged stands were not significantly different, even though 

the bottom thirds in the even-aged stands had slightly higher water-use efficiencies.

Comparatively higher C/C, ratios for the bottom thirds also indicates lower WUE 

than top thirds in both structures. The pattern was the same as indicated by A values 

(Table 4.4). The carbon isotope ratio in the needle sample also indicated higher mean 

values for bottom thirds in both structures and followed the pattern in A (Figure 4.4).

A negative linear relationship between SLA and needle 613 C isotope 

(fractionation) ratios Ĉ oo) was evident in both structures (Figure 4.5). The relationship 

was stronger for even-aged stands compared to multi-aged stands. Pearson’s correlation 

coefficient calculated separately for both even- and multi-aged stands indicated that the 

SLA and needle isotope ratio for even-aged stands was higher (-0.64) compared to multi

aged stands (-0.48).

A multiple linear regression model to predict carbon isotope discrimination A (°/oo) 

was developed using SLA, July water potential and stand structure as independent 

variables.

The model: A (°/oo) = 15.05 + 0.67*July i|r, + 0.03*SLA - 0.44* ST

Where i|rn = Pre-dawn needle water potential (-MPa), SLA = Specific leaf area for the

crown thirds, ST = Stand structure. R 2 = 0.44, n = 36, and SEE = 0.42.
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Figure 4.5. Needle 613 C isotope ratios (°/oo) and SLA (top and bottom thirds) for trees in 
the even-and multi-aged ponderosa pine stands in western Montana.
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The predictive power (R2) o f the model was not high due to comparatively low 

relationship between the variables used for multi-aged stands.

4.5. DISCUSSION

4.5.1. Pre-dawn Water Potential

The results from the pre-dawn leaf water potential measurements indicated that 

both even- and multi-aged stands were not water-stressed during the earlier part of the 

growing season. The difference in LAI between the even- and multi-aged stands could 

result in varying soil and plant water potentials primarily due to evapo-transpiration loss. 

This could be the reason for significantly different moisture stress in the even- and multi

aged stands in the Ninemile site during the last week of June 1995. The LAI and stand 

density were higher in the even-aged stands in Ninemile and Lubrecht compared to their 

adjacent multi-aged stands (Table 4.1), which probably resulted in higher pre-dawn leaf 

water stress. Pre-dawn water potentials lower than -1.5 MPa during the middle of the 

summer (growing season) in the even-aged stands indicate that the trees in those stands 

might be closing their stomata sometime earlier than the multi-aged stands due to 

limitations in soil moisture. Similarly, the even and multi-aged stands in the Blue 

Mountain site might also have reduced rates of gas exchange by the last week in July. 

Comparatively higher water stress in the Blue Mountain study site could be due to several 

possible reasons: 1) High LAIs; 2) Comparatively high basal area ( > 30 m2/ha); and 3) 

Slopes >20 percent. Similar to the findings by Donner and Running (1986) in a thinning 

study in lodgepole pine (Pinus contorta) stands in Montana, the results from this study
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also indicates that lower transpirational surface area and higher canopy interception for 

snow and rainfall could be the possible reason for significantly higher pre-dawn water 

potentials in the multi-aged stands compared to the even-aged stands on similar site 

conditions. They have also discussed that a reduction in root mass by thinning to low 

stand density could increase the availability of underground growing space for the 

residual trees on a stand. Similar trends in the underground root surface area/ biomass 

due to different stand structure could also be another possible reason for significantly 

high pre-dawn water potentials in the multi-aged stands. Baldwin and Barney (1976) 

reported that the air temperature, aspect, vapor pressure deficit and soil moisture were 

highly correlated with leaf water potential in the planted and natural ponderosa pine and 

Iodgepole pine stands. Comparatively steeper slopes for the Blue Mountain study sites 

than the other study sites might be a factor for the significantly high water stress in both 

structures on this site. Slopes at about 20 to 30 percent on a southemly aspect may result 

in higher irradiance, soii, and air temperatures. This could considerably increase the 

evaporative demand of a stand compared to the one on relatively flat terrains, with similar 

LAIs. In general, comparatively higher water stress during the months of July and 

August in all the even-aged stands than the adjacent multi-aged stands was primarily 

attributed to their high LAIs and stand structural characteristics.

Pre-dawn leaf water potentials lower than -1.6 MPa in most of the even-aged 

stands during the last week of August in 1995 and 1996 indicated that the trees during the 

days might have very minimal photosynthesis due to moisture limited stomatal closure. 

Lopushinsky (1969) and Cleary (1971) reported that ponderosa pine trees close their
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stomata at leaf water potentials in the range o f-1.4 to -1.7 MPa, and their net 

photosynthesis would fall to almost zero. Comparatively higher leaf water potential for 

the trees in the multi-aged stand structures suggests that, they could carry out at least a 

few hours of photosynthesis compared to the trees in adjacent even-aged stands.

Presence of few summer rain showers during September 1995 reduced the water stress 

below -1.0 MPa in all the stands except those at the Lubrecht site. This could be due to 

the erratic pattern of rainfall during the measurement period. Comparatively higher water 

potential in both stand structures during the end o f September was due to several rainfall 

events and could also be partly due to increased nighttime periods compared to the 

previous months of the growing season. Increased nighttime hours*allows enough 

duration for soil moisture recharge. The second sets of pre-dawn leaf water potential 

measurements taken dining 1996 from three sites in western Montana were lower due to 

comparatively more summer rainfall during July and August 1996 than for the same 

period in 1995.

The variations in climate and soil between western Montana and central Oregon 

could be the probable reason for relatively low pre-dawn water stress dining the middle 

of July 1996 for all the sites in central Oregon. Due to the void in pre-dawn water 

potential data for other periods of the growing season, it is difficult to tie the influence of 

stand structure on water stress in central Oregon stands, where water may not be a 

limiting factor for production. Plot level comparison of pre-dawn water potential 

indicated that Plot 104 at the Fremont National Forest had the lowest water stress in 

central Oregon. A probable reason could be due to low stand foliage area. Even though
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the sapwood area estimated average LAIs for these stands, the actual transpiring leaf area 

was lower in the even- and multi-aged stands due to severe pandora moth (Coloradia 

pandora Blake) outbreaks.

4.5.2. Water-Use Efficiency

The long-term WUE estimated from needle carbon isotope discrimination (A) on 

trees from both structures indicates totally opposite pattern compared to the pre-dawn leaf 

water potential measurements. But the pattern in WUE measures was very similar to 

many other studies on water limited environments. High water stress in the even-aged 

stands resulted in partial closure of their stomata often during the second half o f the 

growing season, but at the same time their respiration loads (due to high LAI and SLA) 

were higher compared to the multi-aged stands. To be successful, the trees have to 

increase their photosynthesis, which could only be attained either by increased water 

availability or water-use efficiency. The WUE inferred from the carbon isotope 

discrimination (A) was the highest for the top thirds of the crowns in the even-aged stands 

compared to the multi-aged stands. This suggests that the trees in the even-aged 

structures overcome the limitations in water primarily by increasing their gas exchange 

efficiency. The results from the SLA (specific leaf area) analysis described in the 

previous chapter (Chapter 3) also indicated that SLA was the highest for top crown thirds 

in the even-aged stands. High radiation loads at the top of the canopy, and increased 

limitations in soil moisture induce the even-aged trees to have more efficient and 

productive top crown thirds to sustain in water limited environments. Comparison of
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Ci/Ca also indicates that the intercellular C 02 concentration was lower in the needles 

from top thirds of the crowns. Cowan (1982), and Passioura (1982) suggested that plants 

are thought to be under selective pressure for water-use efficiency in water limited 

environments. Similarly, In two populations of western larch (Larix occidentalism 

seedlings with two different water treatments, Zhang and Marshall (1994) also reported a 

lower carbon isotope discrimination (A) and a higher water-use efficiency for the water- 

stressed seedlings compared to the well-watered ones. The results from this study 

supports the previous findings and suggests that the ponderosa pine trees growing in a 

water limited environment or stand structure may be under an induced selective pressure 

to be more water-use efficient.

4.6. CONCLUSIONS

Significantly different pre-dawn leaf water potentials in the even- and multi-aged 

ponderosa pine stands on similar sites, suggest that stand structure in water limited 

environments plays a major role in temporary conversion of a site to be a water-limited 

one during parts of the growing season. Several interrelated factors influence a particular 

stand structure to be limited in soil moisture. One of the main factors is the pattern of air 

turbulence inside the canopy of stands with different structures. The even-aged stand 

structure may have a totally different air turbulence pattern compared to those in the 

multi-aged structure, where the canopy is widely distributed on a vertical scale. During 

periods of higher air temperature, the vapor pressure deficit becomes larger, and the trees 

shut down their stomata to reduce the transpiration loss. The less diverse and more
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homogenized crowns in even-aged stand structure could have different canopy dynamics 

than multi-aged stands. With low wind, the air mass surrounded by the needles of the 

trees in even-aged stands tends to be relatively in a state of still. Less frequent 

displacement of air through the canopy, retains the humidity in the air from evapo- 

transpiration. This could reduce the moisture gradient between the leaf and the air 

immediately surrounding the needles. Low vapor pressure gradient with adequate 

irradiance and air temperature could increase the stomatal conductance and gas 

exchanges. Higher stomatal conductance could result in increased transpiration loss 

during gas exchange. These structurally modified micro-environments might induce 

increased moisture loss from trees in even-aged structures compared to multi-stratified 

multi-aged stands.

In addition to the aboveground structure-related differences in plant moisture 

status, the ratio of the live root surface area to the total transpiring foliage surface area 

might also be different in stands with varying aboveground stand structures. Stands with 

different size and age structures, but similar LAIs could have different root biomass and 

rhizoshpere to maximize water harvest to meet the moisture demands of the aboveground 

sinks. If this ratio is found different between stand structures with similar LAIs and ages, 

then the total biomass production and its allocation pattern for both above- and below- 

ground components have to be considered for better comparison of net primary 

production in different stand structures.
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Chapter 5

Conclusions

In this study, I explored the influence of stand structure on leaf level physio- 

morphological attributes which can lead to variable production efficiencies. The study 

was undertaken to provide some physiological basis for management decisions to select 

even- and multi-aged stand structures for different landscapes.

Stem volume increment per unit leaf area was found higher in multi-aged stands 

due to increased availability of light and moisture. Diverse vertical structures in multi

aged stands resulted in lower canopy specific leaf area and higher leaf water potentials.

In multi-aged stands the size and distribution of trees along with stand density, are 

recognized as important factors influencing stand leaf area index and aboveground net 

productivity. Proportionally larger number of old-growth or younger sized trees in multi

aged stands tend to influence stand LAI, volume growth, and other stand productivity 

measures based on LAI, such as stem volume and basal area growth efficiencies. 

However, with similar LAI, multi-aged stands have equal or higher stem volume 

increment compared to even-aged stands on identical sites.

Most of the natural, even-aged stands in both western Montana and central 

Oregon have higher trees per ha compared to regulated even- or uneven-aged stands. The 

relatively uniform structure of even-aged stands leads to higher competition for many 

important growth factors like light and soil moisture. For example, even-aged stands 

were under higher water stress during mid-late growing season, indicating lower stand
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photosynthesis and production compared to multi-aged stands. The above-ground 

productivity was higher in even-aged stands growing in relatively non-water limited sites 

in central Oregon. A comparison of even- and multi-aged stand structures in two 

different climatic regions (western Montana and central Oregon) suggests that the 

decision to select a particular stand structure for a specific ecosystem should be based on 

the climate and other-related physiographic conditions prevailing on that site. Adopting a 

uniform stand structure (even-aged or multi-aged) throughout the landscape without 

considering the various climate-related physiological processes for stand growth will 

result in poor stand productivity on certain sites.

Tree crowns in multi-aged stands are characterized by relatively equal production 

potentials, indicated by similar crown third specific leaf area and leaf nitrogen content. 

Recent studies in ponderosa pine indicated that old-growth trees are not physiologically 

efficient in production due to their reduced diumal photosynthesis and stomatal 

conductance compared to younger trees (Yoder 1994) and hydraulic limitations (Ryan 

and Yoder 1997). Even though net dry matter production is less in old-growth trees, the 

park-like structures in which these trees are typically found provide many other values 

besides carbon fixation and storage.

In water-limited ecosystems, maintaining higher stand densities in natural, even- 

aged ponderosa pine stands increases the competition for moisture, light, and nutrients, 

which may increase many forest health problems. For example, poor stand growth due to 

water limitations could reduce the resistance in ponderosa pine to mountain pine beetle 

(.Dend.rocton.us ponderosae Hopk.) attack. Relatively high amounts o f understory
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biomass due to increased light and soil moisture levels in multi-aged stands may improve 

the habitat types for many wildlife species compared to even-aged stands.

Manipulating stand structures to expand the vertical and horizontal growing space 

could enhance foliage-, tree-, and stand-level productivity in natural even-aged ponderosa 

pine stands.
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