University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, & Professional Papers

Graduate School

1958

Investigation of some physical and mechanical properties of reconstituted wood particle boards of sandwich type when using different types of resin in core and faces

Joe Yao The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Yao, Joe, "Investigation of some physical and mechanical properties of reconstituted wood particle boards of sandwich type when using different types of resin in core and faces" (1958). *Graduate Student Theses, Dissertations, & Professional Papers.* 2752. https://scholarworks.umt.edu/etd/2752

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

AN INVESTIGATION OF SOME PHYSICAL AND MECHANICAL FROPERTIES OF RECONSTITUTED WOOD PARTICLE ECARDS OF SANDWICH TYPE WHEN USING DIFFERENT TYPES OF RESIN IN CORE AND FACES

by

JOE YAO

B.S., Taiwan Provincial College of Agriculture, 1954

Presented in partial fulfillment of the requirements for the degree of

Master of Science in Forestry

MONTANA STATE UNIVERSITY

1958

Approved by:

aminera rhan. Boai

Graduate School Dean.

MAY 2 9 1958

Date

UMI Number: EP34191

All rights reserved

INFORMATION TO ALL USERS The quality of this reproduction is dependent on the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP34191

Copyright 2012 by ProQuest LLC.

All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code.

ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, MI 48106 - 1346

ACKNOWLEDGEMENTS

The author wishes to express his heartfelt gratitude to Dr. John P. Krier for his valuable advice and his constant guidance throughout the entire work. The author is also grateful to Mr. George A. Schultz for reading the manuscript. Grateful thanks should also go to the Lumber Department of The Anaconda Company, at Bonner, Montana for their help in supplying the wood raw material for this research, and to the Adhesive, Resin & Chemical Division of American-Marietta Company for their contribution and supply of both gluing materials (resins) and information on particle board manufacturing.

8-25-58

-11-

TABLE OF CONTENTS

	PAGE
LIST OF TABLES	v
LIST OF FIGURES	vi
INTRODUCTION	l
PREPARATION OF SAMPLE BOARDS	4
Wood Raw Materials	5
Type of Resins	5
Other Factors	6
Percentage of resin, 6 Moisture content of mat prior to press, 6 Pressures applied, 6 Processes and Board Making Procedures Urea resin bonded particle boards, 7 Phenolic resin bonded particle boards, 8 Sandwich type particle boards, 8	7
PREPARATION FOR TESTING AND TESTING PROCEDURES	11
Conditioning of Boards Prior to Tests	11
Method of Cutting Specimens	11
Testing Procedures for Static Bending	13
Conditioned specimens, 13 Soaked specimens, 14	
Other Testing Procedures and Formulas Used	17
Specific gravity, 17 Moisture content, 18 Water absorption, 18 Thickness swelling, 19	
CALCULATING AND ANALYSIS OF VARIANCE	20

The Form of the Tables Designed to Represent
the Data
Calculated Results of Boards at Time of Tests
Specific gravity, 20 Moisture content at time of tests, 20 Bending strength tests, 23
Calculated Results of Boards after Soaking
Water absorption, 26 Thickness swelling, 29 Reduction of bending strength after soaking, 32
RESULTS AND DISCUSSION
Comparison of water absorption, 38 Comparison of thickness swelling, 38 Comparison of the reduction of bending strength, 39
CONCLUSIONS
BIBLIOGRAPHY
APPENDIX
The Form of the Tables Designed to Represent
the Data

Total Data Recorded and Calculated from the Urea-formaldehyde Resin Bonded Boards 53 Total Data Recorded and Calculated from the Phenol-urea Resin Bonded Boards 57 Total Data Recorded and Calculated from the Phenol-formaldehyde Resin Bonded Boards 61

20

20

25

37

42

47

50

50

LIST OF TABLES

TABLE	PAGE
I.	Comparison of water absorption and thickness
	swelling between paraffin edge coated and
	uncoated boards
II.	Average specific gravity of boards for this
	study
III.	Average moisture content of boards for this
	study
IV.	Average water absorption of boards after
	soaking
۷.	The analysis of variance of the data in
	Table IV
VI.	Average thickness swelling of boards after
	soaking
VII.	The analysis of variance of the data in
	Table VI
VIII.	Average reduction of bending strength of
	boards after soaking, represented by per-
	cent of its unsoaked bending strength 34
IX.	The analysis of variance of the data in
	Table VIII
х.	Average values of the water absorption, the
	thickness swelling and the reduction of
	bending strength 40

-7-

LIST OF FIGURES

FIGU	IRE PAG	E
1.	Cutting plan for test specimens	2
2.	Comparison of water absorption 4	4
3.	Comparison of thickness swelling 4	5
4.	Comparison of the reduction of bending	
	strength	6

INTRODUCTION

The fact that all types of wood particle boards and natural wood are subject to a certain amount of dimensional change due to a change in moisture content is well established. To compensate for this shortcoming, numerous experiments have been or are being conducted in order to find a way to increase the dimensional stability of wood particle boards. Generally, an increase in resin content. an elevation of curing pressures, and the addition of water repellents are the three most common methods of reducing the dimensional change of boards. Of course, these practices increase the cost of production. In addition to these three common methods, an increase in dimensional stability of wood particle board can possibly be attained by using different types of resins in face layers and the core. This latter is the approach that this thesis aims to establish.

For the face layers of a sandwich-type board, a waterproof resin (Phenol-formaldehyde) was used. For the core, a less expensive, water resistant (Urea-formaldehyde) resin was used. Since the cost of resin binder is a major item in producing wood particle board, usually 35 to 60 percent of the total manufacturing cost, any reduction in resin cost would constitute a considerable saving to the manufacturer.1

Thus, the purpose of this study was to try to increase the dimensional stability of a Urea-formaldehyde board by using a waterproof resin in the two face layers of the board. Presumably this would give the resultant product a much higher dimensional stability, but with a comparatively small increase in cost due to the low cost of Urea-formaldehyde resin (about half the price of Phenolformaldehyde resin at the present time) used in the core layer. The reason this stability was expected was due to the fact that the faces of a board play the most important role in making the board water resistant. Therefore, a more water resistant face, not only should increase the dimensional stability of itself, but should also retard the contact of water with the core layer.

To illustrate this principle, let us assume a piece of sponge enclosed in a tightly covered glass bottle; no matter how strongly the sponge might tend to absorb moisture, it would not get a chance to be in contact with the outside moisture. This is because of the protecting and isolating function of the bottle.

Of course, this analogy of a sponge and a bottle cannot be rigidly applied to a wood particle board since

-2-

¹E. S. Johnson (ed.), <u>Wood Particle Board Handbook</u> (North Carolina: The Industrial Experimental Program, 1956), p. 52.

the waterproof resin faces do not make the board completely water proof (except with excessive amounts of resin). In addition, the edges of the board are usually unprotected because sawing will expose the core to the atmosphere and moisture.

PREPARATION OF SAMPLE BOARDS

Three batches of sample boards were made under approximately the same conditions. These conditions were resin content, moisture content of mat prior to hot pressing, and pressure. There were differences in temperature and pressing cycles depending on the necessary curing temperature required by the different types of resins and the adjustment of pressing cycles which were necessary in order to produce boards of the same density under different curing temperatures.

These three different batches of boards were as follows: (1) boards using 6% Urea-formaldehyde resin as a binder throughout; (2) boards using 6% Phenol-formaldehyde resin as a binder throughout; and (3) boards using 6% Phenol-formaldehyde resin as a binder in the face layers and 6% Urea-formaldehyde resin in the core. The total thickness of the two faces of the sandwich type board was equal to the thickness of core. Ten boards were made of each type so that they could be statistically compared.

The first letter of each type of board is capitalized throughout this paper to represent those made for this study. For example, the term "Urea resin bonded board" means the urea resin bonded board specific to this study. Otherwise, the term "urea resin bonded board" used in the

-4-

paper is just a common name or term for this general type of board. This distinction is also valid for the Phenolurea regin and Phenolic regin bonded boards.

Wood Raw Materials

Splinter type particles were obtained from The Anaconda Co., Lumber Dept., at Bonner, Montana. They were a mixture of Douglas fir, western larch, and ponderosa pine, (the "fines" residue from their chip screening operation), with a small percent of bark. The particle size was coarse, ranging from 4 to 8 mesh. These particles were dried to 5.6 percent moisture content before they were sprayed with the resins.

Type of Resins

Phenol-formaldehyde and Urea-formaldehyde resins are the two resins most commonly used as binders for wood composition boards. These are usually supplied to the industry in liquid form, however, powdered resins are available and they are sometimes used instead. The amount of resin required is dependent upon the type of board, the manufacturing process, and the intended use of the board.

The resins used in this study were AMRES 6120A Phenol-formaldehyde and AMRES 7500 Urea-formaldehyde. Both of them were in a liquid form but contained differing solids content (44.8% solids for AMRES 6120A and 66.8% solids

-5-

for AMRES 7500). The curing temperatures were applied in accordance to the suggestions of the manufacturer, the American-Marietta Company.2

Other Factors

Percentage of resin. The recommended resin content for particle board advised by the Adhesive, Resin & Chemical Division of American-Marietta Company is 3% to 6% for both urea and phenolic resins. In order to get better comparative results between different types of boards, the highest percent, 6%, was used for all boards in this study.

Moisture content of mat prior to press. The boards for this research were made by the dry process, which means that the moisture content of the mat prior to press was less than 15 per cent.³ The actual moisture content of the mats in this study was 12%, which again followed the suggestion of American-Marietta Company.⁴

<u>Pressures applied</u>. All boards in this project were consolidated under the same initial squeeze of 500 psi and a subsequent holding pressure of 200 psi. Though the total

-6-

²General Information on Particle Board Manufacturing Testing & Bibliography (Washington: American-Marietta Company, 1955), p. 1.

³<u>Wood Composition Boards</u> (Oregon: Pacific Power & Light Company, 1955), p. 20.

⁴General Information on Particle Board Manufacturing Testing & Bibliography (Washington: American-Marietta Company, 1955), p. 1.

time under pressure was the same, the different types varied in the time period for each of the two stages--the squeeze and holding stages. When higher temperatures are applied to boards during hot pressing, higher densities are produced. Therefore, in this study, an adjustment in pressing cycle was necessary to produce boards of three different groups having the same density.

Processes and Board Making Procedures

All boards were pressed in a single-opening hydraulic hot press. The boards were all 1/4" by 8" by 10" in dimension and about 0.85 in specific gravity. Procedures of board making were necessarily varied somewhat among the three groups.

Urea reain bonded particle boards. Splinter type particles were screened to 4 to 8 mesh and dried to 5.6% moisture content. Then, in a drum type mixer with a speed of approximately 20 rotations per minute, the particles were evenly coated with liquid Urea-formaldehyde resin by spraying. A quantity of liquid resin, weighing 6% resin solids by oven dry wood particle weight, was mixed with 6.4% of additional water to make a mat having 12% moisture content by oven dry wood particle weight.

The mat was formed by hand. Before hot pressing a pre-press with a forming frame was applied. This practice was applied to partially form the board and to reduce its thickness before curing. The pressure used for pre-pressing

-7-

was 200 psi and it was maintained for 30 seconds without heat. The process following the pre-pressing was hot pressing. All the boards of this category were consolidated under a 2-minute initial squeeze at 500 psi followed by a holding period of 8 minutes at 200 psi. The platen temperature was 285°F.

Phenolic regin bonded particle boards. Most parts of the procedure in this category were as same as that of the Urea resin bonded particle boards except that the temperature and pressing cycle were changed. The new platen temperature was 320°F and the new pressing cycle was: (1) 30-second initial squeeze at 500 psi; (2) 20-second breathing period, free from pressure ; and (3) 9-minute 30-second holding pressure at 200 psi. Since a higher temperature was applied to the mat, the breathing period for moisture escape was found necessary to avoid blistering. Also, the shorter initial squeezing time was necessary to avoid producing a higher density board than desired.

Sandwich type particle boards. Usually so-called sandwich type particle boards are boards made from different sizes or species of particles in different layers. But here, different from the others, the sandwich type particle boards were made of the same size and species in the face layers as in the core. The reason that these are here called sandwich type boards is that different resins have been used in the face layers and in the core.

In making boards of this type, urea resin coated

-8-

particles and phenolic resin coated particles were prepared separately. The mixing of the resins and the mechanics of spraying were the same as in the other two batches.

Before mat forming, equal weights of urea resin coated particles and phenolic resin coated particles. on a pure wood particle weight basis, were weighed. Because of the lower solids percent in the phenolic resin in its liguid form, the actual weight of phenolic resin coated particles was a little higher than that of the urea resin coated particles. When forming the mat, half the quantity of phenolic resin coated particles was placed on the caul to make a bottom layer. Next, all the urea resin coated particles were placed on top of the bottom layer. Then on top of the core layer, the remaining half part of phenolic resin coated particles was placed. After the mat forming was completed, a pre-pressing at 200 psi was used before hot pressing. For this sandwich type board the platen temperature was 320°F and the pressing cycle was: (1) 40second initial squeeze at 500 psi; (2) 20-second breathing period free from pressure; and (3) 9-minute 20-second holding pressure at 200 psi.

The reason for using a longer initial squeeze for this type of board than for the Phenolic resin bonded board was that the lower moisture content in the urea resin coated particles of the core layer made the total moisture content of the mat of this type lower than that of the

-9-

phenol type. It was found from an exploratory experiment that the density of Phenolic resin bonded board was higher than the sandwich board when the same time of initial squeeze was applied. This result was interpreted to mean that the higher moisture content of the mat of Phenolic resin bonded board increased its compressibility during the hot pressing.

The total thickness of the two face layers of this type of board was equal to the thickness of core. The total thickness of the board = face layer + core + face layer = 1/16"+2/16"+1/16" = 1/4".

The temperature applied to boards of this category should be elaborated. The same 320°F temperature as was used in making Phenolic resin bonded particle board was used rather than that which was used in the Urea resin bonded particle board. This was dictated because of the higher curing temperature needed for phenolic resin.

PREPARATION FOR TESTING AND TESTING PROCEDURES

All of the boards were tested for the values of moisture content, specific gravity, bending strength (represented by modulus of rupture), water absorption and thickness swelling. Before the actual testing, all boards were conditioned to constant weight and moisture content, then cut to test-specimen size.

Conditioning of Boards Prior to Tests

According to ASTM Designation: D 1037 - 56 T all boards were conditioned to constant weight and moisture content in a conditioning chamber maintained at a relative humidity of 65 ± 1 percent and a temperature of 68 ± 6 °F.⁵

Method of Cutting Specimens

The cutting method for testing specimens from each 1/4" by 8" by 10" board is shown in Figure 1. As shown, two specimens were cut from each of the sample boards for the modulus of rupture (M.O.R.) test. Specimens for the M.O.R. test were 1/4" by 2" by 8".

One of these two was prepared for testing of M.O.R. under normal condition, and from this specimen two coupons

⁵Tentative Methods of Test for EVALUATING THE PROF-ERTIES OF EUILDING FIBERBOARDS (Philadelphia: American Society for Testing Material, 1956), p. 123. -11-

of 2" by 2" dimension were cut following the M.O.R. test, for further study of specific gravity and moisture content of board at test.

The other specimen was prepared for the tests of water absorption, thickness swelling and the reduction of M.O.R. after soaking. No coupons were cut from this specimen.

Testing Procedures for Static Bending

(M.O.R. test)

<u>Conditioned specimens</u>. The M.O.R. tests were performed in accordance with the ASTM Designation: D 1037 -56 T. Each test specimen was 2" in width and 8" in length.⁶ The span for each test was 24 times the nominal thickness, in other words, $1/4^{"} \times 24 = 6^{"}$, for our boards.⁷

The supports were rounded to a radius of $1 \frac{1}{2}$ times the thickness (1/4"xl.5) of the material being tested, which is equal to 0.375".⁸ The load was applied continuously throughout the test at a uniform rate of motion of the movable cross head of the testing machine of 0.1" per minute. The measurements of thickness were read to the

6Tentative Methods of Test for EVALUATING THE PROP-ERTIES OF BUILDING FIBERBOARDS (Philadelphia: American Society for Testing Material, 1956), p. 125.

> ⁷<u>Ibid.</u>, p. 125. ⁸Ibid., p. 125.

nearest 0.001", and loads to the nearest one pound.

The formula used for calculating the M.O.R. was:

$$R = \frac{3PL}{2bd^2}$$

where:

R = modulus of rupture, psi.

P = maximum load, lbs.

L = longth of epan, in.

b = width of specimen, in.

d = thickness (depth) of specimen, in.

Soaked specimens. The edges of specimens will absorb more water than the faces, and this will vary the percentage of water absorption appreciably according to size. For example, a smaller size specimen has a higher percentage of edge surface, so more water per unit volume will be absorbed and more swelling will result. All boards prepared for testing under soaked condition were edge sealed with a paraffin which had a melting range of 140° to 143.6°F (60° to 62°C). The reason for using a paraffin with this melting range was that it would not be melted at the soaking temperature. The sealing of edges in this test was done to increase the comparison values of properties of boards after soaking.

As a matter of fact, this practice did not make the edges of specimens fully waterproof, since openings occured after swelling. However, as an exploratory experiment shows (Table I), this practice did show effective results.

In accordance with ASTM Designation: D 1037-56T, the specimens to be tested in the soaked condition should be submerged in water at 68[±]2°F for 24 hrs. before the test.⁹ In order to amplify results, the temperature used in this study was higher than standard. After the edges of the specimens were sealed with paraffin, they were submerged in water at 113°F for 24 hr. Since data was to be comparative, it was deemed that this departure from standards would not reduce the effectiveness of this study. Upon removal from the water, specimens were set on edge and allowed to drain for 10 minutes before measuring their thickness, width, length and weight.

The methods of applying the load, such as head speed and length of span, were the same as those mentioned in the section, <u>Conditioned specimens</u>. According to the standards the head speed and length of span should have been adjusted according to the increased thickness. However, here the M.O.R. of soaked specimens was so much lower than that of conditioned specimens that the slightly higher value for M.O.R. (than standard), gained due to the using of same length of span (6"), and the same speed of head applied (0.1" per minute), was far below the point which could

-15-

^{9&}lt;u>Tentative Methods of Test for EVALUATING THE PROP-</u> ERTIES OF BUILDING FIBERBOARDS (Philadelphia: American Society for Testing Material, 1956), p. 137.

TABLE I

COMPARISON OF WATER ABSORPTION AND THICKNESS SWELLING BETWEEN PARAFFIN EDGE-COATED AND UNCOATED BOARDS (in per cent)

Item	Edge	Type of Board			
	else cher 2	Ure a	Phonol-urea	Phenol	
Ab-	Coated	112.0	%.5	65.0	
Via tez Borrit	Uncoated	161.0	100.0	73.2	
ing S	Coated	83.1	63.8	56.1	
Thtel: Swell	Uncosted	90.9	77.0	67.2	

possibly influence the accuracy of the compared results.

Other Testing Procedures and Formulas Used

Specific gravity. As discussed before, two 2" by 2" coupons were sut from each broken specimen after M.O.R. test. These were weighed and their thickness, width and length were measured. They were then oven-dried at 103[±]2°C for 24 hr.¹⁰

After taking them out from the electric-heated oven, the dry weights were recorded again. The dimensions were not measured after drying since the specific gravity values were calculated on the basis of oven-dry weight and volume at test.¹¹

The formula used in calculating specific gravity was:

$$\operatorname{Sp.gr} = \frac{\operatorname{Kw2}}{\operatorname{Lbt}}$$

where:

11<u>Ibid.</u>, p. 141.

^{10&}lt;u>Tentative Methods of Test for EVALUATING THE PROP</u>-ERTIES OF BUILDING FIBERBOARDS (Philadelphia: American Society for Testing Material, 1956), p. 141.

L = length of coupon, in.

b = width of coupon, in.

t = thickness of coupon, in.

<u>Moisture content</u>. The moisture content at time of test was calculated from the initial and oven-dry weights of each coupon. These weights were collected from the same coupons which were used for specific gravity testing.

The formula used in calculating moisture content was:

$$M = 100 \left(\frac{W1 - W2}{W2} \right)$$

where:

M = moisture content, in percent.
wl = weight at time of test, grams.
w2 = final weight when oven-dry, grams.

Water absorption. From the conditioned and soaked weights that were recorded from the same specimens used for M.O.R. test in soaked condition, the water absorptions were calculated.

The formula used for water absorption was:

W.A. = 100
$$(\frac{W2 - W1}{W1})$$

where:

W.A. = water absorption, in percent. W1 = conditioned weight, grams. W2 = weight after soaking, grams.

Thickness swelling. From the conditioned and the soaked thicknesses which also were recorded from the same specimens used for M.O.R. tests in soaked condition, the thickness swelling was calculated.

The formula used for thickness swelling was:

T.S. = 100
$$\left(\frac{T2 - T1}{T1}\right)$$

where:

T.S. = thickness swelling, in percent.
T1 = conditioned thickness, in.
T2 = thickness after soaking, in.

CALCULATION AND ANALYSIS OF VARIANCE

The Form of the Tables Designed to Represent the Data

In order to contain all the data on a single sheet, the tables for recording of data and calculating of results were specially designed. They were arranged according to the order of testing and calculating procedures. In these tables, the data from this study are included in their entirety. These tables are included in the Appendix so as to be available for interested readers.

Calculated Results of Boards at Time of Tests

Specific gravity. As shown in Table II, the average specific gravity was 0.85 for Urea resin bonded boards, 0.84 for Fhenol-urea resin bonded boards and 0.86 for Fhenolic resin bonded boards. As all boards were made under control with the desire to produce an equal density in the three batches, the differences in density which occurred here were caused by chance or unavoidable experimental error. However, the differences were not statistically significant and they will not influence the results of comparison in dimensional stability.

Moisture content at time of tests. The equilibrium moisture content (E.M.C.) will be affected by many factors, among them, the type and amount of resin, curing

-20-

TABLE II

AVERAGE SPECIFIC GRAVITY OF BOARDS MADE FOR THIS STUDY

Sample Type of Board Board No. Urea Phenol-urea 1 0.87 0.82	
l 0.87 0.82	
1 0.87 0.82	Phenol
	0.85
2 0.85 0.83	0.89
3 0.86 0.84	0.84
4 0.85 0.83	0.87
5 0.88 0.86	0.85
6 0.84 0.84	0.86
7 0.87 0.84	0.84
8 0.86 0.84	0.85
9 0.82 0.83	0.84
10 0.82 0.84	0 .87
Sum ≠∑ 8.52 8.37	8,56
Mean = X 0.85 0.84	0.86
Standard 0.021 0.010 Deviation	0.016

temperature, pressure, and pressing cycle are considered most important. According to a laboratory survey the average E.M.C.'s found in this country are 12-13% in natural wood, 5-8% in Hardboard and 8-9% in Particle board.¹²

The reason for the lower E.N.C. represented by wood particle board when compared to natural wood is probably that (1) the average higher density decreased the space which otherwise would absorb the free water (this may only be true when comparing it with natural wood), (2) the cured resin binders partially sealed the openings of tracheids and filled voids between individual particles. Actually there are many factors involved which will influence the E.M.C. values of a wood particle board, and there is no way at the present time to estimate or predict the exact E.M.C. value. This can be accurately determined only by testing methods.

Generally, for boards conditioned in the same conditioning chamber for a definite length of time, less than equilibrium time, it will be found that a urea resin bonded board will contain a higher moisture content than a phenolic resin bonded board. This is due to the lower curing temperature used for urea resin, which leaves more moisture in a board just coming out of the press. In accordance

-22-

¹²E. S. Johnson (ed.), <u>Wood Particle Board Handbook</u> (North Carolina: The Industrial Experimental Program, 1956), p. 223.

with this, the everage moisture content of Ures resin bonded boards (Table III) was 7.0%, higher than the other two types. However, it is not quite understood why the average moisture content of Phenol-ures resin bonded boards (5.4%) was higher than that of the Phenolic resin bonded boards (5.9%) since they were consolidated under the same curing temperature, and especially since the initial moisture content of the mat of Fhenolic resin bonded board was higher. Perhaps this was caused by the early breathing in making Phenolic resin bonded board (after 30 sec. initial squeeze vs. after 40 sec. for Phenol-urea resin bonded boards) which increased the quantity of moisture (steam) that escaped during the period of breathing, or else the more completely cured resin, due to longer initial squeeze, retarded the escape of moisture (steam) from the Phenolurea regin bonded board. This conclusion cannot be arbitrarily established without further study, since other factors such as the different types of resins used, etc., may be involved in causing such a result.

Bending strength tests. The bending strength of particle board is affected by a good many factors, such as species of wood used, type and size of particles, amount of resin binders, moisture content of mat, density of board. Among all these, density and resin amount are considered to be the most important two. Here in this study, the bending strengths are represented by M.O.R. values.

-23-

TABLE III

AVERAGE MOISTURE CONTENT OF BOARDS MADE FOR THIS STUDY (in per cent)

Sample		Type of Board	
Board No.	Urea 🖇	Phonol-urea \$	Phenol 1
1	7.3	5.6	5.8
2	7.0	6.2	6.1
3	6.8	6.4	5.9
4	6.3	6.4	5.9
5	6.6	6.0	6.2
6	6.8	6.7	5.9
7	7.1	6.7	5.5
8	7.1	6.7	6.0
9	7.4	6.6	5.9
10	7.4	6.7	6.1
Sum ≠∑	69.8	64.3	59.3
Mean = X	7.0	6.4	5.9
Standard Deviation	0.36	0.31	0.20

From the first table in the Appendix it can be seen that the average M.O.R. of Urea resin bonded boards was 3,742 psi, which was higher than either of the other two types. The cause of this greater M.O.R. is understandable since a lower curing temperature was used and there was no breathing period. Since the absence of a breathing period under a lower curing temperature allows moisture to remain in the board for a longer time, a better flowing of resin binder will result. Then, naturally, a better bonding and higher strength will be produced.

The matter of why the average M.O.R. of Phenol-urea resin bonded boards was (3,151 psi, see the second table in the Appendix) lower than Phenolic resin bonded boards (3,341 psi, see the third table in the Appendix) should be deduced from the fact that the high curing temperature used in pressing Phenolic-urea resin boards (320°F) produced excessive resin cure in the urea resin bonded core layer (actually only 285°F required). The producing of brittle and flaky resin is a general result of excessive curing temperature.

Calculated Results of Boards After Scaking

Beginning from this part of the discussion the real objects of this study are presented, therefore more details will be given in this part. An analysis of variance was employed to analyze the data to obtain the maximum

-25-

information therefrom.

<u>Water absorption</u>. Reference to Table IV will show that the average water absorption of Urea resin bonded boards was 89.7%, higher than that Phenol-urea resin bonded boards (82.8%), and that the water absorption of Phenol-urea resin bonded boards was higher than Phenolic resin bonded boards (79.6%). These results were coincident with original assumption.

From the data in Table V, analysis shows that the variance due to differences in treatments is sufficiently greater than that due to error to make a highly significant (P = 0.01 or 1%) contribution to the total variance. This means that there is less than a 1% chance that differences between treatments as great or greater than those shown could arise due to chance sampling.

The analysis of variance by F -value can only test the general significance of differences among groups. A - supplementary test of significance must be applied in the form of a t-test. The equation used for this test was:

$$t = \frac{\overline{X1} - \overline{X2}}{\sqrt{\text{Error M.S. (1/n1+1/n2)}}}$$

where:

Error M.S. = error variance or error mean square \overline{X} 1 and $\overline{X}2$ = the means of any two groups. nl and n2 = the number of items in each group being tested.

-26-

TABLE IV

AVERAGE WATER ABSORPTION OF BOARDS AFTER SOAKING (in per cent)

Sample		Type of Board	
Board No.	Urea 🖇	Phenol-urea 🖇	Phenol \$
1	90.1	83.7	86.9
2	92.7	80+4	76,2
3	88.4	80.2	83.3
4	87.9	80.2	74.4
5	87.8	81.2	83.9
6	92.5	83.4	81.7
7	90.3	87.3	78.9
8	85.2	82.9	79.5
9	87.7	84.4	78.1
10	94.8	84.3	72.6
Sum = I	897.4	828. 0	795.5
Meen = X	89.7	82.8	79.6
Standard Deviation	2.91	2.31	3.17

TABLE V

THE ANALYSIS OF VARIANCE OF THE DATA IN TABLE IV (DATA OF WATER ABSORPTION)

Source of Variation	Sum of Squares	Degrees of Freedom	Variance	Sample F	F.05	F. 01
Total	756.29	29				
Between Samples	541.88	2	270.94	34.1	3.35	5.49
Within Samples (Error)	214.41	27	7.94			
Thus, for our data (see Tables IV and V):

A. Test of significance of difference between Urea resin and Phenol-urea resin bonded boards:

$$t = \frac{89.7 - 82.8}{\sqrt{7.94} (1/10 + 1/10)} = \frac{6.9}{1.26} = 5.47$$

B. Test of significance of difference between Phenol-urea resin and Phenolic resin bonded boards:

$$t = \frac{82.8 - 79.6}{1.26} = 2.54$$

From the t-table, for 27 degrees of freedom (number of d.f. used to estimate the standard error term), a tvalue equal to 2.77 at P = 0.01 and 2.47 at P = 0.02 is found. It can thus be seen that the difference in water absorption between Urea resin bonded board and Phenol-urea resin bonded board is definitely significant (above the P = 0.01 level). But the difference between Phenol-urea resin and Phenolic resin bonded boards is slightly lower than that above (between P = 0.02 and P = 0.01).

<u>Thickness swelling</u>. As Table VI shows, the average thickness swellings were 73.3% for Urea resin bonded board, 65.5% for Phenol-urea resin bonded board, and 61.8% for Phenolic resin bonded board. From Table VII, the F-value of 36.11 gained from our variance ratio test was much greater than the F-value found in the F-table, which is F = 5.49 at the level of P = 0.01 when a variance with 2

TABLE VI

AVERAGE THICKNESS SWELLING OF BOARDS AFTER SOAKING (in per cent)

Sample		Type of Board	
Board No.	Urea 🖇	Phenol-urea \$	Fhenol \$
1	74.0	66.1	69.2
2	72.8	64.6	60.5
3	71.8	64.7	66.5
4	75.6	63.2	56.2
5	73.0	66.4	61.3
6	70.9	66.0	54.5
7	74.5	66.4	64.3
8	73.8	65.8	66.4
9	74.0	64.2	60.8
10	72.7	67.2	58.7
Sun ≠∑	733.1	654.6	618.4
Mean = I	73.3	65.5	61.8
Standard Deviation	1.32	1.23	4.70

IIA	
TARL	

THE ANALYSIS OF VARIANCE OF THE DATA IN TABLE VI (DATA OF THICKNESS SWELLING)

Source of Variation	Sum of Squares	Degrees of Freedom	Variance	Sample F	F.05	F. 01
Total	914.79	Ri				
Between Samples	665.95	N	332.95	ж.11	3.35	5.49
Within Samples (Error)	243.90	5	9.22			

degrees of freedom is tested against an error variance having 27 degrees of freedom. So again, it is proved that the variance which is due to differences in treatments is sufficiently greater than that due to error that it makes a highly significant contribution to the total variance.

To discover if each treatment is significantly different from the others, a t-test the same as that used in the section <u>Water absorption</u> was used. Thus, for our data (see Tables VI and VII):

A. Test of significance of difference between Urea resin and Phenol-urea resin bonded boards:

$$t = \frac{73.3 - 65.5}{\sqrt{9.22} (1/10+1/10)} = \frac{7.8}{1.36} = 5.74$$

B. Test of significance of difference between Phenol-urea resin and Phenolic resin bonded boards:

$$t = \frac{65.5 - 61.8}{1.36} = 2.72$$

From the t-table, for 27 degrees of freedom, a value equal to 2.47 at P = 0.02 and 2.77 at P = 0.01 was obtained. Therefore, the difference between Urea resin and Phenol-urea resin bonded boards is definitely significant (above P = 0.01 level). The difference between Phenol-urea resin and Phenolic resin bonded boards is above the P = 0.02 and slightly below P = 0.01 level.

Reduction of bending strength after soaking. Table

VIII shows that the average M.O.R. after soaking was 12.6% (percent of unsoaked bending strength) for Urea resin bended boards, 16.6% for Phenol-urea resin bended boards, and 16.2% for Phenolic resin bended boards. Table IX shows that the variance due to differences in treatments is sufficiently greater than that due to error to make a highly significant (F = 0.01) contribution to the total variance. Further tests were:

A. Test of significance of difference between Urea resin and Phenol-urea resin bonded boards:

$$t = \frac{12.6 - 16.6}{\sqrt{4.81} (1/10 + 1/10)} = \frac{4.0}{0.97} = 4.12$$

B. Test of significance of difference between Phenol-urea resin and Phenolic resin bonded boards:

$$t = \frac{16.6 - 16.2}{0.97} = 0.41$$

C. Test of significance of difference between Urea resin and Phenolic resin bonded boards:

$$t = \frac{12.6 - 16.2}{0.97} = 3.71$$

From t-values calculated above, it is very clear that the differences in reduction of M.O.R. between Urea resin bonded board and Phenol-urea resin bonded and between Urea and Phenolic resin bonded board were definitely significant. The difference between Fhenol-urea and Phenolic

TAELE VIII

AVERAGE REDUCTION OF BENDING STRENGTH OF BOARDS AFTER SOAKING, REPRESENTED BY PERCENT OF ITS UNSOAKED BENDING STRENGTH (in per cent)

Sample		Type of Board	
Board No.	Urea 🖇	Phenol-urea \$	Fhenol \$
1	12.7	17.9	12.6
2	12.3	13.5	15.1
3	13.3	19.7	14.7
4	12.8	16.3	20.3
5	14.8	15.1	15.4
6	14,1	16.7	20.6
7	12,1	16.8	20.3
8	11.8	19.0	13.7
9	11.4	17.3	14.9
10	10.9	14.1	14.4
Sum =∑	126.2	166.4	162.0
Mean = X	12.6	16.6	16.2
Standard Deviation	1.22	1.99	3.00

II THEVL

(DVLV OR LHE REDICLION OR BENDING SLEENCLH) LHE WAVIELS OR AVEIVACE OR LHE DVLV IN LVHTE AILI

T0"4	F.05	T elgred	BORA LTAV	Degrees of Preedom	seranp2	To sorred Rolfaltav
Marca 400 100 - 00 - 00				62	11.122	TetoT
67*5	\$6. 5	τ•οτ	T9*87	2	£2°16	asevtel Selips
			T8*7	LZ.	76*671	nitiji Selquel (Tots)

-35-

resin bonded boards was not significant (below P = 0.50 level).

RESULTS AND DISCUSSION

It is commonly known that in similar boards soaked in water under the same conditions (such as temperature, time, etc), a board with a higher original moisture content before soaking will absorb a lesser percentage of water and consequently have a smaller percentage of thickness swelling. Thus, the water absorption and thickness swelling of Urea resin bonded board should have been less than Fhenol-urea resin bonded board, and also the Fhenolurea resin bonded board, and also the Fhenolurea resin bonded board, since their original moisture contents were 7.0%, 6.4%, and 5.9% respectively.

However, the results show that these were just the opposite of this general rule when compared on the basis of their original moisture contents. This means these results were almost entirely ruled by the different treatments (different types of resins and construction of boards). Fortunately, this phenomenon served to justify confidence in comparing our results without further consideration of small differences in original moisture contents. An increase in pressing temperature may increase the dimensional stability of a board, but this was not shown to be the case in this study though different temperatures were used. As R. G. Frashour and G. D. Nixon have concluded in their paper:

-37-

An increase in pressing temperature increased water resistance in the control boards (without addition of either resin or wax) and in boards containing resin and wax. There was no significant decrease in water absorption when resin alone was added.13

Thus, the increase in temperature when resin alone was added, as is the case here, should not be expected to significantly alter the results.

<u>Comparison of water absorption</u>. It was quite evident from results (Table X), that the water absorption of Urea resin bonded board was much greater than the other two types of boards. The difference between Urea resin and Phenol-urea resin bonded boards was 6.9% (89.7 - 62.8%) and between Phenol-urea resin and Phenolic resin bonded boards was 3.2% (62.8 - 79.6%). In other words, the difference in water absorption between Urea resin and Phenolurea resin bonded boards was about twice as much as the difference between the Phenol-urea and the Phenolic types. Consequently, these figures proved that sandwich type boards had, not only higher water resistance than Urea resin bonded boards, but also had achieved such an improvement in water resistance that it was raised near to the Phenolic resin bonded board level.

Comparison of thickness swelling. Commensurate with

¹³R. G. Frashour and G. D. Nixon, <u>Hardboard</u> from <u>Extracted Juniper Chips</u>, (Vol. VI, No. 2. Forest Products Journal, 1956), p. 76.

higher water resistance of the Phenol-urea resin bonded board, its thickness swelling was relatively small. Its ability to resist thickness swelling was closer to that of the Phenolic resin bonded board than to the level of the Urea resin bonded board.

To put this in figures (see Table X), the difference in thickness swelling between Urea resin bonded board and Phenol-urea resin bonded board was 7.8% (73.3 - 65.5%) and between Phenol-urea resin and Phenolic resin bonded board was 3.7% (65.5 - 61.8%). Again the closer value of thickness swelling between the latter two indicates the success of this study.

<u>Comparison of the reduction of bending strength</u>. Figures for the reduction of M.O.R. in Table X are in percent bending strength of soaked boards compared to conditioned board (without soaking). Therefore a higher value of a percentage in Table X means a lesser reduction of M.O.R. after soaking.

The differences of reductions of M.O.R. were 4.0% (12.6 - 16.6%) between Urea resin and Phenol-urea resin bonded boards, 3.6% (12.6 - 16.2%) between Urea resin and Phenolic resin bonded boards, and only 0.4% (16.6 - 16.2%) between Phenol-urea resin and Phenolic resin bonded boards. The fact that there are almost the same values for reduction of M.O.R. of Fhenol-urea resin bonded board and Phenolic resin bonded board indicated the excellent improvement in

TABLE X

AVERAGE VALUES OF THE WATER ABSORPTION, THE THICKNESS-SWELLING AND THE REDUCTION OF BENDING STRENGTH (in per cent)

		Type of Board	
iten	itrea 🖇	Phenol-urea 🖇	Phenol \$
Water Absorption	89.7	82 .8	79.6
Thickness Swelling	73.3	65.5	61.8
Reduction of Bending Strength	12.6	16.6	16.2

board durability which was effected by the newly designed sandwich type construction.

Theoretically, there is no reason for Fhenol-urea resin bonded board to produce a lesser reduction of M.O.R. when compared to the Fhenolic resin bonded board. This is an unexpected result, probably caused by within-sample variation due to the inavoidable experimental error. With such a low level of significant difference, (below P = 0.50level), it can only be concluded that this was due to chance alone.

CONCLUSIONS

It is natural to expect the Phenol-urea resin bonded boards to have higher dimensional stability than the Urea resin bonded boards due to the partial use of the better resin binder, but one cannot be satisfied merely with improvement without further consideration. For example, we could not necessarily consider it advantageous if the value of dimensional stability of a Phenol-urea board were just in between the others or below the average value of the other two. Eccause of the half and half of the two types of resins used, it would generally be thought that the resultant value would be midway between the other two types of boards. This was not the expected result of this study.

As expected, Figures 2, 3, and 4 shows that the values of water absorption, thickness swelling and reduction of M.O.R. of Phenol-urea reain bonded board were much nearer to Phenolic resin bonded board than to the Urea resin bonded board. They were above the average values of those from Urea reain and Phenolic resin bonded boards. The greatest achievement of the sandwich board was found in its ability to maintain bending strength (M.O.R.) in spite of the penetration of moisture, as evidenced by the fact that the value of the reduction of M.O.R. of Phenolurea resin bonded board was approximately the same as the -42value of Fhenolic resin bonded boards.

The final conclusions of this study is that the practice of using better resin binders in the face layers of a sandwich type board does improve its properties to such a level that it can be considered advantageous from the point of the cost of resin binders. That is, the sandwich type boards can approximate the properties of the boards made with the more expensive resin at a resin cost totalling considerably less since the cost of urea resin is only about half the cost of phenolic resin at the present time.

As mentioned in section INTRODUCTION the cost of resin binders is a major item in producing wood particle board, usually 35 to 60 percent of the total manufacturing cost, the low cost usea resin used in the core layer of the sandwich type board certainly would constitute a considerable saving to the manufacturer if it could be done without seriously reducing its properties. This study shows that it can be done in this case.

-43-

FIGURE 4. COMPARISON OF THE REDUCTION OF BENDING STRENGTH

BIBLICGRAPHY

- Bibby, R. D., "Manufacture and Use of Wood Particle Board," <u>Forest Products Journal</u>, Vol. VI, No. 55 (May, 1956), pp. 169-172.
- Brouse, Don, "The Ideal Glue-How Close Are We?," Forest Products Journal, Vol. VII, No. 5 (May, 1957), pp. 163-167.
- Brown, H. P., Fanshin, A. J. and Forsaith, C. C. <u>Textbook</u> of <u>Wood Technology</u> 2 vols., McGraw-Hill Book Company, Inc., N. Y., 1952.
- Bryant, Ben S. <u>Methods For Testing The Significance of</u> <u>Differences Between Sets Of Experimental Data</u>. Seattle, Washington: College of Forestry, University of Washington, 1952.
- Clark, James d'A., "A New Dry-Process Multi-Ply Board," <u>Forest Products Journal</u>, Vol. V, No. 4 (August, 1955), pp. 209-213.
- Consolidated Board Products Group Research Department. <u>American-Marietta Resin Binders For Particle Board</u>. Washington: American-Marietta Company, 1957.
- Consolidated Board Products Group. Effect of Pressing Temperatures on Urea and Phenolic Resin Bonded Particle Board. Washington: American-Marietta Company, 1957.
- Consolidated Board Products Group Research Department. <u>General Information on Particle Board Manufacturing</u> <u>Testing, & Bibliography</u>. Washington: American-Marietta Company, 1957.
- Consolidated Board Products Group Research Laboratory. <u>The Use of Sodium Borate (Borax) As A Caul Releasing</u> <u>Agent in Net Frocess Hardboard</u>. Washington: American-<u>Marletta Company</u>, 1957.
- Cooke, William H. <u>Consolidated Products From Wood Resi-</u> <u>dues</u>, Report No. L-2. Oregon: Forest Products Laboratory, 1953.
- Cooke, W. H. and Frashour, R. G., "Resin Application in Attrition-Mill Type Particle Board," <u>Forest Products</u> <u>Journal</u>, Vol. V, No. 4 (August, 1955), pp. 214-218.

- Currier, R. A., "Effect of Cyclic Humidification on Dimensional Stability of Commercial Hardboard," Forest Products Journal, Vol. VII, No. 3 (March, 1957), pp. 95-100.
- De Bruyne, N. A. and Houwink, R. <u>Adhesion and Adhesives</u>. London: Elsevier Publishing Company, 1951.
- Forest Service. <u>Wood Handbook</u>. Washington, D. C.: U. S. Government Printing Office, 1955.
- FPRS Wood Technology Series. No. 19. Fiber, Farticle, and Hardboard. Wisconsin: Forest Products Research Society, 1947-1953.
- FPRS Wood Technology Series. No. 21. Hardboard. Wisconsin: Forest Products Research Society, 1956.
- Frashour, R. G. and Nixon, G. D., "Hardboard from Extracted Juniper Chips," Forest Products Journal, Vol. VI, No. 2 (February, 1956), pp. 73-76.
- Frashour, R. G., Cooke, W. H. and Morschouser, C. R. <u>Properties of Dry-Formed Hardboards With Various Resin</u> Contents. Report No. L-5. Oregon: Forest Products Laboratory, 1955.
- Freas, A. D. and Selbo, M. L. <u>Fabrication and Design of</u> <u>Glued Laminated Wood Structural Timbers</u>. Washington, D. C.: U. S. Government Printing Office, 1954.
- Gallaher, Juanita R. (ed). <u>Western Conservation Journal</u>. Vol. XIV, No. 2. March-April, 1957.
- Johnson, E. S. (ed). <u>Wood Particle Board Handbook</u>. North Carolina: North Carolina State College, 1956.
- Keaton, C. M. <u>Phenolic Resins In The Wet Process Hard-</u> board. Washington: American-Marietta Company, 1949.
- Lewis, Wayne C., "Testing and Evaluating Procedures for Building Boards," Forest Products Journal, Vol. VI, No. 7 (July, 1956), pp. 241-246.
- Lewis, Wayne C., "Use Development For Particle Board," Forest Products Journal, Vol. VIII, No. 2 (February, 1957), pp. 27A-30A.
- <u>Proposed Revision of Federal Specification LLL-F-311 For</u> <u>Fiber-Board: Hard-Pressed, Structural</u>. Washington: Lumber Committee, 1952.

- Rishell, Carl A., "Fundamental Economics of the Particle Board Industry," Forest Products Journal, Vol. VII, No. 1 (January, 1957), pp. 6-9.
- Schwartz, S. L., Pew J. C. and Schafer, E. R., <u>Experiments</u> on the <u>Production of Insulating Board and Hardboard From</u> <u>Western Sawmill and Logging Waste</u>. Wisconsin: Forest Products Laboratory, 1947.
- Stillinger, J. R. and Currier, R. A. <u>Relative Humidity</u>, <u>Moisture Content</u>, and <u>Dimensional Stability Relation</u>-<u>ships in Hardboard of Three Manufacturers</u>. Report No. T-7. Oregon: Forest Products Laboratory, 1954.
- Talbett, J. W. and Maloney, D. E., "Effect of Several Production Variables on Modulus of Rupture and Internal Bond Strength of Boards Made of Green Douglas-Fir Planer Shavings," <u>Forest Products Journal</u>, Vol. VII, No. 10 (October, 1957), pp. 295-398.
- <u>Tentative Methods of Test for Evaluating The Properties</u> of Building Fiberboards. (ASTM Designation: D 1037-56 T), Philadelphia 3, Pa.: American Society For Test-Materials, 1956.
- The <u>Company & Its Products</u>. Washington: American-Marietta Company, 1955.
- Wood Composition Boards. Oregon: Pacific Power & Light Company, 1955.
- Urling, Gerard P., "Wood Particle Board-A Giant in the Making," Forest Products Journal, Vol. VI, No. 10 (October, 1956), pp. 363-365.

APPENDIX

The Form of the Tables Designed to Represent the Data

In order to contain all the data on a single sheet, the tables were specially designed. They were arranged according to the order of testing and calculating procedures.

Abbreviations used in the first table of the Appendix are: UO1, UO2......Ul0 = Urea resin bonded sample boards

No. 1 through No. 10

Specimens for tests of conditioned board:

- UC11, UC21.....U101 = specimen No. 1 (1/4" by 2" by 8") from UC1 through U10
- UO111, UO211......U1011 = coupon No. 1 (1/4" by 2" by 2") from UO11 through U101
- U0112, U0212.....U1012 = coupon No. 2 (1/4" by 2" by 2") from U011 through U101

Specimens for tests of soaked board:

U012, U022.....U102 = specimen No. 2 (1/4" by 2" by 8")

from UO1 through U10

Other abbreviations:

M. L. = maximum load, lbs.

t. = thickness of coupon, in.

- a. t. = average thickness of coupon, in.
- wl. = weight of conditioned coupon, grams.

w2. = weight of oven dried coupon, grams.

D. of w. = difference of weights between wl. and w2., grams.

S. G. = specific gravity of coupon.

M. C. = moisture content of coupon, %.

- A. T. = average thickness of conditioned specimen, in.
- A. S. G. = average specific gravity of conditioned specimen.
- A. M. C. = average moisture content of conditioned specimen. %.
- M. R1. = modulus of rupture of conditioned specimen, psi.
- T1. = thickness of conditioned specimen (before soaking),
 in.

a. Tl. = average thickness of Tl., in.

- T2. = thickness of soaked specimen, in.
- a. T2. = average thickness of T2., in.
- D. of T. = difference of thickness between a. Tl. and a. T2., in.

Wl. = weight of conditioned specimen, grams.

W2. = weight of soaked specimen, grams.

D. of W. = difference of weights between Wl. and W2., grams.
T. S. = thickness swelling of specimen after soaking, %.
W. A. = water absorption of specimen after soaking, %.
M. R2. = modulus of rupture of specimen after soaking, psi.
R. M. R. = reduction of modulus of rupture, (M. R. of soaked specimen)/(M. R. of conditioned specimen), %.

All the thicknesses were measured at four points near the corners and one at the center of each coupon or specimen. Therefore, within each t or T category in this table five measurements were recorded. Figures used for thickness are thousandths of an inch. For example, a figure of 540 in t or T category means .540 inch.

The same arrangement and order was also used for the second and third tables of the Appendix. In addition to the abbreviations as mentioned above, FU and P are the abbreviations of Phenol-urea resin bonded board and Phenolic resin bonded board.

-52+

Item					Type	of Boar	ď				Average
•	101	JO2	103	UO4	005	106	1007	800	109	U10	, ,
	U011	0021	1031	0041	0051	8061.	0071	U081.	U091	U101	
M.L.	58	54	56	55	55	55	52	42	51.	54	
	00111	00211	00311	10411	00511	00611	00711	U0811	00911	m011	
t	251 251 248	252 250 251	247 247 249	248 246 252	248 244 245	253 258 255	251. 250 251	254 256 257	257 257 258	264 264 260	
	249 250	253 251	248 248	249 246	248 247	254 254	253 251	256 257	258 258	262	
a.t.	250	251	248	248	246	255	251	256	258	262	253
vl.	15.53	15.01	15.27	15.23	15.45	15.01	15.48	15.26	14.33	14.83	15.14
¥2.	14.46	14.01	14.30	14.34	14.47	14.07	14.46	14.24	13.33	13.82	14.15
D.of w.	1.07	1.00	0.97	0.89	0.96	0.94	1.02	1.02	1.00	1.01	0.99
S.G.	0.88	0 .70	0.88	0.88	0.89	0.84	0.88	0.85	0.79	0.80	0.84
M.C.	7.4	7.1	6.8	6.2	6.6	6.7	7.0	7.0	7.5	7.4	7.0

TOTAL DATA RECORDED AND CALCULATED FROM THE UREA-FORMALDEHYDE RESIN BONDED BOARDS

53

							255	15.23	24.25	0.99	0.85	6.9	253	0.85	7.0	3742.0
	a noiz	T X	260	259	260	52	%	27.22	14.37	20°T	0.84	7.3	3 %	0.82	7.4	3568.3
	21601	192	258	192	83	262	5 ,7	15.11	01.11	1.01	0.83	7.2	52	0.82	1.4	3530.8
	0080.2	*	52	252	255	2	\$3	15.44	14.40	1.04	0.87	7.2	251	0.86	1.1	2930.2
	W712	×2	%	259	2	258	258	15.58	14.53	1.05	0.86	7.2	254	0.87	1.7	3634.9
ntinued)	1061 2	%	ž	257	52	258	5 29	15.06	50-77	0.96	0.83	6.8	255	0.84	6.8	3807.7
°°)	215a	253	22	23	2	52	222	15.12	14.19	0.93	0.86	6 .6	249	0.88	6.6	3991.5
	21701	6 <u>7</u> 7	256	260	ష	ŝ	257	15.03	77-77	0.89	0.82	6.3	53	0.85	6.3	3865.5
	U 0312	52	233	252	22	233	233	14.93	13.99	16.0	0.84	6.7	221	0.86	6.8	3996.0
	10212	246	248	248	247	247	247	15.65	37.66	0.99	0.00	6.8	249	0.85	7.0	919.5
	2110	576	573	250	249	576	249	15.00	14.01	0.99	0.85	1.7	22	0.87	7.3	4176.0
	1	ئ ب					e, t.	г л	ğ	D.of v.	s.e.	м.с.	A. t.	A.S.G.	A.N.C.	к.п.

-54-

	1012	1022	0032	1042	0052	8062	2700	1082	2600	m 02	
¥.L.	33	ୡ	ส	8	র	ຊ	8	16	18	18	
, ,	<u> </u>	ននិ ននិ	ጽፍষጽጽ	็	สสิลิ	<u>፟</u> ፟፟፟፟ አ ភ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ ສ	*****	রররর	સ જ્ઞે સે સે સે	****	
	え	520	248	255	247	258	259	252	259	Ŗ	255
s	60.84	61.40	61.14	62.00	58.84	61.18	61.25	61.52	61.00	61.35	61.05
3	84446	664 664 664 664 664	89933	54 54 54 54 54 54 54 54 54 54 54 54 54 5	85588	435	\$3335T	83333	333333	X37 X37 X37 X37 X37 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4 X4	
1 2 1	at.	432	87	844	428	3	452	438	677	457	13
¥2.	115.68	118.32	115.20	116.49	70.011	27.75	116.55	113.92	114.54	95.611	115.86
D.of T.	168	182	178	193	181	183	E61	186	190	2 67	187
D.of W.	54.84	56.92	54.06	67-75	51.70	56.57	55.30	52.41	53-54	58.21	54.80
T. S.	74.0	72.8	71.8	75.6	73.0	70.9	74.5	73.8	74.0	72.7	73.3

(Continued)

-55-

-	
•	
2	2

89.7	476.7	12.6
94.8	387.5	10.9
87.7	0.104	77.77
85.2	374.9	11.8
90.3	41.2	1.21
92.5	535.5	1.11
87.8	589.9	14.8
87.9	495.0	12.8
88.4	531.0	13.3
92.7	480.5	12.3
1.06	530.5	12.7
¥.A.	M. R2.	R. M. R.

5.9	L°9	9*9	9*9	L*9	0*9	۶•9	5.9	٤•9	٤.3	M.C.
78* 0	£ 8. 0	78-0	\$8 *0	78.0	48° 0	58. 0	\$8. 0	£8. 0	T8- 0	. 9.2
76*0	46.0	46 •0	<i>1</i> 6.0	86. 0	\$ 8*0	se.o	76*0	68.0	68 °0	.v 10.U
74.42	8E.AI	T9'7	56.45	57.25	76.76	E9 *7 I	02.21	14.12	81.71	•2•
96°5T	55.25	95°5T	72°57	£7°57	72*62	85° 5T	70° 9T	T0°ST	10°5T	.Iw
390	362	592	792	393	852	012	69Z	528	L92	.t.a
390	292	£92	792	292	358	TLZ	692	852	L98	
362	393	397	593	393	526	TLZ	L92	528	L92	
360	300	192	503	593	529	OLZ	592	526	369	
526	505	592	L92	292	390	892	oiz	528	692	
597	992	592	998	292	852	510	692	852	598	•3
ttoma	TT601 4	TTRODA	FTC/OD4	119004	TTSONA	TTYONA	ETEOD A	PUSTI	TTTONA	
87	٤\$	\$7	£7	£ 7	ES	75	\$7	75	1 5	*'I*W
TOTEL	T601 J	TRONG	tlord	T9004	TSODA	TYODA	LEONA	POST	LICOL	•
LITO	6008	5008	7001	9084	5083	7004	Econa	2003	LODI	-
			þ	reof lo	ad Az					meji
	9*9 0*8*0 0*6*0 17**75 520 590 590 590 590 590 590 590 590 590 59	6°.2 6°.2 0°.83 0°.87 0°.63 0°.87 17ć°.38 17ć°.75 362 360 362 360 362 360 365 360 366 360 360 360 360 360 360 360 360 360 36	\$'9 \$'9 9'9 0'80 0'83 0'87 0'81 0'83 0'87 0'81 0'83 0'87 0'81 0'83 0'87 0'81 0'81 0'87 0'81 0'81 0'87 0'81 0'81 0'87 0'81 17'8 17'75 17'82 17'32 12'32 362 362 362 362 362 362 362 365 365 362 365 365 362 365 365 362 365 365 362 365 365 362 365 365 362 365 365 363 4001 4001 4002 4003 4003 4003 4003 4003 4003 4003 4003	9*9 9*9 9*9 0*82 0*87 0*83 0*87 0*82 0*84 0*34 0*34 0*34 0*34 0*34 0*37 17*42 17*9 17*38 17*75 17*42 12*4 12*32 12*32 12*4 12*4 12*32 12*32 12*4 12*4 12*32 12*32 12*4 12*58 12*32 12*32 12*4 12*58 12*32 12*32 12*54 12*32 12*32 12*32 12*54 12*32 12*32 12*32 12*52 12*28 12*32 12*32 12*1 12*32 12*32 12*32 12*2 12*28 12*32 12*32 12*2 12*2 12*32 12*32 12*2 12*2 12*32 12*32 12*1 10*1 10*1 12*32 12*2 12*2 12*32 12*32 12*2 12*2 12*32 12*32 12*1	0*2 6*2 6*2 6*2 6*2 6*2 0*37 0*32 0*34 0*34 0*34 0*35 0*38 0*34 0*34 0*34 0*35 0*37 17*72 17*12 17*38 17*75 17*75 17*75 362 367 362 362 360 360 362 367 362 365 365 360 365 367 362 365 365 360 365 366 362 365 365 360 365 366 362 365 365 365 365 366 362 365 365 365 365 366 366 366 365 365 365 366 366 366 365 365 365 366 366 366 366 365 365 366 366 366 365 365 366 562 366 366 366 366	9*0 9*1 9*6 9*7 9*2 0*82 0*82 0*82 0*83 0*83 0*34 0*88 0*36 0*32 0*34 0*34 0*34 17*17 17*12 17*12 17*28 17*73 12*13 12*32 12*32 12*65 12*73 12*15 12*15 12*28 12*32 12*32 528 365 367 363 367 362 360 528 365 367 362 365 360 360 528 365 362 362 362 362 360 528 365 362 362 362 362 360 528 365 362 362 362 362 360 528 365 362 362 362 362 360 528 365 362 362 362 362 360 528 365 362 362 362 362 360 528 365 362 <	6*2 6*0 6*1 6*6 6*0 6*1 6*2 0*62 0*84 0*68 0*64 0*63 0*63 0*63 0*67 0*65 0*84 0*68 0*64 0*64 0*63 0*63 0*67 17*63 17*12 17*12 17*12 17*12 17*38 17*75 12*28 12*65 12*73 12*15 12*38 17*75 210 258 365 365 365 365 211 528 365 365 365 365 211 528 365 365 365 365 365 211 528 365 365 365 365 365 365 211 528 365 365 365 365 365 365 365 211 538 365 365 365 365 365 365 211 528 365 365 365 365 365 365 548 366 365 566 <	e^2 2 e^2 2 e^2 4 e^2 4 e^2 4 e^2 4 0*82 0*82 0*84 0*84 0*84 0*84 0*84 0*87 12*10 17*16 17*17 17*12 17*12 17*13 17*13 17*75 12*10 17*28 12*15 12*15 12*15 12*13 12*132 12*32 12*10 17*28 12*15 12*15 12*15 12*132 12*32 12*32 12*10 17*28 12*15 12*15 12*15 12*132 12*32 12*10 17*28 12*15 12*15 12*15 12*15 12*15 12*10 17*28 12*15 12*15 12*15 12*15 12*15 12*10 12*29 12*15 12*15 12*15 12*15 17*28 12*15 12*15 12*15 12*15 12*15 12*10 17*28 12*15 12*15 12*15 12*15 12*10 12*29 12*2 12*2 12*2 12*2 12*2 15*1 5*2	e ² 3 e ² e ² 0 e ² 1 e ² e e ² 0 e ² 1 e ² 3 e ² 3 e ² 3 e ² 3 0'37 0'83 0'82 0'82 0'84 0'87 0'82 0'83 0'83 0'83 0'84 0'87 0'83 0'84 0'84 0'84 0'87 0'82 0'83 0'83 0'83 0'84 0'87 17'15 12'10 17'e3 17'14 17'15 17'16 17'16 17'73 17'16 17'75 17'76 17'75 17'76 17'75 17'76 17'75 17'76 17'75 17'76 17'75 17'76 17'75 <td>Paradi Paradi Paradi</td>	Paradi Paradi

LOLVI DVLV BECCHUED VAD CVICATVLED LOVADO

-57-

t. 266 266 266 265 266 275 266 275 276 275 276 275 276 277 286 265 276 277 286 265 277 286 265 277 286 265 277 285 285 285 285 285 285 285 285 285 287 285 287 285 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 287 286 281 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15 14. 15.15		PU012	P80212	PID312	SCLOUT	PU0512	PUD612	P10712	PU0812	Pu0912	FUIOLZ	
u.t. 269 257 266 25.3 256 26.4 26.7 26.6 27.3 u.t. 15.47 14.89 15.66 15.34 15.13 15.62 15.32 15.66 16.14 15. u.t. 15.47 14.89 15.66 15.34 15.13 15.62 15.32 15.66 16.14 15. u.t. 14.68 14.03 14.70 14.45 14.45 14.55 14.69 15.15 14. D.off u. 0.79 0.86 0.89 0.87 0.89 0.89 15.15 14. B.of 0.79 0.83 0.89 0.87 0.89 0.99 1. S.d. 0.79 0.83 0.89 0.89 0.89 0.89 0.99 0.99 0.9 M.C. 5.4 6.1 6.5 6.2 5.9 6.7 6.5 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. <th>ئە</th> <th>****</th> <th>****</th> <th>****</th> <th><u>କ୍ଷି</u>କ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷି</th> <th>สี่สีลิลิลิ</th> <th>****</th> <th>***</th> <th>XXXXX</th> <th>****</th> <th></th> <th></th>	ئە	****	****	****	<u>କ୍ଷି</u> କ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷିକ୍ଷି	สี่สีลิลิลิ	****	***	XXXXX	****		
w1. 15.47 14.89 15.66 15.31 15.62 15.62 15.68 16.14 15. w2. 14.68 14.03 14.70 14.45 14.64 14.35 14.69 15.15 14. D.off 0.79 0.86 0.96 0.87 0.89 0.97 0.99 19.15 14. D.off 0.79 0.83 0.83 0.89 0.87 0.89 0.99 19.13 14. S.G. 0.83 0.83 0.83 0.89 0.87 0.89 0.99 19.13 0.9 1 S.G. 0.83 0.83 0.83 0.83 0.83 0.83 0.99 0.99 1 M.G. 5.4 6.1 6.5 6.2 5.9 6.7 6.8 6.7 6.5 6. 6. A.L. 268 289 266 285 265 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 <td>.</td> <td>\$</td> <td>257</td> <td>8</td> <td>5¥3</td> <td>*</td> <td>792</td> <td>267</td> <td>3%</td> <td>82</td> <td>82</td> <td>×2</td>	.	\$	257	8	5 ¥3	*	792	267	3 %	82	82	×2
w2. 14.68 14.03 14.70 14.45 14.45 14.64 14.35 14.69 15.15 14. D.of w. 0.77 0.86 0.96 0.87 0.87 0.89 0.97 0.99 0.99 1. S.G. 0.83 0.83 0.83 0.83 0.83 0.83 0.99 0.99 1. S.G. 0.83 0.83 0.83 0.83 0.83 0.84 0.83 0.93	ч 1 .	15.47	14.89	15.66	15.34	15.13	15.62	15.32	15.68	16.14	15.74	15.50
D.oof w. 0.79 0.86 0.99 0.87 0.89 0.97 0.99 0.99 1.99 S.G. 0.83 0.83 0.83 0.83 0.83 0.89 0.83 0.99 0.99 0.99 0.99 1.93 S.G. 0.83 0.83 0.83 0.83 0.83 0.81 0.82 0.83 0.99 0.99 0.99 1.9 M.C. 5.4 6.1 6.5 6.2 5.9 6.7 6.8 6.7 6.5 6. M.C. 5.4 6.1 6.5 6.2 5.9 6.7 6.8 6.7 6.5 6. M.L. 268 289 266 287 263 266 289 269 26 A.N.C. 5.9 6.1 6.4 6.4 6.0 6.7 6.8 269 26 A.N.C. 5.9 6.2 6.4 6.4 6.0 6.7 6.6 6.6 6.6 M.N. 3132.0 5612.8 2836.4 2736.0 2863.4 3294.0 3073.	NZ.	14.68	14.03	24.70	34.45	14.26	74.64	14.35	59-77	15.15	74-74	14.57
S.G. 0.83 0.84 0.83 0.85 6.7 6.5 6. M.C. 5.4 6.1 6.5 6.2 5.9 6.7 6.8 6.5 6. J.t. 268 288 269 266 257 263 266 269 26 J.s.G. 0.82 0.83 0.86 286 266 269 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 26 6.7 6.13 0.83 0. 37 37 0. 373 0. 3736.1 2736.1 26.6 6.6 6.6 6.6 6.7 6.15 6.15 6.15 6.15 6.1 6.1 6.1 6.1 6.1 6.1	D.of v.	60	0.86	0.96	0.89	0.87	0.89	0.97	0.99	66*0	1.00	64.0
M.C. 5.4 6.1 6.5 6.2 5.9 6.7 6.8 6.7 6.5 6. A.t. 268 258 260 257 263 266 269 26 A.t. 268 258 266 257 263 266 269 26 A.S.G. 0.83 0.84 0.84 0.84 0.84 0.83 0. A.S.G. 5.9 6.2 6.4 6.4 6.0 6.7 6.7 6.6 6. A.M.C. 5.9 6.2 6.4 6.4 6.0 6.7 6.7 6.6 6. M.RL. 3132.0 3649.5 2794.5 3433.5 3610.8 2926.4 2736.0 2863.4 3294.0 3073.	s.e.	0.83	0.83	0.83	0.83	0.85	0.84	0.82	0.84	0.83	0.83	0.83
A.t. 268 258 266 257 263 266 269 266 269 266 269 26 A.S.G. 0.82 0.83 0.84 0.83 0.86 0.84 0.84 0.84 0.83 0. A. N.C. 5.9 6.2 6.4 6.4 6.0 6.7 6.7 6.7 6.6 6. M.R. 3132.0 3649.5 2794.5 3433.5 3610.8 2926.4 2736.0 2863.4 3294.0 3073.	ж.с.	5.4	6.1	6.5	6.2	5.9	6.7	6.8	6.7	6.5	6.8	6.4
A.S.G. 0.82 0.83 0.84 0.83 0.86 0.84 0.84 0.84 0.83 0. A.N.C. 5.9 6.2 6.4 6.4 6.0 6.7 6.7 6.7 6.6 6. M.RI. 3132.0 3649.5 2794.5 3433.5 3610.8 2926.4 2736.0 2863.4 3294.0 3073.	4 t.	208	258	592	ž	251	263	3 8	×	269	265	365
A.M.C. 5.9 6.2 6.4 6.4 6.0 6.7 6.7 6.7 6.6 6. M.RL. 3132.0 3649.5 2794.5 3433.5 3610.8 2926.4 2736.0 2863.4 3294.0 3073.	A.S.G.	0.62	0.83	0.84	0.83	0.86	0.84	0.84	0.84	0.83	0.84	0.84
M.R. 3132.0 3649.5 2794.5 3433.5 3610.8 2926.4 2736.0 2863.4 3294.0 3073.	A.M.C.	5.9	6.2	6.4	6.4	6.0	6.7	6.7	6.7	6.6	6.7	6.4
	М. Ю.	3132.0	3649.5	2794.5	3433.5	3610.8	2926.4	2736.0	2863.4	3294.0	3073.5	3151.4

fame & tank	THAT IT A TRACE
	ъ.
-	

-58-

			265	62.56		438	115.07	173	53.02	65.5
PU02	8	292 99 12 29 29 29 29 29 29 29 29 29 29 29 29 29	212	63.73	<u>859</u> 855	455	123.45	183	59.72	67.2
PU092	শ্ব	<u>1</u> 2222	265	62.04	<u> </u>	435	177.41	81	57.37	64.2
PID62	8	****	263	62.00	44898	436	113.58	173	51.58	65.8
PU072	19	****	259	62.32	5558S	164	116.77	172	54.45	66.4
PUD62	น	****	265	62.22	438 FFF	077	114.15	175	51.93	66.0
PU052	3	****	262	62.04	479 734 734 734 734	436	112.43	727	50.39	66.4
FU042	77	***	×	63.40	57739	667	115.40	221	52.00	63.2
1 36009	শ্ব	192 552 192 552 192 552 193 555 193 55	\$	63.34	44444	614	51.411	727	50.81	64.7
PI022	8	₩ ₩₩₩	%	62.26	1927	4.28	112.10	168	49.64	64.6
PU012	え	××××××	ж Ж	62.22	22338	131	06.111	173	52.08	66.1
	K.L.	r.		и.	ri 1	a.72.	12.	D.of T.	D.of W.	1.3.

(Continued)

-59-

A 100
-
-
-
-
-
C .3
· · · · ·

82.8	520.7	16.6
84.3	1.767	r.1
84.4	572.5	17.3
82.9	5.4.5	19.0
87.3	459.5	16.8
83.4	4.86.9	16.7
81.2	5.44.9	15.1
80.2	559.4	16.3
80.2	550.8	19.7
80.4	491.8	13.5
83.7	563.4	17.9
V.A.	N.R2.	R. K. R.

YAOLOS		an a chu chu chu chu chu chu		p	teod to e	dár					medi
10 - 21 - 11 - 11 - 11 - 11 - 11 - 11 -	LTO	601	801	LO I	908	Sot	7 04	103	FO2	LOJ	
	TOLI	T601	T801	tloi	T901	tsoh	T70 I	teoi	1057	TTOI	
	05	75	ES	57	77	87	87	ES	05	\$ \$	N.L.
	TTOTA	TT601	FO811	TTLOI	TT90 4	TTSOI	TTYOI	TTEON	FO211	LOLLI	
	523	552	£92	528	τίz	152	520	olz	527	692	••
	520 522	221 224	592	192 1.67	592	752 520	526	517 201	523 527	7LZ 7.1.7	
	527 520	522 521	59E 79E	LSZ 520	tlz tlz	552 524	522 526	olz 7LZ	525 527	Z1Z Z1Z	
T9 2	527	526	792	558	692	526	558	012	525	212	
97°51	te-st	72*55	98°51	77°ST	66*ST	61°51	75*51	TS*ST	62°5T	96°51	v].
19 71	77 71	06 7 L		59 7L	ULSL		99 7L	09 71	OR 7L	99 7L	CA.
70 ° ¥T	tete • tere	4 6 • • • •	4C+++T	60.41	0 T •CT	76.41	00*77	60 U	60.47	CC+197	•78
98.0	78. 0	E8. 0	L8. 0	64*0	68*0	88.0	88.0	26- 0	06*0	T8*0	D. of V.
\$8 *0	78. 0	28. 0	68.0	€8. 0	58- 0	\$8. 0	98 °0	£8 *0	06*0	28.0	•D•S
6*5	0*9	8.2	T *9	7.5	6.2	5. 8	0*9	٤•9	0*9	9.2	м.с.

LOLVE DELE HECCHEDE HERIN BONDED BOWED BOWED

	70112	F0212	F0312	FO412	P0512	F0612	P0712	P0812	F0912	F1012	
ئ ە	<i>₹\$\$</i> \$\$	ล ิสีสีสีลิ	ละสิ	สสสสล	£%%%%%%%	፟ ፞፞፞፝፝፞፝፝፞፞ቘቘ	£%%%%%	ጟኯጜጜ	55555	***	
8. \$	8	*	2	233	%	\$2	*	52	257	857	58
м.	15.74	15.50	15.23	15.50	15.36	15.45	15.15	15.40	77.84	15.58	15.38
¥2.	14.85	34.60	11-12	14.67	14.47	19.41	74.34	74.54	14.00	14.68	14.52
D.of v.	0.89	06*0	60	0.83	0.89	76-0	0.81	0.86	0.84	0.90	0.86
S.G.	0.87	0.87	0.85	0.88	0.85	0.86	0.82	0.86	0.83	0.86	0.86
M.C.	6.0	6.2	5.5	5.7	6.2	5.8	5.6	5.9	6.0	6.1	5.9
Δ. t.	380	77	Ŕ	255	258	র্ষু	262	\$ 60	257	255	260
A.S.G.	0.85	0.89	0.84	0.87	0.85	0.86	0.84	0.85	0.84	0.87	0.86
A.M.C.	5.8	6 . 1	5.9	5.9	6.2	5.9	5.5	6.0	5.9	6.1	5.9
м.н.	3496.5	3488.4	3421.8	3303.0	3243.2	2839.5	2952.0	3526.0	3681.5	3460.5	3341.2

(Continued)

-62-

			22	62.67		217	112.44	158	49.76	61.8
F102	18	শ্বর্মপ্রহার	254	62.78	693569	403	108.35	671	45.57	58.7
F092	କ୍ଷ	ష్ సి సే సే సే సే	255	61.78	£\$5333	405	20.0LL	155	48.27	60.8
F082	19	<u> </u>	5 33	62.92	34558	757	71.211	168	49.85	66.4
P072	শ্ব	শ্বশ্বহার্যম	258	61.85	333253	121	130.64	166	48.79	64.3
P062	8	ส ีส์ลิลิลิ	527	62.70	<u> </u>	393	112.95	661	50.25	54.5
R052	16	****	5 %	61.26	5333	57	375.66	151	51.40	61.3
F042	33	*****	251	63.77	촫긙뵠뙳뙳	392	377.72		47.68	56.2
F032	8	******	254	62.24	33244	627	01.111	69T	51.86	66.5
P022	19	ละการ	\$	64.00	84484	£07	77.211	152	48.77	60.5
F012	19	ቘቘ ቘቘ	560	63.48	135 P 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	077	118.65	180	55.17	69.2
4	N.L.	r i		ю.	ន	a.12.	¥2.	D.of T.	D.of W.	T.S.

(Continued)

-	g
	3
4	3
1	
ć	5
۰.	-

33.6	535.5	16.2
72.6	499.5	71.12
78.1	549.0	14.9
79.5	482.9	13.7
78.9	598.5	20.3
81.7	584.1	20.6
83.9	499.5	15.4
7-72	670.5	20.3
83.3	503.2	14.7
76.2	527.4	15.1
86.9	440.6	12.6
И.А.	N.R2.	R. N. R.