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ABSTRACT

F ors te r ,  John R . , M.S., Spring, 1977 Geology

Diagenesis o f  the Lower Ordovician Manitou Formation, El Paso 
County, Colorado (113 p.

D i re c to r :  Don Winston

West o f  Manitou Springs, El Paso County, Colorado, the Lower 
Ordovician Manitou Formation is  well  exposed a t  two geo log ica l ly  
d i s t i n c t  l o c a l i t i e s :  1) Wil l iams Canyon where r e l a t i v e l y  un
a l te red  rocks are gray l imestone and b u f f  dolomite w i th  l im i te d  
numbers o f  bedded white chert  nodules; and 2) Indian T ra i l  along 
the Ute Pass Fault  Zone, where the rocks are s t rong ly  a l te red  red 
dolomite w i th  abundant beds and nodules o f  white chert .

Bed by bed c o r re la t io n  o f  measured sect ions a t  both l o c a l i t i e s  
enabled comparison o f  the o r ig in a l  sediment and a de ta i led  pe tro 
lo g ic  comparison o f  the diagenesis. Seven major d iagenet ic  episodes 
can be d is t ingu ished :  E-1 Cementation; E-2 So lu t ion ;  E-3 Dolomi-
t i z a t i o n ;  E-4 S i l i c i f i c a t i o n ;  E-5 D o lom it iza t ion ;  E- 6  Weathering; 
and E-7 C a lc i t i z a t io n .  E- 6  consisted o f  three processes 6 a- 
d o lo m i t i z a t io n ; 6 b - s i l i c i f i c a t i o n  and 6 c -s o lu t io n .  Episodes one 
through f i v e  took place in a s im i la r  way a t  both l o c a l i t i e s  be
cause as the rocks were deposited they went through a ser ies o f  
d iagenet ic  changes. This conclusion d i f f e r s  from t r a d i t i o n a l  
in te rp re ta t io n s  o f  diagenesis because instead o f  separat ing each 
d iagenet ic  event in to  t ime in te r v a ls ,  I be l ieve the events over
lapped in  t ime and the sequence resu l ts  from the passage o f  sed i
ments through a ser ies o f  d iagenet ic  environments which were 
simultaneously ac t ing  on the rocks. These episodes were fol lowed 
by subaeria l exposure and deep weathering a t  the Indian T ra i l  
L o c a l i t y  during the post-Manitou pre-Devonian Will iams Canyon 
l imestone h ia tus ,  c rea t ing  red dolomite w i th  abundant beds o f  white 
cher t  and karst  co l lapse breccias. The Dorag model o f  dolomi
t i z a t i o n  by mixing sa l ine  and fresh waters explains the E- 6  dolomi
t i z a t i o n  and is  extended to  include the E- 6  s i l i c i f i c a t i o n  and 
formation o f  kars t  breccias. Weathering was followed by c a l 
c i t i z a t i o n  at both l o c a l i t i e s .
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CHAPTER I 

INTRODUCTION

General Statement

The d iagenet ic  formation o f  dolomite and chert  in l imestone 

has been studied by a great  many ge o lo g is ts ,  (Walker, 1963;

Friedman, 1964; Banks, 1967; Roehl, 1967, and many more) but 

many problems o f  d iagenet ic  sequence and processes s t i l l  remain 

unsolved. Do lom it iza t ion  and s i l i c i f i c a t i o n  o f  l ime sediments in 

the extensive Lower Ordovocian rocks have been p a r t i c u l a r l y  per

p lex ing (Cloud and Barnes, 1957). The Manitou Formation, El Paso 

County, Colorado, o f fe rs  an exce p t io na l ly  good oppor tun i ty  to  fu r th e r  

study the diagenesis o f  a Lower Ordovician l imestone. Swett (1964) 

proposed a probable sequence o f  d iagenet ic  mineral formation f o r  the 

Manitou Limestone but was unable to es ta b l ish  a de ta i led  s t r a t i 

graphie framework f o r  accurate c o r re la t io n  o f  the r e l a t i v e l y  un

a l te red  sect ions and the pervas ive ly  do lom it ized and s i l i c i f i e d  

sec t ions ,  thus l i m i t i n g  h is  study to proposing a probable sequence 

o f  d iagenet ic  mineral fo rmat ion .  I have been able to  co r re la te  a 

r e l a t i v e l y  unaltered sect ion w i th  a s t ro n g ly  a l te red  sect ion.  Study 

o f  the diagenesis on a u n i t  by u n i t  basis has allowed me to  rev ise  

Swett 's  (1964) work and poss ib ly  b e t te r  understand some o f  the 

d iagenet ic  sequences and processes.

1
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Physical and S t ra t ig rap h ie  Location

West o f  Manitou Springs, El Paso County, Colorado, the Lower 

Ordovician Manitou Limestone is  well  exposed in sec. 6 ; T.14S.;

R.67W. and secs. 31 and 32; T.13S.; T.67W. This area can be 

d iv ided in to  two d i s t i n c t  geologic  l o c a l i t i e s  (F ig.  1 and 2 ) ;

(1) The area southwest o f  U.S. Highway 24, he rea f te r  re fe r red  to  as 

the Indian T ra i l  L o c a l i t y ;  (2) The area northeast o f  U.S. Highway 24, 

known as Wil l iams Canyon. The Manitou Limestone was deposited over 

the eroded Cambrian Peerless Formation a t  both l o c a l i t i e s .  Over- 

l y in g  the Manitou Limestone a t  the Indian T r a i l  L o c a l i t y  is  a q u a r tz i te  

u n i t  o f  unknown age, poss ib ly  the Middle Ordovician Harding For

mation. At Wil l iams Canyon the Manitou Limestone is  ove r la in  by 

the Devonian Wil l iams Canyon Limestone (Maher, 1950).

Statement o f  Problem

Indian T ra i l  and Wil l iams Canyon represent two g e o log ica l ly  

d i s t i n c t  l o c a l i t i e s  (F ig.  2 ) .  At Wil l iams Canyon, the Manitou Lime

stone is  a b u f f  o r  gray l imestone w i th  a minor amount o f  dolomite and 

has undergone l i t t l e  d iagenet ic  a l t e r a t i o n .  Abundant sp icu la r  chert  

nodules occur a t  only occasional horizons. The Indian T ra i l  area,

1.2 km (1.5 m i les)  southwest o f  Wil l iams Canyon, l i e s  adjacent to 

the Ute Pass Fault  Zone. Here the Manitou Limestone is  pervasive ly  

do lom it ized  (except in the basal 8 . 6  meters),  red and brown in  c o lo r ,  

and has abundant cher t  nodules and beds.
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Figure 1, Geologic Map o f  Study Area
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Figure 2 . Map showing the two geo log ica l ly  
d i s t i n c t  areas and locat ions  o f  
measured sect ions.
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Swétt (1964) in a s im i la r  way, d is t ingu ished  two l i t h o lo g ie s  

o f  the Manitou: (1) pervas ive ly  do lomit ized rocks which outcrop

to the south o f  the Manitou Springs area a t  Deadmans Canyon,

Oil  Creek, and Phanton Canyon; and (2) the r e l a t i v e l y  unaltered 

l imestones a t  Wil l iams Canyon, and to the north o f  the Manitou 

Springs area a t  The A i r  Force Academy. The sect ions a t  Indian T ra i l  

are s im i la r  in  most aspects to  the do lomit ized southern l o c a l i t i e s  

studied by Swett (1964) and are close enough to the sections in 

Wil l iams Canyon to be co r re la ted  on a u n i t  by u n i t  basis . Swett 

(1964) d id  not c o r re la te  between the southern l o c a l i t i e s  and Will iams 

Canyon because d o lo m i t iz a t io n  was too complete.

A probable paragenesis fo r  the Manitou was proposed by Swett 

(1964) as fo l lo w s :  (1) Deposit ion,  la rg e ly  as an organic al lochemical

l imestone w i th  up to 15 percent rock fragments o f  chert  and o r tho-  

q u a r t z i t e ;  (2) Neomorphic r e c r y s t a l l i z a t i o n  o f  m ic r i te  to  micro- 

s p a r i t e ;  (3) D o lom it iza t ion  o f  selected horizons in the northern 

l o c a l i t i e s  and ra the r  complete d o lo m i t iza t io n  in  the more southern 

l o c a l i t i e s .  Limestones w i th  a high i ron  content were s e le c t i v e ly  

do lom i t ized ;  (4) S i l i c i f i c a t i o n  ranging in degree from p a r t ia l  void 

f i l l i n g  to  complete s i l i c i f i c a t i o n  th a t  produced dense cher t  beds;

(5) C a lc i t i z a t i o n  o f  cher t  and do lom ite ;  ( 6 ) Oxidation o f  i ron bearing 

m inera ls ,  e sp e c ia l ly  g laucon i te  and a n k e r i t i c  dolomite to l im on i te  

and hematite.
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I be l ieve  a minimum o f  two major episodes o f  do lo m i t iza t io n  

can be d is t ingu ished :  ( 1 ) an e a r ly  po ro s i ty  co n t ro l le d  dolomite

which i s  found a t  both l o c a l i t i e s ;  and ( 2 ) a pervasive do lo m i t iza t io n  

a t  Indian T ra i l  which was the r e s u l t  o f  weathering. Early s i l i c i 

f i c a t i o n  present as s p ic u la r  che r t  nodules occurs a t  both l o c a l i t i e s .  

A second period o f  s i l i c i f i c a t i o n  a t  the Indian T ra i l  L o c a l i t y  is  

suggested by cher t  beds and la rg e r  nodules w i th  s p icu la r  chert  

centers.  The d i f fe ren ces  between the two l o c a l i t i e s  are possib ly  

the r e s u l t  o f  a Middle to  Upper Ordovician subaeria l weathering 

along the Ute Pass Fau lt  Zone.
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CHAPTER I I  

DEPOSITION AND CORRELATION

General Statement

Before discussing the diagenesis which changed the rocks 

o f  the Manitou Formation i t  is  necessary to  i n te rp re t  what the 

o r ig in a l  carbonate sediments were l i k e  compos i t iona l ly  and tex 

tu ra l  l y  as they were deposited and to  describe what the rocks are 

now a t  both l o c a l i t i e s .  The best evidence o f  the o r ig in a l  compo

s i t i o n  o f  the sediment is  found a t  Wil l iams Canyon (Sections 1 and 

2) where the le a s t  pos t-depos i t iona l  change has taken place. There 

I subdivided the sect ion in to  three un i ts  which can be corre la ted  

throughout the study area. General u n i t  co r re la t io n s  are presented 

in  the fo l lo w in g  discussion and more de ta i led  in te rv a l  by in te rv a l  

co r re la t io n s  are included in  Appendix I I .

Un i t  I

The basal u n i t .  Un i t  I ,  is  represented by 0-15 meters (0 -49 ' )  

sec t ion  1, 2.1-17.5 meters (7 -5 7 ' )  sect ion 3 and 0-7.4 meters 

(0-24*) sect ion 5 (Appendix I ) .  This u n i t  i s  t y p i c a l l y  a th in  

bedded gray and b u f f  l imestone (F ig.  3) w i th  occasional i n t r a -  

c l a s t i c  packstone beds and lenses up to  30 cm. (12") th ic k  which 

cannot be co r re la ted  between sect ions.  Varying amounts o f  chert

9
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10

in  a l l  sect ions occur mostly  as i n t e r s t i t i a l  f i l l i n g s  in  f o s s i l -  

i fe rous  grainstone beds.

Var ia t ions  from the t y p ic a l  gray th in  bedded l imestone o f  t h i s  

u n i t  are found from 8.6-17.6  meters (28-57 ')  sect ion 3 and from 

0-7.4 meters (0 -24 ' )  sect ion 5. At these in te rv a ls  the th in  bedded 

l imestones are pervas ive ly  do lomit ized and stained red by ox ida t ion  

o f  i ron minerals . Chert nodules which de l ineate  bedding are com

mon in these in te rv a ls  a t  both sect ions 3 and 5, whereas they are 

sparse a t  sect ion 1 .

Before d iagenet ic  a l t e r a t io n  o f  Un i t  I ,  the sediments a t  the 

mud-water in te r fa ce  consis ted mostly o f  mudstone w i th  occasional 

beds o f  grainstone and packstone. The al lochemical cons t i tuen ts  in  

the grainstones and packstones are ,  in  order o f  decreasing abundance, 

i n t r a c la s t s ,  pe lo ids ,  sponge sp icu les ,  t r i l o b i t e  fragments, 

daisycladacean algae, and brachiopod fragments. The daisycladacean 

algae are th re a d - l i k e  s t ruc tu res  o f  ra d ia t in g  c a l c i t e  from a centra l  

core (F ig .  4) .  The m ic r i t e  mud was the most dominant sediment, 

w i th  occasional episodes forming packstones and gra instones, probably 

dur ing storms.

Un it  I I

The middle u n i t .  Un i t  I I ,  is  represented by 15.1-42.1 meters 

(49-137*) sect ion 1, 0-13.5 meters (0 -44 ' )  sect ion 2, 17.6-42.1 meters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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bedded
^iirtvé îtone

40cm .

FIGURE 3a FIGURE 3b

FIGURE Folded thin bedded limestone overlain by a 30cm.
thick grainstone bed and horizontal thin bedded 
limestone. The folding occurred a fter solution of 
the lower micrite and before deposition and sol
ution of the overlying beds. Therefore the solution 
occurred a t or near the mud water interface.
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(57-137')  sect ion 3, and 0-22.1 meters (0 -7 2 ' )  sect ion 4 (Appendix I ) .  

This u n i t  is  character ized by abundant beds and nodules o f  cher t  in 

p a r t i a l l y  do lom it ized ,  massive, gray and b u f f ,  t h in  bedded and 

nodular l imestones. The nodular and th in  bedded l imestones d i f f e r  

somewhat from the basal t h in  bedded l imestones in  th a t  the d e f i n i t e  

bedding in Unit  I is  not so dominant in  Un i t  I I .  In t h i s  u n i t  

so lu t io n  resu l ted  in  small nodules o f  gray l imestone (less than 2  cm 

across) separated by lacy whisps o f  b u f f  dolomite. This type o f  

l imestone is  herein termed lacy l imestone (F ig.  5).  Thin bedded 

l imestones which t y p i f y  Un i t  I occur only in a few horizons in 

th is  u n i t .

This u n i t  in  sect ions 4 and 5 var ies from the ty p ic a l  Un it  I I  

in  sect ions 1 and 2  because those sect ions are pervasive ly  dolomit ized 

and are red and brown instead o f  gray. In some places both primary 

depos i t iona l  features as well  as so lu t io n  and re la ted  ea r ly  d iagenet ic  

s t ruc tu re s  can be seen as ghost s t ruc tu res  through th is  pervasive 

d o lo m i t iz a t io n .

At the mud-water in te r fa c e  Un it  I I  was deposited as mudstone, 

g ra ins tone ,  and packstone s im i la r  to  Un it  I .  However, the amount 

o f  mudstone is  reduced and the gra instone and packstone beds are 

more abundant. The a l lochemical cons t i tuen ts  in  th is  u n i t  cons is t  

o f  fewer in t r a c la s ts  and more sponge sp icu les ,  daisycladacean algae, 

brachiopod fragments and a lga l s t ro m a to l i te s .
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Figure 4. Daisycladacean Algae (?) - Ca lc i te
c rys ta ls  rad ia t ing  from a m ic r i te  core. 
These are th re a d - l ike  s t ruc tu res  which 
are up to 1 mm in length.

Figure 5. Lacy Limestone - The so lu t io n  l ine s  
are commonly d o lo m i t ic ,  probably due 
to do lom it iz ing  so lu t ions  fo l lo w in g  
the l ines  o f  so lu t ion .
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Unit  I I I

The upper u n i t .  Un i t  I I I ,  is  represented by 42.1-60 meters 

(137-195')  sect ion 1, 13.5-31.7 meters (44-103')  sect ion 2,

42.1-49.2 meters (137-160') sect ion 3, 22.1-41.2 meters (72-134') 

sect ion 4, and 0-17.0 meters (0 -58 ' )  sect ion 7 (Appendix I ) .  This 

u n i t  a t  Wil l iams Canyon cons is ts  o f  massive gray l imestone beds 

(approximately 1.5 meters th ic k )  w i th  common lacy so lu t io n  sutures 

a l te rn a t in g  w i th  less massive brown or tan,  th in  bedded or lacy ,  

dolomite beds. The a l te rn a t io n  o f  l imestone and dolomite beds gives 

t h is  upper u n i t  a very d i s t i n c t i v e  p r o f i l e  which is  ea s i ly  d i s 

t ingu ished in sect ions 1 and 2. Chert nodules which character ize  

Un it  I I  are found on ly  a t  a few horizons in  t h i s  u n i t .  The uppermost 

3.1 meters o f  t h i s  u n i t  in  sect ions 1 and 2 are brown and p i t t e d  by 

s o lu t io n  vugs f i l l e d  w i th  c a l c i t e .

The rocks in Unit  I I I ,  sect ions 3,4,6 and 7 are red, pervasive ly  

do lom it ized  and contain abundant cher t  nodules. Occasional so lu t ion  

breccias are also present. Many o f  the primary depos i t iona l  features 

and most o f  the s t ruc tu res  which resu l ted  from ea r ly  post-depos i t iona l  

changes can be seen through the pervasive red dolomite.

O r ig in a l l y  the sediment in U n i t  I I I  was predominantly m ic r i te  

and algae w i th  some t r i l o b i t e  fragments, sponge spicules and 

bachiopod fragments. The types o f  algae in  th is  u n i t  include blue- 

green s t ro m a to l i t e s ,  on ko l i tes  and daisycladacean algae. The
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uppermost surfaces o f  in d iv id u a l  beds w i th in  t h is  u n i t  are 

commonly sharp, planar surfaces. I n t ra c la s ts  and t r i l o b i t e  f r a g 

ments are planed o f f  at these surfaces, in d ic a t in g  e a r ly  subaqueous 

cementation fol lowed by scour and sediment by-pass.

In a l l  three u n i t s ,  d e t r i t a l  quartz and z ircon combine to comprise

up to  5 percent o f  the rock by po in t  count. O r ig ina l  v a r ia t io n  in 

i ron  and magnesium contents o f  the sediments may have u l t im a te ly  

resu l ted  in  a l te rn a t in g  beds o f  dolomite and l imestone. This po in t  

w i l l  be discussed in Episode 5 o f  the d iagenet ic  sequence.

The environment o f  depos i t ion  o f  t h is  group o f  rocks was probably 

an i n t e r t i d a l  to  sub t ida l  marine carbonate p la t fo rm . The presence 

o f  scour and by-pass surfaces ind ica tes  a t  t imes the sediment 

accumulated up to  wave base. In te rv a ls  up to  three meters th ic k  were

co r re la ted  across the area {Appendix I I )  in d ic a t in g  l i t t l e  topo

graphic r e l i e f  throughout the area. Therefore the area was probably 

t e c t o n i c a l l y  s tab le  dur ing depos i t ion  o f  a l l  three u n i ts .
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CHAPTER I I I  

DIAGENESIS

General Statement

M u l t ip le  d iagenet ic  episodes o f  s o lu t io n ,  s i l i c i f i c a t i o n ,  

d o lo m i t iza t io n  and c a l c i t i z a t i o n  appear to  have occurred a f t e r  

depos i t ion  o f  the lime-mud in  the fo l low ing  sequence: E-1

Cementation; E-2 S o lu t io n ;  E-3 D o lom i t iza t ion ;  E-4 S i l i c i f i c a t i o n ;  

E-5 D o lo m i t iza t io n ;  E- 6  Weathering; E-7 C a lc i t i z a t io n .  These are 

the major episodes I can d i f f e r e n t i a t e  p e t r o lo g ic a l l y .  Some o f  

these episodes probably overlapped in t ime, producing va r ia t io ns  

in  the above sequence. These v a r ia t io n s  are not common enough at  

any s ing le  l o c a l i t y  to substan t ia te  recogn i t ion  as major d iagenet ic  

episodes and w i l l  be discussed as a group fo l low ing  the in d iv idu a l  

d iscussions o f  the major episodes.

Episode 1 - Cementation

Post-depos i t iona l  subaqueous cementation and t ransformat ion o f  

aragoni te  to  c a l c i t e  occurred ra p id ly  a f t e r  deposit ion o f  the l ime 

sediment. Hardgrounds and f le x u re  cracks in the l ime mud which 

occurred a t  the mud-water in te r fa ce  are the evidence o f  t h i s  e a r ly  

cementation. Later  d iagenet ic  episodes (E-2 through E-7) a l l  mask

17
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the E-1 c a lc i t e  cement and the abundance o f  the E-7 c a lc i t e  makes 

i d e n t i f i c a t i o n  o f  the e a r ly  cement d i f f i c u l t .  Episode E-1 occurred 

in a l l  three un i ts  throughout the study area.

Early cementation o f  the lime-mud is  evidenced by hardgrounds 

in  a l l  three un i ts  (F ig .  6 ). The hardgrounds commonly have a th in  

r ind  o f  red or b u f f  i ron  s ta in  on t h e i r  uppermost surfaces. Cemented 

al lochemical co n s t i tu e n ts ,  in c lu d in g  in t r a c la s t s ,  t r i l o b i t e  fragments 

and many other types are commonly planed o f f  a t  these surfaces.

The hardground surfaces are e i t h e r  f l a t ,  having no r e l i e f ,  or 

are i r r e g u la r  having a maximum r e l i e f  o f  f i v e  cm. Both the i r r e g u la r  

and the f l a t  surfaces are genera l ly  planar over a la te r a l  distance 

o f  several tens o f  meters and some o f  these surfaces can be co r 

re la ted  throughout the study area. M ic roscop ica l ly  the hardgrounds 

are cemented by sparry c a l c i t e  which is  not e a s i l y  d is t ingu ished  

from Episode 7 sparry c a l c i t e .

The cement was p re c ip i ta te d  as e i th e r  low magnesium c a l c i t e ,  

which is  in d ic a t iv e  o f  the subaeria l f resh water environment, or as 

high magnesium c a l c i t e  and aragonite  p re c ip i ta te d  from sea water.

I have been unable to d is t in g u is h  what type o f  cement was o r i g i n a l l y  

p re c ip i ta te d .  Transformation o f  metastable high magnesium c a lc i t e  

and aragon i te  to low magnesium c a l c i t e  would be expected to have 

occurred in the 450 m i l l i o n  years fo l lo w in g  p re c ip i t a t io n  o f  the 

cement (Ba thurs t ,  1975). Therefore, the cement th a t  is  now c a lc i t e
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Figure 6 . Ca lc i te  cernent (E-1) hardground over- 
la in  by a s i l i c i f i e d  (E-4) grainstone.
The granoblast ic  quartz usua l ly  f i l l s  voids 
tha t  were not p rev ious ly  f i l l e d  w i th  c a lc i t e .  
E x t ra - f ine  grained quartz p a r t i a l l y  replaced 
m ic r i te  in trac l .as ts ,
(a) Daisycladacean Algae is  planed o f f  a t  
the hardground surface, (b) Dolomite rhomb 
which is  replaced by a s ing le  gra in o f  
quartz.
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could have been p re c ip i ta te d  in  e i th e r  the subaeria l environment 

as low magnesium c a lc i t e  or in the marine environment as high 

magnesium c a l c i t e  or aragonite .

B r i t t l e  f ra c tu re  o f  some o f  the r e s i s ta n t  l imestone beds in 

the thin-bedded l imestone dur ing deformation a t  the mud-water i n t e r 

face ind ica tes  the l ime sediment was a t  leas t  p a r t i a l l y  cemented 

p r i o r  to  i t s  deformation (see E-2). The b r i t t l e  f ra c tu re  occurs 

as V-shaped cracks in the l imestone beds formed by bending o f  these 

beds (F ig.  7).  The consistency o f  the l imestone appears to  have 

been s im i la r  to  th a t  o f  s t i f f ,  but s t i l l  p l ia b le ,  play-dough or clay. 

This is  ind ica ted  by the con f igu ra t io n  o f  the V-shaped cracks which 

genera l ly  do not completely cu t  through the l imestone beds ( F ig .7).

I f  the l imestone beds were t o t a l l y  l i t h i f i e d  they would have been 

broken in to  separate p la tes .  In c o n t ra s t ,  f le x in g  o f  t o t a l l y  

u n l i t h i f i e d  l ime mud would not have formed the V-shaped cracks, but 

instead the sediment would have bent w i thou t  breaking. The V-shaped 

cracks the re fo re  in d ica te  th a t  the l imestone beds were p a r t i a l l y  

l i t h i f i e d  by e a r ly  E-1 cement p r i o r  to  bending. This cement, l i k e  

the cement o f  the hardgrounds, is  not e a s i l y  d is t ingu ished  micro

s c o p ic a l ly .  However, in places where la t e r  d iagenet ic  episodes have 

not obscured i t ,  t h i s  cement is  v i s i b le  as sparry c a l c i t e ,  s im i la r  

to  th a t  in  the hardgrounds (F ig .  6 ).
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Figure 7. Thin bedded l imestone - Thin beds o f  mud
stone deformed during so lu t ion  leaving zones 
o f  dissolved residue between them. Edgewise 
in t ra c la s ts  occur in the l e f t  center.
(a) Broken limestone bed as a re s u l t  o f  E-2 
so lu t ion ,  (b) Limestone bed pinches but con
tinues through the so lu t ion  residue in to  the 
l a t e r a l l y  adjacent bed. (c) V-shaped tension 
cracks created by bending the s t i f f  mudstone 
bed.
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Figure 8 a. E-2 so lu t ion  o f  l ime mud below the mud-water
in te r face  created a p i t  on the sea f l o o r  
re su l t in g  in  slumping o f  the over ly ing  mud 
in to  the p i t .  The m ic r i te  nodules on both 
sides o f  the p i t  pinch and wrap around the 
bottom o f  the p i t .

Figure 8 b. The p i t  on the seaf loor  was f i l l e d  w i th  an 
edgewise or iented i n t r a c la s t i c  packstone.
(a) V-shaped cracks in d ica te  p a r t ia l  
l i t h i f i c a t i o n  p r io r  to bending.
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The absence o f  aragonite in  the rocks a t  both l o c a l i t i e s  i n 

d icates tha t  any aragonite in the o r ig in a l  sediment or any aragonite 

p re c ip i ta ted  as cement has r e c r y s ta l l i z e d  to  c a lc i t e  or dolomite. 

However, because o f  the complexity o f  the diagenesis I cannot place 

th is  r e c r y s ta l l i z a t i o n  event in  the d iagenet ic  sequence.

Episode 2 - Solut ion

Post-deposit ional so lu t io n  o f  the l ime sediment fol lowed the E-1 

cementation and resu l ted  in  two d i f f e r e n t  types o f  l imestone. One 

type consis ts o f  re s is ta n t  weathering th in  l imestone beds ( t y p i c a l l y  

3-8 cm th ic k )  a l te rn a t in g  w i th  recessive weathering shaly appearing 

beds ( t y p i c a l l y  1-3 cm th ic k )  and character izes Unit  I (Appendix I ) .  

This type is  here termed th in  bedded l imestone (F ig.  3).  The second 

type o f  l imestone is  here ca l led  lacy l imestone, and is  common in 

both Units I I  and I I I .  I t  consists o f  a recess ive ly  weathering lacy 

network o f  so lu t io n  l ine s  d issec t ing  massive l imestone (F ig .  5),

The r e s u l t in g  rocks is  a nodular l imestone in  which the re s is ta n t  

nodules are t y p i c a l l y  1-3 cm in  he igh t ,  w id th ,  and depth. In ou t 

crop the lacy l imestone commonly forms massive appearing beds 

whereas the th in  bedded l imestone forms a d i s t i n c t i v e  t h i n l y  bedded 

outcrop. In both types o f  l imestone the re s is ta n t  nodules or plates 

are genera l ly  m i c r i t i c  and the recessive weathering areas are the 

residue which remains a f t e r  so lu t io n .  These two types o f  limestones 

occur both a t  Wil l iams Canyon and Indian T ra i l  and can commonly be 

seen through the o v e rp r in t  o f  the l a t e r  d iagenet ic  episodes.
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Solut ion o f  l ime mud resu l ted in  the thin-bedded type o f  

l imestone. Some re s is ta n t  l imestone beds are l a t e r a l l y  continuous 

f o r  ten meters, but more o f ten they end in shaly appearing rock, 

r e s u l t in g  in bedded re s is ta n t  nodules o f  va r iab le  length. Where 

the re s is ta n t  l imestone nodules pass in to  shaly appearing rock, 

laminae w i th in  the l imestone bed become compressed. However, the 

laminae are continuous and can be followed from one bed or nodule, 

through the compressed shaly appearing rock and in to  the l a t e r a l l y  

adjacent l imestone nodule on the other side (F ig.  7).  This ind icates 

the shaly appearing areas are composed o f  the nondissolved residue 

which remains a f t e r  so lu t io n  o f  the l imestone. This form could also 

re s u l t  from s o f t  sediment compaction or s t re tch ing  o f  the sediment 

in to  boudinage. However, two l ine s  o f  evidence ind ica te  the shaly 

appearing rock is  a c tu a l l y  the nondissolved residue which remains 

a f t e r  s o lu t io n :  1) The s ize and shape o f  the carbonate mineral grains

change from equidimensional in  the l imestone nodules to  th in  p lates 

th a t  p a ra l le l  the bedding in the shaly appearing rock due to  so lu t ion  

from above and below the mineral g ra ins.  The densi ty  o f  the carbonate 

minerals also changes from a t i g h t l y  packed mosaic in the l imestone 

nodules to scat tered elongate carbonate minerals f l o a t in g  in the 

s i l i c e o u s  (?) residue o f  the shaly appearing rock. This ind icates 

s o lu t io n  reduced the s ize and abundance o f  the in d iv id u a l  carbonate 

gra ins thereby i s o la t i n g  the remaining carbonate mineral grains in
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the concentrated, nondissolved res idue; 2) An increased concentrat ion 

o f  non-soluble d e t r i t a l  quartz and z ircon in the i n t e r s t i t i a l  shaly 

appearing rock ind ica tes  the non-soluble mater ia l  was concentrated 

by s o lu t io n .  The chemical or  in inera log ica l composit ion o f  the 

residue has not been analyzed.

Two l ines  o f  evidence in d ica te  the so lu t io n  o f  lime-mud occurred 

a t  or near the mud-water in te r fa c e .  One is  th a t  the ea r ly  so lu t ion  

appears to have formed small p i t s ,  up to 15 cm deep and 70 cm across 

on the sea f l o o r  (Figs. 7 and 8 ). Adjacent to the p i t s ,  l imestone 

nodules a l te rn a te  w i th  non-dissolved residue pa r t ings .  The l im e

stone nodules a l l  pinch out completely where they pass l a t e r a l l y  

in to  the p i t s .  The laminae o f  the dissolved l imestone nodules con

t inue  around the bottom o f  the p i t s  and up the other side. This is  

the r e s u l t  o f  so lu t io n  j u s t  below the mud-water in te r face  because 

the uppermost bed slumped in to  the p i t  formed by so lu t ion  o f  the 

under ly ing beds. These p i t s  were f i l l e d  w i th  edgewise f l a t  pebble 

conglomerates (Figs. 7 and 8 ). The conglomerate c le a r l y  f i l l e d  a 

hole on the sea f l o o r  th a t  formed by so lu t io n  j u s t  below the deposi- 

t io n a l  in te r fa ce .

The o ther l i n e  o f  evidence o f  so lu t io n  a t  or  near the mud-water 

in te r fa c e  is  th a t  sof t -sed iment deformation j u s t  below the sediment- 

water in te r fa c e  fo lded the thin-bedded l imestone in d ic a t in g  so lu t ion  

had occurred before the s o f t  sediment deformation (F ig.  3). The 

sediments deposited over the s o f t  sediment fo ld  f i l l e d  in the s t r u c 

tu ra l  i r r e g u l a r i t i e s  but were not fo lded.
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Throughout the study area the thickness o f  the re s is ta n t  

m i c r i t i c  l imestone beds is  remarkably uniform. The beds are 

usua l ly  1.5 to 5.0 cm th ic k .  The th in  l imestone beds are not only  

uniform in th ickness,  they are also repeatedly in te r laye red  with  

the residue which remains a f t e r  so lu t io n  o f  the l imestone. This 

re p e t i t i o n  suggests some c y c l i c  or episodic process o f  so lu t io n .

The cons is ten t  thickness o f  the remaining l imestone beds a f t e r  

so lu t io n  ind ica tes  the so lu t io n  c o n s is te n t ly  stopped when the l ime

stone was dissolved down to  1 .5 -5 .0  cm th ic k  or was dissolved to 

w i th in  1 .5-5 .0  cm o f  the mud-water in te r fa c e .  The thickness o f  the 

recessive so lu t ion  residue beds is  not so uniform. However, the 

amount o f  remaining residue depends on ( 1 ) the o r ig in a l  qu an t i ty  

o f  non-carbonate mater ia l  in  the rock,  ( 2 ) how completely the ca r 

bonate minerals were d isso lved ,  and (3) how much carbonate was d i s 

solved. Assuming a reasonably cont inual depos i t ion o f  non-carbonate 

mater ia l  in  the so lu t io n  residue and in  the l imestone bed adjacent 

to i t  might w i th  f u r t h e r  study ind ica te  how much l ime mud dissolved 

before the beds reached th a t  unique th ickness.

Why the l imestone beds are c o n s is te n t ly  th ic k  is  not now ex

p la ina b le .  However, some o f  the c h a ra c te r is t i c s  o f  the so lu t ion  

process can be descr ibed, and these c h a ra c te r is t i c s  may eventua l ly  

lead to  such an exp lanat ion .  These c h a ra c te r is t i c s  are:
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(1) Both the tops and bottoms o f  the th in  l imestone beds 

have been attacked by s o lu t io n  in d ic a t in g  th a t  some 

so lu t ion  c e r ta in l y  occurred below the mud-water i n t e r 

face but poss ib ly  some was a t  the mud-water in te r fa ce .

(2) The absence o f  undeformed pr imary s t ruc tu res  in the 

so lu t ion  residue ind ica tes  th a t  the so lu t ion  residue 

formed only below the depos i t iona l  in te r fa ce .

(3) As pointed out in  E-1, many o f  the l imestone beds

were s t i f f l y  cemented when the beds were bent or fo lded 

during so lu t io n  (F ig .  7).  Some o ther beds were not 

cemented and appear to have flowed. This probably i n 

d icates indu ra t ion  coincided w i th  so lu t ion  and the two 

may have in te rac ted  in the process.

Thus, the so lu t io n  undisputably occurred immediately below the mud- 

water in te r fa c e  during o r  a f t e r  the i n i t i a l  indura t ion  o f  the l ime 

mud.

The second type o f  l imestone th a t  resu l ted  from so lu t ion  j u s t  

below the mud-water in te r fa ce  is  the lacy l imestone. Increased 

concentrat ions o f  d e t r i t a l  quartz and z ircon in the lacy sutures 

ind ica tes  th is  type o f  l imestone is  the re s u l t  o f  so lu t io n .  In 

ad d i t io n  bedding planes are commonly cut  by the sutures. The 

evidence th a t  so lu t io n  occurred j u s t  below the mud-water in te r face  

is  t h a t  lacy sutures are cu t  by scour surfaces (Fig. 9).  The 

so lu t io n  sutures formed before scour but a t  a depth shallow enough
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Figure 9. Lacy limestone th a t  was created by E-2 
so lu t ion  o f  l imestone is  cut  by a scour 
surface in d ica t in g  the so lu t io n  occurred 
ju s t  below the mud-water in te r fa ce .  This 
was followed by deposit ion o f  the over ly ing 
fo s s i l i f e ro u s  grainstone.
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to be cut by the scour. Later  stages o f  e a r ly  d iagenet ic  m in e ra l i 

zat ion crosscut the sutures support ing the e a r ly  d iagenet ic  i n t e r 

p re ta t io n .  The lacy sutured l imestone occurs throughout a l l  three 

un i ts  but is most common in Units I I  and I I I  (Appendix I ) .

Episode 3 - Do lom it iza t ion

Several stages o f  post-depos i t iona l  d o lo m i t iza t io n  occurred in 

the Manitou Formation. This f i r s t  episode o f  do lo m i t iza t io n  was 

minor in comparison to  the two l a t e r  episodes and resu l ted in c le a r ,  

genera l ly  euhedral to  sub-euhedral rhombs .2 mm in  s ize (F ig.  10). 

Both the m ic r i te  and the allochems were do lom it ized ,  but d o lo m i t i 

za t ion was minor and resu l ted  in  on ly  sparse dolomite rhombs. The 

f i r s t  do lo m i t iza t io n  d id  not appear to  o b l i t e r a te  any o f  the primary 

sedimentary s t ruc tu res  in  the sediment.

The evidence fo r  t h i s  do lo m i t iza t io n  occurr ing as the t h i r d  

episode o f  the d iagenet ic  sequence is  th a t  the dolomite has replaced 

both f o s s i l  fragments and the E-2 so lu t io n  residue areas. Con

verse ly  some dolomite rhombs have been replaced by quartz (F ig.  10), 

the fou r th  d iagenet ic  episode.

Episode 4 - S i l i c i f i c a t i o n

The f i r s t  period o f  s i l i c i f i c a t i o n  is  found in  a l l  three un i ts  

throughout the study area. I t  character izes Unit  I I  where i t  forms 

abundant white chert  nodules which p a ra l le l  bedding. Coarse to very 

f in e  g ranob las t ic  quartz from t h i s  episode o f  s i l i c i f i c a t i o n  replaced
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Figure 10. S i l i c i f i e d  t r i l o b i t e  fragment in m ic r i t e .
Ca lc i te  t r i l o b i t e  fragment (c) in  m ic r i te  
(b) is  p a r t i a l l y  dolomit ized (E-3) (d ) .
E-4 s i l i c i f i c a t i o n  resu lted in  chalcedony 
replacing most o f  the t r i l o b i t e  fragment (a ) ,  
granoblast ic  quartz rep lac ing some o f  the 
m ic r i te  ( f )  and a s ing le  c rys ta l  o f  quartz 
(e) replacing a dolomite rhomb. Note the 
E-3 dolomite rhomb is  cut by the E-4 
chalcedony. This is  ra re ly  found. The 
common re la t io n sh ip  is  shown in Fig. 
where the s i l i c a  and the dolomite do not meet

Figure 11. P a r t i a l l y  dolomit ized and s i l i c i f i e d  t r i l o b i t e  
fragments in m ic r i te .  Ca lc i te  t r i l o b i t e  
fragments (c) in  m ic r i te  (b) are p a r t i a l l y  
replaced by E-4 chalcedony (a) .  E-5 dolomite
(d) replaced both the m ic r i te  and the c a l c i t e .  
Many o f  the dolomite rhombs truncate the 
c a lc i t e - m ic r i t e  boundary. Note the sharp edge 
o f  the chalcedony-micr i te boundary. I f  
do lom it iza t ion  had proceeded the E-4 s i l i 
c i f i c a t i o n  th is  sharp boundary would have been 
lo s t  as in Fig. 10. The sharp chalcedony- 
m ic r i te  boundary ind icates the do lo m i t iza t io n  
is  post s i l i c i f i c a t i o n  and the re fo re  E-5 
dolomite.
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al lochemical g ra ins ,  E-1 cement, E-2 so lu t ion  residues, E-3 

dolomite and f i l l s  many o f  the voids in  the rocks. A very f in e  

grained near ly  is o t ro p ic  chert  commonly replaced m ic r i te .  Occasion

a l l y  chalcedonic quartz l ine s  voids and wraps around s i l i c i f i e d  

allochems. Dolomite rhombs from the E-5 do lo m i t iza t io n  commonly 

replace the f i n e r  grained E-4 cherts thereby bracket ing th is  episode 

o f  s i l i c i f i c a t i o n  between the E-3 and E-5 do lo m i t iza t io n  events.

The hab i t  o f  the chert  takes on the ha b i t  o f  the carbonate i t  has 

replaced, although the two habits  are not id e n t i c a l .  For instance, 

s i l i c i f i c a t i o n  o f  t r i l o b i t e  fragments which are f ib rous  c a lc i t e  

c ry s ta ls  or iented perpendicu lar to  the carapace surface resu lted in 

chalcedonic quartz w i th  a s im i l a r l y  or iented f ib rous  hab i t .  S i l i 

c i f i c a t i o n  o f  calcareous sponge spicules re su l ts  in granoblast ic  

quartz which is  coarser in  the center and rad ia tes outward to  f i n e r  

near ly  i s o t ro p ic  chert  a t  the edges g iv ing  the spicules a pseudo- 

ra d ia l  hab i t  (Fig. 12). M ic r i te  is  commonly replaced by very f in e  

gra ined, near ly  is o t ro p ic  cher t .  These are a few examples o f  the 

preservat ion o f  the primary sediment by th is  s i l i c i f i c a t i o n .

This episode o f  s i l i c i f i c a t i o n  also replaced some dolomite.

This replacement was unique since s ing le  dolomite c ry s ta ls  are re 

placed by s ing le  quartz c ry s ta ls  (F ig.  10). These quartz grains are 

e a s i l y  confused w i th  the d e t r i t a l  quartz s i l t  in the rock, however, 

the d i s t i n c t  rhombohedral shape and uniform size d is t ingu ishes  them.
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Figure 12a. S i l i c i f i e d  sponge spicules in  m ic r i t e .
Ca lc i te  sponge spicules (c) in  m ic r i t e  
(b) are p a r t i a l l y  replaced by s i l i c a  (a) 
leaving remnants o f  the o r ig in a l  c a l c i t e  
spicules (d).  Note the se lec t ive  s i l i c i 
f i c a t io n  o f  the spicules leav ing the m ic r i te  
u n s i l i c i f i e d .

Figure 12b. Note the pseudo-radial quartz growth re 
s u l t in g  from the c rys ta l  s ize increasing 
in to  the void. This ind icates the c a lc i t e  
was progress ive ly  dissolved during s i l i c a  
p re c ip i ta t io n .
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M ic r i te  in t ra c la s ts  are commonly replaced or p a r t i a l l y  r e 

placed by s i l i c a .  The presence o f  m ic r i t e  coatings around some 

s i l i c i f i e d  in t ra c la s ts  poss ib ly  suggests the in t ra c la s ts  were 

s i l i c i f i e d  p r i o r  to being ripped up and accreted. However, the 

s ize and roundness o f  the cher t  i n t r a c la s ts  is  s im i la r  to  th a t  o f  

the m ic r i te  in t ra c la s ts  in  the same rock, suggesting l a te r  se lec t ive  

s i l i c i f i c a t i o n  o f  the i n t r a c la s ts .  Commonly the s i l i c a  has s e le c t iv e ly  

replaced m ic r i te  but d id not replace calcareous sponge spicules in 

the m ic r i t e .  This ind ica tes  the process o f  replacement was se lec t ive  

and the m ic r i te  r in d  around the in t r a c la s t  may have been composed o f  

s l i g h t l y  more s tab le carbonate minerals than the i n t e r i o r  o f  the 

in t r a c la s t ,  w i th  respect to  the s i l i c i f y i n g  so lu t io n .  Rarely the 

f in e  grained cher t  in the in t r a c la s ts  grades in to  the coarser grained 

g ranob las t ic  quartz between the in t r a c la s ts .  This probably i n d i 

cates the s i l i c a  replaced the in t r a c la s t  and then continued to f i l l  

the adjacent void w i thou t  a break. Nowhere did I f in d  a d i s t i n c t  

contact between cher t  in t r a c la s ts  and void f i l l i n g  granoblast ic  

quartz which could ind ica te  two s i l i c i f i c a t i o n  episodes. Thus the 

s i l i c i f i c a t i o n  replaced in t r a c la s ts  and f i l l e d  voids thereby i n 

d ic a t in g  i t  occurred a t  any depth below the mud-water in te r face .

This s i l i c i f i c a t i o n  formed elongate chert  nodules which p a ra l le l  

the bedding. Some horizons o f  concentrated bedded chert  nodules can 

be co r re la ted  throughout the study area (E.G. 6 .1-9.2 meters th ic k  

horizon o f  dense nodular chert  beds a t  24 meters sect ion 1, 23.7
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meters sect ion 3, and 1 meter sect ion 4, Appendix I I ) .  Since the 

cher t  nodules p a ra l le l  bedding everywhere and are l a t e r a l l y  con

t inuous throughout the study area, I be l ieve  the s i l i c i f i c a t i o n  was 

contemporaneous w i th  depos i t ion .  However, the nodules are c le a r l y  

o f  replacement o r ig in  and not a primary s i l i c a  p re c ip i ta te .  There

fo re ,  I bel ieve the s i l i c i f i c a t i o n  o f  each nodular in te rv a l  occurred 

a t  a shallow depth below the mud-water in te r fa ce  and continued as 

deposit ion took place.

This s i l i c i f i c a t i o n  may be explained by the decay o f  organic 

mater ia l  increasing the p a r t i a l  pressure o f  COg. This could lo c a l l y  

lower the pH o f  the sediment pore f l u i d s  thereby p re c ip i t a t in g  

dissolved s i l i c a  (F ig.  14). The abundance o f  s i l i c i f i e d  f o s s i l  

fragments, p a r t i c u l a r l y  sponge sp icu les ,  supports the associat ion o f  

the s i l i c i f i c a t i o n  and the organic m a te r ia l .  The pore f l u i d  sur

rounding the carbonate grains would be expected to  maintain i t s  

o r ig in a l  pH o f  8 .0 -8 .3  (Krauskopf, 1967). A decreased pH to less than 

7.3 would d isso lve  calcium carbonate on one hand and on the o ther ,  

where concentrat ions o f  d issolved s i l i c a  exceed 1 2 0  ppm, amorphous 

s i l i c a  would p re c ip i t a te  (F ig.  14 from Middleton e t  a l ,  1972).

A concentrat ion grad ien t  between the s i t e  o f  organic decay and the 

carbonate sediment would r e s u l t .  Dissolved carbonate would migrate 

away from the decaying mater ia l  and dissolved s i l i c a  in  the carbonate 

sediment would migrate towards the decomposition. This process 

would continue u n t i l  the organic decay ceased (see Seiver, 1962).
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Figure 13. Eh-pH diagram fo r  i ron from Middleton e t  a l . ,  
1972.

Figure 14. S o lu b i l i t y  curves f o r  c a l c i t e ,  amorphous
s i l i c a  and quartz.  Both s i l i c a  and c a lc i t e  
can be expected to p re c ip i ta te  a t  common 
surface condi t ions w i th  a pH between 7 
and 8.5
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Bedded chert  nodules may be the r e s u l t  o f  bedded organic con

cen tra t ions  .

Episode 5 - Do lom it iza t ion

An episode o f  p o s t - s i l i c i f i c a t i o n , do lo m i t iza t io n  took place 

a t  both Indian T ra i l  and Wil l iams Canyon L o c a l i t ie s .  This dolomi

t i z a t io n  is  most common in Un it  I I I  but i t  a lso occurs in  Units I 

and I I  (Appendix I ) ,  where p re fe re n t ia l  d o lo m i t iza t io n  o f  ce r ta in  

beds resu lted in a l te rn a t in g  beds o f  l imestone and dolomite which 

can be e a s i l y  co r re la ted  through out the study area (Unit  I I I  

c o r re la t io n s ,  Appendix I I ) .  M ic roscop ica l ly  th is  dolomite commonly 

replaced the cher t  formed Turing Episode 4 as evidenced by euhedral 

dolomite rhombs, w i th  sharp unetched c rys ta l  faces, f l o a t in g  in 

the f ine -g ra ined  chert  (F ig .  16). I t  could be argued tha t  the s i l i 

c i f i c a t i o n  s e le c t iv e ly  replaced the l imestone and did not replace 

the dolomite.  I f  th is  were the case, I would expect to f in d  the 

dolomite rhombs to  be embayed by the che r t ,  but the c rys ta l  faces 

o f  the dolomite are sharp, unetched surfaces, in d ic a t in g  the dolomite 

formed a f t e r  the cher t .  As even more convincing l i n e  o f  evidence fo r  

a major episode o f  d o lo m i t iza t io n  fo l low ing  the s i l i c i f i c a t i o n  is  

th a t  f in e  tex tures  in  the o r ig in a l  carbonate sediments were preserved 

by E-4 s i l i c i f i c a t i o n  but o b l i te ra te d  by E-5 do lo m i t iza t io n .  E-4 

s i l i c i f i c a t i o n  e f f e c t i v e l y  preserved the primary const i tuents  and 

those th a t  were not s i l i c i f i e d  were do lomit ized by E-5 do lom i t iza t ion  

and fo rever  destroyed.
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Figure 15. Echinoderm fragment ( f )  w i th  E-1 c a l c i t e
overgrowth (c) th a t  p a r t i a l l y  replaced the 
in t r a c la s t  (d).  E-1 c a l c i t e  cements (c ,e ,g )
have E-4 s i l i c a  (a) p re c ip i t a t in g  on the 
surface o f  c a lc i t e  c ry s ta ls .  E-4 s i l i c a  (a) 
p a r t i a l l y  replaced the in t r a c la s t  (d) and 
some E-1 c a lc i t e .  Note the c a lc i t e  c rys ta l  
(b) tha t  does not have the E-4 s i l i c a  growing 
on i t .  This is  probably the la te  E-7 c a l c i t e .

Figure 16. In t ra c la s ts  (d,e) in m ic r i te  (b) are s i l i c i 
f ie d  (E-4) w i th  e i th e r  medium grained quartz 
(d) or extra f in e  gra ined, near ly  is o t ro p ic  
quartz (e) leaving calcareous sponge spicules 
(g) u n s i l i c i f i e d .  The ex tra  f in e  grained 
s i l i c a  (e) is  a c tu a l l y  black under x -n ico ls  
but fo r  reproduction purposes i t  i s  l e f t  white. 
E-1 c a lc i t e  cement (c) th a t  a t  one time f i l l e d  
a void space is  p a r t i a l l y  replaced by E-4 
s i l i c a  (a) tha t  p re c ip i ta te d  on the m ic r i te
(b) and gets coarser ‘inward. E-5 dolomite ( f )  
f l o a t in g  in  the f in e  grained cher t .  Walker 
(1964) c i te s  th is  as evidence f o r  dolomite 
replacing s i l i c a .
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Where the l imestone beds are i n t e r s t r a t i f i e d  w i th  dolomite 

beds the dolomite beds conta in E-4 chert  nodules preserv ing the 

fa b r i c  o f  the o r ig in a l  l imestone. Thus the dolomite replacement 

o f  l imestone was exceedingly se lec t ive  leaving sharp boundaries 

between the dolomite beds and the limestone beds. The fa c t  th a t  

in d iv id u a l  dolomite beds can be corre la ted  throughout the area i n 

d ica tes the dolomite was in  part  s t ra ta form.

The do lo m i t iza t io n  appears to have followed the more permeable 

zones in  the rock. This is  evidenced by do lo m i t iza t io n  o f  (1) the 

lacy so lu t io n  wisps in  the lacy l imestone; ( 2 ) the residues in  the 

t h in  bedded l imestone; (3) worm (?) burrows; and (4) zones o f  ob

vious increased perm eab i l i ty .  Beds th a t  were well cemented (E-1) 

p r i o r  to  E-5 d o lo m i t iza t io n  were not do lomit ized during E-5 since 

the cement s u f f i c i e n t l y  reduced the po ros i ty  o f  those beds. There

fo re ,  I be l ieve the p re fe re n t ia l  do lo m i t iza t io n  o f  in d iv idu a l  beds 

followed primary po ros i ty  and was l im i te d  by the E-1 ear ly  cement.

Episode 6  - Weathering

Weathering occurred dur ing the post-Manitou pre-Devonian hiatus 

and resu l ted  in extensive s o lu t io n ,  d o lo m i t iza t io n  and s i l i c i f i c a t i o n  

on ly  a t  the Indian T ra i l  L o c a l i t y  (F ig. 2) .  There the rocks are 

red or dark brown and are pervas ive ly  do lomit ized in the upper two- 

th i r d s  o f  the sect ion .  Solut ion breccias in  the uppermost par t  o f  

the sect ion at Indian T ra i l  (30.7-41.2 meters, sect ion 4) probably
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f i l l  s ink -ho les .  Above the Manitou Formation a t  t h is  l o c a l i t y  is  

a massive quartz s i l t s t o n e  bed o f  unknown age which is  up to  e igh t  

meters th ic k .  This is  ove r la in  by the Devonian Will iams Canyon 

Limestone. The cher t  nudules a t  the Indian T ra i l  L o c a l i t y  are 

la rg e r  and more abundant than those a t  Wil l iams Canyon. By con

t r a s t  the carbonate rocks a t  Wil l iams Canyon are gray or b u f f  in 

co lo r  and only the upper 3.2 meters o f  the sect ion have a brown

weathering, vuggy dolomite which is  red on a f re s h ly  broken surface

and resembles the weathered carbonate rocks a t  the Indian T ra i l  

L o c a l i t y .  The vugs are so lu t io n  vugs f i l l e d  w i th  c a l c i t e .  The 

uppermost surface o f  the Manitou Formation a t  Wil l iams Canyon is  an

i r r e g u la r  surface but o ther than the small vugs i t  does not have

the so lu t ion  features th a t  character ize  i t s  counterpart  at  Indian 

T r a i l .  These d i f fe rences  in  the diagenesis o f  the two l o c a l i t i e s  

fo l lowed the E-5 d o lo m i t iza t io n  th a t  occurred in a s im i la r  way at 

both l o c a l i t i e s .

E- 6  weathering included three d iagenet ic  processes; d o lo m i t i 

z a t io n ,  s i l i c i f i c a t i o n  and so lu t ion  th a t  are considered sub-episodes 

6 a d o lo m i t iz a t io n ,  6 b s i l i c i f i c a t i o n  and 6 c s o lu t io n .  These three 

processes appear to  overlap somewhat in t ime since they are a l l  

l im i te d  to  the Indian T r a i l  L o c a l i t y  and they are a l l  d i f f i c u l t  to  

separate p e t r o lo g ic a l l y .  These processes are the re fo re  grouped in to  

a s in g le  episode, E- 6  weathering, but the processes are discussed 

separa te ly .  Following those discussions I w i l l  demonstrate how
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weathering caused the simultaneous occurrence o f  a l l  three 

processes.

Episode 6 a- D o lo m i t iza t io n . The rocks a t  the Indian T ra i l  

L o c a l i t y  are pervas ive ly  do lomit ized except the basal 8 . 6  meters 

which is  s im i la r  to  the rocks in Un it  I a t  Wil l iams Canyon. This 

d o lo m i t iza t io n  o b l i te ra te d  most o f  the primary s t ruc tures  in  the 

rocks. In outcrop some o f  the primary s t ruc tu res  v i s i b le  in  the 

carbonate rocks are the a lga l  s t rom a to l i tes  which are only f a i n t l y  

d iscernable on weathered surfaces. Also d is t in g u ish a b le  through 

the pervasive d o lo m i t iza t io n  are many o f  the previous d iagenet ic  

changes. The most e a s i l y  d is t ingu ished  are the lacy and th in  bedded 

l imestones re s u l t in g  from E-2, the cher t  nodules from E-4 and the 

p o ros i ty  co n t ro l le d  d o lo m i t iza t io n  from E-5. Since the prev iously  

discussed d iagenet ic  episodes can be seen through th is  do lo m it iza t io n  

but are a l te red  by i t ,  t h i s  pervasive do lo m i t iza t io n  occurred a f t e r  

the p rev ious ly  discussed episodes.

M ic roscop ica l ly  t h is  dolomite cons is ts  o f  anhedral dolomite 

c r y s ta ls  w i th  occasional subhedral to  euhedral rhombic c rys ta ls  which 

are commonly zoned w i th  f e r r i c  i ron bands. The c rys ta l  s ize ranges 

up to  0.5 mm. In th in  sect ion th is  do lo m i t iza t io n  has o b l i te ra te d  

a l l  evidence o f  the previous d iagenet ic  episodes except the E-4 s i l i 

c i f i c a t i o n .  Because l a t e r  E-6 b s i l i c i f i c a t i o n  may be confused w i th
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E-4 s i l i c i f i c a t i o n  and th is  E-6 a dolomite may be confused in places 

w i th  E-3 and E-5 dolomites conclusive evidence th a t  w i l l  pin down 

the time re la t io n s h ip  o f  t h i s  d o lo m i t iza t io n  to  the other d iagenet ic  

processes o f  E- 6  is not poss ib le .  Occasional s i l i c i f i e d  dolomite 

rhombs may ind ica te  th a t  t h i s  d o lo m i t iz a t io n  proceeded the 6 b 

s i l i c i f i c a t i o n .  However, these are rare and the s i l i c i f i e d  dolomite 

rhombs could be the re s u l t  o f  e a r l i e r  episodes.

Associated w i th  th is  d o lo m i t iza t io n  is  a pervasive red s ta in  

o f  ox id ized i ron  th a t  was e i t h e r  freed from an a n k e r i t i c  dolomite 

l a t t i c e  or was p re c ip i ta te d  from i n t e r s t i t i a l  so lu t io ns .  Zoned 

dolomite rhombs demonstrate th a t  some i ron  was incorporated in the 

o r ig in a l  dolomite l a t t i c e  but most o f  the dolomite is  not zoned.

Most commonly the red s ta in  coats the dolomite and f i l l s  pore spaces 

w i th  blotches o f  f e r r i c  i ron  (F ig.  17). The coatings are probably 

due to  ferrous i ron  in so lu t io n  in  s l i g h t l y  a c id ic  water pre

c i p i t a t i n g  out as f e r r i c  i ron  when the so lu t io n  becomes more a lka l in e  

in  contact w i th  the dolomite (F ig .  13).

Swett (1964) determined by co lorometr ic  t i t r a t i o n  with KMnÔ  

th a t  the red dolomites in  the southern exposures o f  the Manitou 

Formation contained an average o f  .53 percent i ron whereas the bu f f  

colored dolomites a t  Wil l iams Canyon contained an average o f  only  

.29 percent i ro n .  He concluded th a t  the o r ig in a l  carbonate had a 

high i ron  content tha t  led to  se lec t ive  d o lo m i t iza t io n  o f  the i ron
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Figure 17. Clotted red iron Fe(OH)o on surfaces and 
i n t e r s t i t i a l  to E-6 a dolomite rhombs.

Figure 18. S i l ica -do lom i te  boundary, (a) Granoblast ic  
quartz;  (d) Dolomite; (g) Single c rys ta l  
o f  quartz replacing dolomite.  Note the 
vague quartz-dolomite boundary.
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r i c h  l imestones producing a n k e r i t i c  dolomite.  The assoc ia t ion o f  

red i ron  s ta in  and E-6 a dolomite is  a lso obvious a t  Indian T ra i l  

and as I sha l l  discuss (page 59, te x t )  both probably formed by fresh 

ground water, w i th  d issolved i r o n ,  mixing w i th  sea water.

S i l i c i f i c a t i o n  - E-6 b. The Indian T ra i l  outcrops are much more 

s i l i c i f i e d  than those o f  Wil l iams Canyon. At Indian T ra i l  the chert  

nodules are considerably la rg e r  and more abundant than at  Wil l iams 

Canyon. In many places the s i l i c i f i c a t i o n  is  so complete i t  forms 

white and occasional red chert  beds. This increased s i l i c i f i c a t i o n  

a t  Indian T ra i l  is  a separate episode from the E-4 s i l i c i f i c a t i o n  

which occurred a t  both l o c a l i t i e s .

Most but not a l l  o f  the la rg e r  chert  beds and nodules are com

pos i te  nodules cons is t ing  o f  inner modules o f  E-4 chert  and outer 

rims o f  the E-6 b s i l i c a  (F ig .  19). In these composite nodules the 

E-4 nodule served as a nucléat ion s i t e  fo r  the l a te r  E-6 b s i l i c i 

f i c a t i o n .  The composition o f  inner nodules, described in d e ta i l  

in  E-4, can be summarized as granob last ic  quartz rep lac ing a l l o -  

chemical cons t i tuen ts  inc lud ing  f o s s i l  fragments, pe lo ids ,  i n t r a 

c la s ts  and sponge sp icu les .  Some chalcedony and drusy quartz f i l l s  

voids between the s i l i c i f i e d  allochems but granob last ic  quartz does 

not replace dolomite rhombs.

Many o f  the outer  rims on the la rg e r  nodules o f  the E-6 b s i l i 

c i f i c a t i o n  have granob las t ic  quartz rep lac ing dolomite rhombs and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 19. Composite nodules from Indian T r a i l ,
The inner nodule is  c le a r  white E-4 chert  
whereas the outer  E-6 b cher t  nodule has 
abundant pores which are the r e s u l t  o f  
so lu t ion  o f  the E-5 or E-6 a dolomite tha t  
was not replaced by s i l i c a .
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Figure 20. M ic r i te  in t ra c la s ts  w i th  calcareous sponge
spicules (g) are replaced by E-4 granoblas t ic  
quartz (a) and extra f in e  grained c h e r t (e ) .  
The extra f ine  grained che r t  is  black under 
x -n ico ls  but is  l e f t  white f o r  reproduction 
purposes. S i l i c i f i c a t i o n  t o t a l l y  replaced 
an in t r a c la s t  ( f )  leaving on ly  a s i l i c a  
r ind as a ghost o f  the o r ig in a l  i n t r a c la s t .
A s i l i c a  r ind  (d) re s u l t in g  from p a r t ia l  
s i l i c i f i c a t i o n  o f  an i n t r a c la s t .  E-7 c a lc i t e  
(c) replaces E-4 s i l i c a  and c le a r l y  truncates 
the s i l i c i f i e d  in t r a c la s t  ( f ) .

Figure 21. S i l i c i f i e d  dolomite rhombs. E-5 or E-6 a
dolomite rhomb (d) replaced by E-6 b granob las t ic  
quartz (a).  E-6 b chalcedony p re c ip i ta te d  on 
the granoblast ic  quartz (a),  (b) Fine grained
s i l i c a  rep lac ing m ic r i t e ;  (v) void space.
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rhombic holes l e f t  by d isso lv ing  out those dolomite rhombs tha t  

were not s i l i c i f i e d  (F ig. 21). Allochems which were not preserved 

by the f i r s t  E-4 s i l i c i f i c a t i o n  were commonly o b l i te ra te d  by the E-5 

and E-6 a do lom i t iza t ions  before E-6 b s i l i c i f i c a t i o n .  The E-6 b 

s i l i c i f i c a t i o n  resu l ted mostly in chalcedony p re c ip i t a t in g  on the 

E-4 s i l i c a  which is  mostly g ranob las t ic  quartz.  However some 

granob las t ic  quartz can be id e n t i f i e d  as E-6 b s i l i c a ,  occas iona l ly  

causing problems in i d e n t i f i c a t i o n .  The composi t iona l ly  d i f f e r e n t  

E-6 a chalcedonic rims on the granob las t ic  quartz E-4 nodules i n 

d icates tha t  two separate s i l i c i f i c a t i o n  episodes, a pre-dolomite 

and a post-do lom ite ,  occurred a t  Indian T r a i l .

The E-6 a s i l i c a  cannot everywhere be d i f f e r e n t ia te d  from E-4 

s i l i c a  because o f  the s im i la r  composit ions o f  the two episodes and 

the complex ove ra l l  diagenesis. Chalcedony and granobastic quartz 

were p re c ip i ta te d  during both the E-4 and E-6 b s i l i c i f i c a t i o n s  making 

p o s i t iv e  i d e n t i f i c a t i o n  impossible. Generally the granoblast ic  

quartz resu l ted  from E-4 and chalcedony resu l ted  from E-6 b.

The time re la t io n s h ip  o f  the E-6 a do lo m i t iza t io n  to  the E-6 b 

s i l i c i f i c a t i o n  is  not obvious. Most o f ten the chert  dolomite boundary 

is  i n d i s t i n c t  (Fig. 18). Because occasional dolomite rhombs are 

s i l i c i f i e d  and nowhere is  E-6 b s i l i c a  replaced by do lomite,  E-6 a, 

dolomite probably proceeded E-6 b s i l i c i f i c a t i o n .
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Solut ion - E-6 c . Occasional s ink holes and carbonate breccias 

in  the upper po r t ion  o f  the Manitou a t  Indian T ra i l  ind icates a 

period o f  post-Manitou, pre-Devonian so lu t io n .  The beds over ly ing  

the sink holes are col lapsed down in to  the s ink holes. These 

s o lu t io n  features are found mostly in the upper 1 0  meters o f  sect ion 

4 (Appendix I ). The breccias do not extend f a r  enough down in to  

the Manitou to expose the re la t io n s h ip  o f  the chert  nodules to  the 

so lu t io n  breccias.

In E-6 a d o lo m i t iza t io n  (page 48, t e x t )  the assoc ia t ion o f  the 

E-6 a dolomite to red i ron  oxide s ta in  was a t t r ib u te d  to  i ron  pre

c i p i t a t i n g  from s l i g h t l y  a c id ic  so lu t io ns .  This E-6 a so lu t ion  is  

the r e s u l t  o f  s l i g h t l y  a c id ic  water d isso lv ing  the carbonate minerals

and ca r ry ing  dissolved i ro n .  P re c ip i ta t io n  o f  the iron would take

place because the ac id ic  pore water w i l l  e q u i l ib ra te  w i th  the surrounding 

carbonate by d isso lv ing  carbonate m inera ls ,  thereby increasing pH 

and p r e c ip i t a t i n g  iron (F ig .  13).

Both the Wil l iams Canyon and Indian T ra i l  sections are about

61 meters (196')  th ic k .  Therefore th is  so lu t ion  did not s i g n i f i c a n t l y  

th in  the Indian T ra i l  sect ion but merely weathered the outcrop to  a 

d i s t i n c t i v e  red te r ra  rossa co lo r .  Overly ing the Manitou Formation 

a t  t h i s  l o c a l i t y  is  a white quartz s i l t s to n e  o f  unknown age up to 

f i f t e e n  meters th ic k  and t h is  is  ove r la in  by the gray Devonian Will iams 

Canyon Limestone. Thus the red te r ra  rossa in  the Manitou Formation
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a t  Indian T ra i l  post-dates the deposit ion o f  the Manitou but 

pre-dates depos i t ion o f  the ove r ly ing  Devonian Will iams Canyon 

Limestone.

Discussion - Episode 6 . I t  i s  apparent from the assoc ia t ion o f  

the three processes o f  E- 6  th a t  they are a l l  in some way re la ted  

to post-Manitou weathering. To propose th a t  three geochemically 

d i f f e r e n t  processes, so lu t io n  o f  carbonate minerals,  d o lo m i t iza t io n  

and s i l i c i f i c a t i o n  are a l l  re la ted  to a s ing le  geological process 

seems ra th e r  outrageous. However, a geochemical model s im i la r  to 

the Dorag model f o r  do lo m i t iza t io n  (Badiozamani, 1973) can account 

f o r  the "outrageous" proposal.  Badiozamani (1973) devised a model 

f o r  do lo m i t iza t io n  th a t  involves the mixing o f  phrea t ic  fresh water 

w i th  ph rea t ic  sea water in  the pore spaces o f  carbonate rocks (the 

mischungskorrosian e f f e c t ) .  In the ph rea t ic  zone, which is  simply 

below the water ta b le ,  a fresh water-seawater boundary e x is ts  where 

ions in sea water can be e a s i l y  exchanged w i th  fresh water ions.

The s o l u b i l i t y  curve fo r  c a l c i t e  i s  a non - l inea r  func t ion  and the 

mixing o f  two d i f f e r e n t  waters saturated w i th  respect to  c a lc i t e  

creates a t h i r d  water undersaturated w i th  respect to c a lc i t e  (F ig .  22) 

(Runnels, 1969). Badiozamani (1973) demonstrated th a t  the s o l u b i l i t y  

curve f o r  dolomite is  not l i k e  c a l c i t e  and tha t  mixing 5-30 percent 

sea water w i th  f resh water produces a water supersaturated with 

respect to dolomite and undersaturated w i th  respect to c a lc i t e  

(F ig ,  24). Under these cond i t ions  c a l c i t e  w i l l  be dolomit ized with
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Figure 22. Ca lc i te  s o l u b i l i t y ,  w i th  respect to  p a r t ia l  
pressure o f  CO2 . Mischungkorrosion e f f e c t  
is  where undersaturat ion re su l ts  from the 
mixing o f  two waters saturated w i th  respect 
to c a lc i t e .  From Runnels, 1969.

Figure 23. S o lu b i l i t y  o f  amorphous s i l i c a  w i th  re 
spect to pH. Note the Mischungkorrosion 
e f fe c t  resu l ts  in supersaturat ion o f  a 
mixed water. S o lu b i l i t y  curve from 
Middleton e t  a l . ,  1972.
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a Mg/Ca r a t i o  o f  1:1 or more, well  below the Mg/Ca r a t i o  o f  normal 

sea water (Krauskopf, 1967).

In order to  complete d o lo m i t iza t io n  a la rge quan t i ty  o f  fresh 

water must c o n t in u a l ly  mix w i th  sea water in  the rocks to keep the 

sa l ine  concentrat ion between 5 and 30 percent normal sea water 

(Fig. 24). The large land surface genera l ly  c o l le c ts  enough water to 

keep the process operat ional w i th  enough hyd ros ta t ic  head to  pump 

the fresh water in to  the sea water.

The basic p r in c ip le  o f  the dorag model f o r  do lo m i t iza t io n  i n 

volves the mixing o f  two d i f f e r e n t  waters a t  e q u i l ib r iu m  w i th  calcium 

carbonate. Because the s o l u b i l i t y  curve f o r  c a l c i t e  is  non- l inear  

(F ig. 22) the mixing re s u l ts  in a t h i r d  water th a t  i s  undersaturated 

w i th  respect to c a lc i t e  and capable o f  d o lo m i t iza t io n  (F ig.  24). 

Runnels (1969) suggests the same p r in c ip le  can be appl ied to  other 

minerals w i th  non- l inea r  s o l u b i l i t y  func t ions .  I the re fo re  be l ieve 

mixing o f  two d i f f e r e n t  waters saturated w i th  respect to  s i l i c a  w i l l  

r e s u l t  in  a supersaturated water tha t  should p re c ip i ta te  s i l i c a  

(Fig. 23).

Perco la t ing  fresh water (ph 5.6-7) through sub ae r ia l ly  exposed 

carbonate rocks and mixing i t  w i th  sea water in  the pores in the 

rocks w i l l  r e s u l t  in  d o lo m i t iz a t io n ,  s i l i c i f i c a t i o n ,  and f e r r i c  

i ron  p r e c ip i t a t io n  (F ig.  25). Ferr ic  i ron in  s l i g h t l y  a c id ic  so lu 

t ion s  w i l l  p re c ip i t a te  on carbonate minerals due to  increased
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Figure 24. Mixing o f  5-30% sea water with 95-70%
fresh water resu l ts  in a so lu t ion  which is  
supersaturated with  respect to  dolomite and 
undersaturated with  respect to c a lc i t e .
This so lu t ion  should r e s u l t  in  d o lo m i t i 
zat ion.  From Badiozamani, 1973.
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a l k a l i n i t y  (F ig. 13). Water percolated through the sub ae r ia l ly  

exposed carbonate rocks becomes more a lk a l in e  (pH 8.0-11) and 

capable o f  d isso lv ing  s i l i c a  in the under ly ing sandstones and 

g ran i tes  (F ig .  14),  producing a water saturated w i th  respect to 

s i l i c a .  In a s im i la r  way sea water in  the pore spaces o f  the rocks 

could also become saturated w i th  respect to  s i l i c a .  Mixing the 

two waters would r e s u l t  in  s i l i c i f i c a t i o n  and d o lo m i t iza t io n .

U p l i f t  along the Ute Pass Fault  Zone dur ing the post-Manitou 

Pre-Devonian hiatus resu l ted  in  weathering a t  the Indian T ra i l  

L o c a l i t y  (F ig.  25). This weathering fo l low ing  the prev ious ly  described 

model would produce a red pervasive dolomite w i th  abundant cher t .

S i l i c a  derived from so lu t io n  o f  the underly ing Cambrian sandstones 

and Precambrian gran i tes  would be p re c ip i ta te d  on the E-4 nodules 

in  the zone o f  mixing. Sea-level f lu c tu a t io n s ,  te c to n ic  u p l i f t  and/or 

v a r ia t io n s  in  fresh water i n f l u x  would move the f resh water - sea 

water boundary up and down through the rocks re s u l t in g  in  any number 

o f  a l te rn a t in g  periods o f  s i l i c i f i c a t i o n  and d o lo m i t iza t io n .  Thus 

f a u l t i n g  and subaeria l exposure o f  the Indian T ra i l  L o c a l i t y  during 

the Lower Ordovician to  Devonian h iatus resu l ted in the in f l u x  of  

f resh water which i n i t i a t e d  the dorag do lo m i t iza t io n  process, s i l i c i 

f i c a t i o n  and p re c ip i t a t io n  o f  f e r r i c  i ro n .

Episode 7 - C a lc i t i z a t io n

The l a s t  d iagenet ic  episode to  occur in the Manitou Formation was
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Figure 25. Model f o r  weathering re s u l t in g  in  dolomi
t i z a t i o n ,  s i l i c i f i c a t i o n  and so lu t ion  along 
the Ute Pass Fault  Zone. I n f lu x  o f  f resh 
water w i th  dissolved iron from the west w i l l  
re s u l t  in so lu t ion  o f  carbonate minerals 
increasing the a l k a l i n i t y  and p re c ip i t a t in g  
f e r r i c  i r o n ,  Fe(OH)g. A lka l ine  water in  the 
pore f lu id s  o f  the carbonate rocks w i l l  per
colate down in to  the underly ing s i l ice o u s  
Cambrian and Precambrian rocks. Those f l u id s  
w i l l  become saturated w i th  respect to  s i l i c a .
S i l i c a  and dolomite w i l l  then be p re c ip i ta te d  
in the zone o f  mixing due to the mischungskorrosion 
e f fe c t  (page 59, t e x t ) .  Magnesium required 
fo r  do lom it iza t ion  is derived from sea water.
The approximate locat ions o f  Indian T ra i l  and 
Will iams Canyon are ind icated.
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a period o f  c a l c i t i z a t i o n  th a t  is  more common a t  Wil l iams Canyon 

than a t  Indian T r a i l .  This is  a c le a r  c a l c i t e  tha t  in  hand specimen 

obv ious ly  f i l l s  voids and f rac tu re s .  M ic roscop ica l ly  the c a lc i t e  

p a r t l y  replaces s i l i c i f i e d  in t r a c la s ts  and s p icu la r  cherts o f  E-4 

and E-6 a thus fo l lo w in g  E- 6  in  t ime (F ig. 20). This replacement is  

f u r t h e r  evidenced by c a l c i t e  t run ca t in g  m ic r i t e  quartz boundaries 

(F ig. 26 and 28) and has replaced E- 6  dolomite rhombs (F ig .  27).

The c a l c i t i z a t i o n  the re fo re  occurred a f t e r  the i ron  emplacement o f  

E- 6  and was the re fo re  the la te s t  d iagenet ic  episode to  occur in  the 

Manitou Formation.

Summary o f  Pi agenesis

Ind iv idua l  beds in  the Lower Ordovician Manitou Formation have 

gone through up to seven successive episodes o f  diagenesis. A l l  o f  

the episodes w i th  the exception o f  E-6 , occurred a t  both the Wil l iams 

Canyon and Indian T ra i l  L o c a l i t i e s .  Episode s ix  occurred only  at 

Indian T r a i l .  These major episodes can be summarized as fo l low s :

E-1 Cementation. Early  c a l c i t e  cementation o f  the sediments 

formed hardgrounds and p a r t i a l l y  l i t h i f i e d  most o f  the 

sediments. This cementation occurred s h o r t ly  a f t e r  

d is p o s i t io n .

E-2 S o lu t io n . Solut ion o f  the p a r t i a l l y  indurated limestone 

j u s t  below the mud-water in te r face  resulted, in two 

d i s t i n c t i v e  types o f  rock; 1 ) t h in  bedded and 2 ) lacy 

1 imestone.
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FIGURE
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FIGURE

FIGURE2 6 . Calcite truncates ttie micrite quartz boundary. The 
quartz grains are coarser away from the micrite 
indicating void filling quartz, but the calcite cuts 
across this grain size variation. The calcite  
therefore rep laced  both the micrite and the  
quartz .
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Figure 27. R e l ic t  zoned dolomite rhombs in  c a lc i t e .
Striped area shows extent  o f  o p t i c a l l y  
continuous c a lc i t e  c r y s ta l .

Figure 28. C a lc i t e -S i l i c a -M ic r i t e  re la t io n s h ip .
(a) E-4 Granoblastic quartz ;  (b) M ic r i t e ;
(c) E-7 C a lc i te  (Str iped areas show i n 
d iv idua l  c r y s ta ls ) ;  (e) # - l  C a lc i te  cement 
p rec ip i ta ted  on t r i l o b i t e  fragment ( f ) :
(g) p a r t i a l l y  s i l i c i f i e d  echinoderm fragment 
with E-7 c a lc i te  overgrowth. Note the 
absence o f  quartz seed c ry s ta ls  on the 
c a lc i te  overgrowth th a t  t runcates the quar tz ,  
E-1 c a lc i t e  cement boundary and the re fo re  
occurred a f t e r  the s i l i c i f i c a t i o n .  Thin 
section sequence o f  diagenesis is  ( 1 ) de
p o s i t io n ;  ( i )  E-1 c a l c i t i z a t i o n ;  (3) E-4 
s i l i c i f i c a t i o n ;  (4) E-7 c a l c i t i z a t i o n .
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E-3 D o lo m i t iz a t io n . This do lo m i t iza t io n  created sparce 

dolomite rhombs which do not o b l i t e r a te  any o f  the 

pr imary s t ruc tu res  in  the sediment.

Et4 S i l i c i f i c a t i o n . S i l i c i f i c a t i o n  replaced and preserved 

carbonate allochems and resu l ted  in  granoblast ic  and 

chalcedonic cement. This episode produced chert  nodules 

which p a ra l le l  bedding and are concentrated in horizons 

which co r re la te  throughout the area.

E-5 D o lo m i t iza t io n . Post s i l i c i f i c a t i o n  d o lo m i t iza t io n  

o b l i te ra te d  some o f  the primary s t ruc tu res  in  the rocks. 

Do lom it iza t ion  was co n t ro l le d  by po ros i ty  and whi le  some 

beds were p a r t i a l l y  to  completely do lom it ized ,  s t r a t i -  

g ra p h ica l ly  adjacent beds remained pure l imestone.

E-6 Weathering. Weathering resu l ted  in d o lo m i t iz a t io n ,  

s i l i f i c a t i o n  and so lu t io n  a t  the Indian T ra i l  L o c a l i t y .  

These three processes are d i f f i c u l t  to  separate pe tro

lo g ic a l  l y  and probably occurred simultaneously . 

Do lom it iza t ion  -  6â , resu l ted  in pervasive do lo m i t iza t io n  

which o b l i te ra te d  most o f  the primary s t ruc tu re s .  Along 

w i th  th is  d o lo m i t iza t io n  oxid ized i ron  pervasive ly  

stained the rocks red. The iron was e i th e r  ca r r ied  in 

s o lu t io n  and deposited on the dolomite or was incorporated 

in  the o r ig in a l  dolomite l a t t i c e  and freed by so lu t io n .
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S i l  i c i  f i  ca t ion  -  resu l ted  in chalcedonic rims on the 

E-4 nodules and completely s i l i c i f y i n g  the carbonate 

minerals in and around the E-4 nodules. Chalcedony is  

the dominant s i l i c a  mineral but some granob las t ic  and drusy 

quartz was also p re c ip i ta te d .

Solut ion - 6ĉ , resu l ted  in carbonate breccias and sink 

holes in the upper po r t ion  o f  the Manitou Formation at 

Indian T r a i l .

E-7 C a l c i t i z a t i o n . This was the l a s t  major d iagenet ic  episode 

in  the Manitou Formation. Sparry c a l c i t e  formed masks most 

o f  the minerals re s u l t in g  from the previous episodes.

Discussion

The step by step diagenesis o f  in d iv id u a l  beds in the Manitou 

Formation is  a s im p l i f i c a t i o n  o f  what a c tu a l l y  occurred. Many o f  

the episodes occurred simultaneously,  the most obvious being Episode 

s ix  where s o lu t io n ,  s i l i c i f i c a t i o n  and d o lo m i t iza t io n  a l l  took place 

dur ing weathering. Many o f  the i n i t i a l  f i v e  episodes o f  diagenesis 

also occurred s imultaneously.  For instance, in  the same horizon 

c a l c i t e  sp icu les f l o a t  in s i l i c i f i e d  (E-4) m ic r i te  in t ra c la s ts  and 

s i l i c i f i e d  sponge sp icu les (E-4) f l o a t  in  m ic r i te  (Figs. 12, 16 and 

20). Presuming the o r ig in a l  sp icules were aragoni te ,  the s implest 

exp lanat ion fo r  t h is  d iagenet ic  anomaly is  th a t  s i l i c i f i c a t i o n  

occurred simultaneously  w i th  the t ransformat ion o f  aragonite to c a lc i t e .
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Aragonite is  the le a s t  s tab le  carbonate mineral w i th  respect to 

a c id ic  so lu t ions  and m ic r i te  is  less s tab le than a c a lc i t e  sp icu le  

due to  the increased surface area o f  the c ry s ta ls  in the m ic r i te .

An a c id ic  so lu t ion  capable o f  s i l i c i f i c a t i o n  would replace the 

a ra g o n i t ic  sp icu le  e a s ie s t ,  the m ic r i t e  next and the c a l c i t e  would 

be the leas t  suscept ib le  o f  the three to  s i l i c i f i c a t i o n .  I f  a l im i te d  

amount o f  a c id ic  so lu t io n  is  a v a i la b le ,  the replacement o f  carbonate 

by s i l i c a  would r e s u l t  in n e u t ra l iz a t io n  o f  the ac id ic  s o lu t io n ,  

thereby stopping the reac t ion  p r i o r  to  t o t a l  s i l i c i f i c a t i o n .  S i 

multaneous s i l i c i f i c a t i o n  and transformat ion o f  aragonite to  c a l c i t e  

could thereby re s u l t  in  s i l i c i f i c a t i o n  o f  aragoni te spicu les and not 

the surrounding m ic r i t e  or where the aragonite spicules have re 

c r y s t a l l i z e d  to  c a lc i t e  the m ic r i t e  may be p r e f e r e n t ia l l y  s i l i c i f i e d .

The simultaneous occurrence o f  c a l c i t i z a t i o n  and s i l i c i f i c a t i o n  

requires th a t  E-1 and E-4 overlapped in t ime, and the re fore  E-2 and 

E-3 had to have overlapped w i th  E-1 and/or E-4. I t  might be reasonable 

to  hypothesize th a t  the E-2 so lu t io n  could have occurred w i th  the 

E-4 s i l i c i f i c a t i o n  because both would requ ire  an a c id ic  so lu t io n .  

However, s i l i c i f i e d  so lu t io n  residues are rare and the re fo re  the two 

processes probably did occur simultaneously. This means tha t  E-1 

may have overlapped w i th  E-2.

The E-3 d o lo m i t iz a t io n  and E-4 s i l i c i f i c a t i o n  may also have 

occurred simultaneously in  th a t  the E-3 and E-5 do lom it iza t ions
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could be combined in to  a s ing le  process which was in te r rup ted  by 

s i l i c i f i c a t i o n .  The s im i la r  c h a ra c te r is t i c s  o f  the two do lom it iza t ions  

may suggest they are the r e s u l t  o f  the same process (Figs. 10 and 11), 

however, I cannot conc lus ive ly  document t h is  proposal. I t  is  a 

reasonable proposal in  th a t  i t  would s im p l i f y  an otherwise complex 

d iagenet ic  h is to ry .

Figure 29 g ra p h ica l ly  depic ts  what I be l ieve to  be the time re 

la t ion sh ips  o f  the major episodes. This is  a summary o f  the diagenesis 

and is  in  no way meant to draw d i s t i n c t  boundaries de f in ing  a be

ginning and an end to  each episode. Instead i t  shows what the 

m a jo r i ty  o f  the p e t ro lo g ic  evidence suggests about the re la t io n s h ip  

o f  the episodes.

Episodes one through f i v e  apparently occurred j u s t  below the 

mud-water in te r fa ce  because they are c lo se ly  re la ted  to  E-2 so lu t ion  

which d e f i n i t e l y  occurred j u s t  below the mud-water in te r fa ce .  This 

requires simultaneous pos t -depos i t iona l  occurrences o f  the d iagenet ic  

episodes as a r e s u l t  o f  loca l ized  so lu t ions  capable o f  d o lo m i t iz in g ,  

s i l i c i f y i n g ,  and d isso lv ing  the l imestone.

Most d iagenet ic  processes have t r a d i t i o n a l l y  been thought to 

occur wel l  a f t e r  depos i t ion as a re s u l t  o f  a do lom i t iz ing  or 

s i l i c i f y i n g  so lu t io n  pe rco la t ing  through the rocks (Swett, 1964;

Banks, 1962 and o th e rs ) .  Diagenetic sequences proposed fo r  these 

types o f  processes can be c le a r l y  separated in to  d i s t i n c t  t ime defined
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Figure 29. Time re la t ionsh ips  o f  the major d iagenet ic  
episodes. Blackened c i r c le s  ind ica te  good 
evidence fo r  i n i t i a t i o n  or term inat ion.  
Hollow c i r c l e  ind icates questionable 
boundary.
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episodes th a t  e f fec ted  the e n t i r e  u n i t  or  formation. However, the 

d is c re te  step by step sequence o f  the diagenesis o f  the Manitou 

Formation is  a s im p l i f i c a t io n  since some o f  the d iagenet ic  processes 

occurred simultaneously (page 75, t e x t ) .  The simultaneous occurrence 

o f  two episodes does not i n f e r  th a t  both d iagenet ic  processes occurred 

in the same place dur ing the same time in te r v a l .  Instead, the 

simultaneous occurrence o f  two episodes re fe rs  to two or more loca l ized  

processes tak ing place adjacent to  one another.

This changes the t r a d i t i o n a l  breakdown o f  the diagenesis in to  

t ime def ined episodes. Instead the diagenesis can be discussed in 

terms o f  processes, many o f  which overlapped in t ime. Some o f  these 

processes (E-1, E-2 and E-3) probably took place a t  a unique depth 

below the mud-water in te r fa c e ,  poss ib ly  because o f  two fa c to rs :

1) depth o f  b u r ia l  c o n t r o l l i n g  re f lu x  o f  sea-water through the upper

most sediments; and 2) organic decay l o c a l l y  c o n t r o l l i n g  the pH. The 

E-1 cementation probably occurred w i th in  a few centimeters o f  the 

mud-water in te r fa c e ,  E-2 so lu t io n  also occurr ing a t  th a t  depth and 

poss ib ly  a few centimeters deeper, and E-4 probably took place w i th 

in  a few meters o f  the in te r fa c e  but deep enough to  a l low a decreased 

pH. Continued depos i t ion caused the lower occurr ing s i l i c i f i c a t i o n  

r i s e ,  thereby rep lac ing  the minerals o f  the shallower processes.

Other processes such as the po ros i ty  con t ro l led  E-3 and E-5 

d o lo m i t iz a t io n s  were probably magnesium r i c h  brines pe rco la t ing  down 

through the sediment during and a f t e r  Episodes 1, 2 and 4. The
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u l t im a te  r e s u l t  is  cons is ten t  replacement o f  one mineral by another. 

This replacement can be mistakenly broken down in to  the t r a d i t i o n a l  

d iagenet ic  sequence o f  t ime defined episodes. Instead d iagenet ic  

episodes should be thought o f  as in d iv id u a l  geochemical processes 

( i . e .  s i l i c i f i c a t i o n  caused by organic decay l o c a l l y  lowering the 

pH in the sediments thereby p e rc ip i t a t in g  s i l i c a ) .
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CHAPTER IV 

SUMMARY AND CONCLUSIONS

Six major episodes o f  diagenesis a l te red  the rocks a t  both 

the Indian T ra i l  and Will iams Canyon L o c a l i t ie s .  These are E-1 

cementation, E-2 s o lu t io n ,  E-3 d o lo m i t iz a t io n ,  E-4 s i l i c i f i c a t i o n ,  

E-5 d o lo m i t iza t io n  and E-7 c a l c i t i z a t i o n .  With the except ion o f  

E-7 c a l c i t i z a t i o n  which is  a la te  c a l c i t e ,  episodes one through 

f i v e  are the r e s u l t  o f  processes th a t  c o n t in u a l ly  took place during 

depos i t ion .  This simultaneous occurrence o f  the processes created 

minor replacements tha t  do not f i t  in  the above sequence.

These s ix  major episodes are best seen a t  Wil l iams Canyon 

where the Manitou Formation can be d iv ided in to  three un i ts  on the 

basis o f  outcrop c h a r a c te r i s t i c s . Unit  I ,  the basal u n i t  is  

character ized by the th in  bedded limestones created by the E-2 

s o lu t io n .  Unit  I I  is  t y p i f i e d  by the white bedded cher t  created 

by the E-4 s o lu t io n .  Unit  I I I  is  character ized by the large a l 

te rn a t in g  r e s is ta n t  and n o n - re s is tan t  beds o f  l imestone and dolomite 

(E-5). A b r i e f  h is to ry  in c lu d in g  depos i t ion and diagenesis o f  each 

u n i t  w i l l  serve as a summary and should also in d ica te  the major 

processses th a t  created the outcrop ch a ra c te r is t i c s  o f  each u n i t  a t  

both l o c a l i t i e s .

80
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Unit  I was deposited mostly as m i c r i t i c  mud w i th  occasional 

gra instone and packstone in terbeds. Soon a f t e r  depos i t ion ,  c a l c i t e  

(?) cement (E-1) began to l i t h i f y  the sediments. This was followed 

by s o lu t io n  (E-2) o f  the m ic r i te  immediately below the mud-water 

in te r fa c e  which created the th in  bedded l imestone th a t  is  charac te r 

i s t i c  o f  t h i s  u n i t .  Fol lowing so lu t ion  were episodes o f  d o lo m i t i 

zat ion (E-3) ,  s i l i c i f i c a t i o n  (E-4) and d o lo m i t iza t io n  (E-5). The 

two episodes o f  d o lo m i t iza t io n  which resu l ted  in  do lom i t iz ing  the 

more porous so lu t io n  res idues, grainstones and packstones, were 

probably the r e s u l t  o f  a s ing le  process o f  do lo m i t iza t io n  which was 

in te r rup te d  by s i l i c i f i c a t i o n .  The E-3 s i l i c i f i c a t i o n ,  which was 

r e s t r i c t e d  to the grainstones and packstones, preserved many o f  the 

primary s t ruc tu res  o f  the o r ig in a l  sediment.

Un it  I I  is  not character ized by bedded white chert  nodules.

At the t ime o f  deposit ion t h i s  u n i t  was mudstone, grainstone and 

packstone w i th  more grainstone and packstone beds than Unit  I .  Early 

cementation (E-1) and 1i t h i f i c a t i o n  were fo l lowed by so lu t io n  (E-2) 

which created both th in  bedded and the lacy l imestones. This was 

fo l lowed by a minor d o lo m i t iza t io n  (E-3) which only  p a r t i a l l y  

do lom it ized the sediments. This do lo m i t iza t io n  was in te r rup ted  by 

s i l i c i f i c a t i o n  (E-4) which may r e f l e c t  high concentrat ions o f  organic 

debris which in  turn lowered the pH and p re c ip i ta te d  bedded white 

cher t  nodules. Poros i ty  co n t ro l led  d o lo m i t iza t io n  (E-5) fol lowed
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s i l i c i f i c a t i o n  and in some beds o b l i te ra te d  the primary s truc tures  

in the sediment.

U n i t  I I I  is  character ized by th ic k  re s is ta n t  l imestone beds 

a l te rn a t in g  w i th  less re s is ta n t  beds o f  dolomite.  The o r ig in a l  

sediment in t h i s  u n i t  was mostly m ic r i te  and algae w i th  occasional 

al lochems o f  many types. Following depos i t ion ,  cementation (E-1) 

commonly created hardgrounds. Cementation was f a i r l y  complete in 

the l imestone beds r e s u l t in g  in  r e s t r i c t i o n  o f  the do lom i t iz ing  

so lu t io n  to  the more porous in te r v a ls .  So lut ion (E-2) in  t h i s  u n i t  

resu l ted  mostly in  lacy l imestones but some o f  the dolomite beds 

appear to have been the th in  bedded l imestones. The do lo m i t iza t io n  

(E-3 and E-5) in  t h is  u n i t  was c le a r l y  l im i te d  to the more porous 

beds. Do lom it iza t ion  was again in te r rup ted  by s i l i c i f i c a t i o n  which 

created occasional chert  nodules s im i la r  to  the nodules th a t  t y p i f y  

Unit  I I .

The s ix th  d iagenet ic  episode to  occur throughout the e n t i re  

study area was a la te  c a l c i t i z a t i o n .  This c a l c i t i z a t i o n  replaces 

a l l  o f  the previous d iagenet ic  episodes w i th  large c lea r  c a l c i t e  

c r y s ta ls .  The c a l c i t i z a t i o n  was the re fo re  the la te s t  d iagenet ic  

episode to  occur in  the Manitou Formation.

Between episodes f i v e  and seven subaeria l exposure o f  the Indian 

T r a i l  L o c a l i t y  along the Ute Pass Fault  Zone deeply weathered those 

rocks to  a d i s t i n c t i v e  red co lo r .  This weathering (E-6) resu l ted  in
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pervasive d o lo m i t iz a t io n ,  s i l i c i f i c a t i o n  and so lu t io n .  The do lo

m i t i z a t i o n  (E-6a) o b l i te ra te d  most o f  the primary const i tuents  in 

the rocks tha t  were not preserved by previous s i l i c i f i c a t i o n .  S i l i 

c i f i c a t i o n  (E-6b) resu l ted  in chalcedonic overgrowths on the pre

v io u s ly  formed E-4 c h e r t  nodules which served as nucléat ion s i te s  

f o r  the la t e r  s i l i c i f i c a t i o n .  So lut ion (E-6c) in  the upper po r t ion  

o f  the sect ion created s ink holes and l imestone breccias as well  as 

ox id ized i ron  producing the red co lo r  c h a ra c te r i s t i c  o f  the Indian 

T ra i l  L o c a l i t y .  These three processes apparently  resu lted from the 

same episode since they are p e t r o lo g ic a l l y  d i f f i c u l t  to  separate 

in to  a nice sequentia l order and because they are a l l  unique to the 

Indian T ra i l  L o c a l i t y .  A model s im i la r  to  the Dorag model fo r  

d o lo m i t iz a t io n  (F ig.  25),  can account fo r  the simultaneous occurrence 

o f  those three processes. In th is  model the mixing o f  fresh water 

and sea water saturated w i th  respect to  c a l c i t e ,  dolomite and 

amorphous s i l i c a  creates a so lu t io n  capable o f  d o lo m i t iza t io n  and 

s i l i c i f i c a t i o n .  The magnesium required f o r  do lo m i t iza t io n  is  de

r ived  from the sea water.  The i n f l u x  o f  d issolved s i l i c a  and i ron  

in  the f resh water provides the necessary elements fo r  s i l i c i f i 

ca t ion  and f e r r i c  i ron  depos i t ion .  This weathering occurred during 

the post-Manitou to  Devonian h iatus because the over ly ing  Devonian 

Wil l iams Canyon Limestone is  gray, in d ic a t in g  i t  was not subjected 

to the weathering.
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MEASURED SECTIONS

The measured sect ions are presented as s t ra t ig ra p h ie  columns 

w i th  outcrop p r o f i l e s ,  and tabulated in columns and are descr ip t ions  

o f  the geology discernable in  the f i e l d .  From r i g h t  to  l e f t  the 

v e r t i c a l  columns are: 1) P r o f i l e  o f  the s t ra t ig ra p h ie  columns;

2) Thickness in fe e t  o f  the sect ion from the base; 3) Thickness 

in  meters from the base; 4) Outcrop c h a ra c te r is t i c s  o f  the che r t :  

b» = Nodular cher t  c u t t in g  bedding planes, Nodular cherts which

de l inea te  bedding, B  = Continuous cher t  beds, X = s i l i c i f i e d  f o s s i l  

fragments, O  = Nonbedded disseminated cher t  ( f i la g re e d  c h e r t ) ;

0  = Disseminated chert  r e s t r i c t e d  to a l im i te d  v e r t i c a l  hor izon;

5) Maximum thickness o f  a chert  nodule or cher t  bed in  cent imeters;

6) Chert beds or nodules per v e r t i c a l  0.3 meters; 7} Percentage o f  

carbonate minerals th a t  are l imestone as determined in hand specimen; 

8) Percentage o f  carbonate minerals th a t  are dolomite as determined 

in  hand specimen; 9) Nature o f  the dolomite,  P = pervasive ly  dolomi

t ize d  rock,  H = lacy disseminated whisps o f  do lomite ,  TB = dolomite 

i n t e r s t i t i a l  to  th in  l imestone nodules and beds; 10) Color o f  rock

on a f r e s h ly  broken surface,  B = b u f f  ye l lo w ,  G = gray, R = red,

N = brown; 11) Type o f  algae, M = matts, VSH = v e r t i c a l l y  stacked

hemispheroids, LLH = l a t e r a l l y  l inked hemispheroids, SH = spherical

hemispheroids; 12) c o r re la t io n  o f  the sect ions by u n i ts .
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C o rre la t ion  o f  Measured Sections
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