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ABSTRACT 

 

Climate change is threatening biota all over the world through dictating changes in species 

distributions.  The ability to predict the effects of climate on species distributions requires an 

understanding of how climatic and disturbance factors relate to species distributions.  I examined 

the relationship between climate, disturbance, and geographic distributions of vascular plants in 

the western United States.   

 

Within the mountain ranges of California, woody plants have largely shifted their distributions 

downhill during the 20
th

 century.  These shifts were strongly related to observed changes in 

climatic water balance, consistent with theoretical predictions.  Downhill shifts were most 

prominent for species occurring at higher elevations where environmental conditions were 

marginal.  Downhill shifts were observed at nested spatial scales where changes in climatic 

conditions were consistent, but at all scales were unrelated to species ecological traits. 

 

Niche models based entirely on climatic variables were highly accurate both within and across 

time periods.  The inclusion of fire occurrence as an additional explanatory variable did not 

affect model likelihood or niche model transferability, due primarily to climatic influences on 

fire occurrence.  Departure from historical return interval influenced total model likelihood when 

it was included as an additional explanatory variable for species adapted to high frequency return 

intervals, but did not improve model transferability for most species.   

 

Regeneration of tree species occurred within a narrower range of climatic conditions than 

adults.  Species with greater niche breadth displayed greater differences between adult and 

regeneration niches.  Both adults and juveniles displayed higher sensitivity to climatic variables 

representing mortality risk than to variables representing growth potential.  Spatially explicit 

models of regeneration indicated overestimation of tree ranges based on niche models and the 

potential for future range contractions.  These results were consistent across species. 
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INTRODUCTION AND OBJECTIVES 

  

Understanding the factors governing the distribution of species is arguably the most 

central tenant of ecology.  Beginning with the seminal works of Grinnell (1917) and Hutchinson 

(1957) ecologists have adopted the species niche concept as fundamental to basic and applied 

ecology.  Using the niche concept as a theoretical foundation, many ecologists have leveraged 

spatially explicit information on species occurrences and climatic conditions to develop 

correlative models relating the two (Elith and Leathwick 2009).  These models, often referred to 

as species distribution or environmental niche models, have been used in a variety of contexts 

but are arguably most popular for developing predictions of the potential impacts of climate 

change on the future distributions of species.  When used in this context, these models form the 

basis for many large-scale predictions of species loss and turnover resulting from climate change 

(Thomas et al. 2004, Lawler et al. 2010).  Because of the widespread concern over the potential 

impacts of climate change on biota, and the dire consequences projected by many species 

distribution models (SDM), there has been great interest in understanding the behavior of these 

models and their utility for predicting the impacts of future climatic change. 

 Most studies that have assessed the utility of SDMs have focused on issues related 

to model development, including the choice of statistical algorithm and the characteristics of 

input data (Elith et al. 2006, Anderson and Raza 2010).  However, there has been relatively little 

effort made to link ecological theory to these models as a means of evaluating their ability to 

predict climate change impacts, nor have sufficient efforts been made to understand the potential 

utility of broad-scale species occurrence data for understanding ecological processes beyond 

developing predicting of suitable climatic conditions in an SDM framework.  The few studies 
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that have evaluated the impacts of ecological phenomena on SDMs have found that such factors 

can influence the accuracy of SDMs.  For example, several studies have suggested that the 

dispersal capacity of a species can directly influence the accuracy of SDM predictions, with 

higher model accuracies found for species with a greater capacity to track climate (Kharouba et 

al. 2009, Dobrowski et al. 2011).  However, our understanding of how correlative models of 

suitable climatic conditions can be affected by extraneous ecological phenomena remains 

limited.  It has been suggested that a more thorough understanding of such factors is needed if 

ecologists are to continue using the SDM framework as a means of assessing the potential 

impacts of climate change on biota (Franklin 2010).  Providing a more explicit link between 

fundamental ecological principles and the SDM paradigm has the dual benefit of potentially 

providing more realistic predictions of species distributions and providing a mechanism by 

which basic ecological questions can be addressed using SDMs. 

 

OBJECTIVES 

This primary objective of this dissertation is to improve our understanding of SDM 

predictions across time and the ecological inferences gained from the application of these 

models.  Because these models are often used to guide conservation planning actions, this 

dissertation has direct relevance for both research and management applications.  Specifically, 

my objectives are to: 

1) Document climatically induced shifts in the geographic distribution of vascular 

plants within the mountain ranges of California 



3 

 

2) Quantify the influence of mechanistic processes on spatial patterns of vascular 

plant occurrence and how these processes affect our ability to predict future 

geographic distributions 

3) Empirically test for evidence of large-scale ontogenetic niche differences in long-

lived vascular plants and demonstrate their effects on SDM-based predictions of 

suitable habitat  

These three chapters each provide a unique, and to date largely unexplored, link between 

fundamental ecological principles and SDMs.  First I provide evidence of shifting species 

distributions in my study area (Chapter 1).  I show that unexpected shifts in species distributions 

can be directly related to physiologically relevant climatic parameters, and that these patterns can 

hold across a range of spatial scales.  In this case, I demonstrate that climatic factors with direct 

physiological links to vascular plant growth and survival can be used to explain seemingly 

inconsistent shifts in species distributions.  Second, I demonstrate the effects of mechanistic 

processes on species distributions and SDM predictions (Chapter 2).  Despite many criticisms of 

SDMs for being too simplistic and failing to account for mechanistic processes, I show that the 

occurrence of wildfire, and its recent departure from historic temporal patterns, has little to add 

to models of the distributions of vascular plant species once climatic conditions are accounted 

for.  I provide evidence that this disturbance agent is itself climatically mediated and in this case 

provides little explanatory power for predicting the occurrence of plant species on the landscape.  

Lastly, I show that demographic differences in niche characteristics are evident at large spatial 

scales (Chapter 3).  I use data from throughout the western United States to provide empirical 

evidence that plant regeneration occurs under a different set of environmental conditions than do 
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adults.  I demonstrate that failure to account for demographic differences in environmental 

tolerances can lead to overly optimistic predictions of future climatic suitability.   

 

DISSERTATION FORMAT 

Each chapter in this dissertation is formatted for submission to a specific peer-reviewed journal.  

Co-authors for journal submission are indicated on the first page of each chapter.  In those cases 

where the manuscript has already been published, in whole or in part, or submitted to a specific 

journal a footnote on the first page denotes the outlet.  Hereafter I use the collective “we” 

throughout this dissertation to acknowledge the work done by collaborators that contributed each 

chapter.     

 

LITERATURE CITED 

Anderson, R. P., and A. Raza. 2010. The effect of the extent of the study region on GIS models 

of species geographic distributions and estimates of niche evolution: preliminary tests 

with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography 

37:1378-1393. 

Dobrowski, S. Z., J. H. Thorne, J. A. Greenberg, H. D. Saffort, A. R. Mynsberge, S. M. 

Crimmins, and A. K. Swanson. 2011. Modeling plant ranges over 75 years of climate 

change in California, USA: temporal transferability and species traits. Ecological 

Monographs 81:241-257. 

Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. 

Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. 

Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. Overton, A. T. Peterson, S. J. 



5 

 

Phillips, K. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. 

S. Wisz, and N. E. Zimmerman. 2006. Novel methods improve prediction of species’ 

distributions from occurrence data. Ecography 29:129-151. 

Elith, J., and J. R. Leathwick. 2009. Species Distribution Models: Ecological Explanation and 

Prediction Across Space and Time. Annual Review of Ecology, Evolution, and 

Systematics 40:677-697. 

Franklin, J. 2010. Mapping Species Distributions: Spatial Inference and Predictions. Cambridge 

University Press. 

Grinnell, J. 1917. The niche-relationships of the California Thrasher. The Auk 34:427-433. 

Hutchinson, G. E. 1957. Concluding remarks. Pages 415-427 Cold Spring Harbor Symposium on 

Quantitative Biology. 

Kharouba, H. M., A. C. Algar, and J. T. Kerr. 2009. Historically calibrated predictions of 

butterfly species’ range shift using global change as a pseudo-experiment. Ecology 

90:2213-2222. 

Lawler, J. J., S. L. Shafer, and A. R. Blaustein. 2010. Projected climate impacts for the 

amphibians of the Western Hemisphere. Conservation Biology 24:38-50. 

Thomas, C. D., A. Cameron, R. E. Green, M. Bakkenes, L. J. Beaumont, Y. C. Collingham, B. F. 

N. Erasmus, M. F. de Siqueira, A. Grainger, L. Hannah, L. Hughes, B. Huntley, A. S. van 

Jaarsveld, G. F. Midgley, L. Miles, M. A. Ortega-Huerta, A. T. Peterson, O. L. Phillips, 

and S. E. Williams. 2004. Extinction risk from climate change. Nature 427:145-148. 

 

  



6 

 

CHAPTER 1 

 

 

 

RECENT SHIFTS IN THE ALTITUDINAL DISTRIBUTION  

OF VASCULAR PLANTS IN CALIFORNIA 

 

 

 

 

 

 

 

 

 

 

 

 

 

Crimmins, S.M., S.Z. Dobrowski, J.A. Greenberg, J.T. Abatzoglou, and A.R. Mynsberge.  2011.  

Changes in climatic water balance drive downhill shifts in plant species’ optimum elevations.  

Science 331:324 – 327.  
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ABSTRACT 

Recent climate change has induced many well-documented shifts in species distributions.  Often, 

observed upslope shifts are attributed to warming temperatures, leading to the widespread 

assumption that biota will ubiquitously shift their distributions upslope as global temperatures 

continue to increase.  Conversely, downslope shifts have been considered anomalous and 

generally unrelated to changing climate.  The widespread assumption of upslope shifts is 

contingent upon temperature being the primary factor driving distributions.  However, coupled 

climatic metrics that account for both energy and water are known to be directly linked to 

distributions in vascular plants.  Here, we use two temporally independent datasets on the 

distributions of vascular plants in the mountains of California, an area that has experienced 

varying changes in temperature and climatic water balance, to examine how plant species 

distributions have changed during the 20
th

 century.  We found widespread evidence of 

downslope shifts in species’ optimum elevations (n = 64, x  = 88.2 m downslope) across our 

study area. We found evidence of downhill shifts in both upper and lower elevation margins and 

little evidence of changes in the range of elevations occupied, suggesting shifts across the entire 

altitudinal distribution. The shifts we observed appear to be driven by widespread decreases in 

climatic water deficit.  Our results are the first to document downslope shifts in species’ 

distributions linked to climate change and suggest that the de facto assumption of upslope shifts 

in response to global warming should be questioned.  
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INTRODUCTION 

Global temperatures increased by approximately 0.6 °C during the 20
th

 century and are projected 

to increase by as much as 5.8 °C by the end of the 21
st
 century (IPCC 2007).  The biological 

impacts of this climatic change have been widespread and are projected to continue as 

temperatures continue to rise.  Among the most commonly observed of these impacts are 

changes in the geographic distributions of species (Parmesan 2006).  Researchers have found 

evidence of poleward shifts in latitude for a variety of mobile taxa including insects (Parmesan et 

al. 1999, Hickling et al. 2005) and birds (Hill et al. 1998, Thomas and Lennon 1999).  For sessile 

organisms like plants, uphill shifts in elevation have been observed (Lenoir et al. 2008, Harsch et 

al. 2009).  This change is generally thought to correspond with cooler temperatures, and thus 

reduced heat stress, occurring at higher elevations.  Under this paradigm, as temperatures 

increase, plant species are expected to shift their distributions uphill to track isoclines of 

temperature.  However, even in areas that have experienced widespread and substantial warming 

there is evidence of some species shifting their distributions downhill, suggesting that alternative 

drivers of species distributions may warrant consideration when predicting distributional shifts 

(Lenoir et al. 2010). 

The widespread assumption that temperature is the primary factor describing species’ 

distributions ignores the fact that the distributions of many species, particularly those of vascular 

plants, are highly constrained by both available energy and water (Stephenson 1990, 1998).  

Subsequently, temperature alone may serve as an inadequate metric for understanding and 

predicting shifts in plant species distributions under changing climate.  Despite widespread 

climatic warming, there is a growing body of evidence demonstrating stasis and downhill shifts 

in species distributions for a variety of taxa (Archaux 2004, Lenoir et al. 2008, Popy et al. 2010).  
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Such seemingly inconsistent results are often attributed to non-climatic drivers such as 

competitive interactions (Lenoir et al. 2010), human induced landscape modification (Archaux 

2004), time lags (Popy et al. 2010), or idiosyncratic responses of individual species (Millar et al. 

2004), with little consideration given to alternative climatic influences such as water balance.  

Because of this somewhat dogmatic focus on temperature as the primary driver of distributional 

shifts there has been limited progress in understanding the influences of other components of 

climatic change on shifts in species’ distributions. 

The mountain ranges of central and northern California have experienced substantial 

climatic warming during the 20
th

 century, and consequently many climatically induced changes 

in vegetation have already occurred.  These include changes in growth patterns (Millar et al. 

2004), dominance (Thorne et al. 2008), and tree mortality (Millar et al. 2007), with many such 

changes predicted to continue as temperatures increase (Battles et al. 2008).  However, along 

with rising temperatures this region has also experienced substantial increases in precipitation 

that have led to reduced climatic water deficit (Crimmins et al. 2011, Dobrowski et al. 2011a).  

Under these circumstances we may not expect plant species distributions to shift uphill, as 

enhanced growing conditions would actually be found at lower elevations.  Rather, distributions 

would be expected to shift downhill owing to the tight coupling between vegetation distribution 

and climatic water balance (Stephenson 1990, 1998).  Many floristic communities in this region 

are thought to be especially vulnerable to climate change (Loarie et al. 2008), highlighting the 

need for evaluations of recent climate change impacts in this region.   

Most studies of climatically induced shifts in species distributions have been continental 

in scale (Parmesan et al. 1999), with smaller scale studies typically occurring across entire 

mountain ranges or geographic regions (Lenoir et al. 2008).  It is generally unknown if large-
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scale (e.g. regional) climate change impacts can be detected at smaller (e.g. watershed) scales.  It 

is important to determine if climate change impacts, which are generally thought to manifest at 

large scales corresponding to broad synoptic climatic patterns, can be scaled to smaller spatial 

extents.  Studies of climate change impacts at spatial scales relevant to management could 

provide much needed guidance for developing climate change mitigation and conservation 

strategies.  Likewise, if climate change impacts detected at smaller spatial scales are indicative of 

regional patterns, the results of such studies could be useful for regional, national, or even 

international climate change mitigation and conservation planning strategies.  Here, we present a 

multi-scale analysis of 20
th

 century changes in plant species altitudinal distributions within the 

dominant mountain ranges of central and northern California using temporally independent 

datasets of plant species’ distributions.   

METHODS 

Study area 

We defined our broad study area as the Northwest, Cascade Ranges, Sierra Nevada, and Central 

Western ecoregions (Hickman 1993) within central and northern California (Figure 1).  This 

region encompassed an area of 177,000 km
2
 and represented the majority of the mountainous 

regions in the state north of 35° latitude.  These ecoregions were chosen because of the 

availability and abundance of vegetation survey data (see below) and long-term weather station 

data.  This region is considered a biodiversity hotspot due to its abundance of endemic flora and 

is an area of great conservation concern (Loarie et al. 2008).  Additionally, this region has 

experienced substantial climate change during the 20
th

 century, making it an ideal setting for 

studying the impacts of climatic change on vascular plants (Figure 1). 

Climate data 
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We used gridded (800 m) monthly normal (i.e. monthly average) climate data developed by the 

Parameter-elevation Regression on Independent Slopes Model (PRISM) (Daly et al. 2008).  

Monthly normals for climatic parameters were averaged across 30 year historical (1905–1935) 

and modern (1975–2005) time frames, providing mean climatic values for the previous 3 decades 

prior to vegetation data collection (see above). Climate surfaces were downscaled to a resolution 

of 400 m using dynamic lapse rate estimates (Keane and Holsinger 2006). Downscaling of 

climate surfaces was conducted because of the strong influence of physiography on air 

temperature in the region (Dobrowski et al. 2009) and previous research demonstrating that 

small-scale factors can influence the distribution of sensitive species (Ashcroft et al. 2009). Clear 

sky radiation was modeled for the study area at a 400 m resolution.  Potential evapotranspiration 

(PET) was calculated via the Penman-Monteith method using downscaled climate data, radiation 

maps, and wind maps from the National Renewable Energy Laboratory (Allen et al. 1998). 

Climatic water deficit was calculated as the annual difference between PET and precipitation.  

We created a continuous surface of 20th century change in deficit by subtracting historical values 

from modern values (Figure 1).  

Species distribution data 

We used species distribution data from two separate time periods to estimate change in the 

altitudinal position of vascular plant species.  First, we used plot data from the Wieslander 

Vegetation Type Mapping (VTM) project (Kelly et al. 2005), representing approximately 14,000 

plots throughout the state (Figure 2).  The VTM project was originally designed to map the 

vegetative communities of California, with plot data collected between 1928 and 1940 

(Wieslander 1935a, 1935b).  Individual plots comprised virtually complete vascular plant 

inventories and have been digitized to a spatial accuracy of 200 m (Kelly et al. 2005).  Although 
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the VTM sampling design was not a true presence/absence survey, these data are widely used for 

modeling the historic distribution of plant species in California (Syphard and Franklin 2010, 

Dobrowski et al. 2011b) and likely only suffer from false absences for only the rarest species. 

 We also compiled data from a variety of sources to develop a collection of approximately 

33,000 modern vegetation plots measured in the 2000’s.  Sources for modern data included, 

among others, the US Forest Service, National Park Service, California Fish and Game, US 

Bureau of Land Management, US Geological Survey, and university researchers including the 

authors (Figure 2).  As with historic VTM plots, species presence/absence data were extracted 

from each georeferenced plot location.  Hereafter we refer to these data as “historical” (~1930’s) 

and “modern” (~2000’s) respectively.  The majority of survey plots in both datasets were located 

on publicly owned lands where anthropogenic influences on land use would be minimal. 

Sample stratification 

Because plot data in the two data sets were not collected in the same manner or with the same 

objectives, and because of the substantial environmental heterogeneity within our study area, 

there existed the possibility for geographic bias between the two data sets.  For example, climatic 

parameters such as temperature and precipitation can exhibit substantial variation with respect to 

latitude and longitude, especially in mountainous regions such as California that are strongly 

influenced by oceanic circulation patterns (Abatzoglou et al. 2009).  Ideally, the distributions of 

sampling locations between the two time periods would be close enough to mimic re-sampling of 

the historical locations.  However, the disjunct and patchy distributions of sampling locations 

between the two time periods precluded us from using such an approach (Figure 2).  Instead, we 

chose to eliminate bias along environmental gradients across our broad study area.  We used a 

subsampling procedure in which we randomly selected an equal number of plots from each time 
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period from 20 equal-width bins based on climatic water deficit.  We also subsampled the 

original datasets in 20-equal width bins based on elevation and again by mean annual 

temperature using 1° C width bins (Lenoir et al. 2008).  Results were similar across these 

subsampled datasets, therefore we only present results at the broad scale from the sampling 

procedure based on climatic water deficit.  This procedure left us with a balanced sample of 

8,747 survey plots in each time period.   

Within the Sierra Nevada ecoregion (63,000 km
2
) survey plots were abundant and well 

distributed in both time periods.  Therefore, within this ecoregion we conducted a geographic, 

rather than environmental, bias removal approach.  We divided the latitudinal and longitudinal 

ranges of our study area into six equidistant sections, creating 36 equal area sections across the 

ecoregion.  Within each of these sections, we randomly sampled an equal number of plots from 

each dataset.  This procedure effectively removed geographic bias associated with latitude and 

longitude and left us with a balanced sample of 4,331 plots in each time period.  By doing this 

any potential influence associated with geographic lapse rates in climate were removed.  We 

repeated this procedure within each of the six Jepson subecoregions (Hickman 1993) occurring 

within the Sierra Nevada (Figure 2) as survey plots were also well distributed within these 

smaller extents (range 5,860–17,550 km
2
).  This procedure differed from that for the entire 

ecoregion in that our subsampling used three equal width bins of latitude and longitude, resulting 

in nine equal area sections within which plots were randomly sampled. We also replicated the 

bias removal procedure conducted at the broad study area scale based on climatic water deficit 

and found qualitatively similar results (not shown). 

Analysis 
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We modeled the altitudinal position of vascular plant species within each time period using a 

variety of metrics.  We used metrics of central tendency as well as upper and lower altitudinal 

margins because these areas are thought to represent differential responses to climate change and 

have different implications for conservation (Hampe and Petit 2005, Shoo et al. 2006).  First, we 

used logistic regression to calculate the optimum elevation of each species, which is the 

elevation with the maximum probability of occurrence (Lenoir et al. 2008).  We chose this 

metric as a measure of central tendency because it is substantially more robust to variability in 

sampling intensity than other metrics such as means or medians (ter Braak and Looman 1986, 

Zadrozny 2004).  We calculated optimum elevations only for species that had sufficient 

representation (≥ 50 occurrences) and exhibited unimodal response curves in each time period.  

For these species we also estimated the upper and lower altitudinal margins as the 90
th

 and 10
th

 

percentile of the altitudinal range covered by the species following Lenoir et al. (2009).  We also 

calculated the tolerance of each species, which is an estimate of the range of elevations in which 

a species occurs (Oksanen et al. 2001, Lenoir et al. 2008). 

 We calculated change in elevation as the difference between the historical and modern 

estimates.  We tested for overall changes in altitudinal position using paired t-tests for each 

metric.  The entire analysis procedure was also conducted within the Sierra Nevada and each of 

the six Jepson subecoregions (Hickman 1993) occurring within it to determine if patterns were 

consistent across nested spatial scales.  We examined the effects of species traits on elevation 

shifts using a Kruskal-Wallis test.  Traits examined included lifeform (tree, shrub), dispersal 

mechanism (wind, animal, gravity, ballistic), and level of fire adaptation (Dobrowski et al. 

2011b).  
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 To test whether or not species were tracking optimal environmental conditions, we used a 

similar approach as that described above to test for changes in optimum water balance.  We used 

spatially explicit estimates of annual climatic water deficit (Stephenson 1990, 1998) from 30-

year time frames prior to vegetation data collection (1905–1935, 1975–2005) to represent 

historical and modern metrics of water balance (Dobrowski et al. 2011a).  If species in our study 

area were shifting their distributions to track changes in water balance, we would expect to see 

no net change in water balance of sites occupied by a species between time periods.  We used 

similar approaches to those described above for calculating optimum climatic water deficit and 

temporal shifts in optimums. 

RESULTS 

Entire study area 

We retained 64 species within our study area with sufficient sample size and unimodal response 

curves.  Overall, these species exhibited a significant downhill shift in optimum elevation 

between time periods ( x  = -88.2 m, t = -2.49, df = 63, P = 0.016) with a higher proportion (p) 

shifting their distributions downhill (p = 0.72, 95% CI = 0.59–0.82) than uphill (p = 0.28, 95% 

CI = 0.18–0.41) (Figure 3).  We found no significant changes in optimum climatic water deficit (

x  = -11.1 mm, t = -0.20, df = 45, P = 0.843), with similar proportions of species shifting their 

distributions towards drier (p = 0.41, 95% CI = 0.27–0.57) and wetter conditions (p = 0.59, 95% 

CI = 0.43–0.73).  We found no evidence of changes in species’ tolerance ( x  = -5.4 m, t = -0.38, 

df = 63, P = 0.7) (Figure 3).  Upper and lower elevation margins exhibited non-significant (P > 

0.05) uphill shifts due to modern plots occurring an average of 296 m higher than historical plots 

(P < 0.0001).  When correcting for differences in elevation between the two datasets both upper (
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x  = -115.8 m, t = -4.14, df = 57, P < 0.001) and lower ( x  = -141.0 m, t = -4.10, df = 57, P < 

0.001) elevation margins exhibited substantial downhill shifts (Figure 3).   

Sierra Nevada ecoregion 

We retained 40 species in the Sierra Nevada ecoregion with sufficient sample size and unimodal 

response curves with respect to elevation for our analysis.  Overall, optimum elevations for these 

species within the Sierra Nevada shifted significantly downhill ( x  = -71.2 m, t = -2.76, df = 39, 

P = 0.009) with a higher proportion shifting their distributions downhill (p = 0.7, 95% CI = 0.53–

0.83) than uphill (p = 0.3, 95% CI = 0.17–0.47) (Figure 4).  Again, we found no evidence of 

changes in species’ tolerance ( x  = -10.3 m, t = -0.66, df = 39, P = 0.5) (Figure 4).  Upper 

elevation margins exhibited a moderate but non-significant shifts downhill ( x  = -36.4 m, t = -

1.34, df = 39, P = 0.19) with similar proportions shifting their altitudinal margins uphill (p = 

0.65, 95% CI = 0.48–0.79) and downhill (p = 0.35, 95% CI = 0.21–0.52) (Figure 4).  Lower 

elevation margins displayed similar results, with a non-significant shift downhill ( x  = -14.9 m, t 

= -0.53, df = 39, P = 0.597) and similar proportions shifting their lower margins uphill (p = 

0.575, 95% CI = 0.41–0.73) and downhill (p = 0.425, 95% CI = 0.27–0.59) (Figure 4).  Shifts in 

elevation metrics were unrelated to any species traits (P > 0.05 in all cases). 

 Contrary to our expectation, we found that species optimum climatic water deficits 

exhibited moderate evidence of increases ( x = -30.2 mm, t = 2.33, df = 36, P = 0.07) within the 

ecoregion, although three species were not included due to a lack of unimodal response curves.  

We also found that a greater proportion of species shifted their distributions towards drier (p = 

0.78, 95% CI = 0.61–0.90) than wetter conditions (p = 0.22, 95% CI = 0.10–0.39).   
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Subecoregions 

 The two southernmost subecoregions (sSNH, sSNF) did not retain a sufficient number of 

sampling locations after our bias removal to generate optimum elevation estimates, therefore all 

results at the subecoregion scale are from the four central and northern Sierra Nevada 

subecoregions.  The pattern of elevation shifts at the subecoregion scale was similar to that found 

at the study area and ecoregion scale, with a general trend of downhill shifts in elevation, 

particularly in optimum elevation (Figure 5).  However, the results within each subecoregion 

were less clear than those at larger scales due to the limited number of species retained within 

each subecoregion.  When results were pooled among subecoregions, we found strong evidence 

of downhill shifts in optimum elevation ( x  = -41.7 m, t = -2.59, df = 53, P = 0.012), lower 

elevation ( x  = -70.1 m, t = -3.55, df = 53, P < 0.001), and upper elevations ( x  = -26.2 m, t = -

2.02, df = 53, P = 0.048) (Figure 6).  When using our pooled data we did find evidence of 

moderate decreases in species’ tolerance ( x  = -27.1 m, t = -3.48, df = 53, P = 0.001) (Figure 6).  

Shifts in elevation were unrelated to species traits (P > 0.05 in all cases).  We were unable to 

calculate optimum water deficit values for most species within subecoregions due to a lack of 

unimodal response curves, therefore we used median water deficit values to represent species 

level environmental conditions.  We did not detect changes in median water balance using our 

pooled data ( x  = 0.5 mm, t = 0.12, df = 53, P = 0.91).   

DISCUSSION 

We found widespread evidence of downhill shifts in plant distributions in the central and 

northern mountain ranges of California.  This is not entirely surprising, as climatic changes 

between the time periods we investigated led to decreases in climatic water deficit throughout 
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most of this region (Crimmins et al. 2011, Dobrowski et al. 2011a).  Given the strong influence 

that climatic water deficit has on vascular plant distributions (Stephenson 1990, 1998), these 

downhill shifts are what one might expect in regions where increases in evaporative demand are 

outpaced by increases in available moisture.  The fact that our results were unrelated to 

individual species’ traits suggests that a widespread driver, such as climate, is responsible for 

these shifts.  One line of evidence to support this conclusion is that species occurring at higher 

elevations exhibited larger downhill shifts (Figure 7).  Because of the nonlinear relationship 

between elevation and vapor pressure deficit, cooler and wetter sites found at higher elevations 

are expected to exhibited greater sensitivity to changes in precipitation compared to warmer and 

drier sites at lower elevations.  Thus, the observed changes in climate throughout our study area 

would be expected to exhibit a greater influence on higher elevation sites.  Observational studies 

from this region have found increases in the density of young tree cohorts at lower elevations, 

providing further support for downhill shifts in overall distributions (Millar et al. 2004, Eckert 

and Eckert 2007). 

Most previous studies of climatic influences on elevational position of plants have 

focused only on changes in one point along the entire altitudinal gradient, often represented by a 

range limit.  This study represents one of the few attempts to examine shifts in altitudinal 

position at upper, lower, and central elevations (e.g. Lenoir et al. 2009).  The significant shifts in 

optimum elevations we observed suggest population level changes in altitudinal distributions 

(Shoo et al. 2006).  At the upper and lower altitudinal range margins we found evidence of 

downhill shifts at all scales, although not with the consistency they were observed for optimum 

elevations.  This is not entirely surprising, as range margins are generally thought to be much 

more dynamic and subject to transient influences than the center of a range (Gaston 2003).  
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However, the consistency with which downhill shifts were observed among elevation metrics 

and across scales suggests that downhill shifts are occurring across the entire altitudinal ranges of 

many species within our study area.  Our evidence of downhill shifts at both upper and lower 

range margins suggests that the altitudinal ranges of many species may not be experiencing 

contraction or expansion, but rather a uniform shift.  This is supported by species tolerance 

values generally remaining unchanged.  This is in contrast to many other studies that have 

demonstrated expansions and contractions in distributions related to climate change (Chen et al. 

2011).   

Our findings of downhill shifts are contrary to the widespread assumption of uphill shifts 

in species distributions resulting from increasing temperatures (Walther et al. 2002, Parmesan 

2006).  Several studies have found evidence contrary to this widely held assumption (Archaux 

2004, Lenoir et al. 2008), suggesting that the influence of climate on species geographic 

distributions may be quite complex.  In our study area, substantial changes in precipitation 

occurred between the two study periods that resulted in widespread decreases in climatic water 

deficit despite warming temperatures (Dobrowski et al. 2011a).  Because water balance is known 

to have a direct effect on the geographic distributions of vascular plants (Stephenson 1990, 

1998), this is a plausible explanation for our observed downhill shifts.  This is supported by our 

general finding of species exhibiting only small changes in optimum climatic water deficit at one 

study scale and no change at the other two, although this could represent a lagged response to 

climatic warming.  It has been suggested that climatic parameters other than temperature may 

explain downhill shifts in species distributions despite increasing temperatures (Lenoir et al. 

2010), although few studies have provided empirical evidence of such relationships.  The lack of 

shifts in species-level optimum water balance values, especially when coupled with their 
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concomitant shifts in elevation, provide strong support for climatic factors other than mean 

temperature driving species distributions.  In our study area, tracking of temperature isoclines 

would have required species to shift their distributions substantially uphill, the opposite direction 

in which most species actually moved.  Although we cannot infer a causal relationship between 

climatic water balance and species altitudinal position from our study, our results do provide 

further evidence that the influence of climate on biota can be complex.  

We found that climate change impacts occurring in California are evident at spatial scales 

that span an order of magnitude.  Several recent studies have found large scale shifts in the 

altitudinal distributions of vascular plants (e.g. Lenoir et al. 2008).  Because these shifts have 

occurred at such large scales they are generally attributed to climate change, which is thought to 

be the only factor that could act at such geographic scales.  Our results indicate that some of 

these large-scale climate change impacts can be detectable at more localized scales.  This 

suggests that the results from localized or small-scale studies of climate change impacts can be 

relevant to large-scale conservation planning actions or policy initiatives.  Similarly, findings 

from large-scale studies may be applicable at local scales where on-the-ground conservation 

actions are more likely to occur.  However, it is important to note that the most likely causal 

driver of the observed shifts in species distributions in our study, decreases in climatic water 

deficit, was evident across our study area at all scales.  If climatic drivers at more localized 

scales show disparate trends from regional patterns it is quite possible that localized effects may 

not mimic those detected across broader regions.  Thus, it is important to consider the spatial 

patterns of climate change when attempting to scale the results of a single study up to broader or 

down to more localized domains. 
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The assumption that rising temperatures will lead to nearly ubiquitous uphill shifts in 

species distributions is common among ecologists (Parmesan and Yohe 2003, Walther et al. 

2005, Parmesan 2006).  For species with direct physiological limitations to temperature this 

assumption may be valid, but for many species the coupled availability of water and energy is far 

more important than temperature alone (Stephenson 1990, 1998).  It has previously been 

suggested that climatic parameters other than mean temperature may explain seemingly 

incongruous shifts in species distributions (Lenoir et al. 2010), although no previous studies have 

attempted to link such shifts to alternative climatic parameters.  Our results suggest that careful 

consideration of relevant climatic parameters is critical to understanding the effects of climate 

change on biota.  Beyond simply understanding the effects of climate change, these results 

should also provide caution to those attempting to predict the effects of climate change, such as 

those employing climatic envelope models to project species distributions under future climatic 

scenarios (Pearson and Dawson 2003).  In most cases these studies do not consider 

physiologically relevant climatic parameters, and instead utilize widely available gridded climate 

surfaces such as mean, minimum, and maximum temperature.  Clearly, such metrics are not 

relevant to all species, and only through the use of appropriate climatic parameters can ecologists 

hope to fully understand the consequences of a rapidly changing climate. 
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Figure 1: Change in mean annual temperature (A), potential evapotranspiration (B), annual 

precipitation (C), and climatic water deficit (D) in California from the early (1905–1935) to late 

(1975–2005) twentieth century. 

 

Figure 2: Distribution of sample plots in historical (ca. 1935) and modern (ca. 2005) time frame 

prior to bias removal.  Plots from the USFS Forest Inventory and Analysis plots (n = 3,740) are 

not shown but regions containing the plots are highlighted in yellow.  Abbreviations refer to 

Jepson subecoregions: cSNH – Central High Sierra Nevada, cSNF – Central Sierra Nevada 

Foothills, nSNH – Northern High Sierra Nevada, nSNF – Northern Sierra Nevada Foothills, 

sSNH – Southern High Sierra Nevada, sSNF – Southern Sierra Nevada Foothills. 

 

Figure 3: Scatterplots of species-specific historic position versus modern position for optimum 

elevation (A), lower elevation (B), upper elevation (C), and tolerance (D) from the entire study 

area.   

 

Figure 4: Scatterplots of species-specific historic position versus modern position for optimum 

elevation (A), lower elevation (B), upper elevation (C), and tolerance (D) within the Sierra 

Nevada ecoregion.   

 

Figure 5: Boxplot of species-specific shifts in optimum, upper, and lower elevations within 

subecoregions.  Asterisks indicated level of significance (* p = 0.15, ** p = 0.1, *** p = 0.05) 

from paired t-tests of historic versus modern elevations.  Width of boxes is proportional to 

sample size (cSNF = 7, cSNH = 17, nSNF = 8, nSNH = 22). 
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Figure 6: Scatterplots of species-specific historic position versus modern position for optimum 

elevation (A), lower elevation (B), upper elevation (C), and tolerance (D) from pooled 

subecoregions.   

 

Figure 7: Scatterplot of shift in optimum elevation (m) versus historical (ca. 1935) altitudinal 

position across entire study area (A), within the Sierra Nevada ecoregion (B), and within 

subecoregions (C).  Note that within C, species may be included more than once if they occurred 

in multiple subecoregions.  Solid line represents linear regression model with 95% CI (dashed 

lines).  Linear regression models were highly significant (P < 0.01) in each case.   
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Abstract: Correlative species distribution models (SDM) are widely used in studies of climate 

change impacts, yet are often criticized for failing to incorporate mechanistic processes that can 

influence species distributions. Here, we use two temporally independent datasets of vascular 

plant distributions, climate data, and fire atlas data to examine the influence of disturbance on 

SDM projection accuracy through time in the mountain ranges of California.  We used 

hierarchical partitioning to examine the influence of fire occurrence on the distribution of 145 

vascular plant species, and built a suite of SDMs to examine how the inclusion of fire occurrence 

and departure from historical fire return intervals as predictors affected SDM projection 

accuracy.  Fire occurrence provided the least explanatory power for predicting species’ 

distributions in both time periods, but provided marginal explanatory power for species whose 

regeneration is tied closely to fire. Fire return interval departure had greater explanatory power 

for calibrating modern SDMs than fire occurrence but did not improve model accuracy when 

evaluated against data used to build the models. Fire occurrence and fire return interval departure 

were strongly related to the climatic covariates used in SDM development, suggesting that 

improvements in model accuracy may not be expected due to limited additional explanatory 

power.  Our results suggest that the inclusion of coarse-scale measures of disturbance in SDMs 

may not be critical for generating predictions of potential species distributions under climate 

change, particularly for disturbance processes that are largely mediated by climate.   

Keywords: California, disturbance, fire, niche, SDM, species distribution model, transferability 

 

INTRODUCTION 

Understanding the factors that determine biogeographic patterns has been a central tenet of 

ecological studies for decades (Grinnell 1917).  Although early efforts to describe the 
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relationships between species distributions and environmental factors were largely qualitative, 

ecologists today employ a wide variety of techniques for evaluating and describing these patterns 

(Elith and Leathwick 2009).  In recent decades, species distribution models (SDMs) have 

become widely implemented for the study and description of biogeographic patterns.  These 

models use observed species occurrences and spatially explicit environmental data to build 

probabilistic models of suitable habitat across the landscape (Austin 2002).  Today, these models 

are widely applied to a variety of topics including invasive species biology (Urban et al. 2007), 

conservation planning (Araújo et al. 2011), and tests of ecological theory (Broennimann et al. 

2007).  However, perhaps the most common application of SDMs is in predicting the effects of 

climate change on species distributions (Thuiller 2004).  As the availability of species 

distribution and climate data continues to increase, it is likely that these models will continue to 

be widely used in ecological studies.  

Although commonly used among ecologists, SDMs are also the subject of widespread 

criticism (Hampe 2004).  Because the results of SDMs are often used to guide conservation 

planning or climate change mitigation efforts, it is not surprising that substantial efforts have 

been made to understand the factors affecting SDM performance (Araújo and Luoto 2007, 

Thuiller et al. 2008).  Yet despite these criticisms, SDMs are still considered to be an appropriate 

tool for many ecological studies (Pearson and Dawson 2003).  One criticism that could limit the 

predictive accuracy of SDMs, and one whose effects have rarely been investigated, is that they 

typically fail to incorporate disturbance processes that can strongly influence biogeographic 

patterns (Austin 2002).  It has been suggested that disturbance can disrupt the relationship 

between species occurrence and environmental factors (Cassini 2011), and that accounting for 

such processes is critical for the field of conservation biogeography (Franklin 2010).  
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 Fire is one such disturbance that is often strongly related to the spatial patterns of 

vascular plants on the landscape (Franklin et al. 2004).  In systems where fire represents the 

dominant natural disturbance mechanism, such as in many of the mountain ranges of California, 

fire differentially affects the survival and recruitment of individual species, with some 

succumbing to fire-induced mortality while others require the occurrence of fire to facilitate 

germination (Hickman 1993).  Fire occurrence has also been linked to patterns of vegetation 

community shifts in portions of California (Callaway and Davis 1993), further indicating its 

influence on plant communities.  There is abundant indirect evidence from studies in regions 

with Mediterranean climates, such as California, to suggest that fire-related covariates could 

influence SDM predictions.  For example, previous studies have shown that species-specific 

adaptation to fire is strongly related to SDM accuracy when using internally validated (i.e. within 

a single time period) or temporally independent data (Syphard and Franklin 2010, Dobrowski et 

al. 2011b).  Similarly, simulations of potential vegetation indicate that fire occurrence has a 

strong influence on broad-scale vegetation distribution and structure in both Mediterranean 

climates and globally (Bond et al. 2003, 2005).  However, in one of the few studies to 

empirically assess the influence of fire related covariates on SDMs, Tucker et al. (2012) found 

that the inclusion of fire-related covariates in SDMs provided relatively little additional 

explanatory power for species occurrence in South African plant communities, like California a 

Mediterranean-climate region with strong ecological and evolutionary influences of fire.   

A potential confounding factor when considering the occurrence of fire as a covariate in 

SDMs is that in many regions the current fire regime differs substantially from the historical fire 

regime.  In regions with altered fire regimes, contemporary occurrence of fire is likely not 

representative of the long-term fire conditions under which local species evolved.  This means 
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that, especially for species with distributions tightly coupled to historical patterns in fire 

occurrence, current fire regimes may overlap only the periphery of, or be entirely beyond, the 

fundamental niche of these species (i.e. Hutchinson’s [1957] “n-dimensional hypervolume”).  

These departures in fire regime can be the result of change in climatic factors influencing fire 

occurrence and/or changes in anthropogenic influences on the fire regime, in either positive or 

negative directions (Whitlock et al. 2003), yet it is largely unknown as to how these departures 

may affect SDMs.  For example, California has experienced large changes in fire regime, 

including ignition rates, fire frequency, and area burned, resulting from anthropogenic activities 

(Syphard et al. 2007).  Thus, in some systems, it is reasonable to assume that incorporating 

departure from historical fire regimes into SDMs may prove more useful than incorporating 

contemporary fire occurrence.     

Despite previous research efforts and the extensive literature debating the utility of 

correlative SDMs that ignore mechanistic processes, to date no studies have addressed the basic 

question: Does including covariates describing disturbance patterns improve SDM projections 

under climate change?  Relatively little work has been done to directly address this question, and 

what little work has been done using empirical data has occurred within a single time period. 

Previous studies focused on species’ response to fire have provided ancillary evidence to suggest 

that the inclusion of fire as a predictor in SDM development could improve projections 

(Dobrowski et al. 2011b) but a direct assessment of this is still lacking. Thus we have little 

information on how the inclusion of fire-related covariates influences SDM projections through 

time.  

METHODS 

Study area 
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We conducted our study in the major mountain ranges of California, USA, an area of 

approximately 220,000 km
2
.  This region represents an excellent area for investigating the effects 

of climate change on biota and our subsequent abilities to model these changes.  The study 

region has experienced substantial and spatially variable changes in climate and hydrology and 

contains major elevational, latitudinal, and longitudinal gradients (Crimmins et al. 2011, 

Dobrowski et al. 2011a).  The region has been identified as a global biodiversity hotspot, and 

predicting the effects of climate change on the region’s endemic flora is of great conservation 

concern (Loarie et al. 2008).  There is evidence to suggest that species distributions within this 

region have shifted as a result of recent climate change (Tingley et al. 2009, Crimmins et al. 

2011).  Additionally, fire represents arguably the most important natural disturbance mechanism 

to plant species in this region (Figure 1), with more than 65,000 km
2
 burned (including areas 

with multiple fires) in the state during our two primary study periods (see below). 

Species data 

We used two temporally independent datasets of vascular plant species distributions from our 

study area to develop and test SDMs.  The first dataset is a collection of approximately 14,000 

survey locations collected in the 1930’s as part of the US Forest Service’s Vegetation Type Map 

(VTM) Project (Wieslander 1935a, 1935b).  VTM plots were 800 m
2
 in size and plot locations 

have been digitized and georeferenced with an accuracy of +/- 200 m (Kelly et al. 2005).  The 

second dataset represented approximately 33,000 survey locations compiled from a variety of 

sources that have been collected since 2000.  Further details about these inventories are provided 

in Crimmins et al. (2011) and Dobrowski et al. (2011b).  We extracted species presence-absence 

data from both datasets for a suite of species that were sufficiently represented (≥ 30 
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occurrences) in each dataset.  This left us with 144 species for which we were able to build and 

evaluate SDMs. 

 We categorized species by their adaptation to fire, the primary natural disturbance agent 

in our study area.  We used published studies of species’ ecology and expert opinion to assign 

each species to one of three adaptation levels: (1) fire evaders, (2) fire resisters, and (3) fire 

endurers and avoiders (Agee 1998; we refer to group 3 as “avoiders” throughout).  Fire evaders 

are species that exhibit regeneration syndromes that are thought to have evolved in response to 

fire, including fire obligate seeding and serotiny; these are mostly species adapted to high 

intensity fire regimes, where the adult plant is often killed. Fire resisters are species that tend to 

survive fire through adaptations conferring resistance to low or moderate intensity fires, such as 

thick bark or self-pruning of lower branches; resisters do not possess specialized regeneration 

syndromes tied to fire and they tend to be rare or absent in areas characterized by high intensity 

fires. Fire endurers are resprouting species whose aboveground parts are usually killed by 

moderate or high intensity fire; the ability to resprout is nearly universal in woody plants and is 

considered a generalized adaptation to a variety of disturbances that remove or consume 

aboveground biomass (Bond and van Wilgen 1996). Fire avoiders are species without any 

adaptations to fire or similar disturbances; these species are rare in Mediterranean climate 

regions like California. In the fire evader group, we included species that exhibit both fire-

stimulated germination and postfire resprouting (“facultative” species), and in the resisters group 

we included fire resistant species that sprout (e.g., Quercus spp.) or not (e.g., Pinus spp.).   

Climate and fire data 

We developed a suite of four climatic predictor variables that we hypothesized would exhibit 

direct influence on species distributions.  We used 800-m resolution climate data from two time 
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periods approximately representing 30-year time frames prior to vegetation data collection 

(1906–1935, 1976–2005).  We used two climatic variables from the Parameter-elevation 

Regression on Independent Slopes Model (PRISM) (Daly et al. 2008) dataset, maximum 

temperature and minimum temperature.  We also used two hydrologic variables that have been 

shown both theoretically and empirically to affect vascular plant distributions; actual 

evapotranspiration and annual climatic water deficit (Stephenson 1990, 1998).  These variables 

were estimated at a monthly time-step and then summed within each year and averaged across 

the 30-year periods to represent average annual conditions for the entire time period.  The 

hydrologic variables were developed using a modified climatic water balance model (Lutz et al. 

2010) that accounts for atmospheric demand, snowmelt and soil moisture storage on a monthly 

time-step.  For additional information see Dobrowski et al. (2012).  Fire perimeters were 

acquired from the California Department of Forestry and Fire Protection’s Fire and Resource 

Assessment Program (FRAP; http://frap.cdf.ca.gov/).  For each vegetation survey location we 

determined if a fire perimeter from the same 30-year time periods used in our climate summaries 

overlapped the survey location.  We also tabulated the total number of fire occurrences at each 

sampling locations during the 30-year time periods and used this value as a covariate in SDMs.  

However, these results did not differ from those when including simple binary occurrence of fire 

(Appendix A).  To evaluate the effects of departure from historical fire regime on SDMs we used 

a recently developed dataset on the departure in fire return interval between the 20
th

 century and 

pre-European settlement conditions for all national forests in California (Safford and Van de 

Water, in review).  From this we extracted the departure in mean fire return interval for all 

modern survey locations that occurred on US Forest Service lands, the area covered by the fire 

return interval departure map.  Because this map did not cover our entire study area, analyses 
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based on fire return interval departure were conducted using a subset (n = 116) of the 144 species 

for which we had sufficient occurrence data. 

Hierarchical partitioning 

We evaluated the influence of covariates, including fire, on explained deviance in species 

distributions using hierarchical partitioning (Chevan and Sutherland 1991).  Hierarchical 

partitioning is an approach that quantifies the contribution of a given explanatory variable to the 

explanation of a dependent variable, in our case species presence or absence.  Importantly, it 

allows for the contribution to be partitioned into the component that is shared jointly with other 

explanatory variables and the individual component that is unique to that predictor.  The 

independent contribution of the variable is calculated by quantifying the effect of the variable in 

all possible models that can be constructed from the entire set of explanatory variables, while the 

joint contribution is that contribution that is shared among explanatory variables.  We conducted 

hierarchical partitioning using the hier.part package in the R programming language (R 

Development Core Team 2011).  We used generalized linear models (GLM) with a binomial 

distribution and calculated the contribution of each explanatory variable to goodness-of-fit, using 

log-likelihoods as our measure of fit.  We modeled each species separately in each of the two 

time periods when including fire occurrence as a covariate and in the modern time period when 

including fire return interval departure.   

Species distribution models 

Although our hierarchical partitioning allows us to decompose the influence of individual 

covariates on measures of model fit, it does little to describe how incorporation of new covariates 

affects actual prediction accuracy of SDMs.  Because we sought to explore the influence of fire 

on various classes of SDMs, we used a suite of different model algorithms to build our predictive 
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models.  First, we developed generalized linear models (GLM) of species presence-absence 

using logistic regression.  We used a step-wise variable selection procedure based on 

minimization of AIC scores (Burnham and Anderson 2002).  Using this procedure, each variable 

could be dropped or fit as a linear, second order, or third order polynomial.  Second, we 

developed generalized additive models (GAM) as an example of a semi-parametric regression 

approach (Hastie and Tibshirani 1990).  We again used stepwise variable selection procedure 

based on AIC scores where each variable could be dropped, fit as a linear term, or fit as a cubic 

spline with three degrees of freedom.  Third, we developed boosted regression trees (BRT) as an 

example of a relatively new machine learning approach (De’ath 2007).  BRT models were built 

using 2000 trees with a shrinkage parameter of 0.01, a 0.5 bag fraction, and an interaction depth 

of 3 (Elith et al. 2008).  We derived out-of-bag estimates of the optimal number of boosting 

iterations, which we then used to predict probability of occurrence.  Finally, we developed 

random forest (RF) models as another example from the machine learning community (Breiman 

2001, Cutler et al. 2007).  RF models were developed using independent bootstrap samples to 

grow 750 trees for each species (Cutler et al. 2007).  For each species the probability of 

occurrence was determined as the proportion of presence votes from the 750 trees.  We built one 

set of models using only our four climatic variables, and one set of models that also included fire 

occurrence as a predictor.  We developed models using 75% of the historical data and tested the 

models on the remaining 25% of the historical data and all of the modern data.  We refer to 

results from tests using the withheld 25% of the historical data as internal evaluations while the 

results using data from the modern time frame as independent evaluations.  Because of the 

temporal scale of our fire return interval data we were not able to develop models in the 

historical time period using these data, and thus could not evaluate their effects on model 
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projections across time (i.e. independent evaluations).  However, we were able to evaluate the 

influence of fire return interval departure on internal evaluations in our modern data, using a 

randomly selected 75% of the modern data to build models and testing it on the remaining 25%.  

Because these data did not cover our entire study area we were only able to conduct these 

evaluations for a subset (n = 116) of our overall group of species.         

We evaluated SDMs using multiple criteria.  First, we used the area under the ROC curve 

(AUC) as a threshold independent measure of SDM accuracy (Fielding and Bell 1997).  AUC is 

a commonly used metric for describing SDM accuracy (Elith et al. 2006) because it avoids the 

somewhat arbitrary issue of choosing a prediction threshold.  However, it has been suggested 

that AUC may be a misleading measure of SDM accuracy (Lobo et al. 2008).  Therefore, we also 

chose to use binary classifications of species presence or absence and confusion matrices to 

assess model accuracy.  We used the sensitivity-specificity equality approach to select our 

prediction thresholds (Cantor et al. 1999).  This approach places equal weight on sensitivity and 

specificity and performs well when compared to other commonly used threshold selection 

criteria (Liu et al. 2005).  We converted our predicted probabilities of occurrence into binary 

presence-absence predictions for each species at each sampling location and assigned each 

prediction one of the four possible entries into a confusion matrix.  We expressed false positive 

(FP; errors of commission) and false negative (FN; errors of omission) error rates as the 

proportion of true absences or presences that were incorrectly classified.  We quantified the 

effect of fire on SDM projection accuracy by calculating the change in each accuracy metric 

(AUC, FP rate, FN rate) when going from a model without fire as a predictor to one including 

fire as a predictor using both internal and external model evaluations.  Because previous research 

has indicated that species’ response to fire can influence SDM projection accuracy (Dobrowski 
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et al. 2011b), we summarized results from hierarchical partitioning and SDM evaluations within 

each of the three fire response groups. 

RESULTS 

Hierarchical partitioning 

In general, the occurrence of fire provided little explanatory power relative to the climatic 

variables used in SDMs.  When examined across all 144 species the joint and individual 

contributions of fire occurrence to the log-Likelihood were the lowest of all explanatory 

variables, a pattern that was evident regardless of time period (Figure 2).  The individual 

explanatory power of fire occurrence was similar between time periods (P = 0.99), in each case 

accounting for <6% of the total variation explained by the model.  The patterns in explanatory 

power among other predictors differed between time periods but were consistently greater than 

fire (Figure 2).  Patterns of explanatory power differed when examined within individual fire 

adaptation groups.  For fire avoiders and resisters fire occurrence yielded the least explanatory 

power in either time period (Figure 2).  For fire evaders the occurrence of fire provided the least 

explanatory power in the historical time period, but the third strongest in the modern time period, 

surpassing the explanatory power of AET and maximum temperature (Figure 2).  For all fire 

adaptation groups in both time periods the individual contribution of fire occurrence amounted to 

less than 10% of the total explanatory power.  Patterns of explanatory power for other variables 

differed between time periods within each of the fire adaptation groups, with temperature related 

variables showing a general increase in predictive power while hydrologic variables showed a 

general decrease (Figure 2).   

Compared to fire occurrence, fire interval departure did offer additional explanatory 

power, with an individual contribution to the total explained variability of approximately 10% 
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when examined across all species.  However, as with fire occurrence this was the lowest among 

all predictors (Figure 3).  Patterns of explanatory power for the avoiders and evaders groups were 

similar to those found when using fire occurrence, with the explanatory power of fire return 

interval departure exceeding that of AET and maximum temperature for the evaders while 

retaining the lowest explanatory power among the avoiders.  For the resisters, fire return interval 

departure yielded the second highest individual contribution to total model likelihood, explaining 

approximately 16% of the total variation in species occurrence.  

Species distribution model accuracy 

Our models that excluded fire occurrence performed well when evaluated internally, with an 

average AUC of 0.91 across all five model algorithms (Table 1).  When validated with 

contemporary data, average AUC of models excluding fire occurrence dropped to 0.80.  The 

random forest model exhibited the largest decrease in AUC when projected into the modern time 

period (Table 1).  FP and FN error rates both increased when SDMs were projected into the 

future, with FP rates increasing to a larger degree than FN rates (Table 1).   

When evaluated internally, models including fire occurrence yielded small but non-

significant (P > 0.1) increases in overall model accuracy compared to models excluding fire 

across all 144 species (Table 1).  Changes in accuracy metrics varied among model algorithms 

but in each case were not significant (Table 1).  When evaluated with temporally independent 

data the inclusion of fire occurrence in SDMs had no discernible effects on model accuracy, with 

no significant changes in any accuracy metric when examined across all 144 species (Table 1).  

When examined within fire adaptation categories, the inclusion of fire generally did not improve 

any metric of projection accuracy (Figure 4).  The lone exception was AUC for the evaders 

group, which exhibited a small but significant (P < 0.01) increase.  When evaluated against 
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temporally independent data, the inclusion of fire occurrence yielded no discernible changes in 

any accuracy metric within any of the fire adaptation groups (Figure 4).  The inclusion of fire 

return interval departure yielded no discernible changes in any accuracy metric within any of the 

fire adaptation groups (Figure 5). 

DISCUSSION 

Disturbance-related variables are typically absent from species distribution models, a point that 

has been highlighted in critical evaluations of SDMs (Austin 2002).  Although SDMs are widely 

criticized for this lack of mechanistic processes, empirical evaluations of its effects on model 

accuracy are rare.  We conducted our study in a region with a dominant natural disturbance 

mechanism (fire) that is generally thought to exert a strong influence on plant distributions 

(Keeley and Fotheringham 2001).  Because of this we hypothesized that fire occurrence would 

be an important predictor of species distributions and that its inclusion would improve SDM 

projection accuracy.  Contrary to our expectations, we found that fire occurrence yielded very 

little additional explanatory power relative to climatic variables and generally did not improve 

model accuracy.  We had also hypothesized that using fire return interval departure as a covariate 

in our models might yield additional explanatory power compared to observed fire occurrence.  

Our hierarchical partitioning results confirmed this hypothesis, with a relative contribution to 

total explanatory power of about 15% compared to 8% when using fire occurrence. However, 

this increase in explanatory contribution had little effect on metrics of model accuracy.      

In a related study, Tucker et al. (2012) also found that variables related to fire regime 

yielded little explanatory power.  Their study was conducted in the Cape Floristic Region of 

South Africa, an area with similar climatic patterns and evolutionary forces as much of our study 

area, which may help explain the similarity in our results.  Tucker et al. (2012) found that the 
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influence of fire related variables on SDMs was not related to species’ adaptation to fire, which 

they attributed to limited statistical power due to a small number of species included in their 

analysis (n = 27).  Our results are similar to those of Tucker et al. (2012) in that we generally 

found that fire occurrence yielded little explanatory power.  However, our results did differ from 

those of Tucker et al. (2012) somewhat in that we found what appears to be a pattern of 

improved SDM accuracy for fire evading species when including fire occurrence, and to some 

extent fire return interval departure, as a variable in our models (Figures 4 and 5).  Although the 

improvement in model accuracy was not statistically significant, the pattern does match what we 

would expect for species that are dependent upon fire for regeneration.  Although our overall 

sample size was large (n = 144), we did not have a large number of species that exhibited 

specialized regeneration responses to fire in our study (n = 41) suggesting that our results may 

also be limited by sample size issues.  Additional studies with a greater number of disturbance-

linked species would greatly improve our understanding of disturbance mechanisms on SDM 

performance.    

A potentially parsimonious explanation for the general lack of influence of fire 

occurrence on species distributions is that the occurrence of fire itself is not independent of 

climate.  Wildfire regimes are largely determined by climatic factors (Westerling et al. 2003), 

which could have limited their predictive power in our models.  For example, using the same 

climatic variables as in our SDMs to build logistic models (GLM) of fire occurrence at the 

vegetation survey locations instead of species occurrence yields an AUC value of >0.78 in both 

time periods, suggesting that the occurrence of fires in our study area was largely determined by 

the climatic parameters used in our SDMs and thus provided limited additional explanatory 

power.  This is not entirely surprising, as previous research has documented the strong influence 
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of long-term climate on the relative probability of fire occurrence in the western United States 

(Parisien et al. 2012).  Similarly, climatic models of fire return interval departure yielded 

relatively high levels of predictive power (r
2
 = 0.5) as well. Even though fire return interval 

departure is driven primarily by fire suppression efforts, the success of these efforts is dependent 

to a great extent on variables related to weather and climate, such as drought, fuel moisture, 

temperature, precipitation, and wind patterns (Miller et al. 2012).  It is entirely possible that other 

disturbance mechanisms unrelated to long-term climate may prove useful for SDM studies, 

however our results suggest that, particularly for relatively short-term projections, climatically 

mediated disturbance mechanisms may be of limited utility in improving SDM projections. 

Although was fire was prevalent in our study area, with 15.6% and 17.6% of our 

historical and modern plots having at least one fire occurrence during our 30-year time frames 

respectively, our data come from a time period in which fire suppression was widespread 

throughout our study area.  Thus, the fire regimes represented in our data do not represent the 

natural fire regimes that developed in the region prior to large-scale anthropogenic alterations of 

the system and the fire regime under which many of these species have adapted.  Because of this 

it is not entirely surprising that including contemporary fire occurrence data in our models had 

little effect on their accuracy.  Given that large-scale fire suppression is likely to continue in the 

near future, and thus continued alterations of the natural historical fire regime will occur, our 

results are very pertinent to short-term predictions of future species distributions.  The lack of 

influence of fire return interval departure on SDM accuracy, despite its increased contribution to 

explained variation, may be an artifact of the relatively short time frame (30 yr.) used in our 

analysis.  Fire regimes, and species adaptations to them, have developed over evolutionary time-

scales.  Thus, departures from historical fire regimes may have a strong influence on species 
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distribution, but at a time-scale greater than that of our study.  Paleoecological studies may prove 

very informative for understanding the long-term influence of altered disturbance regimes on 

species distributions (Svenning et al. 2011).  

Another issue to consider regarding the inclusion of disturbance related covariates in 

SDMs is that of large-scale distributional patterns versus small-scale occupancy dynamics.  

Although we found that disturbance had little effect on broad-scale species distributions in this 

study, disturbance may be important when considering temporal changes in site-level occupancy 

patterns.  For example, propagules of fire evading species dispersing into previously unoccupied 

habitat cannot generally germinate in the absence of a fire event, regardless of climatic 

suitability.  Thus, the actual occurrence of a fire at a specific site can serve as the mechanism 

determining whether or not a site is occupied by a particular species despite the site being 

climatically “suitable” habitat.  This dynamic would be very important at range margins, where 

transient metapopulation dynamics that are poorly represented by correlative SDMs may exhibit 

stronger influence on site level occupancy dynamics than long-term climatic conditions.  Thus, it 

is important to consider issues of both temporal- and spatial-scale when developing SDMs using 

disturbance related covariates.  The issue of temporal scaling may have influenced our findings 

because of our use of 30-year time frames to quantify fire occurrence.  Using this approach, we 

were not able to differentiate between plots that had burned 30 years prior to sampling or two 

years prior.  If a fire occurred at a plot near the beginning of our 30-year window, this would 

allow ample time for regeneration of any species that were killed by fire.  Thus, the timing of 

vegetation sampling relative to that of fire occurrence may have substantial consequences for 

understanding site-level occupancy dynamics.  That our results when using the count of the total 

number of fires during our 30-year time frames (results not shown) did not differ from those 
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when using binary fire occurrence suggests that our results are likely robust to this issue, 

however hybrid modeling approaches that incorporate climate envelope models with dynamic 

metapopulation models may be a promising approach for incorporating disturbance mechanisms 

into predictions of species distribution under climate change (Anderson et al. 2009).    

The motivation behind including disturbance related variables in SDMs is that they 

represent mechanistic processes that can directly affect the survival and reproduction of 

organisms, whereas many long-term climatic factors commonly used in SDMs (e.g. mean annual 

temperature) do not.  An important yet overlooked caveat to this discussion is that it presumes 

that patterns of disturbance, both spatially and temporally, carry information that is independent 

of the climate factors used in SDM development.  It is nearly impossible to argue that fire does 

not have a direct influence on plant distributions through its differential effects on mortality and 

regeneration.  Likewise, it is also difficult to argue that, in many situations, SDMs that do not 

include disturbance related variables yield accurate predictions of species distributions (see 

Table 1).  Our relatively good measures of SDM accuracy across time (AUC >0.8) occurred in a 

system historically dominated by disturbance, yet the inclusion of this disturbance yielded no 

discernible improvement on SDM performance.  Because the disturbance mechanism of interest 

in our system is largely governed by the same climatic parameters used in SDM development, it 

may be unnecessary to include it in modeling efforts.  For other disturbance processes that are 

not related to climate, the decision of whether to include them in SDMs will depend upon a 

variety of factors including the availability of spatially explicit disturbance data and the accuracy 

of future projections of disturbance regimes.   

There are several practical limitations to including disturbance mechanisms into SDMs 

used for conservation planning.  First, it requires a detailed knowledge of the life-history 
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requirements of the species of interest in order to properly incorporate the disturbance process 

into the model (Franklin 2010).  For example, it has been suggested that fire occurrence in fire 

dominated systems is more likely to affect demographic patterns and abundances of vascular 

plants than their broad-scale distribution patterns (Tucker et al. 2012).  Many species that require 

the occurrence of fire for germination also have life spans longer than the interval between our 

two study periods.  For these species, it seems reasonable to assume that areas that frequently 

burn may support higher densities, but that because of their longevity these species can occur in 

many areas that have not experienced recent fire activity.  This also relates to the issue of 

detectability, as many of these species can lay dormant in seed banks for extended periods of 

time until fire occurrence promotes germination.  Second, it requires spatially explicit estimates 

of the disturbance process and, ideally, projections of the disturbance into the future.  For many 

disturbance processes such data are difficult to attain, and projections of disturbance processes 

into the future carry large uncertainty in their predictions (Flannigan et al. 2009).  In the absence 

of such data, it has been suggested that modeling demographic ratios rather than simple 

occurrences in non-equilibrium environments can accurately capture the effects of disturbance 

by separating its differential effects on survival and recruitment (Cassini 2011).  However, this 

approach requires information that is typically unavailable in most datasets. Obviously, the 

inclusion of anthropogenic disturbance mechanisms will be critical for the building accurate 

SDMs in regions with a rapidly expanding human footprint.  However, our results indicate that, 

in certain situations, SDMs that do not include disturbance mechanisms can yield accurate 

projections of species distributions under climate change.   
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SUPPLEMENTAL MATERIAL 

Appendix A 

Hierarchical partitioning and SDM accuracy results when considering number of fires as an 

ordinal predictor. 

Appendix B 

Change in model accuracy metrics for alternative SDM algorithms.



 

63 

 

Table 1: Accuracy statistics for 145 species distribution models with and without fire occurrence as a predictor variable (FP = false 

positive error rate; FN = false negative error rate). 

 Fire not included Fire included as binary predictor 

 Internal Evaluation External Evaluation Internal Evaluation External Evaluation 

Model AUC FP FN AUC FP FN AUC FP FN AUC FP FN 

GLM 0.888 0.176 0.209 0.829 0.383 0.210 0.891 0.171 0.209 0.826 0.377 0.214 

GAM 0.895 0.172 0.199 0.834 0.279 0.268 0.898 0.167 0.197 0.830 0.318 0.237 

GBM 0.925 0.202 0.174 0.803 0.284 0.349 0.926 0.186 0.175 0.804 0.284 0.347 

RF 0.975 0.209 0.056 0.781 0.536 0.152 0.975 0.181 0.056 0.788 0.493 0.168 

CT 0.877 0.298 0.162 0.742 0.439 0.230 0.878 0.302 0.168 0.742 0.444 0.223 
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Figure 1: Map of study area showing fire perimeters (blue) from historical (1905–1934) and 

modern (1975–2004) time periods. 

 

Figure 2: Stacked barplots of joint (light grey) and individual (dark grey) contributions of 

predictors from hierarchical partitioning.  Models were calibrated with historical (1905–1934) 

and modern (1975–2004) data for all species and within fire adaptation groups.  Fire category 

represents binary fire occurrence. 

 

Figure 3: Stacked barplots of joint (light grey) and individual (dark grey) contributions of 

predictors from hierarchical partitioning.  Models were calibrated with modern (1975–2004) data 

from national forest lands in California for a subset of species with sufficient data.  Fire category 

represents fire return interval departure.   

 

Figure 4: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

occurrence as a binary predictor variable in a generalized linear model (GLM).  Results were 

similar across SDM algorithms (Appendix B). 

 

Figure 5: Change in SDM accuracy metrics from internal (t2 models against t2 data) evaluations 

for a subset of species within fire response groups when adding fire return interval departure as a 

predictor variable in a generalized linear model (GLM).  Results were similar across SDM 

algorithms (Appendix B).
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APPENDIX A.  Results when considering number of fires as an ordinal predictor. 

 

Figure A1: Stacked barplots of joint (light grey) and individual (dark grey) contributions of 

predictors from hierarchical partitioning.  Models were calibrated with historical (1905–1934) 

and modern (1975–2004) data for all species and within fire adaptation groups.  Fire category 

represents ordinal fire count. 
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Figure A2: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

count as an ordinal predictor variable in a generalized linear model (GLM).   
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APPENDIX B.  Change in model accuracy for alternative SDM algorithms. 

Figure B1: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

occurrence as a binary predictor variable in a generalized additive model (GAM). 
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Figure B2: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

occurrence as a binary predictor variable in a gradient boosting model (GBM). 
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Figure B3: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

occurrence as a binary predictor variable in a random forest model (RF). 

 

 



 

75 

 

Figure B4: Change in SDM accuracy metrics from internal (t1 models against t1 data) and 

independent (t1 models against t2 data) evaluations within fire response groups when adding fire 

occurrence as a binary predictor variable in a classification tree model (CT). 
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Figure B5: Change in SDM accuracy metrics from internal (t2 models against t2 data) evaluations 

for a subset of species within fire response groups when adding fire return interval departure as a 

predictor variable in a generalized additive model (GAM).   
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Figure B6: Change in SDM accuracy metrics from internal (t2 models against t2 data) evaluations 

for a subset of species within fire response groups when adding fire return interval departure as a 

predictor variable in a gradient boosting model (GBM).   
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Figure B7: Change in SDM accuracy metrics from internal (t2 models against t2 data) evaluations 

for a subset of species within fire response groups when adding fire return interval departure as a 

predictor variable in a random forest model (RF).   
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Figure B8: Change in SDM accuracy metrics from internal (t2 models against t2 data) evaluations 

for a subset of species within fire response groups when adding fire return interval departure as a 

predictor variable in a classification tree model (CT).   
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LARGE-SCALE EVIDENCE OF DEMOGRAPHIC DIFFERENCES IN THE CLIMATIC 
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Abstract: Applications of the environmental niche concept rarely consider demographic factors 

such as mortality and reproduction that are the putative mechanisms for shifting species’ 

distributions and community composition.  The so-called “regeneration niche” of a species is the 

set of conditions under which that species can reproduce, however for long-lived species such as 

trees there are potentially many conditions that allow for adult survival but are not conducive to 

successful reproduction.  Inclusion of such areas in estimates of species’ niches can lead to 

biased estimates of environmental tolerances and optimal conditions for population growth, yet 

empirical data demonstrating this outcome are largely lacking.  We used occurrence and 

demographic data from 62 tree species throughout the western United States to investigate 

differences in environmental conditions between locations occupied by juveniles and those 

occupied by adults.  Adults consistently occurred in warmer maximum and minimum 

temperatures than did juveniles, consistent with ubiquitous temperature increases throughout our 

study region.  Niche differences between juveniles and adults for hydrologic variables were 

greater as species occupied drier environments.  Along all climatic gradients examined, juveniles 

displayed narrower niche breadth than did adults.  For several gradients differences between 

adult and juvenile niche breadth were positively related to overall niche breadth.  Differences in 

optimal conditions and climatic tolerances between adults and juveniles were generally unrelated 

to species ecological traits.  Juveniles and adults had similar patterns of sensitivity to climatic 

variables.  Niche models based on adult occurrences yielded significantly larger estimates of 

suitable conditions than did models based on juvenile occurrences.  Our findings suggest that 

model projections of climate change impacts on species distributions may be biased for many 

long-lived sessile organisms such as trees and may overestimate the extent of areas climatically 

suitable for sustained populations.  



 

82 

 

Introduction 

Understanding how species respond to changing environmental conditions is a central research 

focus of contemporary ecology [1].  Concern over the potential impacts of climate change on 

biota has led to widespread interest in the relationship between climatic conditions and species’ 

geographic ranges [2].  This focus of contemporary ecological research has been facilitated by 

widespread acceptance of the environmental niche concept, where the geographic distribution of 

a species is defined by the set of environmental conditions that allow for positive population 

growth [3,4].  Using the niche concept as a foundation, numerous studies have built models of 

the “realized niche” using available species occurrence and climatic data to generate predictive 

models of suitable climatic conditions that can be projected based on various climate change and 

global emissions models [2].  The results of these models form the basis for many conservation 

actions and provide evidence to suggest that future climate change will have pronounced effects 

on existing biological systems [5,6]. 

For many species, the range of environmental conditions that can be tolerated may vary 

with life-history stage.  In some cases this process, often referred to as ontogeny, results in a 

unique set of conditions that promote reproduction compared to conditions facilitating adult 

persistence.  This particular phenomenon, known as “regeneration niche”, was suggested as a 

means of describing plant community turnover [7].  According to this concept, plant seedlings 

are tolerant of a relatively narrow range of environmental conditions, and the occurrence of these 

conditions facilitates plant regeneration and ultimately community turnover.  While it has been 

suggested that ontogeny can serve as a unifying framework for applied ecological restoration [8]  

there has been surprisingly little theoretical development of this topic since its introduction and 

few quantitative explorations of relationships between adult and juvenile species occurrences 
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[9,10].  Specifically, the relationship between the regeneration niche and the adult niche is 

largely unknown.  Jackson et al. [11] provided a conceptual figure describing the hypothetical 

relationship between the adult and regeneration niche.  In this conceptual framework, the 

regeneration niche is depicted as having narrower tolerances than the adult niche and having 

optimum conditions offset from those of adults.  Although their focus was on the effects of 

variable environmental conditions on recruitment dynamics [11], their framework remains, to 

our knowledge, the only purely theoretical representation of the relationship between the adult 

and regeneration niche and, as such, provides an excellent starting point for examining the 

relationship between the two.  However, their framework does not explicitly account for many of 

the basic facets of niche theory, which we address here.  First, it is important to consider that the 

fundamental niche is the set of conditions that allow a species “to survive and reproduce” [4].  

Thus, only those conditions supporting reproduction should even be considered as part of the 

fundamental niche of a species, as conditions allowing adult survival in the absence of 

regeneration do not meet Hutchinson’s original definition.  Practically speaking, the conditions 

supporting reproduction define the areas we would expect to support populations in the future 

and should therefore be the focus of predictive modeling efforts aimed at identifying future 

suitable climatic conditions.  Second, differences in optimal conditions of the fundamental niche 

[4] between adults and regeneration would most likely result from active niche shifts [12] or 

from a lack of climatic equilibrium leading to population decline.  Because it is extremely 

difficult to quantify the fundamental niche, and impossible to do using empirical field data [13], 

a more appropriate representation would be to consider optimal conditions not as those 

conditions which maximize demographic vital rates but the conditions under which the species is 

most likely to occur on the landscape.  This allows for the regeneration niche to be placed in the 
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context of the realized niche, which is the most relevant to applied ecologists and is readily 

quantified from observational data. 

Consider two hypothetical species, one in which the regeneration niche is similar to the 

adult niche and one in which the regeneration niche differs substantially from the adult niche 

(Figure 1).  Species with a greater discrepancy between adult and regeneration niche breadth 

would likely exhibit higher proportions of their occupied range functioning as sinks compared to 

species with similar adult and regeneration niche breadths (Figure 1).  This suggests that 

understanding differences between the adult and regeneration niche with regards to 

environmental tolerances could have substantial effects on population dynamics, as these 

differences would likely have a strong influence on spatial patterns of population growth and 

metapopulation dynamics [14].  Another potential issue associated with differences between 

adult and regeneration niches is that of differing optimal values.  Considering our two 

hypothetical species again, for the first species there is little difference between the optimal 

values (peaks of the bell curves) between the adult and regeneration niches (Figure 1).  For this 

species, estimates of optimal conditions would be similar.  For species with substantially offset 

optimums, failing to account for ontogenetic differences could lead to poor estimates of optimal 

conditions for reproduction.  For applications that predict the potential future range of species in 

which reproduction and establishment, and thus population growth, are assumed (such as climate 

change impact forecasts), failure to account for these ontogenetic differences could lead to costly 

and ineffective conservation actions.  In such applications it might be more appropriate to 

consider only those conditions which promote regeneration, and thus more closely represent the 

fundamental niche [4], rather than conditions that support any individuals of the species 

regardless of regeneration potential.  An example of such applications is environmental niche or 
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species distribution modeling, which relate observed species occurrences to environmental data 

to develop predicted models of suitable conditions [2].  Often these models make no distinction 

between different developmental stages of an organism, and assume that all instances of species 

occurrence are suitable for developing predictive models of future distributions.  This approach 

ignores the fact that regeneration may be more representative of suitable conditions while the 

occurrence of adult individuals is potentially representative of past conditions that have little to 

do with current population growth or stability.  

 Despite the large number of studies examining species-environment relationships, and the 

strong theoretical basis for the regeneration niche concept, there is relatively little empirical 

evidence to support the concept at large spatial scales [15].  Although ontogeny has long been a 

topic of interests to animal ecologists [16], it remains relatively unexplored in-situ by plant 

ecologists.  Several researchers have suggested through modeling efforts that climatic impacts on 

plant reproduction may lead to large-scale contractions at trailing or lower elevation margins 

[17,18].  Yet most empirical evaluations of the regeneration niche have been based on small-

scale experimental studies where environmental conditions are largely controlled [19].  In natural 

systems, the regeneration niche is often used as a theoretical mechanism for understanding 

localized processes such as forest gap dynamics [20] or regeneration dynamics of individual 

species [21].  However, there has been little effort to link these controlled or localized studies to 

large-scale dynamics, particularly in a changing climate.  This lack of large-scale evaluations is 

surprising given that the regeneration niche hypothesis provides a clear mechanism for 

understanding climatically induced shifts in species distributions and community turnover.  The 

few large-scale studies examining differences in position between adult trees and seedlings have 

focused largely on differences in geographic rather than environmental position [9,10].  These 
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studies have found that seedlings tend to occur at higher elevations or latitudes than adults, with 

the strongest evidence found near the center of the range but with limited evidence for such 

differences at range margins [9,10,22].  However, to date no studies have focused on examining 

the relative differences between adult and regeneration niche characteristics, particularly at 

landscape scales or in the context of climate change.    

The regeneration niche suggests that in a warming climate [23] we would expect areas 

supporting regeneration of plants to occur in cooler and more mesic environments than adults, as 

over time previously suitable areas for regeneration will become unsuitable yet retain adults that 

established themselves during periods of more favorable climate (Figure 1).  It is also reasonable 

to expect that differences between adult and regeneration niches would be most pronounced in 

more harsh environments, where conditions are only marginally suitable for reproduction to 

begin with.  This may be particularly true in a changing climate, as relict adults can still persist in 

areas formerly suitable for regeneration but that have now become unsuitable as local climatic 

conditions have changed.  For example, tree seedlings have shallower root systems than adults 

and occur in layers of the soil that are more susceptible to drying due to evaporation [24].  Thus, 

we might expect tree seedlings to occupy more mesic environments than adults, particularly in 

regions characterized by high levels of evaporative demand.  It is less clear how ontogenetic 

differences in niche breadth would relate to the range of conditions occupied by the species.  It 

has been suggested that species with greater niche breadth should be generalist species that will 

occupy larger geographic ranges than species with narrower environmental tolerances [25].  

However, empirical studies have found no such relationship between regeneration niche breadth 

and range size, and have suggested that plant ranges are ultimately dictated by the distribution of 

adults [26,27].  If this is the case we might not expect regeneration niche breadth to increase 
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monotonically with adult niche breadth, but rather to exhibit increasing discrepancy in size 

relative to adult niche breadth as adult niche breadth increases.  

 

Methods 

 

Study Area 

Our study occurred in the 11 westernmost states of the continental United States (Figure 2), an 

area of nearly 3,100,000 km
2
.  This region is characterized by steep and spatially variable 

climatic gradients [28].  This area is also characterized by large geographic gradients, including 

both the highest and lowest elevation points in the contiguous United States. 

 

Species Occurrence Data 

We used data on tree species occurrences from the USDA Forest Service’s Forest Inventory and 

Analysis (FIA) program.  FIA is a national inventory of forest resources that applies a nationally 

consistent sampling protocol across all land ownerships with the United States [29].  The FIA 

program tabulates all adult trees, defined as having a diameter at breast height (dbh) > 12.7 cm, 

within each sample plot.  FIA also tabulates all seedlings in each subplot [29,30].  Hardwood 

seedlings are defined as any hardwood tree at least 30.5 cm in height with a root collar diameter 

< 2.5 cm whereas conifer seedlings are defined as any conifer tree that is at least 15.2 cm in 

height with a root collar diameter < 2.5 cm.  Although not strictly measurements of regeneration, 

we considered these size class designations as a suitable proxy for age and regeneration.  We 

aggregated all subplot data into a single data point representing the entire sampling plot 

following previous studies that used FIA data [10,22].  Hereafter we refer to seedlings as 
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juveniles.  We retained data only from FIA plots sampled since 1999 to ensure that our data 

represented current forest structure.  Year of annual inventory initiation and sampling intensity 

varies among states, therefore the exact years in which sampling occurred and number of 

sampled plots varies among states within our study area (Table 1), leaving a total of 33,665 plots.  

We limited our analyses to species with at least 30 occurrences of both adults and juveniles to 

ensure adequate statistical representation of both the adult and regeneration niches, and to 

species with distributions restricted to the western half of North America.  We categorized 

species based on a suite of ecological traits provided by the USDA Natural Resource 

Conservation Service; these included: fire resistant (yes/no), fire tolerance (low/medium/high), 

growth rate (slow/moderate/rapid), drought tolerance (low/medium/high), lifespan 

(short/moderate/long), and seed spread rate (slow/moderate/rapid). 

 

Climate Data 

We considered a set of four bioclimatic variables (niche axes) we hypothesized would influence 

tree distributions.  We focused on long-term means rather than anomalies, using monthly 

normals from the period 1976–2005 at an 800-m resolution.  Bioclimatic values at sampling plot 

locations were generated using a bilinear interpolation and a first-order neighborhood as 

provided by US Forest Service Spatial Data Services.  The variables were minimum temperature 

(Tmin) and maximum temperature (Tmax), from the Parameter-elevation Regression on 

Independent Slopes Model (PRISM; [31]), and two hydrologic variables known to influence 

vascular plant distributions in our study region [32,33].  These variables were actual 

evapotranspiration (AET), and climatic water deficit (DEF) [28].  We considered these variables 

to represent relevant axes of the realized niche [4].  Three of our variables (Tmin, Tmax, DEF) 
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could be considered proximate causes of mortality in plants, while AET is largely reflective of 

productivity or growth potential [34,35].  Both AET and DEF are integrated variables that 

account for multiple limiting factors to plants including light, water, and energy [32,33].  

 

Statistical Analyses 

Rather than relying on smoothed response functions of optimums to represent niche position, we 

used the median and mean climatic values from occupied plots for each species and age-class to 

ensure that species lacking unimodal responses were still included.  Previous research examining 

geographic niche position has found little difference between mean, median, and smoothed 

optimums [9], thus we felt this approach was justified.  We evaluated whether individual species 

exhibited differences in adult and juvenile niche positions using t-tests of climatic values from 

occupied plots between the two age classes.  We tested for community level differences in niche 

positions between adults and juveniles using paired Wilcoxon signed-rank test median climatic 

values of sites occupied by adults and seedling of each species.  We used medians for this 

analysis to avoid the influence of outlying values on species-level estimates of niche position.  

We defined juvenile and adult niche breadth as the range of values from occupied plots for each 

species along each climatic axis.  Paralleling our community level analysis of niche position, we 

compared niche breadth between juveniles and adults along each climatic axis using paired 

Wilcoxon signed-rank test of the range of occupied values between adults and juveniles of each 

species.  We evaluated the effects of species traits on differences between adult and juvenile 

niche position and niche breadth using a suite of Kruskal-Wallis tests with a multiple 

comparisons procedure [39].   
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We developed a suite of linear models to determine if differences between adult and 

juvenile niches were related to niche characteristics.  For each climatic axis we modeled 

differences between adult and juvenile niche position as a function of adult niche position.  We 

used a similar approach for niche breadth, modeling the differences between adult and juvenile 

niche breadth as a function of total niche breadth.    

To evaluate the relative sensitivity of juveniles and adults to different climatic parameters 

(i.e. plasticity), we computed standardized z-scores for each niche axes across our entire dataset.  

We then calculated the range of z-scores from occupied sites for each species along each niche 

axis, where higher values indicate a greater range of environmental conditions tolerated.  Thus, 

species exhibiting a higher z-score range would be considered to have lower sensitivity because 

they occur in a wider range of conditions.  We compared sensitivity among niche axes by 

visually examining boxplots of z-score ranges.   

 

Niche Models 

We developed predictive niche models for adults and juveniles of each species using generalized 

linear models (GLM).  We included all four climatic variables in our models, using a step-wise 

variable selection procedure based on minimization of AIC scores [36].  Using this procedure, 

each variable could be dropped, fit as a linear predictor, or a second order polynomial.  We 

randomly selected 75% of our data to build models, using the remaining 25% to evaluate the 

accuracy of our models.  We evaluated model accuracy using the area under the ROC curve 

(AUC), a metric commonly applied to evaluate the accuracy of niche models when presence and 

absence data are available [37].  We excluded species for which either adult or juvenile models 

yielded AUC < 0.8 to reduce spurious effects resulting from inaccurate models. For each 
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remaining species we converted our predicted probability of occurrence to binary 

presence/absence predictions using the species prevalence as a threshold [39].  For each species 

we then calculated the total area within our study area predicted as containing adults and the total 

area predicted to contain juveniles.   

Because species’ range-filling is limited by dispersal capacity [40] we also compared 

predicted areas of adult and juvenile occurrence within extant ranges as a more conservative 

estimate of the potential effects of ontogeny on SDM predictions.  We attained range maps for 

most species from the USGS Geosciences and Environmental Change Science Center 

(http://esp.cr.usgs.gov/data/little/).  Species for which we could not attain range maps were 

excluded from this analysis, leaving 53 species.  We then constrained our projections of adult 

and juvenile occurrence to the areas within the range extents identified by the species’ range 

maps to identify patterns of predicted occupancy within the range of each species.   

 

Results 

Of the 62 species in our dataset, 46 exhibited a statistically significant difference in niche 

positions between adults and juveniles along at least one climatic axis (Table 2).  Statistically 

significant differences in adult and juvenile niche positions were found for 29, 27, 27, and 24 

species along the AET, Tmin, Tmax, and DEF climatic axes respectively (Table 2).  Along each 

climatic axis we found evidence of juveniles having niche positions greater or less than adults 

depending on the individual species (Table 2).  Of the species that exhibited significant 

differences in niche position between adults and juveniles, the proportion exhibiting higher AET 

values for adults was similar to the proportion exhibiting AET values for juveniles (χ
2
 = 0.276 , 
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P = 0.56).  A greater proportion of species had adults with higher Tmax (χ
2
 = 18.963, P < 0.001), 

Tmin (χ
2
 = 14.519, P < 0.001), and DEF (χ

2
 = 10.083, P = 0.002) niche positions than juveniles.   

At the community level we found strong evidence for widespread differences in niche 

position between all juveniles and adults along temperature axes, with juvenile trees on average 

occurring at significantly (P < 0.001) lower maximum (ΔTmax = 0.21°C) and minimum (ΔTmin = 

0.28°C) temperatures than adults.  We also found community level evidence for differences in 

niche position for DEF (P = 0.006).  However, community level values for AET did not differ 

between adults and juveniles (P = 0.45).  Community level metrics of niche breadth indicated 

that juveniles had significantly narrower (P < 0.001) niche breadth than adults along each 

climatic axis.  Differences between adult and juvenile niche position (Appendix I) and breadth 

(Appendix II) were generally unrelated to species traits, with only five of a possible 48 

comparisons showing significant (P < 0.05) effects of species traits.    

The position of the species-specific niche was unrelated to the differences between adult 

and juvenile niche positions along Tmin and Tmax axes; that is, a higher niche position for 

juveniles or adults did not indicate a larger or smaller difference in niche position (Figure 3).  

However, differences along AET and DEF axes were significantly (P < 0.05) related to niche 

position, with greater differences (adult-juvenile) in niche position occurring for species 

occurring at higher niche position values (Figure 3).  Along DEF, Tmin, and Tmax axes differences 

between adult and juvenile niche breadth were significantly (P < 0.05) related to species niche 

breadth, with greater differences occurring for species with larger niche breadth (Figure 4).  

There was no statistical relationship between difference in adult and juvenile niche position for 

AET and species niche breadth (Figure 4). 
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Sensitivity to niche variables was similar between juveniles and adults (Figure 5).  Tree 

species exhibited high sensitivity to DEF, Tmin, and Tmax with relatively little variability among 

species.  Conversely, trees exhibited generally low sensitivity to AET, although this relationship 

exhibited greater variation among species than did other climatic axes (Figure 5).  

Four species were removed from our niche model analysis due to poor model fit (AUC < 

0.8).  Niche models for the 58 remaining species were highly accurate, as measured by AUC, for 

both adults ( ̅ = 0.937, 95% CI = 0.926 – 0.948) and juveniles ( ̅ = 0.925, 95% CI = 0.913 – 

0.938), although accuracy of models for juveniles was significantly lower than those for adults 

(P < 0.001, t = 3.669, df = 57, paired t-test).  For 46 of the 58 species (79.3%) the estimated 

amount of suitable habitat was greater for adults than for juveniles.  For these species, the total 

amount of area predicted to be occupied by adults was on average 30.8% greater than the area 

predicted to be occupied by juveniles.  When averaged across all 58 species, this value dropped 

to 19.7%, but was still highly significant (P < 0.001, t = 4.993, df = 57, paired t-test).   

Of the 53 species for which we acquired range maps, 48 (90.6%) had a greater proportion 

of the extant range predicted to contain adults compared to juveniles.  For these species, the total 

amount of area predicted to be occupied by adults was on average 17.7% greater than the area 

predicted to be occupied by juveniles.  When averaged across all 53 species for which we had 

range maps, this value dropped to 15.6%.   

 

  

Discussion 

Ontogenetic niche shifts have been widely explored and documented for animals [41], but 

particularly for long-lived plant species such as trees, the in-situ differences between adult and 
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seedling niches due to ontogenetic changes are poorly understood.  We found strong evidence for 

juveniles occurring in cooler locations than adults regardless of niche position along maximum 

and minimum temperature axes, and more mesic conditions along the climatic water deficit axis.  

This finding is consistent with predictions from the regeneration niche concept in a warming 

climate and would suggest that species distributions in this region may be tracking isoclines of 

temperature.  Our study region has experienced widespread and largely ubiquitous increases in 

temperature during the 20
th

 century [28], thus our finding of niche shifts along temperature axes 

is not entirely surprising.  Studies that have found relatively consistent differences between adult 

and seedling geographical position have also attributed these shifts to climate warming [9], 

whereas studies that have found no such differences suggest that species failing to exhibit 

differences in seedling and adult distributional patterns are more threatened by climate change 

than those species that are shifting towards cooler environments [10].  Our findings support the 

conclusion that climate change can lead to discrepancies in the conditions experienced by adult 

and juvenile plants, particularly in relation to temperature and drought stress. 

Unlike temperature, niche differences along hydrologic axes were a function of niche 

position.  In an examination of 23 tree species from France, Bertrand et al. [42] also found 

asymmetric niche shifts along a niche axis, observing niche contractions in areas of high nutrient 

availability and niche shifts in nutrient poor areas.  We found that for species occurring in areas 

with high levels of AET and DEF, juveniles were more likely to occur in locations with lower 

evaporative demands (i.e. lower water stress), while the opposite was true of species inhabiting 

areas of low water stress (Figure 3).  We would expect that species occurring in areas of high 

water stress to have juveniles occur in more mesic environments due to their increased 

susceptibility to drought compared to adults [34].  Conversely, we would not expect such shifts 
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in areas with low water stress, as juveniles in these areas are likely not limited by moisture 

availability and thus there would be no benefit to establishing in areas with further reduced water 

stress, and previous studies have demonstrated that the relative importance of climate in 

structuring species ranges decreases as one moves towards more mesic environments [43].  

Previous work from a portion of our study area found unexpected downhill shifts in plant 

distributions and suggested that these shifts were the result of species tracking optimal 

hydrologic conditions, and that temporal shifts in geographic position were a function of the 

geographic area occupied [44,45].  Our results in this study mimic these previous finding and 

indicate that shifts in geographic or environmental space are likely contingent on the 

environmental conditions occupied by the species, and not solely on the magnitude and direction 

of climate change.   

We found widespread evidence of juveniles occupying a narrower range of climatic 

conditions than adults, consistent with theoretical predictions from the regeneration niche 

concept [11].  Along three of the four niche axes examined, differences between adult and 

juvenile niche breadth were greater for species with greater niche breadth.  For most species it is 

reasonable to assume that the majority, if not all, of the niche breadth is accounted for in the 

adult life stage (Figure 1).  Thus, species with the greatest niche breadth may be the most prone 

to overestimates of resilience to climate change, as these species are likely to display the greatest 

discrepancy between the environmental conditions occupied by adults and the conditions suitable 

for reproduction.  There is conflicting theoretical [25] and empirical [26] work on the 

relationship between niche breadth and geographic range size.  Previous work has suggested that 

niche breadth decreases with increasing resource availability [46].  Therefore species with 

greater niche breadth may be expected to occur in resource limited (i.e. marginal) environments, 
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precisely those that will be most severely impacted by climate change.  Therefore, our results 

suggest that species with greater discrepancies between adult and regeneration niche breath, and 

thus the greatest potential for underestimating risk of climate change from niche model 

projections, are the most likely to experience detrimental effects of climate change.  Given the 

lack of empirical evidence supporting a relationship between niche breadth and range size 

[26,27], this indicates that the presence of a large geographic range should not necessarily be 

taken as a sign of resilience to climate change.  However, we caution that a great deal of 

additional research is needed to understand the factors influencing niche breadth and its 

relationship to ontogeny and susceptibility to climate change.  

 Relative sensitivity to climatic variability was similar between adults and juveniles 

(Figure 7).  We found that tree species generally exhibited high sensitivity to temperature, which 

may largely explain our finding of consistent niche shifts in relation to these niche axes.  The 

effects of acute stressors on plant survival are well documented and provide a mechanistic 

explanation for our findings [34].  Plants can exhibit a wide variety of adaptations for coping 

with temperature and drought stress, which often serve as proximate causes of mortality in plants 

[34].  Such stressors, represented in our study by Tmax, Tmin, and DEF, are often considered 

mechanistic determinants of species ranges [47].  Thus, we would expect that plant species 

would generally show high sensitivity to such variables.  Conversely, AET is more strongly 

related productivity [35] and growth potential within the range rather than geographic extent of 

the range.  Because of this we would not expect patterns of plant occurrence, as opposed to 

growth or abundance, to be highly sensitive to a variable such as AET.  This is supported by the 

low values and lack of variability in sensitivity to temperature and DEF exhibited in our study 

relative to AET.  The consistency of the relative pattern of sensitivity between adults and 
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juveniles is encouraging, as this suggests that ontogenetic niche shifts may not be extreme 

enough to alter the relative influence of climatic factors on specific life-stages.  However, it is 

important to note that our climate data were at a relatively coarse scale (800 m) that may not 

entirely capture localized variability in climate [48] that could drive site-specific regeneration 

dynamics.  Even so, the consistency we found among species with largely differing ecological 

requirements suggests that our results are robust to this scaling issue.   

 Most applications of environmental niche models develop projections of potentially 

suitable habitat without regard to regeneration potential [e.g. 2].  When used in this manner, 

these models fail to differentiate between areas suitable for regeneration, and thus long-term 

population viability, and areas of simple occupancy.  In doing so, these models may be limited in 

their utility for predicting climate change impacts and developing robust conservation strategies.  

Our niche model projections suggest that estimates of species occupancy developed without 

regards to regeneration potential will be systematically larger than demographically informed 

estimates that provide spatially explicit predictions of areas suitable for long-term population 

viability by supporting regeneration.  This pattern was evident for most species, indicating the 

potential for substantial underestimation of extinction risk due to climate change.  This was 

particularly true for geographically isolated subpopulations or populations at the range margins 

(Figure 6).  These areas likely represent the environmental conditions at the margins of the 

environmental niche, which in our theoretical model area those areas beyond the range of 

conditions suitable for regeneration but that still contain adults (Figure 1).  Even though most 

predictive models are designed to most accurately model the mean response, our results support 

the idea that reduced niche breadth for juveniles can result in constricted geographic predictions 

of climatically suitable area.   
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In general we found that species ecological traits had little effect of niche differences 

between adults and juveniles.  It has been suggested that differential adaptations to climate can 

lead to different levels of climatic dependence for plant reproduction [15].  Although we did not 

find evidence to support such theories, our results do not preclude species traits from having 

substantial effects on ontogeny.  The traits we used to categorize our study species were not 

developed specifically to be relevant to our study or the climatic axes we used.  It is possible that 

traits more directly linked to mechanistic processes governing reproduction may be directly 

relevant, as several studies have linked species traits to differential responses to climate change 

[49-51].  For example, we did not explicitly account for specific regeneration strategies (e.g. 

pulsed regeneration) that could have influenced our results.  Given that our analyses were limited 

to a single period in time, we may not have captured regeneration pulses for species that exhibit 

such reproductive strategies.  Further developments of mechanistic links between climate and 

plant distributions are needed to better understand the potential for species trait effects on 

ontogeny. 

Conclusions 

We found strong evidence to support many of the theoretical predictions arising from the 

regeneration niche concept including different niche positions between adults and juveniles, and 

reduced niche breadth for juveniles (Figure 1).  Both findings have major implications for 

predicting the dynamics of species distributions under climate change.  There is currently great 

interest in using correlative species distribution models to predict the amount and distribution of 

suitable environmental conditions under future climatic scenarios [2].  These models are often 

based on large-scale species occurrence data and typically ignore any ontogenetic differences in 

environmental tolerances as life-stage specific species occurrence data are often unavailable at 
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such extensive spatial scales.  Our findings of differing niche positions and reduced niche 

breadth for juveniles across such an extensive spatial scale suggests that such modeling efforts 

may 1) inaccurately represent optimal conditions for reproduction and 2) overestimate the range 

of conditions in which reproduction will occur.  The former could result in accurate predictions 

of potential distributions, while the latter could results in underestimates of range loss, both of 

which were evident in our niche model predictions.  Although numerous studies have addressed 

the impacts of modeling approach [52,53], input data [54], and climatic scenario [55] on 

prediction accuracy from these models, to date relatively little effort has been made to quantify 

the effects of ontogenetic niche differences despite their clear importance for range shifting 

species.  Although alternative mechanisms could affect the relationship between climate and the 

occurrence of plant regeneration [e.g. 56], the consistency of our results across such an extensive 

geographic region and large set of species suggests a ubiquitous explanation such as the 

regeneration niche hypothesis.  Future efforts should focus on quantifying in greater detail the 

effects of ontogenetic niche differences on predictions of species distributions and, more 

specifically, on predictions of areas suitable for reproduction and population growth. 
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Figure 1: Theoretical representation of the relationship between the adult niche, regeneration 

niche, and potential population growth rate for two hypothetical species with similar adult 

niches.  For the first species, the regeneration niche is nearly as wide as the adult niche (A), 

resulting in a large proportion of occupied areas exhibiting the potential for positive population 

growth (λ ≥ 1).  For the second species, the regeneration niche is much narrower relative to the 

adult niche (A), resulting in a greater proportion of occupied sites functioning as sinks (λ < 1).  

In each case adults have similar responses and tolerances to climate, thus differences in overall 

population growth rate and viability are driven by characteristics of the regeneration niche.  As 

directional climate change occurs (B), species with narrower regeneration niches compared to 

adult niches will exhibit greater demographic disequilibrium and proportion of occupied sites 

with λ < 1.   

 

Figure 2: Map of study area. 

 

Figure 3: Scatterplots of differences in niche position between adults and juveniles (adult niche 

position – seedling niche position) versus adult niche position for 64 tree species along four 

niche axes.  Panels are A) AET, B) DEF, C) Tmin, and D), Tmax.  Solid and dashed red lines are 

predictions and 95% confidence intervals from a linear model.  Model was significant (P < 0.05) 

for AET and DEF (panels A and B).  Model significance was unchanged when species identified 

as statistical outliers (Bonferroni test) were removed.  Horizontal black lines represent 0, or no 

differences between adult and juvenile niche position.  Values > 0 along y-axes indicate higher 

values for adults compared to juveniles.    
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Figure 4: Scatterplots of differences in niche breadth between adults and juveniles (adult niche 

breadth – juvenile niche breadth) versus total niche breadth for 64 tree species along four niche 

axes.  Panels are A) AET, B) DEF, C) Tmin, and D), Tmax.  Solid and dashed red lines are 

predictions and 95% confidence intervals from a linear model.  Model was significant (P < 0.05) 

for DEF, Tmin, and Tmax (panels B, C, and D).  Horizontal black lines represent 0, or no 

differences between adult and juvenile niche breadth.  Values > 0 along y-axes indicate larger 

niche breadth for adults compared to juveniles. 

 

Figure 5: Boxplots of z-score range for 62 tree species along four niche axes for sites occupied 

by adults (A) and juveniles (B).  Wider boxplots indicate greater variation among species in 

sensitivity to a given niche axis.  

 

Figure 6: Predicted suitable area for A) adult Acer glabrum, B) juvenile Acer glabrum, and C) 

areas where adults are predicted to occur in the absence of juveniles.  A. glabrum is widespread 

in our study area but displays a highly patchy extant distribution.  Areas predicted to contain 

adults but no juveniles occur primarily at range margins or in small, isolated patches. 
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Table 1: Sampling duration and effort within each state. 

State Years N plots 

Arizona (AZ) 2001 – 2009 2913 

California (CA) 2002 – 2011 5558 

Colorado (CO) 2002 – 2009 3153 

Idaho (ID) 2004 – 2009  2234 

Montana (MT) 2003 – 2009 3097 

Nevada (NV) 2004 – 2005 411 

New Mexico (NM) 1999 2542 

Oregon (OR) 2002 – 2011 5167 

Utah (UT) 2000 – 2009  3224 

Washington (WA) 2002 – 2011  3385 

Wyoming (WY) 2000 1981 
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Table 2: Niche positions (mean values of occurrences) for 62 tree species along four climatic niche axes.  Values highlighted in grey 

indicate significant (P < 0.05) differences based on t-test. 

 

 

AET (mm) DEF (mm) Tmin (°C) Tmax (°C) 

Species Adult Juvenile Adult Juvenile Adult Juvenile Adult Juvenile 

Abies amabilis 467 448 89 93 1.5 1.2 10.7 10.2 

Abies concolor 482 474 476 482 0.7 1.0 14.1 14.2 

Abies grandis 493 492 235 233 0.5 0.4 12.3 12.2 

Abies lasiocarpa 418 424 192 178 -3.7 -3.4 8.6 8.6 

Abies lasiocarpa arizonica 533 505 189 191 -3.8 -4.8 9.8 9.5 

Abies magnifica 403 411 467 467 0.4 0.4 12.8 12.9 

Abies procera 496 497 115 109 1.9 1.9 11.3 11.5 

Abies shastensis 452 446 268 271 -0.1 -0.4 11.7 11.9 

Acer glabrum 471 462 266 255 0.8 1.0 12.1 12.2 

Acer grandidentatum 481 474 424 422 0.3 0.1 13.2 13.1 

Acer macrophyllum 583 573 231 274 5.2 5.1 16.6 16.8 

Aesculus californica 440 499 861 832 8.0 7.8 21.7 21.9 

Alrus rubra 596 601 113 124 5.2 5.1 15.3 15.3 

Arbutus menziesii 559 554 601 595 5.5 5.7 18.7 18.7 

Calocedrus decurrens 517 520 553 562 3.7 3.9 16.6 16.7 

Cercocarpus ledifolius 380 383 552 545 -0.2 -0.6 13.5 13.5 

Chamaecyparis nootkatensis 421 411 69 73 0.5 0.2 9.6 9.4 

Chrysolepis chrysophylla 584 543 329 333 4.7 3.9 16.5 15.4 

Cornus nuttallii 586 567 493 579 4.9 4.6 17.5 17.7 

Fraxinus latifolia 581 591 267 259 5.7 5.5 17.4 17.2 

Juniperus deppeana 506 539 849 854 2.9 2.9 19.1 19.1 

Juniperus monosperma 373 394 882 891 2.2 2.2 18.7 18.6 

Juniperus occidentalis 340 347 610 588 0.3 0.3 14.7 14.4 
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Juniperus osteoperma 338 349 819 793 2.0 1.8 16.9 16.7 

Juniperus scopulorum 411 393 557 544 -0.5 -0.6 14.5 14.2 

Larix occidentalis 468 457 233 238 -0.3 -0.5 11.4 11.2 

Lithocarpus densiflorus 617 613 577 565 6.3 6.2 19.1 18.9 

Picea engelmannii 431 437 191 183 -3.9 -3.8 8.7 8.8 

Picea pungens 490 485 343 348 -3.2 -3.6 11.7 11.4 

Picea sitchensis 617 615 47 46 5.4 5.4 14.9 14.6 

Pinus albicaulis 365 375 174 154 -4.4 -4.0 7.1 7.5 

Pinus contorta 426 434 244 247 -2.8 -2.7 9.8 10.0 

Pinus discolor 495 500 1011 1047 5.7 6.4 21.3 21.3 

Pinus edulis 373 362 793 773 1.6 1.6 17.3 16.6 

Pinus flexilis 422 439 310 255 -3.1 -3.3 10.1 9.8 

Pinus jeffreyi 394 405 585 585 0.4 0.4 14.6 14.8 

Pinus lambertiana 500 513 581 595 4.0 4.2 16.6 17.1 

Pinus monophylla 321 330 853 830 1.8 1.5 16.3 16.1 

Pinus monophylla fallax 501 514 1060 1048 5.2 4.8 21.5 21.7 

Pinus monticola 455 484 268 203 -0.1 0.1 11.7 11.8 

Pinus ponderosa 455 451 499 487 0.4 0.3 14.6 14.4 

Pinus sabiniana 434 446 861 839 8.0 7.9 22.4 21.9 

Populus balsamifera 516 521 196 205 1.8 0.2 13.6 13.5 

Prosopis velutina 403 378 1361 1364 8.8 8.2 26.0 25.7 

Prunus emarginata 588 489 135 402 5.1 2.0 15.5 14.3 

Pseudotsuga menziesii 495 469 285 294 1.2 0.1 13.4 12.6 

Quercus agrifolia 439 458 916 873 8.3 8.0 21.8 21.4 

Quercus arizonica 508 525 913 898 3.6 3.4 20.0 20.0 

Quercus chrysolepis 518 536 689 663 5.5 5.3 18.8 18.6 

Quercus douglasii 408 443 939 885 8.5 8.3 23.1 22.8 

Quercus emoryi 512 523 998 938 5.1 4.3 21.2 20.5 

Quercus gambeii 480 469 568 554 0.3 0.2 15.2 14.7 

Quercus garryana 485 440 611 583 4.4 3.7 17.9 16.8 
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Quercus hypoleucoides 555 577 887 887 4.4 4.9 19.7 20.0 

Quercus kelloggii 528 541 672 653 5.3 4.9 18.9 18.6 

Quercus wislizeni 451 481 857 825 8.1 7.8 22.2 21.8 

Sequoia sempervirens 589 597 597 568 6.8 6.7 19.7 19.5 

Taxus brevifolia 557 523 205 182 3.4 1.3 14.7 12.5 

Thuja plicata 534 524 149 173 3.2 1.3 13.5 12.7 

Tsuga heterophylla 552 542 111 109 4.0 3.4 14.0 13.4 

Tsuga mertensiana 430 429 133 124 -0.4 -0.5 9.6 9.4 

Umbellularia californica 553 564 741 704 7.4 6.8 20.1 19.9 
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Appendix I: Boxplots of differences between adult and seedling niche positions by species 

ecological traits.  Width of individual boxes is proportional to sample size within that category.  

For ecological traits that had a significant (P < 0.05) effect on difference in niche position, levels 

marked with different letters had significant differences.  
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Appendix II: Boxplots of differences between adult and seedling niche breadths by species 

ecological traits.  Width of individual boxes is proportional to sample size within that category.  

For ecological traits that had a significant (P < 0.05) effect on difference in niche breadth, levels 

marked with different letters had significant differences.  
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