Study of the acceleration of Coriolis

Evan David Remple
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Remple, Evan David, "Study of the acceleration of Coriolis" (1952). Graduate Student Theses, Dissertations, \& Professional Papers. 8368.
https://scholarworks.umt.edu/etd/8368

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

A STUDY OF THE ACCELERATIOR OF conionis

by

EVAR REMPLE

B.A., Montans State University, 1951

Presented in partial fulfillment of the requiremants for the dogree of Master of Arta

MOUTANA STATE UIIVERSITY

1952

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP39169
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition (c) ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

This thesis has been epproved by the Board of Examm iners in partial fulfillment of the requirements for the degree of Master of Arts.

-11-

This thesis has been approved by the Board of ExamInert in partial fulfillment of the requirements for the degree of Master of Arts.

-15.

ACKNOHLEDGUENTS

I deoply grateful and wish to express my thanks to Dr. C. R. Jeppesen for his assistance in suggesting this work and in guiding me to the proper sources, Dr. G. D. Shallenberger for the helping hand offered on certain points. Dr. Shoemaker of the Modern Languages Department of Montana State University for the translation of the biographical note.

In addition I would like to acknowledge the work of my reader, James P. wright, and the struggle of my typists with my rather difficult text.

table of cortents

Page
Part
I. INTRCOUCTICN 1
II. aNAIYTICAL treatment of the acceleration OF COMIOLIS 3
III. SURARY AD COKCLUSIOAS 18
BIJLIOGTAPIY 20

PATI I

INTROXUCIION

In any problem involving procise measurement of acceleration on the earth it is necessary to keep in mind that the only accoleration we can measure directly is the acceleration relative to the earth. Thus, in applying Neuton's second Law of motion exactiy to bodies moving with respect to the earth, we must ceterming not only the acceleration rolative to the earth but also the acceleration produced by the rotation of the earth and add these vectorelly to the relativa acceloration.

This paper will show that the true acceleration, that is the acceleration relative to * Eixed inertial bystem, is composed of number of accelerations as measured in moving sytem. These are the acceleration of the origin of any moving set of axes, the acceleration due to the anguiar motion of the moving axes, the accelexation relative to the moving axes. and an accelexation due to the charge in the magnitude and direction of the velocity of point relative to the moving axes because of the rotation of these axes. This lact mentioned acceleration is known as complimentary acceleration, compound centripital accelertition, contral acceleration, or the acceleration of Coriolis, so named to honor its discoverer,

Caspard Coriolis.
This paper is prinarily concorned with giving a modern treatment of the acceleration of Coriolis. Modern physics owas great debt to Coriolis for his important formulation of Nowton' second law of motion when applied to precise measurements of accelexations here on carth.

The following is short biography of this man, taken from Larouste * Gxand Dictionnaire Univessel:

Corioll. (Caspard-Gustave de), distinguished mathematician, born in Paxis in 1792, died in 1843. In 1808 he entered the polytechnic School. from which he went on to the Civil Engingexing School, but scon gave up an engineering career to become an instructor in mathematical analysis and mechanics in the polytechnic School, where in 1838 he succeaded Dulong in the important position of Director of studies. Two years previously ho had been made menber of the Acadery of Sciences. His principal worke are: The Ealculation of Riechanical Action (Calcul de lieffet dos Hacbines, Paris, 1829, quartol, reprinted undex the title of Ireatise on the Mechanics of Solid zodies, etc. (Tritite cie la meranioue des Corps solisies. tc. 1844): and siathematical Theory of Spin in the Gume of Blilinardn Theoric Mathematign das Effets dis Jeu de RiNlacd. 1835, octavol. He also published numerous articles in the pictionAy of Industey (Dietionnaire de IUIndustrie).

PANT II

ANALYTICAI TREATAENT OF THE ACCELERATION OF CORTOLIS

To begin the study of the acceleration of Coriolis analytically, let us set up two sets of coorcinate axes, one of oxyz coordinates comprising aned inertial sytem to be chosen so that the particular instant under consideration these axes are paraliel to the moving axes; and the other OKYZ, a moving ect of rigid coordinate axes. Now let us tusn our attention to the behavior of point P that is in motion with reapect to the XYZ system, the moving coordinate exes. In this discussion both the xyz and XYz systeras thall be right handed systens. To clarify the rilationahipa between these two sets or coorcinates, the following table way be used:

| | x | y | z |
| :--- | :--- | :--- | :--- | :--- |
| x | a_{1} | a_{2} | a_{3} |
| y | b_{1} | b_{2} | b_{3} |
| y_{1} | c_{2} | c_{3} | |

In this table a_{1} is the direction cosine of the angle between x and X axes. a_{2} is the direction cosine of the angle between the x and Y axes. 3 is the direction cosine bf the angle botwen the x and 2 axed. b_{2} is the condne of

$$
-4=
$$

POSITION OF THE TWO COORDINATE SYSTEMS AT THE INSTANT under consideration
the angle between y and X axes, b_{2} is the direction cosine of the angle between Y and Y axes, b_{3} is the direction cosine of the angle between y and Z axes. c_{1} is the direction cosine of the angle between x and X axes, c_{2} is the direction cosine of the angle between z and Y axes, c_{3} is the direction cosine of the angle between z and Z axes.

From this table the following equations may be set up: $x=x_{0} \quad a_{1} x \quad a_{2} y \quad a_{3} z$
y - Yo
$b_{1} X$
$b_{2} X$
$b_{3} z$ and $z=20$
$c_{1} X$
$c_{2} Y$
$c_{3} 2$

In these equations $x 0 y 0$ and z_{0} represent the position
of "O" the origin of the moving ordinates with respect to the fixed system. Now let us differentiate these equations with respect to time. In these equations the derivative of x with respect to time shall be denoted by

$$
\begin{array}{ll}
\dot{x}, \text { tc. } \quad \dot{x}=\dot{x}_{0}+a_{1} \dot{x}+a_{2} \dot{y}+a_{3} \dot{z}+\dot{a}_{1} x+\dot{a}_{3} z \\
& \dot{y}=\dot{y}_{0}+b_{1} \dot{x}+b_{2} \dot{y}+b_{3} \dot{z}+\dot{b}_{1} x+\dot{b}_{2} y+\dot{b}_{3} z
\end{array}
$$

Differentiating again with respect to time we get the x, y. and z componcity of the acceleration of P. These components are seen to be:
$\ddot{x}=\ddot{x}_{0}+a_{1} \ddot{x}+a_{2} \ddot{y}+a_{3} \ddot{z}+2 \ddot{a}_{1} \dot{x}+2 \dot{a}_{2} \dot{y}+2 \dot{a}_{3} \dot{z}+\ddot{a}_{1} x+\ddot{a}_{2} y+\ddot{a}_{3} z$ similar equations follow for \ddot{y} and \ddot{z}. The terms $\dot{a}_{1} \dot{x}$. $\dot{c}_{2} \dot{\gamma}$ and $\dot{a}_{3} \dot{z}$, represent the ilnear accelertion of "p," relative to the moving axes. The terms $\ddot{a}_{1} x, \ddot{a}_{2} y$ and $\ddot{a}_{3} z, ~ e t c .$, are the terms giving the angular acceleration of "p" due to the angular acceleration of the noving axes. The terms $2 \dot{a}_{1} \dot{x}, 2 \dot{a}_{2} \dot{x}_{\text {, }}$ $2 \dot{a}_{3} \dot{z}, 2 \dot{b}_{2} \dot{x}, 2 \dot{b}_{2} \dot{\bar{X}}, 2 \dot{b}_{3} \dot{z}, 2 \dot{c}_{1} \dot{x}, 2 \dot{c}_{2} \dot{\bar{Y}}, 2 \dot{c}_{3} \dot{z}$ comprise the acceleration of Coriolis, also known as compound centripital or central acceleration. To arrive at anderstaming of this acceleration most easily, let us choose the Z axis as the axis of rotation for the moving eet of coordinates and let us choose the Y axis so that $Y Z$ plane is parallel to the plane of the Instantaneous velocity of mp and as indicated prem viously, our fixed axea at this particular instant are parallel to the moving set of axes. we may choose our axes in this manner without destroying the gonerality of this discussion since the laws of physics hold in any coordinate
system. Now observe that \dot{a}_{1} equals minus the sine of the angle between x and X times the derivative with respect to time of the angle between x and X. \dot{i}_{2} equals minus the sine of the engle between X and Y times the derivative with respect to time of the angle between x and Y while \dot{a}_{3} equals minus the sineof the angle between x and Z times the derivative with respect to time of the engle between x and z. Similar equations hbld for $\dot{b}_{1} \dot{b}_{2}, \dot{b}_{3}$ and \dot{c}_{1}, \dot{c}_{2} and \dot{c}_{3}. Now, observe that with the above choice of axes the only texa in our Coriolis acceleration that is not equal to zero is the $\dot{a}_{2} \dot{x}$ term. There will be no change in the angles between the z and Z axss so that $\dot{c}_{1} x, \dot{c}_{2} \dot{y}$ and $\dot{c}_{3} \dot{z}$ are equal to zero, and \dot{a}_{3} and \dot{b}_{3} are equal to zero. Since the sincof the angle between x and X will equal zero and the sine of the angle between y and Y equal zero. i_{1} and \dot{b}_{2} equal zero. Further, since there is no velocity of our point in the X direction $\dot{b}_{1} \dot{X}$ equals zero. Because the angle between x and Y is 90° the sineof this angle will be unity, thus our acceleration of Coriolis reduces to a minus 2 omega times \dot{X}, where ω is the angular vinocity of the moving set of axes also the derivative with respect to time of the angle between Y and x. Now if Θ is the angle between - Ilne parallel to the Z axes in the plane of the volocity of P. and the direction of V. then the change in Y with respect to time of Pwill be $v \sin \theta$, since $v \sin \theta$ will equal the projection of v on the $X Y$ plane, and ance we have chosen the Y axis parallel to this projection $v \sin \theta$ will equal Y. hence our coriolis accelerstion equals $2 \boldsymbol{\omega} v \sin \Theta$ where as
noted, θ is the angle between the direction of the axis of cotation and the direction of velocity of P.

Because of the orientation of axes, the only component of Coriolis acceleration remaining is the component. Solving equation (L) for an acceleration relative to the XZZ exes. this acceleration beling equal to $\ddot{a}_{1} x$, we find that $\ddot{a}_{1} x$ equals $\ddot{x}-\ddot{a}_{2} x-\ddot{a}_{2} y-\ddot{a}_{3} z-2 \omega v$ sin θ. Conequently, since instantaneously x and X are in the tane direction, our Coriolis acceleration will lie in the X direction, proviled that ω it positive. ω mill be positive if the moving axes are rotating in counterclockwise direction, fince tho angla whose cosins is will be increasing. If the axas rotate clockwise ω will be negative and our Coriolis ecceleration as obterved from the moving axes will ile in the negetive x direction.

To gain e clearex understanding of the terms $\ddot{a}_{1} x, \ddot{a}_{2} x$. etc., note that
$\dot{a}_{1}=-\omega$ oin (1) whore 1 is the angle between x and X $\dot{a}_{2}=-\omega \sin (m)$ where is the angle betwen x wit Y
and

$$
\begin{aligned}
& a_{1}=\omega^{2} \cos (1)-\dot{\omega} \ln (1) \\
& a_{2}=\omega^{2} \cos (m)-\dot{\omega} \ln (m) \\
& a_{3}=0
\end{aligned}
$$

due to our choles of axes cos (1) $m 2$
$\ln (1)=0$
$\cos (m)=0$
$\sin (m)=1$
consequently $\ddot{x}=-\omega^{2} x-\dot{\omega} y-2 \omega v \sin \theta+a_{1} \ddot{x}+a_{2} \ddot{y}+a_{3} \ddot{z}+\ddot{x}_{0}$ or wan rowite this pquation

$$
\ddot{x}=\omega^{2} x-\dot{\omega} Y-2 \omega v \operatorname{tin} \theta+\ddot{f}_{x}+\ddot{x}_{0}
$$

where $f_{x}=\ddot{x}+e_{2} \ddot{y}+a_{3} \ddot{z}$ and is the IInear acceleration of P with respect to the moving origin.
$\omega_{2}^{2} x$ represents the x component of acceleration of p due to the angular acceleration of the moving system.

Thus we see that the tru* acceleration of p is composed of five accelerations. Sinilaxly \ddot{y} and \ddot{i} hove these components.

VECTOR TREATMENT OF THE ACCELERATIOH OF CORIOLIS*

As before. let aet of rectangular axes $X_{0} Y_{0} Z_{0}$ with origin O_{0} be fixed in an inertial eystem. A acont set of axes $X Y Z$ with origin at O are tree to nove in the inertial system. Defining the unit vectors $1_{0}, j_{0}$, and k_{0} and the unit vectors i. 1. and k in the usual marner, the position of a point. P. free to move with respect to either cet of axes. will be given by the equation

$$
\begin{equation*}
x_{0}=\underline{P}+x \tag{1}
\end{equation*}
$$

where: $x_{0}=j_{0} x_{0}+z_{0} y_{0}+k_{0} z_{0}$
$x_{0} . Y_{0} . z_{0}$ being this coordinates of paint. P, in the fixed coordinate system, and

[^0]$$
\underline{x}= \pm x+1 y+k z
$$
where x, y and z are the coordinates of the point, P. in the moving system andpthe position vector of O with respect to O_{0} Denoting the time derivative or x_{0} as \underline{y}
\[

$$
\begin{equation*}
\mathbf{y}=\dot{x}_{0}-\dot{e}+\dot{\underline{\Sigma}} \tag{2}
\end{equation*}
$$

\]

where: $\bar{i}=1 \dot{x}+i \dot{y}+k \dot{z}+i x+\dot{j} y+\dot{k} z$
let us say that the first three terms of equation (3) represent the apparent velocity, V of P relative to the moving axes. The remaining three terms of equation (3) represent the angular velocity of P due to the rotation of the $X Y Z$ axes. or equation (3) may bo written

$$
\begin{equation*}
\dot{\underline{\underline{I}}}=\mathrm{y}+\dot{i} x+\dot{i} y+\dot{k} z \tag{31}
\end{equation*}
$$

differentiating Y with respect to time wet

$$
\begin{equation*}
\dot{\underline{v}}=\dot{i} \dot{x}+\dot{i} \dot{y}+\dot{k} \dot{z}+i \ddot{x}+i \ddot{y}+k \ddot{z} \tag{4a}
\end{equation*}
$$

differentiating the remaining three terms of (3') with respect to time we get

$$
\begin{equation*}
\frac{d}{d t}(i x+\dot{j} y+\dot{k} z)=\ddot{i} x+\ddot{j} y+\ddot{z} z+\dot{i} \dot{x}+\dot{j} \dot{y}+\dot{k} \dot{z} \tag{4b}
\end{equation*}
$$

we note that in \ddot{x} there are two sets of terms $\dot{i} \dot{x}$, $\dot{j} \dot{y}$, and $\dot{k} \dot{z}$. We can say that the first set of these terms arlses from the change in direction of Y with respect to the moving axes, while the second set is due to the change in magnitude of the velocity due to the rotation of the moving axes.

Thus we see that
$\ddot{\underline{I}}_{0}=\underline{\underline{e}}+\dot{x} \ddot{x}+1 \ddot{y}+k \ddot{z}+2(\dot{i} \dot{x}+\dot{j} \dot{y}+\dot{k} \dot{z})+\ddot{j} x+\ddot{i} y+\ddot{k} z(4)$
since i, 1 , and k are defined as unit vectors, they
can only change in direction and hence the time derivative of
each must be perpendicular to the vector itself.
or $i=c 1-g k$

$$
\begin{align*}
& \mathbf{1}=a k-12 \\
& \mathbf{k}=a-d 1 \tag{5}
\end{align*}
$$

however:

$$
\begin{aligned}
& i=1 \times k \\
& j=k \times 1 \\
& k=i \times 1
\end{aligned}
$$

and it follows that:

$$
\begin{align*}
& i=1 \times k+1 \times \dot{k} \tag{6}\\
& \frac{i}{6} \times 1+k \times i \\
& k=i \times 1+2 \times i
\end{align*}
$$

Combining equations (5) and equations (6) we find that $c=f, b=c$ and $a=d$.

It then follows that:

$$
\begin{align*}
& i=c i-b k \\
& i=k-c i \\
& i=b k-a i \tag{7}
\end{align*}
$$

To oxmane the physical significance of the coefilciants, a. b. c. consider the coefficient a which appears as the 2 component of j. It represents the projection of 1 on litho $\gamma 2$ plane. Therefore cit is the projection on this plane of the vector increment in i which has been produced by rotation of the axes in time ct.

Let III be the projection of 1 on the $Y Z$ plane at the end of a time dit. Then tangent $c \in=a d t=a d x=d a$

Further, co is the angle about the X axis through which the Y and z axes have turned in time dit. Therefore, a is the angular velocety of the moving system about the X axis.

Similarly, band c are the angular velocities of the system respectively about the Y and Z axes.

Defining the vector \mathscr{L} at the angular velocity of tho

Returning to equation (4) and considering those terms having the cosilicient trios we find that these toms.
$2(\dot{i} \dot{x}+j \dot{y}+\dot{x} \dot{z})$, become
$2 \dot{x}(c j-o k)+2 \dot{y}(a k-c i)+2 \dot{x}(t 2-a j)$ or upon substituition of equation e (8)
$2 \dot{x}\left(w_{z} 1-w_{y} k\right)+\dot{y}\left(w_{x} x-w_{z}\right)+2 \dot{x}\left(w_{y} z-w_{x} j\right)$ upon collecting we get

$$
\begin{equation*}
2\left[1\left(\omega_{y} \dot{z}-\omega_{z} \dot{y}\right)+1\left(\omega_{z} \dot{x}-\omega_{x} \dot{z}\right)+k\left(\omega_{x} \dot{y}-\omega_{y} \dot{x}\right)\right. \tag{9}
\end{equation*}
$$

How from equations (3) and (31) wo se o that the lina: velocity X relative to the moving exes is given by

$$
V=\dot{x} \dot{x}+i \dot{y}+k \dot{z}
$$

and letting the vector $\mu_{2} \cdot \omega_{x}-1 \omega_{y}-k \mu_{2}$ w observe that
 As final equation we have:

$$
z_{0}=\dot{P}^{2}(\ddot{i} x+\ddot{j} y+\ddot{k} z)+a(\dot{i} \dot{x}+\dot{j} \dot{y}+\dot{k} z)+(\dot{j} \dot{x}+\dot{y} \dot{y}+k \ddot{i})
$$

consider the quantity $\left({ }^{2} \dot{x}+1 y+1 \dot{y}\right)$. this is tho linear accoloration of the point, P. relative to the moving axes.

Ae has been shown before, the quantity $2(\dot{i x}+\dot{j}+\dot{k} \dot{z})$ may be reduced to the vector product $2(\underset{\omega}{\omega} \mathbf{X})$ which is tho Coriolis acceleration.

The quantity \ddot{p} so simply the acceleration of the moving origin with respect to the fixed origin.

Consider the relationship

$$
(\ddot{i x}+\ddot{i y}+\dot{2 z})
$$

$$
\begin{aligned}
& \ddot{i}=\dot{c} \dot{\underline{L}}+\boldsymbol{c}-\dot{b} \mathbf{k}-b \dot{k}
\end{aligned}
$$

$$
\begin{aligned}
& \ddot{\dot{c}}=\dot{b}+b \dot{i}-\dot{a}-a \dot{i}
\end{aligned}
$$

This relationship becomes

$$
\begin{aligned}
& (\dot{i} x+\ddot{j} y+\ddot{\dot{k}})-1(\dot{b} z-\dot{c} y)+1(\dot{c} x-\dot{a} z)+k(\dot{a} y-\dot{b} x)+ \\
& \dot{i}(b z-c y)+\dot{i}(c x-a z)+\dot{x}(a y-b x)
\end{aligned}
$$

the leet three texts. those Involving i, j, and k, nay be set equal to

$$
(c 1-b k)(b z-c y)+(a k-c 1)(c x-a z)+(b y-a j)(a y-b x)
$$

collecting thee texts on 2.1 and k wo get

$$
\begin{gathered}
2[b(a y-b x)-c(c x-a z)]+1[c(b z-c y)-a(a y-b z)] \\
+k[a(c x-a z)-b(b z-c y)]
\end{gathered}
$$

How expanding $\omega \times(\omega \times$) wet

$$
\begin{gathered}
\omega x=-1(b z-c y)+1(c x-a z)+k(a y-b x) \text { and } \\
y x y x x=1\{b(a y-b x)-c(c x-a z)\}+\{[c(b z-c y) \\
\cdots(a y-b x)\}+k[a(c x-a z)-(b z-c y)]
\end{gathered}
$$

These threw terns, those involving i, i and k. in the expansion of $(\dot{i} x+\ddot{j} y+\dot{k} x\}$ are the expansion of $w x w x$.

Lot us now expand tho vector product in \times y

$$
\dot{y}-\dot{1} \dot{b}+3 \dot{b}+k \dot{c}+i a+i b+\dot{k} c
$$

Comparing the last three term of $\dot{\mu}$, those involving i, i and \dot{x} with the expansion of $\omega_{x} x$ which may be reduced to

$$
i x+i y+i z z
$$

by analogy the three terms will be the expansion of $\omega \times \underline{\omega}$ which is identically zero.

$$
\begin{array}{r}
\therefore \dot{\omega}=1 \dot{a}+1 \dot{b}+k \dot{c} \text { and } \dot{\omega} \times x=1(\dot{b} z-\dot{c} y)+1(\dot{c} x-\dot{a} z)+ \\
k(\dot{a} y-\dot{b} x)
\end{array}
$$

This expansion of $\dot{\omega} \times \dot{x}$ is the same as the three terms in the expansion of $\ddot{i} x+\ddot{j} y+\ddot{k} z$ which involve $i, 1$ and k. \therefore we can conclude that $(\ddot{j} x+\ddot{j} y+\ddot{k} z)-\dot{\omega} \times x+\underline{\omega} \times(\underline{y} \times x)$ Now, $\omega_{x}\left(\omega_{x} \Sigma\right)$ is the quantity defined as centripetal acceleration. $\dot{\dot{U}} x x$ is defined as the acceleration of a point in the moving coordinate system due to the angular acceleration of the moving axes.

We may now write $\ddot{x}_{0}=\ddot{\rho}_{+} \dot{\omega}_{x} \underline{\underline{p}}+\underline{\omega}_{x}\left(\underline{\mu}_{x} x\right)+2\left(\underline{\omega}_{x} x\right)+1$ where f - Linear acceleration of P relative to the moving origin. Now f is the obsexved acceleration. Its relationship to the true acceleration in an inertial system is

$$
\varepsilon=\ddot{\Sigma}_{0}-\ddot{\ddot{p}}-\underline{\omega}_{x} x-\underline{\omega}_{x}\left(\underline{\omega}_{x} x\right)-2\left(\underline{\omega}_{x} x\right) .
$$

It is apparent that in any problem in mechanics in which the quantity $2\left(\omega_{x} x\right)$ must be applied and in which f is measured. the quantity will have negative sign. Thus the acceleration will have alrection opposite to the vector $2\left(\underline{\mathcal{W}}_{x} x\right)$.

EXAMPLE OF A PROBLEM IN CORIOLIS ACCELERATION

part It Solution by elementary means
Let us suppose that a projectile is fired from a
position of $60^{\circ} \mathrm{N}$ latitude. Its avarage velocity, v , parallel to the earth's surface is gox 10^{3} f plus 1 see. The target is 10^{5} feet due wouth at the time of firing.

It is apparent that the Linear velocity, due to the rotation of the earth, of point 10^{5} feet south of a point at $60^{\circ} \mathrm{N}$ latitude will be greater than that of the point at 600 N latitude since the radius of the earth's small circle parallel to the equatorial plane farther south will be greater than will be the redius of similar small circle at $60^{\circ} \mathrm{N}$ latitude.

The radius of the small circle at 60° is given by \pm - $x_{0} \cos 600$ where $I_{0}-3.950$ miles app

The radius of the southern small circie is given by $x=r_{e} \cos (60-\alpha)$

Were α is the angle at the center of the earth subtended by the ilne connecting the fixing and target pointa,

$$
\alpha=\frac{10^{5}}{3.95} \times 3.28 \times 10^{6} \quad 57.3 \frac{\text { degreen }}{\text { radius }}=2.74 \times 10^{10}
$$

The difference in the velocity between a point at 60° and a point at $(60-\alpha)^{\circ}$ will be

$$
\Delta N_{1}=\left[x_{e} \cos (60-\alpha)-x_{e} \cos 60\right] \omega
$$

It may be seen that this velocity multiplied by the time required for the flight of the projectile will give the projectile a diplacement to the westward of the target given by the quation

$$
\Delta s=\left[x_{e} \cos (60-\alpha)-x_{e} \cos 60\right] \omega_{t}
$$

However, this dimplacement to the west will be only a part of the error due to the effect of Coriolis acceleration. We will also have an acceleration due to the change in the direction of the velocity of the projectile. If we form a vector diagram giving the difference between v_{a}, the actual velocity and V_{0}, the original velocity of the projectile with respect to the earth, we note that the tangent of the angle between v_{a} and v_{0} is given by the equation

$$
\tan \phi=\frac{\Delta V_{L} t}{R}
$$

where Φ is the angle between $v_{0}-v_{a}$ and n is the range $110^{5} \mathrm{ft}$). But $R=v t$ where $v=v_{0}=3 \times 10^{3} \mathrm{ft} / \mathrm{sec}$ therefore

$$
\tan \phi=\frac{\Delta v_{L} t}{v_{0} t}=\frac{\Delta v_{1}}{v_{0}}
$$

Now from the vector difference diagram it is seen that the vector difference between V_{a} and V_{0} is:
(5) $\quad \Delta V=V_{0} \tan \phi$ (since ϕ is very small angle) Hence from equations (4) and (5) we see:

$$
\text { (6) } \quad \Delta V=\Delta V_{L}
$$

or the apparent change in the velocity of the projectile due to the change in direction of its velocity relative to the earth is equil to the difference in velocity that arises due to the difference in ilnear velocity of the earth's surface at the points of departure and return of the projectile to the earth.

The total change in velocity of the projectile relative to the earth during the time of fllght is therefore
$2 \Delta V_{L}$. The average acceleration being equal to the change in velocity divided by the time we then must have for the Coriolis acceleration in this case

$$
a=\frac{2 \Delta V_{1}}{t}
$$

Numerical evaluation:
From equation 1

$$
\begin{aligned}
\Delta V_{\mathrm{L}} & =[r \cos (60-\alpha)-x \cos 60] \omega \\
& =[\cos (60-.274)-\cos 60] \times \omega \\
& =(.50414-.3) 3950 \times 5280 \times 7.292 \times 10^{5} \\
& =4.14 \times 10^{-3} \times 3.950 \times 10^{3} \times 5.28 \times 10^{3} \times 7.292 \times 10^{-5}
\end{aligned}
$$

$$
\Delta V_{L}=6.28 \mathrm{ft} / \mathrm{sec}
$$

$$
=\frac{2 \Delta V_{1}}{t}=\frac{6.28 \times 2}{3 \frac{105}{10^{3}}}=\frac{6.28 \times 2 \times 13 \times 10^{3}}{10^{5}}=.377 \mathrm{ft} / \mathrm{sec}
$$

$$
=\frac{1}{2} a t^{2}=\frac{1}{2} \cdot 377 \times(33 .)^{2}=208 \mathrm{ft} .
$$

Part II: Evaluation of vector product
$2 \omega \times 2$
A. Direction: rotation of \underline{W} into
x gives $U_{x} \mathbf{y}$ direction into paper which
would correspond to an eastward direction
$\therefore-2 \omega \times \geq$ is th the west.
日. Magnitude
$|-2 \underline{\omega} \times x|=2|\omega| / v \mid \sin \theta$ where $\theta=1200$
from diagram
$\sin 120^{\circ}=\sin 60^{\circ}=.86603$

$|-2 \omega \times x|=2 \times 7.292 \times 10^{-5} \times 3 \times 103 \times . \varepsilon \in 6=.379 \mathrm{ft} / \mathrm{sec}^{2}$ $a=.379 \mathrm{ft} / \sec ^{2}$ $s=\frac{1}{2}+2=\frac{1}{2} .379 \times(33.3)^{2}=210.5 \mathrm{ft}$.

Fart III: Conclusion
In the elementary approach certain approximations
were made. These were:

1. In finding the angle
2. In treating the problem as plane
3. Value: $f x_{0}$

From this we conclude that our results from the two methods agree within reasonable exactness.

PA:T III

SURRARY AND COXCLUSIONS

To sumarize this wozk: There aro five components of accelaration conprising the tzue accoleration of a point located in noving coordinate system. They are: the centripetal acceleration, tho acceleration due to the angular acceleration of the moving byster, the linear accelexation of the point relative to the moving axis. the acceleration of the moving origin, and the acceleration of Coriolis.

To restate, the accelezation of Coriolis equalis in magnituide twice the product of the angular velocity of the moving system and thellinear velocity of the point raiative to the movirg cystem multiplied by the sine of the ancle between the axis of rotation and the direction of tho velocity, The direction of the Coriolis Acceleration is perpendicular to both the axie of rotation and the direction of the velocity of the moving point in such a maner that if wo rotate the vector representing the axis of rotation towarda tho voctor reprosenting the velocity (soo diagram) the acceleration will have a direction opposite to the direction of
 advance of aight handed screw thus rotated.

Special attention has been ifven to the Comiolis acceleration because it is not as lmedietely apparent as the other coriponent of acceleration. Furthermore, it is an important factor in detemining the direction of winis and because de its relation to the problem of the foucault pendulum we aro ablo to cenonstrate beyond a casestion that the eaxth ciocs rotate.

For the reader tho wishes cietaile on the last iteras, a detalled discussion of the problem of the foucault pendulum may be fourd in Iage's Introduction to Theoretical ghysics, Article 53. A clscussion of the reletionship of Coriolis Acceleration to weather may be found in themphreys phaitan of Air, under the chapter title. Possible Thaory of Orishn and Maintenance of the Extra Tropicsi Cyclone."

BIALIOGRAPHY

Humphrey, The phystes of Aix.
Jeans, J. H. An Eleqentary Ireatise on Theoretical Mechanics. Boston, 1907. 1935, Ginn and Company.
Page, Leigh, Introduction to Theoretical Physics. New York: D. Van Nostrand Company, 1935.

Ziwet, Alexander, and Peter Field, Introduction to Analytic Mechaaics. New Yorki The Lacmillan Company, 1923.

Larousse, Grande Dictionnalre Universel.

[^0]: This trontment by voctox mathode follows the etandard type of development es exemplified by the presentation in Fage* "Introduction to Theoretical Physica.

