
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2013 

Analysis of microtopography, vegetation, and active-layer Analysis of microtopography, vegetation, and active-layer 

thickness using terrestrial LIDAR and kite photography, Barrow, AK thickness using terrestrial LIDAR and kite photography, Barrow, AK 

Julia Smith 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Smith, Julia, "Analysis of microtopography, vegetation, and active-layer thickness using terrestrial LIDAR 
and kite photography, Barrow, AK" (2013). Graduate Student Theses, Dissertations, & Professional Papers. 
141. 
https://scholarworks.umt.edu/etd/141 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/141?utm_source=scholarworks.umt.edu%2Fetd%2F141&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


 
 

ANALYSIS OF MICROTOPOGRAPHY, VEGETATION, AND ACTIVE-LAYER 

THICKNESS USING TERRESTRIAL LIDAR AND KITE PHOTOGRAPHY, 

BARROW, AK 

by 

Julia J. Smith 

B.A., Bowdoin College, Brunswick, Maine, 2007 

 

 

Thesis 

 

presented in partial fulfillment of the requirements 

for the degree of 

 

Master of Science 

in Geography 

 

The University of Montana 

Missoula, MT 

 

 

May 2013 

 

 

Approved by: 

 

Sandy Ross, Associate Dean of The Graduate School 

Graduate School 

 

Anna E. Klene, Chair 

Department of Geography 

 

Kevin McManigal 

Department of Geography 

 

Carl Seielstad 

Department of Forest Management 

  



ii 

 

Smith, Julia, M.S., Spring 2013      Geography 

 

Analysis of microtopography, vegetation, and active-layer thickness using terrestrial 

LIDAR and kite photography, Barrow, AK  

 

Chairperson:  Anna E. Klene 

 

  Arctic regions underlain by permafrost are among the most vulnerable to impacts from 

climate change.  This study examined changes in the active layer of permafrost near 

Barrow, Alaska at very fine scale to capture subtle changes related to microtopography 

and landcover.  In 2010, terrestrial LIDAR was used to collect high-resolution elevation 

data for four 10 m × 10 m plots where maximum active-layer thickness (ALT) and 

elevation have been monitored on an annual basis since the mid-1990s and had been 

monitored in the 1960s as well.  The raw LIDAR point cloud was analyzed and processed 

into four 10 cm resolution digital elevation models (DEMs).  Elevation data, collected 

using differential global positioning system (DGPS) to assess heave and subsidence, has 

been gathered annually since 2004 and was used to assess the accuracy of the DEMs 

generated for August 2010.  Higher-resolution DEMs did not have higher accuracy 

compared to the DGPS control points due to artifacts inherent in the LIDAR data. 

 

  The four DEMs were used to classify each plot based on microtopographical variations 

derived from terrain attributes including elevation, slope, and Melton’s Ruggedness 

Number (MRN).  Landcover at each plot was classified using the Visible Vegetation 

Index (VVI), calculated from a series of high-resolution (~10 cm) kite photographs 

obtained in August 2012 by researchers from the University of Texas – El Paso.  The 

microtopography and land-cover classifications were then used to analyze ALT and 

elevation data from a range of years.  Analysis revealed little difference in either dataset 

based upon microtopography and landcover.  The high amount of interclass and 

interannual variation made it difficult to draw any conclusions about temporal trends.  

The results suggest that while microtopography and vegetation are important factors 

within the complex interaction which determines ALT, the scale of analysis made 

possible by the high-resolution data utilized in this study did not significantly enhance 

understanding of the main controlling mechanisms.    While terrestrial LIDAR is 

excellent for many applications, particularly those with substantial vertical variability, for 

future research at this scale on relatively flat topography, airborne LIDAR may be more 

suitable. 
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1 INTRODUCTION 

 

Polar regions are expected to be among the first environments to respond to 

climate change and to have some of the most dramatic impacts.  In the past few decades, 

mean Arctic temperatures have risen at nearly twice the rate of those in the rest of the 

world (ACIA, 2004), resulting in the widespread melting of glaciers and sea ice.  A major 

concern is the effect that climate change will have on areas of perennially frozen ground 

(permafrost) which have gradually decreased in geographical extent over the last few 

decades (Brown et al. 2000).   Recent climate models indicate that areas of permafrost 

will continue to decrease in volume and extent and that the thickness of the active layer 

(the layer above permafrost which freezes and thaws annually) in these regions will 

increase (Brown et al. 2000).  The threat of increasing permafrost degradation on a global 

scale presents a number of scenarios including the migration of forests poleward, 

destabilization of buildings, roads, and other infrastructure constructed on permafrost 

soils, exacerbation of coastal erosion, major shifts in hydrological regimes, as well as the 

mobilization of contaminants and carbon previous confined to the permafrost layer 

(Hassol 2004).  It is important to understand the response of permafrost landscapes to 

these environmental changes in order to better predict and plan for regional shifts that 

may occur. 

Complex interactions of variables influence the freezing and thawing processes of 

permafrost, and these interactions are often manifested at very fine scales on the 

landscape.  Previous studies of permafrost microtopographic processes have been limited 

in the scale at which they can observe changes by the speed and reliability of their 

methods and the accuracy of their equipment.  However, as technology advances, 
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researchers are able to study these interactions on increasingly finer spatial and temporal 

scales with greatly improved accuracy.   

This project involved two phases, 1) construction and evaluation of high-

resolution DEMs from terrestrial LIDAR point clouds, and 2) use of those DEMs, in 

conjunction with high-resolution kite photography, to examine time-series data of active-

layer thickness and elevation by microtopographic and land-cover categories at four plots 

near Barrow, Alaska.  The raw LIDAR data obtained in August 2010 was used to 

generate four high-resolution digital elevation models (DEMs) that were evaluated for 

accuracy using filtered reference data and DGPS data collected in the field in August 

2010 as ground truth and part of on-going annual monitoring.  In an attempt to detect 

changes in the permafrost landscape at very fine (cm) scales, the 2010 DEMs were then 

used to classify the landscape based on variations in microtopography.  These 

classifications were used in conjunction with land-cover categorizations derived from 

high-resolution aerial kite photography (obtained in August 2012 by researchers at the 

University of Texas – El Paso) to qualitatively and quantitatively describe spatial and 

temporal differences in time-series data of active layer thickness (ALT) and DGPS-based 

elevations across the local permafrost landscape. 
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2 BACKGROUND 

 

 Permafrost and Climate Change 2.1

Permafrost is generally defined as ground material that remains below 0°C for at 

least two years (Muller 1947).  Permafrost can be described as consisting of three layers: 

the active layer, the transient layer, and the permafrost layer (Shur 1988).  The permafrost 

layer consists of perennially frozen ground, while the transient layer is characterized by 

“high and quasi-uniform ice content” that freezes and thaws at decadal to century scales, 

thus providing a sort of “thermal inertia” which helps to insulate the permafrost from the 

thawing active layer (Streletskiy 2010).  The active layer is defined as “the top layer of 

ground subject to annual thawing and freezing in areas underlain by permafrost” (Harris 

et al. 1988).  This layer, influenced by surface temperature, surface cover, substrate, soil 

moisture, and snow cover, is important in arctic ecosystems because it is the site of nearly 

all ecological, hydrological, and biogeochemical activity (Brown et al. 2000).  In light of 

climate change, scientists are increasing scrutinizing the role that permafrost plays in 

global carbon cycling.  There is a large amount of carbon and methane stored in 

permafrost that is not presently involved in the carbon cycle (Schuur & Abbott 2011).  If 

the active layer continues to thaw deeper into the perennial permafrost, the organic soils 

once trapped in the frozen ground will be available for decomposition, resulting in a 

positive feedback cycle in arctic regions shift from an atmospheric carbon sink into a 

carbon source (Schuur & Abbott 2011). 
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While permafrost by 

definition does not necessarily 

contain ice, when sub-surface 

ice is present, it occurs in 

many forms including “nearly-

vertical ice wedges, lenses, 

irregular masses, small grains 

and crystals, irregular 

particles, stringer, and films on 

the soil particles” (Hussey et 

al. 1966).  Certain permafrost areas are considered ice-rich, meaning that the ground is 

supersaturated with ice.  Such landscapes are characterized by the presence of a number 

of distinctive landforms, produced as a result of frost action (Washburn 1973).  Some of 

the most striking and common of these landforms are ice-wedge polygons (Figure 1), 

which arise as a result of the current or past presence of ice wedges beneath the ground 

surface.  Ice wedges form when water and snow collect in cracks that form from 

contraction of the ground during extreme low winter temperatures (Hussey et al. 1966).  

The water and snow inside the cracks subsequently freezes, and the ice wedge gradually 

grows downward and in width over time as cracks deepen and reform year after year 

(Hussey et al. 1966).  

While ice-wedges and other fine-scale cryological processes are often responsible 

for microtopographical variations in thermokarst landscapes, there are other processes 

that can cause small amounts of vertical displacement over significantly larger horizontal 

Figure 1.  Frost action manifested as patterned ground, presented as 

both low-centered (upper-left) and high-centered ice wedge 

polygons (Photo: Sergio Vargas). 
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scales.  During the winter, when moist ground is subject to extreme freezing, heaving of 

the ground surface may occur as a result of ice lens formation, a process commonly 

referred to as frost heave (Harris et al. 1986).  When the temperature increases again in 

spring, the ice starts melting, the soil becomes soft and saturated, and as a result soil 

strength decreases and the ground surface subsides, a process referred to as thaw 

weakening (Harris et al. 1986).  Over time, steady ground subsidence may result from 

thawing (and subsequent run-off) of ice within the active layer, particularly of ground ice 

in the transient layer near the permafrost table (Shiklomanov et al. 2010).  Interferometric 

Synthetic Aperture Radar (InSAR) processing has been used to detect annual subsidence 

rates on the scale of 2-7 mm on the North Slope of Alaska across large regions (Wahr et 

al. 2008).  This kind of gradual ground-surface deformation has drastic implications for 

structural engineering projects in arctic environments, as well as for regional ecological 

and hydrological regimes (Brown et al. 2000). 

 

 CALM Measurements and Protocols  2.2

As evidence of climate change grows, monitoring changes in Arctic regions has 

become increasingly important.  To observe and record the response of the active layer 

and near-surface permafrost to climate change over time, the Circumpolar Active Layer 

Monitoring (CALM) program was initiated in 1998, funded by the Arctic System Science 

(ARCSS) Program of the National Science Foundation (NSF; Brown et al. 2000).  

CALM currently monitors Arctic and alpine permafrost at over 260 sites in 14 

participating countries spanning both the northern and southern hemispheres (Figure 2; 

Shiklomanov et al. 2011).  The minimum observation required under CALM protocol is a 

late-season mechanical probing of the thickness of the active layer, which is 
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accomplished by inserting a 1-cm diameter steel rod into the soil to the “depth of 

resistance” (Brown et al. 2000).  The active layer typically reaches its maximum 

thickness and begins freezing upward from the bottom one to two weeks before the air 

temperature cools sufficiently to allow freezing from the surface (Romanovsky & 

Osterkamp 1997).  In order to maintain interannual consistency, active-layer thicknesses 

are recorded as close to the time of maximum thaw as can be arranged (Shiklomanov et 

al. 2010).  It is recommended that thermal measurements are also taken to confirm the 

depth and timing of maximum active layer thickness. 

 

Figure 2.  Distribution of CALM monitoring sites in the Northern Hemisphere (Reproduced from 

http://www.udel.edu/Geography/calm/about/map.html). 
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While manual probing is a widely-accepted method to measure active-layer 

thickness, it is not capable of measuring ground displacement or long-term net 

subsidence (Shiklomanov et al. 2010).  Therefore, frost heave and thaw subsidence are 

monitored at some sites using either standard manual surveying techniques or a high-

precision (~1 cm) differential global positioning system (DGPS).  Traditional survey 

methods, which include optical leveling or triangulation through the use of statia rods, 

chaining pins, magnetic probes, or expanded-foot anchor pins, can be useful for gathering 

centimeter-accurate data over an extensive area; however, these techniques all require 

line-of-sight to frost-defended reference markers (benchmarks), which are difficult to 

install and usually not established precisely in geodetic coordinate systems (Little et al. 

2003).  The DGPS method involves the use of two satellite receivers: a base receiver at a 

precisely known location for use as a reference station, and a roving receiver that is taken 

into the field.  While the use of frost-defended benchmarks is still necessary for the 

calibration of the base receiver, the rover receiver relies on the base and satellite 

positioning, and can be used kilometers away where there are no pre-existing physical 

reference points or benchmarks, thus dramatically extending the range of surveying.  

Unfortunately, the DGPS method is still time-intensive because in order to achieve such 

high horizontal and vertical accuracies, DGPS requires simultaneous communication with 

a base receiver and four or more satellites.  As a result, a single point can take anywhere 

from 10 minutes up to 1 hour to sufficiently calibrate (Little et al. 2003).  Due to the 

time- and labor-intensive sampling techniques, researchers are investigating the 

possibility of incorporating remote-sensing techniques to help monitor surface 

topography as well as other environmental characteristics of the active layer. 
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 LIDAR technology 2.3

LIDAR (LIght Detection And Ranging, or laser altimetry; Burtch 2002) is one 

remote sensing tool that is swiftly gaining popularity for use in ecological and 

environmental monitoring studies.  Although the technology has been utilized for 

scientific observation since the 1980’s, it was not until the mid-1990’s that LIDAR data 

became widely available, and in the short time since then the technology has improved 

significantly in both accuracy and 

data density (Vosselmar & Maas 

2010).  LIDAR is a remote sensing 

technology that uses laser signals 

to discern distance by emitting 

light (waves or pulses) at a target 

object and calculating the time it 

takes for the light to be reflected 

back (Burtch 2002).  LIDAR 

typically uses a combination of 

instruments for locating the target surface in three dimensional space, including Global 

Positioning System (GPS) receivers to obtain position, angle encoders for orientation of 

scanning mirrors, and Intertial Navigational Systems (INS) to measure the altitude of the 

LIDAR sensor (roll, pitch, yaw) in cases where the sensor is airborne or mounted on a 

vehicle (Lefsky et al. 2002).  The rate at which LIDAR systems emit signals is typically 

measured in kHz, or the number of individual pulses emitted per second, in thousands of 

pulses (Burtch 2002).  Some LIDAR systems now have pulse rates beyond 300 kHz, 

equivalent to 300,000 pulses per second (Dailey 2008), producing enormous, high density 

Figure 3.  Multiple LIDAR returns generated as a result of 

the various layers of vegetation between the laser source and 

the ground (Reprinted from Lefsky et al. 2002). 
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datasets.  Individual laser signals can yield multiple return pulses if they encounter 

intermediary surfaces before reaching the ground (Figure 3).  Discrete return LIDAR can 

record these multiple measurements through the use of a reflected signal strength 

threshold, beyond which the sensor will record another measurement for the same point 

(Evans et al. 2009).  

LIDAR data can be collected in one of two ways: airborne, where the scanner is 

mounted on an aircraft or satellite, or terrestrial, where the scanner is either stationary on 

the ground or attached to a moving vehicle.  Both aerial and terrestrial LIDAR are 

capable of recording multiple returns and producing dense, three-dimensional data point 

clouds.  Aerial LIDAR produces fairly uniform point clouds with regular post spacing as 

a result of constant aircraft and laser scanner speed.  Point clouds from terrestrial-based 

LIDAR, on the other hand, tend to be denser but less uniform as they are created from 

multiple laser beams scanning at different angles which are then merged into one dataset 

with a common reference system (Bonaffe et al. 2007).  In a point cloud generated by 

terrestrial LIDAR, point density is the highest closest to the scanners and decreases 

dramatically with distance.  Point cloud data can be useful for studying vegetation layers 

and canopy cover (Hofton et al. 2002), but many LIDAR users are only interested in the 

final return points that can be used for the generation of high resolution DEMs of the 

ground surface.  In order to generate a true ground-surface DEM from the point cloud, 

ground returns points must be separated from non-ground returns through the application 

of a classification or filtering model (Evans et al. 2009).  Once all non-ground points are 

removed, interpolation techniques can be applied to the remaining points to generate a 

“bare earth” surface.  Because of the high density of point-cloud data, LIDAR DEMs are 
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among the most accurate topographic datasets available, able to achieve horizontal and 

vertical accuracies on the scale of centimeters (Arnold et al. 2006). 

The availability and use of LIDAR is increasing quickly.  Glaciologists currently 

use LIDAR to generate high-resolution DEMs for energy balance and ice-flow modeling 

purposes (Arnold et al. 2006).  Many glaciologists believe with the increase in pulse 

frequency and positional accuracy of LIDAR systems, they now possess greater potential 

for glacial monitoring than any other remote sensing methods including stereo-

photogrammetry and synthetic aperture radar (SAR) interferometry (Arnold et al. 2006).  

LIDAR has also become increasingly useful in forestry mapping because it requires “only 

one opening through a tree canopy to ‘see’ the ground, whereas photogrammetry requires 

that the same ground point be visible from two exposure stations” (Burtch 2002).   Uses 

have also been found for LIDAR in mining surveys, civil engineering, and geological 

outcrop studies (Bonnaffe et al. 2007).  Planning is underway for complete nation-wide 

LIDAR acquisition in the United States to improve the current National Elevation Dataset 

(NED) and provide other LIDAR-derived products to a variety of users (Evans et al. 

2009). 

High-resolution DEMs are being used to inform ecological and geomorphological 

research at increasingly finer scales.  Topography often exerts a strong influence over the 

structure, composition, and function of ecological systems across a range of scales 

(Lefsky et al. 2002).  In permafrost areas, vertical variations occur both spatially 

(manifested as patterned ground; Peterson 1999), and temporally (as observed with 

annual frost heave and gradual thaw subsidence; Zhu 2006).  Ice-rich permafrost 

environments are characterized by a high degree of microtopographical variation, where 



11 

 

vertical changes on the sub-centimeter scale can have pronounced effects on 

microclimate and hydrological regimes (Brown & Johnson 1965).  These small 

topographical changes can create significant variation in vegetation species composition, 

near-surface soil moisture, and depth to the permafrost (Engstrom et al. 2005; Olivas et 

al. 2011).  In the context of Arctic climate change, it has been shown that 

microtopography can cause variations in temperature and water availability that can 

result in “considerable differences in CO2 sink activity of the polygonal tundra” (Olivas 

et al. 2011).  Studying and mapping these topographical variations at the finest scale 

possible is essential for building a more comprehensive understanding of environmental 

process and climate change in the Arctic. 
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3 STUDY AREA 

 

The four plots 

analyzed in this study are 

located (general area: 

17°18’28”N, 156°35’17”) 

about 7.5 km east-north east of 

the village of Barrow, Alaska, 

near the northernmost point in 

the United States.  The Barrow 

area is underlain by nearly 

continuous permafrost, which 

can reach depths of more than 

400 m (Sellmann et al, 1975).  

The surrounding coastal plain 

is scattered with oriented 

thaw lakes, drained lake 

basins, and ice-wedge 

polygons and is characterized 

by low elevation (0-20 m) and 

very little relief (Sellmann et 

al, 1975).  Barrow has been a hub for arctic and permafrost-related research since the 

opening of the Naval Arctic Research Laboratory (NARL) in 1940 (Norton 2001).   

Figure 4.  Map of the study site, the UIC-NARL research complex, 

and the Barrow Environmental Observatory near Barrow, AK. 

Figure 5.  Locations of CALM sites (ARCSS 1 km
2
 grid [U1] and 

CRREL plots [U2]) looking south from the Chukchi Sea, with the 

Air Force Radar site in the foreground (Photo: Nikolay 

Shiklomanov). 
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The study plots are located within the Barrow Environmental Observatory (BEO; 

Figure 4), a 7,500 acre research reserve created in 1992 on land owned by the Ukpeaġvik 

Iñupiat Corporation (Norton 2001).  The BEO contains a 1 km
2 

ARCSS/CALM 

monitoring grid (U1), established in the early 1990’s as well as a transect implemented 

by the U.S. Army Cold Regions Research Laboratory (CRREL) that was first monitored 

in the 1960’s (U2; Figure 5; Brown & Johnson 1965).  Monitoring was resumed at the 

CRREL plots in the early 1990’s, and both the CRREL and ARCSS sites are currently 

monitored on an annual basis for active-layer thickness among other environmental 

variables.  Figure 6 shows the locations of these research sites relative to local landscape 

features, including the drained lake basin (Central marsh) to the west, the north-south 

C34 

C37 

C40 

C44 

Figure 6.  Overview of the study area showing the four CRREL plots analyzed in this study in relation to 

the entire CRREL transect, the 1 km
2
 ARCSS grid, and general landscape features (Original illustration  

from Nelson et al. 1998). 
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oriented beach ridge that cuts through the ARCSS grid and the western-most CRREL 

plots, and Elson Lagoon to the east (Nelson et al. 1998).   

The LIDAR scan sites were located in the southern portion of the ARCSS/CALM 

grid on four plots within the CRREL transect (C34, C37, C40, and C44, labeled in Figure 

6).  A more detailed aerial photograph of the study area can be found in Figure 7, which 

also shows the locations of the 36 points where active-layer monitoring measurements are 

taken within each CRREL plot, as well as the locations of DGPS sites annually.   

 

The general area is characterized as “polygonized upland [relative to the central 

marsh] occupied by moist acidic tundra, with …high-centered ice wedge polygons [that] 

developed in response to thermo-mechanical incision by streams draining to Elson 

Figure 7.  Aerial photograph of the study area overlain by the individual LIDAR scan sites and positions of 

the LIDAR targets used for georeferencing in the context of other research initiatives including the CALM 

active-layer measurements and DGPS sites. 
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Lagoon” (Hinkel & Nelson 2003).  The landscape is dominated by wet sedge meadows 

with more than half the vegetation cover made up of vascular plants (Nelson et al. 1998; 

Brown & Johnson 1965).  Local relief across the entire area is only ~1 m, with seasonal 

flow during summer months confined to the ice-wedge troughs maintaining and 

furthering the microtopography (Hinkel & Nelson 2003).   

One prominent small-scale thermokarst feature scattered across the study area is 

the nonsorted circle, or “frost boil.”  These are small (typically ~50 cm – 5 m) mounds of 

soil formed by frost action and commonly found in areas of fine-grain sediment underlain 

by permafrost (Harris et al. 1998).  Active frost boils are bare ground typically with small 

cracks on the surface, whereas older or inactive sites may be completely vegetated.  Bare 

frost boils can be seen as conspicuous round white areas on the polygon tops in Figure 7. 

Among the four study plots, C44 represents the highest elevation and C34 the 

lowest, though the difference is just ~50 cm between them.  C44 is located on the east-

facing beach ridge slope, an area which is generally associated with well-drained, sandy 

gravel substrate and low vegetation cover comprised mostly of grass and sedge species 

with a high diversity of lichen (Brown & Johnson 1965).  The other three plots (C34, 

C37, and to a lesser extent C40), are more closely associated with the well-developed ice-

wedge polygon “upland”, which is actually lower in elevation relative to the beach ridge, 

and characterized by greater soil moisture content and higher bryophyte vegetation cover.  

Lower elevations are found further to the south and east along the Slough. 
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4 METHODOLOGY 

 

The raw LIDAR point-cloud data were filtered and processed using a variety of 

interpolation methodologies in order to derive several high-resolution DEMs.  Each DEM 

was compared to DGPS data as well as reference data withheld from the original LIDAR 

point cloud to evaluate the statistical accuracy of the interpolation methodology.  The 

best method was used to process the four point-cloud datasets into fine-scale DEMs.  

These DEMs were classified based on microtopographical variation and subsequently 

used to analyze spatial trends in active-layer thickness (ALT) as well as the temporal 

trends in the 10 year DGPS record of heave and subsidence.  That analysis was 

supplemented by a high-resolution land cover classification of aerial kite photography to 

further investigate local differences in annual ALT and subsidence. 

 

 Data Collection & Processing 4.1

4.1.1 DGPS Data  

 The 2010 DGPS data were collected on 16 - 18 August 2010 by Dr. Nikolay 

Shiklomanov as part of the annual CALM survey, which has been made annually since 

2004.  Two receivers were used, one serving as a base antennae (Trimble®NetR8) 

mounted on a telephone pole against the east side of the Barrow Arctic Science 

Consortium (BASC) facility at the former Naval Arctic Research Laboratory (NARL) 

building (~5 km from the study site) to provide a clear line of sight, and another 

(Trimble®NetR7) as a rover antennae in the field (Little 2006; Dmitry Streletskiy, pers. 

comm., 13 December 2012).  At each of four CRREL plots a total of five DGPS points 

were collected – one at each of the four corners and one in the center (Figure 8).  There 
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were two points for which there was no data available in 2010 (404 and 443 – referring to 

plots 40 and 44, points 4 and 3, respectively).  Additionally, a series of DGPS data were 

collected on 20 frost boils located just NW of the four CRREL plots, also visible in 

Figure 8.  While the LIDAR data collection focused on the CRREL plots, some of the 

scans captured the frost boil area as well, so the LIDAR point cloud was also evaluated at 

these points to determine if there were enough data to include them in analysis.   

 

DGPS points were recorded on previously-installed University of Delaware 

Permafrost Group (UDPG) tube-shaped targets, approximately 20 cm in height and 

2.5 cm in diameter (Little 2006).  To reduce the potential for error, horizontal leveling of 

the rover antennae was done manually using a small level (Little 2006).  A dual-

Figure 8.  Aerial photo showing the locations of annual DGPS measurements in the study area.  Points 

labeled “FB” indicate frost boils. 
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frequency real-time kinematic (RTK) survey method, using radio-link communication 

between the base station and the rover, was used to compute a 3D vector between the two 

GPSs to obtain vertical and horizontal resolution of 1-2 cm accuracy after occupying the 

target for approximately 8 minutes (Little 2006).  After each DGPS point was measured, 

four manual measurements of the height of the antennae/tube were taken, and the mean 

height was used to adjust the DGPS point to the ground surface.  Post-processing of the 

DGPS data was done with Trimble Geomatics Office™ (TGO) software, yielding vertical 

accuracies of ≤ 2cm (D. Streletskiy, pers. comm., 13 December 2012). 

CALM project researchers began collecting high-resolution DGPS data at these 

sites in 2003, compiling a record of heave and subsidence.  While only the DGPS data 

collected in 2010 were used to assess the LIDAR-derived DEMs, the ten-year record was 

incorporated into the analysis of microtopography and vegetation to enhance 

understanding of long-term heave and subsidence. 
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4.1.2 Active-Layer Data  

The CRREL transect from the 1960s consisted of 20 10 × 10 m monitoring plots 

extending across the three main landscapes characteristic of the BEO: a large drained-

lake basin, a raised beach 

ridge, and ice-wedge 

polygon uplands, 

terminating at the low, 

eroding lagoon bluff 

(Figure 6; Brown et al. 

2000).  While a variety 

of measurements were 

taken at these plots 

throughout the 1960s, 

annual end-of-season active-layer thickness (ALT) observations resumed in 1991 and 

continue to the present.  The CRREL transect is located in the southeastern portion of the 

1 km
2
 ARCSS/CALM grid and four of these plots correspond to the four LIDAR scans 

(Figure 9).   

ALT measurements 

were recorded on a grid 

consisting of 36 points spaced 

2 m apart within each plot, 

including at the corners where 

DGPS readings were taken, 

Figure 9.  Sampling design employed by CALM researchers to monitor 

active-layer thickness at each CRREL plot. 

Figure 10.  Wooden posts marking the exterior nodes of the ALT 

sampling grid at CRREL Plot 44 (Photo: Nikolay Shiklomanov). 
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though not at the center point where the fifth DGPS measurement was recorded (Figure 

9).  The grid was defined by twine strung between wooden posts marking the exterior 

nodes, and each ALT measurement was taken within 15.2 cm (6 in.) of the intersecting 

points, (Figure 10; Brown & Johnson 1965; Streleskiy, pers. comm., 7 January 2013).  

This sampling design produced a record of 144 data points (36 points × 4 plots) for the 

study area. 

The 2010 ALT measurements were analyzed using descriptive statistics 

(minimum, maximum, mean, range, standard deviation) within each microtopographic 

and land-cover classification for each plot to examine the correlation between these 

variables and the spatial variability of thaw depth.   

An investigation into the historical ALT data from the CRREL plots produced a 

time-series of 23 years (1962-66, 1992-93, and 1997-2012) of end-of-season ALT data 

for all 144 points.  Gaps in this time series were the result of incomplete data, only early-

season data, or no data collection for a given year.  This temporal record was also 

analyzed using descriptive statistics in the context of microtopography and vegetation at 

each plot. 

 

4.1.3 Historical Elevation Data  

The time-series of data available from the CRREL plots records many 

environmental variables including air temperature, soil temperature, soil moisture, and 

snow cover.  While not all of the available data was utilized in this study, one record of 

particular interest was the surveyed elevation, recorded in the early 1960’s, for each of 

the 36 points within the CRREL plots.  The original data (Brown et al. 1970) was 
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explored to determine if it could provide the groundwork for an investigation into the 

temporal changes in elevation of a much larger sample size (144 surveyed points from the 

1960s compared to only 20 DGPS points in the recent record) and analyzed using 

microtopography derived from modern DEMs.  However, lack of information about the 

surveying datum used for the 1960s elevation measurements meant that comparison of 

absolute elevations were not available for direct comparison at the time of this study 

 

4.1.4 Kite Photography 

On 14 August 2012, a series of high-resolution aerial images were collected in the 

BEO by Sergio Vargas as part of ongoing vegetation studies.  The imagery was captured 

using a Panasonic® Lumix DCM TS3 12 megapixel camera mounted on a kite flying 

~400-450 m above ground level 

(Figure 11, Sergio Vargas, pers.  

comm, 17 October 2012).  The 

spatial coverage of the raw images 

included all four CRREL plots at a 

resolution of ~10 cm; the 

photographs had not been 

georeferenced or classified. 

Since the photographs 

covered an area much larger than the 

scope of this study (400 m × 300 m per photo), one photograph containing all of the plots 

was selected to be georeferenced and classified.  This photograph was cropped to an area 

Figure 11.  Sergio Vargas and the kite used to collect high-

resolution aerial imagery of the study area, August of 2012 

(Photo: Kelsey Nyland). 
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~200 m × 275 m, then georeferenced to the LIDAR data using the georeferencing toolbar 

in ArcGIS® 10.0, employing a nearest-neighbor third-order polynomial transformation 

method with 58 ground control points distributed evenly across the landscape, resulting 

in an RMSE of 0.89.  For the plot-level analysis, the original photograph was cropped to 

a series of 4 50 m × 50 m images centered over each of the four CRREL plots.  These 

smaller images were individually georeferenced utilizing a nearest-neighbor first-order 

polynomial (affine) transformation with 6-8 ground control points per image and overall 

RMSE values of ≤ 0.4 (Figure 12).  

 

  

Figure 12.  Georeferenced high-resolution kite photograph of the entire study area, overlain with cropped 

and independently georeferenced images of the individual study plots. 
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4.1.5 LIDAR Data  

On 16-18 August 2010, thirteen LIDAR scans were completed on four 10 m × 

10 m plots located in the southeastern corner of the ARCSS/CALM grid by Marianne 

Okal from UNAVCO
1
 (M. 

Okal, pers comm, 20 March 

2012).  Locations of the scan 

sites relative to the CRREL 

plots are shown in Figure 7.  

Scans were made using a 

Riegl® VZ-400 Terrestrial 

Laser Scanner with a D700 

high-precision camera mount 

(Figure 13).  Reference 

points were University of Texas-Dallas (UTD) 12 cm Red Disc Targets placed at 14.7 cm 

offset from the bottom of the antennae mount.  The targets were georeferenced using a 

Trimble® GPS 5700 with R7 receivers and a Zephyr® Geodetic Antennae that occupied 

each UTD Red Disc target for at least an hour.  GPS points were differentially corrected 

using BASC’s Base Station less than 10 km from the study site (70°28’19.3”N, 

157°24’28.20”W) and subsequently processed to within 3 cm vertically for all points. 

One of the first steps in utilizing terrestrial LIDAR is the co-registration of the 

datasets to a local (reference) coordinate system using designated targets as reference 

points and applying iterative closest-point algorithms (Besl & McKay 1992).  Each scan 

has its own relative coordinate system that pinpoints the scanner as the origin, so a 

                                                 
1
 UNAVCO, Inc., Boulder, CO 

Figure 13.  Terrestrial LIDAR system used to collect data at the 

study sites, August 2010 (Photo: Marianne Okal). 
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transformation matrix must be imposed on each point cloud in order to merge and 

transfer multiple scans into a single coordinate system (Bonnaffe et al. 2007).   In order to 

register multiple scans to produce a mosaic, there must be at least 10% overlap between 

successive scans (Bonnaffe et al. 2007).  The registration of this LIDAR data set was 

done by M. Okal using RiSCANPro software, with scans 2 and 3 registered to scan 1 for 

each site using the UTD targets are reference points.  This process yielded standard 

deviations of 0.3 – 1.02 cm, and all data registered to the target GPS points with standard 

deviations of ≤ 0.4 cm.   

To further process the data, the resulting local coordinate system must be 

transferred to a global reference system, using coordinates of the targets in the selected 

reference frame as control point information (Böhm & Haala 2005).  To accomplish this, 

the LIDAR datasets were initially exported as XYZ (Earth-Centered, Earth-Fixed) data 

files with ellipsoid heights (m), RGB values (0-255), and intensity values (0-65535) for 

all points.  The XYZ files were then converted into longitude and latitude (WGS84) to 

facilitate processing inside GIS (M. Okal, pers. comm., 1 May 2012).  Those files were 

exported in ASCII and subsequently converted by the author into the .las file format 

using the txt2las function of LAStools® software.  Because all data from the CALM 

project were recorded in UTM 4N (NAD83), the .las files were projected into that 

coordinate system for comparative analysis using LAStools® las2las.  LAStools® default 

processing truncates the input data to two decimal places limiting the output to cm-scale 

resolution which in this case was a degradation of the original data (Figure 14). 



25 

 

To preserve the precision of the original data, a flag (“target_precision 0.001”) 

was added to the syntax of the las2las tool to retain three decimal places for all 

coordinates. 

 During the 

initial export of the data 

by UNAVCO, most 

scan positions were 

broken into 2-3 separate 

data files, producing 38 

text files in total that, 

when combined, 

represented the entire 

LIDAR data collection.  

These individual scans 

were merged together 

using LAStools® 

lasmerge into one file 

containing 181,042,837 points.  Four of the original data files (C34_Scan1_pt3, 

C37_Scan1_pt2, C37_Scan2_pt3, and C40_Scan2_pt1) were corrupt and could not be 

processed with the rest of the data.  These files could not be re-exported by UNAVCO in 

time to be included in this study.  The final dataset used for this project is shown in 

Figure 15. 

Figure 14.  Detail map showing the loss of accuracy which could be 

caused by rounding during data projection.  Original data points are 

shown in green; red points represent the same dataset rounded to two 

decimal places in UTM coordinates. 
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 In order to compare the DGPS data directly to the LIDAR data, the original point 

cloud was analyzed before it was processed into a DEM.  Clips were taken of the merged 

point cloud at each DGPS location (CRREL plots and frost boils) using LAStools® 

lasclip function and specifying a 5 cm diameter circle (created in ArcGIS and stored in 

ESRI shapefile format) to define the area around the point.  If more than one LIDAR 

point fell within that area, the lowest point was taken to represent the ground surface.   

In addition to the 38 scan files, four area-of-interest (AOI) files were exported by 

UNAVCO of the area of the CRREL plots with a buffer of ~2 m on all sides.  However, 

the AOI file for plot C40 was significantly smaller in terms of number of points and was 

Figure 15.  Individual scans merged together to display the entire raw LIDAR dataset, rendered using 

RGB values. 
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not buffered, so a new AOI file was created by clipping the merged file of all scans.  This 

new AOI file was roughly equivalent to the other three in both area and number of points, 

and was used for all further analysis.  Additional processing was also done to the C34 

AOI file to remove contained 80 points (z-values of 2.365 - 19.609 m) believed to be 

erroneously high.  This filtering was accomplished using LAStools® las2las (filter) 

specified to “clip_z_above 2”.  A summary of the AOI files is presented in Table 1. 

 

Table 1. Summary of the LIDAR files defining the four CRREL plots. 

 C34 C37 C40 C40_new C44 

No. of points 7,303,671* 7,872,785 2,671,084 7,370,668 6,981,650 

Min (m) 1.109 1.242 1.423 1.383 1.786 

Max (m) 1.928* 2.378 2.484 2.528 2.616 

Range (m) 0.822* 1.136 1.061 1.145 0.83 

* The original C34 file contained an additional 80 points which were removed prior to analysis. 

 

The instrument used for the LIDAR collection (Riegl® VZ-400) returns the full 

waveform but it cannot be exported in a single file; rather, first and single returns, 

“multiple” (middle) returns, and last returns subsets can be extracted by applying a filter 

when viewing the data and saved in separate files (M. Okal, pers. comm., 5 January 

2013).  Due to the dense and wet ground cover at the study sites, most of the LIDAR data 

points in this dataset were single returns (M. Okal, pers. comm., 20 April 2012), so only 

first and single returns were exported.  Last returns were exported for one sample plot 

(C34, Figure 16) but due to the low point density they were not investigated or exported 

for the others.  While not useful on their own, the information contained in the last 

returns may have helped to inform analysis and interpretation of the first and single 

returns; however, this data was not available for inclusion in this analysis. 
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Since the data was 

delivered as an unclassified, 

single-return point cloud, the 

points had to first be 

classified as “ground” and 

“non-ground” in order to 

extract bare earth (the surface 

that represents the boundary 

between solid ground and 

surface objects such as 

vegetation and buildings; 

Vosselmar & Maas 2010) to 

create DEMs.  The four AOI files were processed through LAStools® lasground utility 

repeatedly with different terrain type and granularity settings; however, all modifications 

resulted in all points being classified as “ground”.  The inability to extract bare-earth 

points from the cloud may be explained by the incredibly dense nature of the terrestrial 

LIDAR data – because of the data density, there may not be enough area for the software 

to determine what is ground (John Gale, pers. comm., 21 December 2012).  It could also 

be a result of the organization of the terrestrial data – aerial LIDAR data is collected in 

swaths and stored in a fairly uniform way based upon their spatial location, whereas 

terrestrial LIDAR data is collected and often stored in a much more random spatial 

association, which can be difficult for interpolation algorithms to process (John Gale, 

pers. comm., 21 December 2012).  The result of the lasground operation was four new 

Figure 16.  Last returns from plot C34, colored using elevation.  

The streaking pattern in the first returns is also visible in the last 

returns, most noticeably on the tops of the ice-wedge polygons 

(left side of image). 
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AOI files, each with the same number of points as its corresponding original, but with all 

of those points classified as ground and assumed to represent the bare earth surface. 

To further examine the original data, point-density maps were created for each 

plot at two different resolutions (1 cm and 10 cm).  Point density maps are useful as 

visual explorations of underlying data, allowing areas with fewer points to be 

investigated and illustrating interpolation and extrapolation areas (Vosselmar & Maas, 

2010).  In addition to point density, LIDAR intensity values, representing the return 

strength of the laser pulse, were also mapped at 1 cm resolution.  Intensity values are, at 

least in part, determined by the reflectance of a surface, making it possible to discern 

different land cover classes in carefully calibrated data (Wang & Glenn 2009).  The 

intensity values were evaluated to determine if they could be useful in both error 

interpretation and in the classification of the microtopography and/or landcover.  Both the 

density and intensity images were created with LAStools® lasgrid function, specifying 

the density (16-bit) and intensity as the items to grid and step values to reflect the desired 

output resolutions. 

 

 DEM Interpolation and Analysis 4.2

 After extensive research into the various processing capabilities, accessibility, and 

cost of different LIDAR software (FUSION, LAStools®, SCOP++™, LASEdit, SAGA, 

Open Topography, MicroDEM, and LIDAR Analyst®), two programs – LAStools® and 

LIDAR Analyst® – were selected for DEM generation.  Plot C34 was selected as the 

evaluation plot for initial interpolations.   
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4.2.1 Thinning the Point Clouds and DEM Generation 

To assess the effects of LIDAR point density on the accuracy and appearance of 

the output DEMs, four new .las files were created from the original AOI file, thinned to 

different resolutions (1 cm, 2 cm, 5 cm, and 10 cm) using LAStools® lasthin, keeping the 

lowest point in each grid cell.  These files were evaluated using three different processing 

tools – LAStools® blast2dem, LIDAR Analyst® LAS file to Raster with Filtering, and 

LIDAR Analyst® Extract Bare Earth – to create an array of DEMs for analysis. 

 LAStools® blast2dem uses “a bottom-up approach that repeatedly refines an 

initial ground estimate” using a triangulated irregular network (TIN) that is initially 

constructed from the lowest points of a grid with selected step size, gradually added to in 

several passes, and immediately rasterized onto a DEM (Isenburg 2011).  This approach 

is similar to “virtual deforestation” (VDF) algorithms, many of which are fully automated 

and have been successfully used to map ground surface in heavily forested areas 

(Haugerud & Harding 2001).  The only variable available for manipulation by the user 

was the “kill triangles” variable, adjustment of which did not affect the output DEMs 

because the study area did not contain any large data voids (i.e. lakes or tight boundaries). 

 LIDAR Analyst® LAS file to Raster with Filtering uses an unspecified “advanced 

algorithm” to convert point cloud data directly to raster (DEM) format.  The only variable 

to specify is whether or not to “fill holes in the data”, an option which produced no 

quantifiable differences in output DEMs with this data. 

 LIDAR Analyst® Bare Earth Extraction, which uses an iterative spline 

interpolation algorithm, provided the most user-defined options for creating a DEM.  

Processing options that were tested included: removing spikes and pits before processing, 
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smoothing bare earth using low-pass filter, extraction method 1 (rasters or point clouds) 

or extraction method 2 (point clouds), hierarchical spline interpolator or ArcGIS spline 

interpolator, option to clean up bare earth, and manually setting the number of points for 

interpolation, spline tension, percentage overlap, number of iterations for bare earth 

extraction, and ground parameters.  However, although all these options were evaluated, 

no combination changed the output DEM visibly or quantifiably way, perhaps because of 

data density and lack of tall vegetation and buildings that these algorithms were designed 

to extract.  The tool was run successfully to produce the final outputs used for analysis 

with the default settings (interpolation based on elevation, no automatic filling of holes in 

data, filtered by all returns, output raster properties set from input LAS file) on the 10 cm, 

5 cm, and 2 cm data but was unable to process the 1 cm data and the original AOI point 

cloud, even when left to run for over 72 hours.   

 

4.2.2 Assessing DEM Accuracy 

 All output DEMs for C34 were assessed using the 5 DGPS points collected within 

that plot at the time of the LIDAR acquisition.  DEM values were extracted at each 

control point using the Extract Values to Points tool of ArcGIS Spatial Analyst with the 

option to interpolate values at point locations.  Descriptive statistics were calculated for 

each set of points and the five DEM-generation methods which produced the smallest 

average error and low standard deviation were applied to the other three plots.  These 

were reevaluated using the entire set of 18 DGPS points available for the four plots by 

calculating descriptive statistics, mean bias error (MBE), and mean absolute error 
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(MAE).  The DEMs with the overall smallest error with a low standard deviation at all 

plots were used for the rest of the analysis. 

 To fully assess the accuracy of the DEM interpolation method, four different sets 

of data points were withheld from the original point cloud before it was used to generate 

the DEM.  These control point datasets were created using LAStools® lasthin with the 

following specifications: 1) withhold the lowest point every 1 m; 2) withhold a random 

point every 1 m; 3) withhold the lowest point every 50 cm; and 4) withhold a random 

point every 50 cm.  All four control point datasets were then compared to their respective 

DEMs (in this case, 10 cm-resolution DEMs created with LIDAR Analyst® LAS to 

Raster) to assess errors.  DEM values were extracted for each control point using the 

Extract Values to Points tool of ArcGIS Spatial Analyst with the option to interpolate 

values at point locations.  The attribute tables of the output files were examined and any 

points without corresponding raster values (points on the edges of the extent) were 

removed.  Residuals were calculated between the z-value of the DEM (z) and the “true” 

terrain surface (Briese et al 2002) and mean bias error (MBE), mean absolute error 

(MAE), and root-mean-square error (RMSE) were found for each plot.  All measures of 

error were less than 1 cm in magnitude (Table 2). 
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Table 2.  Descriptive statistics of LIDAR and DEM elevations and summary of errors (DEM-LIDAR) for 

plot C34 using four different methods of withholding points from the LIDAR datasets.  Units are cm above 

ellipsoid.  Residuals – max is the absolute value of the maximum residual of the dataset. 

 

Because of the small magnitude and differences in errors between the methods, 

the “50 cm lowest” dataset was chosen to assess the final DEMs for the other plots since 

it was presumed to be a closer representation of the ground surface than the “random” 

datasets and contained a larger sample size than the “l m lowest” dataset.  Statistics were 

then calculated for each plot using the withheld LIDAR points as ground truth for the 

DEM.  Statistics were also calculated using the DGPS points as ground truth; however, 

due to the small sample size at each plot, just one set of statistics was calculated to 

summarize all plots.   

To examine the spatial pattern of error, residuals points were mapped using the 

entire point-cloud dataset that was used to generate to DEM for each plot.  This point 

map was calculated as LIDAR elevation – DEM elevation in cm and clipped to the area 

of the study site. 

Control Point Data Set 1 m lowest 1 m random 50 cm lowest 50 cm random 

 LIDAR DEM LIDAR DEM LIDAR DEM LIDAR DEM 

Minimum  110.6 111.6 115.5 115.6 110.6 111.7 113.6 114.1 

Mean 127.6 127.7 132.3 132.3 129.6 129.7 132.4 132.4 

Maximum  148.5 148.6 151.1 151.1 149.9 149.9 152.6 152.6 

Range 37.9 37.0 35.6 35.5 39.3 38.2 39.0 38.4 

Standard Deviation 9.3 9.3 9.2 9.2 9.5 9.5 9.3 9.2 

Residuals - Max. 1.3 0.5 4.1 1.9 

Residuals - Mean 0.1 0.1 0.2 0.1 

RMSE 0.2 0.1 0.2 0.1 

MBE -0.1 < 0.1 -0.1 < 0.1 

MAE 0.1 0.1 0.1 0.1 

Number of Points 242 243 898 904 
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 Microtopography Classification 4.3

Polygon centers and troughs, visible in the aerial photographs, were classified for 

microtopography based upon relative elevation as that is their defining characteristic.  

Because the average elevations of each of the four plots varied substantially (~63 cm 

difference between C34 and C44), one elevation value could not be used as the break 

point with which to differentiate polygon centers and troughs at all sites. Consequently, 

the elevation was determined for each plot through visual comparison of the results to the 

DEM and aerial photographs.  For the final classification, boundaries to differentiate 

polygon centers and troughs at each plot were set at: 1.27 m for C34; 1.36 m for C37; 

1.51 m for C40 m; and 1.88 m for C44. 

Terrain analysis was necessary to identify the sides of the polygons and other 

areas of sloping terrain. Different measures and indices for quantifying 

microtopographical variability were initially tested on plot C34.  The DEM raster files 

originally exported by LIDAR Analyst® at a pixel resolution of 1 cm (not representative 

of spatial resolution but optimal for visual display) proved too fine a scale for meaningful 

terrain analysis and the rasters were re-exported using the Aggregate tool set to the 

“mean” aggregation technique at the following resolutions for comparative analysis: 

10 cm, 20 cm, 30 cm, and 50 cm.  The ArcGIS Focal Statistics tool was used to create 

sets of raster files of the mean, minimum, maximum, and range of the 10 cm resolution 

DEM for plot C34 for use in topographic index calculations, using three different cell 

neighborhoods of three, five, and ten for comparative analysis.   

An array of terrain measures were calculated, including: first-order surface 

derivatives (slope), second-order derivatives (curvature, profile curvature, planform 

curvature), measures of local surface variability (standard deviation of slope, standard 
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deviation of elevation, slope variability), and more complex terrain indices (elevation-

relief ratio, Melton’s ruggedness number, topographic position index, terrain ruggedness 

index, compound topographic index).  All calculations were examined at three or more 

different resolutions of the DEM and with three different neighborhood sizes (three-cell, 

five-cell, and ten-cell) to determine the most useful resolution for each statistic.  This 

decision was made by visually comparing the outputs to both the DEM and the aerial 

images of the site to see how accurately they described the landscape.  The calculations 

are summarized in Table 3, which lists which were determined to be the most useful cell 

neighborhood and DEM resolution for each variable. 
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Table 3.  Terrain calculations and corresponding input specifications. 


As = Area Value calculated as (flow accumulation + 1)*(pixel area m

2
); beta = slope (in radians) 

Variable/Index Description/Equation Cell Neighborhood  Input DEM Resolution 

Slope (gradient, or rate of maximum change in z-

value; Burrough & McDonnell 1998) 
Atan(√ ([∆z/∆x]

2
 + [∆z/∆y]

2
) ) * (180/π) 3 × 3 30 cm 

Curvature (Buckley 2010) 
second derivative of the surface (i.e. the slope of 

the slope) 
3 × 3 30 cm 

Profile Curvature (Buckley 2010) 
curvature parallel to the direction of the maximum 

slope 
3 × 3 30 cm 

Planform Curvature (Buckley 2010) 
curvature perpendicular to the direction of the 

maximum slope 
3 × 3 30 cm 

SDE 

(standard deviation of elevation; Ascione 2008) 
Std(DEM) 5 × 5 10 cm 

SDS 

(standard deviation of slope; Grohmann 2011) 
Std(Slope) 10 × 10 10 cm 

SV 

(slope variability;  Ruszkiczay-Rudiger et al. 2009) 
Slopemax - Slopemin 5 × 5 10 cm 

E/R 

(elevation-relief ratio; Pike & Wilson 1971) 
(DEMmean – DEM)/DEMrange 10 × 10 10 cm 

MRN 
(Melton’s ruggedness number; Melton 1965) 

(DEMmax - DEMmin)/√Area 5 × 5 10 cm 

TPI 

(topographic position index; Weiss 2001) 
(DEM – DEMmin)/(DEMmax + DEMmin) 10 × 10 10 cm 

TRI 
(terrain ruggedness index; Riley et al. 1999) 

√ |(DEMmax)
2
 –  (DEMmin)

2
| 5 × 5 10 cm 

CTI 

(compound topographic index; Evans 2004) 
ln (As/(tan(beta)) ) 1 × 1 10 cm 
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Slope and curvature were calculated using the respective Surface tools in Spatial 

Analyst.  Standard deviation calculations, as well as input slope variability rasters, were 

made using the Focal Statistics tool.  All other calculations were performed in the Raster 

Calculator based on the formulas in Table 3.  Through qualitative visual analysis using 

the DEM and the aerial images, the two variables that best captured the microtopography 

of the plot were identified as slope (at 30 cm resolution), which provided the best general 

picture of topography, identifying the general edges of the polygons distinctly, and 

Melton’s ruggedness number (at 10 cm resolution) which differentiated changes at a finer 

scale, particularly terrain variations on the centers of the polygons.  These two rasters 

were combined using the Raster calculator with the equation = [Slope] + ([MRN]*100) 

and the result was manually classified using a class boundary of 6.5 to differentiate flat 

(homogenous) and sloping (heterogeneous) terrain. 

Finally the DEM and the Slope/MRN rasters were combined into a new 

microtopography classification with four classes – troughs; low sides (sloping areas in the 

troughs); high sides (sloping areas on the polygon centers), and polygon centers.  This 

classification was visually assessed using the DEM and aerial images and then repeated 

for the remaining three plots. 

To categorize microtopography for each of the 36 monitoring points within each 

plot, the classified microtopography images were clipped using a 30 cm diameter circle 

(approximating the 6 in sampling radius of the CALM ALT measurements).  Whichever 

category had the largest number of pixels within each circle was assigned as the 

microtopography class.  The DGPS points were assigned in a similar manner, but with a 

5 cm diameter circle representing the area occupied by the DGPS target and receiver.  
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Once all points were classified, it was determined that there was not a large enough 

sample size to statistically assess the differentiation between high and low sloping sides 

(n=10 and n=13, respectively, out of a total of 164 points), so the two “sides” classes 

were grouped, resulting in three microtopography classes for the final analysis – centers, 

sides, and troughs. 

 

 Vegetation Classification 4.4

Interpretation of ALT and DGPS data was also examined by the creation of a 

land-cover classification of the four CRREL plots.  At the time of the data analysis, the 

highest resolution land-cover classification available for the study area was based upon 

2002 Quickbird image (Figure 17), with a resolution of ~ 0.7 m, which provided general 

information about what land-cover classes were present at the study site but was too 

coarse to use for analysis of the ALT and DGPS data.  In order to analyze land cover 

differences at the plot level, a new classification was created from the kite photographs 

described in Section 4.1.4.  These classifications were created with vegetation index (VI) 

techniques, which use “arithmetic operations on the available bands (visible light, near-

infrared, etc.)… to enhance some features and better visualize the vegetation” (Ponti 

2012).   
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The kite photographs were collected using three bands from the visible spectrum: 

red (~630-690 nm), green (~520-600 nm), and blue (~450-520 nm).  While VIs often use 

the near-infrared portion of the visible spectrum, there are a number which can be 

calculated using reflectance from just the visible wavelengths.  Since a review of current 

literature did not reveal a commonly used vegetation index to use for differentiation of 

tundra vegetation which did not include the near-infrared, seven VIs were explored for 

use in this study.  Each VI was tested on the georeferenced image of plot C34, including: 

the Green-Red Vegetation Index (GVRI; Motohka et al. 2010), Excess Green (ExG or 

Figure 17.  High resolution (2.4 m multispectral, pan-sharpened to 0.7 m resolution) land-cover image 

derived from Quickbird satellite imagery collected on August 1, 2002.  Data provided by NCAR/EOL 

under sponsorship of the National Science Foundation: http://data.eol.ucar.edu. 
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2B_RB; Ponti 2012), Triangular Greenness Index (TGI; Hunt et al. 2013), Green Leaf 

Index (GLI; Louhaichi et al. 2001 and Hunt et al. 2013)  Visible Atmospherically 

Resistant Index (VARI; Gitelson et al. 2002), Visual Vegetation Index (VVI; Ponti 

2012), and Color Index of Vegetation Extraction (CIVE; Ponti, 2012).  These indices are 

summarized in Table 4. 
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Table 4.  Vegetation indices which can be calculated using bands in visible wavelengths showing equations and corresponding raster calculations. 


Calculation for normalized bands: "Band_1" / ("Band_1" + "Band_2" + "Band_3")

Index Equation Raster Calculation 

GVRI  

(green-red vegetation index; 

Motohka et al. 2010) 

(Rg − Rr)/( Rg + Rr) ("Band_2" - "Band_1") / ("Band_2"  + "Band_1") 

ExG  

(excess green; Ponti 2012) 
2G − R − B (2 * "Band_2_normalized") - "Band_1_normalized" - "Band_3_normalized"  

TGI 

(triangular greenness index; 

Hunt et al. 2013) 

−0.5[(λr − λb)(Rr − Rg) − (λr − λg)(Rr − Rb)] -0.5 * ((165 * ("Band_1" - "Band_2")) - (80 * ("Band_1" - "Band_3"))) 

GLI(a) 

(green leaf index; Louhaichi 

et al. 2001) 

((G-R)+(G-B))/(G+R+G+B) 
(("Band_2" - "Band_1") + ("Band_2" - "Band_3"))/("Band_2" + "Band_1" + 

"Band_2" + "Band_3") 

GLI(b) 

(green leaf index; Hunt et al. 

2013) 

(2*Rg − Rr − Rb)/(2*Rg + Rr + Rb) 
(2 * "Band_2" - "Band_1" -  “Band_3") / (2 * "Band_2" + "Band_1" + 

"Band_3") 

VARI  

(visible atmospherically 

resistant index; Gitelson et 

al. 2002) 

(Rg − Rr)/(Rg + Rr − Rb) ("Band_2" - "Band_1") / ("Band_2" + "Band_1" - "Band_3") 

VVI  

(visual vegetation index; 

Ponti 2012) 

[(1 − |R – Ro/R + Ro|) * (1 − |G – Go/G + Go|) * 

(1 − |B – Bo/B + Bo|)]
1/w

 

(1 - (Abs(("Band_1" - 40)/("Band_1" + 40)))) * (1 - (Abs(("Band_2" - 

60)/("Band_2" + 60)))) * (1 - (Abs(("Band_3" - 10)/("Band_3" + 10)))) 

CIVE  

(color index of vegetation 

extraction; Ponti, 2012) 

0.441R − 0.811G + 0.385B + 18.787 (0.441 * "Band_1") - (0.811 * "Band_2") + (0.385 * "Band_3") + 18.787 
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To perform these calculations inside of ArcGIS, each image band was exported as 

a separate raster file and converted into floating files using the 3D Analyst Float tool.  

Raster Calculator was then used to calculate the VIs described in Table 4.  These images 

were then compared to the original kite photos and the one that most accurately 

represented the vegetation cover (in this case, the VVI) was selected as the basis of the 

new classification and calculated for the remaining three plots.  Figure 18 shows the 

individual raster bands used to derive to vegetation indices as well as a sample 

calculation. 
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Figure 18.  Calculation of the VVI for plot C34.  Three visible bands make up the original image, of which 

individual bands were used in the calculation of the VVI and other indices.  The original aerial image and 

DEM are shown for reference. 
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The VVI images were then categorized (i.e. density sliced) using boundaries 

chosen to reflect the local variations in vegetation observed in both the aerial images as 

well as in on-the-ground photographs of the plots (Figure 19).   

 

A series of land-cover classifications were created containing between three and 

five classes each – one class representing bare ground (frost boils) and two to four other 

classes representing different types of vegetation.  Categorization of the ALT and DGPS 

observation locations were done using the same methodologies described for the 

microtopography classifications for each of the three potential land-cover classifications.  

The classification which appeared to most accurately represent the vegetation observed in 

the photographs was chosen for further analysis.   

The classification that was chosen contained four classes – one for bare ground 

(frost boils) and three for vegetation – with boundaries at 0.020, 0.042, and 0.060.  The 

2002 Quickbird classification (Figure 17) identified five types of land cover within the 

four study plots: wet graminoid tundra, moist graminoid tundra, dry-moist dwarf shrub-

Figure 19.  Photographs of the four study plots, August 2012.  Each photograph was taken from the 

northeastern corner of the plot, facing southwest.  Photos: Nikolay Shiklomanov. 
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graminoid tundra, dry dwarf shrub-graminoid tundra, dry dwarf shrub tundra (Tweedie 

2010).  These classes were simplified down to three – dry graminoid tundra, mesic 

graminoid tundra, and we graminoid tundra – based on the Alaska vegetation 

classification by Viereck et al. (1992) that differentiated classes for graminoid and forb 

herbaceous tundra based on moisture content of the substrate.  Vegetation classes were 

delineated based on the following definitions: wet – sites that are saturated or semi 

permanently flooded, usually with standing water for part of the year; mesic – moist sites 

but without standing water; and dry – sites that are dry, usually rocky and well drained 

(Viereck et al. 1992), definitions which correlate well with conditions observed on the 

ground and in photographs of the study sites. 

 

 Statistical Analysis 4.5

For each plot, descriptive statistics of ALT (minimum, mean, maximum, range, 

and standard deviation) were calculated using two different subsets of the CALM data: 1) 

a snapshot in time, using 2010 data that was collected at the time of the LIDAR 

collection, and 2) a time series using the modern ALT data that coincides with the 10-

year DGPS record (2003-2012).   

Utilizing the microtopography and land-cover classifications described above, 

descriptive statistics were also calculated for each landcover and each microtopography 

class for three different subsets of the data: 1) a snapshot in time, using 2010 data, 2) a 

time series using the modern ALT data (2003-2012), and 3) a time series using the 

historic ALT data (1962-1966).  Goodness-of-fit statistics and box plots were used to 

assess trends both visually and quantitatively (based upon the regression equations) for 

all years for which data was available. 
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Descriptive statistics were also calculated for the 10-year DGPS record of 

subsidence (2003-2012), first by plot and then by landcover and microtopography 

classes.  Scatterplots were used to visually and quantitatively assess trends (based upon 

the trend lines). 

 

  



47 

 

5 RESULTS AND DISCUSSION 

 

 LIDAR point cloud analysis 5.1

 Direct analysis of the raw LIDAR point cloud values at the CRREL DGPS sites 

revealed differences of 0.7-7.6 cm between the two datasets.  Point density in the 

immediate vicinity of the measurement sites was highly variable, ranging from 5 to 660 

points within the clipped area (~20 cm
2
).  Residuals at individual points are shown in 

Table 5 and summary statistics are provided in Table 6.   

With the exception of two points, the LIDAR data consistently returned height 

values above those measured by DGPS.  Most of these residuals were quite small, with 

an average of 3.8 cm.  The differences between the LIDAR point cloud and the DGPS 

measurements might be explained in part by the artifacts inherent in the LIDAR data that 

were discovered in the DEM generation process (Section 5.2).  Streaking patterns in the 

point cloud produced ridges ~2-5 cm in height on the interpolated DEM, and 70%.of the 

differences observed between the LIDAR and the DGPS data were less than 5 cm.  If the 

artifacts could be removed, it may significantly improve the accuracy of the LIDAR data 

compared to the DGPS data. 
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Table 5.  LIDAR points contained within a 20 cm
2
 circular area clipped from raw point cloud at each 

DGPS location.  The clipped area represents the space occupied by the DGPS target and receiver.  Units are 

cm above ellipsoid. 

Site 
No. of 

Points 
Lowest HAE 2010 DGPS 

Difference  

DGPS - LIDAR 

341 419 123.1 121.0 -2.1 

342 44 143.5 136.2 -7.3 

343 27 142.3 140.6 -1.7 

344 61 120.6 117.3 -3.3 

345 27 142.3 144.4 2.1 

371 250 133.9 129.3 -4.6 

372 92 137.4 129.8 -7.6 

373 465 146.0 145.3 -0.7 

374 42 147.7 140.7 -7 

375 31 155.2 152.6 -2.6 

401 61 152.9 149.5 -3.4 

402 74 159.7 156.8 -2.9 

403 24 165.7 161.8 -3.9 

404 63 167.7 No Data --- 

405 35 161.6 155.7 -5.9 

441 660 185.5 187.1 1.6 

442 5 190.9 183.2 -7.7 

443 39 191.1 No Data --- 

444 23 199.4 198.1 -1.3 

445 33 190.8 187.9 -2.9 
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Table 6.  Residual statistics between the DGPS sites and the LIDAR point cloud.  Units are cm above 

ellipsoid. 

 

 DGPS – LIDAR 

(cm) 

No. of Points 18 

Minimum Residual 0.7 

Maximum Residual 7.7 

MBE -3.4 

MAE 3.8 

SD 2.3 

RMSE 4.4 

 

The density image in Figure 20 shows the study area including locations of the 

CRREL plots and frost boils.   
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 As evident in the LIDAR density image, point density decreases dramatically with 

distance from the scanner, and analysis of the point cloud at the frost boil sites revealed 

no data points recorded within a 2.5 cm radius of 14 of the 20 sites, while five out of the 

remaining six sites registered only one point.  Differences between the LIDAR point 

values and the corresponding DGPS measurements at the frost boil sites ranged from 1.2-

9.3 cm (Table 7).   

Figure 201.  Point density of the entire original LIDAR point cloud, expressed as number of points per 

10 cm
2
.  Study plots are demarcated with dashed lines with black dots representing the locations of DGPS 

measurements.  Point density decreases dramatically within 20 m of the scanner. 
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Because this analysis revealed minimal LIDAR coverage at the frost boil sites, 

they were not used for further analysis. 

Table 7.  Frost boil sites clipped from LIDAR point cloud.  Units are cm above ellipsoid. 

Site Points Lowest HAE 

2010 

DGPS 

Difference 

DGPS - LIDAR 

FB_9 1 167.4 164.7 -2.7 

FB_12 1 169.4 170.6 1.2 

FB_19 1 164.8 156.1 -8.7 

FB_27 1 155.7 152.2 -3.5 

FB_35 1 173.2 163.9 -9.3 

FB_39 3 176.8 174.8 -2 

All other 

(14 sites) 

No 

Data 
   

 

 Significantly higher LIDAR point density was registered within each of the four 

CRREL plots (Figure 21).  Local point densities ranged from 0-5,505 points/100cm
2
 

within the plots, and decreased with increasing distance from the scanner, which was 

compensated for by scanning each site from multiple positions.  However, some of the 

scan sites were positioned too close to the plot and caused noticeable data voids in the 

~2 m radius around the scanner (observable in C34, C37, and C44).  Point density was so 

high within most of the CRREL plots that it appeared sufficient to capture topography 

even within the polygon troughs.  Mean point densities for the four plots ranged from 

332-360 points/100cm
2
.  The only topographic feature observable in the 10 cm resolution 

density images is the trough that cuts horizontally across plot C40. 

 Examining point density at a finer resolution (1 cm
2
) revealed even more detail in 

the LIDAR point cloud (Figure 22).  Local densities ranged from 0-522 points/cm
2
 with 

average densities of 3-4 points/cm
2
.  While the density still appears minimally affected by 
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terrain variation at this resolution, one feature that is absent in the 10 cm density image 

but visible in the 1 cm image are small streaks (data voids) emanating from behind the 

wooden posts to mark the site boundaries, a phenomenon known as “flagging” (Carl 

Sielstad, pers. comm., 8 February 2013).  These artifacts do not appear to affect point 

density at resolutions coarser than 1 cm, but could explain potential inconsistencies in 

very high resolution DEMs produced from this kind of data. 

  



53 

 

  

Figure 21.  Point density maps of each of the four study plots.  Density is expressed as number of points 

per 10 cm
2
.  The highest point density recorded in the plots was 5,305 points/10 cm

2
.  Inset diagrams show 

the relative locations of the scanner around each plot.  Point density noticeably decreased with increasing 

distance from the scanner. 
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Figure 22.  Point density maps of each of the four study plots.  Density is expressed as number of points per 

1 cm
2
.  The highest point density recorded in the plots was 522 points/cm

2
.  Flagging due to obstruction by 

the wooden posts used to demarcate the active layer sapling grid (Figure 10) can be seen to some degree in 

all plots at this resolution.  Inset diagrams show the relative locations of the scanner around each plot.   
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Maps of LIDAR intensity for each plot are presented in Figure 23.  Because 

intensity values are acquired using a variable grain, the values are not calibrated unless 

careful post-processing is performed (Evans 2009).  The intensity values for this LIDAR 

dataset were delivered as raw, non-calibrated values and revealed little about the ground 

surface cover of the plots.   

Visual analysis of the LIDAR intensity images revealed similar spatial patterns as 

found the density images.  Intensity values ranged from 0-4,277, with average intensities 

of 3,422-3,516 in the four study plots.  There is some streaking visible in the intensity 

images, which is qualitatively different than the “flagging” in the density images as it 

does not correspond to the location of the posts.  Rather, the streaking pattern appears to 

emanate radially from each scanner position. The exact cause of the streaking pattern 

could not be determined, even with detailed investigation into the DEMs interpolated 

from this data (Section 5.2). 

The only plot that showed variations in intensity values that appear to potentially 

correspond to changes in vegetation cover was C34, where the darker green blue values 

of high intensity occurred in roughly the same area as the wet graminoid vegetation that 

dominated the polygon troughs.  However, with uncalibrated values it was not possible to 

differentiate these areas of low intensity from the other high-intensity areas that buffer 

the scanner that do not appear to correspond well to particular ground cover types.  
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Figure 23.  LIDAR intensity maps for each of the four study plots.  Uncalibrated values ranged from a 

minimum of 0 (C34) to a maximum of 4,277 (C40).  Intensity generally decreased with increased distance 

from the scanner.  Inset diagrams show the relative locations of the scanner around each plot. 
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 DEM Interpolation 5.2

Interpolation of high-resolution DEMs from the LIDAR point cloud was 

complicated by streaking anomalies present in the point cloud (described in Section 5.1 

and visible to a lesser degree in Figure 23), not the “flagging” caused by the wooden 

stakes on the perimeter of each plot.  This “streaking” resulted in the interpolation of a 

series of small artificial ridges and troughs in the DEM that radiated from each scan 

position.  These streaks were visible in DEMs created from thinned out point clouds to 

1, 2, and 5 cm resolution (retaining only the lowest point within each cell as described 

in Section 4.2.1) and no longer visible when the input data were thinned to 10 cm 

resolution (Figure 24).  Elevation profile graphs generated from multiple transects 

across plot C34 (Figure 25) revealed that the streaks were ~2-5 cm in height and did not 

vary based on the height of the vegetation, which is generally taller in the troughs.  

They are also clearly not related to trails formed by lemming’s movements near their 

burrows as those have a distinct, recognizable structure. 
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Figure 24.  DEMs for plot C34 generated from point clouds thinned out to resolutions of 1, 2, 5, and 

10 cm.  Thinned point clouds were made by taking the lowest point in each grid cell of specified size.  

Steaks in the LIDAR data manifested as small ridges on the DEM can be seen clearly in the 1, 2, and 5 cm 

DEMs and to a lesser extent in the 10 cm DEM, where they appear somewhat smoothed out.  Inset 

diagrams show scanner positions 
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Review of the literature produced no reasonable explanations of these streaks and 

no description of it occurring in other terrestrial LIDAR datasets.  In terms of general 

sources of error, atmospheric conditions are often cited as potentially confounding 

factors in LIDAR collection (Fowler 2012); however, photographs taken during data 

acquisition suggest that there was minimal atmospheric disturbance (i.e. no fog or 

visible particulate matter) on any of the three collection days.  Weather varied slightly – 

one of the days was clear and sunny while the other two were overcast – but this 

variable proved irrelevant since the streaking anomalies were consistent among all 

scans regardless of acquisition date.   

Figure 25.  Elevation profile graphs for a variety of transects in plot C34.  Profile graphs revealed that 

small ridges resulting from streaks in the original data were 2-5 cm and did not vary in magnitude between 

the polygon centers and troughs, even though vegetation is both denser and taller in the troughs. 
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In consultation with LIDAR professionals at UNAVCO, Overwatch
2
, and the 

University of Montana, two other hypotheses were developed as possible explanations 

of the anomalies.  One was that the streaking could be due to very minute changes in 

the scanner speed (John Gale, pers. comm., 14 December 2012), however, there was no 

way to test this without repeating the entire scan.  The second hypothesis was that the 

laser might be intercepting individual blades of grass and creating a trail of multiple 

returns behind them out (Marianne Okal, pers. comm., 19 February 2013 and John 

Gale, pers. comm., 21 December 2012).  If this were the case, it would be possible to 

eliminate much of the streaking if the data could be broken into multiple returns and 

some of the intermediate noise filtered (John Gale, pers. comm., 21 December 2012).  

However, in that case, one would expect the first return only data used here to have less 

streaking (Carl Seilstad, pers. comm., 4 February 2013).   

Since discrete returns could not be exported from this dataset at the time of 

analysis, this hypothesis 

was investigated further 

by identifying areas of 

bare ground (in this 

case, unvegetated frost 

boils; Figure 26) in two 

plots and comparing a 

1 m long elevation 

profile of those areas to 

                                                 
2
 Overwatch Systems, Ltd. Austin, TX 

Figure 26.  Raised, unvegetated frost boil, typical in appearance to those 

scattered throughout the study area (Photo: Anna Klene). 
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1 m profiles of surrounding vegetated areas.  If the streaking were the due to vegetation 

occlusions, then they should be less prominent on unvegetated ground.  However, 

analysis on two different plots revealed that the elevation spikes were present in 

roughly the same magnitude on bare ground compared to vegetated areas (Figure 27). 

 

  

Figure 27.  Elevation profile graphs comparing vegetated areas to unvegetated frost boils overlain 

on the aerial imagery of plots 34 and 37.  Streaks in the data manifested as ridges on the DEMs 

were not affected by the presence or absence of vegetation, presenting in the same patterns (~2-

5 cm in height) on both vegetated and unvegetated ground. 
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 DEM Analysis 5.3

Since the cause of the streaking in the point cloud could not be ascertained and 

removed, the four variations of the original point cloud (thinned out to 1, 2, 5, and 

10 cm resolutions) were used to create a selection of DEMs using the three LIDAR 

software tools described in Section 4.2.1.  Experimentation with every available option 

within each software tool produced over 100 variations of DEM for test site C34.  Each 

DEM was clipped and compared to the 5 DGPS measurements within that plot, and the 

five best-performing algorithms were applied to the other sites and analyzed utilizing 

the complete set of 18 DGPS points.  Since manipulation of the various options within 

each tool was not found to significantly alter the resulting DEM, all of the tools were 

run with their default settings (interpolation based on elevation, no automatic filling of 

holes in data, filtered by all returns, output raster properties set from input LAS file) to 

produce the five final sets of DEMs.  The best performing interpolation compared to the 

DGPS data was subsequently tested for accuracy using the LIDAR control points 

withheld from the original point cloud (Section 4.2.2) 

  

5.3.1 Assessment with DGPS Data 

Analysis revealed two DGPS points which were consistently outliers when 

compared to the DEMs produced from the thinned out point clouds: C344, which 

returned DEM values that were 20-30 cm above the measured DGPS heights; and 

C345, which returned DEM values that were consistently 20-25 cm below the DGPS 

measurements. These rather large discrepancies were present in all of the DEMs, 

regardless of resolution of the DEM and/or interpolation algorithm.  The underlying 

cause of these outliers could not be determined, as the original LIDAR point cloud 
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(Table 5) showed no significant divergences when compared to the DGPS heights at 

these points and examination of the 10-year DGPS dataset showed that the measured 

DGPS heights were fairly consistent with those for previous years.  Removal of these 

two points from error calculations significantly improved results, particularly with 

respect to absolute error.  Error analyses for all five sets of DEMs, with and without 

outliers, are presented in Table 8 and 9.   

 

Table 8.  Differences between DGPS height measurements and LIDAR-derived DEM elevations, (DGPS-

DEM) expressed as Mean Bias Error (MBE) and Mean Absolute Error (MAE).  The DEM-generation 
software and tool is indicated: LAStools® blast2dem, LIDAR Analyst® LAS file to Raster with Filtering, 

and LIDAR Analyst® Extract Bare Earth   All values are cm above ellipsoid. 

DEM MBE SD MAE SD 

10 cm resolution (LAS to Raster) -2.8 8.5 5.7 6.9 

10 cm resolution (LAStools) -3.0 8.4 5.9 6.7 

10 cm resolution (Bare Earth) -3.1 8.3 5.8 6.7 

5 cm resolution (LAStools) -3.5 8.4 6.2 6.6 

5 cm resolution (Bare Earth) -3.6 8.3 6.3 6.5 

 

Table 9.  Differences as in Table 8, but for the remaining 16 DGPS points after the 2 outliers were 

removed. 

DEM MBE SD MAE SD 

10 cm resolution (LAS to Raster) -3.0 2.7 3.3 2.2 

10 cm resolution (LAStools) -3.2 2.7 3.6 2.2 

10 cm resolution (Bare Earth) -3.2 2.8 3.6 2.3 

5 cm resolution (LAStools) -3.8 2.7 4.1 2.3 

5 cm resolution (Bare Earth) -3.8 2.7 4.2 2.2 

 

 The 10 cm DEM produced by the LAS to Raster tool within LIDAR Analyst® 

was selected for use in all further analysis of this study because of its small error values 

and low standard deviations.  However, none of the software tools utilized had mean 
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errors that were more than 1 cm different than the best performing one and none had 

errors over 5 cm from the mean, excluding outliers (unpublished data). 

The four DEMs for the CRREL plots are displayed (Figure 28) using color ramps 

stretched over the heights of each plot.  An attempt was made to display all the DEMs 

using consistent minimum and maximum values, but the difference between the mean 

elevations of plots C34 and C44 made it difficult to display the microtopographical 

variation (Figure 29).  However, that emphasizes the magnitude of the underlying 

elevational gradient in context of scale of microtopography of the plots. 
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Figure 28.  Final digital elevation models (DEMs) for each of the four study plots using color ramps 

stretched over the range of elevations within each plot. 
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That the coarsest DEM generated from the most thinned LIDAR point cloud 

yielded the best statistical performance compared to the measured DGPS points reveals a 

great deal about the limitations and drawbacks of ultra-high-resolution terrestrial LIDAR 

data.  Table 10 shows a comparison of the original point cloud for each plot and the 

thinned point cloud used to create the most accurate DEM.  Only ~0.3% of the data 

points available for each plot was used to interpolate the final DEM. 

  

Figure 292.  DEMs for each study plot, symbolized first based only on the range of values present in the 

individual plot and second based upon the entire range of values between all four plots.  Most of the 

microtopographical relief in plot C34 (the lowest) and C44 (the highest) is lost in the second symbolization 

due to overall elevation differences.  Aerial photos of each plot are shown for reference. 
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Table 10.  Summary of the original AOI point clouds and the 10 cm-resolution thinned point clouds used to 

derive the best performing DEMs. 

 C34 C37 C40 C44 

 Original 10 cm Original 10 cm Original 10 cm Original 10 cm 

No. of points 7,303,671 21,128 7,872,785 20,866 7,370,668 20,382 6,981,650 21,209 

Min (m) 1.109 1.106 1.242 1.242 1.383 1.383 1.786 1.786 

Max (m) 1.928 1.543 2.378 1.656 2.528 1.786 2.616 2.224 

Range (m) 0.822 0.437 1.136 0.414 1.145 0.403 0.83 0.438 

 

To investigate interpolation errors, the heights of the DEM at the DGPS locations 

were compared to the heights determined through direct analysis of the LIDAR point 

cloud at those same 

locations (Section 5.1).  

Scatterplots of the 

original, complete LIDAR 

point cloud vs. DGPS 

measurements (presented 

earlier in Table 5) and the 

DGPS measurements vs. 

DEM elevations (Figure 

30) revealed that the raw 

LIDAR point cloud was 

more accurate in 

predicting the DGPS 

height and showed that 

some of the original 
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Figure 30.  Comparison of the accuracy of the both the LIDAR point 

cloud data and the derived DEM using in situ DGPS data as ground truth.  

All elevations are given as height above ellipsoid (HAE) in meters. 
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accuracy of the LIDAR data was indeed lost in DEM interpolation, as expected; however, 

the difference in performance between the two datasets was quite small 

 Comparisons of the DGPS measurements to the final DEMs produced an RMSE 

of 8.9 cm and an MAE of 5.7 cm (Table 11).  The size of these errors was due in large 

part to the two outliers discussed in earlier in this section.  Removal of the outlying points 

reduced MAE by more than a third (to 3.3 cm) and RMSE to less than half (4.0 cm). 

 

Table 11.  Summary statistics for the comparison of DEM elevations to DGPS measurements.  All units are 

cm above ellipsoid. 

Number of Points 18 16 
(outliers removed) 

 DGPS DEM DGPS DEM 

Minimum Value 117.3 121.1 121.0 122.0 

Maximum Value 198.1 198.9 198.1 198.9 

Range 80.8 77.8 77.1 76.9 

Mean 152.1 154.8 154.7 157.7 

Standard Deviation 23.0 22.6 22.6 22.0 

RMSE 8.9 4.0 

MBE -2.8 -3.0 

MAE 5.7 3.3 

 

 

5.3.2 Assessment with LIDAR Control Points 

Comparisons of the control points withheld from the LIDAR cloud (50 cm lowest 

point as described in Section 4.2.2) to the derived DEMs revealed RMSE values of 

≤ 0.3 cm for all DEMs (Table 12).  Interpolated elevations were consistently higher on 

the DEM than in the control dataset, as indicated by the negative MBE values for all 

plots.  Mean average error (residuals) ranged from 0.1-0.2 cm, with an overall MAE of 
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0.13 cm for all four DEMs.  Scatterplots of these two datasets (Figure 31) illustrate the 

tight correlation between them at all four CRREL plots. 

 

Table 12.  Summary statistics comparing the lowest LIDAR point within each 50 cm cell to the DEM 

elevations (LIDAR-DEM).  All units are cm above ellipsoid. 

Plot C34 C37 C40 C44 

 LIDAR DEM LIDAR DEM LIDAR DEM LIDAR DEM 

Minimum Value 110.6 111.7 124.2 124.6 138.3 138.4 178.6 178.9 

Maximum Value 149.9 149.9 161.2 161.3 172.1 172.0 211.4 211.8 

Range 39.3 38.2 37.0 36.7 33.8 33.6 32.8 32.9 

Average 129.6 129.7 142.3 142.4 157.0 157.2 192.4 192.5 

Standard 

Deviation 
9.5 9.5 9.5 9.5 6.4 6.4 5.4 5.4 

RMSE 0.2 0.2 0.3 0.2 

MBE -0.1 -0.1 -0.2 -0.1 

MAE 0.1 0.1 0.2 0.1 

Number of Points 898 891 869 899 

 

.
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Figure 31.  Scatterplots comparing the interpolated heights of the DEMs to the actual heights of the withheld LIDAR control points for each plot, showing 

strong correlation between the two datasets.  All values represent heights above ellipsoid in meters. 
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Mapping of the residuals  (Figure 32) revealed no spatial trends in error between 

the LIDAR control points and the DEM, despite spatial differences in the original data 

quality around the individual scan sites (Figure 21 and Figure 22) and the 

microtopography.  Figure 33 is a binary map illustrating only those points where the 

absolute value of the residual was >1 cm. 
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Figure 32.  Residual maps for each of the four plots.  Red points represent locations where the heights of 

the original LIDAR data were below those of the interpolated DEM; green points represent locations where 

the LIDAR heights were above those of the DEM.  Average residual values for all plots were less than 

0.1 cm. 
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Figure 33.  Simplified residual maps for each plot, showing only those points where residual values were 

greater than 1 cm (in red) 
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 Microtopography Classification 5.4

Calculations of surface variable and topographic indices yielded mixed results.  

Maps of each surface calculation described in Section 4.3 at the optimal resolution listed 

in Table 3 for plot C34 are presented in Figure 34 and Figure 35.   
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Figure 34.  Surface derivative maps for plot C34.  Red areas indicate higher values where there is greater 

variation in terrain surface.  The aerial photo and DEM for plot C34 are provided for reference.  Input 

specifications, including resolution and cell neighborhood size, used to create each map can be found in 

Table 3. 
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Figure 35.  Topographic index maps for plot C34.  Red areas indicate higher values where there is greater 

variation in terrain surface.  Input specifications, including optimal resolution and cell neighborhood size, 

used to create each map can be found in Table 3. 
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Most of the topographic indices (TPI, E/R, CTI), and all second derivatives of the 

surface quantified the variability of the terrain ways that were visually confusing, even at 

coarse resolution, and ultimately not used for general classification.  First derivatives of 

surface provided a better general picture of variability, but had to be reduced to a much 

coarser resolution to achieve this.  Of the topographic indices, the TRI and MRN both 

quantified the local surface variability observed in the DEM at a slightly higher 

resolution than the first derivatives of surface because they could be successfully 

calculated on higher resolution input DEMs without the results becoming too visually 

confusing for rudimentary classification, as was the case with the slope calculated at 

higher resolutions. 

 The derivation of the final terrain raster used to classify the polygon sides is 

shown for each plot in Figure 36.  Plot C44 showed the least microtopographical 

variation, which was expected given its location atop the beach ridge, which is slightly 

elevated and more uniform than the polygonal lowlands.   

Figure 37 illustrates the derivation of the integer rasters for elevation (from the 

DEM) and terrain (from the final raster in Figure 36) that were used in the final 

microtopography classification.  Figure 38 illustrates the final overlays of that process 

and presents the classified maps for each plot which were described in Section 4.3. 
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Figure 36. Maps of the final terrain calculations used in the microtopographical classification of the 

DEMs.  The calculated layers for each plot are all symbolized with the same color ramp stretched to the 

same values in order to facilitate accurate visual comparison between plots. 
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Figure 37.  Construction of the binary maps used in the final microtopography classification of the DEMs 

for each plot.  Break values were determined using both the DEM and aerial imagery as ground truth. 
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Figure 38.  Final classification steps to produce the microtopography classification maps for each plot.  

Final maps were divided into three classes: troughs, sides, and centers. 
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 Vegetation Classification 5.5

 Calculations of the vegetation indices described in Table 4 of Section 4.4 for plot 

C34 are presented in Figure 39.  The VVI was by far the best in terms of accurately 

quantifying variations in vegetation visible in the aerial photographs.  The second-most 

reasonable index was the ExG, with the CIVE a close third.  However, since the VVI 

produced such a reasonable result, no other indices were used to classify the CRREL 

plots. 

 VVI maps for all four plots are shown in Figure 40, along with the three 

experimental vegetation classifications for each plot created by slicing the VVI.  Box-

and-whisker plots of each classification in the context of the modern (1997-2012) ALT 

record are presented in Figure 41, and confirmed that no one classification was better 

than the others at explaining variations in ALT, so a classification was chosen based upon 

qualitative analysis (Section 4.4).  The 4-class vegetation classification (Figure 40) was 

the one used in the final classification of the plots. 

 Maps of the final vegetation and microtopography classifications for each plot are 

presented in Figure 42.  From the aerial photographs alone, it appeared that vegetation 

almost directly coincided with topography.  While that assumption was true in certain 

places, the side-by-side comparison made clear that the microtopography did not always 

dictate vegetation cover at the study site.  Each classification provided slightly different 

information about the microenvironments present in the plots – the vegetation 

classification provided more information about what was happening on the ground 

surface as seen in the aerial photographs, but the microtopography classifications 

extracted details about the landscape that were not visible in the photographs but clearly 

present in the DEM.  Together, these classifications provided a more complete picture of 
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the microenvironments in the plots and a more comprehensive baseline for further 

analysis. 

  

Figure 39.  Vegetation index maps for plot C34.  Aerial imagery of the site is provided for reference.  The 

most informative index (the VVI) is shown in the upper-right. 
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Figure 40.  Maps of the three experimental vegetation classifications derived from the VVI for each study 

site.  Legends indicate how many of the 144 ALT monitoring plots were represented by each class.  Frost 

boils were classified on all maps, but none of the ALT monitoring plots fell within that category.  Black 

boxes on each map represent the boundaries of each plot.  The final classification used in analysis was the 

“4 Classes”, which contained one class for frost boils and three for vegetation types. 
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Figure 41.  Box-and-whisker plots of active-layer thickness based upon each of the three experimental 

vegetation classifications.  The final classification defined wet, mesic, and dry categories. 
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The operation used to extract the classification for the ALT and DGPS points is 

illustrated in Figure 43 and a summary of the results is presented in Table 13.  The pixels 

shown in Figure 43 illustrate the occurrence of more than one classification type within 

each sample site.  Classifications of these sites were determined based on the majority 

class as described in Section 4.3.  The bulk of ALT and DGPS points were classified as 

mesic graminoid tundra and polygon centers.  None of the sampling points were 

classified as bare ground (frost boils), so the subsequent vegetation examined the three 

remaining classes for ALT and only two for the DGPS sites, since none of those points 

fell into the wet graminoid tundra class. 

Figure 42.  Maps of the final microtopographic and vegetation classifications as well as the aerial imagery 

for each study plot. 
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Figure 43.  Illustration of the clipping operation used to classify the 144 ALT and 18 DGPS sites within the four study plots.  Polygons used to clip ALT sites 

(shown in Figure 9) were ~30 cm (12 in) diameter circles to represent the sampling radius, and polygons used to clip the DGPS sites were ~5 cm diameter circles 

to account for the size of the target and rover antennae.  Clipped areas that contained more than one class were classified based on whatever class occupied the 

majority of the area. 
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Table 13.  Number of observations and percentages of the ALT and DGPS measurement points located 

within each microtopography and vegetation category. 

  ALT %  DGPS % 

Microtopography  

Trough 20 14%  4 20% 

Side 21 15%  2 10% 

Centers 103 71%  14 70% 

Vegetation  

Wet 6 4%  0 0% 

Mesic 22 15%  3 15% 

Dry 116 81%  17 85% 

 

 

 Statistical Analysis 5.6

5.6.1 Active Layer Thickness 

Summary statistics by plot of active layer thickness are presented in Table 14 to 

provide the context of the larger-scale spatial variability of thaw between the plots for 

2010, as well as for the period corresponding to the 10-year DGPS record (2003-2012).  

For 2010, mean ALT values differed by ~3.4 cm among all plots, with the deepest mean 

ALT (43.8 cm) recorded at plot C37.  Plot C44 had the greatest range of ALT values 

(30.0 cm), while plot C40 contained the most variability in measurements (standard 

deviation of 5.5 cm).  Plot-level statistics from 2010 were similar to statistics from the 

10-year record, with C37 and C40 consistently having  greater ALT values than plots 

C34 and C44, with C40 having the most variability (standard deviation of 7.9 cm for 

2003-2012).  While there were differences between the plots, the range of values and 

magnitude of standard deviations suggest that these spatial variations were not 

statistically significant. 
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Table 14.  Summary statistics by plot of ALT for 2010 and 2003-2012. 

 C34 C37 C40 C44 

 2010 2003-12 2010 2003-12 2010 2003-12 2010 2003-12 

No. of Points 36 360 36 360 36 360 36 360 

Min 32.0 29.6 36.0 31.0 32.0 28.2 30.0 26.0 

Max 53.0 42.4 55.0 50.5 54.0 59.8 60.0 48.8 

Range 21.0 12.8 19.0 19.5 22.0 31.6 30.0 22.8 

Mean 40.4 35.3 43.8 38.8 41.0 39.0 41.1 36.9 

SD 4.4 2.4 4.8 4.1 5.5 7.9 7.0 4.9 

 

 Analysis of 2010 active-layer thickness based upon microtopography classes 

revealed only small differences in ALT between the polygon centers, sides, and troughs.  

Mean ALT varied slightly from 40.9 cm in the troughs to 42.2 cm on the slopes, but these 

differences were small compared to the standard deviations of 4-6 cm for each class.  

Descriptive statistics for 2010 ALT classified by microtopography are summarized in 

Table 15. 

 

Table 15.  Descriptive statistics for 2010 active layer thickness, based upon microtopography classes. 

 Troughs Sides Centers 

No. of Points 20 21 103 

Min 34.0 32.0 30.0 

Max 48.0 54.0 60.0 

Range 14.0 22.0 30.0 

Mean 40.9 42.2 41.6 

SD 4.0 5.1 6.0 

 

Analysis of variations in 2010 ALT between the three vegetation classes revealed 

even less variation than was observed between the microtopography classes.  While ALT 

appeared to be slightly greater in the dry vegetation class, mean ALT only varied by 
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1.2 cm between vegetation types, with standard deviations of almost 6 cm.  Points 

classified as wet graminoid tundra showed a substantially smaller range of ALT values, 

but this was based on only six sample points.  Descriptive statistics for 2010 ALT 

classified by vegetation are summarized in Table 16. 

 

Table 16.  Descriptive statistics for 2010 active-layer thickness, based upon vegetation class. 

 Dry Mesic Wet 

No. of Points 116 22 6 

Min 30.0 34.0 35.0 

Max 60.0 54.0 48.0 

Mean 41.7 41.0 40.5 

Range 30.0 20.0 13.0 

SD 6.0 4.3 3.8 

 

Analysis of the modern (2003-2012) and historic (1962-1966) ALT measurements 

classified by microtopography revealed no substantial differences between the classes 

over time.  Active layer thickness increased in all three classes by roughly the same 

amount (~2 cm) from the 1960’s to the 2000’s, and by ~6 cm in each class from the 

1960’s to 2010.  No one class showed greater change in ALT over time than the others.  

A summary of the statistics for the time series comparison is presented in Table 17. 
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Table 17.  Comparison of descriptive statistics for 2010, 2003-2012 and 1962-1966 ALT based upon 

microtopography classifications. 

 

 

 

 

 

 

 A box-and-whisker plot of the 144 individual measurements from all four CRREL 

plots on an annual basis (Figure 44), illustrating the gradual deepening of the active layer 

over time.  One small trend suggested by the box plot that is not perceptible in the table 

of averages is a slightly greater increase of ALT in the troughs over time (~0.06 cm/year) 

when compared to the polygon centers and sides (~0.05 cm/year).  However, the high 

variability of the data within each class and among years made it difficult to draw 

definitive conclusions.  A summary of the rate of increase in ALT for each class is 

presented in Table 18 

.

 2010 2003-2012 1962-1966 

Points 144 1,440 720 

 Trough Side Center Trough Side Center Trough Side Center 

Min 34.0 32.0 30.0 16.0 20.0 17.0 16.0 21.0 21.0 

Max 48.0 54.0 60.0 56.0 57.0 67.0 52.0 52.0 58.0 

Range 14.0 22.0 30.0 40.0 37.0 50.0 36.0 31.0 37.0 

Mean 40.9 42.2 41.6 36.4 35.7 38.1 34.2 34.0 36.1 

SD 4.0 5.1 6.0 7.3 7.0 7.4 7.5 5.9 6.9 



91 

 

 

Figure 44.  Box-and-whisker plot for ALT based upon microtopography class.  Lines represent the general trend from 1962-2012, with the two breaks in the x-

axis and trend lines signifying the lack of available data for the years 1967-1991 and 1994-1996. 
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Table 18.  Rate of increase in ALT for each microtopography class. 

 Troughs Sides Centers 

Rate of increase in 

ALT (cm/year) 
0.06 0.05 0.05 

 

Analysis of the modern (2003-2012) and historic (1962-1966) ALT measurements 

classified by vegetation class revealed few differences.  Active-layer thickness increased 

in all three classes (~2-3 cm) from the 1960’s to the 2000’s, and by ~6-7 cm in each class 

from the 1960’s to 2010, but no class showed greater change in ALT over time than the 

others.  A summary of the statistics for the time series comparison is presented in Table 

19. 

 

Table 19.  Comparison of descriptive statistics for 2010, 2003-2012 and 1962-1966 ALT based upon 

vegetation classifications. 

 

 

 

 

 

 

 

A box-and-whisker plot of the 144 individual measurements combined from the 

four plots on an annual basis is provided in Figure 45.  While the overall trend of 

increasing ALT was observable in all vegetation classes, one potential class-specific 

trend suggested by the scatterplot is a slightly smaller increase in ALT in the dry 

vegetation class (~0.04 cm/year) when compared to the mesic and wet classes (~0.07 and 

 2010 2003-2012 1962-1966 

Points 144 1,440 720 

 Wet Mesic Dry Wet Mesic Dry Wet Mesic Dry 

Min 35.0 34.0 30.0 16.0 19.0 17.0 19.0 16.0 21.0 

Max 48.0 54.0 60.0 50.0 64.0 67.0 43.0 56.0 58.0 

Range 13.0 20.0 30.0 34.0 45.0 50.0 24.0 40.0 37.0 

Mean 40.5 41.1 41.7 35.6 37.2 37.6 33.3 34.3 35.9 

SD 3.82 4.30 5.96 6.93 8.86 7.07 6.75 7.98 6.64 



93 

 

~0.06 cm/year respectively).  However, the magnitude of this difference is so small 

relative to the interannual and interclass variability of the data that definitive relationships 

are tenuous.  A summary of the rate of increase in ALT for each class is presented in 

Table 20. 
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Figure 45.  Box-and-whisker plot for ALT based upon vegetation class.  Lines represent the general trend from 1962-2012 with the two breaks in the x-axis and 

trend lines signifying the lack of available data for the years 1967-1991 and 1994-1996. 
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Table 20.  Rate of increase in ALT for each vegetation class. 

 Wet Mesic Dry 

Rate of increase in 

ALT (cm/year) 
0.04 0.07 0.06 

 

5.6.2 DGPS 

The 10-year DGPS record is summarized by plot in Figure 46, which illustrates 

the interannual variability in elevation within and between the plots.  All plots showed 

some degree of subsidence over the ten-year period, most perceptibly in plot C44 

(~ -3.1 cm/year) and the least in plot C40 (~ -0.5 cm/year).  A summary of the linear 

regressions for each plot is presented in Table 21. 

 

Figure 46.  Scatterplot of DGPS measured heights from 2003-2012 grouped by plot.  Lines indicate the 

general 10-year trend of subsidence at each plot. 
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Table 21.  Summary of linear regressions for DGPS points by plot. 

 C34 C37 C40 C44 

Rate of subsidence 

(cm/year) 
-3.1 -2.7 -0.5 -1.5 

R
2
 0.49 0.42 0.08 0.72 

 

 No substantial differences were found between the DGPS points when analyzed 

in the context of microtopography (Figure 47).  As expected, mean elevations of polygon 

centers were greater than those of the troughs, while the polygon sides were lower than 

both of the other two classes, but polygon sides were represented by only 2 points, both 

of which are in plot C34.  The general trend in subsidence was slightly greater in the 

troughs (-2.2 cm/year) than the centers (-1.5 cm/year), but given the variability within 

each class the difference was not tested for statistical significance.  Plot C44 was, on 

average, 49 cm higher in elevation than the other three plots, and the presence of a trough 

sampling point in that plot raised the mean elevation for that class in all years by 12.6 cm, 

potentially skewing the overall trend in subsidence based on class means.  However, 

exclusion of this point only changed the mean rate of subsidence in the troughs by 

approximately 0.2 cm (to  -2.4 cm/year).   
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In the context of the entire 10-year record, subsidence of the two sampling points 

on the polygon sides was much less (-0.4 cm/year) than for the centers and troughs.  

Closer examination of these points in Figure 47 showed the elevations for those two 

points in 2003 anomalously low compared to all other years, and when the 2003 data was 

omitted from analysis, the subsidence trend for the polygon sides aligned with that of the 

centers and troughs at a mean rate of -2.1 cm/year.  Exclusion of the 2003 data also 

significantly improved the R
2
 value, from 0.02 to 0.60.  Table 22 contains a summary of 

all linear regression results for the microtopography classes. 

 

Figure 47.  Scatterplot of DGPS measured heights from 2003-2012 grouped by microtopography class.  

Lines indicate the general 10-year trend of subsidence for each class. 



98 

 

Table 22.  Summary of linear regressions for DGPS points by microtopography class. 

 Troughs Sides Centers 
Troughs 

C441 excluded 
Sides  

2003 excluded 

Rate of subsidence 

(cm/year) 
-2.2 -0.4 -1.5 -2.4 -2.1 

R
2
 0.56 0.02 0.62 0.56 0.60 

 

 The vegetation classification of the DGPS points resulted in the representation of 

only two classes in the final analysis (dry graminoid tundra and mesic graminoid tundra), 

with only three points falling in the mesic class: two in plot C34 and one in C40.  Mean 

rates of subsidence between the two vegetation classes differed by 0.7 cm, with mean 

subsidence rates of points in the drier vegetation of -1.4 cm/year, and those in the mesic 

averaging -2.1 cm/year, with no obviously outliers (R
2
 of 0.712 and 0.542, respectively).  

These rates of subsidence roughly correspond to those observed on the polygon centers 

and troughs (Table 22), suggesting that locally higher, drier areas (usually polygon 

centers) are subsiding at a slightly lesser rate than the lower, wetter areas (usually in the 

troughs).  Figure 48 illustrates the trends in subsidence based on vegetation classification.  

The results of the linear regressions for each class are presented in Table 23. 
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Table 23.  Summary of linear regressions for DGPS points by vegetation class. 

 Mesic Dry 

Rate of subsidence 

(cm/year) 
-2.1 -1.4 

R
2
 0.54 0.71 

  

Figure 48.  Scatterplot of DGPS measured heights from 2003-2012 grouped by vegetation class.  Lines 

indicate the general 10-year trend of subsidence for each class.  
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6 CONCLUSIONS AND RECOMMENDATIONS 

 

Detailed analysis of the terrestrial LIDAR data collected on the CRREL transect 

near Barrow in 2010 produced four high-resolution DEMs, along with analysis of the 

errors inherent in the data, which can be used to advise and inform future high-resolution 

data collection and interpretation at these sites and in similar settings.  Interpretation of 

ALT and DGPS records in the context of microtopography and vegetation classifications 

derived from such high resolution data revealed substantial variability in both datasets 

and little differentiation within classes at this fine resolution. 

 

 Terrestrial LIDAR Data 6.1

When terrestrial LIDAR is used to produce multiple scans of a very small area, 

the result is datasets that are so dense that, in the absence of large spatial voids due to 

occlusions, small relative differences in data density do not greatly influence the quality 

of the data or its derivatives.  Analysis of the original LIDAR point cloud demonstrated 

that the spatial distribution of errors in the derived DEMs was unaffected by the density 

of the original data within the study plots, probably because the point densities were 

larger than a threshold above which additional data points no longer contribute to the 

vertical accuracy of the point cloud as a whole.  Considering that only ~0.3% of the 

original point cloud was used to generate the DEMs, this finding is not all that surprising.  

On two of the four plots (C37 and C40), even those areas with minimum point density 

(16 and 24 points/100 cm
2
, respectively) still contained ~20× more data than was utilized 

for accurate DEM interpolation.  However, this additional data may contain information 
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about the vegetation layer that could be useful for studies focused more on details in 

vegetation cover rather than details in ground surface.   

While the additional points were not analyzed further in this study, future research 

focused on environments with greater vertical dimensionality in the context of either 

landscape or vegetation, such as erosion monitoring (Rosser et al. 2005) or forest 

inventory (Hopkinson et al. 2004), may benefit more from the high density (over 100 

points/10 cm
2
) of terrestrial LIDAR collections.  Studies in environments with limited 

vertical dimensionality that are looking only to derive a high resolution surface model 

may be better served by aerial LIDAR collections, although logistical constraints often 

dictate the type, quality, and quantity of data the can be collected. 

Intensity images for the plots were not useful in this study because the values had not 

been calibrated.  For future LIDAR collections, it would be worth investigating to see if 

the calibration of intensity values aided in interpretation of the point cloud.  While 

intensity images tend to be most successful at discriminating ground cover in built 

environments where surfaces are highly variable, carefully calibrated intensity values can 

detect changes in the vegetation distribution within some landscapes (Song et al. 2002).  

This kind of information collected at high resolutions and in combination with the fine-

scale elevation data derived from the same LIDAR point cloud could generate a powerful 

tool for micro-scale analysis that would be impossible to develop with the current labor-

intensive ground-based methods. 

The cause of the streaking that was present in the LIDAR point cloud and in all of 

the DEMs at resolutions <10 cm remains unknown.  The good performance of the 

interpolated DEM when compared to the withheld LIDAR control points (RMSE 
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<0.3 cm against 50 cm resolution lowest-point-withheld control data) suggests that the 

streaking is not an artifact of the interpolation but is intrinsic within the point cloud itself.  

Removal of these anomalies would be critical for accurate representation of ground 

surface at resolutions finer than 10 cm.  The data used in this study was delivered as 

single-return data, even though the full waveform was recorded at the time of collection. 

It is possible that the information contained in multiple and last returns could be used to 

systematically filter out these irregularities.  When interpolated onto a DEM, the streaks 

formed ridges that ranged from ~2-5 cm in height, which is approximately the magnitude 

of the differences between the DGPS measurements and the raw LIDAR point cloud.  If 

last returns were used to filter the single returns, the accuracy of the LIDAR compared to 

the ground truth DGPS data might increase substantially.  This would also affect the 

resolution at which a DEM could be interpolated.  Creation of a 10 cm resolution DEM 

from data that was delivered at an original resolution on the scale of millimeters 

represents an incomplete and inefficient use of the available technology.  For all future 

LIDAR collections, if the full waveform is recorded at the time of collection, it should be 

included in the exported data products and analyzed in its entirety. 

Preliminary investigations into the potential role of atmospheric conditions and 

vegetation cover (Section 5.2) found no confirmed explanation for the streaking pattern.  

Variations in scanner speed could have introduced small but repetitive errors into the 

point cloud (John Gale, pers. comm., 14 December 2012), but this information was not 

documented during acquisition and the theory cannot be tested without repetitive 

scanning.  A literature review unearthed no other hypotheses or documented cases of 

these patterns in terrestrial LIDAR data, however, it is important to note that terrestrial 
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LIDAR is are still fairly new technology to many researchers.  Exploratory research and 

analysis is ongoing and it seems unlikely that the phenomena observed in this data are 

unique to this particular LIDAR collection.  It is possible that these issues are being 

addressed and results just have yet to be published; however, at the time of writing no 

practical solutions could be found.   

Apart from the streaking artifacts, one other anomaly uncovered in analysis of the 

LIDAR point cloud and the DEM compared to the ground truth DGPS data was the two 

outlier DGPS points (344 and 345).  The differences at these points between the 

interpolated DEM elevation and the DGPS elevation were over 20 cm, while the mean 

differences at all other points were ~3 cm.  Discrepancies at these two points occurred in 

all of the DEMs tested in this study, confirming that they were not an artifact of any one 

interpolation model.  What is most puzzling is that the difference between the raw 

LIDAR point cloud and the DGPS measurements at those points was only 2.7 cm.  The 

data used to interpolate the DEMs had been thinned to a resolution of one point (the 

lowest) every 10 cm, so even if there were anomalously high data points present in the 

original point cloud at these locations, they should have been filtered out in the presence 

of lower points.  Therefore, it is unclear what characteristics of the point cloud data 

structure caused all of the DEM generation methods to interpolate these points with such 

consistently high errors, especially since the overall performance of the DEM compared 

to the LIDAR control points was quite good. 

These findings suggest that there may be instances where it is more appropriate to 

conduct analysis with elevations extracted directly from individual points in a LIDAR 

point cloud rather than from an interpolated digital elevation model.  DEMs are essential 
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tools in calculations where a continuous surface is necessary, such as in hydrological 

modeling, floodplain mapping, or other surface-based predictions.  They also provide 

high-quality, informative visual references for the display of other layers of information.  

However, in situations where the objective is to monitor changes at discrete points on the 

ground, rather than model the surface as a whole, direct analysis of the LIDAR point 

cloud may provide a more accurate means of assessing slight variations in topography at 

ultra-fine resolutions. 

One attribute of the LIDAR point cloud that was not investigated in this study 

were the RGB values, which were delivered in the original data files for each LIDAR 

point and made it possible to render the raw point cloud as if it were a photograph of the 

scanned area (Figure 15).  The vegetation classification component of this study 

demonstrated the effectiveness of visible-band indices, specifically the VVI, in describing 

the vegetation distribution at the four study plots.  The VVI classifications were limited 

in descriptive capability by the ~10 cm resolution of the original photograph upon which 

they were based.  Since only RGB values are needed for those index calculations, it 

should be feasible to derive a much higher-resolution classification directly from the 

LIDAR point cloud.  If repeat scans were carried out, this analysis could make it possible 

to track subtle changes in the vegetation community over time at sub-centimeter 

resolutions. 

 

 ALT and DGPS Analysis 6.2

The classification of active layer and DGPS monitoring sites based upon 

microtopography and vegetation proved largely uninformative.  Previous studies of the 

active layer near Barrow (Brown & Johnson 1965; Brown et al. 2000; Hinkel & Nelson 
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2003), have suggested that microtopography plays an important role in the determination 

of ALT and other physical properties on the landscape; however, the results of this study 

did not find clear correlations with either ALT or subsidence within these four study 

plots.  While subtle differences could be perceived at very fine (mm) scales of analyses, 

such as a slightly greater increase in ALT in the troughs or a slightly lesser increase in 

ALT in the dry graminoid tundra, the small magnitude of these trends coupled with the 

high interannual and interclass variability, made it impossible to draw any significant 

conclusions about spatial or temporal trends.  The standard deviations of ALT when 

classified by microtopography or vegetation class were just as large as when points were 

grouped by plot, possibly due to the diameter of the area within which each ALT point 

observations were taken compared to the 10 × 10 cm pixels of the DEM and aerial 

photographs used to create the microtopographic and vegetation classifications. 

The active layer near Barrow has previously been described as exhibiting 

Markovian-like behavior on a roughly decadal scale (Brown et al. 2000, Hinkel & Nelson 

2003, Nelson et al. 1998), meaning that the active layer will remain fairly constant for a 

number of years and then “reset” to a significantly greater or lesser depth in response to 

climatic thawing of the transient layer, which will then gradually thicken over subsequent 

years until another “reset”.  This kind of behavior explains the lack of any linear trends in 

the data when examined on a time scale greater than a few years, particularly when the 

data from the early 1990’s (which exhibited particularly shallow ALT) was included in 

the analysis.  All microtopography and vegetation classes appeared affected equally in 

these general trends of ALT and subsidence. 
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While Markovian behavior may explain the temporal differences in ALT, it does 

not account for the lack of patterns within the spatial variability in any given year.  

Environmental variables such as high soil moisture and snow accumulation tend to 

dampen thermal fluctuation and have been shown to coincide with areas of maximum 

thaw (Hinkel & Hurd 2006; Nelson et al. 1998), and should theoretically coincide, at 

least in part, with the microtopography and vegetation classes outlined in this study.  This 

may be due to the size of the area within which ALT observations were taken compared 

to the size of the area depicted by the microtopographic and vegetation classifications 

used here and underlines the importance of metadata on exactly how precisely 

observations were taken as part of a monitoring program when later studies may take 

place at a scale unavailable at the onset of a long-term initiative.   

However, since no significant differences were found between these classes, it 

may be that the fine scale enabled by the terrestrial LIDAR is simply too fine to be the 

appropriate scale of observation for monitoring the active layer and ground subsidence.  

Nelson et al. (1998) concluded that “the close covariance between plots with dissimilar 

ground cover, microtopography and soil characteristics indicates that continuation of 

intensive sample at all of the CRREL plots may not increase the yield of information on 

geographic variation substantially” and suggests that the scale of maximum variability 

may be coarser than what is covered by the transect.  Hinkel & Nelson (2003) found that 

most variation occurs at sample separation distances of 100-300 m at CALM monitoring 

sites on the coastal plain.  Focusing on data at cm-resolution when the most important 

changes are happening on the scale of tens or hundreds of meters could put researchers at 

risk of losing sight of the bigger picture of changes in the permafrost landscape. 
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This discussion then begs the question – how fine of a scale is too fine for 

monitoring and mapping purposes?  This study suggests that terrestrial LIDAR scans 

provide exponentially more information than can be feasibly processed or sufficiently 

interpreted for mapping purposes.  Rather than enhancing analysis, this surfeit of data 

only complicates it.  Technology is constantly evolving and may very well be able to 

cope with this kind of high density data in the not-too-distant future.  But the ability to 

detect changes on the scale of millimeters may not yield substantial improvements in 

understanding of the most important processes for the general landscape.  It becomes 

more and more important for researchers to carefully consider and investigate the most 

appropriate scale at which to collect and analyze data, particularly as finer and finer scale 

data becomes available with increasing technology. 
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7 FURTHER RESEARCH OPPORTUNITIES 

 

 Historical Elevation Data 7.1

In comprehensive monitoring of permafrost landscapes, decadal trends are often 

much more meaningful than interannual variations (Hinkel & Nelson 2003).  Since data 

exists for the CRREL plots dating back to the 1960’s, they provide a valuable opportunity 

to monitor change on a temporal scale not possible at other sites.  While comparison of 

absolute elevations from the 1960’s was not possible at this time, the elevation data 

collected on the CRREL plots from that time period still hold valuable information that 

can be used to detect relative changes in the microtopography at the plot level.  These 

changes can be quantified and mapped and may provide insight into which features on 

the landscape (troughs, centers, frost boils, etc.) are expanding or shrinking or heaving or 

subsiding over time.  Such investigations may also reveal differences in rate of change 

between the plots.  Exploratory research into this kind of analysis produced a series of 

basic maps for plot C34 (Figure 49) that could be enhanced by more quantitative analysis 

and done for other plots.  If a reliable method could be established for converting the 

1960’s elevation to the present-day geoid model, the dataset would become even more 

valuable in the context of modern observations.  One suggestion if comparing the historic 

elevations to modern LIDAR data would be to use the information contained in the raw 

point cloud rather than the interpolated DEM.  Since the elevation measurements involve 

a relative small number of discrete points (total of 144 points within the four plots), the 

point cloud could be clipped to those areas and elevation derived directly from the lowest 

point for a more true representation of ground surface.  This would improve accuracy and 

consistency by avoiding the errors introduced by interpolation.  
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 Other LIDAR-based Initiatives 7.2

 In the summer of 2011, terrestrial LIDAR data was collected for a 20 × 50 m grid 

in the southwestern portion of the BEO, ~2 km south of the CRREL study sites.  Once 

fully analyzed, this dataset could provide an informative comparison for data analyzed in 

this study – both the original LIDAR point clouds as well as the derived DEMs.  An 

quick visual analysis of the raw point cloud from 2011 rendered by RGB values (Figure 

50) reveals some of the same accuracy and error issues (data voids, flagging, etc.) 

observed in the LIDAR data collected in 2010.   

  

Figure 49.  Experimental elevation diagrams for plot C34, comparing elevations recorded in the 1960s 

(upper-left) to those in 2010 (upper-right).  Elevations for 2010 were calculated from the DEM heights using 

the GEOID99 conversion model.  Due to an undocumented datum in the early data, absolute values for 

change could not be determined, but the bottom diagram reflects the relative amount of change between two 

dates (areas in red represent the most change). 
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Figure 50.  Terrestrial LIDAR point cloud from summer 2011 collection, ~2 km south of the CRREL sites.  

Points are rendered by RGB value but not projected or classified. 
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In addition to providing a comparison dataset for the 2010 terrestrial LIDAR, the 

2011 data also offers a unique opportunity for comparison with aerial LIDAR data.  The 

2011 terrestrial data was collected in an area as previously covered by a 2005 airborne 

LIDAR collection.  This airborne data has already been processed into a DEM, with a 

resulting RMSE of ~4.3 cm (Figure 51, Tweedie 2005), which is roughly equivalent to 

the results achieved by terrestrial data in this study.   

If airborne LIDAR could be just as accurate as terrestrial LIDAR in detecting 

microtopographical variations in the landscape at 10 × 10 cm scale, but without the 

streaking in the point cloud, then perhaps it is a better methodology for future monitoring 

of sites in this area.  A comparison of the 2011 terrestrial data to the 2005 airborne data 

for the same study area could provide important insights into what is the most effective 

method and resolution for detecting changes in permafrost features on the landscape. 
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Figure 51.  High-resolution DEM and hillshade generated from airborne LIDAR scans of an area ~2 km S-

SW of the CRREL sites.  Data was acquired by AeroMetric on October 4, 2005.  The horizontal and 

vertical accuracies of the DEM are 0.30 m and 0.15 m, respectively.  The small scale inset map shows the 

location of the aerial DEM coverage relative to the site of the 2010 terrestrial LIDAR acquisition (CRREL 

plots).  The larger scale inset map shows the locations of the 2011 terrestrial LIDAR acquisition control 

points, as well as the landscape detail captured in the aerial LIDAR DEM.  Data provided by NCAR/EOL 

under sponsorship of the National Science Foundation: http://data.eol.ucar.edu. 
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 RADAR-based Initiatives 7.3

 Another interesting investigation would be to compare the LIDAR-derived DEMs 

to those derived from RADAR data.  RADAR-based DEMs also hold promise for 

detecting heave and subsidence in the cryosphere and are often compared to LIDAR 

DEMs in terms of their ability to achieve high-resolution (cm-scale) vertical accuracy 

(Short et al. 2011; Rykhus & Lu 2008).  Effective evaluation of the accuracy of the 

RADAR-derived DEMs requires reference data “of accuracy at least an order of 

magnitude better than the system being tested” (Barber et al. 2008).  Until the 

development of LIDAR DEMs, there were few products that were of high enough 

resolution to test the accuracy claims of the RADAR DEMs.  A comparison of RADAR 

DEMs to high resolution LIDAR DEMs like those developed in this study could help to 

inform the feasibility of using satellite-based remote-sensing data in permafrost 

monitoring. 
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