Intercensal county population estimates for Montana by a multiple regression technique

Alfred John Dubbe
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Dubbe, Alfred John, "Intercensal county population estimates for Montana by a multiple regression technique" (1961). Graduate Student Theses, Dissertations, \& Professional Papers. 5259.
https://scholarworks.umt.edu/etd/5259

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

INTERCENSAL COUNTY POPULATION ESTIMATES FOR MONTANA BY A MULTIPLE REGRESSION TECHNIQUE

by

ALFRED J. DUBBE
B.S., Montana State University, 1960

Presented in partial fulfillment of the requirements for the degree of Master of Science

MONTANA STATE UNIVERSITY
$196!$

UMI Number: EP40723

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also; if material had to be removed, a note will indicate the deletion.

UMI EP40723
Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

TABLE OF CONTENTS

Page
LIST OF TABLES iii
Chapter
I. INTRODUCTION 1
II. AVAILABLE DATA 5
Births and DeathsAutomobile RegistrationsSchool Enrollment
III. METHODOLOGY 12
IV. LIMITATIONS AND ACCURACY 17
v. CONCLUSION 21Future Use
Appendixes
A. COHORT SURVIVAL METHOD OF ESTIMATING COUNTY PUBLIC SCHOOL ENROLLMENTS 24
B. RATIO OF ESTIMATED POPULATIONS TO CENSUS TOTALS FOR MONTANA COUNTIES 1950 AND 1960. COLUMNS 3 AND 4 InDICATE THE PERCENTAGE OF ERROR 26
C. BIMD-06 "MULTIPLE REGRESSION AND CORRELATION ANALYSIS NO. |" IBM-7090 PRINT-OUT USING SAMPLE SIZE OF 112 WITH 6 VARIABLES EACH, THE DEPENDENT VARIABLE BEING CENSUS POPULATION 1950 AND 1960. 28
D. ESTIMATED COUNTY POPULATIONS FOR YEAR 1950 THROUGH 1960, AND CENSUS TABULATIONS FOR 1950 AND 1960 30
BIBLIOGRAPHY 46

LIST OF TABLES

Table Page1. Brief Outline of Methods Being Tested for Statesor Counties in 1960. 3
2. Relationship of Resident-Nonresident Births andDeaths in Selected Montana Counties, 1959. 7
3. Distribution of County Percentage of Errors, 1950 and 1960 . 13
4. Ten Montana Counties Showing the Largest Percentageof Error in 1950 and 1960. 14
5. Correlation Coefficients for 1950 and 1960 Variables 19
6. Flathead County Public School Enrollment Projection by Cohort Survival Method. 25

CHAPTER I

INTRODUCTION

Every ten years the U.S. Bureau of the Census makes a careful count of every man, woman and child in the United States. The data available in these census reports are of great value, but problems exist in determining what happens to the population within the tenyear span of time between censuses. For example, World War 11 required tremendous shifts of population among geographic areas, yet the decennial census showed only the net difference between data for 1940 and for 1950. The Bureau of the Census publishes annual postcensal state estimates which fill this information gap on the state level. It does not, however, make estimates for political divisions smaller than a state. While state estimates are valuable, local data, at least to the county level, are also vital in many cases. Different areas within a state may have quite different patterns of population change.

Estimated county populations are of interest to a variety of persons. Local governments desire these data for planning as well as for evaluating past events. Businessmen, especially local merchants, are interested in knowing what past markets have been and what potential markets may be within their area. Prospective firms desire these data for labor force information. State and federal governments
often use population estimates for fund allocation. These are but a few of the many uses of intercensal county population estimates.

Population estimates are of three types, intercensal, postcensal, or future estimates, depending upon the time period involved. Intercensal estimates are based on data from the years between two consecutive censuses. Postcensal estimates are based on data from the time a census is taken up to the present. Future estimates are projections into the future.

This thesis attempts to provide a method of producing meaningful data for political divisions of the state on an intercensal basis; that is, between the years 1950 and 1960. Montana counties are the logical political divisions to use for this purpose. A look at the map of Montana will show that no major Montana city overlaps county boundaries. Even more important, county boundaries have not been changed since the 1940's, while city limits are continually modified. Moreover, most official data such as vital statistics (births and deaths) and school enrollments are kept on county basis.

As in any problem, the first task here is to define the objective. In this case, it is to develop a reasonable, simple, and easily understood method of estimating annual Montana county populations for July 1 , 1950 through July 1,1960 which will produce data accurate enough to be useful. No detailed breakdown of county characteristics in terms of the age, sex, marital status, education, or occupation of inhabitants is attempted, since such information is virtually impossible to obtain except in a complete census.

Montana counties vary widely in their total populations. Thirty-five of them have less than 10,000 inhabitants; only two have
more than 50,000 residents. Some county populations have been increasing over the last decade, others have remained stable, and still others have shown declines. In some counties, single industries, such as mining in Silver Bow, have decisive effects upon total population. Others have a more diversified economy. These are only some of the difficulties in estimating Montana county populations; others will be discussed in the following chapters.

In seeking a method of estimating intercensal county populations several of the more commonly accepted estimating techniques were considered. The following table represents a brief outline of methods currently being tested.

TABLE I
brief OUTLINE OF METHODS BEING TESTED FOR STATES OR COUNTIES IN 1960

	Method	Estimating Procedure	Basic Indicator
1.	Census Bureau Method II	Component method: For migration, school-cohort procedure comparing expected population, based on previous census plus births, with actual population.	For migration: school data
2.	Census Bureau Method 1	Component method: For migration, change in local school-age population compared with change in national school-age population.	For migration: school data
3.	Vital rates method	Censal ratio (birth rate and death rate)	Births and deaths
4.	Composite method: Bogue-Duncan variation Age Group	Censal ratio by age	--
	0-4	Ratio of children under 5 to women 18-44	Births
	5-17	School enrollment ratio	School data
	18-44	Fertility ratio (births to women) and sex ratio	Births
	45-64	Death rate	Deaths
	65 and over	Death rate	Deaths

TABLE 1 - Continued

Method	Estimating Procedure	Basic Indicator
5. Composite method: Census Bureau variation Age Group		
0-4	Component Method 11	School data
5-17	Component Method 11	School data
18-44	Component Method 11	School data
45-64	Censal ratio (death rate)	Deaths
65 and over	Censal ratio (death rate)	Deaths
6. Age or grade prom gression method*	Component method: one-year school-age or grade "survival" rate for migration	For migration: school data
7. Censal ratio method using school datat	Censal ratio	School data
*States only. t Counties only.		
Source: Jacob S. Siegel, "Status of Research on Methods of Estimating State and Local Population," adaption of a paper read at the annual meeting of the American Statistical Association, 1960, following p. 1, as cited in Predicting Population Changes in Small Areas," Bureau of Business and Economic Research, University of Maryland, Vol. 14, No. 4, March 1961.		
Most of the methods in Table 1 are satisfactory for estimating		
the population of areas with over 100,000 persons. The most populated		
county in Montana, Yellowstone, with less than 80,000 persons, falls		
short of this $100,000 \mathrm{mi}$ mating Montana county popu	imum. Therefore another t pulations is needed.	of esti-

CHAPTER ||

AVAILABLE DATA

The first question that occurs in estimating popalation is what data are available. Unless reliable data can be found, it is extremely difficult to make meaningful estimates of county populations. The most dependable source of information, as we have seen, is the decennial Census of Population taken by the federal government, which gives a detailed breakdown of population according to such characteristics as age, sex, and employment. In our case, the information it provides on distribution of county population is important, for it includes both the statistics with which this study begins (1950) and those with which it ends (1960).

Data necessary to make intercensal estimates must be acquired from sources which meet the following criteria:

1. Accurate records must be avallable, preferably published in annual reports.
2. Data must be avallable by county.
3. Uniform methods of collecting and recording data must be employed. Different methods may be used for different types of data as long as the method used for the particular statistic remains consistent over the period.
4. Data must represent a relatively large
percentage of the total population to which
it relates.
State tabulations of births, deaths, motor vehicle registrations, school enrollments and registered voters were considered as sources of data because they seemed best to fit the criteria listed above.

Voter registration was eliminated because accurate records for the early 1950's were not available and because the number of persons registering to vote depends more on political interest than on size of population. Although motor vehicle registrations were used, truck registrations were omitted, since they are more representative of business or employment activity than of population size.

The following variables were found to satisfy the criteria listed above and were used to estimate county intercensal populations:

1. Births
2. Deaths
3. Passenger automobile registrations
4. Elementary school enrollments
5. High school enrollments

Births and Deaths

The most reliable collector of information on births and deaths in Montana is the State Board of Health. According to a nationwide study made by the U. S. Bureau of the Census in 1950, Montana registration of births was 99.5 per cent complete; that is, five or less out of every 1000 births go unrecorded. The Board's
registration of deaths is even more complete, since a death certificate must be filed before a permit for burial or removal can be issued.

Both live birth and death data are recorded annually in two separate tabulations-by place of residence and by place of occurrence. In this thesis the place of residence was used. Not all Montana counties have adequate hospital facilities, nor are these facilities distributed in a manner that permits easy access to them by all residents of a particular county. The following table shows some of the wide divergencies between the resident-nonresident relationship for births and deaths occurring in selected counties during the calendar year 1959.

TABLE 2
RELATIONSHIP OF RESIDENT-NONRESIDENT BIRTHS AND DEATHS IN SELECTED MONTANA COUNTIES, 1959

County	Deaths by Place of		Births by Place of	
	Occurrence	Residence	Occurrence	Residence
Blaine	44	85	144	240
Chouteau	44	70	71	186
Hill	178	151	768	610
Lewis and Clark	388	321	730	712
Jefferson	32	44	1	71
Judith Basin	7	22	None	66
Source: 1959 Annual Health.	Statistical	plement, M	tana State	ard of

I 1959 Annual Statistical Supplement, Montana State Board of Health, Helema, Montana, 1960, p. 1.

For births, the place of residence is the usual residence of the child's mother: for deaths, it is the usual residence of the deceased, regardless of the length of his stay in a hospital or other institution. An exception to this rule appears for persons institutionalized by legal action for long periods of time, such as mental patients and criminals which are residents of the respective institution.

Automobile Registrations

Passenger automobiles in Montana must be licensed every year if they are operated on public roads within the state. New cars must be registered within three days after purchase, and autos owned by persons gainfully employed in Montana must be re-licensed upon entry regardless of when their out-of-state license expires. Thus, with few exceptions, all automobiles owned or operated by persons residing in Montana are registered. The remaining question is whether data for distribution by county exists. Automobiles are an item of personal property and are taxed by the county government. If a person falsifies his place of residence to reduce the tax burden, he is liable for the tax assessed by the county in which he actually resides in addition to the tax already paid. The key factor here is the taxpayer's residence at the time of licensing, January 1 to February 15. It he moves to another county after this date or after he acquires the license, there is no tax or license adjustment.

Annual passenger automobile registrations are collected by the Registrar of Motor Vehicles at Deer Lodge, Montana. Summary tabulations supplied by the Registrar's office show all automobiles
registered in every county for the entire year--January 1 through December 31. Re-registrations occurring during the first month and one-half are sensitive to present residents, while most registrations after this period represent new car purchases and in-migrations. Outmigrations are not considered during the current year but are evident in the next year's tabulations; thus the maximum time lag is only one year. Automobiles registered in Montana that are bought or sold during the year are given a transfer of title and not re-registered by the new owner. This fact prevents the inflation of data because of sales transactions.

School Enrollment

Montana law requires that all children must attend school until they have completed the eighth grade or have passed their sixteenth birthday. Exceptions to this are few; therefore school enrollment data represent a fairly large segment of total population. The Montana Department of Public Instruction compiles a tabulation of original public school enrollments for the school year--September through June. Original enrollments as used here are not restricted to the head count at the start of the year, but rather include the total number of students enrolled in a given county during the entire school year. If a student transfers to another county during the year, he is eliminated from the first county's original enrollment and added to that of the second. For this reason, original enrollment tabulations by county are not published by the State Department of Public Instruction until after the school year is completed. This practice created a problem regarding 1960 enrollments that will be discussed later.

Over 12 per cent ${ }^{2}$ of the total number of elementary and high school students in Montana attended private schools in 1959; therefore it was essential that these students be included in school enrollments. Fortunately the Department of Public Instruction, in its annual Montana Educational Directory, publishes a list of all private schools and their enrollment as of approximately September 10. No additions are made for new students entering during the year as in public school enrollments; thus this information is not, strictly speaking, comparable with public school enrollment. The Montana Educational Directory lists the total public school enroliment as of the same date (September 10), but these data cannot be used because they do not include oneroom schools, which serve a total of between 6000 and 8000 students. Neither is there an adjustment for students who attend public schools in counties other than that of residence.

As was pointed out earlier, original public school enrollments. for the year 1960-1961 will not be tabulated until about September 1961; hence, a method of estimating these earollments had to be devised. The cohort-survival method was used because of its general acceptance by school administrators and its reasonably high degree of accuracy. This method is explained in Appendix A. Once the estimated county public school enrollment was computed, it was added to the private school enrollment of September 1960 as shown in the Montana Educational Directory to arrive at the total county school enrollment for the year.
${ }^{2} 1959$ Data: $\frac{19409 \text { Private School Enrollment }}{161060 \text { Total School Enrollment }}=12 \%$

In summary, school enrollments are a combination of two tabulations that are not strictly comparable. Because of the additions during the year, public school data might be considered inflated in relation to opening enrollment in private schools. The 1950 total school enrollment of 117,415 , or approximately 20 per cent of the total state population, represented a significant portion of Montana residents, and therefore it is important to include school enrollments as factor even in light of the inequalities involved. Given the data available and the necessity of establishing a reasonably simple procedure, however, this method of arriving at school enrollments should give data which are relatively accurate and consistent over the time period 1950 through 1960.

METHODOLOGY

Assuming that the five variables explained earlier have a direct relationship to population, a method was sought that would correlate these data with county populations. The idea of using multiple regression analysis to estimate washington's county intercensal populations was advanced by Crosetti and Schmitt in 1956.3 Of the several methods tested, the one utilizing multiple regression analysis was by far the most accurate. This fact is not the sole justification for utilizing this method for Montana, however. Washington and Montana have meny county characteristics in common. Washington counties vary from 2,872 to 935,014 people, range similar to Montana's of 894 to 79,016, but on a larger scale. Both states have a large number of agricultural counties mith small populations. These similarities and the fact that the data avallable for Montana counties lend themselves readily to regression analysis warranted the use of this method in this thesis. Because of the large amount of data involved--the five independent plus the dependent (1950 and 1960 census populations) variables for each of Montana's 56 countiesman electronic computer could best process these data. The Division of

[^0]Biostatistics of the University of California at Los Angeles School of Medicine, through the Western Data Processing Center, furnished the computer program, BIMD-06. An IBM-7090 calculated the following regression formula on the basis of the relationship among the 672 variables (5 independent and 1 dependent variable for each of 56 counties for the years 1950 and 1960):
$P=146.53064+17.55935 A+21.656838+.76551 C-1.96737 D+6.97568 E$ where A is live births, B is deaths, C is automobile registrations, D is total elementary school enrollments and.E is total high school enrol lments. Printmout of relevant data is shown in Appendix B. Using the multiple regression formula, the variables for all counties for the years 1950 through 1960 were then processed on another machine, the IBM-650 at the Montana Highway Commission Computer Laboratory in Helena, to arrive at the final output as shown in Appendix D. The computed county populations for 1950 and 1960 were then compared with the respective census tabulations and the following differences recorded:

TABLE 3
DISTRIBUTION OF COUNTY PERCENTAGE OF ERRORS 1950 AND 1960

	0 to	.0500 to			
Year	.0499	.0999	.1000 to .1499	.1500 to	
.1999	Over .2000				
1950	25	14	10	4	3$(.202)$ $(.231)$ 1960
20	19	13	4	None	
Total Percent of total	45	33	23	8	3

The mean error for 1950 is .075; for 1960, .076. The standard deviations of the differences are .060 for 1950 and . 045 for 1960. The standard daviation for all the differences of the two years is .053.

This margin of error analysis is open to question since the sample does not represent the entire eleven-year period but only two years, 1950 and 1960. The 1950 and 1960 county variables were used to compute the formula that was applied to the same variables to arrive at computed population tabulations. These in turn were compared with actual census data to arrive at the above margins of error.

Another question was whether or not the counties showing the highest margin of error in 1950 also showed high margins in 1960. The following table indicates that only two counties, Deer Lodge and McCone, are on both lists.

TABLE 4
TEN MONTANA COUNTIES SHOWING THE LARGEST PERCENTAGE OF ERROR IN 1950 AND 1960

County	1950	1960	County	1960	1950
Jefferson	26.1%	11.1%	Treasure	19.0%	2.8%
Powell	23.1	5.9	Rosebud	17.9	4.3
*Deer Lodge	20.2	12.1	Mineral	17.0	4.2
*McCone	18.6	13.5	Liberty	15.1	1.5
Madison	17.8	9.2	Petroleum	13.9	9.4
Powder River	15.3	8.0	Phillips	13.9	1.4
Pondera	15.3	3.8	*hicone	13.6	18.6
Sanders	13.9	.6	*eer Lodge	12.1	20.2
Golden Valley	13.2	10.1	Richland	12.0	1.3
Roosevelt	11.9	1.4	Fallon	11.5	3.5

Source: Appendix C

Appendix D indicates that most counties with large percentages of error have relatively small populations. The absolute error-percentage of error times total county population--is thereby normally small in relation to the total state population. For example, the 26.1 per cent in Jefferson County amounts to 830 people, whereas a 3.4 per cent error in Yellowstone County amounts to 1864 persons.

Earlier, it was stated that the method used here is a modification of that employed by Crosetti and Schmitt, who used live births, public school enroliments and registered vehicles to compute a multiple regression formula relating to Washington's 39 counties. This formula was used by them to arrive at a percentage of the total state population which resided in a given county. They then divided the estimated annual total state population, as furnished by the U. S. Bureau of the Census, among the counties on the basis of this percentage for each intercensal year.

In this thesis the five variables--births, deaths, passenger automobile registrations, total elementary school enrollments and total high school enrollments-were used to calculate a multiple regression formula. This formula was applied directly to the variables rather than to the counties' respective percentages of state totals to arrive at county populations which, when added together, estimate the state total. It will be possible to compare these estimates with those prepared by the U.S. Bureau of the Census when its revised intercensal tabulations for Montana are released.

In summary, by the use of BIMD-06, "Multiple Regression and Correlation Analysis No. 1," and of the county variables for 1950 and 1960, the multiple regression formula is:

$$
P=146.53064+17.55936 A+21.65683 B+.7665 I C-1.967370+6.97568 E
$$

This formula was then applled to the county variables for all years 1950 through 1960 to arrive at annual county total populations as tabulated in Appendix D. Computed populations for 1950 and 1960 were compared with actual census totals and the margin of error tabulated in Appendix B.

CHAPTER IV

LIMITATIONS AND ACCURACY

As a practical research tool, regression analysis has been used for about forty years ${ }^{4}$, but its first application in demography did not occur until 19545, only two years before Crosetti and Schmitt applied the technique to intercensal county population estimates for the state of Washington. Since then little has been published relating this technique to demographic problems, though in other fields such as agricultural and timber management it has been used with considerable success. ${ }^{6}$

Multiple regression analysis does not necessarily produce a high degree of mathematical precision; it considers the correlation between the given variables and, recognizing that some relationships differ, it attempts to produce statistics that will approximete the mean of the total being sampled. The term "regression" was initially used in connection with the discovery that very tall or very short parents tend to have children who are on the average less tall or short than their parents. This was described as a tendency to "regress toward the

[^1]mean." Although BlMO-06 is one of the most advanced methods currently available for producing a formula, it is still regression analysis and subject to considerable lack of precision. Regression analysis will produce statistics that represent the average, but rarely will it produce exact data for a particular sample space.
in estimating county population, this lack of precision is unavoidable in view of the wide differences in correlation between actual populations and independent variables. If all the facts were known the weights attached to the same variable might differ from county to county. For example, in 1960 Madison County showed 15 per cent of its population in elementary school; Yellowstone County, 19 per cent; and Valley County, 20 per cent. The state average was 18 per cent. Therefore any formula must be general enough to apply to the majority of counties.

In 1960 Montana's county populations ranged from 894 to 79.016 persons. The arithmetic average was 12,406 and the median was $7,194$. Forty-nine per cent of the total population resided in seven counties, while the least populated 35 counties accounted for only 23 per cent. Variables differ from county to county and from year to year within the same county. Using average data, it is difficult to estimate state populations where the totals are large. it is even more ditficult to estimate, with any degree of reliability, populations of counties which vary as much as Montana's, particularly when many of them have very small populations. With this in mind, let us first analyze the assumptions upon which the estimates are made and then review the degree of accuracy that can be expected.

The variables have all been collected by State of Montana agencies, each of which uses basically consistent and accurate methods for the entire period, 1950 through 1960. The relationship betyeen independent variables and population is shown in the following table of correlation coefficients for 1950 and 1960. Coefficients for the interim years cannot be computed, since only estimated populations are available for the period 1951 through 1959.

TARLE 5
CORRELATION COEFFICIENTS FOR 1950 AND 1960 VARIABLES

Variable	Holding A Constant	Holding B Constant	Holding C Constant	Holding D Constant	Holding E Constant	Holding F Constant
A. Births	1.00	0.93	0.97	0.98	0.96	0.99
B. Deaths	0.93	1.00	0.92	0.93	0.94	0.96
C. Auto. Reg.	0.97	0.92	1.00	0.99	0.99	0.98
D. Population	0.98	0.93	0.99	1.00	0.99	0.98
E. Elem. School	0.96	0.94	0.99	0.99	1.00	0.99
F. High School	0.99	0.96	0.98	0.98	0.99	1.00

Source: Western Data Processing Center IBM Print-out

The mathematician acquainted with regression andysis is referred to Appendix C, "BlMD-06 Print-out," for a sophisticated measurement of accuracy. A simpler method is avallable by referring to Table 3 . "Distribution of County Percentage of Errors, 1950 and 1960." Assuming that 1950 and 1960 data are representative of all years ineluded in the eleven-year period, we can be reasondably sure 95 per cent ot the time of
having less than a 15 percentage of error between the actual and the. estimated county population. Using the same assumption and raising the acceptable margin of error, we can claim that in 70 per cent of the estimates the computed population will be within 10 per cent of the actual population. Considering that the estimates of population are prepared by using averages of all 56 counties, this is reasonable degree of accuracy.

It was hoped that Montana county estimates made by multiple regression analysis could be checked by using 1940 and 1960 data to compute 1950 populations, which in turn could have been compared with the 1950 census, but comparable base data were not available. In 1940 vital statistics (births and deaths) were recorded only by place of occurrence and not by place of residence. As shown in Table 2. "Relationship of Resident-Nonresident Births and Deaths in Selected Montana Counties, 1959," the wide variance between resident and nonresident data prohibit any degree of comparability.

CHAPTER V

CONCLUSION

It appears that multiple regression analysis can provide useful county population estimates if one is willing to accept a reasonable percentage of error. The results obtained for certain Montana counties which have experienced major population fluctuations during the past ten years indicate that this method of annual county estimates is reasonably accurate. For example, in the late 1950's, construction of an Air Force Base near Glasgow (Valley County) resulted in the migration of many new workers into a comparatively stable county. After the construction was completed, Air Force personnel and their families moved in to take the place of workers moving out. Thus it would seem logical to expect a sharp increase in county population beginning with the start of construction and continuing through 1960. The following are the census figures for 1950 and 1960 and the estimates for 1957 through 1959 for Valley County:

1950	11,353
1957	12,961
1958	14,434
1959	16,834
1960	17,080

Another example is that of Silver Bow County, for which the estimates show a declining population beginning in 1957, after a steady increase in earlier years. State Employment Service figures show that mining employment in the county reached its peak in 1956 and then started to
decline rapidly. The apparent time lag between the employment peak and the population peak represents a combination of the inability of the variables to respond to out-migrations in the current year and of the reluctance of people to move shortly after losing their jobs.

These two examples, while they are not necessarily representative of the experiences of all counties, demonstrate that the estimating technique is reasonably sensitive to population change independent of the overall 1950-1960 net change. Also, in gemeral, estimates for counties that experienced little or no major fluctuation in economic activity or employment patterns do not show major population changes.

While care was taken to assure accuracy in the collecting of base data and in the mathematical computations that followed, it must be emphasized that these computed populations are only estimates. Whenever basic conditions change, experiential probabillty is affected.

Furthermore, the assumption of stability in mass data, or of relationships between the characteristics of mass data, is open to serious question when making estimates of population for counties whose populations are as small as those of many Montana counties.

The population estimates as computed by multiple regression analysis and enumerated in Appendix D indicate a high degree of sensitivity to known population changes such as shown for Valley and Silver Bow Counties. There are of course, estimates that produce greater error; but in general, most appear well within acceptable limits. It is impossible to make precise judgments of the accuracy of intercensal estimates, but assuming the intercensal data are as accurate as the 1950 and 1960 estimates which appear in Appendix D, the results obtained by multiple regression probably are the best
available at the present time. Currently the State Board of Health is conducting a study of intercensal county population estimates using a combination of the Bureau of the Census Method 11 and the vital Rates Method. According to their statisticians, the preliminary returns do not indicate the degree of accuracy obtained by multiple regression analysis.

Future Use. The use of multiple regression analysis was advocated by Crosetti and Schmitt in computing postcensal county population estimates and for this purpose the method appears to have considerable merit. Once the Montana county data used as variables are available, approximately in the middle of the year after that being estimated, it should be possible to apply the same multiple regression formula to arrive at postcensal county estimates. Annual postcensal estimates could continue until 1970, at which time they could be computed, intercensally, using the 1970 census data. The twenty-year span of data would also facilitate judging the accuracy of the method by using 1950 and 1970 data to compute 1960 estimates, which in turn would be compared with the actual county populations for that year.

APPENDIX A

COHORT SURVIVAL METHOD OF ESTIMATING COUNTY
 PUBLIC SCHOOL ENROLLMENTS

Abstract

The method used is basically that advocated by Professor Sletten ${ }^{7}$ with the exception that I have used the average survival ratio for only three years rather than for ten years, in the bellef this method will provide a more sensitive indicator of short range changes.

By advancing individual class enrollments through the school grades it is possible to estimate future enrollments. For example, if over a three-year period the average percentage of 4th graders that went on to the 5 th grade was 98.7 , then the projection of next year's 5th grade total is merely a process of applying this percentage to the current 4th grade enrollment. It should be noted that ist grade enrollments cannot be predicted this way. I have applied the ratio between 1953 births and 1960 grade 2 earollments to the 1954 births to arrive at ist grade totals for 1960.

The 1960-61 public school enrollment projection for Flathead County is used as an example of the method used:

[^2]

APPENDIX B

RATIO OF ESTIMATED POPULATIONS TO CENSUS TOTALS FOR MONTANA COUNTIES 1950 AND 1960. COLUMNS 3 AND 4 INDICATE THE PERCENTAGE OF ERROR

	$\begin{array}{r} 1950 \\ \text { Ratio } \end{array}$	$\begin{array}{r} 1960 \\ \text { Ratio } \end{array}$	1950 Percentage of Error	1960 Percentage of Error
Beaverhead	1.098	1.007	. 098	. 007
Big Horn	1.049	. 939	. 004	. 061
Blaine	. 997	. 970	. 003	. 030
Broadwater	1.076	. 899	. 076	. 101
Carbon	1.081	. 909	. 081	. 091
Carter	1.111	. 957	.111	. 043
Cascade	1.036	. 954	. 036	. 045
Chouteau	. 927	1.059	. 073	. 059
Custer	1.039	. 988	. 039	. 012
Daniels	. 961	1.048	. 039	. 048
Dawson	1.014	. 991	. 014	. 009
Deer Lodge	1.202	1.121	. 202	.121
Fallon	1.035	. 885	. 035	. 115
Fergus	. 980	1.041	. 020	. 041
Flathead	1.080	. 989	. 080	.011
Gallatin	1.052	1.015	. 052	. 015
Garfield	. 888	. 956	. 112	. 044
Glacier	1.041	. 969	. 041	. 031
Golden Valley	. 868	. 899	. 132	.101
Granite	1.103	1.089	.103	. 089
Hill	1.023	. 923	. 023	. 077
Jefferson	1.261	1.117	. 261	. 111
Judith Basin	. 886	. 941	. 114	. 059
Lake	1.031	. 911	. 031	. 089
Lewis and Clark	. 974	.910	. 026	. 090
Liberty	. 985	. 849	. 015	. 151
Lincoln	1.127	1.096	.111	. 096
Madison	1.178	1.092	.178	. 092
McCone	1.186	1.136	. 186	. 136
Meagher	1.008	. 679	. 008	. 071
Mineral	1.042	. 830	. 042	. 170
Missoula	1.052	. 965	. 052	. 035
Musselshell	1.106	. 898	. 106	. 102
Park	. 980	. 960	. 020	. 040
Petroleum	1.094	. 861	. 094	. 139
Phillips	1.014	. 861	.014	. 139

APPENDIX B--Continued

	$\begin{array}{r} 1950 \\ \text { Ratio } \end{array}$	$\begin{array}{r} 1960 \\ \text { Ratio } \end{array}$	1950 Percontage of Error	1960 Percentage of Error
Pondera	. 847	. 962	. 153	. 038
Powder River	1.153	1.080	. 153	. 080
Powell	1.231	. 941	. 231	. 059
Prairie	. 917	. 892	. 083	. 108
Ravalli	1.104	. 931	. 104	. 069
Richland	. 987	. 880	.013	. 120
Roosevelt	. 881	1.014	. 119	. 014
Rosebud	1.043	. 821	. 043	. 179
Sanders	1.139	1.006	. 139	. 006
Sheridan	. 961	. 893	. 039	. 107
Silver Bow	1.026	. 950	. 026	. 050
Stillwater	1.068	1.101	. 068	. 101
Sweet Grass	1.066	. 901	. 066	. 099
Teton	1.083	1.046	. 083	. 046
Toole	1.006	. 971	. 006	. 029
Treasure	. 972	. 810	. 028	. 190
Valley	1.004	. 914	. 004	. 086
Wheatland	. 942	1.050	. 058	. 050
Wibaux	. 901	1.098	. 099	. 098
Yellowstone	1.034	1.033	. 034	. 033
Sum	57.950	54.258	4.181	4.233
Mean	1.035	. 969	. 075	. 076
Standard Deviation			. 060	. 045

APPENDIX C

> BIMD-06 "MULTIPLE REGRESSION AND CORRELATION ANALYSIS NO. I" IBM-7090 PRINT-OUT USIAG SAMPLE SIZE OF I 12
> WITH 6 VARIABLES EACH, THE DEPENDENT VARIABLE BEING CENSUS POPULATION 1950 AND 1960

APPENDIX C--Continued

Variable Number	Computed TValue	Partial Corr. Coe.	Variance Added	Prop. Variance
1	14.00927	0.80573	83779166.000	0.97267
2	9.97464	0.69574	83108477.000	0.01508
3	4.56796	0.40547	72151100.000	0.00654
5	-4.31959	-0.38681	2342828.625	0.00011
6	5.06887	0.44162	24084493.750	0.00109
Using the intercept (146.53064) as the constant and the regression coefficients listed above, the following formula was derived.				
$P=146.53064+17.55936 A+21.65683 B+.76651 C-1.957370+6.97568 \mathrm{E}$				
where $A=$ Live births				
$B=$ Deaths				
C = Automobile registrations				
$D=$ Elementary school enrol Iments				
$E=H i g h$ school enrollments				

APPENDIX D

ESTIMATED COUNTY POPULATIONS FOR YEARS 1950 THROUGH 1960, AND CENSUS TABULATIONS FOR 1950 AND 1960

County	Year	Census Population	Estimated Population	Ratio
Beaverhead	50	6671	6073	1.098
	51		6798	
	52		6481	
	53		7465	
	54		7045	
	55		7054	
	56		7304	
	57		7399	
	58		7659	
	59		8169	
	60	7194	7143	1.007
Big Horn	50	9824	9365	1.049
	51		9645	
	52		9459	
	53		9007	
	54		8804	
	55		8924	
	56		9397	
	57		10533	
	58			
	59		9060	
	60	10007	10657	. 939
Blaine	50	8516	8541	. 997
	51		8450	
	52		8379	
	53		8126	
	54		8673	
	55		8918	
	56		7839	
	57		7778	
	58		8416	
	59		8139	
	60	8091	8342	. 970

-31-
 APPENDIX D-Continued

County	Census					
Pear					\quad	Estimated
:---:						
Population	\quad Ratio					

APPENDIX D-Continued

County	Year	Census Population	Estimated Population	Ratio
Cascade (continued)	58		71563	
	59		73200	
	60	73418	76923	. 954
Chouteau	50	6974	7520	. 927
	51		7261	
	52		6833	
	53		7610	
	54		7478	
	55		8053	
	56		7741	
	57		7895	
	58		7206	
	59		7497	
	60	7348	6939	1.059
Custer	50	12661	12184	1.039
	51		13503	
	52		13406	
	53		13172	
	54		13228	
	55		13655	
	56		14279	
	57		14919	
	58		14331	
	59		13409	
	60	13227	13386	. 988
Daniels	50	3946	4107	. 961
	51		4360	
	52		4279	
	53		4205	
	54		4181	
	55		4511	
	56		3966	
	57		4582	
	58		4090	
	59		4086	
	60	3755	3584	1.048
Dawson	50	9092	8970	1.014
	51		9305	
	52		9625	
	53		11046	
	54		11351	

APPENDIX D--Continued

\(\left.\begin{array}{lcccc}\hline \hline \& \& \&

County \& Census

Population\end{array}\right) ~\)| Estimated |
| :---: |
| Population |\quad Ratio

APPENDIX D- Continued

$\left.\begin{array}{lcccc}\hline \hline & & & & \\ \text { County } & & & \text { Census } \\ \text { Population }\end{array}\right)$
-35-
APPENDIX D--Continued
\(\left.\begin{array}{lcccc}\hline \hline \& \& \& \&

County \& Census

Population\end{array}\right) ~\)| Estimated |
| :---: |
| Population |\quad Ratio

APPENDIX D--Continued
$\left.\begin{array}{lcccc}\hline \hline & & & & \\ \text { County } & & & \text { Census } \\ \text { Population }\end{array}\right)$

APPENDIX D--Continued
$\left.\begin{array}{lcccc}\hline \hline & & & \\ \text { County } & & \text { Census } \\ \text { Population }\end{array}\right)$

APPENDIX D--Continued

County	Year	Census Population	Estimated Population	Ratio
Meagher (continued)	53		2171	
	54		2044	
	55		2241	
	56		2392	
	57		2528	
	58		2675	
	59		2763	
	60	2616	2817	. 929
Mineral	50	2081	1998	1.042
	51		2186	
	52		2089	
	53		2653	
	54		2553	
	55		3013	
	56		3085	
	57		3219	
	58		3176	
	59		3392	
	60	3037	3560	. 830
Missoula		35493		1.052
	51		32125	
	52		33617	
	53		34604	
	54		36106	
	55		38998	
	56		41386	
	57		44809	
	58		42081	
	59		45123	
	60	44,663	46285	. 965
Musselshell	50	5408	4888	1.106
	51		4885	
	52		4937	
	53		4433	
	54		5066	
	55		5067	
	56		5367	
	- 57		5511	
	58		5022	
	59		5234	
	60	4888	5442	. 898

APPENDIX D--Continued

County	Year	Census Population	Estimated Population	Ratio
Park	50	11999	12248	. 980
	51		12059	
	52		11564	
	53		12564	
	54		13098	
	55		12959	
	56		1244.1	
	57		13077	
	58		14017	
	59		14052	
	60	13168	13711	. 960
Petroleum	50	1026	938	1.094
	51		1039	
	52		925	
	53		955	
	54		1038	
	55		1045	
	56		941	
	57		876	
	58		882	
	59		1039	
	60	894	1038	. 861
Phillips	50	6334	6245	1.014
	51		6377	
	52		6981	
	53		6469	
	54		7639	
	55		6852	
	56		7192	
	57		6850	
	58		6321	
	59		6758	
	60	6027	6999	. 861
Pondera	50	6392	7547	. 847
	51		7531	
	52		7736	
	53		8110	
	54		7386	
	55		7935	
	56		7891	
	57		8715	
	58		8047	

$-40-$
APPENDIX D--Continued
$\left.\begin{array}{lcccc}\hline \hline & & & & \\ \text { County } & & & \text { Census } \\ \text { Population }\end{array}\right)$

APPENDIX D--Continued
$\left.\begin{array}{lcccc}\hline \hline & & & & \\ \text { County } & & & \text { Census } \\ \text { Population }\end{array}\right)$

APPENDIX D--Continued

$\left.\begin{array}{lcccc}\hline \hline & & & & \\ \text { County } & & \text { Census } \\ \text { Population }\end{array}\right)$

APPENDIX D-Continued

County	Year	Census Population	Estimated population	Ratio
Sweet Grass	50	3621	3395	1.066
	51		3393	
	52		3186	
	53		3746	
	54		3694	
	55		3882	
	56		3851	
	57		3692	
	58		3619	
	59		3704	
	60	3290	3650	. 901
Teton	50	7232	6676	1.083
	51		7036	
	52		7203	
	53		7206	
	54		8308	
	55		7175	
	56		7048	
	57		7359	
	58		7260	
	59		7374	
	60	7295	6977	1.046
Toole	50	6867	6823	1.006
	51		7323	
	52		7130	
	53		7496	
	54		7835	
	55		8748	
	56		8225	
	57		8124	
	58		7894	
	59		8029	
	60	7904	8143	. 971
Treasure	50	1402	1443	. 972
	51		1229	
	52		1324	
	53		1356	
	54		1230	
	55		1532	
	56		1578	
	57		1452	
	58		1656	

APPENDIX D--Continued

County	Year	Census Popalation	Estimated Population	Retio
Treasure (continued)	59		1431	
	60	1345	1661	. 810
Valley	50	11353	11309	1.004
	51		12439	
	52		12134	
	53		12837	
	54		12173	
	55		12121	
	56		12461	
	57		12961	
	58		14434	
	59		16834	
	60	17080	18679	. 914
Wheatland	50	3187	3383	. 942
	51		3486	
	52		3689	
	53		3185	
	54		3419	
	55		3346	
	56		3741	
	57		3300	
	58		3404	
	59		3073	
	60	3026	2882	1.050
Wibaux		1907		. 901
	51		1652	
	52		2171	
	53		2017	
	54		1824	
	55		1581	
	56		1579	
	57		1920	
	58		1718	
	59		1761	
	60	1698	1546	1.098
Yellowstone	50	55875	54011	1.034
	51		53543	
	52		55309	
	53		61810	
	54		64295	
	55		66076	

APPENDIX D-continued

County	.Year	Census Population	Estimated Population	Ratio
Yellowstone (continued)	56		72480	
	57		73608	
	58		72802	
	59		76206	
	60	79016	76459	1.033
State of Montana	50	590966	570815	1.035
	51		588112	
	52		598260	
	53		615573	
	54		632807	
	55		652831	
	56		673344	
	57		698175	
	58		676635	
	59		688405	
	60	674720	594282	. 972

BIBLIOGRAPHY

A. Generd Works

Dixon, Wilfred d. and Massey, Frank d. Jr. Introduction to Statistical Analysis. New York: McGrawhill Book Company, Inc., 1957.

Ezekiel, Mordecia and Fox, Karl A. Methods of Correlation and Rearession Analysis. Nem York: John Wiley \& Sons, Inc.. 1959.

Jaffe, A. J. Handbook of Statistical Methods for Demographers. Washington: United States Government Printing Office, 1951.

Wolfenden, Hugh H. Population Statistics and Their Compilation. Chicago: University of Chicago Press, 1954.

B. Articles and Poriodicals

Bogue, Donald J. "A Technique for Making Extensive Population Estimates," Journal of American Statistical Association. Vol. 45 (June 1950). 149-63.

Crosetti, Albert H. and Schmitt, Robert C. MA Method of Estimating the Intercensal Population of Counties," Journal of American Statistical Association, Yol. 51 (December 1956) 587-90.

Dundon. Thomas A. "A Method of Estimating the Population of Missouri Counties," Business and Economic Review. University of Missouri, January-February 1961.

Johnson, Maxine C. "Population Changes Within Montana 1950-1960," Montana Business Review. Montana State University, January 1961.

Schmitt, Robert C. "Short-Cut Methods of Estimating County Population," Journal of American Ststistical Association, Vol. 47 (June 1952) 232-38.

Schmitt, Robert C. and Crosetti, Albert H. "Accuracy of the RatioCorrelation Method for Estimating Postcensal Population," Land Economics, Vol. 30 (June 1954) 279-81.

Siegel, Jacob S., Shryock, Henry S., Jr. and Greenberg, Benjamin. "Accuracy of Postcensal Estimates of Population for States and Cities," American Sociological Review, Vol. 19 (August 1954) 440-46.

Sletten, Vernon 0. "Enrollment Estimates in Montana Public Schools," The Research Record, Vol. VII, Number 2. Montana State University, 1961.

C. Reports and Bulletins

Browder, W. Gordon and Hoflich, Harold J. Population and Income in Montana. Bureau of Business and Economic Research, Regional Study'No. 5, Montana State University, Missoula, 1953.

Schmid, Calvin F., et. al. Population and Enrollment Trends and Forecasts, state of Washinaton. Washington State Census Board, Seattle, 1953.

Tarver, James D. A Component Method of Estimating and Projecting State and Subdivisional Populations. Misc. Publication MP-54, Oklahoma State University, Stillwater, 1950.

- County Population Trends in Oklahoma, 1950-59. Processed Series P-351, Oklahoma State University, Stillwater, 1960.
\qquad - Projections of the Population of Oklahoma to 1970. Oklahoma State University, Bulletin B-545, Stillwater, 1960.

University of Maryland. Predicting Population Changes in Small Areas. Bureau of Business and Economic Research, Vol. 14, No. 4, University of Maryland, College Park, 1961.

D. Government

Montana State Board of Health, 1950 through 1959 Annual Statistical Supplement.

Montana State Department of Public Instruction, Montana Educational Directory, 1950-51 through 1960-61.
U. S. Bureau of the Census. Population Estimates. Series P-25, No. 133, 1956.
U. S. Bureau of the Census. Population Estimates. Series P-25, No. 160, 1957.
U. S. Bureau of the Census. Population Estimates. Series P-25, No. 178, 1959.
U. S. Bureau of the Census. Population Estimates. Series P-25, No. 208, 1959.
U. S. Bureau of the Census. Population Estimates. Series P-25, No. 210, 1959.
U. S. Bureau of the Census. 1950 Population-General Characteristics Montana P-B26, 1950.
U. S. Bureau of the Census Population 1960-Montana Number of Inhabitants PC(1)28A, 1960.
U. S. Bureau of the Census. Population 1960-Washington Number of lahabitants PC(1)49a, 1960.

E. Unpublished Material

BIMD-06 Multiple Regression and Correlation Analysis No. I. Division of Biostatistics, Department of Preventive Medicine and Public Health, School of Medicine, University of California at Los Angeles, 1960. (Multigraphed.)

[^0]: 3Albert Crosetti and Robert Schmitt. "A Method of Estimating the Intercensal Population of Counties, " Journal of the American Statistical Association, Vol. 51, No. 276 (December 1956), p. 587.

[^1]: ${ }^{4}$ Mordecia Ezekiel and Karl A. Fox, Methods of Correlation and Regression Analysis (New York: John Wiley \& Sons, Ine., 1959), p. 435.
 ${ }^{5}$ Albert Crosetti and Robert Schmitt, "Accuracy of the RatioCorrelation Method of Estimating Postcensal Population, Land Economics, 30 (1954), p. 279.
 ${ }^{6}$ Ezekiel, op. cit. . pp. 436-440.

[^2]: ${ }^{7}$ Vernon 0. Sletten, "Enrollment Estimates in Montana Public Schools," The Research Record, Vol. VII. No. 2 (Missoula: Montana State University, 1961), pp. 2-6.

