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Advisor: Dr. Vicki J. Watson f v f
The central Bitterroot River floodplain is characterized by a complex secondary channel 

network that provides a range of aquatic environments for native and normative fish. To 
better understand fish communities using these aquatic habitats, secondary channel 
habitat variation, fish community diversity, and fish microhabitat use were evaluated by 
snorkeling and backpack electrofishing in six secondary charmels between August 1998 
and September 1999. Secondary channels provide a range of habitats and microhabitats 
that are partially influenced by secondary charmel proximity to the Bitterroot River, 
upwelling groundwater presence, and incharmel habitat complexity created by woody 
debris. Secondary channel morphologies generally remained stable over the year, 
although secondary channel water chemistry varied seasonally and in relation to the 
mainstem Bitterroot River. Fish community diversity was greatest in more-complex 
channel reaches and tended to decrease with distance from the Bitterroot River. Of the 
eight fish species that were commonly encountered, microhabitat use and day-night fish 
behavior patterns were apparent. Young-of-year and juvenile age classes exhibited 
similar microhabitat use and day-night behaviors. During the day, young fish primarily 
selected microhabitats associated with dense cover, while at night these fish moved into 
less protected, low water velocity microhabitats. Adult fish of larger species used 
different microhabitats than did young-of-year and juvenile fish. Adult fish occupied 
deeper microhabitats or were observed in microhabitats associated with large woody 
debris or overhead bank cover. However, these results were species-specific in many 
cases and were influenced by site-to-site differences in microhabitat availability. 
Bitterroot River secondary channels provide a variety of lateral floodplain habitats that 
are occupied by a diverse fish community. Managing human development on the 
Bitterroot River floodplain will be critical for maintaining secondary channel habitats that 
host numerous fish species and age classes.
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Glossary

Adult fish: individuals that have experienced at least one winter and are reproductively 
active. Age class depends on species.

Alluvium: material eroded from upland areas, transported by streams, and deposited on 
the valley floor..

Anabranching River: a system of multiple channels characterized by vegetated or 
otherwise stable alluvial islands that divide flows at discharges up to nearly bankfull (see 
illustration below).

Avulsion: the relatively sudden and major shift in the position of a channel to a new part 
of the floodplain or the sudden reoccupation of an old channel on the floodplain (Nanson 
and Knighton 1996).

Bankfull Channel Depth: the maximum depth at a section measured at bankfull 
discharge.

Bankfull Discharge: the water surface is at floodplain level (top of channel banks) and 
the channel is flowing full. This discharge has a recurrence interval of approximately 1.5 
years.

Bankfull Stage: the elevation of the water surface associated with the bankfull discharge.

Braided River: consists o f flow separated by bars within the channel (Knighton and 
Nanson 1993).

Diel: pertaining to day and night.

Diurnal: pertaining to day-light hours.

Dynamic Equilibrium: a state that allows adjustment to changes of one, several, or all 
physical variables of a system (Heede and Rinne 1990).

Electivity: an organism’s use of a resource relative to the resource’s availability.

Floodplain: areas that are periodically inundated by the lateral overflow of river or lakes, 
and/or by direct precipitation or groundwater; the resulting physicochemical environment 
causes the biota to respond by morphological, anatomical, physiological, phonological, 
and/or ethological adaptations, and produce characteristic community structures (Junk et 
al. 1989).

Floodplain Channel: a subsidiary channel noted by groundwater or hyporheic water 
eruption onto the floodplain. The floodplain channel carries surface water during high 
flow. The channel connects with the mainstem channel (see illustration below).
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Floodplain Tributary: a tributary channel influenced by upland lithology that traverses 
the floodplain and contributes water and sediment to the mainstem channel (see 
illustration below).

Fluvial: landforms or structures of, found in, or produced by a river or rivers.

Frequency of Use: a population’s response to a resource or environmental variable 
(Baltz 1990).

Geomorphology: the study of the characteristics, origin, and development of land forms.

Glide: a wide uniform channel bottom with low to moderate velocities, lacking 
pronounced turbulence.

Habitat: is the kind or range of environments in which a species can live. These 
environments range in scale from microhabitat (substrate) to the watershed (Baltz 1990).

Hyporheic: Pertaining to the saturated zone beneath a river or stream consisting of 
substrate, such as sand, gravel, and rock, with water-filled interstitial pore.

Hydrograph: a plot of stream discharge over a period of time.

Juvenile fish: individuals that have experienced at least one winter but may not be 
reproductively active.

M icrohabitat: fine scale habitat characteristics partially defined by water temperature, 
substrate, cover, and discharge in aquatic systems.

M icrohabitat Use: an organism’s selection of environmental conditions on a 10° m  ̂
scale.

Off-channel Habitats: aquatic habitats in the floodplain of a river that may or may not 
be connected to the mainstem channel.

Ontogenetic: pertaining to the development of an individual organism.

Resource Availability: resources that are assumed to be available to organisms based on 
their spatial occurrence in the environment.

Riffle: a swiftly flowing reach of turbulent water.

Run a swiftly flowing reach with little surface agitation and no major flow obstructions.

Secondary Channel: subordinate channels to the river’s channel that maintain aquatic 
habitats under varying discharges.



Species-age Class: a developmental life stage for a particular species of fish.

T ributary  Channel: channels that arise at higher elevation terraces above the floodplain 
and ultimately discharge into the mainstem river.

Young-of-year (YOY) fish: individual fish that have not experienced a winter since 
emergence.

CHANNEL H.LUSTRATIONS
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BRAID ANABRANCH

ISLAND

MAINSTEM

FLOODPLAIN CHANNEL FLOODPLAIN
CHANNEL.

MAINSTEM
FLOODPLAIN
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Chapter 1

An Introduction to Alluvial Rivers and Project Objectives

Understanding the roles of physical, chemical, and biological processes in 

creating floodplain aquatic habitats is paramount to understanding the linkage between a 

river, its floodplain, and the resident biotic communities. Valley topography, drainage 

geology, and regional climate define the physical processes that influence floodplain and 

river channel characteristics (Leopold et al. 1964). Basin geology, precipitation, 

floodplain vegetation, hyporheic influence, and groundwater intrusion partially govern 

the chemical constituents characterizing an aquatic system. While biological processes 

are generally limited to affecting the system’s biological composition, woody debris and 

dense riparian vegetation also influence channel formation and affect both the physical 

and chemical processes that shape aquatic environments.

The importance of floodplain aquatic habitats to mainstem fish communities is 

likely dependent on the proximity of the floodplain habitat to the mainstem channel. 

Lateral habitats that are close to the mainstem are frequently inundated by the mainstem 

during high flows, maintain high mainstem connectivity over the hydrograph, and exhibit 

physicochemical conditions similar to the mainstem. Conversely, distant floodplain 

water bodies are influenced by other processes that are somewhat independent of the 

mainstem. Soil composition, upwelling from upland aquifers, and minimal surface water 

inputs may differentiate distant water bodies from the mainstem river.

In the semi-arid intermountain west, large alluvial floodplain rivers often display 

a range of channel types that are definable in four dimensions; longitudinal (downvalley), 

lateral (charmel-floodplain), vertical (channel-hyporheic), and temporal (Ward 1989). In



this region, many rivers can be described by their longitudinal progression. Mountain 

headwater reaches are confined to a single thread channel with a narrow floodplain and 

dense overhead riparian canopy. Groundwater infiltration through the thin soil layer to 

the channel contributes most of the inchannel flow. Water temperatures display minimal 

variability due to riparian shading and consistent groundwater inputs. Moving 

downvalley, the overhead canopy opens, the channel is less confined within the widening 

valley, and water temperatures are more influenced by the sun.

Fluvial processes erode and deposit the alluvial substrates that characterize the 

braided river reaches typical of this region (Ward and Stanford 1995). Stable well- 

vegetated bars dissect individual channels and lead to a more developed floodplain. 

Compared to the upstream headwater reaches, the braided river reach accesses an 

expansive floodplain comprised of diverse aquatic and riparian habitats. High habitat 

diversity is typical in this region due to the interactions among upwelling groundwater, 

surface water, and dynamic fluvial processes. In contrast to the main channel, secondary 

channels convey less water and follow more circuitous patterns on the flat floodplain. 

However, during high water periods, secondary channels may change dramatically as the 

primaiy channel inundates and transfbnus these overflow channels through rapid lateral 

erosion and channel avulsion. Over the remainder of the year, these secondary channels 

may become less connected to the mainstem as surface water levels drop. Upwelling 

water from the hyporheic zone and/or deeper aquifers that are supplied by valley runoff 

may continue to maintain these channels through the low water period. Thermal diversity 

is also prevalent in these floodplain reaches. Overhead riparian canopies and upwelling 

water in well-vegetated secondary channels maintain cool water temperatures during the



summer and warmer water temperatures in the winter. Less shaded secondary channel 

reaches, or reaches without substantial upwelling, are more likely to have warmer water 

temperatures similar to the main channel during the summer in temperate streams. These 

environmental factors create a range o f conditions that support diverse biological 

communities.

In the Bitterroot River, floodplain secondary channels are rarely sampled and little 

is known about their importance to mainstem fish populations. This study will improve 

our understanding of these habitats and the fish communities they support. The purpose 

of this project was to investigate floodplain secondary channel habitats and the fish 

communities using these habitats in the central Bitterroot River of southwestern Montana. 

This paper is divided into three subsequent chapters that describe different project 

objectives. Although each chapter will describe a different portion of the project, some 

of my ideas overlap among chapters as separating observations and interpretations was at 

times difficult.

Chapter 2 gives a detailed description of the diversity and complexity of 

secondary channel habitats sampled between August 1998 and September 1999. A 

proposed channel classification system is investigated and evaluated in the context of 

secondary channel habitat diversity and stability. This chapter explains the range of 

channel microhabitat conditions that will be referred to in later chapters regarding fish 

communities.

Chapter 3 presents information on fish community diversity, fish microhabitat 

use, and fish behavior. The purpose of this chapter was to identify patterns of fish 

presence/absence, microhabitat use, and behavior in secondary channel reaches



connected to the Bitterroot River. These data were collected over seven sampling periods 

when I conducted day and night snorkeling. Microhabitat availability data described in 

Chapter 2 were used in this chapter to evaluate fish microhabitat use. Habitat complexity 

described in Chapter 2 is also referred to in this chapter.

Chapter 4 investigates fish communities inhabiting channel reaches at increasing 

distances from the Bitterroot River. Unlike Chapter 3 where microhabitat use and 

behavior were analyzed. Chapter 4 focuses more on fish community composition, 

possible microhabitat-fish community relationships, and fish length-frequency seasonal 

changes. The channel reaches sampled in Chapter 4 are separate from those surveyed in 

Chapter 3, although the reference names. Bell Crossing (BC) and Tucker Crossing (TC), 

are used to describe the secondary channels in both chapters. In Chapter 3, the sampled 

channels are referred to as BCl, BC2, BC3, TCI, TC2, and M l. In Chapter 4, the 

sampled channels are referred to as BCA, BCB, TCA, and TCB. The Bell Crossing 

channels are not related in the two chapters. The Tucker Crossing channels are the same 

in the two chapters, but the sampled reaches are different. Additionally, fish community 

diversity described in Chapter 3 refers to fish species diversity, were as fish diversity in 

Chapter 4 refers to fish species-size class diversity. Further explanations are included in 

each chapter. To reiterate, these two chapters are separate, and the data and observations 

therein should not be confused.
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Chapter 2

Bitterroot River Channel Formation and Floodplain Habitat Diversity 

Introduction

Few free-flowing rivers remain in the intermountain western United States (Heede 

1986). Harnessing rivers for flood control, power production, and irrigation has led to 

widespread alteration of once wild river systems in order to accommodate human needs 

(Stanford et al. 1996). This alteration has resulted in the extirpation of native species, 

simplified riparian habitats, less variable hydrographs, and modified river channel 

morphologies (Brown and Moyle 1981; Heede 1986; Richter et al. 1997; Ward and 

Stanford 1995; Kondolf 1997; Surian 1999; Dykaar and Wigington 2000). The 

remaining temperate broad alluvial floodplain rivers often exhibit high channel- 

floodplain connectivity critical for maintaining aquatic and riparian biodiversity (Junk et 

al. 1989; Triska et al. 1993; Bayley 1995; Poff et al. 1997). In these systems, physical 

and biological processes create a mosaic of complex floodplain habitats comprised of 

secondary channel networks. This floodplain diversity is enhanced by periodic overbank 

flows and less frequent abrupt channel avulsions that create new aquatic habitats (Power 

et al. 1995)

Lateral channel migration and subsequent secondary channel formation is limited 

in confined rivers that are restricted by narrow river valleys (Ward and Stanford 1995; 

Alabyan and Chalov 1998). Without a broad floodplain to disperse high flows, the 

narrow floodplain is maintained in a state of renewal by frequent scouring flows. 

Streamside riparian plant communities resemble upland communities, forming a narrow 

band of vegetation adjacent to the bank (Gregory et al. 1991). In contrast, alluvial rivers



draining unconfined valley bottoms often have expansive ftoodplains. These fioodplains 

are sculpted and otherwise influenced by braided or meandering mainstem channels and a 

continuum of secondary channels. Unconfined rivers displaying these characteristics are 

anabranching multichannel systems (Nanson and Knighton 1996). Anabranching 

channels are defined as “a system of multiple channels characterized by vegetated or 

otherwise stable alluvial islands that divide flows at discharges up to nearly bankfull” 

(Nanson and Knighton 1996). These multi-channel systems may arise from lateral 

erosion, channel avulsion, or meander cut-off and promote floodplain habitat diversity as 

well as enhance river-floodplain connectivity.

Channel morphologies are shaped during high water periods. Although 

catastrophic channel changes may occur during infrequent high magnitude floods 

(Knighton and Nanson 1993), efficient channel maintenance occurs at the channel’s 

effective (channel-forming) discharge (Wolman and Miller 1960). This bankfull channel 

discharge has an approximate recurrence interval o f 1.5 to 2 years (Leopold et al. 1964). 

In years when the river meets or exceeds its bankfull volume, fluvial processes entrain, 

sort, and redeposit floodplain sediments. Bank reaches lacking cohesive sediments and 

riparian vegetation may experience accelerated erosion rates and contribute sediment to 

the stream. Banks protected by woody debris (Piegay and Gumell 1997), riparian 

vegetation (Hickin 1984), or comprised of less-erodable substrates are more resistant to 

degradation. Where bank stability varies and lateral erosion is prevalent, laterally 

migrating channels sculpt a wide floodplain hosting a diversity o f secondary channels and 

other off-channel habitats of variable longevity (Nanson and Knighton 1993; Cavallo 

1997; Alabyan and Chalov 1998).



In addition to lateral channel erosion, reaches with weak banks may become 

points o f rapid channel adjustment caused by channel avulsions (Hickin and Nanson 

1984; Brizga and Finlayson 1990; Nanson and Knighton 1996). These high-energy 

events contribute large quantities of sediment to the waterway as the river rapidly carves 

a new channel from the floodplain (Leopold et al. 1964) or reoccupies a previously 

abandoned channel (Nanson and Knighton 1996). The occurrence of such events may be 

accentuated in free-flowing rivers that convey substantial quantities of large woody 

debris (Hickin 1984; Piegay 1993). An accumulation of woody debris blocking the main 

channel may result in the rapid erosion of a nearby bank as flow is deflected by the 

obstruction towards the bank. As the river erodes or overtops the adjacent bank, the bank 

is degraded and the sediment transported. Channel avulsion magnitude is dependent on 

the channel gradient, floodplain material, stream power, and the presence of woody 

debris and ice jams that trigger rapid channel movement.

In places, flood flows overtop low-lying banks and interact with the floodplain 

without causing catastrophic channel avulsions or excessive lateral bank erosion. Woody 

debris, floodplain microtopography, and vegetation increase floodplain roughness and 

slow the advancing floodwater, causing sediment and debris deposition on the floodplain 

(Sparks 1995). Large woody debris aggregations on the floodplain and in backwaters 

provide cover for aquatic organisms and terrestrial animals.

A suite of variables including solar radiation, air temperature, groundwater 

properties, surface water properties, and stream geomorphology influence stream 

temperature (Sinokrat and Stefan 1993). In floodplain channels the influence of 

upwelling groundwater and hyporheic water is apparent. Groundwater discharging into



floodplain channels creates living space for aquatic organisms during low water periods 

or where surface water is deficient. Influent stream reaches gaining water from 

subsurface sources, tend to have consistent water temperatures and channel discharge 

(Constantz 1998). These conditions provide persistent habitats and may be preferentially 

selected by aquatic organisms occupying floodplain channels (Cavallo 1997).

These fluvial processes create diverse secondary channels that spatially vary in 

relation to the mainstem channel (Schlosser 1991). Secondary channels are sometimes 

classified according to their location within the floodplain mosaic. Three channel classes 

investigated below include braid anabranches, floodplain channels, and floodplain 

tributaries. Braid anabranches are proximate to the mainstem channel and are separated 

from the mainstem by stable vegetated islands. These channels are generally connected 

at their upstream and downstream extents with the mainstem. Physicochemical 

characteristics and substrate sizes are similar between braid anabranches and the 

mainstem channel due to high channel connectivity.

Floodplain channels that arise within the floodplain boundary as avulsed or 

overflow channels comprise a second channel type. Channel discharge increases in a 

downstream direction by groundwater inputs or as other smaller channels contribute 

surface flow to the secondary channel. Since these channels originate and meander on 

the floodplain, they are affected by mainstem fluctuations especially during runoff. 

Although floodplain channels maintain connectivity at their downstream extent with the 

mainstem channel, flood water that overtops natural levees reconnects these floodplain 

channels at their upstream extent with the mainstem. Depending on floodplain channel 

location, other points of reconnection with the mainstem are possible as well.
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A third channel class includes floodplain tributaries that begin above the valley 

floor and traverse the floodplain before connecting with the mainstem. During low water 

periods these channels may be more influenced chemically by upland lithology and 

groundwater upwelling from high terrace aquifers than by mainstem hyporheic 

upwelling. Mainstem hyporheic inputs increasingly influence the physicochemical 

conditions as the channel approaches the mainstem. Depending on channel location 

during the low water period, secondary channels may maintain water chemistry similar to 

upland aquifers. The mainstem may inundate the floodplain-portions of these tributary 

channels during high flow periods, homogenizing the floodplain’s water chemistry.

From a biological perspective, multithread reaches provide a wide variety of 

critical aquatic habitats needed by fish at various life stages and seasons including; flow 

and thermal réfugia, spawning and nursery habitats, feeding sites, and predator avoidance 

habitats. Additionally, secondary channels contribute to the system’s complexity. 

Compared to a confined system with minimal lateral habitat complexity, alluvial 

floodplain rivers host diverse environments, potentially supporting a greater variety of 

aquatic organisms.

In subsequent chapters, the importance of floodplain secondary channels to fish 

community diversity will be discussed. The purpose of this chapter is to describe 

microhabitat characteristics of these three secondary channel classes in a Northern Rocky 

Mountain alluvial floodplain river, the Bitterroot River of southwestern Montana. The 

following questions will be addressed; 1) Do the measured variables support the proposed 

channel classification? 2) Can the above channel types be differentiated using the 

measured variables? 3) How do physical and chemical microhabitat conditions differ
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among braid anabranches, floodplain channels, floodplain tributaries and the mainstem 

Bitterroot River? Subsequent chapters will investigate fish diversity, behavior, and 

microhabitat use in the three channel types.

Methods and Materials

Study Site

The Bitterroot River in western Montana flows north from the confluence of the East 

and West Forks near Conner, Montana, to its confluence with the Clark Fork River, 8 km 

west of Missoula, Montana (Figure 1). Flowing approximately 134 km, the Bitterroot 

River drains a 7,288 km^ (at Missoula USGS gauge) watershed, supporting agricultural 

land, pasture, rural and urban development, and upland forest systems. Tributaries 

originating in the Sapphire Mountains to the east, and the Bitterroot Mountains to the 

west, contribute much of the runoff that feeds the Bitterroot River.

Western tributaries to the Bitterroot River drain the heavily glaciated, high-relief 

Bitterroot Mountains. The Bitterroot Mountains form the eastern extent of the Idaho 

Batholith and are composed of granites, pre-Cambrian quartzites, and argillites o f the 

Belt formation. Overlying soils range from shallow to very deep and have traces of 

volcanic ash, among other materials (Cartier 1984). Multiple glaciation events carved U- 

shaped valleys in the range front. These valleys are perpendicular to the Bitterroot River 

and head many of the tributaries that convey runoff to the river. High terraces that 

separate the front range from the floodplain are composed of glacial moraines and 

historic alluvial fans. Soils covering the high terrace alluvium are generally shallow and 

adequately drained, though clay lenses create pockets of poor drainage.
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In contrast to the high relief Bitterroot Range, the Sapphire Mountains are more 

gradually sloped. Fluvial erosion and historic glaciation shaped the eastern boundary of 

the Bitterroot watershed. Soils 25-150 cm deep mantle metamorphosed sedimentary 

rocks of quartzite and calc-silicates of the Belt formation (NRCS 1995). East side soils 

on the high terraces are of Tertiary deposits ranging from clays to sand and gravels. Soils 

are generally very deep (25-100+ cm) and well drained where the soil is of loamy 

material over loose sand and gravel. Areas underlain by clay drain less efficiently.

The central and lower Bitterroot River is noted for its large, intricately channeled 

alluvial floodplain that is up to 5 km wide in places (Gaeuman 1997). Alluvial material 

deposited by historic glaciation and current fluvial processes reach depths of 3.2 km 

along the valley median. Several of the large lateral tributaries entering the Bitterroot 

floodplain from the valley margin contribute sediment to the Bitterroot River (Cartier 

1984). Narrower floodplains occur where these channels enter the valley floor and 

overlap the primary Bitterroot floodplain. Within the floodplain, surface water drainage 

varies according to the distribution of loam and sand overlaying alluvial material. 

Although floodplain substrates are generally well drained, clays and silts result in locally 

elevated water tables within the river bottom area.

The Populus trichocarpa!Cornus stolonifera community type (Hansen et al. 1996) 

characterizes Bitterroot River floodplain vegetation consisting of a herbaceous and 

deciduous shrub understory with a mixed species overstory (Table 1). Riparian 

vegetation communities reflect the natural disturbance regime of this floodplain river. 

Black cottonwoods {Populus trichocarpa), dominate many of the mature multi-aged 

gallery forest stands bordering the river while moderately disturbed surfaces lying at and
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below the bankfull elevation are vegetated by flood-resistant willows and other flexible 

shrubs. Expansive, sparsely vegetated cobble bars predominate the braid belt during low 

water, suggesting the system’s erosive power during spring runoff. Past and current 

agricultural practices on floodplain pastures have resulted in the replacement of native 

grasses with introduced grass species. Noxious weeds inhabit more-xeric surfaces, 

particularly substrates above the bankfull elevation. These invasive weed communities 

dominate areas impacted by frequent and persistent disturbance such as grazing and bank 

stabilization sites. Dense, mat-forming grasses, such as reed canary grass {Phalaris 

arundinaceaX increase bank stability at the expense of less aggressive native species.

Cool summers and generally mild winters characterize the Bitterroot Valley’s 

climate. Precipitation increases with elevation with annual averages ranging from 30 cm 

at the valley floor to 150 cm in the mountain elevations (National Climatic Data Center 

1999). On average, runoff crests in May or June when 25% of the precipitation and 55% 

of the yearly discharge occurs. Discharge intensity and volume is dependent on snow 

pack depth, air temperature, and precipitation patterns during this period (Figure 2). 

Flooding may result from rain-on-snow events when large volumes of water enter the 

Bitterroot Valley over a short period of time. A network of overflow channels and a 

broad floodplain convey flood flows once water overtops the bankfull elevation and spills 

onto the low gradient floodplain. Due to the wide floodplain, the depth of flooding 

during a 100 year event is only slightly greater (15-30 cm) than for a 10-year event, 

although this more frequent event has 30% less discharge (NRCS 1995), indicating the 

floodplain’s large capacity to disperse floodwater.
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Landuse directly and indirectly influences the Bitterroot River. Extensive water 

development in the valley for irrigation, recreation, and municipal uses has impacted the 

river’s natural flow regime and biological communities. Several irrigation districts and 

individual property owners divert water from both the Bitterroot River and its supporting 

tributary streams. Summer irrigation diversions desiccate tributaries before they reach 

the Bitterroot, isolating newly emerged young-of-year fish (age-0). Without summer 

tributary flow, summer river levels are maintained by groundwater discharging from the 

surrounding mountain ranges to the valley center (Finstick 1986; Uthman 1988). Water 

releases from Painted Rocks Reservoir above Darby augment inadequate summer flows 

and provide an emergency water source for water managers. Although the networks of 

irrigation ditches transport water away from tributaries and the Bitterroot River, ditch 

seepage recharges shallow aquifers on the valley floor and provides an important supply 

of late season water to the Bitterroot River (Finstick 1986; Uthman 1988).

Human development of the Bitterroot floodplain is rapidly increasing. As an 

example, permanent structures in the 100 year floodplain increased from 13 in 1936, to 

146 in 1990 (Javorsky 1994). Accelerated development in the past decade has 

undoubtedly increased this figure. Road construction, land filling, bank stabilization, and 

residential construction continue to alter the floodplain. Floodplain development 

threatens both the integrity of the river and Bitterroot Valley residents’ safety.

Sample Site Selection Criteria

The central and lower sections o f the Bitterroot River are characterized by two 

channel patterns. The central Bitterroot between the towns of Hamilton and Stevensville



15

is considered an anastomosing reach (Cartier 1984). Downstream of Stevensville the 

river follows a single meandering channel contained by the narrowing valley. Typical of 

an anastomosing river, the central reach is a network of secondary channels creating a 

diversity of aquatic habitats. Formed both historically and recently by lateral channel 

migration and avulsion, secondary channels are temporally and geographically variable. 

This variability is created during high water periods when the mainstem captures off- 

channel floodplain habitats and transports sediment into and out of these floodplain 

channels. The minimal stream power evident the remainder of the year does little to alter 

secondary channel geometry.

Sampling sites were selected based on four criteria: channel location, channel 

type, the channel’s consistent connection with the Bitterroot River, and channel depth. 

The first criterion, location, was important for investigating the study’s objectives. Sites 

were distributed over a reasonably long distance to increase the chance that all common 

habitats in the central reach were sampled. The most downstream site was selected to be 

geographically close to the Clark Fork River. The Clark Fork River likely supplies native 

and introduced fish species to the Bitterroot River. While the distribution of sites along a 

longitudinal distance was important, grouping sites within an access reach was necessary 

so sites could be sampled over a short time period. Considering these geographic 

stipulations, the study area was established between Tucker Crossing and Missoula.

A second criterion, having secondary channels in all three categories, was 

necessary for investigating whether resident fish populations respond differently to 

geomorphically different secondary channel types (See Chapter 3). Gaeuman’s (1997) 

classification of Bitterroot River secondary channels relied on geomorphic channel
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characteristics mapped from historical and recent aerial photographs. Limited field 

surveys provided some information regarding physical differences among channels 

comprising the proposed channel continuum (See Gaeuman 1997 for complete 

description). Though concerned with how form and processes influence the evolution 

and persistence of channel stability, Gaeuman’s classification did not consider a biotic 

component. Sampling biological communities inhabiting Bitterroot River secondary 

channels would help explain the possible biological importance of braid anabranches, 

floodplain channels and floodplain tributaries.

Third, each site had to be highly connected to the Bitterroot River so fish could 

access secondary channels throughout the year. In order to investigate fish use of 

connected secondary channel habitats (Chapter 3), a sample reach was defined as the first 

70 m-100 m section of a secondary channel from the secondary channel’s confluence 

with the Bitterroot River to an upstream geomorphic feature.

Lastly, each site had to be at least 0.3 m deep and wadable throughout the year to 

provide adequate fish habitat and survey accessibility. Three channels investigated 

during the receding limb of the 1998 hydrograph temporarily satisfied these depth 

requirements but were diy later in the summer and were eliminated from the data set. Six 

sites satisfying these four criteria were selected between Tucker Crossing and Missoula 

(Figure 1).

Selected Sample Sites

The six secondary channel sites included two braid anabranch channels, two 

floodplain channels, and two floodplain tributaries as classified previously (Table 2).
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The first braid anabranch channel, BCl, was located approximately 3.4 km downstream 

from the Bell Crossing fishing access. Connected both upstream and downstream with 

the mainstem Bitterroot River, this channel was maintained by both surface water and 

subsurface river water discharging into the channel. Prior to the 1999 spring runoff, a 

shallow mobile sand bed and shallow depth characterized BCl. In spring 1999, the 

mainstem Bitterroot River flooded the braid anabranch and scoured a large volume of 

sediment. BCl was transformed from a simple shallow reach to a deeper and more 

structurally complex channel. A second braid anabranch, termed M l, was located 15 km 

upstream of the Clark Fork confluence and south of Missoula. Similar to BCl, the 

Bitterroot River overtook this secondary channel during spring high water but effected 

only minor alterations on bank integrity and large woody debris distribution.

Two floodplain channel sites located at Tucker Crossing, termed TCI and TC2, 

originate on an approximately 7 km-long island that divides the river into east and west 

channels. These channels were likely created over a long period of time by channel 

avulsions associated with Bitterroot River flood flows. A diverse array of channels and 

off-channel habitats suggests that Tucker Island is a highly avulsive landform. TCI and 

TC2 are maintained by hyporheic water discharging into these floodplain channels. 

Secondary channel discharges rapidly increased during the 1999 spring runoff as the 

mainstem channel overtopped natural levees separating the Bitterroot River channel fi'om 

the intra-island floodplain channels. Overbank flows during the 1999 spring runoff 

redistributed coarse woody debris and altered substrate composition within the floodplain 

channels.
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The final two channels, BC2 and BC3, were classified as floodplain tributaries. 

Similar to the floodplain channels TCI and TC2, BC2 and BC3 are part of a dynamic 

floodplain complex influenced by both surface water and subsurface discharge. The 

more downstream channel, BC3, consistently displayed specific conductance levels and 

water temperatures that deviated from Bitterroot River measurements. These differences 

suggest a greater influence of groundwater discharging from the Sapphire Range than 

from the Bitterroot River. Sapphire Mountain runoff is higher in dissolved ions than are 

other natural water sources in the Bitterroot Valley (Gaeuman 1997). Active springs 

along the channel margin appeared to influence local physiochemical characteristics. 

BC2, situated between BC3 and the Bitterroot River, represented intermediate conditions. 

Hyporheic exchange between BC3 and BC2 is likely due to their close proximity. 

Hyporheic discharge upwelled into the BC2 channel and surface water overtopped banks 

upstream of the sample reach during high water. Spring runoff also increased the 

discharge in BC3 but less drastically.

Sampling Design and Methods 

Habitat Survevs

To investigate the study objectives pertaining to habitat differences among the six 

sampling sites, two sampling methods were employed. First, point sampling was used to 

obtain data from specific locations or where a few measurements were adequate to 

characterize a reach (temperature, specific conductance, and oxygen saturation). 

Secondly, point-transect sampling was used where conditions, such as depth, were 

expected to vary across a reach in a regular manner. Two measuring tapes were used to
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create a pseudo-lattice over the study area for the point-transect sampling. A 100 m tape 

was extended from each site’s downstream to upstream extent. Eight to 12 transects were 

then regularly spaced perpendicular to the channel. Depth, substrate type, substrate 

cover, and water column cover were recorded every 1-2 m across the channel depending 

on channel width. Approximately 100 points were recorded for each secondary channel. 

Temperature was also recorded during the 1999 sampling. Depth was measured with a 

1.5 m calibrated wading staff The substrate was evaluated by picking up a single 

particle at each lattice point. The particle’s secondary axis was used to group the particle 

according to one of six categories; silt (to touch), sand (<6mm), gravel (6<16 mm), 

pebble (17<64 mm), cobble (65<265 mm), boulder (>265 mm). Cover types included no 

cover, aquatic vegetation, overhanging bank, small woody debris (<1 m in length, <0.3 m 

in diameter), large woody debris ( >1 m in length, >0.3 m in diameter), and boulder. 

Cover types were defined as either water column cover or substrate cover to account for 

material that may have provided cover high in the water column but not on the substrate, 

and vice versa. Water column cover exceeded at least 1/3 of the channel depth if it 

originated on the substrate. Other material, such as woody debris hanging into the water 

from the bank, was also considered a water column cover structure. Substrate cover was 

did not exceed 1/3 of the channel depth. Total coarse woody debris area and riffle 

surface area, were also estimated for each sample site,

A YSI Model 85 Handheld Dissolved Oxygen, Conductivity, Salinity and 

Temperature System was used to evaluate water parameters in the sample reaches and the 

adjacent Bitterroot River (YSI 1996). Instrument calibration and measurements were 

recorded before 0900 each sampling day to establish a consistent protocol and to
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minimize photosynthetic effects on oxygen saturation and oxygen concentration readings. 

Using this methodology, measurements were completed prior to direct sunlight reaching 

the sample site. Five to seven sets of measurements were recorded midchannel from 

upstream to downstream, at each sample site to assess within-site environmental 

variation. An additional three to five sets of measurements were recorded in the main 

channel in order to compare secondary channel and main channel water chemistry. A 

complete measurement set required under 20 minutes to complete.

One Onset Hobotemp continuous temperature recorder was deployed in each of 

the sample secondary channels and in the Bitterroot River to investigate annual water 

temperature patterns. Hobos were attached with steel airplane cable at a depth of 20 cm 

to large woody debris in a minimally exposed area of the site to reduce direct sunlight 

effects on recorded temperatures. Equipment loss and equipment malfunction resulted in 

incomplete data collections for four sites and the main channel. Year long temperatures 

were recorded for TC2 and BC3.

Data Analysis

Habitat variables (Table 3) were analyzed to: 1) determine their usefulness in 

explaining secondary channel variation, 2) compare and test the proposed secondary 

channel classification that was based on visual observation, 3) compare secondary 

channel habitat differences, and 4) investigate secondary channel-mainstem water 

chemistry differences. These investigations followed two separate procedures.
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Habitat Variation and Site Classification

To determine the effectiveness of these variables in explaining secondary channel 

habitat variation, and to test the proposed secondary channel classification, principal 

components analysis (PCA) and discriminant function analysis (DFA) were used. PCA 

was used to reduce the set of physical habitat variables to several components comprised 

of descriptive variables. Prior to running the PCA, mean values and coefficients of 

variation for channel depth and width were calculated for each secondary channel 

sampling site on each sampling date and logio(:r+l) transformed for entry into the PCA. 

Values were transformed to improve normality and homogenize sample variance. 

Coefficients of variation were included to reflect within-site habitat variation during one 

period. Percent occurrence of each substratum type, water column cover type, and 

substrate cover type, was calculated, arcsine-square root transformed, and included in the 

PCA. Only principal components (PCs) with eigenvalues >1.0  were retained for further 

analysis. Loadings >0.60 were considered important for individual components.

Descriptive discriminant function analysis seeks to exhibit differences among 

populations by means of linear combinations of the measured variables (Williams 1983; 

James and McCulloch 1990). The first five principal components from the PCA were 

used for the discriminant function variables since the first five components appeared to 

represent ecologically interpretable variables. A step-wise procedure was used to retain 

only important PC’s in the DFA. The leave-one-out method was also used to cross- 

validate the predictions. With cross-validation, each case is classified by the functions 

derived from all cases other than that case. In this way, predictions are independent of
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the discriminant functions used to make these predictions. Euclidian distances were used 

to identify the two dimensional distances between points. The distance between two sites 

is the square root of the sum of the squared differences in values for each variable.

Secondary Channel Habitat Variation

To investigate environmental variable differences among secondary channels and 

sample dates, two-way factorial analysis o f variance (ANOVA) was employed. Sample 

site was considered a fixed factor and date a random factor in an additive general linear 

model. Insufficient degrees of freedom disallowed interaction terms in the model. 

Multiple two-way ANOVA’s, rather than a multivariate ANOVA (MANGYA), were 

executed to incorporate the sample date information since SPSS MANOYA’s do not 

allow a random factor in the model. Ideally, a repeated measures ANOYA would have 

been employed for this analysis; however, inadequate sample sizes did not permit using 

the repeated measures model.

From the two-way ANOYA results, orthogonal contrasts were examined to 

determine if  the proposed channel classifications were valid (Table 4). These tests were 

designed to test for significant differences among channel classifications and within 

channel classifications. Because BCl was not sampled as consistently as the other five 

channels, its was not included in the orthogonal contrasts.

Secondary Channel-Mainstem Water Chemistry Variation

Comparisons between the secondary channel and mainstem water chemistry 

values were carried out using Wilcoxon rank sign paired samples tests. All data were
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maintained in Microsoft Excel (Microsoft Corporation, Microsoft Office 1997, 1996, 

unpubl.), and statistics were calculated using Statistical Package for the Social Sciences 

(SPSS Inc., Version 8 for Windows, Chicago, IL, 1997, unpubl.).

Table 4; Post hoc orthogonal contrasts for measured variables in the Bitterroot River secondary channels. 
Contrasts test for significant differences within and among classified channel groups.

Orthogonal Contrast
LI = M l — 0.25(TC1+TC2+BC2+BC3) Contrasts the Braid Anabranch with the

Floodplain Channels and Floodplain 
Tributaries

L2 = BC2 — BC3 Contrasts the Floodplain Tributaries

L3 = TCI -  TC2 Contrasts the Floodplain Channels

L4 = 0.5(TC1 + TC2) -  0.5(BC2 + BC3)
Contrasts the Floodplain Channels with the 

_____________________________________Floodplain Tributaries_____________________

Results

Explaining Secondary Channel Variation and Site Prediction

The PCA reduced the measured variables to eight components with 

eigenvalues >1. These components accounted for 88% of the variation in the original 

measured variables (Table 5). Further discussion will only consider the first three 

components due to the difficulty in describing variable relationships beyond three spatial 

axes. The first PCA axis contrasts shallow sites that have minimal current, woody cover, 

sand substrata, and low specific conductance, with deeper sites characterized by faster 

currents, gravel substrata, higher specific conductance, and bank cover. The second PCA 

axis separated sites according to the aquatic vegetation and no cover categories. In a plot 

of the first and second PCA axes the sampled channels appeared to cluster similar to the 

three proposed channel classes (Figure 4a) except that BCl clustered with the floodplain
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channels (TCI and TC2) and M l clustered better with the floodplain tributaries (BC2 and 

BC3). Euclidian distances were calculated to determine the two dimensional distances 

between sample sites for PCA I and PCA II scores (Table 6a). The third PCA axis 

compared average channel width and water oxygen concentrations. Because 

incorporating the third PCA axis complicated the interpretation of the scatterplot, PCA III 

was plotted with PCA I. The Euclidian distances were also calculated between samples 

sites for PCA I and PCA III scores (Figure 6b). The distribution of the channels changed 

slightly since BCl was the widest of the six channels and most heavily weighted by PCA 

axis III (Table 6b). Again BCl clustered with the floodplain channels and M l clustered 

with the floodplain tributaries. The PCA I values for the other five secondary channels 

(excluding BC l) were more extreme than the PCA III values, so the PCA I values had 

more influence on the location of the channel within the two dimensional space.

The braid anabranches (Ml and BC l) were similarly described by PCA I and 

PCA II. These two channels had less extreme component values compared to the other 

two channel classifications. M l was described by the no cover category, moderate 

current, coarser substrates, and greater water depth. PCA III described most of the 

variation in BCl since this channel was the widest in the study. BCl average oxygen 

concentrations were also higher probably since this channel was not sampled in August 

or September 1999, when the other channels exhibited higher average water temperatures 

and lower oxygen concentrations. BCl and M l were separated according to the available 

cover types, substrate distribution, and water depth.

The floodplain channels (TCI and TC2) tended to be lentic and shallow with sand 

substrata. However, the channels differed by their dominant cover types. PCA I
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incorporating the woody debris cover variables, characterized the cover types describing 

TCI while PCA axis II described the aquatic vegetation cover types that distinguished 

TC2. Vegetation was a prominent feature of TC2 especially during August and 

September sampling. The influence of vegetation cover on PCA II was apparent in the 

large negative coefficient o f TC2 (-1.39). PCA axis III reflected the narrow channel of 

TCI; this component described little of the variation in TC2. BCl was grouped with the 

floodplain charmels since it was primarily characterized by a shallow, sand substrate 

channel with a large lentic area.

High specific conductance, moderate current speeds, coarser substrates, and 

deeper channels distinguished the floodplain tributaries (BC2 and BC3) and M l. PCA 

axis II described little of TCTs habitat variation since aquatic vegetation was less 

abundant relative to the total channel area in this site. As stated previously, PCA II 

described most of the variation in TC2. M l was described by the no cover category and 

to a lesser extent by coarse substrates, moderate currents, deeper channel, and high 

specific conductance. The spatial relationship and relative locations of BC2 and BC3 

changed minimally when PCA axis III was plotted against PCA axis I. M l did not plot 

dramatically different when PCA axis III was plotted against PCA axis I. PCA axis III 

explained the intermediate channel width and moderate oxygen concentrations 

characterizing M l.

Discriminant function analysis retained the first five PCA components for 

predicting secondary channel group membership. The first two discriminant functions 

described 85.3% of the variation in the PCA components and clustered the site-date PCA 

scores (Figure 5). Again the floodplain channels (TCI and TC2) clustered with BCl.
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The floodplain tributaries BC3 grouped with M l, while BC2 plotted away from the other 

sample channels. Using the leave-one-out classification, the actual site-date samples 

were properly predicted 100% of the time.

Secondary Channel Habitat Variation

Two-way factorial ANOVAs were conducted for each measured variable and the 

first three PCA axes to determine if they varied among secondary channels and sample 

dates (Table 7). Physical variables displayed more variation among sites than among 

dates. Variables that significantly differed among sample dates were predominantly 

variables that varied seasonally such as water temperature, specific conductance, and 

average channel depth. Variables that were similar over time included the substrate 

categories, woody debris distributions, and measures of within-site variation for a single 

sampling period. PCA I scores differed significantly among the sample sites but not over 

time since this first component was primarily comprised of habitat variables that were 

temporally stable. Conversely, PCA II scores and PCA III scores varied significantly by 

site and date. Aquatic vegetation (PCA II scores) varied by sampling date as did the 

average channel width and water oxygen concentrations (PCA III scores).

Multiple orthogonal contrasts were also estimated to provide another test o f the 

proposed channel classes. Results indicate high variability within and between the 

channel groups (Table 8a and Table 8b), since variable differences among groups 

(Contrasts 1 and 4) were only slightly greater than differences within groups (Contrast 2 

and 3). Considering the four contrasts that were conducted, the floodplain channels (TCI 

and TC2) and the floodplain tributaries were the most different from each other since 18
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of the tested variables were significantly different {P < 0.05) between the two channel 

groups. Channels within a channel group were more similar to each other than to the 

other channel groups. For instance, only 13 variables were significantly different 

between BC2 and BC3 (the floodplain tributaries). Similarly, 17 variables were 

significantly different between TCI and TC2. However, only 15 variables differed 

between the floodplain tributary-floodplain channel contrast group (BC2, BC3, TCI, and 

TC2) and the braid anabranch (Ml). This result was less than expected and was mainly 

attributed to similarities between M l and the floodplain tributaries. Comparing M l to the 

grouped floodplain tributaries-floodplain channels weakened this contrast since M l and 

BC2-BC3 shared similar channel characteristics. This comparison was necessary in order 

to meet the requirements of the orthogonal contrast model.

Several variables were significantly different over the four contrasts. Aquatic 

vegetation water column cover, channel average width, PCI, PC2, and PC3 were 

significantly different (JP < 0.05) for all four contrasts. These five variables differentiated 

individual channels as well as the channel groups. Conversely, other variables such as 

channel length, intra-channel width variation, pebble substrate and shallow channel 

depths, did not significantly differ among channel groups or between channels. These 

variables were less important for describing channel variation and channel group 

similarity.

The sampling regime indicated that the sampled secondary channels were highly 

variable. However, the results of the principal components analysis and the orthogonal 

contrasts lend some credence to a channel classification system. To improve upon this 

model, more secondary channels would have to be sampled to improve channel sample
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size. This protocol would also rectify inter-period channel condition variation. By 

sampling more channels during one period, combined with sampling over several 

periods, channels could be more accurately classified since comparisons among channels 

could be made seasonally. This would alleviate some of the site-date variation found in 

these data.

Secondary Channel-Mainstem Water Chemistry Variation

Water chemical variables varied among the secondary channels and the Bitterroot 

River (Table 9). Using the Wilcoxon signed rank test, oxygen concentration levels were 

significantly greater in the secondary channels (BC2, BC3, TCI, and TC2, respectively) 

than in the Bitterroot River. Specific conductance was greater in BC2, BC3, and M l than 

in the Bitterroot. However, water temperatures were not significantly different for any of 

the secondary channels compared to the Bitterroot. Comparisons were also performed 

for paired secondary channels (Table 10). For the floodplain tributaries, BC3 had 

significantly greater oxygen concentration {P = 0.046, 8.00 mg/L vs. 7.12 mg/L) and 

specific conductance {P = 0.028, 230.80 mS/cm vs. 160.20 mS/cm) than BC2. M l had a 

significantly higher specific conductance {P = 0.028, 98.28 mS/cm vs. 64.92 mS/cm) 

than BCl. Water chemicals did not vary significantly between the floodplain channels, 

TCI and TC2.

Discussion

A mobile primary channel and a mosaic of complementary secondary channels 

characterize the central Bitterroot River and its associated floodplain (Gaeuman 1997;
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Clancy 1999). Physicochemical parameters measured in secondary channels and the 

Bitterroot River suggest high connectivity between the river and its floodplain, although 

some environmental conditions differ from channel to channel. The proposed channel 

classification based on geographic location of secondary channels relative to the 

mainstem, was supported by a principal components analysis and a discriminant function 

analysis incorporating geomorphic and chemical attributes of six secondary channels. 

The PCA separated the six channels into two channel groups rather than the proposed 

three groups. The braid anabranch BCl was separated and placed with the floodplain 

channel group while M l grouped with the floodplain tributaries. Orthogonal contrasts 

and Wilcoxon rank test results also indicated moderate variability among sites and 

sampling periods. The measured variability in secondary channel environmental 

conditions is indicative of an intact river-floodplain environment. High geographic and 

temporal environmental diversity among secondary channels is an important factor in 

sustaining biological communities in river floodplains (Ebersole et al. 1997).

A rapidly fluctuating river hydrograph and a broad, flat floodplain contribute to 

channel instability in the central Bitterroot River. Banks wdth minimal cohesion and 

large, infrequent flood events increase floodplain heterogeneity and promote complex 

interactions operating at the aquatic-terrestrial interface (Hickin and Nanson 1984; Brizga 

and Finlayson 1990; Nanson and Knighton 1996). This was evident in the presence of 

large woody debris in TCI and M l. During high water, the Bitterroot River scours into 

the riparian fringe and removes trees from the forest community. Cottonwoods and 

Ponderosa pines are transported and eventually settle within the channel or close to it and 

provide transient channel complexity. Depending on subsequent floods, this material
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may be transported to other reaches of the river, thereby reducing channel complexity at 

one site and increasing complexity at another location.

In addition to variable habitats created by flood-driven fluvial processes, 

upwelling hyporheic water sustains a diverse secondary channel network during low flow 

periods and also augments surface water discharge in persistent channels. On the 

Bitterroot River floodplain, subsurface upwelling was deemed important for headcut 

advancement and capillary channel migration (Gaeuman 1997). Additionally, upwelling 

groundwater provides a consistent cold water source for aquatic organisms. Several cold 

water seeps were measured along channel margins in two of the sampled channels. The 

importance of hyporheic upwelling has been documented in other Northern Rocky 

Mountain drainages. In the Middle Flathead River, floodplain watercourse characteristics 

partially explained the resident fish communities (Cavallo 1997). These habitats varied 

according to their dependency on subsurface discharge and proximity to the mainstem.

Fluvial Processes and Channel Alteration

On the Bitterroot River, large intrachannel islands are formed by sediment 

deposition within the braid belt, and floodplain incision by channel avulsion. Cobble 

bars separating the M l and BCl braid anabranch channels from the Bitterroot River, 

likely originated from point bar aggradation (sediment deposition). Immature pioneer 

vegetation and minimal detritus accumulations suggest that the islands are relatively 

young and frequently disturbed by high flows. Dense vegetation patches and abundant 

woody debris on the islands increase bar roughness and sediment deposition during 

receding high flows (Malanson and Butler 1990; Abbe and Montgomery 1996).
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Depending on annual discharge, continued growth of these sites is expected as vegetation 

colonizes annually deposited sediment (Malanson and Butler 1990).

Floodplain incision occurs during elevated discharge when overbank flows carve 

new channels from floodplain material. On the Bitterroot floodplain, avulsed channels 

such as TCI and TC2 tend to be partially disconnected from the mainstem (except during 

high flows), convey subsurface flows, and experience channel scour when the Bitterroot 

River overtops natural levees and captures the secondary channel. Depending on the 

location and size of avulsed floodplain channels, portions of the floodplain may become 

intrachannel islands as channels surround the alluvial material.

Habitat diversity is enhanced by periodic flood flows responsible for altering 

floodplain environments. During this two year study, overbank flows were observed 

during the 1999 spring runoff (161% of the 13 year average peak). The effects of this 

flood on secondary channels varied by channel location and proximity to the mainstem. 

In some areas, overbank flows redistributed woody debris and deposited fine sediment on 

the floodplain. At other sites, fluvial processes altered floodplain surfaces by 

undercutting mature cottonwoods and mobilizing large volumes of sediment. Although 

floodplain vegetation, especially woody shrubs, improve bank integrity and reduce 

localized bank failure (Hickin 1984; Piegay and Gumell 1997), even densely vegetated 

banks characterized by black cottonwood overstories and red osier dogwood shrub layers 

were eroded by the river during high water. This was apparent along the Tucker Crossing 

Island where several large cottonwoods fell into the river during the 1999 runoff A 

broad low gradient area (-0.5 km^) downstream of the Tucker Crossing secondary 

channels, contains large aggregations of fallen cottonwoods and Ponderosa pines
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transported by the river. These large tree rafts may accelerate localized channel scour 

and lateral channel widening as well as increase upstream sediment deposition during 

high water (Abbe and Montgomery 1996). High water velocities erode under and around 

these large woody debris aggregations, although such rafts may also create a damming 

effect that slows upstream discharge and causes localized sediment deposition (Abbe and 

Montgomery 1996).

Bankfull discharge channel scour was apparent in the BCl channel after the 

recession of floodwaters. Prior to high water, the channel was primarily a migrating, 

unstable sand bed with water depths averaging 0.3 m to 0.5 m. During the 1999 high 

water, the Bitterroot River captured this braid anabranch and scoured it to depths in 

excess of 4 m. The altered channel geometry is now dominated by a cobble substrate. 

Hyporheic discharge into the channel has apparently increased judging by dense benthic 

algal blooms that now dominate the channel. In 1998, prior to channel scour, algal 

blooms were not observed in the reach. Complex fluvial processes operating at multiple 

spatial scales, transformed aquatic habitats, and lead to rapid channel adjustments and 

sediment mobilization throughout the study area.

Secondary Channel Variability

Braid anabranches, floodplain tributaries, and floodplain channels were similar 

for some environmental conditions, but these channel types were also distinguished by 

measured physicochemical variables. Secondary channels in the Bitterroot River provide 

diverse habitats that both resemble and contrast with main channel conditions. Channel 

diversity was greatest during moderate flow periods when secondary channels provide an
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array of riffle and pool habitats (personal observation). Groundwater upwelling and 

surface water flows mix to create a range of water temperatures that differ in magnitude 

and timing from the mainstem. Conversely, secondary channel habitats were less diverse 

during high and low flow periods compared to periods of intermediate flows. During low 

flow periods, channel areas contracted as water levels decreased. Although secondary 

channels remained connected to the Bitterroot River at their downstream ends, several 

sites (TCI, TC2, BCl, and BC2) shortened as upstream portions dried up during the low 

flow period.

Measured physicochemical properties suggest that environmental conditions 

varied both temporally and geographically for secondary channels. Water temperature, 

specific conductance, and oxygen saturation differentiated surveyed channels except 

during high water when the flooding Bitterroot River homogenized lateral secondary 

channels chemical conditions. During base flows, specific conductance and water 

temperatures separated BC2 and BC3 from the other channels in the survey. Elevated 

specific conductance levels suggest discharge from an upland aquifer rather than a 

hyporheic source. Similar stable water temperatures in the other channels suggest a 

common hyporheic water source or an overriding surface water influence since 

groundwater-dominated sites often have consistent water temperatures in other systems 

(Constantz 1998).

The physical structure of secondary channels also helped explain interchannel 

variation. Patchy aquatic environments should provide higher microhabitat diversity 

important for aquatic organisms. For example, coarse woody debris is an essential 

element for creating and maintaining complex pools preferred by some fish species. In
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Bitterroot River secondary channels, patchy distributions of CWD influenced pool 

development Avith the deepest pools regularly corresponding with dense CWD 

aggregations. In a 25 km section of the Queets River in northwest Washington, the 

deepest surveyed pools were associated with CWD jams (Abbe and Montgomery 1996). 

Small stream geomorphology tends to be influenced by CWD since large pieces can 

extend the channel width.

Measured variables suggest many similarities exist among the sampled secondary 

channels. However, to rigorously test a channel classification system a larger sample size 

and more frequent sampling would be required. The distribution of the channels also 

influenced some of the measured variables. For instance, BC2 and BC3 were less than 

300 m from one another and exhibited similar specific conductance and water 

temperatures. Nevertheless, relationships among the proposed channel groups revealed 

by the PCA and DFA illustrate the potential for a secondary channel classification 

system.

Floodplain Management

Using a 50 year aerial photograph record, Gaeuman (1997) determined that the 

length of the Bitterroot River has not significantly changed, although the current braid 

belt is wider and straighter than in the past. In managed watercourses of the western 

United States, rivers and riparian zones are often dramatically altered when rivers are 

diverted (Kondolf and Curry 1986), dammed (Suchomel 1994; Kondolf 1997), or 

laterally constrained by bank stabilization (Dykaar and Wigington 2000). Ultimately, 

rivers become less complex as the channel is decoupled from its associated floodplain by
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human activities (Sedell and Froggat 1984; Dykaar and Wigington 2000). As the river- 

floodplain relationship unravels, the importance of channel diversity becomes apparent. 

Dam construction and flow moderation in the Colorado River basin have simplified 

channel complexity and significantly affected the distribution of secondary channel 

spawning and nursery habitats utilized by Colorado pikeminnow (Van Steeter and Pitlick 

1998a). Without periodic high discharge flows, vegetation establishment in secondary 

channels reduced the number of available backwaters and converted the water-riparian 

interface to a terrestrial environment (Van Steeter and Pitlick 1998b). A similar 

conversion of water to land ecosystems might be expected in the Bitterroot River as 

landowners increasingly develop floodplain properties and stabilize banks. Irrigation 

diversions could exacerbate this environmental transformation if the water table elevation 

recedes and groundwater discharge into floodplain channels is reduced. These processes 

would promote the displacement of hydric flora by more-xeric upland vegetation. Since 

numerous species and age classes of Bitterroot River fish use secondary channel habitats 

on multiple temporal scales (Chapters 3 and 4), managing floodplain development and 

river channel alterations will influence the dynamic interactions linking the central 

Bitterroot River, its floodplain, and the aquatic life that both support.

Conclusions

•  Question 1 Results: The proposed channel classification was partially supported.

♦ Based on water chemistry and physical microhabitat data, BCl grouped with the 

floodplain channels and M l grouped with the floodplain tributaries.
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Question 2 Results: The channel types were differentiated by the measured variables.

♦ The principal components analysis explained 88% of the variation in the variables 

characterizing the sampled channels.

♦ Discriminant function analysis explained 85.3% of the variation in the PCA 

scores and correctly grouped site-date samples according to the six secondary 

channels.

Question 3 Results: Physical and chemical conditions differed among secondary

channels and the Bitterroot River.

♦ ANOVA and orthogonal contrasts suggested high microhabitat diversity within 

and among the proposed channel groups, and moderately variable conditions over 

time.

♦ Water quality characteristics suggest that the floodplain channels (TCI and TC2) 

and BCl are influenced by the Bitterroot River perhaps due to their central 

floodplain locations. The other three channels appear to be more influenced by 

external conditions such as groundwater upwelling from upland aquifers.
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Figure 1; The Bitterroot River watershed and the secondary channel sample sites.



42

Table 1: Common vegetation found on the Bitterroot River floodplain.

Trees Shrubs Grasses and Forbs
Poptdus trichocarpa 
Populus tremuloides 
Almts incana 
Pinus potiderosa 
Picea engelmannii 
Larix occidentalis

Comus stolonifera 
Crataegus douglasii 
Symphoricarpos albus 
Salix spp.
Rosa spp.
Ribes spp.

Phalaris arundinacea* 
Centaurea maculosa* 
Tanacetum vulgare* 
Poa pratensis 
Phleum pratense 
Carex spp.

*: Denotes an introduced species

Table 2: Locations o f sampled secondary channels relative to the most upstream sample site (Tucker 
Crossing 1).

Secondary Channel 
Tucker Crossing 1 
Tucker Crossing 2 
Bell Crossing I 
Bell Crossing 2 
Bell Crossing 3 
Missoula 1

Channel Type Distance Downstream from Tucker Crossing 1 
Floodplain Channel 0 km 
Floodplain Channel 0.532 km 
Braid Anabranch 12.5 km 
Floodplain Tributary 15.5 km 
Floodplain Tributary 15.8 km 
Braid Anabranch 102.0 km
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Figure 2: Bitterroot River average annual discharge measured over a thirteen year period and the discharge 
during the sampling period.
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Figure 3: Bitterroot River discharge and water temperature measured over a portion of the sampling 
period.
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Table 3: Physical and chemical variables that were measured or derived for Bitterroot River secondary 
channel sample sites. Variables were used to describe environmental variation among secondary channels. 
Percentages represent the number of times a value was sampled divided by the total number of samples that 
were measured using the point transect method

Physical Variables^ Cover Types^ Water Chemistry Variables^
Glide Area (m^) Substrate Cover: Water Temperature (°C)
Riffle Area (m^) % None Specific Conductance (pS/L)
Substrate: % Aquatic Vegetation Oxygen Concentration (mg/L)

% Silt % Bank Oxygen Saturation (%)
% Sand % Small Woody Debris
% Gravel % Large Woody Debris
% Pebble % Boulder
% Cobble Water Column Cover:
% Boulder % None

Depth: % Aquatic Vegetation
% 0-0.49 m % Bank
% 0.5-0.99 m % Small Woody Debris
% 1.0-1.49 m % Large Woody Debris
% >1.50m % Boulder

Site Depth (m) (mean and CV) 
Site Width (m) (mean and CV) 
Greatest Site Width (m) 
Sample Reach Length (m)
T "  , •" 1 ,1

CWD Area (m^)

water chemistry variables based on the average of several points measured at midstream along the sample 
reach length.
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Table 5; Loadings of environmental variables on components (PC) from the principal components analysis 
conducted on the habitat data describing the six secondary sites over all sampling periods.

Component
Environmental
Variable PCI PC2 PC3 PC4 PC5 PC6 PC7 PC8
Glide Area 0.87 0.16 -0.30 0.02 -0.09 -0.07 0.03 -0.01
% Sand Substrate -0.85 -0.13 -0.35 -0.05 0.23 0.10 -0.12 -0.05
Specific Conductivity 0.85 0.05 0.22 0.11 -0.34 -0.12 -0.02 0.05
Depth 1-1.49 m -0.80 0.40 0.14 0.12 0.04 0.26 0.10 -0.18
CWD Area -0.77 0.21 0.13 0.53 0.06 0.00 0.01 -0.11
% Gravel Substrate 0.77 0.34 0.42 0.07 -0.02 0.09 0.13 0.06
LWD Column Cover -0.75 0.26 0.48 0.08 -0.07 -0.08 0.20 0.11
Bank Cover 0.75 -0.09 0.13 -0.49 0.07 0.03 -0.05 0.13
LWD Substrate Cover -0.71 0.39 0.37 0.04 0.14 -0.21 0.17 0.05
SWD Column Cover -0.66 -0.19 -0.24 0.20 0.09 0.16 0.15 0.05
Average Channel Depth -0.63 0.13 0.09 0.09 -0.59 0.29 -0.01 0.00
SWD Substrate Cover -0.62 0.33 -0.18 -0.12 0.19 0.38 -0.14 0.19
Aquatic Veg. Sub. Cover 0.09 -0.78 -0.01 0.43 0.37 -0.04 -0.02 0.11
Aquatic Veg. Col. Cover 0.29 -0.71 0.29 0.48 0.03 -0.07 0.15 0.00
No Substrate Cover 0.27 0.70 -0.12 -0.36 -0.42 0.00 0.10 -0.24
No Column Cover 0.13 0.62 -0.47 -0.44 -0.02 0.12 -0.19 -0.14
Average Channel Width 0.53 0.07 -0.69 0.06 0.19 0.23 0.10 -0.07
Oxygen Concentration 0.25 0.54 -0.60 0.26 -0.05 -0.16 0.18 0.26
% Boulder Substrate 0.47 0.29 0.35 0.65 0.01 0.11 0.21 -0.01
Riffle Area 0.50 0.39 0.26 0.63 0.01 0.17 0.22 -0.02
Depth 0.5-0.99 m -0.14 -0.38 -0.31 0.15 -0.66 0.39 0.23 0.16
% Cobble Substrate 0.47 -0.13 0.46 -0.12 -0.60 -0.22 0.07 -0.13
Depth 0-0.49 m 0.53 0.14 0.12 -0.08 0.60 -0.43 -0.23 -0.10
Water Temperature 0.17 -0.21 0.57 -0.05 -0.02 0.26 -0.03 -0.62
Depth > 1.5 m -0.56 0.29 0.34 -0.20 -0.07 -0.34 0.04 0.31
Channel Depth CV -0.26 0.47 0,34 0.00 0.55 -0.02 0.39 -0.13
Channel Width CV 0.05 -0.20 0.26 -0.52 0.48 0.13 0.43 0.09
% Silt Substrate 0.15 -0.25 -0.52 0.56 -0.12 -0.29 0.18 -0.04
Boulder Column Cover 0.36 0.33 0.25 0.51 0.15 0.31 -0.47 0.11
Oxygen Saturation 0.39 0.56 -0.42 0.28 -0.02 -0.10 0.23 -0.03
Boulder Substrate Cover 0.39 0.34 0.27 0.52 0.22 0.32 -0.38 0.14
Channel Length 0.42 -0.36 0.26 -0.37 0.04 0.55 0.17 0.14
Greatest Channel Width 0.54 -0.02 -0.49 -0.10 0.45 0.28 0.30 -0.12
% Pebble Substrate 0.55 0.24 0.48 -0.37 0.00 0.14 0.07 0.36
Eigenvalue 
% Total Variation

10.03
29.50

4.63
13.62

4.35
12.81

3.81
11.21

2.95
8.69

1.85
5.44

1.39
4.08

1.03
3.04

Only eigenvalues > 1 were retained. Values with loadings > |0.6| are in bold.
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Table 6a; Proximity matrix for the PC A axis I vs. PCA axis II scatterplot. For each 
secondary channel, the nearest neighbor secondary channel is in bold. The Euclidian 
distance is the square root of the sum of the squared differences between the PCA axis I 
and PCA axis II scores for each secondaiy channel.

Euclidian Distances

TCI TC2 B C l BC2 BC3 M l
TC I 2.161 1.087 2.925 2.298 1.954
TC2 2.161 1.825 2.293 2.199 2.767
B C l 1.087 1.825 1.850 1.212 1.099
BC2 2.925 2.293 1.850 0.726 1,683
BC3 2.298 2.199 1.212 0.726 0.991
M l 1.954 2.767 1.099 1.683 0.991

Table 6b: Proximity matrix for the PCA axis I vs. PCA axis III scatterplot. For each 
secondary channel, the nearest neighbor secondary channel is in bold. The Euclidian 
distance is the square root o f the sum of the squared differences between the PCA axis I 
and PCA axis III scores for each secondary channel.

Euclidian Distances

TCI TC2 B C l BC2 BC3 M l
TC I 1.282 3.194 2.790 2.225 2.081
TC2 1.282 1.913 2.167 1.868 1.569
B C l 3.194 1.913 2.562 2.784 2.462
BC2 2.790 2.167 2.562 0.675 0.710
BC3 2.225 1.868 2.784 0.675 0.340
M l 2.081 1.569 2.462 0.710 0.340
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Figure 5: Discriminant function analysis results for the first two discriminant functions. The first 
five PCA scores were used to create the two discriminant functions. Similar to the PCA 
scatterplots, B C l plotted with the floodplain channels (TCI and TC2) while M l plotted with the 
floodplain tributaries (BC2 and BC3).
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Table 7: Results from factorial ANOVA with Site as the fixed factor, D ate the random 
factor, and Variable as the response. B C l was excluded from the analysis due to 
incom plete data. Glide Area, Riffle Area, and CWD Area not included due to  low 
variability within sites over time. The variables Depth >1.5 and Boulder Column 
Cover were not included due to low frequencies. M easured variables were analyzed 
by secondary channel (Site) and sampling period (Date). For example, the % Sand 
Substrate varied by secondary channel although the amount o f  sand substrata in 
secondary channels did not change over time. Conversely, specific conductance 
varied significantly among secondary channels and was also significantly different 
over time. Results w ere used to conduct multiple contrasts. Bold figures indicate 
variable measurements were significantly different at the P < 0.05 level.

Variable Site Date
%  Sand Substrate < 0.0001 0.864
Specific Conductance < 0.0001 < 0.0001
Depth 1-1.49 m < 0.0001 0.277
%  Gravel Substrate < 0.0001 0.404
LW D Column Cover < 0.0001 0.635
Bank Cover* 0.049 0.264
LW D Substrate Cover < 0.0001 0.475
SWD Column Cover 0.004 0.177
Average Channel Depth 0.001 0.032
SWD Substrate Cover 0.002 0.053
Aquatic Veg. Sub. Cover* < 0.0001 0.060
Aquatic Veg. Col. Cover < 0.0001 < 0.0001
N o Substrate Cover < 0.0001 0.023
N o Column Cover 0.012 0.001
Average Channel W idth < 0.0001 0.141
Oxygen Concentration 0.004 0.001
%  Boulder Substrate* 0.039 0.135
Depth 0.5-0.99 m* 0.003 0.478
%  Cobble Substrate < 0.0001 0.037
Depth 0-0.49 m* 0.003 0.255
W ater Temperature 0.348 < 0.0001
Channel Depth CV < 0.0001 0.071
Channel W idth CV* < 0.0001 0.212
%  Silt Substrate < 0.0001 0.001
Oxygen Saturation 0.002 0.025
Boulder Substrate Cover* 0.685 0.884
Channel Length* < 0.0001 0.012
G reatest Channel W idth < 0.0001 0.292
%  Pebble Substrate* < 0.0001 0.846
PC I < 0.0001 0.547
PC2 < 0.0001 < 0.0001
PC3 < 0.0001 < 0.0001
*: Transformed variables were also weighted to meet the assumption of variance homogeneity 

required by ANOVA. Weight equaled |ix/(l/var(X)).



Table 8a: Multiple contrasts for secondary channel physicochemical variables. Secondary channel BCl was not included for the analysis due to 
incomplete data. The table includes variables that were significantly different among sites, but did not change significantly over time. See text for 
contrast equations. Channel comparisons denote multiple contrast results. For a particular variable, a significant contrast represents a statistically 
significant difference in the values of that variable measured at the contrasted secondary channels. For example. Ml had a significantly greater 
average channel width {P < 0:0001)than did TCI and TC2 for Contrast 1. Bold figures indicate contrasts significant at the? < 0.05 level.

Channel Comparisons
Physicochemical Variable Contrast 1 

P-values
Contrast 2 
P-values

Contrast 3 
P-values

Contrast 4 
P-values

Contrast 1 
Results

Contrast 2 
Results

Contrast 3 
Results

Contrast 4 
Results

% Sand Substrate 0.0608 0.1313 0.0087 <0.0001 TC2 > TCI TC1,TC2>BC2, BC3
% Gravel Substrate <0.0001 0.4615 0.0002 <0.0001 M1>TC1,TC2, BC2, BC3 TCI > TC2 BC2, BC3 > TCI, TC2
LWD Column Cover 0.0800 0.0006 <0.0001 <0.0001 BC3>BC2 TCI >TC2 TC1,TC2>BC2, BC3
LWD Substrate Cover 0.9817 0.0343 <0.0001 <0.0001 BC2 > BC3 TCI > TC2 TC1,TC2>BC2, BC3
SWD Column Cover 0.0355 0.4409 0.0706 <0.0001 TCI, TC2, BC2, BC3>M1 TC1,TC2>BC2, BC3
Channel Average Width <0.0001 0.0052 0.0001 0.0012 M1>TC1,TC2, BC2, BC3 BC2>BC3 TC2>TC1 BC2, BC3>TC1,TC2
Depth 0.5-0.99 m 0.7621 0.9031 0.7618 0.8894
Depth 0-0.49 m 0.8083 0.8838 0.9490 0.8927
Channel Width CV 0.5856 0.5705 0.9706 0.5470
Channel Greatest Width <0.0001 <0.0001 <0.0001 0.3484 TCI, TC2, BC2, BC3 > Ml BC2>BC3 TC2>TCI
% Pebble Substrate 0.6983 0.6118 0.6605 0.5268
Aquatic Veg. Sub. Cover 0.6321 0.7685 0.0523 0.9838 TC2 > TCI
PCI <0.0001 0.0099 0.0082 <0.0001 M1>TC1,TC2, BC2, BC3 BC2>BC3 TC2 > TCI BC2, BC3>TC1,TC2

LAO



Table 8b: Multiple contrasts for secondary channel physicochemical variables. Secondary channel BCl was not included for the analysis due to 
incomplete data. The table includes variables that were significantly different among sites and over time. See text for contrast equations. Channel 
comparisons denote multiple contrast results. For a particular variable, a significant contrast represents a statistically significant difference in the 
values of that variable measured at the contrasted secondary channels. For example, Ml had a significantly greater average oxygen saturation 
(P = 0.0049) than did TCI and TC2 for Contrast 1. Bold figures indicate contrasts significant at the P < 0.05 level.

Channel Comparisons
Physicochemical
Variable

Contrast 1 
P-values

Contrast 2 
P-values

Contrast 3 
P-values

Contrast 4 
P-values

Contrast 1 
Results

Contrast 2 
Results

Contrast 3 
Results

Contrast 4 
Results

Channel Depth CV < 0.0001 0.8076 < 0.0001 < 0.0001 M1>TC1,TC2, BC2, BC3 TCI >TC2 TC1,TC2>BC2, BC3
02 Saturation 0.0378 0.3214 0.3214 0.0892 M1>TC1,TC2, BC2, BC3
Channel Ave. Depth 0.0030 0.0144 0.0503 0.9293 TC1,TC2, BC2, BC3>M1 BC3 >BC2 TCI >TC2
Water Temp 0.0576 0.3333 0.3912 < 0.0001 BC2, BC3 > TCI, TC2
02 Concentration 0.0191 0.1928 0.3437 0.3801 M1>TC1,TC2, BC2, BC3
Specific Conductance 0.0843 0.0029 0.4179 < 0.0001 BC3 >BC2 BC2, BC3 > TCI, TC2
SWD Substrate Cover 0.7312 0.4115 0.6885 < 0.0001 TC1,TC2>BC2, BC3
% Silt Substrate 0.3286 0.0003 0.0007 0.0037 BC3 >BC2 TC2>TC1 BC2, BC3>TC1,TC2
% Cobble Substrate 0.0001 0.3477 0.0238 < 0.0001 TCI, TC2, BC2, BC3>M1 TCI > TC2 BC2, BC3 > TCI, TC2
Depth 1-1.49 m 0.1490 0.0027 0.0033 < 0.0001 BC3 >BC2 TC1>TC2 TC1,TC2>BC2, BC3
No Substrate Cover 0.0117 0.5835 0.0001 0.0017 M1>TC1,TC2, BC2, BC3 TCI >TC2 BC2, BC3>TC1,TC2
No Column Cover 0.0010 0.0249 0.0948 0.6440 Ml >TC1,TC2, BC2, BC3 BC2>BC3
Channel Length 0.9284 0.9137 0.9424 0.9914
Aquatic Veg. Col. Cover 0.0009 0.0024 < 0.0001 < 0.0001 TC1,TC2, BC2, BC3>M1 BC3 >BC2 TC2>TC1 BC2, BC3 > TCI, TC2
PC2 < 0.0001 0.0017 < 0.0001 0.0174 M1>TC1,TC2, BC2, BC3 BC3 >BC2 TCI >TC2 BC2, BC3>TC1,TC2
PC3 0.0048 0.0119 < 0.0001 0.0203 TC1,TC2, BC2, BC3>M1 BC3 >BC2 TCI >TC2 BC2, BC3 > TCI, TC2



Table 9: Mean physicochemical variables measured at secondary channel sample sites and an adjacent location on the Bitterroot River. Mean values were 
compared across all paired sampling periods using Wilcoxon signed rank tests (Z-statistic). Bold f-values represent significant differences between secondary 
channel values and paired Bitterroot River values at the P < 0.05 level.

Floodplain Tributaries

Secondary Channel Sample Sites 

Braid Anabranches Floodplain Channels
Variable Bitterroot

River
BC2
(n=6)

Bitterroot
River

BC3
(n=5)

Bitterroot
River

Ml
(n=6)

Bitterroot
River

BCl
(n=4)

Bitterroot
River

TCI
(n=6)

Bitterroot
River

TC2
(n=6)

Water Temp. (T )
mean 11.19 11.02 10.59 10.36 10.32 10.27 5.75 5.81 10.13 10.63 9.05 9.22
SD 4.18 3.61 4.26 3.27 5.20 5.17 3.25 3.77 5.13 4.06 4.79 2.58

Range
Z
P

4.7-15.9 5.3-15.1
-0.734
0.463

4.8-16.1 5.4-13.9
-0.405
0.686

5 -17.7 4.9-17.6
-0.135
0.893

1.8-10.2 1.9-10.3
-0.730
0.465

2.4-15.8 4.7-14.6
-0.734
0.463

1.9-15.8 5.7-13.0
-0.507
0.612

Oxygen Cone. 
(mg/L)

mean 8.08 7.12 8.59 8.08 8.91 8.92 9.95 10.38 8.70 6.74 9.39 6.0
SD 1.61 1.52 1.16 1.52 1.79 1.73 0.84 1.64 2.79 2.39 2.51 1.81

Range
Z
P

5.5 -10.2 5.2-8.9 
-2.201 
0.028

7.3 -10.4 6.9-10.4
-2.023
0.043

8.1-12.2 7.2-12
-0.674
0.500

8.8-10.8 8.72-12.9
-0.365
0.715

4.7-12.4 4.3-94
-2.201
0.028

7.1-13.7 4.5-9.5 
-2.366 
0.018

Specific Cond. 
(mS/cm)

mean 86.23 163.51 76.40 232.42 98.35 102.04 58.23 58.32 64.45 58.79 63.99 55.44
SD 35.13 65.69 34.37 29.50 27.5 26.27 19.36 19.21 19,95 14.88 19.39 12.91

Range

Z
P

28.5-139.1 30.9-205.1

-2.201
0.028

33.8-121.6 188.2-239.3

-2.023
0.043

52.2-
134.6

60.13-
138.5
-2.201
0.028

26.7-78.5 27.0-78.6

-0.730
0.465

9.7-12.4 31.0-73.5

-1.572
0.116

30.7-87.7 32.4-75.6

-1.859
0.063



Table 10; Mean physicochemical variables measured at paired secondary channel sample sites. Mean values were compared across all paired 
periods using Wilcoxon signed rank tests (Z-statisticV Bold f-values represent significant differences between compared values at the P < 0.05 level.

Secondary Channel Sample Sites
Variable BC2 (n=5) BC3 (n=5) BCl(n=4) Ml (n=4) TCI (n=6) TC2 (n=6)

Water Temperature (®C) 
Mean 

SD 
Range 

Z 
P

11.343
4.002

5.3-16.1

11.075
3.405

5.4-14.7
-0.524
0.600

7.698
5.335

1.9-15.3

9.156
4.793

4.9-16.4
-1.782
0.075

11.442
5.307

4.7-19.5

9.813
2.250

6.7-13.0
-0.943
0.345

Oxygen Saturation (%) 
Mean 
SD 

Range 
Z 
P

64.765 
11.893 

52.3 -  75.6

72.583
10.948

58.7-84.6
- 2.201
0.028

75.956 
5.668 

66.0 -  79.9

77.006
12.068

64.5-94.9
-0.314
0.753

63.317 
15.070 

44.0 -  80.7

52.657 
16.531 

40.1 -82.7 
-1.782 
0.075

Oxygen Cone. (mg/L) 
Mean 

SD 
Range 

Z 
P

7.120 8.002
1.512 1.370

5.2-8.9 6.9-10.4
-1.992
0.046

9.628
2.352

6.6-12.9

8.992 
2.069 

6.3 -12.0 
-1.363 
0.173

7.053 5.970
2.109 1.981

4.6-9.3 4.4-9.5
-1.572
0.116

Specific Cond. (mS/cm) 
Mean 

SD 
Range 

Z 
P

160.202
64.934

30.9-205

230.798
26.683

188.2-260.1
- 2.201

0.028

64.922
24.233

27.0-91.4

98.280 
26.712 

60.1 -  133.6 
- 2.201 

0.028

57.478
13.617

31.0-66.2

52.085
10.264

32.4-60.3
-1.572
0.116



Chapter 3

Bitterroot River Secondary Channel Fish Community 
Diversity, Behavior, and Microhabitat Use

Introduction

Resource partitioning by stream fishes has long garnered interest among aquatic 

ecologists. Schoener (1974) is often credited as the first to review species habitat 

requirements described in the terrestrial literature. A groundswell of studies in the last 

twenty years has investigated the importance of habitat use in aquatic systems. For many 

species, these investigations are essential to understanding the studied organism’s life 

history and microhabitat needs. With increasing human development and related 

alteration of aquatic systems, researchers are now called upon to describe microhabitat 

use to conserve aquatic habitats that may be critical for maintaining ecologically 

important or threatened fish populations (Moyle and Baltz 1985; Baltz et al. 1987; Lobb 

and Orth 1991; Sabo and Orth 1994; Gido and Propst 1999).

Secondary channels provide diverse microhabitats near the mainstem river 

channel that are often used by fishes to avoid environmental extremes (Kwak 1988; Gido 

et al. 1997; Allouche et al. 1999). Additionally, these sites may be critical nursery areas 

for young-of-year (yoy) and juvenile fish requiring a range of shallow, low velocity 

habitats with protective cover (Sedell et al. 1990; Cavallo 1997; Gido et al. 1997; 

Gadomski and Barfoot 1998). Understanding the distribution of native and nonnative 

fish species using secondary channel microhabitats provides insight to microhabitat 

partitioning, microhabitat use overlap, and competition among species and age classes 

(species-age classes).

54
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partitioning, microhabitat use overlap, and competition among species and age classes 

(species-age classes).

The goal of a microhabitat requirement study is to better understand a species’ 

niche, or the fine-scale resources that a species selects or avoids at a point in time (See 

Baltz 1990). The frequency of a species-age class in space suggests a preference for the 

particular variables characterizing that microhabitat. Since individuals belonging to a 

species-age class are likely to require similar environmental conditions for growth and 

reproduction, they will likely select similar microhabitats. To unravel the complex 

ecology of fish microhabitat use, experiments are carried out both in the field and in the 

laboratory. Field observations provide a glimpse of fish behavior in their natural 

surroundings while laboratory experiments allow the researcher to control the organism’s 

environment (Baltz 1990). Water temperature (Baltz et al. 1982; Bonneau and 

Scamecchia 1996), water velocity (Moyle and Baltz 1985), food supply (Greenberg 

1991), competitive interactions (Dunham et al. 1999), and available microhabitat 

characteristics (i.e. depth and cover) (Baltz and Moyle 1984; Grossman and de Sostoa 

1994) affect microhabitat selection. Although controllable in laboratory experiments, 

these variables are generally beyond the field researcher’s manipulation. Combining 

field observations and laboratory research leads to a better understanding of organism 

behavior and resource requirements.

The distribution of fish within and among microhabitats is often related to an 

individual’s life history stage (Baltz and Moyle 1984; Naslund et al. 1998; Snodgrass and 

Meffe 1999). Young-of-year and juvenile age classes generally require habitats with low
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velocity refuges, high productivity, and ample cover. Optimal nursery sites are diverse 

environments that provide a range of microhabitats beneficial to young fish as their 

requirements for food and protection change (Sabo and Orth 1994). As fish grow, their 

swimming ability improves, potential prey sizes increase, and their vulnerability to 

predation decreases. Considering these ontogenetic shifts in resource requirements, adult 

fish generally use a different suite of habitats and microhabitats compared to juveniles. 

For adult fish, deep pools and complex cover provide refuge from terrestrial predators as 

well as environmental extremes. Depending on the individual’s developmental stage and 

available habitat, microhabitat selection by species-age classes may vary considerably 

across aquatic environments.

Microhabitat use and behavior may also vary by time of day. Day-night (diel) 

movements within and among microhabitats provide insights regarding fish resource 

needs. During the day, juvenile fish often prefer dense cover to avoid piscivores (Lima

1998). Juveniles may then move into shallower water at night when fewer avian and 

terrestrial predators are active but aquatic predators continue to feed. Such movements 

may reflect species-age class site selection for predator avoidance, foraging, competitive 

release, or thermal preference to optimize growth.

Organism behavioral observations often overlap with microhabitat preference 

studies since microhabitat selection can be a reflection of behavioral requirements 

(Fausch and White 1981; Noakes and Baylis 1990). For example, stream salmonids 

maintain different feeding and resting locations. Feeding positions are characterized by 

low velocity water adjacent to faster currents. Fish maximize energy consumption by
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making active forays into the current to capture invertebrate drift and then return to lower 

velocity locations to minimize metabolic energy expenditure (Fausch and White 1981). 

Resting positions may be associated with stable overhead structure that provides 

protective cover from predators.

The purpose of the following section is to describe composition and microhabitat 

use of fish communities inhabiting Bitterroot River secondary channels. The following 

questions will be addressed; 1) Which fish species-age classes use the selected secondary 

channels? 2) Do species-age classes exhibit substantially different microhabitat 

preferences? 3) How does diel behavior vary among species-age classes?

Methods and Materials

Study Site

The Bitterroot River in western Montana flows north from the confluence of the 

East and West Forks near Conner, Montana, to its confluence with the Clark Fork River, 

8 km west of Missoula, Montana. Flowing approximately 134 km, the Bitterroot River 

drains a 7,288 km^ (at Missoula USGS gauge) watershed, supporting agricultural land, 

pasture, rural and urban development, and upland forest systems. Tributaries originating 

in the Sapphire Mountains to the east, and the Bitterroot Mountains to the west, 

contribute much of the runoff that feeds the Bitterroot River.

The central Bitterroot River extends from Hamilton to Stevens ville. An 

expansive alluvial floodplain created by a network of abandoned and active river 

channels typifies this section of the river. Braided channel reaches and sections of
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anastomosis reflect the transitory relationship between river discharge and sediment 

transport in the central Bitterroot River. The resulting floodplain mosaic provides a 

diversity of secondary channel habitats that vary by hydrology, channel morphology, 

water temperature regime, and mainstem influence. Floodplain channels are sites of 

groundwater surfacing during periods o f low water and are conduits for high flows during 

spring runoff. A mobile bedload and rapid hydrographic fluctuations during spring runoff 

contribute to the instability that characterizes the central Bitterroot River.

Single-channel reaches and occasional areas of anastomosis mark the channel 

pattern of the lower valley that extends from Stevensville to Missoula. As the Bitterroot 

River nears its confluence with the Clark Fork River, the channel assumes a meandering 

single channel pattern, confined by the narrowing of the lower Bitterroot Valley and 

extensive channel stabilization projects. Through this reach the river follows a more 

predictable course (See Chapter 2 for a complete site description).

Sample Site Selection Criteria

The central and lower sections o f the Bitterroot River are characterized by single 

and multiple channel reaches. Typical of an anastomosing river, the central Bitterroot is a 

network of braided channels creating a diversity of aquatic habitats. Secondary channels 

formed both historically and recently by the meandering of the Bitterroot River, vary in 

morphology and seasonal flow pattern. This variability is created during high water 

periods when the primary Bitterroot River captures off-charmel floodplain habitats. 

Fluvial processes shape channel geometry by scouring and depositing sediment and
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organic material relative to the channel. Although created during the brief high water 

period, the affected floodplain channels reflect these geomorphic changes until the next 

runoff period.

Numerous secondary channels in the central Bitterroot Valley permitted the 

selection o f sample secondary channel reaches based on four specific criteria. The first 

criterion, location, required that sites be distributed over a reasonably large area in order 

to sample a variety of habitats and species, but over an area small enough to permit 

sampling all sites within seven days. Hypothetically, the most downstream site would 

host more fish species than the most upstream site based on the species-area theory 

(Sheldon 1968; Gorman and Karr 1978; Horwitz 1978; Angermeier and Schlosser 1989). 

Additionally, the most downstream site is geographically closest to the Clark Fork River, 

a source of native and introduced fish species to the Bitterroot River fish assemblage. 

These geographic stipulations resulted in the establishment of the designated study area 

between Tucker Crossing and Missoula.

Second, in order to investigate whether geomorphicaUy different secondary 

channel types elicit dissimilar biological responses with respect to resident fish 

populations, the study area needed to include several distinct secondary channel types. 

Gaeuman’s (1997) classification of Bitterroot River secondary channels relied on 

geomorphic channel characteristics (See Chapter 2). Though concerned with how form 

and processes influence the evolution and persistence of channel stability, Gaeuman’s 

classification did not consider a biological component. By grouping secondary channels 

as braid anabranches, floodplain channels and floodplain tributaries, fish sampling results
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may provide insights regarding the distribution of species and age classes using these 

different types of secondary channels.

Third, each site had to be highly connected to the Bitterroot River so fish could 

access secondary channels throughout the year. In order to investigate fish use of 

secondary channel habitats, a sample reach was defined as the first 70 m-100 m section of 

a secondary channel from the secondary channel’s confluence with the Bitterroot River to 

an upstream geomorphic feature.

Fourth, each site had to be at least 0.3 m deep and wadable throughout the year to 

provide adequate fish habitat and survey accessibility. Following these four criteria, six 

secondary channel sample sites selected between Tucker Crossing and Missoula by 

August 1998 (Figure 1).

Selected Sample Sites

See Chapter 2 for complete sample site descriptions.

Sampling Design and Methods 

Snorkeling Surveys

Snorkeling surveys were conducted to investigate fish species-age classes using 

Bitterroot River secondary channels (Table 1). Snorkeling is less costly and more 

accurate than other methods of sampling fish when fish are not disturbed prior to 

observation (Baltz 1990; Nielsen 1998; Mullner et al. 1999). Snorkeling is also more 

effective than backpack electrofishing when the habitat contains deep water. Sample



61

secondary channel reaches were snorkeled seven times between July 1998 and September 

1999. Sampling effort was concentrated from July through September when conditions 

were most conducive to sampling (low water, high clarity). Sites were also snorkeled 

during winter and prior to spring runoff to investigate seasonal fish habitat use. Most 

sample reaches were snorkeled at least once during each of the sampling periods. Day 

and night snorkeling were conducted to investigate diel microhabitat use and fish 

behavior. Day surveys were completed at least two hours before sunset while night 

surveys commenced at least one hour after the onset of darkness. A Princeton Tec dive 

light and headlamp were used for night snorkeling surveys.

For each survey, the snorkeler investigated all habitats within the sample reach. 

To ensure a consistent level of effort among sampling dates and sites, snorkeling routes 

were established for each sample reach. Although snorkeling effort varied by diel period, 

sample period, and sample reach, snorkeling effort usually lasted 45 to 60 minutes. The 

number of fish encountered, water temperature, and water clarity affected sampling 

effort. Water clarity in the secondary channels was generally good (visibility > 3 m), 

though clarity varied by sample period and among sites.

The snorkeler moved in an upstream direction to minimize fish disturbance (Baltz 

1990). The locations o f encountered fish were marked with a flagged and numbered steel 

washer. The location of fish found in close proximity to one another 

(< 0.5 m) and using the same microhabitat features were marked with a single washer. 

For each washer the following variables were recorded with a grease pencil on a PVC 

tablet worn on the snorkeler’s left arm; ring number, fish species, number of individuals.
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size of individuals, and the individual’s activity. The PVC tablet was organized vsith a 

ruler at the bottom, a list o f the common species’ abbreviations in a row across the top, 

and five total length size classes listed down the tablet’s side. The length of observed 

fish was estimated relative to the ruled PVC tablet. Size classes included 50-74 mm, 75- 

99 mm, 100-149 mm, 150-199 mm, and 200+ mm. Fish smaller than 50 mm were not 

recorded due to their great abundance and the difficulty in identifying age-0 individuals 

of some species. A vertical or horizontal line drawn adjacent to the ring number on the 

tablet denoted fish activity. Activity levels included feeding (line preceding the number), 

swimming (line following the number), resting (line below number), or holding (line 

above number). A resting fish was quiescent near the substrate or in the water column. 

A resting fish may also be feeding opportunistically by limiting their energy expenditure 

until a prey item is encountered. However, because identifying this feeding mechanism 

was beyond the scope o f this study, an encountered fish that was resting was considered 

to be a fish exerting minimal energy. Holding fish were active but maintained a 

consistent position in the water column.

To minimize disturbance to the resident fish assemblage, microhabitat use for all 

surveys was mostly measured the following day. A 400 cm^ area located around each 

ring was evaluated as the microhabitat used by the fish (Grossman and Freeman 1987). 

Variables including water depth, velocity at 60% total depth, substrate types, substrate 

cover, water column cover, and water temperature were measured in the 400 cm^ area. 

Initially, water velocity was classified as “flowing” or “non-flowing”. Non-flowing or 

minimal flow habitats such as depositional pools were registered with a “ 1”. Habitats
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with greater flows typifying erosive glides and riffles were recorded as a “2”. A Marsh- 

McBimey Model 2000 Flow-Mate portable flowmeter was later used to measure flow 

velocities. Similarly, an Atkins digital thermocouple thermometer was used to measure 

point temperatures for surveys conducted after December 1998.

Habitat Survevs

To compare microhabitat availability and microhabitat use, two sampling 

procedures were instituted. First, point sampling was used to obtain data from specific 

locations or where a few measurements were adequate to characterize a reach 

(temperature, specific conductance, and oxygen saturation). Secondly, point-transect 

sampling was used where conditions, such as depth, were expected to vary across a reach 

in a regular manner. Two measuring tapes were used to create a psuedo-lattice over the 

study area for the point-transect sampling. A 100 m tape was extended from each site’s 

downstream to upstream extent. Eight to 12 transects were then regularly spaced 

perpendicular to the channel. Depth, substrate type, substrate cover, and water column 

cover were recorded every 1-2 m across the channel depending on channel width. 

Approximately 100 points were recorded for each secondary channel. Temperature was 

also recorded during the 1999 sampling. Depth was measured with a 1.5 m calibrated 

wading staff. The substrate was evaluated by picking up a single particle at each lattice 

point. The particle’s secondary axis was used to group the particle according to one of 

six categories: silt (to touch), sand (<6mm), gravel (6<16 mm), pebble (17<64mm), 

cobble (65<265 mm), boulder (>265 mm). Cover types included no cover, aquatic
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vegetation, bank, small woody debris (<1 m in length, <0.3 m in diameter), large woody 

debris ( >1 m in length, >0.3 m in diameter), and boulder. Cover types were defined as 

either water column cover or substrate cover to account for material that may have 

provided cover high in the water colmnn but not on the substrate, and vice versa. Water 

column cover exceeded at least 1/3 of the channel depth if  it originated on the substrate. 

Other material, such as woody debris hanging into the water from the bank, was also 

considered a water column cover structure. Total coarse woody debris area and riffle 

surface area, were also estimated for each sample site.

A YSI Model 85 Handheld Dissolved Oxygen, Conductivity, Salinity and 

Temperature System was used to evaluate water parameters in the sample reaches and the 

adjacent Bitterroot River (YSI 1996). Instrument calibration and measurements were 

recorded before 0900 each sampling day to establish a consistent protocol and to 

minimize photosynthetic effects on oxygen saturation and oxygen concentration readings. 

Using this methodology, measurements were completed prior to direct sunlight reaching 

the sample site. Five to seven sets o f measurements were recorded for each sample site 

to assess within-site environmental variation. An additional three to five sets of 

measurements were recorded in the main channel in order to compare secondary channel 

and main channel water chemistry. A complete measurement set required under 20 

minutes to complete.

One Onset Hobotemp continuous temperature recorder was deployed in each of 

the sample secondary channels and in the Bitterroot River to investigate annual water 

temperature patterns. Hobos were attached with steel airplane cable at a depth of 20 cm



65

to large woody debris in a minimally exposed area of the site to reduce direct sunlight 

effects on recorded temperatures. Equipment loss and equipment malfunction resulted in 

incomplete data collections for four sites and the main channel. Year long temperatures 

were recorded for TC2 and BC3.

Data Analysis

Fish Community Diversity

Species richness and the Shannon-Weaver diversity index (H’) were used to 

compare fish richness and evenness among the secondary channels and channel groups 

(Figure 2) (Shannon and Weaver 1949). Species richness is a simple count of species in 

a reach while evenness measures the distribution of individuals among species. The 

Shannon-Weaver index gives less weight to rare species than to common ones, and is one 

of several indices that are useful for comparing biological communities (Ricklefs 1990; 

Kohler and Hubert 1993).

Since H is roughly proportional to the logarithm of the number of species in the 

sampled community, it will be expressed as e^, which is proportional to the number of 

species in the sample (Ricklefs 1990). For example, when each sampled species is 

equally abundant (evenness), e^ will equal the number of species in the sample (Ricklefs 

1990).
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H = -E Pi In Pi
/=1

e  is proportional to the number of species

Where: pi is the frequency o f a species i in a sample 
S  is the number of species in a sample 
H is the Shannon information coefficient

Figure 2: The Shannon-Weaver Diversity Index measures species richness and evenness based on the 
frequency o f individual species in a sample.

Microhabitat Use

An electivity index was used to evaluate microhabitat use by fish species-age 

classes inhabiting Bitterroot River secondary channels. The electivity index provides a 

measure of an organism’s preference, avoidance, or indifference relative to an 

environmental variable such as microhabitat depth (Baltz 1990). Electivities are 

calculated by determining an organism’s use of a resource relative to the resource’s 

availability. Electivities for water depth, substrate type, water column cover, and 

substrate cover were calculated using Jacobs’ (1974) formula as presented in Moyle and 

Baltz (1985) (Figure 3). Microhabitat use data from the summer sampling periods 

(August and September, 1998 and 1999) were utilized in the analysis to limit inter-season 

variability. To generate the microhabitat electivities, variables corresponding to “used” 

microhabitats were measured where a fish was located. The point sampling data 

comprised the range of “available” microhabitats that fish could occupy. All 

microhabitats measured in a space were assumed to be available to the organism.
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Available microhabitats were averaged over the sites and summer sample periods for 

each individual species-age class. Thus, available microhabitats varied depending on 

where and when a fish species-age class was sampled. The nonparametric chi-square test 

was used to test for distributional differences among used and available microhabitat 

variables. Chi-square test use was limited by small sample sizes and by the low 

availability of some microhabitats in the sampled channels. Differences between used 

and available microhabitats were considered to be significant at the F  <0.05 level.

To identify environmental variables describing microhabitat use variation among 

fish species-age classes, stepwise discriminant function analysis was employed.

(r + p) -2rp

Where: r  is the proportion of the resource used by a species-age class 
p  is the proportion of the resource available in the environment 
D  is the electivity coefficient

Figure 3: The microhabitat electivity coefficient calculated to determine microhabitat preferential use by 
secondary channel fish species-age classes.

Descriptive discriminant function analysis seeks to exhibit differences among populations 

by means o f linear combinations of the measured variables (Williams 1983; James and 

McCulloch 1990). This analysis has been used to classify fish use of secondary channel 

habitats (Gido and Propst 1999) and stream microhabitats (Baker and Ross 1981; Baltz et 

al. 1987). For this comparison, species were categorized into two age classes (age-0 and
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age-04-) to account for age-related shifts in microhabitat use. Leave-one-out 

classification was used to determine which of the measured environmental variables 

accounted for the greatest amount of variation among species-age class microhabitat use. 

Species-age classes with less than 1% (6 fish) of the total number of fish sampled were 

dropped from the analysis. Depth was logio(x4-l) transformed while substrate 

percentages were arcsine-square-root transformed to better meet the model’s normality 

assumptions. The categorical variables, dominant substrate, water column cover, and 

substrate cover were converted to dummy variables for the model. Only variables that 

were significant {P < 0.05) were retained in the model. All statistics were calculated 

using Statistical Package for the Social Sciences (SPSS Inc., Version 8 for Windows, 

Chicago, IL, 1997, unpubl.).

Fish Behavior

Fish behavior was determined by observing encountered fish for a period of time 

while snorkeling. Fish were observed until they were disturbed by the snorkeler’s 

presence or until the snorkeler was confident of the fish’s behavior. Fish behavior was 

categorized as resting, holding, swimming, and feeding. “Resting” fish appeared to be 

inactive although this behavior may represent opportunistic feeding. A “resting” fish 

might be minimizing metabolic losses while using its sensory organ (lateral line) to detect 

prey items. Swimming and feeding fish displayed active movement. Behavior was 

evaluated for species-age classes that were commonly sampled. Species-age classes that 

were infrequently encountered were not evaluated since minimal information can be
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derived from small sample sizes. Histograms comparing the frequency of fish displaying 

the four evaluated behaviors were produced to compare species-age class behavioral 

differences qualitatively.

Results

Habitat Availability

The availability data for water depth, substrate, water chemistry, and cover types, 

indicate that a wide range of habitats were available in each secondary channel. Primary 

differences among channels include channel discharge, cover type and abundance, 

substrate distribution, and channel size (See Chapter 2). The braid anabranch and 

floodplain tributaries were characterized by moderate flows while the Tucker Crossing 

floodplain channels were lentic environments. TCI, TC2, and M l contained similar 

amounts of CWD cover, whereas cover in the BC2 and BC3 channels was mainly aquatic 

vegetation and bank cover. BCl had minimal cover in the study area. Substrata 

distribution varied by channel as well as within individual channels. Sand substrate was 

most common in TC2 and BCl. M l and BC2 had a range of sediments while BC3 and 

TCI had coarser substrates. The braid anabranch channels were the widest of the studied 

channel types. Mean total depths were similar for the channels though the distribution of 

depth categories varied. TCI exhibited the deepest habitat (>1.5 m) over the sampling 

period while M l and BC2 had similar average depths.

Within-channel habitat and microhabitat differences were also apparent. Water 

velocities were variable in four of the six sites. Surface water in TCI and TC2 lacked
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measurable velocity. Conversely, BCl, BC2, and M l had a range of water velocities 

associated v^th low gradient riffles, glides, and channel margin pools. BC3 was a nearly 

continuous riffle-glide with minimal pocket water associated with a midchannel island. 

Patchy distributions of stable CWD provided fixed cover while aquatic vegetation and 

small woody debris varied seasonally and provided more transient cover. Water 

chemistry differed among channels while water temperatures were similar among sites in 

a given period.

Fish Community Composition

Night snorkeling results were used to compare species composition for each 

channel and period since more fish were generally observed during night surveys than 

during day surveys (Table 2). Fish community composition varied both by channel and 

channel groups although trends in presence and abundance patterns were difficult to 

detect (Table 3). Species diversity was greatest in TCI (e^, range; 3.87, 3.30-4.22) and 

peaked during the September sampling periods (Table 4). Species diversity was greatest 

in the floodplain channel group and least in the floodplain tributaries, while braid 

anabranches exhibited intermediate species diversity, although none of these results were 

significantly different. Diversity was lowest during the winter sampling, perhaps due to 

reduced sampling effort or behavioral changes by fishes during winter.
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Microhabitat Electivities

Depth, substrate, and cover use by the native and introduced fish species can be 

generalized as follows. (1) Species-age classes utilized a wide range of conditions 

depending on microhabitat availability and diel period. (2) YOY and juvenile fish 

occupied shallower, lower velocity microhabitats at night than did adult fish of the same 

species (Figure 4). (3) Adult salmonids preferentially selected deeper microhabitats

(relative to available depths) usually associated with woody debris or overhanging bank 

cover. (4) Adult salmonids occurred in a range of water velocities depending on activity 

level and available microhabitat. (5) Interspecific overlap in microhabitat use was 

common, though intraspecific microhabitat use differences were apparent among age 

classes.

Diel microhabitat use differed for some species-age classes sampled in the 

secondary channels. Adult salmonids observed during both day and night snorkeling 

selected similar microhabitat depths. Brown trout {Salma truttd) and rainbow trout 

{Oncorhynchus mykiss) strongly selected bank and large woody debris cover (Figure 4a 

and Figure 4b). Brown trout and rainbow trout also used a range of substrates though 

gravel and cobble were strongly selected.

Mountain whitefish {Prosopium williamsoni), displayed distinct diel microhabitat 

use. During the day, YOY fish inhabited moderately deep microhabitats (40-90 cm) 

characterized by coarse substrates and minimal CWD cover (Figure 5a). At night, YOY 

fish were commonly observed in shallow riffles and riffle margins but rarely in deep sites 

(Figure 5b). At night, YOY fish did not select the measured cover categories although
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overhead broken water and substrate intersticies seemed to be adequate cover sources. 

Age-1+ mountain whitefish were found in deeper microhabitats (80-110 cm) with several 

substrate types. Similar to the YOY fish, older mountain whitefish selected LWD 

substrate cover during the day but did not select cover structure at night.

Redside shiner (Richardsonius balteatus), a small cyprinid species found in lentic 

habitats, selected shallow microhabitats associated with a range of substrates and cover 

structure. Diumally, redside shiner predominantly selected sand and pebble substrates 

near aquatic vegetation, banks, and CWD (Figure 6a). At night, fish occupied silt 

substrate sites with CWD (Figure 6b). Fewer fish used dense cover at night compared to 

day locations.

The second cyprinid inhabiting the Bitterroot was the northern pikeminnow 

{Ptychocheilus oregonensis'). YOY fish were not recorded due to their small size 

although they were extremely abundant in the TCI and M l channels. On some day 

dives, northern pikeminnow used complex CWD in TCI but was also found midchannel 

and away from cover on other day dives (Figure 7a). This species preferred finer 

substrates especially at night when age-1 (juvenile) fish inhabited silt-bottomed shallow 

channel margins (Figure 7b). Juvenile and adult fish varied cover use during the 

sampling periods. At night adults of this species inhabited the middle portion of the water 

column in moderately deep pools while detectable YOY and juvenile fish preferred 

channel margins with woody debris cover.

Two catostomids comprised the last two commonly encountered species. 

Longnose suckers (Catostomus catostomus) and largescale suckers (C macrocheilus)
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were secretive during the day and inhabited dense woody debris aggregations. At night, 

YOY and juvenile suckers moved into shallow channel margins characterized by fine 

substrates and patchy woody debris (Figure 8). Alternatively, adult fish preferred deeper 

microhabitats primarily away from cover. Largescale suckers were seen most often in 

TCI, M l and BC2. Longnose suckers are less populous than largescale suckers in the 

Bitterroot River and were not encountered as frequently during snorkeling (Figure 9). 

The few fish that were encountered appeared to select microhabitats similar to selected 

by largescale suckers.

Discriminant Analysis and Microhabitat Use

Stepwise discriminant function analysis indicated that four of the ten variables 

that were entered into the model significantly contributed toward discriminating 

microhabitat use among the eleven species-age classes (Table 5). The first two axes 

accounted for 76.4% of the variation in microhabitat use among the species-age classes. 

Depth and substrate cover presence/absence were most strongly associated with Axis I 

and Axis II, respectively. Adult microhabitat use was most strongly explained by the 

depth variable (Axis I) (Figure 10). YOY and juvenile fish separation was explained 

similarly by both axes. Using the leave-one-out classification, the model correctly 

predicted the proper species-age class 39% of the time. This result is comparable to other 

studies that successfully classified fish groups 23.4% (Gido and Propst 1999) and 62% 

(Baker and Ross 1981) of the time, respectively.
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Diel Fish Behavior

When observing fish in their natural environment it is often difficult to determine 

if they are behaving naturally or if  their activity level reflects the presence of the 

snorkeler. Fish that were resting at night were easily approached. Other fish that swam 

in a small area or held position in the water column may have been reacting to the 

observer. Also, some fish such as mountain whitefish were at times attracted to the 

snorekeler’s dive light during nocturnal dives. Efforts were made to limit influencing the 

observed fish’s behavior though the snorkeler’s presence likely affected some fish.

Diel behavioral differences varied by species and age classes (Figures 11-15). 

Nocturnal activity was limited for most species although adult mountain whitefish and 

rainbow trout frequently fed during both diurnal and nocturnal periods. During the day, 

YOY and juvenile fish often inhabited areas of thick cover and exhibited minimal 

activity. As stated previously, few largescale suckers were observed during the day 

because they inhabited complex cover. At night, most individuals were found “resting” 

either close to the substrate or in the lower third of the water column. Mountain 

whitefish YOY exhibited the greatest behavioral differences between nocturnal and 

diurnal periods with most fish feeding during the day and resting at night.

Discussion

Secondary Channel Habitat Use

The importance of secondary channels in floodplain rivers is increasingly 

apparent as ecologists investigate lateral channel habitat use by riverine fish communities
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(Kwak 1998; Cavallo 1997; Gido and Propst 1999). Extensive studies in both the 

temperate and tropical regions (Welcomme 1979; Allouche and Teugels 1998; Merigoux 

et al. 1999) have elucidated the use of lateral floodplain channels as spawning sites, 

nursery habitats, and high water réfugia for fish inhabiting the primary river channel. In 

highly connected river-floodplain systems, species exchange between the primary 

channel and off-channel habitats may occur at multiple temporal scales (Gido and Propst

1999).

At the diel level, fish move from the mainstem into secondary channels to exploit 

feeding sites or to occupy low velocity resting locations. Seasonally, fish may utilize 

these secondary channels to minimize exposure to suboptimal mainstem conditions. 

Periods o f elevated runoff (Gido and Propst 1999) or unfavorable water temperatures 

may promote migrations into secondary channels until mainstem conditions improve.

Secondary channels may also be critical for fish to complete their life histories. 

In central Bitterroot River secondary channels, fish communities observed during 

snorkeling surveys were often represented by abundant populations of YOY fish, but 

relatively few adult fish. This differentiation was most pronounced with native species. 

However, for introduced brown trout and rainbow trout, adults were frequently 

encountered although YOY fish were rarely seen during snorkeling. Aside from 

mountain whitefish, YOY salmonids were rarely found in highly connected secondary 

channel reaches; however, YOY brook trout {Sahelinus fontinalis) and brown trout were 

sampled in upstream reaches of four secondary channels, especially TC2 (See Chapter 4). 

The absence of complex CWD in the TC2 snorkeling reach may have limited the
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downstream range of YOY fish particularly when large piscivorous adult brown trout and 

brook trout were present.

The distribution of native species-age classes suggests that highly connected 

secondary channels are used as nursery habitats by YOY fish while older fish emigrate 

from these sites into other habitats while the secondary channels and the Bitterroot River 

are connected. Snodgrass and Meffe (1999) observed a similar absence of adult fish in 

relation to abundant YOY fish in blackwater stream fish assemblages utilizing beaver 

ponds. In the Colorado River basin, YOY Colorado pikeminnow used shallow ephemeral 

backwaters as nursery habitats after being transported from emergence areas while adults 

selected alternative habitats (Tyus and McAda 1984). Similarly, Gido et al. (1997) found 

that adults of abundant San Juan River fish species utilized mainstem habitats for 

spawning, while juvenile and subadult fish mainly occupied secondary channel habitats. 

The authors further speculated that secondary channel fish communities are influenced by 

fish movement between secondary channels and the primary channel (Gido et al. 1997).

Spawning also occurs in secondary channels. Fall movement of brown trout is 

pronounced in the BC2 and BC3 channels (J. Johnston, personal communication) as fish 

leave the Bitterroot and migrate to upstream floodplain tributary springs. One spawning 

redd was seen in TC2. Abundant age-0 brook trout downstream of the spawning redd the 

following spring suggested that the redd was produced by brook trout.
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Secondary Channel Fish Communities

Complex interactions among fish community members complicate the 

understanding of individual species-age class microhabitat preferences and behavior. 

Native fish assemblages of the Northern Rocky Mountain region, less species diverse 

than assemblages inhabiting rivers east of the Continental Divide, usually contain 

morphologically diverse species. Native trout {Salmo^ Salvelinus^ or Oncorhynchus), 

sucker {Catostomus), sculpin {Cottus), and dace {Rhinichthys) often constitute 

assemblages inhabiting North American coldwater streams (Moyle and Vondracek 1985). 

In the Bitterroot River, three additional cyprinids complete the native fish community. In 

addition to the native assemblage, introduced brown trout, brook trout, and rainbow trout 

successfully inhabit a range of environments in both the mainstem and floodplain 

channels and have likely displaced westslope cutthroat trout {O. clarki lewisi) from some 

habitats (See Chapter 4). Other introduced fishes, including yellow perch {Perea 

flavascens), northern pike {Esox lucius), pumpkinseed {Lepomis gibbosus), largemouth 

bass {Micropterus salmoides), and black bullhead {Ictaluras melas) inhabit less- 

connected Bitterroot River floodplain aquatic habitats (Jones 1990), although these 

species were infrequently encountered in highly connected secondary channels that I 

sampled.

Secondary channel fish communities are a reflection of fish movement between 

lateral channel and mainstem habitats as well as the habitat quality of the secondary 

channel. If the mainstem contains more preferred habitat and plentiful food resources 

than a secondary channel, then a fish would be expected to remain in the mainstem and
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not inhabit secondary channels. Conversely, if secondary channels provided more 

optimal conditions than the mainstem, fish may be expected to occupy the secondary 

channels as opposed to the mainstem. Since each sampled reach appeared to be similarly 

connected to the Bitterroot River, secondary fish community variation was more likely 

influenced by secondary channel environmental conditions than channel accessibility. 

Mainstem habitat characteristics in the vicinity of particular secondary channels and 

perhaps the composition of the local fish assemblage would also influence the fish 

community occupying a specific secondary channel. These presumptions are supported 

by differences between paired secondary channels that were geographically close to each 

other and similarly connected to the Bitterroot River, but were environmentally 

dissimilar. For example, deeper pools and complex CWD aggregations differentiated 

TCI from the more simplified TC2 channel. TC2 was primarily a sand channel with 

intermittent aquatic vegetation cover. Patchy woody debris provided cover for resident 

salmonids but a uniform channel and lack of complex rootwads may have influenced the 

infrequent presence of YOY and small species. In comparison, TCI maintained the 

highest community diversity of the six channels.

Similar to the TCI and TC2 channel comparison, BC2 and BC3 exhibited a 

similar dichotomy. BC2 had a variety of habitats dominated by an expansive riffle/glide 

as well as a -400 m^ lentic area. BC2 maintained a diverse community represented by 

numerous species and age classes. In comparison, the BC3 channel was a uniform glide 

with minimal pocket water and overhead cover. The BC3 fish community mainly 

contained rainbow trout and mountain whitefish, species that tend to prefer lotie
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environments. Infrequent brown trout and redside shiner occupied the few slow water 

patches.

Identifiable trends in fish community variation over the year were not obvious. 

However, the sample period’s brevity may have precluded detecting community-level 

changes and/or trends. Less species diverse communities and low population abundance 

suggest that microhabitat availability may limit species inclusion in some secondary 

channel communities. Less diverse communities were consistently sampled in the less- 

habitat diverse TC2 and BC3 compared to other more-habitat diverse secondary channels 

such as TCI and M l.

Diel Microhabitat Use and Microhabitat Electivity

Microhabitat use is a reflection of resource availability, resource requirements, 

competitive interactions, and predator avoidance by individual fish. Because 

microhabitat variables are often highly correlated, unraveling specific microhabitat 

variable preferences for a species-age class is difficult in field observations. As an 

example, in Bitterroot River secondary channels, silt substrates were mainly associated 

with shallow, low velocity microhabitats. Likewise, microhabitats associated with riffles 

and glides had faster water velocities and less cover than complex pools. Determining a 

single critical variable explaining fish microhabitat use is a difficult proposition. The 

patchy distribution of fish within the channel matrix is a response to multiple variables 

rather than a single variable.



80

In addition to the abiotic environmental variables that makeup microhabitat 

variation, predator presence and abundance and other biotic variables also influence the 

distribution of species-age classes (Schlosser 1987). Predator effects influence day-night 

differences in microhabitat use among species-age classes. Power et al. (1989) proposed 

that small species and juvenile age classes of larger species are limited from using deep 

water by aquatic piscivores while adults of large species avoid shallow water to avoid 

terrestrial and avian predators. This phenomenon was expressed by fish assemblages 

occupying Bitterroot River secondary channels. Day-night shifts in microhabitat use 

were apparent for smaller fishes. YOY and juvenile fish used dense cover during the day 

and were rarely observed away from such structure. At night these fish were distributed 

in shallow channel margins and were distant from cover structure. The fish community 

inhabiting TCI regularly displayed this behavior. In TCI, large brown trout inhabited 

deeper pools during both day and night snorkeling, while juvenile cyprinids and 

catostomids (potential prey) clustered within rootwad interstices during the day but 

primarily inhabited shallow channel margins at night. Brown and Moyle (1991) found 

that when Sacramento pikeminnow larger than 15 cm were present in a habitat, small fish 

were forced into pool margins. In the absence of these predators, small fish did not show 

strong selection for these microhabitats. Juvenile rainbow trout carried out day-night 

inshore-offshore migrations to maximize food acquisition (offshore) and minimize 

predation exposure (inshore) in Lake Tahoe (Tabor and Wurtsbaugh 1991). In the 

Bitterroot River, the threat o f predation by large piscivores on smaller fish resulted in
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high interspecific microhabitat overlap among small individuals, but reduced intraspecific 

interactions between large and small fish inhabiting secondary channels.

In Bitterroot River secondary channels, large fish selected similar microhabitats 

during the day and night. Adult brown trout and rainbow trout, were commonly 

encountered in the TCI site. Brown trout and rainbow trout remained in deep water 

around complex CWD cover during both day and night snorkeling. When disturbed these 

fish moved to downstream pools with broken surface water. The frequency of large 

brown trout in low frequency, deep, and complex cover habitats may be typical of brown 

trout (Clapp et al. 1990; Young 1995). Brown trout in a southern Wyoming stream tended 

to occupy deep water close to overhead cover (Young 1995). As was the case in many of 

the Bitterroot River brown trout microhabitats. Young found that most brown trout 

microhabitats had minimal water velocity and were well sheltered under banks or other 

cover. Clapp et al. (1990) observed similar use of low velocity, deep habitats with 

overhanging cover by large (> 400 mm TL) brown trout.

Microhabitat use in secondary channels by fish at different developmental stages 

was also apparent. Largescale sucker and mountain whitefish used a range of channel 

depths depending on lifecycle stage. YOY mountain whitefish primarily inhabited riffles 

or riffle margins during both day and night snorkeling. At night, quiescent fish occupied 

dead water riffle margins while fish inhabiting riffles positioned themselves against the 

downstream side of substrate particles. This behavior minimized displacement by 

turbulent forces and allowed fish to avoid predators inhabiting deeper habitats. During 

the day, YOY mountain whitefish used slightly deeper habitats but were again primarily
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associated with shallow riffle habitats. This species-age class also strongly selected for 

CWD cover during the day whereas at night, fish were generally not associated with 

complex cover structure. Similar substrate-cover-seeking behavior has been observed in 

Atlantic salmon parr during winter when parr compressed against substrates in shallow 

riffles at night (Whalen and Parrish 1999). Shallow riffles in Bitterroot River secondary 

channels afford young mountain whitefish protection from predators and reduce 

interspecific competitive interactions with juveniles o f other species.

Adult mountain whitefish selected deeper microhabitats than YOY fish especially 

during the day, and used a wider range of depths at night. Adults similarly preferred 

woody debris cover during the day and selected microhabitats lacking cover at night. 

Adult occupation of deeper day microhabitats suggests less risk of predation on larger 

mountain whitefish than YOY fish.

A similar dichotomy was observed for YOY and adult largescale sucker during 

night surveys. YOY fish inhabited shallow microhabitats far from large brown trout 

occupying deep channel areas. Adult fish selected deeper habitats proximate to large 

brown trout. The larger adult fish were at less risk of predation compared to the YOY 

fish. However, YOY and adult largescale sucker inhabited similar diurnal locations 

associated with complex woody structure along deeper channel margins. Diurnal 

terrestrial and avian predators may influence the location of largescale sucker to a greater 

extent than aquatic piscivores.
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Day-Night Fish Behavioral Changes

Intraspecific behavior may be highly variable depending on a fish’s environment. 

Predators, microhabitat availability, resource requirements, and life stage are a few of the 

conditions affecting fish behavior. For this study, fish were observed during snorkeling 

and their behaviors classified into one of four groups. Although some species-age classes 

behaved similarly during day and night periods, others displayed distinctly different 

behaviors between the two periods.

Fish microhabitat use and behavior are intertwined. An YOY fish resides in 

dense cover during the day to minimize the risk of predation and moves into shallow 

water at night to exploit more productive channel margins (feeding), reduce competitive 

interactions, and to rest. Largescale suckers perhaps best exemplified behavioral 

differences in diel microhabitats. During the day fish held position in complex CWD 

high in the water column. At night these fish moved into shallow habitats where they 

were quiescent. In Lake Tahoe, juvenile rainbow trout displayed a similar behavior in the 

shallow littoral zone of Lake Tahoe as they vacated complex cover and occupied open 

microhabitats (Tabor and Wurtsbaugh 1991). This behavior may be a response to low 

predator densities at night or an absence of nocturnal predators in a reach.

Conversely, adult brown trout exhibited similar day-night behavior and habitat 

selection. Large brown trout (>300 mm) inhabited the same territories over time and 

were rarely seen actively feeding. Although these fish did not actively pursue prey, they 

may have been selectively foraging. By resting, these fish minimize their energy 

expenditure and then may opportunistically feed on unwary prey that venture too close to
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the predator’s position. This feeding technique increases the amount of energy devoted 

to growth compared to the energy spent on metabolism (Moyle and Cech 1988). 

Telemetry studies indicate brown trout behavior is highly variable. Studies have 

documented brown trout feeding at night (Clapp et al. 1990; McIntosh and Townsend 

1995) while others indicate these fish are daytime predators. Bunnell et al. (1998) found 

brown trout movement varied seasonally and occurred at different times of the day 

depending on the season. Fish located in a particular location over several sampling 

visits may suggest an optimal feeding position.

Behavior differences between YOY fish of multiple species and adult brown trout 

suggest the importance of diurnal predation in Bitterroot River secondary channels. 

Young fish seek complex cover during the day when they are vulnerable to aquatic and 

terrestrial predators. These fish then occupy shallow margins at night when terrestrial 

predators are inactive and aquatic predators remain in deeper microhabitats. Because 

large brown trout (> 300 mm) were infrequently sampled in this study and the large fish 

that were observed rarely actively foraged, small fish may be able to minimize their 

exposure to predators by inhabiting microhabitats unfavorable to large piscivores. An 

absence o f small fish in the vicinity of large brown trout and an abundance o f small fish 

in areas not inhabited by large brown trout, suggest that small fish avoid inhabiting 

deeper sites occupied by large piscivores in favor of shallow microhabitats that rarely 

contained predators.
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Fisheries Management Implications

The proliferation of nonnative salmonids and absence of native fish in Bitterroot 

River secondary channels should be a cause of concern for fisheries managers. 

Historically, westslope cutthroat trout and perhaps bull trout used these lateral channels 

both seasonally to avoid mainstem environmental extremes, and preferentially during 

portions of their life histories. Gido et al. (1997) concluded that native fish likely used 

secondary channels as foraging areas and as flow réfugia during high flows while 

juvenile and subadult fish used the sites as nurseiy areas. Similar utilization would be 

expected in the Bitterroot River sites since the ecological niche once occupied by 

westslope cutthroat trout is now filled by rainbow trout, brown trout, and brook trout, 

depending on site location, channel habitat characteristics, a fish developmental stage. 

These competing introduced species are primarily insectivorous, require low water 

temperatures, and utilize microhabitats similar to the westslope cutthroat trout. Gido et 

al. (1997) described a similar competitive interaction among native and introduced fish 

species. Prior to introductions, native YOY fish were likely abundant in San Juan River 

secondary channels. The proliferation of introduced salmonids in the Bitterroot River is 

apparent in the seasonal domination of secondary channel fish communities by several 

nonnative species (See Chapter 4) and the absence of native salmonids. The ecological 

niches of the native species may now be restricted by the nonnative species’ abundance.

Comparison o f secondary channel fish communities with mainstem communities 

was not possible since data on non-salmonid gamefish species are not collected by 

Montana Fish, Wildlife and Parks. However, biannual population estimates for rainbow
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trout, westslope cutthroat trout, and brown trout are generated for selected reaches of the 

Bitterroot River (Clancy 1998). In the Bell Crossing reach (includes the BC1-BC3 area), 

rainbow trout constitute 50+% of the salmonid assemblage, brown trout comprise 40- 

50%, and westslope cutthroat trout account for <10% of the trout caught. Montana Fish, 

Wildlife and Parks’ fish population estimates are limited to mainstem populations and do 

not incorporate non-salmonid species. Sampling salmonids and non-salmonids in off- 

channel habitats would provide fisheries managers with a broader picture of fish 

assemblages inhabiting the Bitterroot River and associated secondary channels.

Diverse fish communities using secondary channels suggest these sites are 

important habitats for multiple species at different developmental stages. Because 

tributaries to the Bitterroot River are affected by dewatering during the summer irrigation 

season, the importance of secondary channels as nursery habitats may be accentuated. 

Managing floodplain development will be essential to control the alteration of the 

Bitterroot River channel and floodplain. Large portions of the central Bitterroot River are 

already constrained by extensive bank stabilization projects that limit the lateral 

movement of the river channel and sites o f channel avulsion. Restricting or eliminating 

these two fluvial processes will likely limit secondary channel formation and the 

subsequent creation of environments I have found to be used by diverse fish 

communities. Providing mainstem instream flows and managing floodplain alteration 

will protect diverse floodplain habitats necessary for maintaining buffer populations of 

native and nonnative fishes to the Bitterroot River.
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Conclusions

•  Question 1 Results: Numerous species-age classes used the sampled secondary 

channels. Greater fish community diversity was found in more complex channels and 

during the summer samplings.

•  Question 2 Results: Species-age classes used different microhabitats

♦ Fish used a range of microhabitats depending on microhabitat availability and diel 

period.

♦ YOY and juvenile fish selected shallower microhabitats than did adults.

♦ All fish tended to use deeper microhabitats during the day than at night.

♦ Interspecific overlap was common, though intraspecific microhabitat use 

differences were apparent among age classes.

Question 3 Results: Fish behavior varied between day and night periods.

♦ Most species-age classes were more active during the day than at night.

♦ YOY and juvenile fish selected complex cover structure (where available) during 

the day but were found in shallow, open water areas at night.

♦ Adult rainbow trout and mountain whitefish actively foraged at night and during 

the day.

♦ “Resting” fish may have been opportunistically feeding at night (especially large 

piscivorous brown trout).
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Figure 1 : The Bitterroot River watershed and the secondary channel sample sites.
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Table 1: Fish species that occur in the Bitterroot River drainage.

Fish Species Common Name

Native Fish Species
Catostomus catostomus* 
Catostomus macrocheilus* 
Richardsonius balteatus* 
Rhinichthys cataractae * 
Ptychocheilus oregonensis* 
Mylocheilus caurinus 
Prosopium williamsoni* 
Oncorhynchus clarki lewisi 
Salvelinus confluentus 
Cottus cognatus*

Introduced Fish Species 
Salvelinus fontinalis*
Salmo trutta* 
Oncorhynchus mykiss* 
Micropterus salmoides* 
Perea flavascens*
Lepomis gibbosus*
Esox lucius*
Ictalurus melas

Longnose Sucker 
Largescale Sucker 
Redside Shiner 
Longnose Dace 
Northern Pikeminnow 
Peamouth
Mountain Whitefish 
Westslope Cutthroat Trout 
Bull Trout 
Slimy Sculpin

Eastern Brook Trout 
Brown Trout 
Rainbow Trout 
Largemouth Bass 
Yellow Perch 
Pumpkinseed 
Northern Pike 
Black Bullhead Catfish

Fish species that were sampled in central Bitterroot River secondary channels.



Table 2: Fish
Secondary
Channel August 1998 September 1998 October 1998 December 1998 April 1999 August 1999 September 1999

TCI Rainbow trout 
Brown trout 
Mountain whitefish

Rainbow trout 
Brown trout 
Mountain whitefish 
Redside shiner 
Largescale sucker 
Longnose sucker 
Northern pikeminnow

Brown trout 
Redside shiner 
Largescale sucker 
Longnose sucker 
Northern pikeminnow

Brown trout 
Mountain whitefish 
Redside shiner 
Largescale sucker 
Longnose sucker 
Northern pikeminnow

Rainbow trout 
Brown trout 
Mountain whitefish 
Redside shiner 
Largescale sucker 
Northern pikeminnow

Rainbow trout 
Brown trout 
Redside shiner 
Largescale sucker 
Longnose sucker 
Northern pikeminnow

TC2 Rainbow trout 
Brook trout 
Mountain whitefish 
Longnose sucker 
Northern pikeminnow

Rainbow trout 
Brook trout 
Brown trout 
Mountain whitefish

Rainbow trout 
Brook trout 
Brown trout 
Mountain whitefish

Rainbow trout 
Brown trout 
Brook trout

Rainbow trout 
Brown trout 
Mountain whitefish

BCl Rainbow trout 
Brown trout 
Mountain whitefish 
Longnose sucker 
Redside shiner 
Northern pikeminnow

Rainbow trout 
Brown trout 
Mountain whitefish 
Largescale sucker 
Northern pikeminnow

Rainbow trout 
Brown trout 
Mountain whitefish 
Largescale sucker 
Longnose sucker 
Redside shiner 
Northern pikeminnow

Rainbow trout 
Mountain whitefish

Rainbow trout 
Brown trout 
Mountain whitefish 
Redside shiner 
Northern pikeminnow

BC2 Brown trout 
Redside shner 
Longnose sucker 
Mountain whitefish

Brown trout 
Mountain whitefish

Rainbow trout 
Brown trout 
Mountain whitefish 
Largescale sucker 
Longnose sucker 
Redside shiner 
Northern pikeminnow

Mountain whitefish 
Longnose sucker

Mountain whitefish 
Largescale sucker 
Longnose sucker

Rainbow trout 
Brown trout 
Mountain whitefish 
Largescale sucker 
Redside shiner

BC3 Rainbow trout 
Brown trout 
Mountain whitefish 
Redside shiner

Rainbow trout 
Mountain whitefish

Rainbow trout 
Mountain whitefish 
Redside shiner

Rainbow trout 
Brown trout 
Mountain whitefish

Ml Redside shiner 
Largescale sucker 
Mountain whitefish 
Northern Pikemiimow

Rainbow trout 
Mountain whitefish 
Largemouth bass 
Redside shiner 
Largescale sucker 
Northern pikeminnow

Rainbow trout 
Mountain whitefish 
Northern pikeminnow 
Largescale sucker 
Redside shiner 
Yellow perch

Rainbow trout 
Mountain whitefish 
Yellow perch

Rainbow trout 
Brown trout 
Mountain whitefish 
Redside shiner

Rainbow trout 
Mountain whitefish 
Redside shiner 
Northern pikeminnow

Rainbow trout 
Mountain whitefish 
Redside shiner 
Northern pikeminnow

\Dva
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Table 3: Species richness and Shannon-Weaver diversity information for the 
Bitterroot River secondary channels and channel groups. Richness and Shannon- 
Weaver information were averaged for each secondary channel measured over the

Richness Range Shannon Range
TCI 5.80 (5-7) 3.87 (3.30-4.22)
TC2 3.40 (2-4) 2.43 (1.65 -3.75)
BCl 5.00 (2 - 6) 2.63 (1.75 -3.79)
BC2 3.80 (2 - 6) 2.82 (1.82-5.00)
BC3 3.33 (3-4) 2.38 (1.75-3.40)
M l 4.43 (3-6) 3.02 (1.37-4.83)
Floodplain Channels (TCI & TC2) 4.60 (2-7) 3.07 (1.65-4.22)
Braid Anabranches (BCl & M l) 4.70 (2 - 6) 2.85 (1.37-4.83)
Floodplain Tributaries (BC2 & BC3) 3.60 (2 - 6) 2.62 (1.75-5.00)

Table 4: Species richness and Shannon-Weaver diversity information for the sampling 
periods. Richness and Shannon-Weaver information were averaged over the secondary

Richness Range Shannon Range
August 1998 4.3 (4-5) 2.90 (1.95 -3.75)
September 1998 5.4 (4-7) 3.82 (3.46-4.35)
October 1998 5.4 (4-6) 2.95 (1.81-4.83)
December 1998 3.8 (2 - 6) 2.08 (1.37-3.75)
April 1999 4.0 (2 - 6) 2.61 (1.82-3.79)
August 1999 3.4 (2 - 5 ) 2.36 (1.65-4.18)
September 1999 4 (2 - 6) 3.07 (2.20 - 3.97)
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Table 5: Fish age classes used to categorize Bitterroot River fish sampled during snorkeling. a) Fish 
species are separated into two groups depending on the number of age classes that were discernable from 
snorkeling results. XL refers to fish total length that was measured from the tip of the fish’s nose to the end 
of the tail, b) Species approximate average total lengths (mm) for Montana as suggested by Brown (1971).

a) Fish Age Class
Fish Species Age-0 Age-1+
O. mykiss XL < 100 mm 100 mm < XL
S. trutta XL < 100 mm 100 mm < XL
P. williamsoni XL <100 mm 100 mm < XL
C. catostomus XL < 75 mm 75 mm < XL

Fish Age Class
Fish Species Age-0 Age-1+ Age-2+
R. baiteatus 50 mm 50 mm < XL
P. oregonensis XL < 75 mm 75 mm < XL < 100 mm 100 mm < XL
C. macrocheilus XL < 75 mm 75 mm < XL <100 mm 100 mm < XL

b)
Fish Age Class

Fish Species Age-0 Age-1 Age-2 Age-3 Age-4
P. williamsoni 101 mm 203 mm 279 mm 330 mm 355 mm
O. mykiss 76 mm 203 mm 279 mm 330 mm 406 mm
S. trutta 101 mm 203 mm 305 mm 355 mm 406 mm
S. fontinalis 76 mm 152 mm 203 mm 254 mm 304 mm
R. baiteatus 20 mm 43 mm 69 mm 102 mm
P. oregonensis 50 mm 89 mm 114 mm 152 mm 177 mm
C. macrocheilus 50 mm 89 mm 140 mm 190 mm 254 mm
C. catostomus 76 mm 140 mm 216 mm 266 mm 317 mm
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Figure 4a: Daytime microhabitat use by age-l + (n = 20) brown trout and rainbow trout (n = 40) in Bitterroot River secondary channels. Electivities {d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < <̂ < 0.5, moderate preference), • (-0.25 ^ d <  
0.25 no preference), - {-0.SO < d <  -0.25), and = ( £/< -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. f-values represent significant différences between used microhabitat values and available microhabitat values using the chi-square 
test. Due to small sample sizes, only microhabitat depth was tested using the chi-square test.
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Figure 4b: Nighttime microhabitat use by age-l-f- brown trout (n = 22) and rainbow trout (n = 23) in Bitterroot River secondary channels. Electivities {d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < 6/<0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - (-0.50 < d <  -0.25), and = ( ^/< -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. f-values represent significant differences between used microhabitat values and available microhabitat values using the chi-square 
test. Due to small sample sizes, only microhabitat depth was tested using the chi-square test.
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Figure 5a; Daytime microhabitat use by age-0 (n = 144) and age-l+ (n = 23) mountain whitefish in Bitterroot River secondary channels. Electivities {d) 
compare used and available microhabitats and are indicated by ++ (0.50 < 4  strong preference), + (0.25 < d <  0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - ( -0.50 < d <  -0.25), and = ( 6/<  -0.50, strong avoidance) (Moyle and Baltz 1985). f-values represent significant differences 
between used microhabitat values and available microhabitat values using the chi-square test. Age-0 water column cover use and. substrate cover use were 
not tested due to low availability of multiple categories. Age-1+ mountain whitefish were not tested due to low sample size (except for depth use).
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Figure 5b: Nighttime microhabitat use by age-0 (n = 202) and age-l+ (n = 15) mountain whitefish in Bitterroot River secondary channels. Electivities (d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < d <  0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - (-0.50 < d  < -0.25), and = ( af < -0.50, strong avoidance) (Moyle and Baltz 1985). f-values represent significant differences 
between used microhabitat values and available microhabitat values using the chi-square test. Age-0 water column cover use and substrate cover use were 
not tested due to low availability of multiple categories. Age-1+ mountain whitefish microhabitat use was not tested due to low sample size.
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Figure 6a: Daytime microhabitat use by age-1 (n = 89) and age-2+ (n = 19) redside shiner in Bitterroot River secondary channels. Electivities (d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < <̂ < 0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - ( -0.50 < d <  -0.25), and = ( < -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. P-values represent significant differences between used microhabitat values and available microhabitat values using the chi-square 
test. Age-1 substrate use, water column cover use, and substrate cover use were not tested due to low availability of multiple categories. Only age-2+ 
depth use was tested due to low sample sizes for the other microhabitat variables.
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Figure 6b: Nighttime microhabitat use by age-1 (n = 99) and age-2+ (n = 28) redside shiner in Bitterroot River secondary channels. Electivities {d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < < 0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - (-0.50 < d <  -0.25), and = ( d <  -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. P-values represent significant differences between used microhabitat values and available microhabitat values using the chi-square 
test. Age-1 water column cover use and substrate cover use were not tested due to low availability of multiple categories. Only age-2+ depth use was 
tested due to low sample sizes for the other microhabitat variables.
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Figure 7a: Daytime microhabitat use by age-1 northern pikeminnow (n = 102) in Bitterroot River secondary channels. Electivities (d) compare used and 
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water column cover use, and substrate cover use were not tested due to low availability of multiple categories.
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Figure 7b; Nighttime microhabitat use by age-1 (n = 46) and age-2+ (n = 16) northern pikeminnow in Bitterroot River secondary channels. Electivities (d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < (/< 0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - ( -0.50 < d <  -0.25), and = ( d <  -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. f-values represent significant differences between used microhabitat values and available microhabitat values using the chi-square 
test. Age-1 substrate use, water column cover use, and substrate cover use were not tested due to low availability of multiple categories. Only age-2+ 
depth use was tested due to small sample size.
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Figure 8 : Nighttime microhabitat use by age-0 (n = 42) and age-l+ ( n = 106) largescale sucker in Bitterroot River secondary channels. Electivities (d) 
compare used and available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < d <  0.5, moderate preference), • (-0.25 < d <  
0.25 no preference), - ( -0.50 < d <  -0.25), and = ( û? < -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and 
undefined electivity. f-values represent significant differences between used microhabitat values and available microhabitat values using the chi-square 
test. Age-0 substrate use, water column cover use, and substrate cover use were not tested due to low availability of multiple categories. Only age-l+ 
depth use and substrate use were tested due to low availability of the other microhabitat variables. oCh
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Figure 9; Nighttime microhabitat use by age-l+ longnose sucker (n = 22) in Bitterroot River secondary channels. Electivities (d) compare used and 
available microhabitats and are indicated by ++ (0.50 < d, strong preference), + (0.25 < d <  0.5, moderate preference), • (-0.25 < d <  0.25 no preference), 
- ( -0.50 < d <  -0.25), and = ( c? < -0.50, strong avoidance) (Moyle and Baltz 1985). Asterisks indicate lack of availability data and undefined electivity. 
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use, water column cover use, and substrate cover use were not tested due to small sample sizes.
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Table 6: Eigenvalues, percent variance explained, and discriminant function coefficients for microhabitat 
variables selected from a stepwise discriminant analysis used to separate microhabitat use by eleven species 
and age classes of fish in Bitterroot River secondary channels. Microhabitat data were measured during 
night snorkeling.

Axis
Eigenvalue 
% of Variance

I
0.550

52.1

n
0.257
24.3

m
0.155
14.7

IV
0.095

9.0
Habitat Variables

Silt 0.363
Pebble 0.045
Depth 0.905
Substrate Cover 0.370

-0.116
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-0.273
0.911

0.968
0.271

-0.354
-0.128

-0.027
0.989
0.023
0.233

1.5

I
I
Î
CS

J
I

1 -

0.5 -

-0 5 -

-1.5

R. baiteatus 
Age-1

P. o regonensis  
Age-1

C. macrocheilus 
Age-0 A S. trutta Age-1 +

P. wiltamsoni 
I Age-0

R. b ^ e a t u s  
Age-2+

P. wiliamsoni 
Age1 +

0 .  macrocheilus 
Age-1

P. o regonens is  
Age-2+

C. macrocheilus 
Age-1 +

C. catos tom us 
Age- 1 +

-0.5 0.5 1.5 2.5

Shallow Axis I Deep

Figure 10: Plot of species-age class centroids on the first two axes derived from a discriminant function 
analysis to classify species-age classes by microhabitat associations. Microhabitat data were measured 
during night snorkeling.
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Figure 15: Northern pikeminnow diel behavior in Bitterroot River secondary channels.



Chapter 4

Bitterroot River Floodplain Channel Fish Community Diversity 

Introduction

River environments are largely created by the physical transport o f water, 

sediment, and debris longitudinally down the channel and laterally between the channel 

and its floodplain (Ward 1989; Sedell et al. 1990). Dynamic fluvial processes modify 

channel and floodplain morphology during periodic bankfull discharge events. These 

flows mobilize channel and bank materials that are then reorganized and deposited within 

the channel or on the adjacent floodplain (Ward and Stanford 1995). Depending on the 

river’s flow regime and interaction with its associated floodplain, floodplain channels are 

created, shaped, or filled annually (Brunke and Gonser 1997; Poff et al. 1997). Persistent 

floodplain channels connect the mainstem with distant areas of the floodplain which offer 

a diversity of lentic and lotie aquatic habitats (Schlosser 1991). Fish use these floodplain 

environments for high water réfugia (Kwak 1988; McEvoy 1998; Allouche et al. 1999), 

spawning habitat (Starrett 1951; Tyus and McAda 1984; Copp 1989), nursery habitat 

(Sedell et al. 1990; Cavallo 1997), predator avoidance (Gido and Propst 1999), and 

resource acquisition (Junk et al. 1989; Modde et al. 1996). Complex physical and 

biological processes couple the river and its floodplain, affecting the composition of 

aquatic communities inhabiting these floodplain environments (Ward and Stanford 1995).

Within these floodplain environments, stream channels form a continuum of 

habitats that vary according to their degree of mainstem hydrologie connectivity (Triska 

et al. 1993; Brunke and Gonser 1997), geographic location (Junk et al. 1989), period of 

inundation (Welcomme 1979), and geomorphic characteristics (Copp 1989). Habitats
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that are proximate to the mainstem are expected to display characteristics more-similar to 

the mainstem’s conditions than would habitats that are at a distance from the mainstem. 

Within this framework of physical habitat characteristics, habitats closer to the mainstem 

are influenced by the mainstem’s hydrograph, fluvial processes, and upwelling ground 

water sources. Conversely, habitats at a greater distance from the mainstem channel 

would likely be more influenced by conditions that are somewhat independent of primary 

channel processes (Copp 1989). Distant habitats are little influenced by mainstem 

surface water except during high flow periods. Floodplain channel geomorphic 

properties are less similar to the mainstem, and are more reflective of stratified vertical 

and horizontal floodplain soils created by historical flood events (Amoros et al. 1986). 

Because surface water sources are less available, both upland runoff and riverine 

groundwater sources influence floodplain channel water chemistry (Heiler et al. 1995; 

Brunke and Gosner 1997). Within this context, persistent channels maintained by cold 

groundwater discharge provide essential juvenile fish rearing habitat within the 

floodplain matrix (Frissell 1999). Additionally, physicochemical characteristics such as 

oxygen saturation, reflect both biological processes (i.e. autochthonous production and 

organic decomposition) and physical processes (sedimentation and groundwater 

upwelling) that may be of differing importance to biological communities inhabiting 

lentic backwater areas. Considering these conditions, habitats distant from the mainstem 

may be more hospitable and preferred by some aquatic organisms, especially tolerant 

species capable of surviving warmer, low oxygen conditions (Copp 1989). Conversely, 

these habitats may be avoided by other species that prefer mainstem conditions or are 

intolerant o f lower oxygen levels (Welcomme 1995). However, since most species have
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complex life histories, floodplain habitats likely provide an important environment for 

both fish types during at least part of their lifecycles (Moyle and Cech 1988).

Changes in fish community diversity in a river system reflect the lifehistories of 

the constituent species as well as the range of available habitats in the aquatic 

environment, among other things. Fish community diversity in rivers and streams has 

been found to increase in a downstream continuum from basin headwaters to low 

gradient reaches (Sheldon 1968; Gorman and Karr 1978; Horwitz 1978; Angermeier and 

Schlosser 1989). In these lotie systems, downstream habitats are characterized by larger 

habitat patches, greater pool volume, proximity to potential source populations, and 

greater environmental stability (Horwitz 1978; Schlosser 1987; Angermeier and 

Schlosser 1989; Taylor 1997; but see Cross 1985). The species-area hypothesis 

investigates the relationship between these habitat conditions and fish community 

diversity. While this theory has been supported in larger systems, its application to 

floodplain channels is untested.

To investigate the downstream distribution and abundance of fish communities 

using floodplain channels, fish communities inhabiting Bitterroot River floodplain 

channels were sampled during the spring and summer of 1999. The objectives for this 

project were to; 1) characterize fish communities using floodplain habitats at increasing 

distances from the Bitterroot River, and 2) identify changes in community structure over 

the sampling period.
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Methods and M aterials

Study Site

The Bitterroot River in western Montana flows north from the confluence of the 

East and West Forks near Conner, Montana, to its confluence with the Clark Fork River, 

8 km west of Missoula, Montana. Flowing approximately 134 km, the Bitterroot River 

drains a 7,288 km^ (at Missoula USGS gauge) watershed, supporting agricultural land, 

pasture, rural and urban development, and upland forest systems. Tributaries originating 

in the Sapphire Mountains to the east, and the Bitterroot Mountains to the west, 

contribute much of the runoff that feeds the Bitterroot River.

The central Bitterroot River extends from Hamilton to Stevensville. An 

expansive alluvial floodplain created by a network of abandoned and active river 

channels typifies this section of the river. Braided channel reaches and sections of 

anastomosis reflect the transitory relationship between river discharge and sediment 

transport in the central Bitterroot River. The resulting floodplain mosaic is a diversity of 

secondary channel habitats that vary by hydrology, channel morphology, water 

temperature regime, and mainstem influence. Floodplain channels are sites of 

groundwater surfacing during low water periods and are conduits for high flows during 

spring runoff. A mobile bedload and rapid hydrographic fluctuations during spring 

runoff contribute to the instability that characterizes the central Bitterroot River.

Single-channel reaches and occasional areas of anastomosis mark the channel 

pattern of the lower valley that extends from Stevensville to Missoula (Gaueman 1997). 

As the Bitterroot River nears its confluence ^vith the Clark Fork River, the channel 

assumes a meandering single channel pattern, confined by the narrowing of the lower
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Bitterroot Valley and extensive channel stabilization projects (riprap). Through this 

reach the river follows a more predictable course (See Chapter 2 for a complete site 

description).

Selected Sample Sites

The bankfull floodplain is a topographically-flat area adjacent to a watercourse 

that is inundated by floodwaters approximately every two out of three years. For this 

discussion, the “floodplain” includes the mainstem and the river bottom area up to the 

first terrace. To investigate fish habitat use in floodplain channels, two channel 

complexes were selected in March 1999. Floodplain channel complexes located at Bell 

Crossing (BC) and Tucker Crossing (TC), host multiple channels that vary by volume, 

physical complexity, amount of subsurface groundwater discharge, and distance from the 

mainstem Bitterroot River. On the floodplain, the largest secondary channels are 

maintained by groundwater discharge throughout the year and also convey surface water 

during spring runoff. Intermittent channels only convey water during spring runoff. In 

the persistent channels selected for this study, discharge increases in a downstream 

direction as additional groundwater sources surface into the floodplain channels. 

Bitterroot River flows that are greater than the bankfull elevation reconnect floodplain 

channels at both their upstream and downstream ends with the primary Bitterroot River 

and may completely inundate channels within the bankfull channel width. Coarse woody 

debris (CWD) aggregations on the topographically varied braid belt and adjacent 

floodplain attest to the extent of high flows throughout these areas.



118

The two TC floodplain channels flow across a large floodplain island that divides 

the Bitterroot River into east and west channels. At the BC floodplain complex, one 

channel is within the bankfull width while the second channel is fed by the Big Creek 

tributary and an irrigation channel during high water. All four channels maintain 

connectivity with the Bitterroot River at their downstream ends during low water. Two 

or three study reaches were selected in each floodplain channel. For a given channel, the 

first study reach was located at the floodplain channel’s downstream end near the 

channel’s confluence with the Bitterroot River. A second study reach was established at 

the approximate midpoint of the floodplain channel length. A third reach was marked at 

the upstream channel origin where groundwater surfaced into the channel. Selected study 

reaches were representative of the floodplain channel and usually included both riffle and 

pool habitats where available. The downstream and middle reaches originated and 

terminated at definable geomorphic features, usually a riffle or other gradient break.

Floodplain Channels: Tucker Crossing

The TC channels, termed TCA and TCB, originate on a 7 km-long island (Tucker 

Island) that divides the river into east and west channels (See Figure 8 ). Tucker Island is 

a stable landform hosting diverse vegetation including decadent black cottonwoods 

{Populus trichocarpd) and Ponderosa pine (Pinus ponderosa). From July through May, 

subsurface river water discharges into these two floodplain channels. Channel discharge 

grew rapidly during the May 1999 spring runoff as groundwater discharge increased and 

the Bitterroot River overtopped natural levees and inundated the intra-island floodplain 

channels. Overbank flows during the 1999 spring runoff redistributed coarse woody
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debris and altered substrates within the TC channels. Both TC channels discharge 

directly into the mainstem Bitterroot River within 300 m of each other.

Bank structure and materials are similar in TCA and TCB due to their common 

alluvial origin. Upstream reaches are incised with substrates and banks primarily 

composed of pebbles and cobbles. Downstream substrata and banks are mainly sand. 

Channel structure is enhanced by abundant in-channel CWD aggregations and dense 

overhanging riparian vegetation patches. Land use adjacent to the TC channels is 

predominantly summer cattle grazing. Bank erosion caused by bank trampling and 

riparian vegetation removal has led to bank chiseling and channel widening.

Floodplain Channels: Bell Crossing

The BC channels, termed BCA and BCB, traverse an expansive floodplain 

complex bordering the Bitterroot River’s western boundary (see Figures 8  & 9). From 

July through May, subsurface water discharges into these two floodplain channels. The 

Bitterroot River captured BCA before the river reached bankfull-level flows in May 

1999. Channel discharge rapidly increased as the primary channel overflowed low-lying 

cobble bars upstream of the sample site. Compared to BCA, the more-westerly BCB is 

less influenced by Bitterroot River discharge since it is farther from the river. High water 

conveyed by Big Creek and the irrigation channel flowed into BCB above the upstream 

sample reach. Both floodplain channels discharge into two larger channels (>20 m 

wetted width), that subsequently join the primary Bitterroot River.

Bank structure varies between BCA and BCB. BCA lies within the Bitterroot’s 

bankfull channel. While the floodplain channel’s western bank is steeply sloped and
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averages 2  m in height in the study area, the eastern bank is below the river’s bankfull 

elevation. Substrate composition is similar between BCA and BCB. Upstream reach 

substrates are mainly pebble and cobble. The lower reaches of BCA are primarily sand 

substrate while nearly the entire BCB channel is pebble and cobble. Unlike the TC 

channels, in-channel CWD in the BC channels is sparse. Aquatic vegetation and 

overhanging banks provided in-channel cover structure. Low density livestock grazing 

typifies land use adjacent to the BC channels. Livestock are restricted from the channel 

thereby reducing their effects on channel geometry and adjacent riparian vegetation.

Sampling Design 

Fish Sampling

To investigate fish communities using floodplain channel habitats at distances 

from the Bitterroot River, floodplain channels were electrofished three times during 

1999. The first sampling commenced in March 1999 at floodplain channel ice out, but 

low conductivity and high water precluded efficient sampling between June and July 

1999. Sampling was again conducted in August and September 1999.

A Smith-Root 15-D POW backpack electrofishing unit was used for fish 

sampling. Block nets (13 mm mesh openings) were installed at the upstream and 

downstream ends of each reach prior to electrofishing. Block nets were not used for sites 

isolated by steep gradients or dry channel expanses. All reaches were two-pass depletion 

electrofished (300 — 600 Volts) by a two-person crew fishing in an upstream direction. 

Captured trout were placed in a bucket carried by the backpack operator. At the end of 

each pass, captured fish were placed in separate baskets. At the culmination of the
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sampling effort, fish were anesthetized 40 mg/L of clove oil and 90% ethanol mixed with 

river water in a 40 L bucket (Anderson et al. 1997). Upon losing equilibrium each fish 

was identified, measured to the nearest millimeter total length and standard length (nose 

to end o f spine), weighed to the nearest 0 1 g using an Ohaus LS 200 portable scale, and 

placed in a recovery bucket. Active fish were returned to the channel within fifteen 

minutes of being placed in the recovery bucket. Although all habitats were thoroughly 

sampled, electrofishing effort was concentrated along reach banks and cover structures. 

Sampling effort per pass was recorded from the electrofishing unit’s digital counter.

Habitat Survevs

To investigate habitat availability and differences in the channel’s physical 

characteristics, a point-transect methodology was employed to survey sample sites 

following the last electrofishing date. Available habitat was similar throughout the 

survey period although channel connectivity decreased in TCA and TCB over the 

sampling period as water levels dropped and stretches of wetted channel were interrupted 

by short dry cobble reaches. For the transect sampling, two measuring tapes were used to 

create a pseudo-lattice over the study area. A 100 m tape was extended from each site’s 

downstream to upstream ends. Eight to ten regularly spaced transects were then 

established perpendicular to the channel. Depth, substrate type, substrate cover, water 

column cover, and temperature were recorded for each of the approximately 1 0 0  points 

comprising the pseudo-lattice (See Chapter 2 for complete methods). Total CWD area 

and riffle area were also recorded for each sample site.
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An adjustable stadia rod and a Marsh-McBimey Model 2000 Flow-Mate portable 

flowmeter were used to measure water velocities at 60% total depth at random points 

within each reach to characterize water velocity variability.

A Trimble (Trimble Navigation Limited) global positioning system (GPS) was 

used to map the study area and to measure the distance of each sampled reach from the 

mainstem Bitterroot River (refer to Figures 7-9).

Data Analysis

Descriptive statistics (mean and standard deviation) were used to characterize the 

physical habitat o f the eleven study reaches. To investigate the fish communities 

utilizing each floodplain channel reach during each of the three sampling periods, fish 

sampled in the two electrofishing passes were considered as a single sample. Due to the 

low fish densities measured during each of the three sample periods, fish collections were 

pooled over the three sampling periods in order to identify species-channel reach 

relationships. Total number of individuals, species-size class groups (richness), and the 

Shannon-Weaver diversity index coefficient (H) were calculated for each channel reach. 

Species richness is a simple count of species in a reach. For species-size class richness, 

fish were grouped by size (explained below). The Shannon-Weaver index, developed 

from information theory, evaluates the proportion of individuals of each species relative 

to the total number o f individuals in the sample (Figure 2) (Shannon and Weaver 1949). 

The Shannon-Weaver index gives less weight to rare species than to common ones, and is 

one of several indices that are useful for comparing communities. When comparing 

diversity values for two sites that were similarly sampled, the site with the higher
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diversity value has either more species, more individuals of a species, or both than the 

site with the lower diversity value (Ricklefs 1990; Kohler and Hubert 1993).

Since H is roughly proportional to the logarithm of the number of species in the 

sampled community, it will be expressed as e^, which is proportional to the number of 

species in the sample (Ricklefs 1990). For example, when each sampled species is 

equally abundant (evenness), e^ will equal the number of species in the sample (Ricklefs 

1990).

Because some sampled reaches contained juveniles of a particular species but few 

adults, and other sites contained many adults of a species but few juveniles, the sampled 

communities were partitioned into two size groups (hereafter species-length group), (fish 

< 1 2 0  mm) and (fish > 1 2 0  mm), to capture size-related community diversity differences. 

This length was selected by analyzing the length-frequency histograms from the sampled 

communities and after consulting the suggested age-size classes in the literature (Brown 

1971; Wydoski and Whitney 1979). For most species there was a break in the range of 

sizes, as well as the number of sampled fish, around 120 mm. This classification 

separates large and small fish of “large” species such as the rainbow trout. However, for 

“small” species such as the redside shiner, all fish were included in the < 1 2 0  mm size 

class. Some information is lost using this methodology since multiple age classes were 

grouped to form the small and large length groups. For example, the adult group might 

include fish representing age-2, age-3, and age-3+ age classes, as was the case for brown 

trout. However, with the numerous species and age-classes sampled, this protocol 

simplified the analysis of size-related fish presence in floodplain channel reaches. For 

instance, an abundance of <120 mm (YOY and juvenile) fish in a reach combined with an
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absence of adult > 1 2 0  mm (adult) fish would suggest the importance of the reach as a 

nursery habitat.

Pie charts were created to illustrate the abundance of species-length classes 

represented by at least three individuals in each sampled reach to improve pie chart 

clarity (although the e^ values include all recorded fish).

H  =  - S  In  P i
7=1

jj
C is proportional to the number of species-length 
classes

Where: pi is the frequency o f a species-length class / in a sample 
S  is the number of species-length classes in a sample 
H is the Shannon information coefficient

Figure 2: The Shannon-Weaver Diversity Index was adjusted to measure species-length class diversity 
based on the frequency of individual species-length classes in a sample.

KendalPs rank correlation coefficient was used to test the strength of relationships 

between the electrofishing fish abundance-diversity data and the channel attribute data. 

The Kendall’s rank correlation coefficient is a widely used nonparametric test useful for 

analyzing the importance of such relationships (Noether 1991). Channel variables 

included the reach distance to the Bitterroot River (m), reach channel area (m^), depth 

diversity, substrate diversity and water column cover diversity. Depth diversity, substrate 

diversity and water column cover diversity were calculated using the Shannon-Weaver 

diversity index.

Moving from diversity information to species’ length-frequency data, length 

frequencies for common species were plotted for each sample period. Species that were
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infrequently sampled (< 5 individuals) during a sampling period were not plotted. 

Length frequencies for seasonal samplings illustrate fish community changes primarily 

associated with fish growth and the appeeirance of young-of-year (YOY) individuals in 

the reach. The nonparametric Kruskal-Wallace procedure or the Mann-Whitney U test 

was used to identify changes in species lengths among the channels and sampling periods 

(Noether 1991). Differences in species’ lengths among the sample reaches would again 

suggest the importance of reaches for particular developmental stages of the sampled 

fish. Average total length and average weight were also calculated for the five most 

abundant species sampled for reference.

Results

Floodplain Channel Habitat Characteristics

Measured prior to high water, floodplain channel length extended from the point 

of groundwater surfacing downstream to the floodplain channel’s confluence with the 

Bitterroot River (Table 1). The lengths of individual sampled floodplain channel reaches 

varied (from 63 m to 135 m) and fluctuated slightly over the three sampling periods. The 

Shannon-Weaver index was used to characterize the complexity of the measured channel 

variables. Channel depth diversity (Table 2) and mean channel depth (Figure 3), were 

similar among the eleven reaches and did not show a downstream trend within a 

particular channel. Except for TCB-R2 and BCA-R3, few reaches had depths greater 

than 1 m. In these two reaches the deeper pools comprised less than 5% of the total reach 

area.



126

Channel discharge differed within and among the sampled floodplain channels. 

The two BC channels were primarily lentic habitats except for periodic low gradient 

riffles and glides. Riffle sections were noted by a narrowing o f the channel and an 

increase in water velocity compared to glide and pool habitats.

Substrates were also similar for the four floodplain channels except for the 

downstream reaches of BCA and TCB, which were dominated by sand substrate (Figure 

4). Substrate diversity was consistent among the four channels with most reaches fairly 

evenly represented by at least four substrate classes.

Cover structures in the four channels varied by both material type and abundance. 

Aquatic vegetation was the most common of the cover structures (Figure 5), while CWD 

was less common (Figure 6 ), but was frequently used by sampled fish. Tucker Crossing 

CWD was primarily complex log aggregations and rootwads. In comparison, the BC 

channels were largely devoid of CWD except for BCB-R2. Cover diversity did not 

increase in a downstream direction. Changes in cover diversity were primarily 

influenced by changes in the abundance of aquatic vegetation (BC channels) and woody 

debris (TC channels).

Fish Species Distribution

Over the three sampling periods, 469 individuals representing five age classes and 

ten of the eighteen fish species known to reside in the Bitterroot drainage were sampled 

in the selected floodplain channel reaches (Table 3). Age classes were determined by 

comparing fish total lengths with size estimates provided in the literature (Brown 1971; 

Wydoski and WTiitney 1979). Although these species were commonly encountered when
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considering all of the sampled reaches, species richness and Shannon diversity varied by 

channel as well as by reach location.

Total individuals and species-length group richness increased in a downstream 

direction in three of the four channels. Richness was highest at the upstream site in TCB 

although more individuals were sampled at the downstream site. Total individuals per 

reach was significantly correlated with downstream distance to the Bitterroot River 

(Kendall’s x ,P  — 0.001) (Figure 7). Species-length group richness and Shannon diversity 

varied among reaches and were not significantly correlated with the tested channel 

variables. The TC channels had more diverse fish communities than the BC channels 

with TCB having the highest average Shannon index (Figure 8 ) of the four sampled 

channels. BCA and BCB each hosted eleven species-length groups in their downstream 

reaches while TCA hosted ten species-length groups. Compared to the middle and 

downstream reaches, fewer individuals and species-length groups inhabited upstream 

sites. The upstream BCA-R3 and BCB-R3 reaches generally contained YOY individuals.

Introduced salmonid species comprised a predominant portion of the sampled fish 

communities. Brown trout {Salmo truttd) and brook trout {Sahelinus fontinalis) were 

abundant in TCA and TCB relative to other species. Conversely, brook trout were rare in 

the BC channels where only one individual was sampled (Figure 9 and Figure 10). In the 

BC sites, YOY brown trout comprised the dominant salmonid species-size class 

followed, by juvenile rainbow trout {Oncorhynchus mykiss). Other species that were 

commonly sampled included mountain whitefish {Prosopium williamsoni), largescale 

sucker {Catostomus macrocheiliis), longnose sucker (C. catostomus), redside shiner 

{Richardsonius balteatus), and slimy seul pin {Cottus cognatus).
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Species ’ Length Frequencies

In order to identify how fish community composition varied by floodplain 

channel, sampled fish lengths were compared among channels and sampling dates. 

Brown trout were significantly smaller in BCA and BCB during two of the three sample 

periods (August: P < 0.0001, 3 df; September: P < 0.0001, 3 df) than in the deeper and 

more complex TCA and TCB (August) and TCB (September) which hosted adult brown 

trout. Similarly, longnose suckers were significantly larger in TCB than in BCA and 

BCB (September: P < 0.008, 3 df). However, significantly larger longnose sucker 

utilized BCB {P < 0.042, 1 df) compared to longnose sucker utilizing the BCA channel 

during the March sampling.

Intraspecific length differences for YOY brown trout and brook trout (Figures 11 

and 12) were apparent between the August and September sampling. Other species such 

as rainbow trout (Figure 13) and largescale sucker (Figure 14) were not common enough 

to merit growth comparisons. The length of YOY brown trout in all channels was 

significantly different (P < 0.001) between August (median total length = 65 mm), and 

September (median total length = 87 mm). The length of YOY brook trout in TCA and 

TCB was significantly different {P — 0.033) between August (median total length = 75 

mm), and September (median total length = 8 6  mm) (Table 4).

The structure of fish communities utilizing the floodplain channels varied over the 

sample period as YOY fish matured and older fish migrated from the sample reach or 

were removed by predators. For most species, juvenile fish were most abundant in the
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March sampling. A few infrequently encountered older individuals represented the adults 

in the sampled fish communities.

Depending on the time of spawning for a particular species, YOY in fish used 

floodplain channels by August and/or September. The juvenile fish that were apparent in 

the initial sampling were more dispersed by late summer, reflected in the capture of fewer 

large fish during August and September sampling. The YOY fish that were sampled in 

August had generally increased in size by September. Older age classes sampled in 

August, were less numerous than the YOY of the same species in September likely due to 

mortality.

Discussion

Floodplain Channel Habitat Diversity

The variability in physicochemical habitat characteristics displayed by floodplain 

channels in the central Bitterroot Valley can be represented on a number of spatial scales, 

including 1) between floodplain complexes, 2 ) between channels within a complex, and 

3) among reaches within a channel. Floodplain channel habitats are shaped by fluvial 

processes during periods of high water when the Bitterroot River captures large portions 

of the four study channels. The river overtops natural levees and inundates intra-island 

channels comprising the TC complex. CWD is transported both within the channel and 

on the adjacent floodplain. Sediment and CWD are redistributed and deposited within 

the floodplain channel, elsewhere on the floodplain, or in the mainstem Bitterroot River. 

The BC complex undergoes a similar transformation. BCA is completely inundated and 

scoured as the river crests the low-lying braid belt. Minimal inchannel CWD and simple
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channel morphology suggest efficient transport of both sediment and material to the 

Bitterroot River. Similar to the TC channels, the BCB channel conveyed floodflows 

within channel during the high water period. Although channel morphology did not 

change relative to pre-flood conditions, the channeTs wetted width increased with a rise 

in the flood flows. Low gradient riffles, that during low water were a barrier to adult fish 

passage, were sufficiently deep at high water for migrating fish to move upstream. Over 

the remainder o f the hydrograph, persistent upwelling groundwater provided off-channel 

habitat in both floodplain complexes.

Sites with deep, complex pools would be expected to hold more fish and maintain 

higher species richness (Gorman and Karr 1978; Angermeier and Schlosser 1989; Taylor 

1997). CWD abundance often influences pool complexity and stability. Channel reaches 

with stable and intricate woody debris (root wads or large aggregations) contain a wider 

range of habitats than reaches lacking such complex structures. CWD and dense riparian 

vegetation were common features in the TC channels with each of the TC reaches 

containing at least a moderate amount of CWD (>30 m^). In comparison, relatively little 

woody debris was found in the BC channels, even though the surrounding floodplain 

hosted plentiful aggregations of CWD. The difference in deep pool and CWD frequency 

between the two floodplain complexes was likely an important factor defining the fish 

communities using these sites (Sedell et al, 1990; Townsend and Hildrew 1994). 

Pearsons et al. (1992) found that stream reaches with complex CWD maintained higher 

fish densities following scouring flashfloods than did reaches that lacked stable CWD. 

After seasonal flashfloods, fish densities in complex isolated pools in Great Plains 

streams remained higher than fish densities in more-simplified pools that lacked complex
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pools (Fausch and Bramble# 1991). In BCA, adult fish were not encountered in the 

sample reaches possibly due to a lack of deep, complex pools. In another portion of BCA 

(a non-sampling area), 8-12 adult brown trout and largescale suckers occupied a deep 

pool (>1.5 m) with overhead woody debris cover on three occasions. Multiple adult fish 

using CWD in other portions of BCA suggests both the presence of adult fish in the 

channel and the importance o f patchy overhead cover. The absence of adult fish in BCA 

sample reaches may indicate the low retention of fish in this channel due to few deep 

pools and minimal CWD.

In contrast to the BC channels, the TC channels exhibited greater habitat 

complexity measured by the prevalence of deep pools and abundant CWD. Although 

portions of the TC channels were isolated late in the summer due to channel dewatering, 

persistent groundwater sources and riparian shading ensured hospitable environments for 

the resident fish. Where dewatering would have been catastrophic for fishes in the 

shallow BC channels, lower water levels were less detrimental to the TC channels’ deep 

pools. The abundance of adult salmonids suggested that the oxygen levels were adequate 

to support late season low fish densities.

In addition to physical habitat, water temperature and thermal complexity at both 

the microhabitat (Bonneau and Scamecchia 1996; Cavallo 1997) and reach scales (Rahel 

and Hubert 1991; Swanberg 1997; Dunham et al. 1999) influence species assemblage 

composition and species distribution in river and creek systems. Cavallo (1997) found 

that geographically different floodplain channel types exhibited dissimilar temperature 

signatures. Unlike the findings of other workers (see Cavallo 1997, p. 34) describing the 

importance of cold water in limiting the distribution of introduced species, invasive brook
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trout were found throughout the range o f sampled channel types and water temperatures 

(Cavallo 1997). Cavallo’s rare observations of bull trout and westslope cutthroat trout 

suggested to him that brook trout exclude native salmonids from at least a portion of their 

habitat. In the Bitterroot River, the presence of temperature-tolerant brown trout and 

brook trout in floodplain channels likely reflects a similar phenomenon of introduced 

species competitively excluding native congeners. Native westslope cutthroat may be 

less aggressive feeders than introduced species or may incapable of displacing introduced 

fish from quality feeding locations. Larger brown trout and more aggressive brook trout 

likely displace natives from the sampled floodplain springbrooks. Prior to the 

introduction of these two species, native westslope cutthroat trout likely used these sites 

in a manner similar to these two nonnatives.

Longitudinal Habitat Complexity

One intent of this study was to investigate the species-area hypothesis. This 

hypothesis has been applied to longitudinal gradients on many spatial scales ranging from 

streams (Sheldon 1968; Angermeier and Schlosser 1989; Rahel and Hubert 1991) to 

individual habitat units (Taylor 1997). The hypothesis predicts that downstream reaches 

will contain larger habitat units capable of supporting larger and more diverse fish 

communities than upstream reaches that have less developed by fluvial processes. 

Floodplain channels may provide a more tenuous test for this hypothesis. Unlike 

tributaries where channel size is coupled with discharge magnitude, floodplain channels 

represent semi-independent systems that are accessed by the primary river during high 

water periods. On the Bitterroot River, the mainstem inundates subsidiary channels
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during high water events. The Bitterroot River can erode or deposit substantially more 

material from or into these channels than would be expected if these channels were 

independent of the Bitterroot River and drained their own scaled watersheds. Perhaps 

more succinctly, these floodplain channels are conduits for the Bitterroot River during 

high water, but the channels appear to be oversized for the upwelling water they 

discharge the remainder of the year. This dichotomy in flows partially explains the wide 

channels and abundance of bare cobbles. With this in mind, the relatively short lengths of 

these channels and similar high water flow intensity over the channel length, may limit 

the longitudinal channel development described by Angermeier and Schlosser (1989). In 

tributaries and small streams, downstream habitats tend to be deeper and more complex 

than habitats in headwater reaches. This downstream increase in channel size is 

attributed to inputs from feeder streams and a greater cumulative drainage area. In 

contrast to this phenomenon, Bitterroot River floodplain channel discharge slightly 

increased in a downstream direction during the low water period and the entire channel 

conveyed surface water during high water events.

I did not find any significant relationships between a reach’s distance from the 

Bitterroot River and channel variable diversity. Personal observation supported this 

finding as the location of the most complex reaches varied by floodplain channel. For 

these reasons, the longitudinal increase in habitat area found in other systems was not 

supported in the floodplain channels I sampled.
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Fish Community Comparisons

Fish community composition and fish abundance also differed between the 

different floodplain channels. Fish species-length class richness was greatest in the 

downstream sites in each o f the sampled channels, although the intermediate site, TCA- 

R2, had the highest richness of all the sites. Richness increased downstream with the 

fewest number of species-length classes inhabiting the upstream channel origin reaches. 

Total fish abundance followed a similar pattern. The Shannon diversity coefficient was 

more variable for the sampled reaches. However, compared to the upstream sites, 

downstream sites had greater Shannon diversity except for the TCB channel. Unlike the 

findings of Angermeier and Schlosser (1989), fish diversity did not increase in a 

downstream direction as expected perhaps because sampled reaches did not significantly 

differ in a downstream direction. In another system, habitat loss in downstream areas led 

to lower habitat diversity that partially explained lower fish diversity (Cross 1985). In 

the Bitterroot River floodplain channels, the relationship between fish diversity and 

habitat area seems a bit tenuous. Because fish abundance was low, sampling more sites 

over a longer period would be required to thoroughly address the species-area issue in 

floodplain channels.

The overall high species-length class diversity but low abundance of fish using 

floodplain channels was somewhat surprising. Since channel connectivity fluctuates 

according to the Bitterroot River hydrograph, fish may select sites during high water but 

are then isolated when surface flows decline. The number of individuals and species 

inhabiting these sites is likely a reflection of the channeTs connectivity with the 

Bitterroot River as well as the quality of the site for maintaining community members.
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Recruitment in these channels occurs through immigration from the mainstem and YOY 

emergence within the floodplain channel. Water levels drop through the summer until 

some reaches are isolated. Fish remaining in these reaches contend with low water 

conditions and predation. Individuals that survive these conditions until the next high 

water will then be able to select another environment to occupy.

Considering these processes, reasons for community diversity differences can be 

hypothesized. Since only weak relationships were found between the fish community 

variables and the measured channel habitat variables (except for fish abundance and 

reach distance), other biotic or abiotic factors likely influence fish community structure. 

Two possible explanations include; (1) the composition of the fish community, and (2) 

the source-distance effect. Species occurrence patterns may depend on the dispersal 

ability o f the fish in the community. For example, the adult fish that were sampled in 

deeper reaches may be resident fish that remain in the floodplain channel throughout the 

year. These fish favor floodplain channel conditions and may not disperse from the 

floodplain channels to the river. Conversely, YOY and juvenile fish may only inhabit the 

floodplain channels during the early part of their life and then move to the mainstem 

Bitterroot River in seek of more optimal conditions. This would especially be expected if 

dominant adult fish already occupy preferred positions in the floodplain channels.

Some speculation has also been garnered concerning the lifehistories of some fish 

species. As there are resident, fluvial, and adfluvial forms of some species (i.e. bull trout, 

brown trout, and rainbow trout), perhaps there is a segment of the fish community that 

remains in floodplain channels (C. Frissell, personal communication). This resident 

group would prefer the more stable environment afforded by floodplain springbrooks in
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contrast to the more fluctuating mainstem conditions. The transient members of the 

community might migrate from floodplain channels to the mainstem in search of more- 

hospitable habitat, optimal feeding conditions, less competition, or for reproductive 

purposes.

Secondly, the source-distance effect evaluates the distance a fish would have to 

migrate from a source body to the sampling location. Unlike headwater streams where 

the only migrant source is from downstream reaches, the Bitterroot River floodplain 

channels could receive migrants over a large portion of their channel length during high 

water events when the Bitterroot River partially inundates the subsidiary channels. Fish 

could into the floodplain channels at their downstream, upstream, or lateral points of 

connection with the Bitterroot River. This characteristic of floodplain channels vastly 

differs from tributaries in that there are more potential migrant sources for floodplain 

channels. For this reason, fish may only have to move a short lateral distance between 

the mainstem and the floodplain channel during high flow periods as opposed to 

swimming upstream a great distance from the confluence of the secondary channel and 

the mainstem. The transient vs. resident population effect and the source-distance effect 

may help explain the fish community differences found in the floodplain channels.

Seasonal Fish Use

Bitterroot River floodplain channels are seasonally valuable habitats for river fish 

species and age classes. Considering the abundance of YOY fish of at least six species, 

these floodplain channels likely provide important nursery habitats. In addition to using 

low gradient riffles and channel margin CWD, YOY fish inhabited shallow, temporary
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channel margins during the receding limb of the hydrograph. Warmer water 

temperatures and isolation from aquatic predators (Power et al. 1995; Brown and Moyle 

1991) likely result in increased juvenile growth rates and survival. In a literature review, 

Sedell et al. (1990) found diverse backwater habitats to be integral nursery areas for a 

number of river fish species. Off-channel habitats were selectively utilized by adult 

Colorado pikeminnow (Ptychocheilus lucius), for spawning, while the YOY population 

also used these sites as nursery habitats (Tyus and Me Ada 1984). YOY brown trout 

inhabited pool, riffle, and backwater margins during late summer when most of the 

fishes’ growth occurred (LaVoie and Hubert 1996). Similarly, more YOY brown trout 

were observed in shallow riffles than in the deeper runs inhabited by adults (Naslund et 

al. 1998). Kill gore and Baker (1996) observed that YOY abundance in a floodplain 

channel actually increased with distance from the river channel, particularly when 

resources were exploitable in the surrounding flooded hardwood forest.

Prominent upwelling groundwater sources and heterogeneous substrates in the 

floodplain channels are important for over-wintering success. Surfacing groundwater 

moderates water temperatures and reduces ice formation. In Bitterroot River floodplain 

channels, juvenile fish were often seen positioned between pebbles and cobbles and 

swimming under surface ice when the channel perimeter was disturbed. Over-winter 

survival by juvenile fishes in floodplain channels not only creates diverse floodplain 

communities, but also creates a source of migrants for the primary chaimel.

As late season water temperatures rise, temperature intolerant species may select 

floodplain environments buffered by upwelling groundwater and riparian shading. These 

channels provide thermal réfugia critical during the late season when mainstem
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environments are affected by solar warming. Brown trout population densities in 

southern Sweden were positively related to water temperature (Eklov et al. 1999) that 

was regulated by abundant vegetation shading, although in that particular study, 

temperature was correlated negatively to the amount of shading.

One final purpose for sampling Bitterroot River floodplain channels was to 

investigate the prevalence of introduced non-salmonid species. Most introduced species 

have some undesirable effects on native species assemblages via competition or predation 

(Ross 1991). Introduced fish species success off en depends on abiotic and biotic 

processes characterizing the aquatic habitat and the existing fish community (Moyle and 

Vondracek 1985; Baltz and Moyle 1993). Jones (1990) noted the presence of large mouth 

bass {Micropterns salmoides), pumpkinseed {Lepomis gibbosus\ black bullhead catfish 

{Ictaluras m elas\ yellow perch {Perea flavascens), and northern pike {Esox lucius) in 

several lentic floodplain water bodies disconnected from the Bitterroot River except 

during infrequent high flow events. Jones’ investigation indicated that these floodplain 

habitats supported introduced fish assemblages but were not extensively inhabited by 

salmonids. Although a lack o f salmonids may have indicated biased sampling methods, 

these more environmentally stable (flows, moderate water temperature) habitats provide 

relatively benign habitats for nonnative fishes compared to the more fluctuating 

mainstem conditions. Although pumpkinseed and largemouth bass are known to 

populate off-channel lentic habitats in the Bitterroot Valley, including the sites sampled 

by Jones (1990), they were infrequently encountered in floodplain channels sampled in 

this study. A single pumpkinseed was sampled on two separate occasions in TCBRl. 

Cold upwelling groundwater and natural flow variation in floodplain channels may
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exclude the successful reproduction and population growth of these species that tend to 

prefer less fluctuating lentic environments. While introduced salmonids appear to 

exclude native trout from floodplain channels, introduced non-salmonid species only 

comprised a small proportion of fish communities inhabiting highly connected floodplain 

channels. Nonetheless, management of these introduced species may be imperative to 

preserving native fish populations.

Results of this study suggest that Bitterroot River floodplain channels offer a 

continuum of habitats that vary geographically, geomorphically, chemically, biologically, 

and temporally. The distribution of species and age classes inhabiting these floodplain 

channels indicate the importance of these sites both as nursery habitats for juvenile 

rearing as well as sites occupied by adults of several species. The proliferation of 

introduced salmonid species in these groundwater fed systems may be problematic for 

native westslope cutthroat which likely used these habitat types prior to nonnative 

salmonid introductions.

These sample channels may act as an important fish source for the primary 

Bitterroot River. Species inhabiting these sites may be flushed into the mainstem during 

high water periods or migrate between the mainstem and floodplain channels while these 

habitats are connected. As semi-independent systems, floodplain environments improve 

biological diversity and fish community stability (Sedell et al. 1990; Townsend and 

Hildrew 1994). Catastrophic mainstem events that diminish the standing fish stock may 

not affect more isolated backwater channels traversing the floodplain. Conversely, 

extended droughts that lower the floodplain aquifer elevation could diminish river- 

floodplain connectivity. Excessive surface water diversions on the central Bitterroot
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River during the 1980’s resulted in the desiccation of mainstem reaches between Tucker 

Crossing and Bell Crossing. If similar events occur in the future, floodplain channel fish 

communities would likely recover with the return of high water as mainstem fish seek 

high water réfugia in secondary channel habitats. These interactions exemplify the 

importance of complex intact floodplains to river dynamics and associated biological 

communities.

Further research is necessary to identify the factors that define fish community 

structure in Bitterroot River floodplain habitats. Investigating the importance of these 

sites during high water periods would provide insights concerning the recolonization and 

recruitment of fish into floodplain channels.

Conclusions

•  Objective 1 Results: Fish species-size classes using floodplain habitats were

characterized.

♦ Fish community richness and Shannon diversity tended to increase in a

downstream direction although trends were not significant.

♦ Floodplain channel fish communities included members of the native assemblage 

and introduced trout species. Native westslope cutthroat trout and bull trout were 

not sampled in the floodplain channels. Introduced non-salmonid fish were rare.

♦ YOY and juvenile fish were more common than adults of large species such as 

rainbow trout and brown trout.

♦ Large adult fish were excluded from some reaches due to shallow depths. These

same reaches were often inhabited by abundant YOY (i.e. BCA-R2 and BCB-Rl).
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•  Objective 2 Results: Floodplain channel fish communities changed over time as YOY 

fish emerged and older fish either migrated from sampled reaches or experienced 

mortality.

♦ Brown trout and brook trout YOY displayed significant growth from August to 

September.

♦ Fish communities may contain resident and transient fish. Some adult fish were 

sampled on multiple occasions.

♦ The abundance of YOY fish and few adult fish suggest the importance of 

floodplain channel reaches as YOY and juvenile nursery areas.
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Figure 1 : The Bitterroot River watershed and the Tucker Crossing and Bell Crossing sample sites.



Table 1: Physical habitat data for the sampled floodplain channel reaches.

TCA-Rl TCA-R2 TCA-R3 TCB-Rl TCB-R2 BCA-Rl BCA-R2 BCA-R3 BCB-Rl BCB-R2 BCB-R3
Distance to Bitterroot (m)* 129 998 1465 145 1146 18 348 541 42 515 842
Reach Area (m )̂ 1037 472 266 560 947 744 380 866 905 813 740
Reach Volume (m )̂ 331 128 40 108 295 187 83 307 141 270 191
Reach Width (m) Average 10 8 3 6 7 7 5 7 7 8 8

SD 3 2 1 2 2 2 3 3 4 3 3
Reach Depth (m) Average 0.32 0.27 0.15 0.19 0.31 0.25 0.22 0.36 0.16 0.33 0.26

SD 0.27 0.24 0.14 0.17 0.26 0.18 0.13 0.27 0.08 0.20 0.17
Depth Categories 0-0.3 m 63% 68% 87% 82% 56% 67% 72% 56% 98% 48% 69%
(% Coverage) 0.31 -0.6 m 25% 23% 13% 15% 33% 32% 28% 29% 2% 48% 28%

0.61 -0.9 m 9% 9% 0% 3% 9% 1% 0% 12% 0% 4% 3%
> 0.9 m 3% 0% 0% 0% 2% 0% 0% 3% 0% 0% 0%

Reach Substrate Silt 0% 2% 0% 7% 0% 11% 0% 0% 0% 40% 44%
(% Coverage) Sand 15% 18% 51% 68% 28% 75% 69% 29% 22% 3% 10%

Gravel 10% 11% 6% 1% 16% 7% 4% 1% 4% 5% 4%
Pebble 44% 42% 28% 13% 39% 4% 18% 32% 28% 20% 16%
Cobble 30% 27% 16% 11% 18% 3% 9% 39% 47% 32% 26%

Substrate Cover No Cover 60% 67% 91% 55% 85% 28% 27% 33% 32% 42% 52%
(% Coverage) Aquatic Vegetation 30% 26% 0% 36% 6% 72% 73% 57% 68% 35% 39%

Boulder 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Small Woody Debris 2% 3% 0% 4% 5% 0% 0% 2% 0% 10% 8%
Large Woody Debris 8% 5% 9% 5% 4% 0% 0% 4% 0% 13% 1%
Bank 0% 0% 0% 0% 0% 0% 0% 4% 0% 0% 0%

Water Column Cover No Cover 80% 76% 93% 77% 80% 26% 38% 59% 47% 50% 55%
(% Coverage) Aquatic Vegetation 8% 15% 0% 15% 3% 72% 62% 33% 52% 29% 38%

Boulder 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%
Small Woody Debris 2% 3% 0% 2% 8% 1% 0% 2% 0% 10% 6%
Large Woody Debris 8% 5% 7% 6% 8% 1% 0% 3% 0% 11% 1%
Bank 1% 2% 0% 0% 1% 0% 0% 2% 0% 0% 0%

*: Distance to the Bitterroot River was measured from the downstream extent of each reach to the Bitterroot River.

4̂
00
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Table 2: Channel diversity variables calculated using the Shannon-Weaver diversity 
index. Sites with a higher value for a particular variable are more diverse for that
variable than a site with a low civersity score

Channel
Reach

Depth
Diversity

Substrate
Diversity

Substrate Cover 
Diversity

Column Cover 
Diversity

BCA-Rl 1.97 2.38 1.82 1.98
BCA-R2 1.81 2.50 1.79 1.94
BCA-R3 2.84 3.09 2.74 2.57

BCB-Rl 1.12 3.22 1.87 2.01
BCB-R2 2.32 3.74 3.40 3.24
BCB-R3 2.07 3.95 2.48 2.61

TCA-Rl 2.61 3.46 2.60 2.08
TCA-R2 2.26 3.78 2.38 2.24
TCA-R3 1.47 3.18 1.34 1.30

TCB-Rl 1.74 2.75 2.63 2.10
TCB-R2 2.66 3.75 1.80 2.07

Table 3 ; Electrofishing results for the sampled floodplain channe reaches.
Channel
Reach

Total
Individuals

Species-Length Class 
Richness

Shannon
Diversity*

BCA-Rl 74 11 8.94
BCA-R2 47 5 3.31
BCA-R3 31 4 3.44

BCB-Rl 78 11 6.26
BCB-R2 33 8 5.24
BCB-R3 23 4 3.01

TCA-Rl 57 10 6.99
TCA-R2 27 13 7.94
TCA-R3 26 5 3.80

TCB-Rl 42 5 3.86
TCB-R2 31 9 6.82

*: Shannon diversity is based on species-length classes.
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Figure 5: The distribution of large woody debris water column cover in the floodplain channels. 
Percentage represents the number of points that were sampled that included large woody debris cover.
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Figure 6; The distribution of aquatic vegetation water column cover in the floodplain channels. 
Percentage represents the number of points that were sampled that included aquatic vegetation cover.
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igure 11 : Length frequencies for brown trout sampled in Bitterroot River floodplain channels between March 
nd September 1999. Three distinct age groups are apparent in the August and September samplings. Young-of- 
ear fish (age-0) were significantly larger {P < 0.001) in September than in August 1999.
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Figure 12; Length frequencies for longnose suckers sampled in Bitterroot River floodplain channels in March and 
September 1999. The March sampling displays an influx o f young-of-year individuals into the floodplain 
channels.
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Figure 13; Length frequencies for brook trout sampled in Bitterroot River floodplain channels between March and 
September 1999. An influx of young-of-year fish is apparent in the September sampling. Young-of-year fish were 
significantly larger (P = 0.033) in September than in August 1999.
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Figure 14: Length frequencies for rainbow trout sampled in Bitterroot River floodplain channels between March 
and September 1999. The September sampling displays an influx o f young-of-year individuals into the 
floodplain channels.
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Figure 15: Length frequencies for largescale suckers sampled in Bitterroot River floodplain channels between 
March and September 1999. The September sampling displays an influx of young-of-year individuals into the 
floodplain channels.
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Table 4: Total length and weight for commonly sampled species in Bitterroot River floodplain

Date Fish Species n Total Length (mm) Weight (g)
03-99 Brown Trout 34 146.67(14.01) 28.07 (9.81)

Rainbow Trout 18 120.28 (40.36) 22.71 (32.52)
Brook Trout 18 147.06 (40.81) 32.37 (32.01)
Longnose Sucker 39 105.05 (41.77) 16.66 (24.14)
Largescale Sucker 18 116.67 (30.62) 16.37(15.71)

08-99 Brown Trout 43 112.19(73.73) 20.3 (33.28)
Brook Trout 10 138(103.51) 12.06 (20.76)

09-99 Brown Trout 74 121.68 (76.99) 25.13 (46.58)
Rainbow Trout 14 114.43(113.92) 31.7(71.31)
Brook Trout 27 114(53.75) 23.94 (44.36)
Longnose Sucker 25 120.40 (83.34) 30.45 (55.64)
Largescale Sucker 24 79.54(14.67) 4.85 (2.72)
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