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Hash , K irk Robert, M  S , May 1997 Chemistry

Understanding Anomalously Large Isotope Effects Dealing with Hydrogen Transfer 
Reactions in Transition Metal Chemistry

Director Edward Rosenberg ^

Fluorine-19 NMR spectroscopy and UV-Vis spectrophotometry were used to investigate 
the kinetics and isotope effects observed in the reaction o f H20S](CO)io with 
trifluoroacetonitile ( CFjCN ). Two major goals were pursued. The first was to perform 
careful kinetic isotopic substitution experiments and to determine the origin o f these large 
isotope effects which would assist in quantifying why such anomalously large isotope 
effects are observed, Second, to elucidate a plausible mechanism for this reaction which 
takes into account these anomalously large kinetic isotope effects.

Recent kinetic studies on the reaction o f ( p-H(D))20s3(CO),o and CFjCN to form 
( p-H(D))Os3(CO),o( p-NC(H)(D)CF3) (4) and H(D))Os3(CO),o( \x-r\^-H(D)NCŒ,)
(S) are reported. Multiple isotopic experiments were conducted over a range o f 
temperatures which provided data for determining isotope effects for this reaction and for 
constructing Arrhenius and Eyring kinetic plots. Increasing isotope effects at lower 
temperatures were observed in the formation o f 5, but remained fairly constant for 4. The 
formation o f the initial isomeric adduct ( m,-H(D))Os3(H(D))(CF3CN) was not directly 
observed but its formation was found to be the rate determining step for the reaction. 
Therefore, the rate constants for the hydrogen transfer step which occurs when the adduct 
decomposes into 4 and S could not be determined directly. Studies did reveal that the 
formation o f 5  ( protic case) is favored at decreasing temperatures whereas when 
deuterium is substituted for hydrogen the reaction slows down considerably. The 
formation o f 4  is less favored at decreasing temperatures regardless o f which analog 
( protic or deuterated) is used. These results provide information on determining a 
plausible mechanism for the reaction which provides an explanation to the observed 
isotope effects and supports the conclusion that a significant proton barrier tunneling 
component is associated w ith the formation o f 4  and S.

Another proton transfer reaction studied was the protonation o f Ru3(CO)io( p-N O )' (1) 
w ith CF3CO2X  and CF3SO3X  (X=H or D) in the temperature range o f -80 to 25°C using 
>C NMR techniques. The oxygen in the nitrosyl group was determined to be the kinetic 
site o f protonation regardless o f which acid was used, producing Ru3(C0 )g( P3-CO)
( P3-N0 H (D »(2). The proton being transferred to the metal core, producing Ru3(C0 )kj 
( p-NO)( p-H (D )XD  for both the protic and deuterated species had approximately the 
same rate o f transfer. The results tentatively conclude that the isotope effects are 
associated with an intramolecular hydrogen transfer rather than an anion assisted 
intermolecular process.
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CHAPTER 1 

INTRODUCTION

Every important catalytic process has a key step, and in most cases this step involves a 

metal-to-ligand or ligand-to-metai hydrogen transfer. The significance o f these transfers 

has opened an active area o f research in recent years in trying to  understand the 

mechanism by which hydrogen transfer takes place. Researchers have proposed that more 

than one mechanism could be responsible when a hydrogen transfer has occurred/*

These different mechanistic routes are often very close in energy Therefore, small 

deviations in reaction conditions or in the electronic or steric properties o f the reactants 

could result in favoring one mechanistic pathway over another pathway or a complete 

change in product distribution The activation o f carbon-hydrogen bonds provide an 

excellent example o f the different pathways hydrogen transfers can occur Two different 

reaction intermediates have been proposed and in some cases characterized. The first 

intermediate proposed was the metal-hydrogen-carbon agostic interaction ( eq. 1) 9->2,18-20

R M ---------R

H

M
► -------H — r | ^  M  '*■ H  R

(1)
The second intermediate is the carbon-hydrogen sigma bond complex (eq. 2).*'*

M . M

H
M R H

H

(2)
Studies involving both monometallic and polymetallic complexes have led to the 

identification o f ground state agostic interactions^ Kinetic studies have provided 

substantial evidence that reveal the existence o f the C-H sigma bond complex in the

1
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thermal elimination o f methane, However, hydrogen transfers involving oxygen or 

nitrogen metal bound ligands and their associated transition states or intermediates have 

not been isolated readily but are believed to have intermediates or transition states where 

the hydrogen behaves more like a proton.

In both organic chemistry and organometallic chemistry, the determination o f a 

reaction's mechanism and its rate determining step have been elucidated by kinetic 

deuterium isotope effects Generally, the K D IE  observed in organometallic

chemistry exhibit no abnormalities. For instance, reactions assumed to have linear, 

symmetrical transition states, illustrated by the proton exchange between 

(n-C ;H ;)M o(C O )3H  and (»-C ;H ;)M o(C O ),", the KD IE  agrees totally w ith the 

calculated K D IE  obtained from  the Bigeleisen equation (eq. 3).^^ This is also a common 

occurrence in proton exchange between organic acids and their conjugated bases

'‘D exp'

(3)
The Bigeleisen equation (eq. 3) yields an idealized, "maximum" isotope effect which 

corresponds to  the difference in the zero point energies between the protic and deuterated 

species where the transition state energy fo r both are the same. Two other isotope effects 

have been documented, the first having either a bent or a linear unsymmetrical transition 

or where there is an early or late transition state. These types o f transition states tend to 

decrease the isotope effect involving the hydrogen being transferred on and o ff the 

transition metal center.^^ Another isotope effect encountered is what is referred to as an 

inverse isotope effect where the metal deuteride appears to react faster than the metal 

hydride. This effect arises from  a larger difference between C-H and C-D stretching
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frequencies relative to the M -H  and M -D  stretching frequencies, which results in a shift in 

the equilibrium constant. Recently, another inverse isotope effect has been reported 

where there is a very late transition state involving an irreversible hydrogen transfer in a 

metal-to-ligand or ligand-to-metal hydrogen t r a n s f e r .  ^ 5

Generally, the KDEE observed is in the range predicted from the Bigeleisen equation 

(eq. 3), but many investigators have observed isotope effects that were much larger than 

the calculated ones. Unusually large KD IE ’s were first reported in the early 1970's 

involving transition metal reactions and were associated w ith the protonation o f transition 

metal centers. Mays et al. studied the protonation o f many different anionic and neutral 

transition metal complexes, and found KDBE's ranging from 7 to 17 where the predicted 

KD IE  fo r the cleavage o f an OH bond should be -1 0  at 25»C ( Table 1)7^^^

Table 1: Protonations of transition metal complexes that exhibit large
kinetic deuterium isotope effects.

Compound k „ \  ko

FeCo(CO)i2“ 16 8 ± 1 0

RuCo3(CO)n

OsCo3(C O )i2~

15 4 ±  1 0

16 2 ± 1.0

OS3(CO)i2 1 1 ± 2

[(n-CsH5)Fe(CO )2h 7 ±  1
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Another example o f a very large isotope effect ( k^/kQ = 21 ) was reported by Whitesides 

and Nielen where acid catalyzed the cis-Xo-trcms isomerization o f the diene iron 

tricarbonyl compound ( eq. 4 No convincing reasons were suggested for these 

extremely large KDIE's at the time. Whitesides attributed these anomalously 

large isotope effects to the high O-H stretching frequency (3600 cm**) compared to the 

M -H  stretching frequency (1800-2000 cm**) when a proton is transferred to the metal.^*

Ph

Fe(CO )3

TFA

CIS

Ph

Ph

tram

TFA = CF3COOH

(4)
Other reactions having extremely large KDIE's compared w ith the calculated values via 

the Bigeleisen equation are observed in the activation o f C-H bonds o f various types o f 

metal centers. By activating the C-H bond on the metal bound ligand or the reverse 

process the elimination o f methane or some other type o f hydrocarbon is observed 

(equations 5-8),59-41

Cp*Ta[N(CH3)2](CH3)3 Cp*Ta[N(CH3)CH2](CH3)2 + CH,

Cp* = n -  CsfCHj);
(5 )
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Zr(OAr')2(CH2C6H5)2 -------- ► ZrlOAr'XOCéHjBuCCCHsbCHsXCHzCeHs)

(6 )

CH3C6H5

Ta(OAi')2(CH3)3  ► Ta(OAr'XOC6H3BuC(CH3)2CH2XCH3)2

CH,

(O Af = 2 ,6 -di-1-bity^jhenoxide )

(7 )

CH

CH2

^ ^ C H 3

(CpVzTh (8 )
60

'^CH2C(CH3)3

Equations 5 and 7 exhibit KDIE's 25 % larger than the calculated "maximum" isotope 

effects. However, equations 6 and 8 have isotope effects that are in the range o f calculated 

values w ithin experimental error. Since none o f these systems are linear or exhibit a 

totally symmetrical transition state, the observed isotope effect should be considered 

anomalously l a r g e .  ̂ 2 -2 6 ,29

These anomalously large KD IE ’s have been observed and documented in both organic 

and transition metal c h e m i s t r y . ‘♦2-45 These reactions usually exhibit similar ground state 

geometries fo r reactant and product and have relatively low  activation e n e r g i e s . I f  the 

potential barrier w idth is narrow and on the same scale as the de Broglie wavelength o f the 

hydrogen being transferred then there is a finite probability that the hydrogen can tunnel
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through the barrier or be on either sides o f the b a r r i e r .  “̂2-47 y^e basis for proton barrier 

tunneling and the criteria for determining i f  tunneling has occurred is documented in 

organic c h e m i s t r y . '*2.44  The first criterion is that the difference in activation energy between 

the protic and deuterated species, AEao", must be greater than the difference in zero point 

energies, AEoq” , which would give rise to an anomalously large The second

criterion is that the rate o f the reaction becomes less temperature dependent at lower 

temperatures which results in the KDEE being very temperature dependent. This is 

illustrated by either an Arrhenius or Eyring plot where deviation from linearity is observed 

and the slope at this point becomes less negative indicating temperature independence.^’  

The third criterion is associated w ith anomalously large preexponential factor ratio,

Aq/Ah Preexponential factor ratio should have a value o f ~1, a larger value should be 

considered anomalous. A  large Ag/A^ ratio means that Ag > A^ which conflicts w ith 

collision theory.'*’ The preexponential factor. A, depends on the number o f collisions and 

spatial orientation, therefore A ^ should not be larger than A^. Similarly, a large negative 

entropy o f activation, AS4, obtained from an Eyring kinetic plot is indicative o f barrier 

t u n n e l i n g . Such values occur when the reaction's barrier w idth is narrow which 

suggests very little  change in the geometry o f the reactant going to product resulting in a 

highly ordered transition s t a t e . A l t h o u g h  many documented cases o f proton barrier 

tunneling using the criteria stated above existed in the organic literature, very few existed 

in organometallic chemistry . ̂ 5 Therefore the origin o f these large KDIE's in transition 

metal chemistry was not established until the late 1980's when Rosenberg et. al. began 

work in this area. Besides this work, there exists one documented case involving proton 

barrier tunneling in organometallic chemistry ( eq. 9

CP2T[ ^FU i(C O D ) ^  (9 )
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When this equilibrium reaction was studied, a KD IE o f 24 at 45 was observed which 

suggests the possibility o f tunneling ( first criterion o f tunneling). An Arrhenius plot 

showed deviation from linearity at the lower temperatures and an Eyring plot produced a 

large negative entropy o f activation which suggests tunneling is involved In this system's 

equilibrium state, the reactant and product geometries are identical, therefore the 

hydrogen transfer occurs reversibly between the two ligands.'** To help explain how the 

hydrogen is being transferred, an agostic C-H-Ti interaction was proposed which lends 

credence to the observations made for equations 5-8.

Recent work by Norton et.al. reported the temperature dependence o f the KDIE for 

intermolecular proton transfer from monometallic hydrides to nitrogen basesEven  

though an elegant theoretical treatment o f the data was presented, experimental data did 

not meet the criteria for establishing a definitive tunneling mechanism.'*^

We began our understanding o f anomalously large KD IE ’s by investigating the large 

isotope effects observed by Mays et al. in the protonations o f anionic clusters. Later, 

similar types o f protonated systems were studied and reported by Shriver^^ and Keister^* 

that exhibited relevance and similarities to the earlier work o f Mays. Shriver showed that 

the site o f protonation for the polymetallic complex ( p-H )( p-CO)Fe,(CO)^Q" at -80 <>€ 

was at the oxygen o f the bridging carbonyl which yields ( |i-H )( p-COH)Fe,(CO);o This 

species upon heating decomposes into Fej(CO )i2 and hydrogen gas.’ ° Keister reported a 

similar protonation occurring at -60 °C for the complex ( p-H )( |i-CO)Ru3(CO),o which 

produces a mixture o f ( p-H )( p-COH)Ru3(CO)io and the dihydride, H( p-H)Ru3(C0 )n  

which eventually converts only to the dihydride ( eq. 10 ).’ *

Rosenberg et. al, hypothesized that because protonation occurred at the oxygen for 

these types o f complexes and that the large KDIE's observed Mays 36-37 may be the result 

o f an intramolecular proton transfer. This conclusion seemed plausible since large isotope
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M
\

X f

( M  = Fe, Ru, Os )

(10)

effects are common in intramolecular proton transfer r e a c t i o n s Experiments were 

conducted using both protic and deuterated acids ( FSO 3H  and FSO 3D ) to verify that 

proton transfer occurred intramolecularly and not intermolecularly. The reaction was 

monitored by NM R ( -80 °C, 1 equiv, o f FSO3H , CD^Cl^) because protonation o f the 

oxygen was rather slow Experiments showed that under the same conditions the rate o f 

protonation at the oxygen were the same regardless o f which acid was used ( FSO 3H  or 

FSO 3D  The O-protonated complex converts to the dihydride in ~ 48 hours, whereas 

the O-deuterated complex showed no detectable conversion up to ~ 72 hours Therefore, 

using the deuterated acid slows or nearly stops the deuteron from being transferred from 

oxygen to the metal center which supports our hypothesis. Another study was conducted 

using an osmium trimetallic cluster, ( p-H )( p-CO)Os3(CO)3o' which gave similar 

results.52 Both studies provide qualitative support that the large isotope effects are 

associated w ith proton transfers from oxygen to the metal center in trimetallic cluster.

A  reaction involving proton transfer occurring metal-to-ligand was studied which is 

just the opposite o f the above mentioned reactions ( eq. 10 ). This study should help to 

determine whether these large isotope effects are not thermodynamic in origin. The system 

chosen was the conversion o f H( p-HjOsjCCNCHj) to ( p-H )( p-Ti^-CHjCHjNC)
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Os3(CO)jo where the isocyanide adduct has the same geometry as H( |i-H)Os3(C O ),i 

( eq, 11). Adams and Golembeski had previously studied this reaction and found that the 

hydrogen transfer occurred via an intermolecular-base catalyzed pathway However,

CH)
s—

—Os

Os—

(11)

when moisture is totally excluded from the system, the reaction proceeded via a much 

slower intramolecular pathway w ith an observed isotope effect o f 26,9 at 32 °C.^^ Variable 

temperature kinetic studies ( 32 - 70 °C ) were conducted which resulted in a difference in 

activation energy ( AEa^H ) o f 33 .4 kj/mole. This value is much greater then the calculated 

one involving zero point energies ( AEo^H ) whose value was 3 .3 kJ/mole 3̂ Decreasing 

isotope effects were observed at higher temperatures or w ith the addition o f base .

Another criterion for tunneling was verified when a large negative entropy o f activation 

( ASh4 ) value was observed for the protic reaction. The last criterion for tunneling was to 

observe a decrease in temperature dependence w ith decreasing temperature, that is, 

deviation from  linearity at lower temperatures in Arrhenius and Eyring kinetic plots. This 

last criterion was never verified for the protic reaction, because the reaction was too slow 

below 10 °C A ll these data are consistent w ith a mechanism involving proton barrier
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tunneling.

To explore this tunneling phenomenon, several isocyanide complexes were studied 

( eq. 12 ) "  Reactions using different isocyanide ligands were discovered to directly affect 

the products being formed. Observations revealed that the type o f products formed 

were dependent on both steric and electronic factors The product distribution was also 

profoundly affected when deuterium was substituted for hydrogenT^

(12)

It was proposed that the dynamical processes w ithin the cluster ( axial-radial carbonyl or 

isocyanide exchange and bridge-terminal hydride exchange),control the intramolecular 

hydrogen transfers and dictate whether proton barrier tunneling w ill be observed. These 

dynamic properties are responsible for making the reactant and product geometries 

similar, which narrows the barrier w idth and allows the proton to tunnel through the 

barrier. In addition, the activation energy fo r the dynamic processes is comparable to the
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reaction's activation energy ( ~ 60 and ~ 80 kJ/mole, respectively). Therefore, these 

dynamic processes raise the reactant part way up the barrier, where the barrier is more 

narrow and tunneling is more likely.

The goals o f this thesis are to find the relationship between the structure o f the 

transition metal carbonyl cluster and the magnitude o f the KDIE. We also hope to define 

the relationship between the fluxionality o f polynuclear complexes and its effect on proton 

barrier tunneling. A  polynuclear complex where a metal-to-ligand proton transfer occurs 

was chosen to address these problems. The system studied is the reaction between 

( p -X )20s3(CO)io ( X=H or D ) and CFjCN ( eq. 13 M

( «  )

CF3CN

(where X  = H or D)

( « ^ )

(13)

This reaction was chosen to determine whether large KDIE's can be attributed to either 

the nature o f the hydrogen transfer ( i.e., H+ vs H  transfer ) or the geometry o f the 

product being formed ( i.e., «1 vs. ligand geometries ). To address these issues, variable 

temperature kinetic studies for both the protic and deuterated species were conducted
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using NM R techniques. This reaction was also studied by UY-V is spectrophotometry 

because a color change takes place when going from reactant to products (purple to 

yellow, respectively). This technique also determined the order o f the reaction and 

whether the coreactant (CFjCN) was following pseudo-first order conditions

Another system that w ill assist in understanding this tunneling phenomena is one 

dealing w ith oxygen-to-metal hydrogen transfers. Gladfelter and co-workers reported such 

a system in the protonation o f [ PPN^][ RU]( }i-NO)(CO),o "] (1) w ith CF3SO3H which 

resulted in the initial protonation o f the nitrosyl oxygen yielding RU)( p-N O H )(C O )io  (2) 

(eq, 14).55.56 However, protonation o f 1  w ith CF3CO2H yielded ( p-H)Ru3( p-NO )(CO )io

+ PPN

CF3SO3H

CH2CI2

H

O

PPN (CF3COO ) 
CH2CI2

(14)
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(1) (eq. 14). 55-56 The addition o f C FjCO j” to compound 2 results in the formation o f 1 

(eq. 14). 55.56

This system w ill test whether the large KDIE's observed in equations 10 and 11 are 

indeed proceeding via an intramolecular pathway and not a base assisted intermolecular 

pathway. An intermolecular pathway is plausible because one can not exclude the 

possibility o f hydrogen transfer being mediated by the base in very tight hydrogen bonded 

acid-base pairs ( eq. 15), 57 Therefore, the large KDIE's previously observed in equations 

10 and 11 could be attributed to the presence o f the acid's conjugate base (eq. 10) or trace 

bases, such as, water (eq. 11)

r
\

M  = Fe, Ru, Os 

X  = C , N  

Y  = 0 , C

R = akyl, electrons ( )

pathB

(15)
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CHAPTER 2 

RESULTS AND DISCUSSION

2.1 The reaction of H20s3(C0)j(, with trifluoroacetonitrile:

When ( 4̂-H )20s3(CO),o is treated w ith CFjCN in CDCI3, a proposed 1 1 isomeric 

adduct [H 2 0 s3(CO)io(NCCF3)] is formed. This adduct then decomposes into two 

products, ( |i-H)Os3(CO),o( ^i-NC(H)CFj) ( 4 ) and ( |i-H)Gs3(CO),o( P-T12-HNCCF3)

( 5  )(eq, 13), The formation o f these products involve a hydrogen being transferred 

from the metal to the carbon in case o f 4. and to the nitrogen in case o f 5. These metal-to- 

ligand hydrogen transfer reactions make excellent candidates to perform isotopic 

substitution experiments which w ill help in determining isotope effects and perhaps 

elucidate a mechanism for the reaction.

We have monitored this reaction by *H and '^F NM R and found that conversion to 4 

and 5. is quantitative. The *’ F NM R spectrum is composed o f two signals, for 4 , a doublet 

at 4.9 ppm = 4.5 Hz) and for 5, a doublet at -15  ppm = 2 Hz). An *^F

NM R stack plot shows rate o f growth relative to concentration o f 4 and S with time 

( Figure 1). The rate constants for the reaction were obtained by integrating each set o f 

doublets and plotting these data versus time using the integrated first-order rate law 

{-ln [A „„-A } = kt).^* The kinetic plots ( see experimental section figure 17-58 ) behaved 

according to first-order kinetics, but the reaction was conducted under pseudo-first order 

conditions because the gas ( CF3CN ) in solution was in such a large excess its 

concentration was unaffected throughout the course o f the reaction. Each reaction was 

monitored for at least 2.5 half lives and in most cases 3 half lives. Table 2 provides the rate 

constants and errors for both the protic and deuterated multiple kinetic runs at each 

temperature. Good agreement was achieved between duplicate kinetic runs ( ± 10%, Table 

2 ) w ithin this range o f temperatures ( -20 to 55 °C). The data reveal for the protic

14
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2791 s

5.0 0.0 ppm

Figure 1 : NMR stack plot of the formation of 4, ( |i-H)Os3(CO),o
( ^i-NC(H)CF3) and 5, ( n-H)Os3(CO),o( p-n^-HNCCF3) at 25«>C

reactions that the observed rate constants for the two products differ very little , although 

the product ratios vary significantly over the temperature range studied. This suggests 

that the rate o f formation o f the adduct, Os3(CO)io( p-H)(H)(CF3CN) could be the slow 

step in the reaction. However, this is not the case for the deuterated species where 

differences in the rate o f formation o f the two products are observable at -5 ° and 

-20 «C. This variable temperature study was used to quantify whether proton barrier 

tunneling was a prominent mechanistic feature in this reaction. The first step in 

quantifying proton barrier tunneling is to perform isotopic substitution experiments at 

variable temperatures to determine whether or not an isotope effect is observed. One 

would expect an increasing KD IE  w ith decreasing temperature i f  proton barrier tunneling

was taking place.
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Table 2 : Rate constants and errors for the formation o f 4, ( ti-H )O s3(CO),o 
( ti-NC (H )CF3) and 5, ( n-H)OS3(CO)io( n -n2-HNCCp3)

roduct T "c 104k%, sec'i lO'^error lO^kp, sec'i 10‘*error

à -20 0.13 ±0.0043 0.073 ± 0.0022
S. -20 0.16 ±0,0052 0.046 ±0.0029

à -20 O il ±0.0049 0.068 ±0.0014
5. -20 0.16 ± 0.012 0054 ± 0.0021

É -5 0.58 ±0.019 0.54 ±0.013
S -5 0,55 ±0.016 0 27 ±0.017

à -5 0.50 ±0.015 0.48 ± 0.011
5 -5 0.46 ±  0.0098 0.25 ±0.013

4 10 1.36 ± 0  011 1.05 ±0.014
a 10 1 42 ±0.0024 1.02 ±0.0024

4 10 1 33 ±0.0017 1.02 ±0.019
S 10 1.34 ± 0.0012 1.02 ± 0.022

4 25 3.44 ±  0.076 2.87 ±0.062
5 25 3.44 ±0.079 2.82 ±0.090

4 25 3,54 ±0.096 3.05 ± 0  061
5. 25 3.76 ±0.077 2.84 ±0,071

4 40 9,73 ±0 .24 X X
5. 40 9.68 ±0 .18 X X

4 40 9.56 ± 0.11 X X
5 40 964 ±0.091 X X

4 55 19.13 ±0.51 X X
5 55 19.76 ±0 .40 X X

4 55 20.86 ±0.61 X X
5 55 21.10 ± 0.68 X X
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A  "maximum" isotope effect w ithout tunneling is determined by the differences in 

zero-point energies associated w ith metal-hydrogen or metal-deuterium bond which is lost 

in the linear symmetrical transition state, so that the activation energy fo r the deuterium 

transfer is higher only by the difference in zero-point energies. 29,47.59 ^  value larger than 

the one described above should be considered anomalous and tunneling may explain this

anomaly. 29

Averaged observed rate constants show increasing isotope effects w ith decreasing 

temperature for 5, but remain fa irly constant for à  ( Table 3 ).

Table 3 : Average rate constants and Kinetic Deuterium Isotope Effects for the 
formation of 4, ( |i-H)Os3(CO),o( p-NC(H)CF3) and S,
( p-H)Os3(CO)3o( P-112-HNCCF3).

Product ■ T C ave, IO^Ich, sec * ave. lO^kj), see-* IchMcd

à -20 0.12 0.071 1.70
S -20 0.16 0.050 3.86*

à -5 0.54 0.51 1.06
-5 0.51 0.26 2.69"

4 10 1.35 1.04 1.30
S 10 1.38 1.02 1.85*

4 25 3.49 2.96 1.18
5 25 3.60 2.83 1.74’

* values corrected using a deuterium correction factor ( 0.73) as the fraction of deuterium in the 
final products as measured by * H NMR.

However, this is the overall observed rate constant for the entire reaction w ithout 

capturing and isolating the adduct. This strongly suggests that the rate o f formation o f the
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adduct is very slow compared to the extremely fast rate o f disappearance o f the adduct 

going to the two products as discussed above. Therefore, the KDIE's observed using the 

observed rate constants may be attenuated fo r both products. The KD IE  for 5. however, is 

definitely larger.

Because the adduct could not be isolated, the rate constants for the disappearance o f 

the adduct could not be obtained. We decided to use product ratios which are provided in 

the NM R spectra ( Figure 2 ).

4

J

ppm

Figure 2: NMR spectrum showing product ratios and integrated peak areas of
4, ( p-H)Os3(CO)io( |i- NC(H)CF3) and & ( p-H)Os3(CO),o 
( P-T12-HNCCF3).

Product ratios are a function o f the tw o product's rate o f formation related to the adduct. 

These are not the actual rates o f formation, but these data w ill provide a better 

understanding o f the mechanism involved. The protic data in Table 4 reveals that the 

relative concentration o f 4  decreases w ith decreasing temperature whereas S increases 

w ith decreasing temperature. The deuterated data in Table 4 show that the relative 

concentration o f both 4  and 5 remain fa irly constant at the different temperatures Table 4 

also shows the trend o f the observed KDIE's increasing w ith decreasing temperature.
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Table 4 : Average product ratios and K ine tic  Deuterium  Isotope Effects fo r the 
form ation o f 4» ( p.“H)Os3(CO),o( p>NC(H)CF3) and 
(P -H ) O s 3(C O ),o ( P - t i^ -H N C C F j) .

T ratio p4 ratio p5 p4/p5= k knVko

protic -20 0.26 0.74 3.40 4.33*
deuterated -20 0,45 0.56 0.786

protic -5 0.29 0.71 2.45 3.94*
deuterated -5 046 0.54 0,852

protic 10 0.33 0.67 2.03 3.01*
deuterated 10 0.48 0.52 0.923

protic 25 0.36 0.64 1.78 2 ,86*
deuterated 25 0.46 0.54 0.852

protic 40 0.40 0.60 1.5

protic 55 0.42 0.58 1 38

values corrected using a deuterium correction factor (0.73).

However, these isotope effects may be misleading and not reveal their true significance 

because the actual rate constants in going from adduct to products could not be obtained. 

Because these data exhibit an increase in the KDIE's w ith decreasing temperature, this 

suggests that deuterium substitution had a significant impact on the reaction's mechanism.

To verify that the formation o f the product's overall observed rate constants are indeed 

correct, the reactant's rate o f disappearance should be compared to the rate appearance o f 

products. One would expect that the reactant's rate o f disappearance to match or be 

extremely close to the product's rate o f appearance. Duplicate experiments using 'H  NM R 

were conducted at 25 ‘’C to determine the reactant's rate o f disappearance for this
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reaction. An ‘H NM R stack plot showing the disappearance o f reactant and the 

appearance o f 4 and 5. w ith time is found in Figure 3.

11.5 -14.9 ppm

Figure 3: ’H NMR stack plot of the disappearance of reactant, H2 0 S](C0 ),@ and 
the formation of 4, ( p-H)OS)( p-NC(H)CFg) and 5, ( p-H)Os3(CO)jo 
( P-T12-HNCCF3) with time at 25»C.

The results obtained from these kinetic experiments ( k̂ bŝ d -  3.58 x ICH ±  04 x 10-̂  

sec I) show that the rate o f reactant disappearance are in good agreement w ith the rate o f 

formation o f products ( = 3.55 x lO-^ sec ') ( see experimental section Figure 57-58

for individual kinetic plots).

We also attempted to detect the formation o f the in itia l adduct. This was done by 

cooling solutions o f H20 s3(CO)jo, exposed to  an excess o f CF3CN, to -80 ”C where 

exchange o f the hydrides should be slow. We could not detect the adduct. This is 

consistent w ith its rate o f formation being the slow step in the reaction.
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Another test to determine proton barrier tunneling is using variable temperature kinetics 

to obtain an Arrhenius plot. These plots provide valuable pieces o f information, such as, 

the activation energy (E ^ )  fo r the reaction, preexponential factor (A ), and linearity due to 

temperature dependence. Deviation from linearity especially at lower temperatures could 

signify a tunneling component in a reaction where the reaction becomes less temperature 

dependent. Conversely, at higher temperatures the reaction follows classical mechanics 

where traversal o f the barrier is highly temperature d e p e n d e n tT h is  nonlinearity at lower 

temperatures is very dependent on the w idth o f the potential energy barrier which means 

that i f  proton barrier tunneling is occurring the barrier w idth is narrow/*^ However, the 

temperature ranges that would exhibit nonlinear behavior in an Arrhenius plot could be 

d ifficu lt i f  not impossible to  determine especially at lower temperatures where reactions 

could be extremely slow.^^

The Arrhenius plot o f the overall observed rate constants fo r 4  is given in Figure 4. This 

plot is linear fo r both the protic and deuterated cases. However, these are the overall 

reaction rate constants which are dominated by the rate o f adduct formation and not by 

the formation o f 4  The activation energies ( E , ) o f the protic and deuterated reaction 

were determined from  the Arrhenius plots ; E^h =11.1 kcal/mol, E^g = 12.0 kcal/mol. The 

difference in activation energies ( AEa^^) is 0.90 kcal/mol. The last piece o f information 

obtained from  an Arrhenius plot is the preexponential factor (A). This apparent A  factor is 

useful in determining whether proton barrier tunneling is a viable explanation in certain 

reactions. Barrier tunneling is suspected when A ^ »  A *, which is anomalous in terms o f 

collision theory .'*'̂  The A  factor is dependent on the number o f collisions and spatial 

orientation which means the protic A  should be faster than the deuterated A.'*^ Therefore, 

proton barrier tunneling should be suspected when the A°«b«i / ratio is greater than 

one 47

The observed protic preexponential factor ( ) fo r 4  obtained from the Arrhenius
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Arrhenius plot of 4

c

-6
- 7

-8
-9

-10
-11
-12

3 3.2 3.4 3.6 3.8 4
1000/T

protic A deuterated

Eag = 11.1 kcal/mole

Eeq = 12.0 kcal/mole

AEa®g = 0.90 kcal/mole

Figure 4: Arrhenius plot of the formation of 4, ( p-H)OS)(CO),Q( p-NC(H)CFj).
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Arrhenius plot of 5

-12

-14
3 3.2 3.4 3.6 3.8 4

1000/T

protic deuterated

Eag =  10.7 kcal/mole 

Ea^ =  13.5 kcal/mole

AEa®0 = 2.8 kcal/mole

Figure 5: Arrhenius plot of the formation of & ( p-H)Os3(CO),o( p-Ti^-HNCCFj).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



24

plot was 5.2 X 104 sec-*, the deuterated preexponential factor ( ) was 2,0 x 10^

sec-' The ratio, / A^^kd = 3 .8 , is large compared to what is considered a typical 

value. The Arrhenius plot o f the overall observed rate constants for 5  is given in Figure 5. 

This plot is linear fo r both protic and deuterated cases. The activation energies 

( Eg ) o f the protic and deuterated reaction determined from  the Arrhenius plots are 

EaH~ 10 7 kcal/mol, Ego= 13 .5 kcal/mol. The difference in activation energies ( AEg'̂ ^) 's 

2.8. This value is 3 times greater than the one observed fo r 4..

The observed protic preexponential factor ( A^^bw ) for 5. obtained from the Arrhenius 

plot was 2.8 X 1Q4 sec', the deuterated preexponential factor ( A'̂ ^̂ sd ) was 2.5 x 10  ̂

sec' The ratio, / A"„b^ = 89.3, is extremely large compared to what is considered a 

typical value. This value is approximately 20 times greater than the one observed fo r 4.

An Eyring plot is another plot to help quantify proton barrier tunneling. Important 

information obtained from these plots are; change in enthalpy energy ( AH 4 ), change in 

entropy energy ( AS 4 ), and linearity due to temperature dependence. Both plots, 

Arrhenius and an Eyring exhibit the same linear behavior, deviations from  this linearity 

should be considered anomalies.

The Eyring plot o f the overall observed rate constants for 4 is given in Figure 6 This 

plot is linear fo r both the protic and deuterated cases which is consistent w ith the 

Arrhenius plot The enthalpies (H ) o f the protic and deuterated reactions were determined 

from  the Eyring plots; AHh4= 10.5 kcal/mol, and A H d-=  11.4 kcal/mol. The entropies (S) 

o f the protic and deuterated reactions were AShF = -8  33 kcal/mol K, and A S ^f =-11.1 

kcal/mol K, The deuterated ASd4 is 13 times larger than the protic ( ASh4)

The Eyring plot o f the overall observed rate constants fo r S is given in Figure 7. This 

p lot is also linear for both protic and deuterated cases. The enthalpies (H ) o f the protic 

and deuterated reactions were AHh4= 10,5 kcal/mol, and AH d4= 12.7 kcal/mol. The 

deuterated AH^ 4 values from  both plots are larger than the ones found for the protic
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Eyring plot of 4
-11
-12
-13
-14
-15
-16
-17
-18

3 3.2 3.4 3.6 3.8 4
1000/T

protic deuterated

AHg$= 10.5 kcal/mol 11.4 kcal/mol

ASjj t -  -  -8.33 kcal/mol K ASd 4^= -11.1 kcal/mol K

Figure 6: Eyring plot of the formation of É, ( |i-H)OSj(CO)^@( p-NC(H)CFj).
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Eyring plot of 5
-12

„ “ 1 3
t; -14 
§ - - 1 5  

-16 
-17 
-18

3 3.2 3.4 3.6 3.8 4
1000/T

protic deuterated

AHh 4- = 10.1 kcal/mol AHo1̂ =  12.7 kcal/mol

ASg t- = -7.07 kcal/mol K ASgT= -15.3 kcal/mol K

Figure 7: Eyring plot of the formation of 5» ( p-H)Os3(CO)io( p-rj^-HNCCFs).
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AHh^, but more important is that the observed A H ^f fo r 5 is greater than the A H g i fo r 4. 

The entropies (S) o f the protic and deuterated were determined from the Eyring plots;

= -7.07 kcal/mol K , and A S ^i = -15.3 kcal/mol K. The deuterated ASd4- for 5 

is twice as large than the protic ASh+ whereas fo r 4, it is only 1.3 times larger. This is 

consistent fo r a reaction mechanism exhibiting proton barrier tunneling where a large 

negative value is observed fo r AS f:,33,6o.6i Tunneling is most likely to occur when there is 

a narrow barrier w idth, because the narrower the w idth means that the geometry o f the 

reactant going to product changes very little , and this gives rise to a highly ordered 

transition state, thus a large negative AS f  is observed,

Arrhenius plots o f the product ratios were also prepared which are given in figure 8 . 

Deviation from  linearity was not observed in either the protic or deuterated plots. The 

change in activation energies ( AEa ) fo r both the protic and deuterated cases are small 

values which is to be expected since AEa = { Ea ^  - Ea ) The observed value for the 

protic, AEa„, was 1.64 kcal/mol, and the deuterated, AEa^, was 0.655 kcal/mol. The 

deuterated, AEa^, case is the most interesting in that the observed product ratios remain 

fa irly constant, thus one would suspect a slope o f zero or close to  zero. This means that 

the barrier height ( Ea) remains the same or is slightly higher fo r both 4 and 5 when 

deuterium is substituted fo r protons. The observed protic preexponential factor ( )

obtained from  this Arrhenius plot was 9 .11, and the deuterated preexponential factor 

( A*̂ ot»d ) was 1 40. The ratio, t  A*̂ „b,d = 0 154, is close to the typical value o f 1 

where no tunnelling is observed. However, because these data are obtained from ratio 

differences one may conclude that these values are reduced, and may not reflect their true 

significance in regards to  proton barrier tunneling.
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Arrhenius Plot
ln[P5/P4] vs. 1000/T

,—, -0.2 
Z  -0.4 
^  -0.6 
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- 1.2
3.2 3.4 3.6 3.83 4

1000/T

protic deuterated

AEhh = 1.64 kcal/mol

AEa^ -  0.655 kcal/mol

Figure 8: Arrhenius plots of product ratios obtained from NMR spectra.
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2.2 Simplified mathematical treatment:

A  proposed mechanism fo r this reaction is found in equation 16, Where C represents 

the compound, ( p-H )2 0 s3(C O ),o, G is the gas {CF3CN) , A  is the intermediate adduct, 

and P4 and P5 are 4 and 5, respectively, and and k , »  k.3.

k* J S i— -  P4
c  + G — A  ^

(16)

Now, i f  the intermediate's concentration obeys equation 17 , then it is assumed that the 

mass balance equations found in Equation 18 are c o r r e c t . W h e r e  C^is the in itia l 

concentration o f the cluster.

[A ] «  [C ], [E^ltPg]

(17)

Co = C + P4 + P5 and = P400 + P500

(18)

Therefore, the kinetic expressions fo r the reaction are ( eq. 19 ):

^  ^  =k^C - k , P , - k , P 5

^  = k , A

(19)

29
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Now assuming steady state conditions, and solving fo r A  ( eq, 20 ); 57,62,63

kpjC -  k^A  + k ,A  which yields;

A =
k ,+  k,

(20)

Therefore, expressions fo r each product are obtained as ( eq 21 ):

dt V  k^ dt k,+ k,

(21)

The kinetic data are expressed fo r [P4] and [P5], therefore, [C ] must be expressed in terms 

o f P4 and P5 ( eq. 22 ):57,63.63

therefore.

C , = C + P4 + P5 and C„ = P;

(: = c, - p, - p,
C  =  P 5 0 0  +  P 4 0 0  -  P 4  -  P 5

(22)
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Because both [P4] and [P5] appear in the above equations, a new expression is generated 

where Kp = P4/P5, this is then rearranged to become ( eq, 23 ):57.62,63

p .
P = —— which is substituted for [P5]

 ̂ Kp

C = P t.  +P4. . - P 4 -

C = P500 + P 400 -  (1 + )P4
Kp

(23)

However, it is also correct that Pĝ ,̂ = P4„yK p, which is then substituted for Pg^̂ , yielding 

( eq. 24 );57,62.63

and,

^  K p ^^400 “

which rearranges to,

^  = (1 + ^ ) (P 4 3 o - P 4 )

which gives the following expression;

(24)
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It is also believed that Kp = k^/ k j, which is then substituted in the above equation to  give 

( eq. 25 ):57,62,63

d P 4  _  k ^ k 4 ( l  +  l u ; )  /  .

which finally gves the expression; 

d?4 ,  ,
= kA (P 4x, - P 4)

(25)

This expression is now integrated to  give Equation 26;

In = - k t
400

(26)

The same procedures are followed fo r [P j],
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2.3 The reaction of H2 0 s3(CO)io with trifluoroacetonitrile followed by UV-Vis 
Spectroscopy :

U V-V is Spectroscopy was used to verify the assumption that the rate law for this 

reaction was indeed, first-order kinetics, and therefore, the interpretation o f the observed 

kinetic data are based on the pseudo-first order conditions o f this reaction.

Kinetic experiments were conducted using five different gas (CF3CN) volume additions 

which resulted in increasing rate constants. This is consistent w ith collision theory where 

one would expect more collisions to occur by increasing the concentration o f reactants. 

Rate constants and associated errors for the formation o f d  and 5, using different volumes 

o f gas, are found in Table 5. These are the overall observed rate constants for the entire

Table 5 : Rate constants and errors measured by UV-Vis Spectroscopy for the
formation of â, ( p-H)Os3(CO),o and & ( p-H)Os3(CO),o( P-T12-HNCCF3).

1 O^k^, sec-* 10‘*error

I ml o f gas 0.2164 0.01194
1 ml o f gas 0,3704 0.0004473

4 ml o f gas 1 458 0.005609
4 ml o f gas 1.301 0.002476

6  ml o f gas 2.206 0.001191
6 ml o f gas 2.193 0.0007659

8 ml o f gas 2.600 0.001219

10 ml o f gas 3.150 0.1154
10 ml o f gas 2.986 0.03136

reaction which includes both the formation o f the adduct and the adduct's disappearance 

into the tw o products.

33
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A kinetic plot showing rate constants increasing w ith time, using the five different gas 

volumes is found in Figure 9.

UV-Vis plot
0.4
0.2

^ - 0 . 2  

^  -0.4 
-  - 0.6 

- 0.8

0 300 600 900 1200 1500 1800
time (sec)

—  [1 ml] - . - [4  ml] ^ [ 6  ml] - ^ [ 8  ml] 10 ml]

Figure 9: UV-Vis kinetic plot of the formation of both é . and 5 using 
variable gas volumes.

Earlier experiments revealed that both à. and S show maximum absorption at 

392 nm. Because, each product absorbed light at the same wavelength it was impossible to 

differentiate between the two products. Therefore, molar absorptivity experiments using 

Beer's Law were conducted on each product to  determine their extinction coefficients. 

Extinction coefficients were determined fo r the starting compound, ( [i-H )20s3(CO),o and
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fo r 4, ( i.i-H)Os3(CO),o( ii-N C (H )C F3) and S,( }a-H)Os3(CO),o( n -ri2-HNCCF3).

These determinations were made using a starting concentration o f ~ 4 mmole/liter for each 

compound which were then diluted by a factor o f 2.5 each time, so each compound 

contained five different concentrated solutions. Absorptions were determined at their 

maximum absorbance (392 nm) which resulted in extinction coefficients o f 221 8 

L/(cm mol) fo r the starting cluster, and values o f 2159.7 and 9374.5 L/(cm  mol) for 4 

and 5, respectively. Because, the extinction coefficients o f 4  and S are different, the 

absorbance observed at 392 nm is not a true reflection o f their concentration.

C
CO
</>c
8
£
CO

0.00035
0.0003

0.00025
0.0002

0.00015
0.0001
5E-05

0

UV-Vis plot

4 6
Volume (ml)

8 10

Figure 10: UV-Vis kinetic plot of rate constants versus volume of gas (CF3CIV) used.
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To verify whether pseudo-first order kinetics conditions are followed, a plot o f rate 

constants versus volume o f gas (CF3CN) was prepared (Figure 10). I f  pseudo-first order 

conditions are fulfilled, this plot should be linear and the y-intercept should go through the 

origin. This plot shows good linearity w ith a slope value o f 3.2 x 10-®, and the y-intercept 

goes through the origin, indicating that the reactions are follow ing pseudo-first order 

conditions.

These experiments also revealed two isosbestic points which are shown in Figure 11,

Reaction Spectra
Two isosbetic points evident

4

3

- Q 2

1

0
300 600400 500 700

Wavelength (nm)

Figure 11: UV-Vis kinetic spectrum where two isosbestic points are evident, 
performed at 25®C, with 4 ml of gas (CFjCN).
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The isosbestic point is where the absorbance due to the reactant's decomposition equals 

the absorbance o f the product being formed. However, the determination and 

interpretation as to why there was tw o isosbestic points was not performed at this time 

This was considered another project and w ill be conducted at a later date,

Individual U V-V is kinetic plots are found in Figures 59-67, after the experimental section
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2.4 The reaction of PPN[Ru3(CO),o( H-NO)J, 1, with C F3SO 3X and C F3C O 2X 
( X= H or D) followed by NMR spectroscopy;

Experiments were conducted using NM R techniques on >^CO-enriched samples o f 

1. This allowed us to explore these reactions using variable temperature (V T) NM R in 

order to monitor the conversion o f i  to 2. and the conversion o f 1  to 3 using both 

protonated and deuterated acids ( CF3SO3X and CF3CO2X where X= H  or D).

The VT- NM R study began by monitoring compound 1 which at -80°C, produced a 

spectrum consisting o f four resonances in the carbonyl region at 211.08, 204 89, 203.15, 

and 198.66 ppm w ith relative intensities o f 1:1:6 2 ( Figure 12). However, upon warming 

the sample o f 1  to 25«C, these four resonances converged into a single broad resonance at 

203 .25 ppm. This is reasonable, because the average weighted chemical shift o f the four

+25 °C

-50 °C

-80 °C

210 202 ppm

Figure 12: VT NMR spectra of 1 in CD^CIz/CH^CIz, focusing on the carbonyl 
region at 100 MHz.
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resonances observed at -80°C is 203 22 ppm. The broad resonance appearing in the 

-80"C spectrum at 203.15 ppm w ith a relative intensity o f six, arise from the tw in sets o f 

three carbonyl groups. Each set is bonded to one ruthenium atom bridged by the nitrosyl 

group which undergoes a tripodal motion on the NM R time scale. The non-equivalent 

axial carbonyl groups bonded to  ruthenium atom as the Ru(CO )4 moiety in 1 , give rise to 

the interchangeable resonances at 211.08 and 204.89 ppm. Whereas, the resonance at 

198 .66 ppm, w ith a relative intensity o f two, arises from the equivalent radial carbonyls on 

the same Ru(C0)4  moiety.

A  complete averaging o f all the carbonyl groups gives rise to the broad resonance 

observed after heating the sample. The simplest mechanism to explain this would be for 

the nitrosyl ligand and one o f the axial carbonyls on the Ru(CO )4 moiety to form  a 

p.3 bonding mode which changes 1 , to  where the bridging nitrosyl group is now along a 

different edge o f the Rug triangle, and therefore, the Ru(CO>4 group is on a different 

ruthenium atom. Further, because both the axial carbonyls found on the Ru(C0)4  moiety, 

and the carbonyl groups found on the Ru(CO)) group are undergoing a tripodal motion 

would cause the interchange o f all the carbonyl groups ( eq. 27). 6“* However, one can not 

rule out the possibility o f a more complex mechanism, or perhaps, mechanisms, but this is 

probably the most likely considering the ground state structure o f 2 .

When a ‘^CO-enriched sample o f 1  is protonated w ith  CF3SO3H at ambient 

temperature, the -80°C N M R  spectrum shows two sharp resonances in the carbonyl 

region. The chemical shifts fo r these resonances are 195 30 and 192.02 ppm w ith a 

relative intensity o f 1:2 ( Figure 13a). The tw o pseudo-radial and one pseudo-axial 

terminal carbonyls in 2  gives rise to these observed resonances.A  third, very broad 

signal, at a chemical shift o f 264.7 ppm, appears in the spectrum which is just barely
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detectable above noise. This resonance is probably due to the trip le bridging carbonyl 

ligand found in 2.̂ ^ However, as the temperature is increased to 25*C, the two formally 

distinct upheld resonances merge together to  form  a single broad resonance at 193 .38 

ppm ( Figure 13b). The weighted average o f the tw o terminal carbonyls observed from the 

-80°C spectrum was 193 .1 1 ppm which agrees well w ith  the chemical shift o f the single 

resonance observed in the 25°C spectrum.

Compound 2 changes color, from  red to  amber, when 0.4 eq. o f PPNCF3CO2 is added 

to this solution at 25‘’C. Six resonances are observed in the NM R spectrum at 

chemical shifts o f 201.59, 201.35, 194.22, 194 09, and 183.46 ppm w ith a relative 

intensity o f approximately 2:1:1 2:2:2. These six resonances are consistent that 2
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Fig. 13c

Fig. 13b

Fig. 13a

2 0 5210 200 19S 1 9 0 1 8 5

Figure 13: a) *̂ C NMR spectrum of the carbonyls of 1  in CD2CI2/CH2CI2 at -80"C 
and at 100 MHz ( where 1 is protonated with I eq. CF3SO3H).

b) "C NMR spectrum of 2  at 25®C.
c) "C NMR spectrum of 2  converted to 2 after the addition of 0.4 eq. 

of P F N C F 3C O 2 at 25«C.

converted to 2, Figure 13c) because this spectrum is identical to the one obtained when 

1 eq. o f CF3COOH was added to 1  at 25°C No conversion o f 2 to 2 was observed when 

PPNCF3O2 was injected at -80°C, however, conversion was observed when the sample 

was warmed to IO C . The "C  N M R  spectrum showed very little  change when CF3SO3D 

was used followed by the addition o f PPNCF3CO2 However, the changes observed for 2 

were some disappearance o f m ultip lic ity or the broadness o f the carbonyl resonances at 

201,59, 192.94, and 183.46 ppm. These changes are attributed to the lack o f partially
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resolved proton couplings w ith the bridging hydride in the deuterated analog.

When a '^CO-enriched sample o f 1  is protonated w ith 1 eq o f either CF3COOH or 

CF3COOD at -80«C, the "C  NM R spectrum is identical to the one observed at 25°C, 

when 1 was protonated w ith CF3SO3H ( Figure 14a). Partial conversion o f 2. to 1 was 

observed when the sample was heated to 10°C for both the protonated and deuterated 

cases ( Figure 14b).

Fig. 14b

Fig. 14a

Figure 14: a) NMR spectrum of 1  after the addition of 1 eq. of CF3CO2H or
CF3CO2D at -80»C. 

b) 13C NMR spectrum of 1  after the addition of 1 eq. of CF3CO2H or 
CF3CO2D at -80«C which is heated to IO«C showing the partial 
conversion of 2  to 2 »
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However, total conversion to 1  was observed when the sample was heated to 25«C. 

Therefore, at low  temperatures, regardless o f which acid was used, CF^CO^X (X  = H or 

D), in itia l protonation occurred at the nitrosyl oxygen. However, O-protonation was not 

observed at low  temperatures when the complex, Ruj(CO),o( p-CO)( p-H )" was 

protonated w ith CF^CO^H, but investigators did observe O-protonations using acids, such 

as, CF3SO3H or FSO3H .52,66 Because O-protonation was not observed in the reaction o f 

Ru3(CO),o( p-CO)( p -H )“ w ith CF3CO2H, suggests that in itia l protonation may be kinetic 

in origin, and that the proton transfer to the metal core is very fast at the temperature 

examined ( - 40C ),

When a i^cO-enriched sample o f 1 is protonated w ith  0.3 eq. o f CF3CO2H at -80°C, 

the "C  NM R spectrum shows partial conversion o f 1  to 2  ( Figure 15). When the solution 

was heated to 10°C, the resonances fo r 1  and 2  began to average independently. However, 

when a temperature o f 25°C was reached, the spectrum showed 2 completely converted to 

1  which appeared as well defined resonances ( Figure 15). This suggests that the carbonyl 

exchange is slow between 1 and 2  on the N M R  time scale at 25°C. In  another experiment, 

a sample o f i^CO-enriched 1 was protonated w ith an excess o f CF3SO3H at 25°C, then 

cooled to -80®C, where a NM R  spectrum was recorded that showed resonances 

associated w ith  both 2  and Î .  The sample was then warmed to ambient temperature where 

the spectrum showed that resonances associated w ith 2  had broadened but remained well 

defined in the case o f i .  However, judging from the NM R spectrum, considerable 

decomposition had occurred which was probably due to the excess acid. This experiment 

did show that conversion o f 2  to  2  is possible in the presence o f excess CF3SO3H, but 

considerably slower than what was observed when CF3CO2H  was used.
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z2-1 1 1

I S O1 9 52 0 0210 2 0 5

Figure 15: Variable temperature NMR spectra of 1 after the addition of 0.3
eq. of CF3CO2H in CDjCIj/CHjCIj at 100 MHz.
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CH APTER 3 

CO NCLUSIO NS / FUTURE W O R K

Verification o f proton barrier tunneling can be a formidable task even on the best o f 

chemical systems. These tasks include that good kinetic data are obtained and the 

follow ing criteria be met: 1) an Arrhenius plot that exhibits deviation from linearity due to 

the proton transfer becoming less dependent on temperature; 2) that the preexponential 

ratios ( Ag/A^ ) are greater than one, 3) that the KDIE's ( k^/kg ) increase w ith decreasing 

temperature; 4) that the change in entropy ( AS becomes more negative in the case o f 

the deuterated species.

The kinetic data obtained for this system all exhibit the specific trends for a reaction 

associated w ith  a tunneling component especially in the case o f S. Kinetic plots o f 4  and £ 

did not show deviation in linearity which suggests that rate constants are temperature 

dependent. However, kinetic plots that show deviations from linearity are d ifficu lt to 

obtain because reactions become extremely slow at lower temperatures where one would 

expect such deviations to occur. The observed kinetic deuterium isotope effects ( k^/kj} ) 

fo r S increased w ith  decreasing temperatures , whereas the isotope effect for 4 remained 

fairly constant. The preexponential factor ratio ( A ^^^ / Â ^̂ bsd ) for £  was determined to be 

89 3 which is ~ 24 times larger than the one observed for 4  The observed deuterated 

change in entropy ( ASg 4-) fo r 5  was -15.3 kcal/mole K  which is 2 times larger than for 

4  These trends suggest that proton barrier tunneling is a major contributor in this 

reaction's mechanism, especially in the case o f 5. However, verification o f a chemical 

reaction's mechanism is d ifficu lt, therefore, good experimental design is required to collect 

the best supportive data. The data collected fi-om these experiments supports a mechanism 

that exhibits proton barrier tunneling. However, these data are the reaction's overall 

observed rate constants. The adduct (transition state) could not be isolated which means 

that the observed rate constants include both the rate o f adduct's formation and
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disappearance. This raises the question as to  whether the observed isotopic data were 

attenuated or not? The data suggest that the rate o f adduct formation is slow compared to 

the rate o f adduct disappearance. This means that the slow rate constant (adduct 

formation) w ill dominate the overall reaction's rate constant. Therefore, the extremely fast 

rate constant (adduct disappearance) w ill not be as prevalent in the observed overall 

reaction's rate constant. Because the hydrogen transfer takes place in the adduct 

disappearance step, one would expect that the isotope effect occurring at this step to be 

large, but since this is the fast step and not the dominate one, then the observed KDIE's 

would be attenuated. The proposed mechanism for this reaction is found in equation 28.

Os—

— O s
Os CF3CN

slow

very
fast

\
— o ^

l \
H-

II
N .O s^

,Os:
I

fest

N _O s—

\:/

(28)
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The adduct's back reaction where it reverts back to the starting cluster is extremely 

slow or relatively non-existent. The hydrogen transfer step must be fast because there is 

no accumulating concentration o f the adduct which explains why the adduct could not be 

detected. The cis-tram  interconversion is extremely fast and it is not known which adduct 

isomer leads to which product, or perhaps only one o f the adduct forms the two products 

(eq 2 8 ) . This determination could not be made w ith the data collected. Regardless o f 

which adduct leads to  which product, the fluxionality exhibited by these adduct s probably 

plays an important role as to why proton barrier tunneling is observed in this 

m e c h a n ism .26.33 The energy involved in fluxionality may be comparable to the reaction's 

activation energy which would assist in the possibility o f tunneling by raising the hydrogen 

part way up the potential energy barrier where the barrier w idth is n a r r o w e r .  2 6  33 jh e  

activation energies obtained from the Arrhenius plots substantiate these claims by having 

values w ith in reason to assist the hydrogen part way up the barrier.

The geometry o f these species also explains why proton barrier tunneling is observed in 

this reaction. The barrier's w idth becomes narrower allowing the hydrogen to tunnel 

through i f  the adduct-product species geometry is similar. Because 5 exhibits a larger 

tunneling component than 4 , it appears that a more protic transition state is more likely to 

show this e ffe c t .33 A ll cases reporting anomalously large KDEE in organometallic reactions 

involve some type o f proton t r a n s f e r . 2 6 . 3 3 . 5 9  Polarity o f the hydrogen transfer is probably a 

more important factor in  determining the effectiveness o f tunneling than the geometric 

positioning o f the ligand to  the cluster in the final product The large isotope effects 

observed for 5 . could mean that the metal-to-nitrogen hydrogen transfer is facilitated by a 

hydrogen bonded intermediate.^^-^*

Experiments involving compound JL, clearly show that the site o f protonation is the 

nitrosyl oxygen regardless o f which acid was used, C F 3 S O 3 H  or C F 3 C O 2 H. No large 

KD IE  was observed w ith  the anion assisted conversion o f Z to  i  because this conversion
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was too rapid by the methods used in monitoring this reaction. A  large KDEE is possible 

for this conversion but is probably imbedded in such a rapid process, Because o f the 

similarities between this conversion and that o f equations 11 and 12, we suggest that an 

intramolecular process is responsible for the observed large KDIE. However, future 

studies using a more rapid kinetic technique w ill confirm  the above conclusion These 

preliminary studies have allowed a generalization, in that the intermolecular base assisted 

proton transfer (path a, eq. 15) is more rapid than the intramolecular process 

(path b, eq. 15).

In the future, we w ill investigate the generality o f proton barrier tunneling in a variety 

o f transition metal centers. Systems worth studying deal w ith protonations o f oxygen in 

complexes, such as, ( (ij-C O X  p-CO)M,(CO)g ^  ( M = Fe, Ru, Os ). These types o f 

complexes contain face bridging carbonyls which should be the site o f protonation. This 

w ill provide us an understanding o f the conversion o f oxygen protonated species which we 

can compare to  already known species, such as, ( n-H )( p,-CO)M3(CO),o Studying 

these systems should provide us w ith a general trend in predicting where to expect proton 

transfers.
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CHAPTER 4 

EXPERIMENTAL

Materials

The compounds ( p-H )2 0 s3(CO),o, and ( m.-D)2 0 s3(C0 ),q were prepared according to 

literature p r o c e d u r e s . Os3(C O )i2 was purchased from Strem Chemicals and stored in 

a dessicator dried w ith CaCl2 Solvents were ACS reagent grade and were distilled w ith an 

appropriate drying agent and stored over molecular sieves. Chloroform-di was purchased 

from Aldrich and was stored over phosphorous pent oxide (PO,) followed by freeze-thaw 

technique to maintain a dry, oxygen-free solvent which is then distilled directly into the 

storage vessel. Trifluoroacetonitrile was purchased from Lancaster Chemicals.

Spectra

Nuclear magnetic resonance spectra were obtained on a Varian Unity Plus 400 M Hz 

spectrometer. ^H NM R  spectra were recorded in CDCI3 solutions in the fourier transform 

mode where the solvent peak ( 7.24 ppm) was used as an internal standard to calibrate the 

spectra. Fluorine-19 N M R  spectra were recorded in CDCI3 solutions in the fourier 

transform mode where CF3COOH (0 .0  ppm) was used as an external standard to calibrate 

the spectra. U V-V is spectra were obtained on a Hewlet-Packard 8452A Diode Array 

spectrophotometer operating in the kinetics mode in CDCI3.

Preparation of H20s3(CO),o + C D C I3  stock solution:

The stock solution was prepared by transferring 20 ml o f dried CDCI3 to  a flame dried 

Schlenk tube via trap-to-trap distillation. The Schlenk tube, and other necessary 

equipment, were then transported into a Braun Basic System M B 150 dry box which

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

maintains an atmosphere o f dry nitrogen, ( p-H )2 0 s3(CO),o ( 299 6 mg, 0 3304 mmol ) 

was placed in an oven dried 10 ml volumetric flask and brought to volume by syringing in 

10 ml o f CDCI3. The stock solution w ith a concentration o f 0.03304 m ol/liter was stored 

in the dry box until needed.

Preparation of DjOsjfCO)^ +  C D C I3  stock solution:

( p-D )2 0 s3(CO)io ( 154 1 mg, 0 1696 mmol) was placed in an oven dried 5 ml volumetric 

flask and brought to volume by syringing in 5 ml o f CDCI3, The stock solution w ith a 

concentration o f 0.03261 m ol/liter was stored in the dry box until needed.

Kinetic runs of XjOsafCOlio + C F 3C N , X  = H or D:

Samples were prepared by syringing 0.6 ml o f the stock solution into a flamed dried J 

S. Young Valve 5 mm NM R tube (Brunfeldt or Wilsnad). The NM R tube was inserted 

into a specially designed manometric vacuum manifold apparatus designed specifically for 

syringing gases into NM R tubes ( Figure 16 ) The contents o f the tube were then frozen 

using liquid N j and sealed under vacuum (IO -2 torr). The gas, CF3CN, ( 0.20 mmol) was 

released into the manifold passing through a drying tube containing Aquasorb 

(M allincrodt) to remove any residual H^O in the gas. The gas was monitored w ith the 

manometer and the gas flow  was stopped when a pressure o f 1 atmosphere was obtained. 

A  Hamilton gas tight syringe was used to  remove 5 ml (0.20 mmol) o f the gas which was 

injected into the evacuated NM R  tube The tube was then removed from the apparatus 

and placed in a dry ice/acetone bath and allowed to  reach temperature. The tube was then 

inserted into the NM R  instrument where the reaction was monitored using an NM R 

kinetic software program. This program is designed fo r setting variable timed arrays
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as a function o f absolute intensity which maintains the integrity o f the spectra so relative 

concentrations are obtained via peak integration. Fluorine-19 NM R was used exclusively 

in kinetic runs because signal intensities change w ith NM R when switching from protic 

to deuterated reactants. K inetic runs vrith ( ;i-H )2 0 S)(C0 ),Q were conducted at 55, 40,

25, 10, -5, and -20°C, and runs w ith { p.-D)20s3(CO)io at 25, 10, -5, and -20'̂ C.

a tta c h e s  to  m a n o m e tr ic  v a c u u m  m a n ifo ld  a p p a ra tu s

septum ^

s e p tu m

1

s to p c o c k

in s e r t io n  o f J  Y o u n g  V a lv e  N M R  tu b e

Figure 16: Specially designed glassware to inject gas compounds into NMR tubes.

Each kinetic run was performed in duplicate or sometimes in triplicate to ensure 

repeatability and data agreement. Duplicate experiments at the various temperatures
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were done in random to reduce systematic and random errors associated with 

experimentation. Product 4, ( p -X )O s3(CO),o( p-NC(X)CF)), X  = H  or D appeared as a 

doublet at 4.86 ppm, and 5, ( |i-X )O s3(CO),o( (i-n^-XN C C F,), X  = H or D appeared as a 

doublet at -1.57 ppm. The disappearance o f reactant was followed by *H NMR w ith the 

decreasing hydride peak at -11.49 ppm and the appearance o f hydride peaks for 4 and 5. at 

-14 88 and -15.18 ppm, respectively. Kinetic plots are given as Figures 17-56 at the end o f 

the experimental section Fluorine-19 NM R data are given in Table 6 and 'H  NM R data 

are given in Table 7.

Preparation of H2 0 s3(CO),o + CFjCN stock solution used in UV-Vis Kinetics:

The stock solution was prepared by transferring 55 ml o f dried CDCI3 to a flame dried 

Schlenck tube via trap-to-trap distillation. The Schlenck tube was then transported into the 

Braun dry box. H2 0 s3(CO)iq (18 2 mg, 0.02007 mmol) was placed in an oven dried 50 ml 

volumetric flask and brought to volume by syringing in 50 ml o f CDCI3. The stock 

solution w ith a concentration o f 0.4015 mmol/liter was stored in the dry box.

Kinetic run of HjOSjCCO)!® + CF^CN used in UV-Vis Kinetics:

Samples were prepared by syringing 2 .5 ml o f the stock solution into a oven dried 

quartz septum capped cuvette. The cuvette was placed in the spectrophotometer and 

allowed to reach temperature (25C ). The specially designed manometric vacuum manifold 

was used to deliver the gas, CF3CN, only the stopcock permitting gas flow  into an NM R 

tube was closed. The gas was monitored by the manometer and the gas flow  was stopped 

when a pressure o f 1 atmosphere was obtained. The gas was then syringed into the cuvette
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and the reaction was monitored by the spectrophotometer. The kinetic experiments were 

performed at 25°C and only the volumes o f gas were varied (volumes used were 1, 2 , 4, 6 , 

8 , and 10 ml) Each kinetic run was performed in duplicate to ensure repeatability and data 

agreement. The reactant, ( p-H )20s3(CO),o maximum absorption was at 552 nm, and both 

4., ( p-H)Os3(CO)iû( p-NC(H)CF3) and ( p-H)Os3(CO)io( p-ri^-HNCCFj) absorbed at 

the same wavelength o f 392 nm. Therefore, three wavelengths were used to monitor the 

reaction, 550, 552, and 554 nm. for the reactant and 390, 392, and 394 nm. for the two 

products Kinetic plots are given as Figures 59-67 at the end o f the experimental section.

Materials used in preparing 1, PPN{Ru3(CO)jo( p-NO)J:

Compound L, and PPNCF3CO2 were prepared according to literature procedures. 

Trifluoroacetic acid, triflic  acid, trifluoroacetic acid-d, triflic  acid-d, and methylene 

chloride-d2 were purchased from Aldrich Chemicals and used as received. Methylene 

chloride was distilled from calcium hydride and stored in a Braun Basic System MB 150 

dry box Ru3(CO )j2 was enriched by exposing 0.5 g in 250 ml o f heptane to 0 5 atm o f 

90% i^CO (Monsanto) at 80-90°C for 2 days.

Spectra

iR  and i^C NM R spectra were obtained on a Varian Unity Plus 400 M Hz spectrometer 

at 400 and 100 M Hz, respectively.

Sample preparation and monitoring procedures:

i^CO-enriched samples o f 1 (40-50 mg) were dissolved in a 2.5 ml solution containing
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a 1:4 mixture of CD^CI/CH^Clg in a 5 or 10 mm J S. Young resealable NMR tube Under 

an inert atmosphere inside a Braun dry box at ambient temperature, the sample was 

injected with a 1 eq. of CF3 SO3 X  (X=H  or D). The tubes containing the samples were 

then placed in the NM R spectrometer where or NM R spectra of 2 were obtained at

various temperatures ( -80 to 25®C).

In another experiment, a sample was prepared in a septum capped 10 mm NMR tube 

This tube was placed in the NM R spectrometer and cooled to -SO'C After reaching the 

desired temperature, the tube was removed and quickly injected with 0 4 eq of 

PPNCF3 CO2 , inverted once and reinserted back into the NM R spectrometer at -80°C 

Spectra were then recorded at the following temperatures: -80, -50, -2 0 , + 1 0 , and +25°C. 

Temperature equilibration times were 15 minutes and accumulation times were set at 7 

minutes Conversion of 2 to i  was not observed until a temperature of 10<C was reached. 

The rate of conversion of 2  to 2  showed no difference regardless of which sample was 

used, protonated or deuterated. However, conversion to 2  was instantaneous at ambient 

temperature when PPNCF3 CO2  was injected into a solution of 2

Samples of 1, prepared in a septum capped 10 mm NM R tube were placed in the NMR  

spectrometer and cooled to -80*^0. The tube was removed and quickly injected with 1 eq. 

of CF3 CO2 X  (X=H or D), inverted once and reinserted back into the NM R spectrometer 

at -SO^C Spectra were then recorded at the following temperatures: -80, -50, -20, +10, 

and +25'’C. Conversion o f 2  to 2 was again not observed until a temperature of 10«C was 

reached. Also, no difference in the rate o f conversion was observed between the 

protonated or deuterated cases. Protonation of 1  with CF3 CO2 X  (X=H  or D) at ambient 

temperature converts directly to 2  as previously reported
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Table 6 : Fluorine-19 NMR data for à ,  ( |i-H)OS)(CO),o( ^i-NC(H)CF)) 
and & ( h-H)Os3(CO),o( p-n^-HNCCF)).

Complex NM R spectrum ( 6 , ppm ) “

4 4.86 ( d ), 3J { FCH ) = 4 5 Hz, 5J ( POsH ) = 0 7 Hz 54

5 -1.57 ( d ), ( FH ) = 2 Hz 54

“ A t field relative to CFjCOOH ; s = singlet, d = doublet.

Table 7: H NMR data for 4, ( |x-H)Os3(CO),o( p-NC(H)CF3) and 
& ( p-H)Os3(CO),o( |i-t|2-HNCCF3) and the starting 
complex, H2 0 s3(CO),o.

Complex iH  NM R spectrum ( ô , ppm ) »

7.75 ( q , 1 H  ), ( HF) = 4.2 Hz 52
-14.88 ( s ,  1 H )

9.70 ( s ,  1 H ) 
-15.18 ( s ,  1 H )

SC -11.49 ( s ,  I H )

A t field relative to CDCI3; s = singlet, q = quartet.
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Kinetic Run #020
55 degrees Celsius

-0.5

-2.5
9.123 267.4 525.6 783.9 1042

time (sec)

Figure 17: Kinetic plot of the formation of ( |x-H)Os3(CO)io 
( p-NC(H)CF3) at 55»C.
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Kinetic Run #019
55 degrees Celsius

0.5

-0.5

— -1.5

9.123 267.4 525.6 783.9 1042 1300 1559
time (sec)

Figure 18: Kinetic plot of the formation of 4, ( |i-H)Os3(CO),o 
( |i-NC(H)CF3) at 55»C.
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Kinetic Run #020
55 degrees Celsius

0
-0.5

-1

0 -1.5 
c  -21

-2.5
- 3

9.123 267.4 525.6 783.9 1042
time (sec)

Figure 19: Kinetic plot of the formation of S, ( |i-H)Os3(CO)m 
( p-ti2-NC(B[)CF3) at 55»C.
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Kinetic Run #019
55 degrees Celsius

-0.5

' -2.5

9.123 267.4 525.6 783.9 1042
time (sec)

Figure 20: Kinetic plot of the formation of 5, ( fx-H)Os3(CO),o 
( p-ii^-HNCCFj) at 5S-C.
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Kinetic Run #021
40 degrees Celsius

-1.5

Q -2.5

-3.5
9.123 387.4 765.6 1144 1522 1900

time (sec)

Figure 21: Kinetic plot of the formation of 4, ( |i-H)Os3(CO),o 
( p-NC(H)CF3) at 40»C.
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Kinetic Run #018
40 degrees Celsius

0

0.5

1

-1.5

2

-2.5
9.123 387.4 765.6 1144 1522 1900

time (sec)

Figure 22: Kinetic plot of the formation of 4, { |i-H)Os3(CO),o 
( p-NC(H)CF3) at 40C .
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Kinetic Run #018
40 degrees Celsius

0.5

-0.5

-2.5

9.123 576.5 1144 1711 2279
time (sec)

Figure 23; Kinetic plot of the formation of 5» ( p-H)Os 3 (CO),o 
( P-T1 2 -H N C C F 3 ) at 40«C.
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Kinetic Run #021
40 degrees Celsius

-1.5

C
I

-3.5

9.123 387.4 765.6 1144 1522 1900 2279
time (sec)

Figure 24: Kinetic plot of the formation of 5» ( ii,-H)Os3(CO),o 
( P-T12-HNCCF3) at 4(H>C.
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Kinetic Run #016
25 degrees Celsius
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Q  -1.5

-2.5
9.123 936.5 1864 2791 3719

time (sec)

F ig u re  25: K in e t ic  p lo t  o f  th e  fo rm a t io n  o f  (  p  H )O S )(C O ),o  
(  p -N C (H )C F 3 >  a t  25 ®C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



65

- 0.8 
-1 

- 1.2 
5'-1-4  
6  - 1.6

<  - 1.8 
ill IBiJ
Ç  _2 

'  - 2.2 
-2.4 
- 2.6

Kinetic Run #017
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F ig u re  26: K in e t ic  p lo t  o f  th e  fo rm a t io n  o f  É, (  p -H )O S )(C O ),Q  
( p -N C (H )C F 3 )  a t 25®C.
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Kinetic Run #016
25 degrees Celsius
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Figure 27: Kinetic plot of the formation of & ( p-H)Os3(CO),o 
( P-T12-HNCCF3) at 2SC.
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Kinetic Run #017
25 degrees Celsius
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F ig u re  28: K in e t ic  p lo t  o f  th e  fo rm a t io n  o f  &  ( 
(  p - t i^ -H N C C F j)  a t  25«C.
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Kinetic Run #022
10 degrees Celsius
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Figure 29: Kinetic plot of the formation of 4 ,  ( p-H)Os3(CO)io 
( h-NC(H)CF3> at 10®C.
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Kinetic Run #025
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Figure 30: Kinetic plot of the formation of A, ( 
( p-NC(H)CF3) at 10»C.
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Kinetic Run #022
10 degrees Celsius
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Figure 31: Kinetic plot of the formation of 5, ( p-H)Os3(CO),o 
( p-ti^-HNCFj) at 10«C.
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Kinetic Run #025
10 degrees Celsius
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Figure 32: Kinetic plot of the formation of 5, ( p-H)Os3(CO)io 
( p-ti^-HNCCFj) at 10«C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



72

Kinetic Run #023
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Figure 33: Kinetic plot of the formation of é» ( |x-H)Os3(CO)jo 
( h-NC(H)CF3> at -5“C.
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Kinetic Run #026
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Figure 34; Kinetic plot of the formation of 4» ( p-H)Os3(CO),o 
( p-NC(H)CFj) at - S C .
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Kinetic Run #023
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Figure 35: Kinetic plot of the formation of 5, ( |i-H)Os3(CO),o 
( P-T12-HNCCF3) at -5»C.
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Figure 36: Kinetic plot of the formation of ( p-H)Os3(CO),o 
( p-fi^-HNCCFj) at -5®C.
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Kinetic Run #027
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Figure 37: Kinetic plot of the formation of A, ( p-H)Os3(CO),o 
( p-NC(H)CF3) at -20«C.
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Kinetic Run #028
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Figure 38: Kinetic plot of the formation of 4» ( p-H)OS)(CO),@ 
( p-NC(H)CF3) at -20«C.
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Kinetic Run #027
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Figure 39: Kinetic plot of the formation of S, ( p-H)Os3(CO),o 
( P-T12-HNCCF3) at -2 0c .
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Figure 40: Kinetic plot of the formation of £, ( |i-H)Os 3 (CO)|q 
( p-n^-HNCCFj) at -20»C.
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Kinetic Run #029
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Figure 41: Deuterated kinetic plot of the formation of 4, ( |i-D)OS)(CO),@ 
( p-NC(D)CF3> at 25®C.
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Kinetic Run #031
25 degrees Celsius

-0.5

-2.5

9.123 1836 3664 5491 7928
time (sec)

Figure 42: Deuterated kinetic plot of the formation of 4, ( p-D)Os3(CO),o 
( p-NC(D)CF3> at 25«C.
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Kinetic Run #029
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Figure 43: Deuterated kinetic plot of the formation of 5» ( p,-D)Os3 (CO )j0  

( h-ti^-DNCCFj) at 25»C.
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Kinetic Run #031
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Figure 44: Deuterated kinetic plot of the formation of 5, ( |i-D)Os3(CO)io 
( P-T12-DNCCF3) at 25®C.
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Kinetic Run #032
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Figure 45: Deuterated kinetic plot of the formation of 4» ( p-D)Os3(CO)io 
( p-NC(D)CF3) at 10*C.
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Kinetic Run #033
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Figure 46: Deuterated kinetic plot of the formation of 4, ( p-D)OS)(CO),@ 
( p-NC(D)CF3) at 10«C.
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Kinetic Run #032
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Figure 47: Deuterated kinetic plot of the formation of 5 ,  ( p-D)Os3(CO),o 
( p-ti^-DNCCFj) at 10»C.
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Kinetic Run #033
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Figure 48: Deuterated kinetic plot of the formation of 5, ( p-D)OS](CO)iQ 
( P-T12-DNCCF3) at 10«C.
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F ig u re  49: D eu te ra ted  k in e tic  p lo t o f  the  fo rm a tio n  o f  4, ( p-D )0$3(C 0)i@  
( p -N C (D )C F 3 ) a t -5»C.
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Figure 50: Deuterated kinetic plot of the formation of à, ( p>D)Os3 (C O )jo  
( |i-NC(D)CF3) at 5*C.
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Kinetic Run #034
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Figure 51: Deuterated kinetic plot of the formation of 5, ( |i-D )0 $3 (C 0 )]Q 
( p-ti^-DNCCFj) at -5«C.
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Figure 52: Deuterated kinetic plot of the formation of & ( p-D)Os3(CO)io 
( P-T12-DNCCF3) at -SC.
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Figure 53: Deuterated kinetic plot of the formation of 4, ( p-D)Os^(CO)i@ 
( p-NC(D)CF 3 > at -20C .
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Figure 54: Deuterated kinetic plot of the formation of â» ( p-D)OS)(CO)i@ 
( p-NC(D)CF 3 ) at -20 «C.
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Figure 55: Deuterated kinetic plot of the formation of 5» ( p-D)Os3 (CO),o 
( p-ti^-DNCCFj) at -20®C.
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Figure 56: Deuterated kinetic plot of the formation of 5, ( p-D)Os3(CO)jo 
( p-ti^-DNCCFj) at -20»C.
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Kinetic Run #037
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Figure 57: kinetic plot of the disappearance of the starting material,
HîOsjCCOio at 25 »C.
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Kinetic Run #039
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Figure 58: H kinetic plot of the disappearance of the starting material, 
HjOsjCCOio at 25 »C.
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Figure 59: UV Vis kinetc plot of the disappearance of the starting material, 
H 2 0 s3(CO),o, at 25 ®C, and 552 nm., with 4 ml of gas (CF3CN).
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UV-Vis plot
#002 25 degrees Celsius
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Figure 60: UV-Vis kinetic plot of the formation of à , ( p-H)Os3(CO),o 
( p-NC(H)CF3) and 5, ( n-H)Os3(CO),o( p-n^-HNCCFj) 
at 25 and 390 nm., with 4 ml of gas (CFjCN).
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UV-Vis plot
#003 25 degrees Celsius
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Figure 61: UV-Vis kinetic plot of the formation of 4, ( p-H)Os3(CO),o 
( p-NC(H)CF3> and & ( p-H)Os3(CO),o( P-T12.HNCCF3) 
at 25 and 392 nm., with 10 ml of gas ( CF3CN)*
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UV-Vis plot
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Figure 62: UV-Vis kinetic plot of the formation of 4, ( p-H)Os3(CO),o 
( p-NC(H)CF3> and & ( p.H)Os3(CO),o( p-ii^-HNCCFj) 
at 25 *C, and 392 nm., with 1ml of gas (CF3CN).
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UV-Vis plot
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Figure 63: UV-Vis kinetic plot of the formatio of 4, ( p-H)OS](CO),Q 
( p-NC(H)CF3) and 5, ( p-H)Os3(CO)io( p-ii^-HNCCFj) 
at 25 ®C, and 392 nm., with 8 ml of gas (CFjCN).
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Figure 64: UV-VIs kinetic plot of the formation of 4, ( |i-H)OS](CO),0  

( p-NC(H)CF3) and 5, ( n-H)Os3(CO),o( p-n^-HNCCF)) 
at 25 “C, and 390 nm., with 1 ml of gas (CFjCN).
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Figure 65: UV-Vis kinetic plot of the formation of â, ( p-H)Os3(CO),o 
( p-NC(H)CF3> and & ( p-H)Os3(CO)io( p-n^-HNCCFj) 
at 25 *C, and 392 nm., with 6 ml of gas ( CF^CN).
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UV-Vis plot
#009 25 degrees Celsius
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Figure 66: UV-Vis kinetic plot of the formation of É, ( p-H)Os3(CO)io 
( p-NC(H)CF3> and 5, ( p-H)Os3(CO),o( p-n^-HNCCF3) 
25®C, and 392 nm., with 10 ml of gas (CF3CN).
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UV-Vis plot
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Figure 67: UV-Vis kinetic plot of the formation of 4, ( |i-H)Os3(CO),o 
( p-NC(H)CF3) and & ( p-H)Os3(CO)io( P-T12-HNCCF3) 
at 25«C, and 390 nm., with 6  ml of gas (CF3CN).
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