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ABSTRACT  !
Transient, but severe global ischemia results in AMPA receptor (AMPAR) mediated delayed 
neuronal death (DND).  AMPARs, a major glutamatergic receptor in the CNS, are heteromeric 
complexes composed of GluA1 - GluA4 subunits.  Most AMPARs in the hippocampus are Ca2+-
impermeable due to the presence of the edited form of the GluA2 subunit. Ischemia results in a 
down-regulation of GluA2 mRNA and protein expression, resulting in the expression of GluA2-
lacking, Ca2+/Zn2+-permeable AMPARs.  It has been indicated that these GluA2-lacking 
AMPARs play a key role in promoting DND following ischemic injury.  Recent studies report 
that an oxidative stress signaling pathway is responsible for the ischemia/reperfusion-induced 
changes in AMPAR subunit composition.  Studies suggest that NADPH oxidase, a superoxide 
generator, is the source that initiates the oxidative stress-signaling cascade during post-ischemic 
reperfusion.  We observed that inhibition of reactive oxygen species (ROS) generated by 
mitochondria and xanthine oxidase failed to diminish the oxygen-glucose deprivation/
reperfusion (OGD/R)-induced degradation of GluA2.  However, inhibition of NADPH oxidase 
did diminish the OGD/R-induced degradation of GluA2, supporting a role for NADPH oxidase 
in the oxidative stress-signaling cascade.  We also demonstrated that the treatment of acute adult 
rat hippocampal slices to OGD/R results in the sustained activation of PKCα and sustained 
Ser880 phosphorylation of GluA2, priming the subunit for internalization.  Inhibition of NADPH 
oxidase resulted in a decrease in activated PKCα and Ser880 phosphorylation of GluA2.  The 
objective of this study was to investigate the role of NADPH oxidase in modulating PKCα 
activity.  PKCα activity is positively regulated by increases in Ca2+, therefore any enhancement 
in Ca2+ concentrations will increase PKCα activity. Oxidative stress and NADPH oxidase 
activity have been linked to effecting Ca2+ levels, therefore, inhibition of NADPH oxidase 
activity during OGD/R could potentially dampen PKCα activity through the attenuation of 
oxidative stress-enhanced rises in Ca2+ entry and intracellular Ca2+ release necessary for PKCα 
activation.  A second possibility is that PKCα may be redox sensitive and its activity could be 
increased with oxidative stress.  A third possibility is that the phosphatases responsible for 
regulating PKCα activity may be attenuated by a NADPH oxidase-mediated signaling cascade. 
Here, we show that protein phosphatase 2A (PP2A), a phosphatase responsible for the 
dephosphorylation and inactivation of PKC, undergoes a NADPH oxidase-mediated increase in 
phosphorylation, which has been reported to inactivate the phosphatase.  Collectively, these 
results identify a mechanism that may underlie the post-ischemic-induced degradation of the 
GluA2 subunit. !!!
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INTRODUCTION  

AMPARs 

In the CNS, AMPARs mediate the majority of fast excitatory synaptic transmission and play a 

crucial role in synaptic plasticity and synaptogenesis.1,2  These ionotropic glutamatergic 

receptors are tetrameric complexes of four subunits GluA1-GluA4, encoded by distinct, 

differentially expressed genes.2-5  All AMPAR subunits contain an extracellular domain, three 

transmembrane domains, a re-entry loop (that forms the wall of the ion permeable pore), and an 

intracellular domain.4,5  Most AMPARs expressed in the CNS are GluA2 containing heteromers.  

This subunit is fundamental in determining AMPAR function.  Many biophysical characteristics 

are determined by the GluA2 subunit including receptor kinetics, single-channel conductance, 

and Ca2+ permeability. AMPARs containing the edited form of GluA2 (Q607R) are impermeable 

to Ca2+/Zn2+ entry.  AMPARs that lack GluA2 or contain the unedited GluA2(Q607) are 

permeable to divalent cations such as Ca2+/Zn2+ (Diagram 1).3,6  Transgenic mouse strains that 

lack GluA2 or editing of this subunit display profound adverse phenotypes in development, 

behavior and synaptic function, thus supporting the critical role of GluA2 and its regulation in 

AMPAR and brain function.7,8  Furthermore, a number of neurological disorders, including 

cerebral ischemia, ALS, pain, and epilepsy are associated with the disruption of GluA2 function.9  

Changes in the expression of Ca2+-permeable AMPARs can alter Ca2+-dependent signaling 

cascades, synaptic properties, or lead to damage of vulnerable neurons and glial cells.10 

Kinases & Phosphatases  

Phosphorylation is critical for signal transduction and the regulation of a variety of physiological 

processes.  Furthermore, a number of diseases are connected to a dysregulation of 

phosphorylation signaling pathways.  AMPAR function is mediated in part by changes in 

phosphorylation state, which is regulated by a dynamic balance between protein kinase and 

protein phosphatase activity.11   

 PKC is a family of serine/threonine Ca2+-dependent kinases.  PKC is present in high 

concentrations in neuronal tissue and plays a role in a number of neuronal functions including 

synaptic plasticity.12  The general structure of PKC consists of a C-terminal catalytic domain and 

a N-terminal regulatory domain, all PKC family members contain a phosphatidylserine (PS) 
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Diagram 1. Calcium permeability of AMPARs. RNA editing of the GluA2 subunit determines 

calcium permeability of AMPARs. AMPARs lacking the GluA2 subunit, or an unedited GluA2 

subunit are Ca2+-permeable. Receptors containing the edited form of GluA2 are Ca2+-

impermeable.3  

!
!
!
!
!
!
!
!
!
!
!
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binding domain for membrane interaction (Diagram 2).13-15  The activation of PKC typically 

involves its translocation from the cytosol to specific binding domains at cell membranes.  The 

activity of PKC is regulated by its compartmentalization within the cell, specific anchoring 

proteins help localize PKC to its sites of action.14  AKAPs are signal-organizing, multivalent 

anchoring proteins that can target entire signaling complexes to specific substrates.  AKAPs 

often form complexes that include enzymes for both signal transduction and signal termination, 

which generates a locus to regulate the forward and backward steps in a given signaling process.  

PKC is a component of the AKAP79/150 signaling complex.  AKAP79/150 is enriched in the 

postsynaptic-density fractions of neuronal lysates and is present in the dendritic spines of 

neurons.  Studies have shown that the AKAP79/150 signaling complex controls the 

phosphorylation status and facilitates the regulation of various ion channels including AMPARs, 

NMDARs, and L-type Ca2+ channels.  PKC is also a component of the following AKAP 

signaling complexes: AKAP350, Gravin, AKAP-Lbc, and Pericentrin.16  

 Activated PKCα phosphorylates amino acid residue Ser880 of GluA2 which alters 

AMPAR functions, one of which is receptor internalization.12,17-19  Phosphorylation of Ser880, 

within the GluA2 PDZ-binding site, by PKCα decreases the affinity of GluA2 for synaptic 

anchoring proteins GRIP1 and ABP, thus enabling the interaction of PICK1 with GluA2 

(Diagram 3). In both cerebellar Purkinje and hipppocampal neurons this promotes the 

internalization of AMPARs and decreases GluA2-containing surface receptors.20-22  

Dephosphorylation of PKC is regulated by the protein phosphatase PP2A.23,24 

 PP2A is an important serine/threonine phosphatase involved in many aspects of cellular 

function including cell-cycle regulation, cell proliferation and death, development, cell mobility, 

and regulation of multiple signal transduction pathways.25,26  The PP2A system contains two 

components, the core enzyme and the holoenzyme.  A scaffolding protein (A subunit) and a 

catalytic subunit (C subunit), make up the PP2A core enzyme.  The PP2A core enzyme interacts 

with a variable regulatory subunit (B subunit) to form the fully active heterotrimeric holoenzyme 

(Diagram 4).  The expression level of the various regulatory subunits are diverse depending on 

cell types and tissue. Therefore, the B subunits determine the substrate specificity and spatial and 

temporal functions of PP2A.25-28  Actions of phosphatases modulate signaling in a highly specific 
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!
Diagram 2. The PKC family. PKC isoforms contain constant regions (C1– 4) and variable 

regions (V1–5) and can be divided into three subgroups. cPKCs (classic) are activated in the 

presence of calcium, which binds to the C2 domain, and DAG, which binds to the C1 domains. 

nPKCs (novel) lack C2 domains and are Ca2+-independent but still require DAG for full 

activation. aPKCs (atypical) possess only one nonfunctional C1 domain (C1*) and no C2 domain 

and are both Ca2+- and DAG-independent. The C3 regions (ATP-binding) and C4 regions 

(protein substrate binding) are highly conserved between isoforms. In each case, the 

pseudosubstrate (PS) sequences, found in the V1 variable region, interfere with the catalytic 

domains to inhibit substrate phosphorylation until conformational changes induced by activators 

allow full activation.15 

!
!
!
!
!
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!
Diagram 3. Model for the regulation of AMPAR internalization by GluA2 C-terminal 

phosphorylation and GRIP1/ABP and PICK1 interaction. In the basal state, AMPARs 

containing GluA2 subunits at the postsynaptic membrane are stable through their interaction with 

GRIP1/ABP.  Phosphorylation of GluA2 at Ser880 by PKCα, results in the disruption of the 

interaction of GluA2 with GRIP1/ABP, enabling AMPARs to interact with PICK1 and 

internalize.19 

!
!
!
!
!
!
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Diagram 4. Structure of PP2A. C is the catalytic subunit, A is the second regulatory or 

structural subunit, and B/B’/B’’/B’’’ are the third variable subunits, which are structurally 

unrelated. In mammalia, A and C are encoded by two genes (α and β); the B/PR55 subunits are 

encoded by four related genes (α, β, γ and δ); the B’/PR61 family are encoded by five related 

genes (α, β, γ, δ and ε), some of which give rise to alternatively spliced products; the B’’ family 

probably contains three related genes, encoding PR48, PR59 and the splice variants PR72 and 

PR130; SG2NA and striatin comprise the B’’’ subunit family.28 

  

!
!
!
!
!
!
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and regulated manner.  Mechanisms for the regulation of the activity of  PP2A in neurons include 

protein-protein interactions, subcellular compartmentalization, and inhibition.29  PP2A undergoes 

inactivation upon phosphorylation at Tyr307.30 

Ca2+-permeable AMPARs in Neuronal Death 

A balance in activity of protein kinases and phosphatases is required for the regulation of protein 

phosphorylation.30  Ca2+-permeable AMPARs are regulated by phosphorylation.  Although Ca2+-

permeable AMPARs are critical for synaptic plasticity, they are also associated with several 

neurological disorders.  Global ischemia during cardiac arrest impacts 150,000 Americans 

annually and frequently results in the delayed onset of neurological deficits.  Transient but severe 

global ischemia triggers selective and delayed neuronal death.2  Hippocampal pyramidal neurons 

in the CA1 region are especially vulnerable.  Numerous studies indicate that Ca2+/Zn2+-

permeable AMPARs are involved in this delayed neuronal death.31-34  Most AMPARs expressed 

on adult hippocampal pyramidal neurons, including the CA1 region, contain the edited form of 

GluA2 (Q607R), and are thus impermeable to Ca2+/Zn2+ entry.  AMPARs undergo a subunit 

rearrangement following ischemic injury, switching from GluA2-containing Ca2+/Zn2+-

impermeable AMPARs to GluA2-lacking Ca2+/Zn2+-permeable AMPARs.  Ischemia triggers the 

down regulation of GluA2 protein expression and mRNA and increased AMPAR-mediated Ca2+/

Zn2+ influx in CA1 neurons.2, 31-33  Substantial evidence demonstrates the expression of 

functional GluA2-lacking Ca2+/Zn2+-permeable AMPARs in CA1 neurons 24-48 hours post-

ischemia.35-37  Although considerable evidence exists for alterations in AMPAR subunit 

composition and function hours or days after injury, the underlying mechanism meditating the 

subunit switch remains unclear.    

NADPH Oxidase and Reactive Oxygen Species  

During IRI, tissue damage, which is frequently irreversible, can occur in three phases.  The 

ischemic phase of IRI constitutes the disruption of blood flow resulting in a lack of oxygen and 

nutrients.38,39  Characteristics of this phase include altered cell metabolism, calcium overload, 

and apoptotic and necrotic cell death.  During the second or reinstatement phase, blood flow is 

restored.  The reintroduction of oxygen is critical for survival, however because oxygen can be 

converted to ROS, replenishment can also be damaging. ROS can damage cells directly and 
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indirectly through a variety of mechanisms.40,41  Paradoxically, during the third or post-

reperfusion phase, ROS promote conditions for survival by impacting highly regulated processes 

including angiogenesis.42  

 IRI is mediated, in part, by the production of superoxide and other ROS.43 Mitochondria 

and xanthine oxidase are two sources of ROS responsible for producing superoxide during the 

ischemic phase.  An initial burst of ROS is generated by mitochondria in response to ischemia, 

but halted upon mitochondrial depolarization.  The second phase of ROS is generated by the 

activation of xanthine oxidase.  Physiologically, xanthine oxidase participates in a variety of 

biochemical reactions including the hydroxylation of various purines, pterins, and aromatic 

heterocycles, thereby contributing to the detoxification or activation of endogenous compounds 

and xenobiotics.  During ischemia, transmembrane ion gradients and dissipated, allowing 

cytosolic concentrations of calcium to rise, ultimately converting xanthine dehydrogenase to 

xanthine oxidase.44 Concurrently, depletion of intracellular ATP leads to the conversion of 

adenine nucleotides to hypoxanthine and xanthine, substrates for xanthine oxidase.  NADPH 

oxidase is responsible for the generation of ROS during  

reperfusion.45  Generally, ROS sources generate ROS as a byproduct of metabolism or during 

pathologic conditions.  However, the NOX family NADPH oxidases are the exception.  

Superoxide produced by neuronal NADPH oxidase is thought to function in LTP and 

intracellular signaling.46-48  Although intracellular redox signaling, in part due to NADPH 

oxidase function, is important for LTP and memory, excessive oxidative stress can impair cellular 

processes and lead to neuronal death.  Although superoxide was once considered a neurotoxic 

molecule, a growing body of evidence suggests that ROS, such as superoxide, are necessary to 

induce the expression of LTP in the CA1.  Cell-permeable superoxide scavengers have been 

shown to prevent the induction of LTP and transgenic mice that overexpress the superoxide-

scavenging enzyme SOD1, exhibit impaired LTP.49  Normal neuronal function depends on a 

carefully regulated redox environment.50    

 NADPH oxidases are transmembrane multiprotein complexes, first identified in 

phagocytes, that generate superoxide by catalyzing the electron transport from NADPH to 

molecular oxygen.42,51  Seven NOX genes have been identified: NOX1 to 5 and DUOX1 and 2.  

8



The NOX enzymes are widely distributed in a variety of tissues.  NOX1, NOX2, NOX3, and 

NOX4 transcripts have been identified in the CNS (Table 1).52 The NOX family has a number of 

conserved structural properties; an NADPH-binding site, a FAD-binding site, six transmembrane 

domains, and four heme-binding histidines (Diagram 5).53  NADPH oxidase derived ROS have 

both physiological and pathological roles.53  Following ischemia, superoxide is generated by 

NADPH oxidase during the reintroduction of oxygen, leading to oxidative stress and neuronal 

death.43  Compelling evidence supports the post-ischemic contribution of NADPH oxidase 

generated ROS in oxidative stress and neuronal death.  Following ischemic lung or brain injury, 

NOX2 KO and p47phox KO mice presented less oxidative injury (lipid peroxidation, protein 

nitration, and oxidative DNA damage) as compared to WT mice.54-56  Neurotrophins such as 

BDNF and NT-3 promote growth and survival in neurons including cultured cortical neurons.  

However, in mature cortical cultures, these neurotrophins paradoxically potentiate neuronal 

necrosis induced by excitotoxins, oxidants or OGD.  Prolonged exposure to the neurotrohpin 

BDNF, activates NADPH oxidase and induces neuronal necrosis in cortical cultures.  

Administration of the NADPH oxidase inhibitor, AEBSF, attenuated increases in oxygen free 

radicals and significantly attenuated BDNF induced neuronal death.57  

!
!
!
!
!
!
!
!
!
!
!
!
!
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Table 1. Expression of NOX Enzymes in CNS Regions.52

Table 1. Expression of NOX Enzymes in CNS Regions

NOX isoforms CNS area localization Species Ref. RNA Protein Subunits

NOX1
Adult total brain M 108 x
Cortex R 48 x p22phox

Cerebellum of pups
after prolonged
gestational exposure
to ethanol

R 44 x

Temporal lobe,
hypothalamus, cerebellum
of adult rats after
ethanol administration

R 45 x

Dorsal root ganglion M, R 32, 107 x (R: p22phox)
Hypothalamic

paraventricular nucleus
R 85 x x

NOX2
Adult total brain M 108 x
Corpus callosum H 80 x
Spinal cord H 80 x
Spinal cord slices in culture R 137 x p47phox

Hippocampus H, M, R 120, 184, 211, 235 H x M, R x (M, R: p22phox, p40phox,
p47phox, p67phox)

Cortex M, R 48, 120, 153, 211, 235 x x p22phox, p40phox, p47phox,
p67phox

Brainstem M 235 x p22phox, p40phox, p47phox,
p67phox

Amygdala M 211 x
Striatum M, R 153, 211 x x (R:p47phox, p22phox)
Thalamus M 211 x
Cerebellum M, R 120, 235 x
Dorsomedial nucleus

tractus solitarius
R 77, 252, 253 x p22phox, p47phox

Posterior hypothalamic
nuclei

R 268 x p22phox, p47phox

Hypothalamic
paraventricular nucleus

R 85, 268 x p22phox, p47phox

Locus coeruleus R 268 x p22phox, p47phox

Medulla H 80 x
Rostral ventrolateral medulla R, Rab 34, 35, 69, 70 x Rab x p22phox, p40phox, p47phox,

p67phox, Rac1
Dorsal root ganglion M, R 32, 107 x

NOX3
Adult brain R 11 x NOXO1, NOXA1
Cerebellum of pups

after prolonged
gestational exposure
to ethanol

R 44 x

Temporal lobe,
hypothalamus, cerebellum
of adult rats after
ethanol administration

R 45 x

NOX4
Adult total brain H, M 108, 242 x
Cortex M 242 x x
Hippocampus

(Ammon’s horn)
M 242 x x

Cerebellum M 242 x x
Dorsal root ganglion M 107 x
Hypothalamic

paraventricular nucleus
R 85 x x

Subunits
p47phox,
p67phox

Medulla, hypothalamus, pons R 31 x x

p47phox Rostral ventrolateral medulla R 254 x

H, human; M, mouse; R, rat; Rab, rabbit.

2484 SORCE AND KRAUSE
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Diagram 5. Proposed structure of the core region of NADPH oxidase (NOX) enzymes.  

All NOX family members share six highly conserved transmembrane domains. Transmembrane 

domains III and V each contain two histidines, spanning two asymmetrical hemes. The 

cytoplasmic COOH terminus contains conserved flavin adenine dinucleotide (FAD) and NADPH 

binding domains. NOX enzymes are thought to be single electron transporters, passing electrons 

from NADPH to FAD, to the first heme, to the second heme, and finally to oxygen. Enlarged 

circles represent amino acids that are conserved through human NOX1, NOX2, NOX3, and 

NOX4.53 

!
!
!
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SPECIFIC AIMS  

We hypothesize that increased activity of NADPH oxidase during reperfusion results in the 

sustained phosphorylation of GluA2, due to phosphatase inactivation, and ultimately leads to 

GluA2 degradation. 

!
Specific Aim 1: To determine if the post-ischemic induced degradation of GluA2 is NADPH 

oxidase-dependent or caused by other ROS generators. 

 
Treat adult rat hippocampal slices with the xanthine oxidase inhibitor oxypurinol and the   

mitochondrial uncoupler FCCP and perform an OGD/R time course to determine if these ROS 

generators are involved in the decrease in GluA2 protein levels.    

!
Specific Aim 2: To test the hypothesis that the sustained GluA2 phosphorylation involves 

NADPH oxidase-mediated inactivation of phosphatases that regulate GluA2 

phosphorylation. 

  

 Sub Aim 2.1: To identify phosphatases the undergo OGD/R-induced inactivation. 

  

 Perform an OGD/R time course to determine if phosphatases undergoes inactivation via  

 increased phosphorylation. 

!
 Sub Aim 2.2: To determine whether inhibition of NADPH oxidase attenuates   

 phosphatase inactivation.   

  

 Treat slices with apocynin to determine if the OGD/R-induced phosphorylation is   

 mediated by NADPH oxidase.   

!
!
!
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MATERIALS & METHODS 

Preparation of acute hippocampal slice:  

Adult male (6-8 week) Sprague-Dawley rats (Charles River Labs, Wilmington, MA, USA; 

Harlan, Livermore, CA, USA) were anesthetized with isoflurane and quickly decapitated. The 

brain was rapidly removed and submerged into ice-cold cutting solution (75 mM Sucrose, 80 

mM NaCl, 2.5 mM KCl, 1.25 mM NaH2PO4, 24 mM NaHCO3, 25 mM Glucose, 4 mM MgCl2, 1 

mM L-Ascorbic Acid, 3 mM Na Pyruvate, 0.5 mM CaCl2, pH 7.4).  400-micron coronal slices 

were made from the dissected hippocampi using a McIlwain tissue chopper (Vibratome, St. 

Louis, MO, USA). Slices were equilibrated for 60-90 minutes prior to OGD/R in oxygenated 

(95% O2, 5% CO2) aCSF (124 mM NaCl, 2.5 mM KCl, 1.25 mM KH2PO4, 26 mM NaHCO3, 10 

mM Glucose, 1.5 mM MgCl2, 2.5 mM CaCl2, pH 7.4) at 33°C. Slices were transferred into fresh 

aCSF halfway through the equilibration period. During the final 30 minutes of equilibration 

slices were pre-treated with 30 µM apocynin (Sigma, St. Louis, MO, USA), 20 µM oxypurinol 

(Sigma, St. Louis, MO, USA), 0.5 µM FCCP (Sigma, St. Louis, MO, USA) or 1:1000 DMSO 

(vehicle), the treatments remained present throughout the duration of the experiment. 

Oxygen-glucose deprivation/reperfusion of hippocampal slices:  

After equilibration, slices to be subjected to OGD/R were rinsed with glucose-free aCSF (aCSF 

with 10 mM mannitol substituted for 10 mM glucose, pH 7.4), and incubated in glucose-free 

aCSF for 40 minutes in a hypoxic glove box (Coy Laboratories, Grass Lake, MI, USA) with a 

gas mixture consisting of 95% N2 and 5% CO2.  To ensure complete anoxia of the glucose-free 

aCSF it was placed in the glove box (0% O2) overnight. Post OGD, the slices were transferred 

from the hypoxic glove box into oxygenated glucose-containing aCSF.  The normoxic controls 

remained in glucose-containing aCSF for the duration of the experiment and were time-matched 

to the last reperfusion time point.  

Nitro-blue tetrazolium assay:  
Slices were equilibrated in aCSF as previously indicated. After equilibration, slices were 

incubation in oxygenated aCSF with nitro-blue tetrazolium chloride (NBT; 0.5 mg/mL; Sigma, 

St. Louis, MO, USA) for 10 minutes before OGD/R treatment. Excess NBT was then rinsed 

away with glucose-free aCSF and OGD/R treatment was performed as previously described. At 

13



the indicated time points, the reaction was stopped with 0.25 M HCl. Slices were visualized via 

phase contrast microscopy (Olympus SZX16, 4X air objective), then lysed by sonication in 

DMSO containing a protease inhibitor cocktail. 200 µl of lysates were aliquoted into a 96 well 

plate and absorbance was read at 550 nm on a spectrophotometric microplate reader (VersaMax 

plate reader, Molecular Devices, Sunnyvale, CA, USA). Normoxic controls were rinsed with 

glucose-containing aCSF after NBT incubation and left in glucose-containing aCSF to be time-

matched to the last of the OGD/R time points before being processed the same as OGD/R-treated 

slices. 

Lysate Preparation:   

At the designated time points slices were transferred from the aCSF and rinsed in ice-cold PBS 

(pH 7.4).  Slices were subsequently transferred into eppendorf tubes containing lysis buffer (50 

mM Tris, 150 mM NaCl, 1 mM EDTA, 1 mM PMSF, 1% NP-40, 1% protease and phosphatase 

inhibitor cocktail (Thermo, Rockland, IL, USA), pH 7.4) and lysed promptly through sonication 

for 3 separate 5 second bursts at 40% power output with a VirTis Ultrasonic Cell Disrupter 100 

(Gardiner, NY, USA). Lysates were centrifuged at 1,000 x g to remove cellular debris and nuclei. 

A bicinchoninic acid assay (Thermo, Rockland, IL, USA) was utilized to determine protein 

content. Samples were denatured in Laemmli buffer and heat (10 minutes, 100°C), resolved via 

SDS-PAGE, and transferred onto a nitrocellulose membrane (Bio-Rad, Berkeley, CA, USA) for 

immunoblotting.  

Immunoblotting:  

Blots were blocked with either 5% non-fat dry milk or 5% BSA (for phospho-antibody detection) 

in Tris Buffered Saline, 0.1% Tween 20, pH 7.5, for 1 hour at room temperature.  Blots were then 

incubated with primary antibody at 4°C overnight. The affinity purified rabbit-monoclonal 

GluA2 (1:1000), phospho-GluA2 (Ser880) (1:1000), PP2A (1:1000), phospho-PP2A (Tyr307) 

(1:1000), PKCα (1:2000), and phospho-Protein Kinase C α (Thr497) (1:2000) antibodies were 

purchased from Epitomics (Burlingame, CA, USA). The affinity purified goat polyclonal PICK1 

(1:50) antibody was purchase from Santa Cruz Biotechnologies (Santa Cruz, CA, USA). The 

affinity purified GluA1 rabbit-polyclonal antibody (1:1000) was purchased from abcam 

(Cambridge, MA, USA). Goat anti-Mouse-HRP and Goat-anti-Rabbit-HRP secondary antibodies 
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(1:2000) were purchased from Jackson ImmunoResearch (West Grove, PA, USA). 

Immunoreactive bands were visualized with a Fuji imaging system using enhanced 

chemiluminescence. Bands were analyzed using Fuji Image-Gauge software.  
Immunoprecipitation:  

To visualize the PICK1-PKCα protein complex, rat hippocampal slices were lysed in a buffer 

containing 50 mM Tris-HCl, 150 mM NaCl, 1 mM EDTA, 1 mM phenylmethylsulfonyl fluoride, 

1% NP-40, and 1% protease and phosphatase inhibitor cocktail, pH = 7.5.  Protein concentration 

was then determined using a BCA assay, and lysates (500 µg/sample in 500 µl) were then pre-

cleared using Protein-A/G 50/50 mix of agarose beads for 1 hour at 4°C followed by incubation 

with PICK1 (1:50) antibody overnight at 4°C. The immunocomplex was then incubated for 4 

hours with 50 µL Protein-A/G beads at 4°C with rotation before being washed 3 times with lysis 

buffer. Samples were then eluted from the agarose beads by treatment with Laemmli buffer and 

heat (100°C) and subjected to 7.5% SDS-PAGE. After transfer to nitrocellulose membranes, 

blots were blocked as and incubated overnight at 4°C as previously described. Immunoreactive 

bands were analyzed using Fuji Image-Gauge software. 

Statistical Analysis:  

ANOVA (with post hoc Bonferroni test)  was used to determine significance. Statistical tests 

were performed using GraphPad Prism Software (La Jolla, CA, USA). 

!!!!!!
!
!
!
!
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RESULTS  
OGD/R induces the selective degradation of GluA2.  
Numerous studies have demonstrated that ischemia/reperfusion results in an alteration of the 

subunit composition of AMPARs, from those containing the edited form of GluA2 to those 

lacking the edited GluA2 subunit, an event known to contribute to AMPAR-mediated cell death.
2,5,32,33  In collaboration with Phil Beske, we set out to identify mechanisms contributing to the 

OGD/R mediated changes in GluA2. Initial experiments were performed to determine whether 

total GluA1 and GluA2 protein levels were decreased in slices subjected to OGD/R. While 

GluA1 total protein levels were not significantly altered, GluA2 levels were significantly 

decreased in slices subjected to OGD followed by 30 and 60 minutes of reperfusion (Fig. 1).  

These results indicate that OGD/R promotes the selective degradation of GluA2.  

NADPH oxidase contributes to ROS generation in the adult rat hippocampus following 

exposure to OGD/R.  

Recent studies indicate that an oxidative stress-signaling pathway is responsible for the OGD/R-

induced changes in AMPAR subunit composition. Studies suggest that NADPH oxidase, a 

superoxide generator, is the source that initiates the oxidative stress-signaling cascade during 

post-ischemic reperfusion. To examine NADPH oxidase-dependent ROS generation in slices 

subjected to OGD/R, a NBT assay was performed in the presence or absence of the NADPH 

oxidase inhibitor apocynin (30 µM). NBT is reduced by superoxide or oxidant metabolites to 

form formazan, an insoluble dye that can be observed via colorimetry. Exposure of hippocampal 

slices to OGD/R increased formazan formation, demonstrating a large increase in ROS 

generation, particularly during the reperfusion of slices subjected to OGD (Fig. 2). Results from 

a previous report indicate that OGD/R results in a tri-phasic production of ROS due to 

mitochondria, xanthine oxidase and NADPH oxidase.  NADPH oxidase is responsible for the 

burst of ROS seen during reperfusion.45  Treatment of slices subjected to OGD with the NADPH 

oxidase inhibitor apocynin significantly attenuated the ROS generation observed during 

reperfusion (Fig. 2). Our data indicates that NADPH oxidase serves as a key generator of ROS 

production during reperfusion of OGD-subjected hippocampal slices. 

!
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Figure 1. GluA2 is selectively degraded following OGD/R exposure. Representative 

Western blot (A) of hipppocamapl slices illustrates the time course of GluA2 degradation.  

Quantification (B) of GluA2 protein levels. Data represents fold change over control ± 

S.D. from four separate experiments. *p <0.05, ANOVA with post hoc Bonferroni test.  

Results are expressed as arbitrary densitometry units.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Figure 2.  
A.  

B.  
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Figure 2. NADPH oxidase activity contributes to reactive oxygen species generation 

during reperfusion. (A) Phase contrast images of vehicle (DMSO) and apocynin (30 

µM) pretreated hippocampal slices loaded with NBT were collected on a fluorescent 

dissecting scope, phorbol 12-myristate 13-acetate (PMA; 10 µM, 10 minutes) was used 

as a positive control for NADPH oxidase activation. (B) Reduced NBT was quantified by 

cellular lysis in DMSO with the absorbance of the resultant supernatant being collected at 

550 nm.  Data represents fold change over control ± S.D. from 5 separate experiments. *p 

<0.05, ANOVA with post hoc Bonferroni test.  Results are expressed as arbitrary 

densitometry units. 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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Inhibition of NADPH oxidase prevents the OGD/R-induced degradation of GluA2.  

Inhibition of NADPH oxidase activity prevented the OGD/R-induced degradation of GluA2 

(Figure 3).  However, NADPH oxidase is not the only ROS generator that has been shown to 

contribute to post-ischemic neuronal injury.  The generation of ROS and oxidative stress have 

been shown to contribute to neuronal injury by several mechanisms during ischemia and 

reperfusion, including mitochondria and xanthine oxidase.45   To determine whether other ROS 

generators may be involved in the decrease in GluA2 protein levels, slices were pre-treated with 

the xanthine oxidase inhibitor oxypurinol (20 µM), and the mitochondrial uncoupler FCCP (0.5 

µM).  The concentrations of oxypurinol and FCCP used were previously reported to be effective 

in inhibiting ROS generation.45  Inhibition of these two sources of ROS production failed to 

diminish the OGD/R-induced degradation of the GluA2 subunit (Fig. 4).  A NBT assay was 

performed to demonstrate that the concentrations of oxypurinol and FCCP used were effective in 

inhibiting ROS generated by these ROS generators. These studies suggest that mitochondria and 

xanthine oxidase have little role in the OGD/R-induced degradation of GluA2.  Although other 

ROS generators cannot be ruled out, it appears that NADPH oxidase serves as the primary ROS 

generator involved in initiating the oxidative stress-signaling cascade responsible for the post-

ischemic degradation of the GluA2.  

Inhibition of NADPH oxidase with apocynin decreases the OGD/R-induced increase in 

Ser880 phosphorylation of GluA2 and the association of activated PKCα and PICK1.  

The endocytosis of GluA2 has been demonstrated to be both preceded by and dependent on 

PKCα mediated Ser880 phosphorylation of the GluA2 subunit.58  We found an overall increase 

in phospho-PKCα(Thr497) (data not shown) in total lysates. We also performed a time response 

experiment to determine a time course of the GluA2 Ser880 phosphorylation status in rat 

hippocampal slices treated to OGD/R and found that GluA2 Ser880 phosphorylation 

significantly increased during reperfusion while the total level of GluA2 protein decreased (Fig. 

5).  We sought to determine if the reduction in oxidative stress observed with the inhibition of 

NADPH oxidase during OGD/R resulted in an attenuation of GluA2 Ser880 phosphorylation.  

Inhibition of NADPH oxidase activity dampened the OGD/R-induced increase in GluA2 Ser880 

phosphorylation (Fig. 5).  The association of PKCα with PICK1 is an important step in the 
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Figure 3. Inhibition of NADPH oxidase attenuates the OGD/R-induced loss of 

GluA2. Representative Western blot (A) of hipppocamapl slices illustrates the time 

course of GluA2 degradation in the presence of vehicle (1:1000 DMSO) or apocynin (30 

µM).  Quantification (B) of GluA2 protein levels. Data represents fold change over 

control ± S.D. from four separate experiments. *p <0.05, ANOVA with post hoc 

Bonferroni test.  Results are expressed as arbitrary densitometry units.  
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Figure 4. 
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Figure 4. Inhibition of mitochondrial and xanthine oxidase ROS generation fails to 

rescue the OGD/R-induced loss of GluA2. (A) Lysates were prepared from rat 

hippocampal slices exposed to OGD/R with vehicle (1:000 DMSO), Oxypurinol (20 

µM), or FCCP (0.5 µM). Representative Western blot (A) of four independent 

experiments demonstrates the selective decrease in GluA2 protein levels, which is not 

rescued with either the xanthine oxidase inhibitor oxypurinol or the mitochondrial un-

coupler FCCP. (B) Data are expressed as fold change over control ± S.D.  
*p < 0.05, ANOVA with post hoc Bonferroni test. Results are expressed as arbitrary 

densitometry units. 
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Figure 5. The OGD/R-induced increase in Ser880 phosphorylation of GluA2 is 

blunted with inhibition of NADPH oxidase.  Representative Western blot (A) of 

hipppocamapl slices illustrates the time course of GluA2 Ser880 phosphorylation in the 

presence of vehicle (1:1000 DMSO) or apocynin (30 µM).  Quantification (B) of GluA2 

phosphorylation levels. Data represents fold change over control ± S.D. from three 

separate experiments. *p <0.05, ANOVA with post hoc Bonferroni test.  Results are 

expressed as arbitrary densitometry units.  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
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endocytosis of GluA2.  Activation of PKCα causes PKCα to bind to the PICK1 PDZ domain, the 

PKCα-PICK1 complex is targeted to the ABP/GRIP-GluA2 complex, this complex anchors 

AMPARs to the plasma membrane. PICK1 competes with ABP/GRIP for the GluA2 interaction.  

PKCα phosphorylates Ser880 of GluA2, GluA2 phosphorylated at Ser880 has a decreased 

affinity for ABP/GRIP, thus enabling the binding of PICK1 to GluA2.  The interaction of PICK1 

with GluA2 has been shown to be important in decreasing surface levels of GluA2.59-61 

Therefore, experiments were performed to determine if exposure to OGD/R lead to an increase 

in the association of activated PKCα with PICK1.  Reperfusion of OGD-treated slices resulted in 

a rapid and sustained phospho-PKCα-PICK1 association (Fig. 6).  Additionally, inhibition of 

NADPH oxidase activity dampened the OGD/R-induced association of activated PKCα with 

PICK1 (Fig. 6).  These experiments show that NADPH oxidase contributes to the post-OGD/R 

sustained activation of PKCα associated with PICK1 and the subsequent increase in GluA2 

Ser880 phosphorylation. 

Inhibition of NADPH oxidase prevents the OGD/R-induced inactivation of PP2A. 

A balance in activity of protein kinases and phosphatases is required for the regulation of protein 

phosphorylation.  It has been demonstrated that PP2A plays a role in regulating PKC activity.30  

It has also been reported that H2O2 generated ROS inhibits PP2A, while treatment with a ROS 

scavenger reversed inactivation.62  Therefore, the previously demonstrated OGD/R-induced 

sustained increase in PKCα phosphorylation may be mediated by the inactivation of PP2A.  

Phosphorylation of PP2A at Tyr307 results in the inactivation of the phosphatase.30,62  

Experiments were performed to determine if PP2A undergoes OGD/R-induced inactivation, and 

if so, does inhibition of NADPH oxidase attenuate PP2A inactivation. We show an OGD/R-

induced increase in PP2A Tyr307 phosphorylation, indicating an inactivation of the phosphatase 

(Fig. 7).  Apocynin inhibition of NADPH oxidase attenuated the OGD/R-induced 

phosphorylation of PP2A (Fig. 8), suggesting that NADPH oxidase was responsible for the 

inactivation of PP2A.  

!
!
!
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Figure 6. The OGD/R-induced increase in activated PKCα associated with PICK1 is 

blunted with inhibition of NADPH oxidase. Representative Western blot (A) of 

hippocamapl slice illustrates the PKCα (phospho-Thr497)-PICK1 association in the 

presence of vehicle (1:1000 DMSO) or apocynin (30 µM).  Quantification (B) of 

phospho-PKCα(Thr497)-PICK1 association. Data represents fold change over control ± 

S.D. from three separate experiments. *p <0.05, ANOVA with post hoc Bonferroni test.  

Results are expressed as arbitrary densitometry units. 
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Figure 7. PP2A undergoes Tyr307 phosphorylation following OGD/R exposure. 

Representative Western blot (A) of hippocampal slices illustrates the time course of PP2A 

Tyr307 phosphorylation. Quantification (B) of PP2A Tyr307 phosphorylation levels. Data 

represents fold change over control ± S.E.M. from three separate experiments. *p <0.05, 

ANOVA with post hoc Bonferroni test.  Results are expressed as arbitrary densitometry 

units. 
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Figure 8. 
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Figure 8. Inhibition of NADPH oxidase attenuates the OGD/R-induced increase in 

PP2A Tyr307 phosphorylation. Representative Western blots (A) of hippocampal slices 

illustrates the time course of PP2A Tyr307 phosphorylation in the presence of vehicle 

(1:1000 DMSO) or apocynin (30 µM). Quantification (B) of PP2A phosphorylation 

levels. Data represents fold change over control ± S.E.M. from three separate 

experiments. *p <0.05, ANOVA with post hoc Bonferroni test.  Results are expressed as 

arbitrary densitometry units. 
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DISCUSSION 

Following ischemic injury, AMPARs undergo a subunit rearrangement resulting in the expression 

of  GluA2-lacking Ca2+/Zn2+-permeable AMPARs which play a key role in promoting delayed 

neuronal death.  It has been demonstrated that ischemia triggers the down regulation of GluA2 

protein expression.2,31-33 However, the underlying signaling mechanisms are still poorly 

understood.  We previously demonstrated that inhibition of NADPH oxidase prevented the OGD/

R-induced degradation of GluA2.  Here, we show that inhibition of ROS generated by 

mitochondria and xanthine oxidase fails to diminish the OGD/R-induced degradation of GluA2.  

Thereby indicating that NADPH oxidase is the ROS generator involved in initiating the 

oxidative stress-signaling cascade responsible for the post-ischemic degradation of the GluA2. 

 In addition, we found that PP2A undergoes increased Tyr307 phosphorylation following 

OGD/R and inhibition of NADPH oxidase with apocynin attenuates the OGD/R-induced 

inactivation of PP2A.  We demonstrated an OGD/R-induced increase in GluA2 Ser880 

phosphorylation and activated PKCα and PICK1 association.   Inhibition of NADPH oxidase 

with apocynin diminished the OGD/R-induced increase in activated PKCα and PICK1 

association and subsequent Ser880 phosphorylation of GluA2.  To determine how NADPH 

oxidase regulates activated PKCα we examined phosphatase inactivation.  PP2A mediates the 

dephosphorylation of PKC23,24 and undergoes H2O2 generated ROS induced inactivation.62  

Therefore, the NADPH oxidase mediated OGD/R-induced inactivation of PP2A, may be 

responsible for the sustained activation of PKCα and subsequent phosphorylation of GluA2.  

Additionally, activated Src can phosphorylate Tyr307 directly, causing PP2A inactivation, 

furthermore Src activity is up-regulated following ischemic injury.30 The Src family of non 

receptor protein tyrosine kinases regulate a wide variety of physiological responses including 

extracellular signals derived from G-protein-coupled receptors, ion channels, and cell-cell 

adhesion signaling molecules.  SFKs have been shown to play a prominent role in ischemic 

injury.  These kinases potentiate the activity of NMDARs and voltage-gated calcium and 

potassium channels, all known contributors to ischemic cell death.63 In particular, following 

ischemia there is a sustained activation of SFKs.  These activated kinases are subsequently 

recruited to the plasma membrane, resulting in an up-regulation of NDMAR function and an 
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increase in the open state of coupled ion channels, allowing a massive calcium influx and 

subsequent IRI.64  Inhibition of SFKs results in a reduction in infarct volume and increased 

neurological recovery (increased sensorimotor function and reflex limb placement).63  These 

results suggest that SFK inhibitors may be a viable therapy for acute stroke.   

 Inactivation of other phosphatases may also play a role in the sustained phosphorylation 

of PKCα and GluA2.  PP1 is a serine/threonine phosphatase that plays a crucial role in multiple 

cellular processes including cell division, transcription, translation, and apoptosis.  The catalytic 

subunits of PP1 are highly expressed in brain tissue, implying an important role for the 

phosphatase in the CNS.65  Dephosphorylation of GluA2 is mediated by PP1, suggesting that 

PKCα and PP1 have opposing roles in the regulation of GluA2 Ser880 phosphorylation.66 In 

addition to PP2A, PP1 also has a role in regulating PKC activity.23,24  Phosphorylation regulates 

PP1 activity, PP1 is inactivated when phosphorylated at T320.67  Interestingly, PP1 activity is 

inhibited by oxidative stress.68  Therefore, ROS-mediated inactivation of PP1 following ischemia 

may also lead to a sustained phosphorylation of PKCα and GluA2. 

 The decrease in surface levels of GluA2 is mediated by the internalization of GluA2.  

Phosphorylation of Ser880, within the GluA2 PDZ-binding site, by PKCα decreases the affinity 

of GluA2 for synaptic anchoring proteins GRIP1 and ABP, thus allowing the association of 

PICK1 with GluA2 and internalization.20-22  It has been demonstrated that viral expression of 

peptides that interfere with PICK1 PDZ binding domain interactions prevent the ischemic-

induced switch of GluA2-containing  
AMPARs.69  It has also been shown that following NMDAR activation FSC 231, a small-

molecule inhibitor of the PICK1 PDZ domain, accelerates the recycling of internalized GluA2 

back to the surface.70  Therefore, preventing PICK1 PDZ domain interactions may prevent the 

ischemic-induced loss of GluA2-containing AMPARs and ultimately protect against calcium 

permeable AMPAR mediated delayed neuronal death.   

!
!
!
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IMPACT  

Stroke is the third leading cause of death and the leading cause of disability in the United States.
71,72  Although multiple pharmacological agents have demonstrated efficacy in reducing stroke 

injury in preclinical studies, the only approved drug for stroke patients is the thrombolytic, rtPA.  

Currently only 2-5% of stroke patients in the U.S. receive rtPA, due to the narrow therapeutic 

window and associated risks, including hemorrhage.71,72  There is a great need for the generation 

of neuroprotective agents against IRI.       

 The ischemic core is the center of the brain region with diminished blood flow following 

ischemia.  In this region, neurons undergo irreversible death within minutes.  The penumbra is 

the region surrounding the core, neurons here remain quiescent due to collateral blood supply.  If 

blood flow is not restored to the penumbra, neurons in this region will eventually die.72  

Neuroprotection is designed to restrict injury to the brain following an ischemic insult by 

preventing neuronal cell death, especially in the salvageable penumbral region.73 

 It is widely accepted that deprivation of oxygen and glucose to neuronal tissue elicits a 

series of pathological cascades, leading to the spread of neuronal death.  Excessive activation of 

glutamate receptors, over-load of intracellular calcium, abnormal recruitment of inflammatory 

cells and excessive production of free radicals are believed to play crucial roles in ischemic 

damage.74  Neuroprotective agents designed to interrupt the propagation of these pathological 

cascades have been investigated in stroke studies.74  Over 1000 neuroprotective agents have been 

tested in experimental studies, with many showing efficacy, however neuroprotection has failed 

in clinical trials.73  There are many reasons for the translational difficulties (Table 2) including a 

lack of methodological agreement between preclinical and clinical studies and the heterogeneity 

of stroke in humans compared to homogeneous stroke in animal models.72,73  Overall, there is a 

need for new animal models and more rigorous studies with higher standard levels to avoid bias.  

 Other strategies to improve the outcome after stroke include neurorestorative approaches 

aimed at remodeling brain tissue.  Another potential strategy is combination therapy, using a 

neuroprotective agent alongside thrombolysis.73  The promise of combination and 

neurorestorative therapies need further clinical investigation before the viability of these 

strategies can be confirmed.  The failed translation from animal stroke studies to clinical studies 
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Table 2.  Reasons for translational failure of neuroprotective agents from pre-clinical to clinical 
studies.73 !

!
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has created pessimism regarding the neuroprotection hypothesis.  Although recent stroke 

research has not directly yielded new clinical drugs, it has provided important mechanistic 

insights into the complex pathophysiology of ischemic stroke.72  Still, there are a number of 

questions that remain unanswered that may help identify future targets for stroke therapy.   

 The research presented here leaves questions for future studies to examine.  It has been 

demonstrated that Src activity is increased following ischemia and is responsible for the 

inactivation of PP2A.30  Does NADPH oxidase have a role in regulating Src activity? 

In SH-SY5Y cells, we demonstrated that inhibition of NADPH oxidase attenuated the OGD/R-

induced association of activated Src with PSD-95.75 Do PP2A activators or Src inhibitors prevent 

the internalization of GluA2, can they be used as potential targets for stroke therapy?  PP2A is 

involved in numerous cellular processes, therefore activating all forms may produce unwanted or 

even detrimental side effects.25,26  The ability to directly target a specific PP2A holoenzyme may 

be beneficial.  This could potentially be accomplished by disrupting the association between 

PP2A and its substrates.  A better understanding of PP2A complexes and PP2A-AKAP 

compartmentalization during ischemia is necessary to achieve this.   

 NADPH oxidases are a major source of ROS.  Future stroke studies should attempt to 

target specific enzymatic sources of ROS rather than applying non-specific antioxidants after 

radicals have already been generated.72  We demonstrated that inhibition of NADPH oxidase 

prevented the sustained activation of PKCα, the Ser880 phosphorylation of GluA2, and the 

degradation of GluA2.  However, it is still unclear which NOX family members are responsible.  

It has been demonstrated that NOX4-derived oxidative stress has a role in the pathophysiology of 

ischemia.  NOX4 is functionally induced in neurons and brain vessels of human stroke patients 

and mice.  Additionally, inhibition of NOX4 in stroke mice promotes neuroprotection.73  Future 

studies should aim at understanding the exact role each NOX isoform has in IRI.  Subtype-

specific NADPH oxidase inhibitors may be attractive treatment options in ischemic injury and 

other disease states related to oxidative stress.     

 The OGD/R-induced trafficking of AMPARs remains unclear.  Although both GluA1 and 

GluA2 internalize during reperfusion, only GluA2 is degraded, suggesting differential trafficking 

of the internalized subunits.  Examination of protein-protein interactions and the association of 
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GluA1 and GluA2 with different endocytic compartments would provide a better understanding 

of the mechanisms underlying the degradation of GluA2.  Elucidation of these mechanism may 

also provide insight into other neurological disorders, in which Ca2+-permeable AMPARs are 

also implicated, including epilepsy, ALS, and Alzheimer’s disease.5  

 Finally, further investigation into the disruption of PICK1 PDZ domain interactions may 

generate new therapeutics that prevent the post-ischemic AMPAR-mediated neuronal death.    
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