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Atkins, David C., M.S. August 1996 Forestry-

Discriminant Function for Old Forest Classification of Mesic Types in 
the Northern Rocky Mountains (87 pp.) 

Public land managers are obligated by law to provide for a diversity 
of plant and animal communities. The old forest or "old-growth" has 
been identified as an important stage to maintain. For managers to 
inventory and manage old forest structures they need to be able to 
distinguish it from younger stages of forest development. This thesis 
uses discriminant analysis to help determine diagnostic structural 
characteristics of old forests for many cover types associated with 
mesic habitat types in northern Idaho and western Montana. 
The key variables for classifying old forests were the number of 

cohorts, the combination of small and large tree canopy cover, and 
basal area over 21 inches (53 cm) dbh. 
The role of disturbances, especially fire, in the development and 

maintenance of old forests is of vital importance. That is why the 
number of cohorts was the most powerful variable in the discriminant 
funtion. 
This research found that discriminant analysis is an effective tool 

for classifying old forest stands. It does not have the limitations 
of using minimum criteria. 

Director: Dr. Kevin O'Hara 
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INTRODUCTION 

Public land management agencies, such as USDA Forest 

Service, USDI Bureau of Land Management, Bureau of Indian 

Affairs, National Park Service and others have the 

responsibility for managing millions of acres of forested 

land in the northern Rocky Mountains. Part of these 

agencies' missions is to provide for the maintenance of 

biological diversity. For example the Forest Service is to 

assure the "diversity of plant and animal communities..." 

in accordance with the National Forest Management Act. The 

Code of Federal Regulations (36 CFR 219) includes the goal 

"to manage habitats to maintain viable populations of native 

and desired non-native species...". These public agencies 

are also required to implement the Endangered Species Act in 

cooperation with the U.S. Fish and Wildlife Service. 

Agencies accomplish these goals primarily through the 

maintenance of adequate habitat for species that prefer or 

need various habitat conditions in their life cycles. Some 

of these relationships are known, but many are unknown. 

The approach of providing adequate habitat to support known 

and unknown species is the concept of the coarse filter 

(Hunter 1990). The old-growth structures have been 

identified as a component of the forested landscape that is 
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often scarce because of past land uses, primarily logging. 

As a result old-growth has become a much discussed topic in 

both the scientific and social literature (Thomas and others 

1988) . 

Old-growth in the northern Rockies has not been 

extensively studied and what has been done has been mostly 

in the ponderosa pine forest cover type and drier end of the 

western larch cover type. The Northern Region of the Forest 

Service developed a set of definitions for all the cover 

types occurring there. 

This study is focused on the more mesic habitat types 

(Pfister and others 1977, Cooper and others 1987). It will 

look at the most common cover types within this environment, 

Douglas-fir (Pseudostuqa menziesii), western larch (Larix 

occidentalis), grand fir (Abies qrandis), Engelmann spruce 

(Picea enqelmannii), subalpine fir (Abies lasiocarpa) and 

western white pine (Pinus monticola). 



LITERATURE REVIEW 

Over the past 15-20 years, old-growth forests have been 

recognized as a community that support species which prefer 

and sometimes depend upon its existence to maintain their 

populations (McClelland and others 1979, Thomas and others 

197 9). Much of the research and knowledge about the 

uniqueness of old-growth has come out of the Douglas-fir 

region of western Oregon and Washington (Franklin and others 

1981, Spies and Franklin 1988, Ruggierio and others 1991). 

Transferring much of what has been learned in these coastal 

forests is not appropriate for the northern Rocky Mountains 

because of the differing climatic conditions, species 

compositions, and disturbance regimes (Green and others 

1992). However, there are also a number of principles and 

concepts that are transferrable and pertinent to the 

northern Rocky Mountains. Research done in the northern 

Rockies on the dynamics of vegetation, particularly in 

relationship to the role of fire, (Fischer and Bradley 1987, 

Arno and others 1985, Habeck 1990, Smith and Fischer in 

preparation) helps us understand the ecology of the 

old-growth stage and its relationship to other stages of 

forest development. 

Habeck in 1988 discussed the question "What is 

Old-growth?" in a paper on northern region old-growth 
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forests. He identifies the difficulty of "... a single 

definition being successfully applied to the wide range of 

ecogeographic subunits making up the northern Rockies." 

Pfister (1987) found that when desired levels of individual 

characteristics of old-growth are used in combination, very 

few stands qualify. Similar results have been reported in 

western Oregon and Washington where a high percentage of 

stands fulfill individual criteria, but a much lower number 

can fulfill all the criteria (Franklin and Spies 1991b). 

This information reflects the high amount of 

heterogeneity in this stage of forest development that 

results from a combination of disturbance history, 

variations in species composition, establishment, site 

productivity, and others. It also highlights the pitfalls 

of using minimum criteria for several characteristics. 

However, use of only one characteristic like age or 

diameter, which has relatively strong correlations with the 

old-growth condition, also have enough error associated with 

them to be inadequate by themselves (Moir 1992, Spies and 

Franklin 1988) . 

The term "old-growth" has been used relatively loosely 

in the literature for decades. Foresters generally used it 

to connote stands that were well past the age of culmination 

of mean annual increment and which had little or no net wood 

production (Franklin and Spies 1991b, Hunter 1989, 1990); 
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wildlife biologists often used it to describe stand 

conditions that had characteristics beneficial to certain 

species of animals associated with or dependent on large 

decadent trees, snags, canopy layering (Bull 197 8, 

McClelland and others 1979, Miller 1978); sometimes the term 

has been associated with individual old decadent trees; 

old-growth has also been called the last stage of succession 

(Miller 197 8, Fischer and Bradley 1987, Thomas and others 

1979), which has led to equating climax to old-growth. 

More recently, attempts have been made to define it in 

broader ecological terms of composition, structure, and/or 

function (Franklin and others 1981, Spies and Franklin 1988, 

Bingham and Sawyer 1991). Hayward (1991) presented the 

argument that population dynamics of the trees may be used 

to define the old-growth stage based on the work of other 

researchers. Oliver and Larson (1990) presented the idea of 

true old-growth as the result of autogenic processes and the 

resulting forest is entirely comprised of trees that have 

grown from beneath the original overstory. They also 

recognized "transition old-growth" in forests that have 

relic long-lived serai species. They indicate structural 

conditions often associated with other definitions of 

old-growth can result from multi-cohort stands, mixed 

species single cohort stands in the stem exclusion, and 

stand reinitiation phases depending on the multitude of 
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factors (allogenic processes such as fire, wind, insects, 

etc., species composition, tree initiation variations, etc.) 

that can influence stand development (Oliver and Larson 

1990) . 

Kaufman and others (1992) discuss old-growth 

characteristics as independent of forest community 

development because of perturbations, such as fire, insects, 

disease, climatic, etc., that can affect the trajectory of 

stand development. They indicate that serai stands can 

acquire old-growth characteristics and then lose them (e.g. 

aspen). Moir (1992) discusses the idea of "a 

post-old-growth structure" where mortality of the old tree 

component dies out and is not replaced and the structure 

resembles earlier stages of forest succession. The 

resemblance does not mean that the next stage of development 

will be similar. 

Franklin and Spies (1991b) purport a generic definition 

of old-growth forests, applicable to most temperate and 

subalpine forests: "Old-growth forests are later stages in 

forest development that are often compositionally and always 

structurally distinct from earlier successional stages." 

Franklin and Spies (1991b) then describe structural, 

compositional, and functional relationships generally 

associated with old-growth: Structurally, a wide within-

stand range of tree sizes and spacing; trees that are large 
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for the particular species and site combination; decadence 

is often evident in larger and older trees; multiple canopy 

layers are generally present; total organic matter 

accumulations are high relative to other developmental 

stages. Compositionally, there is usually an increase in 

the number of tree species, particularly shade tolerants, in 

old-growth. They indicate all climax forests qualify as 

old-growth, though most old-growth forests are not climax. 

Functionally, old-growth is characterized by slow growth of 

the dominant trees and stable biomass accumulations over 

long periods; respiration reduces net annual additions to 

live organic matter to low amounts relative to earlier 

stages. Franklin and Spies (1991b) also indicate the age at 

which forests become old-growth varies widely with forest 

type or species, site conditions and stand history. 

Hunter (1990) considered 5 age criteria: 1) Is it near 

climax? 2) Is net annual growth close to zero? 3) Is the 

forest significantly older than the average interval between 

natural disturbances severe enough to lead to succession? 

4) Have the dominant trees reached the average life 

expectancy for that species for that type of site? 5) Has 

the forest's current annual growth rate declined below the 

life-time average? He also examined two disturbance 

criteria: 6) Has the forest been extensively or intensively 

cut? 7) Has the forest ever been converted by people to 
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another type of ecosystem? He goes on to express the very 

restrictive nature of criteria 1 and 6 and then chooses the 

term old rather than old-growth for the rest of his book, 

reasoning old can use the other 5 criteria for age. 

In addition to the ecological values associated with 

old-growth, there are strong social values associated with 

this stage of forest development. People have expressed 

these values by referring to them as "ancient forests", 

"primeval", "virgin", "cathedral", and other similar terms, 

which evoke strong feelings associated with old-growth 

(Hunter 1990). Franklin and Spies (1991b) assert not all 

virgin or primeval forests are old-growth. Therefore, for 

both ecological and social reasons, the management of 

old-growth is important to public land managers. 

The importance of the old-growth issue means that 

public land managers need to know how much and where they 

have old-growth. They need to understand the dynamics of 

old-growth development and maintenance, within a stand and 

across the landscape. These are prerequisites to deciding 

how to manage it and plan for its eventual replacement. 

However, before they inventory it, they must first define 

it. 

In 1989, all the regions of the Forest Service were 

directed by the Chief to develop definitions for their 

various forest types. They were guided by a generic 
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definition provided by the Washington Office, "... 

ecosystems distinguished by old trees and related structural 

attributes" (Robertson 1989). 

The Northern Region developed definitions for three 

subregions, (northern Idaho, western Montana and eastern 

Montana), by habitat group and forest type using their 

existing timber inventory records system (Green and others 

1992). A committee of professionals selected data, from 

each National Forest within a zone, based on age (greater 

than 100 years), dbh (greater than 9 inches or 23 cm), 

habitat type, cover type and no evidence of past logging. 

They developed old-growth types based on groupings of 

similar habitat types and cover types associated with those 

habitat types and then arrayed the plot characteristics. 

Based upon their professional judgement and experience, they 

established minimum criteria for age, and number of trees 

per acre by dbh for each habitat type group and cover type 

combination. 

The Northern Region published the committee's results 

in a desk reference for agency managers use (Appendix E). 

The Regional Ecologist has expressed the desire to have the 

definitions tested for the northern Rockies. 

Forest structure dynamics has been classified into 

stages called stand initiation, stem exclusion, understory 

reinitiation and old-growth (Oliver 1981, Oliver and Larson 
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1990). These stages are the "typical" development for a 

single cohort stand operating with autogenic or within-stand 

types of disturbances. They go on to describe how forests 

develop when added allogenic disturbances occur, (e.g. 

mixed-severity fire, insect, disease or weather-induced 

disturbances). These disturbances can produce multi-cohort 

stands with more complicated structure and composition. 

O'Hara and others (1996) described several additional 

stages. They split stem exclusion into open versus closed 

condition. They changed "old-growth" into old forest 

multi-strata and old forest single-strata and added a young 

forest multi-strata. The disuse of old-growth attempts to 

get away from the "baggage" of the multiple definitions it 

has in the scientific and general public communities, while 

more effectively describing the stage of forest development 

from a scientific standpoint. 

The "single" versus "multi" strata approach recognizes 

the existence of two very different conditions of the old 

forest stage. The single strata condition is often 

associated with the ponderosa pine forest type, fire group 

4, or the drier western larch type that occurs in the broad 

valley bottoms that typically had a fairly frequent light to 

moderate severity fires (Fischer and Bradley, 1987). Fire 

suppression this century has turned many of the old forest 

single strata stands into multi-strata stands. 
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The multi-strata condition reflects the environments 

that had longer fire return intervals, fire groups 9 and 11 

and the fires ranged from mixed severity to stand 

replacement (Fischer and Bradley 1987). This multi-strata 

condition is the focus of this study. 

The mesic habitat types for this study are in fire 

groups nine and eleven in Montana (Fischer and Bradley, 

1987) and fire groups five, seven, and eight in northern 

Idaho (Smith and Fischer in press). They have relatively 

long stand replacement fire return intervals 80-250+ years, 

but may experience fires as frequent as 20 years or as long 

as 450 years apart as reported by Zack and Morgan 

(unpublished) review of fire research in these mesic types. 

However their work reported the average stand replacement 

return interval to be 2 03 years in the interior Couer 

d'Alene basin and 13 8 years adjacent to Rathdrum prairie. 

They also estimated one to three mixed severity or nonlethal 

fires during the interval between the stand replacement 

fires. 

One study in this habitat type group had mixed severity 

fires occur as frequently as every 3 0 years in the Swan 

Valley of Montana (Freedman and Habeck 1985). This kind of 

disturbance pattern leads to stands of multiple cohorts, 

which may or may not include intolerant species in the 

younger cohorts depending on the severity of the fire, seed 
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sources, etc. The frequency and severity of these 

non-stand-replacing fires can have a substantial influence 

on the composition and structure associated with the 

development of these forest stands (Habeck 197 0, Antos and 

Habeck 1981, Fischer and Bradley 1987, Oliver and Larson 

1990). 

In addition to fire as a disturbance agent, there are 

numerous insects and diseases that can substantially or 

subtly alter stand development, such as mountain pine 

beetle, Douglas-fir beetles, root rots, and the introduced 

white pine blister rust (Hagle and others 1989, Hagle and 

Byler 1993) . 

All these agents create the possibility for new cohorts 

to become established, grow, and respond to the changing 

competitive conditions that result. This leads to 

relatively complex stand age and composition structures 

(Oliver and Larson 1990). 

The review above illustrates the abundance of 

qualitative description and definitition that has been 

applied to old-growth. While there has been fewer efforts 

to quantitatively describe and classify old-growth (Spies 

and Franklin 1991, Bingham and Sawywer 1991, Robertson 1992, 

Green and others 1992). The use of discriminant analysis 

has been used in a number of these studies to achieve the 

quantification of old-growth classification and description. 
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Thomas and others (1988) point out the importance of 

developing old growth definitions that are specific for all 

forest types. 

Discriminant analysis assumes that the objects can be 

correctly classified initially and then the resulting 

discriminant function can be used to assign unknown 

observations to the proper group (Lachenbrch 1975). It can 

also be used to identify or describe attributes other than 

the ones used to assign them to groups (Klecka 1980). 

Discriminant analysis provides an objective method to 

evaluate the usefulness of a wide range of attributes, 

individually and collectively for the process of 

identification. 



STUDY OBJECTIVES 

The primary purpose of the study was to determine what 

quantitative ecological characteristics (structural, 

functional, compositional) are most effective in 

discriminating between the qualitative forest classes of 

Old Forest multi-strata (OFMS - old-growth) and all other 

stages (NonOFMS). 

Mesic habitat types in the lower Clark Fork zone 

(Appendix A.), which very closely approximates the M333 

province of Bailey's ecoregions (Bailey and others 1994) as 

modified by McNab and Avers (1994), were investigated for 

the following forest cover types- western larch, 

Douglas-fir, grand fir, Engelmann spruce, western white pine 

or subalpine fir. 

Discriminant analysis can be used for either 

classification purposes or descriptive purposes (Klecka 

1980). This study took advantage of both of these aspects 

of the technique. 

The following are secondary objectives of the study: 

a) Compare the results of the best discriminant model 

with the minimum criteria definition developed by Green and 

14 
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others (1992) for the Northern Region of the Forest Service 

and with other generic definitions that have been asserted. 

b) Develop a methodology for refining old-growth 

(OFMS) definitions that may be applicable to the other 

old-growth types throughout the Northern Region. 

The ecological characteristics available for use are 

limited to those collected for ECODATA exams for the 

Northern Region of the U.S. Forest Service (Jensen and 

others 1992). This was done for two reasons: first, there 

is an existing database in place from which to draw upon and 

secondly, it is the database that is being used for 

analyzing data by O'Hara and others (1996) for the Interior 

Columbia River Basin Project, of which this is a part. 



METHODOLOGY 

The methodology and analysis described below is loosely 

patterned after the studies conducted by Spies and Franklin 

(1991) in western Oregon and Washington, Bingham and Sawyer 

(1991) in northern California, and Robertson in Colorado 

(1992). These investigators sampled stands and assigned 

them to three age-classes labeled, young, mature and 

old-growth. Then they conducted stepwise discriminant 

analyses to identify ecological variables that provided the 

best multi-variate for distinguishing between these 

age-classes. The present study only has two age-groupings, 

Old Forest multi-strata (OFMS = old-growth) versus a group 

that includes stem exclusion, understory reinitiation and 

young forest multi-strata, (NonOFMS). A separate study is 

examining the differentiation of these structural classes. 

This study will use discriminant analysis with the author 

selecting the variables rather than in a stepwise fashion. 

The data to be analyzed in this study are from the 

Northern Region ECODATA database. There are several sources 

of variation using this data set; multiple variations in the 

plot configuration; long periods of time over which the data 

has been collected; many different crews collecting the 

data; many different types of data could be collected. To 
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minimize this variation the screening process below will be 

used. 

1) The exam has been completed since 1988. 

2) The stand habitat type falls into habitat type 

groups four, five and seven (Appendix A.) defined for the 

"lower Clark Fork" zone of the Northern Region (Applegate 

and others unpublished). The habitat types (Pfister and 

others 1977, Cooper and others 1987) include the western 

redcedar, western hemlock series and the mesic types of the 

grand fir and subalpine fir series. It represents a 

combination of the groups identified by Green and others 

(1992) for northern Idaho old-growth and for western Montana 

old-growth. The modification was made in recognition of the 

artificial (ecologically) nature of the state lines as a 

boundary. 

3) The sample ECODATA plots had to have a minimum of: 

General Form (GF), which has the plot identification number, 

general site data, (such as slope, aspect, elevation, 

habitat type), and summary vegetation data; Tree Data (TD), 

which has detailed information about the trees on the plot 

i.e. species, diameter at breast height (dbh), height, 

damage agent, age etc.; Location Linkage (LL) which has the 

location information i.e. aerial photo it is located on, 

latitude and longitude, etc. A Down Wood (DW) was 

desirable, but not required. It has data from line 
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transects taken on the plot for duff depth, woody debris by 

size classes and decay classes, etc. (Jensen and others 

1992) 

4) The stands exist within Lolo N.F., Flathead N.F., 

Kootenai N.F., Idaho Panhandle N.F. and the Clearwater N.F. 

5) The sampling must have included the recording of dead 

trees if present. 

6) The stands exist within the Province M333: 

Northern Rocky Mountain Forest - Steppe - Coniferous Forest 

- Alpine Meadow (McNab and Avers 1994). 

7) The Cover Type (Eyre 1980) had to be one of the 

following: western redcedar, western hemlock, western larch, 

Douglas-fir, grand fir, Engelmann spruce, western white pine 

or subalpine fir. 

8) Stands with evidence of significant logging will 

be dropped to avoid the variation this treatment might 

induce. 

9) Plots without tree age data were dropped, or that 

did not have ages from a variety of size classes. 

The ECODATA (Jensen and others 1992) plot is normally a 

tenth-acre (0.04 ha) fixed plot. A variable plot sampling 

of certain tree components (live and dead) greater than five 

inches (12.7 cm) dbh is sometimes used. Snags are a 

component of forests that are generally few in number 

compared to the live trees and therefore are not sampled 



19 

very well by a system designed to sample live trees. 

Therefore many of the plots used a combination of the 

tenth-acre (0.04 ha) macroplot and a small BAF variable plot 

(5 or 10) to sample the dead trees greater than five inches. 

The less than 5 inch (12.5 cm) tree components are sampled 

on a fixed plot. The fixed plot can vary in size from the 

tenth-acre macroplot to some fraction of that macroplot. In 

the data set used for this analysis it varied from the full 

macroplot, to one-tenth of the tenth acre (or l/100th ac or 

.004 ha). On one set of the plots the variable plot 

sampling technique using a Basal Area Factor (BAF) was used 

in conjunction with a fixed hundreth-acre plot for the 

understory trees. Appendix C. displays all the plots and 

their respective plot sizes for sampling. The variety of 

sample plot configurations introduce an element of variation 

that is undesirable but had to be tolerated. 

Tree age was recorded as the actual age. It was 

usually collected on one tree per diameter class, however 

not always. 

The habitat type is sampled using the tenth-acre (0.04 

ha) macroplot (Pfister and others 1977 and Cooper and others 

1987). The coarse woody debris was sampled with a set of 

fuel transects (from 4 to 10 per macroplot) (Brown 1974). 

After the plots were screened to identify which could 

be used for the study they were separated into two groups: 
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a test set and an independent validation set. There were 58 

plots in the non-old forest multi-strata (NonOFMS) set. 

Thirty-eight were assigned to the test set and 20 to the 

validation set. The old forest multi-strata (OFMS) only had 

a total of 2 6 plots available 10 were put in the validation 

set and 16 in the test set. 

Old-growth is a stage of forest development typically 

characterized by a relatively high degree of heterogeneity 

within a stand. The northern Rocky Mountains have a high 

degree of variation in environment because of changes in 

slope, aspect, elevation, soil type and changes in 

microclimate. Robertson (1992), in his analysis of 

spruce-fir and lodgepole pine old-growth in Colorado 

discusses the importance of trying to reduce this 

heterogeneity when analyzing old-growth forests. In the 

northern Rocky Mountains, groups of similar habitat types 

have been used to stratify the sites and reduce 

environmental variation within sample groups. 

The environmental variation has been reduced for this 

study by using the old-growth types which are a combination 

of habitat type groups and cover type developed for the 

Northern Region (Green and others 1992). The old growth 

type number is four for both western Montana and north Idaho 

zones of the region. The old growth types include the more 

mesic habitat types of the grand fir, alpine fir and western 
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redcedar series. The forest types included are western 

larch, Douglas-fir, grand fir, subalpine fir, or redcedar in 

western Montana whereas north Idaho separates redcedar into 

its own group and includes western white pine. Table 4. 

displays the two types and the old growth characteristics. 

This study ignored state line boundaries and used the 

M333 province (McNab and Avers 1994) as a geographic area of 

relatively uniform climate and thus potential vegetation. 

Western redcedar and western hemlock were excluded from the 

cover types, as they behave considerably different from the 

other cover types, given their extreme shade tolerance, thin 

bark and the role of fire in their development is much 

reduced. The western white pine type was included in the 

analysis as in the north Idaho definition. The only 

significant difference, in the criteria, between these 

definitions is the age break, 150 years for Idaho and 180 

for Montana. This was based on the generally higher 

potential productivity in northern Idaho than in western 

Montana and therefore a longer period of time was needed to 

achieve the other characteristics. 

The data was divided into 2 groups: Old Forest 

multi-strata (OFMS) and Non Old Forest multi-strata 

(NonOFMS). It has been recognized by other authors (Spies 

and Franklin 1991, Kaufman and others 1992) that this is an 

artificial division of a continuous system. However, it is 
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needed to describe and define these classes for the purposes 

of inventory and management. 

To use discriminant analysis the data must be assigned 

to groups a priori. The separation between NonOFMS and OFMS 

was taken from the age definition in Green and others (1992) 

for western Montana (180 years). The category it would 

have been in if the north Idaho age break (150 years) had 

been the criterion used was also recorded. Age was chosen 

because it is strongly correlated with the characteristics 

of old-growth (Franklin and other 1981). 

I did not want to use any other minimum criteria, such 

as minimum dbh of a certain size, as it would preclude the 

use of that variable in the discriminant analysis. The use 

of additional criteria would have resulted in the pitfalls 

identified by Pfister (1987) and Spies and Franklin (1991), 

associated with multiple minimums. In making the decision 

to only use age in defining the two classes, it was 

recognized that there would likely be misclassification 

errors (Thomas and others 1988), that would not be real 

errors based on the professional evaluation of the stand 

attributes and the assignment to one of the classes. 

The use of a single inflexible criterion when classifying a 

continuum will cause some degree of error identification 

(McNicoll 1994). This method of placing stands into groups 

was considered necessary because existing data were used and 
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the sites were not visited to allow the qualitative 

assignment to groups. Given this situation, the plots were 

reviewed and evaluated after the final discriminant modeling 

runs were made to assess the affects of using the age 

criteria only. 

The age selected by Green and others (1992) 

approximates the time when long-lived serai species of this 

old-growth type (western larch, Douglas-fir, western white 

pine) show signs of declining condition such as stem rots, 

dead or broken tops and other characteristics of "old-age". 

Older age also permits a greater likelihood that the set of 

agents, i.e. fire, insects, disease, competition or the 

combination of several or all of them, facilitate the 

development of additional cohorts. The age of the stand 

was determined by examining the age of the oldest cohort 

evident in the stand. 

Many of the variables analyzed (basal areas, 

trees/acre, etc.) are taken from the summary tables 

generated by the TREE program in ECOPAC (Jensen and others 

1992). Some were extracted directly from the ECODATA 

database or manipulated with PRESENT (1985) software macros 

(basal area of top damaged trees, stem defect, cover of 

trees by size class, etc.). The number of cohorts was 

determined by reviewing the age data summarized by the TREE 
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output (Live Mean Age Table). The following rules were used 

as guidelines for assigning a cohort: 

a) To assign a cohort to the intolerant category there 

had to be one of the following species present: western 

larch, ponderosa pine, lodgepole pine, Douglas-fir or 

western white pine. 

b) In reviewing the different ages, intolerants were 

generally assigned to a separate cohort if there was more 

than 3 0 years age difference. Sometimes there was a 

progression of ages that appeared to be part of the same 

cohort and a second cohort would not be identified even if 

the 3 0 year span was exceeded. 

c) Ages of the tolerant species between intolerant 

cohorts were ignored if the intolerants were closer than 

80-100 years. 

d) When spans longer than 80-100 years occurred or 

there was only one or no intolerant cohort present, I looked 

for "waves" of ages in the tolerant species. These "waves" 

could be 50-60 years wide. Western redcedar could have even 

longer "waves" because of its ability to continue to 

establish itself in very low light conditions. 

Given the continuous nature of forest development and 

the myriad of forces operating that cause it to follow 

different pathways, I did not expect to develop a 

discriminant function that would separate stands perfectly. 
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I expected some stands would have a combination of 

characteristics that would cause them to be classified OFMS 

or NonOFMS incorrectly according to the age. 



CALCULATIONS AND ANALYSIS 

To differentiate OFMS from NonOFMS, my dependent 

variables, the list of independent variables (Table 1) were 

developed. The list was based on a review of the literature 

and my own experience indicating variables that might serve 

as ecologically meaningful in separating old forests from 

younger stages of forest development (Spies and Franklin 

1991, Bingham and Sawyer 1991, Popp and others 1992). 

The median and quartiles for each of the interval data 

variables were calculated and displayed in box plots using 

the SYSTAT software (Wilkinson 1989) statistical package 

(Appendix B.). The boxplots were reviewed to identify the 

independent variables that appeared to be different enough 

to warrant testing in a discriminant function. 

Using boxplots (Appendix B.), means, and standard 

deviations (Appendix D.), the variables in Table 3. were 

identified as worth testing in the discriminant analysis. 

The variables were selected by comparing the alignment of 

the quartiles visually and identifying the variables that 

had less than approximately 50% overlap. 

There were five parameters reviewed for each run to 

assess the performance of the discriminant function: Wilks 

Lamba, which is an inverse multivariate measure of group 

26 
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differences ranging from 0 to 1 (Klecka 1980); Canonical 

Correlation, which is a measure of association that 

summarizes the degree of relatedness between the groups and 

the discriminant function (Klecka 1980); Correct 

Classification Rate, which is the percentage of the time the 

data is assigned to the correct group; the Probability-

associated with the overall function, which indicates the 

likelihood there is statistical significance; the 

F-statistic which is a test of group differences, and is 

compared to standardized tables. 

The resulting discriminant model was validated against 

the independent set of stands randomly selected. 

Table 1. Variables Considered in Discriminant Analyses 

OVERSTORY (> 5 in dbh) 

BA TOT Total basal area 
TPA GT5 Tree density - trees per acre 
BA TOT21 Basal Area trees > 21" dbh 
BA 21 N BA TOT21 divided by BA TOT 
BA GT19 Basal Area trees > 19" dbh 
BA GT17 Basal Area trees > 17" dbh 
BA GT15 Basal Area trees > 15" dbh 
BA TOL21 Basal Area of tolerant trees > 21" 
BA INT21 Basal Area of intolerants > 21" dbh 
DBH GT5 Tree dbh mean 
CVDBH Tree dbh Coefficient of Variation 
BA INTOL Intolerants basal area 
BA TOL Shade tolerant basal area 
CVHT Heicjht Coefficient of Variation 
BA TOP Top damaged trees BA, all species 
BA STEM Stem defect BA, all species 
DECAY Sum of BA TOP AND BA.. STEM 
DECAY N DECAY divided by BA_TOT 
COHO INT # of cohorts, intolerants 
COHO TOT # of cohorts, total 
COHO SUM Sum of COHO INT and COHO TOT 
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TREE COVER BY SIZE CLASS 

COV SEED Cover of seedlings (%) 
COV SAP Cover of saplincrs (%) 
COV POLE Cover of poles (%) 
COV MED Cover of medium (%) 
COV LG Cover of large (%) 
COV VLG Cover of very large (%) 
COV TOT Cover of all size classes (%) 
YOUNG Sum of COV SEED and COV SAP 
YOUNGX Product of 
BIG Sum of cover of large and v.large 

trees 
YOBIG Sum of YOUNG and BIG 
YOBIGX Product of YOUNG+1 and BIG+1 
YOBMRATO YOBIG divided by COV MED+1 
YOBXMRAT YOBIGX divided by COV MED+1 

UNDERSTORY 

TPA LT5 Total seed/sapling density < 5" dbh 
MOSS COV Moss cover (%) 
FORB COV Herbaceous cover (%) 
S TOT Shrub cover (%) - all heights 
FERN COV Fern cover (%) 

DEAD COMPONENTS 

TPA DTOT Total # of snags/ac 
DED GT10 Total # of snags/ac > 10" 
DED GT18 Total # of snags/ac > 18" 
BA DTOT Total dead basal are 
BA DTOL Basal area of dead tolerant species 
BA DINT Basal area of dead intolerant species 
SNAG DBH Average dbh of snags 
SNAG CON Average condition class of snags 
DUFF LIT Duff and litter thickness 
TOT 1000 Total tonnage > 3" diameter material 
ROT 1000 Tonnage of rotten >3" dia. material 
SND 1000 Tonnage of sound >3" dia. material 
TOT WOOD Total tonnage of material > 1/4" 
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RESULTS AND DISCUSSION 

CLASSIFICATION RESULTS 

Comparison of Model Runs 

Initial runs tested used structural variables that were 

indicative of an old forest such as top damage, stem damage, 

the basal area of trees greater than 21 inches (53 cm), 

average dbh of snags, average dbh of live trees greater than 

five inches, and combinations of these variables. The 

resulting function from run 15 gave a fairly good 

classification rate, 81.5% (Table 2). 

Following the intial runs two groups of variables were 

tested. The first group relates to the number of strata, or 

the canopy structure, of the stand. They are the variables 

related to canopy cover by size classes, the tree cover by 

size class variables in Table 1. Several combinations of 

size classes showed good potential from the box plots. Run 

23A illustrates the strongest of these variables, the sum of 

the seedling/sapling trees with the large trees (YOBIG). 

Table 2 shows the improvement of the canonical correlation 

and Wilks Lambda values. The partial F-value was the 

largest for a variable to that point in the analysis. 

The second group of variables tested related to the 

number of cohorts in a stand. I counted the number of shade 

intolerant cohorts (COHO_INT), the total number of cohorts 
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(COHO_TOT) and the sum of the two variables (COHO_SUM) in 

Table 3. All three variables proved to be powerful 

discriminators with the sum of the intolerant cohorts and 

the total number of cohorts (COHO_SUM) being the most 

powerful of all the variables tested. 

Table 2. Discriminant Analysis Evaluation Parameters. 

Run 
No. 

Wilk's 
Lambda 

Canon 
Correl. 

Correct 
Classif. 

F-Stat Variable 
Used 

15a .641 .599 81.5% 6.85 Decay_N 
Snag_DBH 
DBH_GT5 
BA Tot21 

23a .546 .674 85.0% 7 .98 Decay_N 
Snag DBH 
BA_Tot21 
YoBig 

26 .384 .785 92.6% 12 . 55 Decay_N 
Snag DBH 
DBH GT5 
BA_Tot21 
YoBig 
CohoSum 

35 .404 .772 96 .3% 14.15 Snag DBH 
DBH_GT5 
BA_Tot21 
YoBig 
CohoSum 

36 .419 .762 94 .4% 16.96 DBH GT5 
BA_Tot21 
YoBig 
CohoSum 

37 .423 .760 94 .4% 22 .78 BA Tot21 
YoBig 
CohoSum 

The discriminant function that appeared to provide the 

best overall performance, based on the parameters above, was 
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run 35 (Table 2), which had 96% correct classification rate. 

Run 3 5 was tested without the variables SNAG_DBH and DBH_GT5 

and retained a 94% classification rate. This discriminant 

model, number 37, was identified as the most desirable for 

classification purposes (Figure 1.), since it achieves a 

high classification rate with only three variables 

(COHO_SUM, YOBIG, BA_T0T21), making it more efficient. The 

resulting discriminant function is: 

f = -44.68 + .737(Coho_Sum) + .405(YoBig) + .379(BA_Tot21) 

Where f denotes the discriminant scores for each case and 

the variable name represents the value for that case. If 

the value is greater than zero then it is assigned to old 

forest multi-strata and if less than zero it is non-old 

forest multi-strata. 

Group Assignment (ROWS) by predicted (COLUMNS) 

FREQUENCIES 

NonOFMS OFMS TOTAL 

NonOFMS 36 2 38 

OFMS 1 15 16 

TOTAL 37 17 54 

Figure 1. Classification of Structural Classes from plots 
used to build Discriminant Model. 

Overall classification success rate: 94.4% 
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Figure 2 illustrates the array of the classified plots and 

their relative position to each other. The graph 

illustrates the continuous nature of the stands. 

The final model was run on the independent data set 

with the resulting classification rate of 90% in Figure 3. 
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Figure 3. Classification of Structural Classes from 
Independent Data Set. 

Overall classification success rate: 90% 
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Table 3. Variables Tested in Discriminant Runs. 

OVERSTORY (> 5 in dbh) 

BA TOT Total basal area 
BA TOT21 Basal Area trees > 21" dbh 
BA 21 N BA TOT21 divided by BA TOT 
BA GT19 Basal Area trees > 19" dbh 
BA GT17 Basal Area trees > 17" dbh 
BA GT15 Basal Area trees > 15" dbh 
BA TOL21 Basal Area of tolerant trees > 21" 
BA INT21 Basal Area of intolerants > 21" dbh 
DBH GT5 Tree dbh mean 
BA TOP Top damaged trees BA, all species 
BA STEM Stem defect BA, all species 
DECAY Sum of BA TOP AND BA STEM 
DECAY N DECAY divided by BA TOT 
COHO INT # of cohorts, intolerant species 
COHO TOT # of cohorts, total 
COHO SUM Sum of COHO INT and COHO TOT 

TREE COVER BY SIZE CLASS 

YOUNG Sum of COV SEED and COV SAP 
YOUNGX Product of 
BIG Sum of cover of large and v.large 

trees 
YOBIG Sum of YOUNG and BIG 
YOBIGX Product of YOUNG+1 and BIG+1 
YOBMRATO YOBIG divided bv COV MED+1 
YOBXMRAT YOBIGX divided by COV MED+1 

DEAD COMPONENTS 

SNAG DBH S Average dbh of snaqs 

Model Errors 

Review of the misclassified plots, including the three 

from the test set (used to develop the model) and the three 

from the independent data set, indicates three types of 

errors: 

a) Errors associated with the use of the western 

Montana age criterion of 180 years (Table 4). There were 

two of the six plots in this category. The age of the 
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oldest cohorts were 168 and 17 0 years, which means they 

would be considered old-growth using the Northern Region's, 

north Idaho age criterion of 150 years. However one of the 

two plots were located in Montana. Both of the plots had 

higher than average basal area for trees greater than 21 

inches (53 cm). Both plots were very near the average for 

canopy cover in the small and large size classes. For the 

cohort variable, they were near the average for NonOFMS 

stands. Therefore, these model "errors" are actually 

correctly classified and the mismatch can be attributed to 

the labeling methodology. It was recognized in the design 

of the study some of these apparent errors would be created, 

as discussed in the methods section. 

Table 4. Northern Region Old-growth Characteristics 

OG 
TYPE 

MIN 
AGE* 

MIN 
TP A* 

DBH 
VARIA 

% 
DEAD 
TOP 

DWOOD DECAY CANOPY 
LAYERS 

SNAGS STATE 

4 180 10>21" H 9 H 9 MLT 15 W.MT 
4 150 10 >2111 M 0-28 M 1-4 SNGL/-

MLT 
1-3 ID 

* - required criteria 

b) Errors associated with the labeling of OFMS by 

using age alone as a criterion. Two of the errors were 

similar to a) above except in the other direction. On these 
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plots the age criterion was easily exceeded (312 and 305 

years), however the amount of large trees was quite low (20 

(1.9 square meters) and 24 square feet (2.2 square meters) 

of basal area/ac. compared to 124 square feet (11.5 square 

meters) average for OFMS). The number of cohorts was less 

(4 versus an average of 5.8) for both plots and one was 

considerably low in the canopy cover by size class variable, 

the other was above the average. Evaluation of the data 

revealed them to both have remnant survivors from fairly 

severe fires and one was in the stem exclusion phase, while 

the other was in the understory reinitiation phase. 

Therefore, these are more "apparent" errors and the model 

accurately classified them when more than age was 

considered. 

c) The final two errors, after reviewing the plot data 

are true errors in classification. The data supported the 

original labels, though they are in the "gray zone" of 

assigning continuous phenomena into discrete classes. Their 

attributes are such that they overlap with the other class. 

This is evident when the probabilities associated with the 

assignment to a class are examined in Table 5. It reveals 

these two plots do not have a high likelihood of belonging 

to either group. 

The review of these "apparent errors" indicates the 

discriminant model performs better than the indicated 
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classification rate. The results are congruent with the 

prediction of such errors by using only age as the variable 

for creating the categories. 

Table 5. Discriminant Analysis Probabilities of Group 
Membership 

DIST(l) DIST(2) PROB(1) PROB(2) GROUP PREDICT 

CASE 73 1 .422 1.306 0.460 0 . 540 NonOFMS OFMS 
CASE 80 1 .529 1.786 0.605 0.395 OFMS NonOFMS 

DESCRIPTIVE RESULTS 

Processes 

The sum of intolerant and total number of cohorts 

variable (COHO_SUM), reflects the nature of the development 

of forests in the northern Rockies as a result of fire 

modifying the population dynamics in the stands. Generally, 

the longer a stand develops without a stand replacing fire 

the more cohorts can be expected to have developed as a 

result of mixed severity fires, insect outbreaks, or 

disease. Often these stands can be viewed as having 

progressed through two or more cycles of cohort 

establishment, depending on the severity of the fire. They 

may exhibit the characteristics of stand initiation, stem 
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exclusion or understory reinitiation, while retaining trees 

of the surviving cohort which affect the survival, growth, 

and development of the new cohort, examples of multi-cohort 

stands (Oliver and Larson 1990). 

Usually, the mixed severity fire disproportionately 

reduces the fire intolerant species (i.e. grand fir, spruce, 

hemlock, cedar, lodgepole). Many of these trees are shade 

tolerant resulting in significant shifts in species 

composition in the surviving stand. The amount of mortality 

in the overstory and the resulting amount of growing space 

available influences the species composition and subsequent 

growth and structure of the stand. All these factors 

contribute to the high degree of variation in what people 

commonly refer to as old-growth in the northern Rockies. 

The number of cohorts proved to be the most significant 

variable, whether looking at shade intolerant cohorts or at 

the total number of cohorts. Only 3 of the 26 OFMS stands 

did not have multiple cohorts of intolerant species. As 

mentioned above this indicates the important role of 

allogenic disturbances in the development of old forests in 

the northern Rockies, be it fire, insect outbreaks, weather 

or a combination of all of them. 
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Dead Components 

The results of this study indicated snag abundance 

sorted by size class was a relatively poor variable for 

separating old forest multi-strata (OFMS) from non-old 

forest multi-strata (NonOFMS), based on the boxplots, means, 

and standard deviations (Appendix B). This is in contrast 

to Spies and Franklin (1991) study on the west coast that 

found snag numbers and downed logs to be significant 

variables for discrimination. 

There are a couple of possible explanations for this 

difference between the west coast and northern rocky 

mountain old forests. First, given the frequency of mixed 

severity fires in these stands many of the snags may be 

periodically lost (and created) during these events. 

However past inventories done on the Lolo N.F. (Lolo N.F. 

unpublished, Missoula, MT) have shown greater numbers of 

larger snags in the older stands. Therefore, the second 

possible explanation has some merit: the occurrence of 

snags on an acre is relatively low compared to live trees, 

therefore the tenth-acre plot (used most frequently to 

sample snags in the study) in combination with only one plot 

per stand may have resulted in variation from sampling too 

great to detect any differences that may occur between the 

populations. 
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The average snag diameter (SNAG_DBH) variable had a 

partial-F value indicating it had some differentiating 

ability and that the OFMS condition has larger snags on the 

average than the NonOFMS stands. 

The down wood sampling is more reliable than the snags, 

since there were multiple transects taken on the plot. 

Unfortunately only 13 of the 16 OFMS plots and 23 of the 3 8 

NonOFMS plots were sampled and therefore were not used in 

the discriminant analysis. However examination of the 

boxplots indicated little promise for its use. The 

duff/litter depth, and the large (> 3 inch (7.6 cm) 

diameter) woody debris variables all had overlapping values 

between the OFMS and NonOFMS stands (Figure 4). The mixed 

severity fires periodically would tend to reduce the 

accumulation of organic matter that Spies and Franklin 

(1991) noted. It is important to recognize that Spies and 

Franklin chose stands in their sampling scheme that had no 

evidence of intermediate fires. In the northern Rockies it 

is hard to find such a stand. Fischer and Bradley's (1987) 

work summarized numerous fire and fuel loading studies and 

the down wood and duff depth data do not show any clearly 

discernible trend with stand age, as evidenced by the data 

reported for fire group 11. Bingham and Sawyer's (1991) 

work in northern California in old-growth 

Douglas-fir/hardwoods, which received significant effects 
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from low to moderate intensity fires, reported that the dead 

wood components have little to moderate discriminating 

ability because of the between and within stand variation. 

Harmon and others (1986) report that decay rates, 

environment, disturbance history and topography affect the 

accumulation and distribution of coarse woody debris. They 

often come in waves as a result of a disturbance. They can 

also disappear in waves (a "double burn" event). These 

factors interact and influence stand development regardless 

of age and help explain why these features can be similar 

regardless of stage of development. 
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Overstory 

The overstory variables have been grouped into density, 

dimension, decadence and cohort variables for the following 

discussion. 

Canopy Structure 

The arrangement of canopy cover into various layers, 

proved to be important. The YOBIG variable, the significant 

layers are the seedling and saplings combined with the large 

and very large size classes. These indicate trees becoming 

established and competing in response to available growing 

space provided by a disturbance of intermediate severity or 

the opening up of the canopy from autogenic processes. 

Density 

Review and analysis of the data indicates that large 

trees are important variables in classifying and describing 

old forests multi-strata. The basal area of trees greater 

than 21 inches (53 cm) was the best density/size variable 

for discrimination, however using basal area greater than 19 

inches (48 cm) had very similar discriminatory power. This 

indicates the continuous nature of this characteristic. The 

evaluation of the greater than 17 inch (43 cm) and greater 

than 15 inch (38 cm) diameter classes showed considerable 

drops in discriminatory power thus validating the use of 21 
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inches (53 cm) as a reasonable break to use. This confirms 

that old forests have relatively large trees, although there 

were a few stands that were classified as old forests that 

had zero basal area in this category. Conversely there are 

some stands that can achieve a large size and not be very 

old. This is observed in some of the plots having quite 

large trees for their age, plot FS011607912E018 had 106 

square feet (9.8 square meters) of BA greater than 21" (53 

cm) dbh with 13 0 year old trees. 

Dimension 

The examination of the coefficient of variation of 

height and diameter of the trees in the two groups showed no 

discriminating power. This was expected because the non-old 

forest multi-strata (NonOFMS) class included many young 

multi-strata (YFMS) stands and understory reinitiation 

stands that have high variation in diameters and height. 

Spies and Franklin (1991) identify variation of diameters as 

important however their study did not include multi cohort 

stands, thus removing the type of variation that YFMS stands 

can introduce. 

Decadence 

The amount of decay occurring in the old forest 

multi-strata stands (OFMS) was generally more abundant than 

the non-old forest multi-strata (NonOFMS) stands, however 
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the variability within the two populations sampled makes it 

less valuable as a criterion for differentiation. There are 

many processes that can initiate decay in trees, (weather, 

fire, etc.) and these can operate on young stands as well as 

old, thus its lower reliability for differentiation. 

However the generality that OFMS will tend to have more 

decadence is borne out by the boxplots Appendix B. 

Comparison with Generic Definitions 

The literature has many generic different descriptions, 

criteria and definitions outlined for old-growth (Thomas and 

others 1988, Hunter 1989, Franklin and Spies 1991b, Moir 

1992), Many of these have a lot of similarity. Comparisons 

of the results of this study to the most commonly used 

characteristics in the literature indicate the following: 

1) Age - Are the dominant trees close to their average 

life expectancy or are they significantly older than the 

average time interval between natural disturbances? 

Lethal or stand replacement average fire return 

intervals of these mesic types in various studies have been: 

119, 13 8, 150, 197, 203 and 216 years with the range being 

from 18-452 years (Zack and Morgan unpublished). In this 

study the youngest cohort classified as OFMS was 167 years. 

Therefore the stands are sometimes older and sometimes 
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younger than the average lethal fire return interval. But 

they are considerably older than the intermediate fire 

return intervals, which are generally 100 years or less 

(Zack and Morgan unpublished). 

The most common species in this oldest cohort, 

Douglas-fir, western larch, and western white pine can be 

quite long lived (maximum of 500-700 years old). Their 

average life expectancy is determined by the next stand 

replacement fire or insect or disease outbreak and 

consequently is much shorter than the maximum. Therefore 

the old forests from this classification are generally 

greater than the average time interval between stand 

replacement fires but are considerably less than their 

potential life expectancy. 

2) Growth Rate - Is net annual growth close to zero and are 

biomass accumulations stable over long periods? 

This was not measured directly in this study. The 

oldest cohorts were well past the age when stands are 

expected to have culminated mean annual growth. However the 

stands have numerous cohorts, many of which include shade 

intolerant species that require substantial amounts of light 

and growing space to thrive and compete, which indicates 

periods of growth that would have been substantially 

positive. They likely have had and may have again (after an 

intermediate disturbance) a period of time when the annual 
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increment is positive for several decades before the site is 

again fully occupied and mortality again offsets growth. 

This fluctuating pattern of growth does not fit the image 

the growth rate descriptor above portrays of a stand that 

exhibits little change in growth over long periods. 

These intermediate disturbances also cause similar 

fluctuations in total biomass. Duff and woody debris are 

consumed in a fire, or may increase with a windstorm that 

blows down part of the stand. Therefore total biomass 

fluctuates also. 

3) Decadence - Is there evidence of decay in the 

stand? 

This study indicates there usually is but younger 

classes can have as much and occasionally more, though the 

general rule is applicable. 

4) Climax - Is the species composition of old-growth 

relatively stable; an increase in the number of species, 

particularly tolerant species compared to earlier stages of 

development? An analysis looking specifically at how 

composition varied was not done. However, attempts to use 

variables that grouped tolerant and intolerant species had 

no value in the analysis. Only 15% of the OFMS stands were 

tolerant species cover types wheras 32% of the NonOFMS 

stands were tolerant species which indicates little 
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relationship to climax or even dominance by tolerant 

species. 

It is difficult to assess "relatively stable". How 

long a time period does this encompass? What percentage of 

a stand's history is involved? Except for the stand 

initiation period, stands are relatively stable in 

composition throughout their development unless some 

allogenic disturbance occurs. If processes are autogenic 

then any change in composition, if it does occur, must be 

measured gradually over decades. These OFMS stands are 

likely "relatively stable" until the next disturbance. 

5) Structure - The canopy layering by size class is 

more complex on old forest multi-strata (OFMS) than non-old 

forest multi-strata (NonOFMS). The variation in dbh and 

height was not a significant variable. This is due to the 

variability in young forest multi-strata stands. Stand 

initiation and stem exclusion are much more uniform (Latham 

unpublished). 

None of the generic definitions discuss intermediate 

severity disturbances having a role defining old-growth. 

The discussion always relates to gap processes from 

individual tree mortality. Oliver and Larson (1990) note 

that multi-cohort stands have structural attributes like 

old-growth but are created by these intermediate 

disturbances. 
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The use of definitions of old-growth that exclude 

intermediate disturbances and/or use multiple minimum 

criteria will indicate only small amounts of old-growth in 

the Northern Rocky Mountains. If these kinds of definitions 

are used then the results of this study are unrelated to 

old-growth because almost all of the old forest stands have 

evidence of intermediate disturbances in their development. 

However the results of this study indicate there is a 

recognizable structural class in the northern Rocky 

Mountains called old forest multi-strata (which may or may 

not also meet the socially defined term old-growth). It is 

distinct, and a component of current landscapes which is 

structurally complex with relatively old, relatively big 

trees. 

Comparison with Northern Region Definition 

When the discriminant analysis results are compared to 

the Northern Region old-growth definitions (Green and others 

1992), the same conclusions are reached as Pfister (1987) 

and Franklin and Spies (1991b). Namely, a combination of 

minimum criteria result in excluding stands that are really 

old growth except they don't meet one or more of the 

minimums. It is less of a problem for the northern region 

than the other studies since they only had two criteria to 
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meet, a minimum age and minimum number of trees per acre 

greater than 21 inches dbh (53 cm). In addition, Green and 

others (1992) indicate that assignment to old growth should 

not be based strictly on the numbers because there is so 

much variation in old-growth stand structures. 

The discriminant analysis confirms the use of 21 inches 

dbh (53 cm) as a reasonable value, however there were cases 

that did not have any trees greater than 21 inches (53 cm) 

that were old forest multi-strata based on the other 

criteria and create errors of omission if the dbh is used as 

a minimum. The results demonstrate that a minimum age 

criterion will result in some old forest multi-strata stands 

not being identified as such thus creating errors of 

omission when classifying. 

The use of discriminant analysis avoids the problem of 

minimums, since it uses the combination of the model 

variables to make the assignment to a class. One variable 

can be very low but the other variables compensate, allowing 

it to be assigned to the class even though it did not meet 

the minimum criteria. The user has the added benefit of 

reviewing the euclidean distance or probability the plot has 

of being assigned to a class. Probabilities that are very 

close together are an indication of a stand that is on the 

edge of the two classes, thereby helping the user to see the 

continuous nature of forest conditions (Appendix E). This 
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feature accomplishes the stated desire of Green and others 

(1992) that strict number minimums should not be applied. 

The other descriptive variables (Table 4.) identified 

by Green and others (1992) are generally applicable, but 

have a great deal of variation which makes them less 

reliable as distinguishing characteristics, which is what 

they concluded. 

Data Limitations 

There are several shortcomings in the data used in this 

study and suggestions for improvement of similar work in the 

future to be noted. 

1) The stands had only one plot in it chosen to 

be representative of the stand. This precludes the 

opportunity to examine and describe the within stand 

variation, especially attributes that have a clumpy 

distribution. 

2) The plots were collected over the span of 5 

years and by different crews with other objectives in mind. 

Therefore, the potential for inconsistencies being 

introduced exist. Point three below highlights one of 

these. 

3) Snags were sampled with different methods. 

Some of the plots used the tenth-acre macro plot, which is 
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too small to adequately sample a population with the low 

density and variable distribution generally found with 

snags. Some of the plots used two different basal area 

factors (BAF), one for live trees and a smaller one (usually 

a five) for the snags. The existence of only one plot per 

stand combines to make the sampling of this attribute 

decidedly lacking. 

4) The lack of dead biomass information on all 

the plots precluded a complete evaluation of its role in 

classifying old forests. 

5) A nested plot sampling design would have 

improved the usefulness of the data, as Spies and Franklin 

(1991) and Bingham and Sawyer (1991) used. 

6) More complete age sampling would be desirable. 

Some of the plots had less than desired amounts of age data. 

The age sampling should attempt to identify all potential 

age cohorts. 

7) Collection and documentation of disturbance 

history data and the likely agents of change would be 

helpful in more completely documenting our understanding of 

old forest dynamics. 

8) Collection of enough plots in the various 

cover types to examine whether there are differences between 

the types that were grouped in this study. 
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9) Possibly the most important suggestion would 

be to use one or more people knowledgable of the O'Hara and 

others (1996) system to make assignments to the classes in 

the field, based on their evaluation. This would permit the 

use of oldest cohort age as a variable in the discriminant 

analysis, which could not be because it was used to create 

the initial groups. I would expect it to be a significant 

variable in a discriminant analysis since it was chosen as 

the best single variable to make assignments to groups. 

Therefore it would be desirable to have it included in the 

discriminant analysis. 



CONCLUSIONS 

I identified three ecological characteristics, besides 

age, that were most effective in quantitatively separating 

old forest multi-strata (OFMS) from non-old forest 

multi-strata (NonOFMS) stands: a) the sum of the shade 

intolerant cohorts and the total number of cohorts for the 

stand (COHO_SUM), b) the sum of the canopy cover of small 

and large trees, c) the basal area of trees greater than 21 

inches (53 cm). 

The results indicate the use of discriminant analysis 

for an ecogeographic region in this study was successful as 

a tool for identifying old forest multi-strata stands. No 

problems were identified that would prevent it from being 

applied to other old forest types within the northern Rocky 

Mountains. Its application for classification of structural 

class and description of old forests is warranted. 

The results also indicate the Northern Region's current 

definition for old growth type 4 (Green and others, 1992) 

has some errors of omission because of the dual criteria of 

minimum age and minimum trees per acre greater than 21 

inches (53 cm). Therefore the Northern Region should 

consider revising their current definitions using this 

methodolgy. 
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Lastly, the role of non-stand replacing disturbances, 

as a process, in the development of structure and 

composition of old forests in the northern Rocky Mountains 

is vital to understanding its creation and maintenance and 

needs to be recognized for the management implications of 

this forest community. 



MANAGEMENT IMPLICATIONS 

Discriminant analysis for refinement of old forest 

(Old-growth) definitions, in place of minimum criteria, 

offers opportunities to reduce the errors of omission that 

are otherwise common with minimum criteria (Pfister 1987, 

Franklin and Spies 1991b). The result would be an improved 

inventory of old forests. 

With a better understanding of the role of disturbances 

in creating and maintaining OFMS, managers can better plan 

how to maintain it as part of the landscape in the short and 

long term. The role of light to moderate severity fires in 

conjunction with other agents of change within these forest 

types is crucial to the future maintenance and development 

of this ecosystem and thus the health of the whole 

landscape. Old-growth is not something that should have a 

line placed around it and preserved and protected for the 

long term (Agee 1991). It is a dynamic system that exists 

in a dynamic landscape and will need to be managed in that 

context. 

I believe it is important that managers start testing 

different ways of facilitating the development of old 

forests so future generations can learn from our attempts as 

to what worked and what did not work. The understanding of 

how old forest multi-strata (OFMS) stands are created and 
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maintained will allow managers to identify stands that are 

in the stem exclusion, understory reinitiation or young 

multi-strata forest classes that can be managed so they 

develop into OFMS. I believe this can be accomplished in 

the matter of a few to several decades in the northern Rocky 

Mountains. 

Given the dynamic nature of forest development in the 

northern Rocky Mountains, it is important to recognize the 

multiple pathways and processes by which the changes are 

accomplished. Oliver and Larson (1990) describe these 

pathways and the influence each layer has on the other 

through competition for resources and the various ways the 

subsequent stand may develop. It behooves managers to 

provide for treatment prescriptions that will facilitate the 

development of OFMS from a variety of paths rather than 

focusing on a set of attributes that it must have; we must 

not get tunnel vision. 

One of the reasons the term "old-growth" has so many 

variations in its definition is that the perspective of the 

describer has caused them to focus on one portion of it, as 

illustrated by the story of the five blind men holding on to 

different parts of the elephant and then describing the 

animal based on that part. In the situation of the OFMS or 

old-growth we are not describing a single organism, but an 

ecosystem that may have more or less of a particular part. 
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Is an elephant without a tail no longer an elephant? Is an 

old forest multi-strata stand with relatively few snags or 

relatively small amounts of coarse woody debris still OFMS? 

I believe the answer is yes. However, we need to recognize 

that there are OFMS stands that represent the other end of 

the spectrum as well, having an abundance of these 

attributes. Therefore, managers need to provide for the 

full breadth of this spectrum. 
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APPENDIX A. Habitat Type Groups, 

HABITAT GROUP 4 - MODERATELY WARM and MOIST 

These are warm and moist habitats occurring along the lower slopes and valley bottoms. 
The group is highly diverse and nearly all the conifer species in the area can occurr on 
these types. Understory vegetation may be dominated by a wide variety of species., 

Fire free interval is wide from 50 years on the drier types to over 200 years on the more 
moist types characterizes these types. Typical fires are minor ground fires that create a 
mosaic within the stand. On the other extreme with drying, a complete stand replacement 
fire will occur. Many times this is the result of a fire burning from an adjacent and drier 
type. 

Fire exclusion on these sites has changed them very little except to reduce the number of 
acres in early succession types. Many species do well on these sites and may thrive for 
centuries without disturbance. Thuja plicata is the most notable example. 

Habitat Types comprising Habitat Group 4 

HABITAT TYPE PHASE CODE FIRE GROUP 
MT ID 

Abies grandis/Asarum caudatum 516 7 
Asarum caudatum 517 7 

Menziesia ferruginea 518 7 

Taxus brevifolia 519 7 

Abies grandis/ Clintonia uniflora 520 11 7 
Clintonia uniflora 521 11 7 

Aralia nudicaulis 522 11 

Physocarpus malvaceus 524 11 7 

Menziesia ferruginea 525 11 7 

Taxus brevifolia 526 11 7 

Abies grandis/ Senecio trangularis 529 7 
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HABITAT GROUP 5 - MODERATELY COOL and MOIST 

These are moderately cool and moist sites. They contain many species, including Thuja 
plicata, western Tsuga heterophylla, Pseudotsuga menziesii, Picea engelmannii, Abies 
grandis, Pinus contorta, Tsuga mertensiana, Larix occidentalis and Pinus monticola. 
Very high basal areas can be achieved on these types. 

Fire frequency can be low due to the maritime influence on these sites. Fire severity can 
be highly variable due the most common moist conditions, but is severe during periods of 
drought. Fire free intervals range from 50 to greater than 200 years (Fischer, 1987). 
Many species do well on these sites and may thrive for centuries without disturbance. 
Thuja plicata is the most notable example. 

Habitat Types comprising Habitat Group 5 

HABITAT TYPE PHASE 

Thuja plicata/ Clinonia uniflora 

Clinonia uniflora 

Aralia nudicaulis 

Menziesia ferruginea 

Xerophyllum tenax 

Taxus brevifolia 

CODE FIRE GROUP 
MT ID 

530 

531 

532 

533 

534 

535 

8 

8 

Thuja plicata/ Asarum caudatum 
Asarum caudatum 

Menziesia ferruginea 

Taxus brevifolia 

545 
546 

547 

548 

11 
11 

11 

11 

8 

8 

8 

Thuja plicata/ Gymnocarpium dryopteris 

Tsuga heterophylla/ Gymnocarpium dryopteris 

555 

565 

11 8 

11 8 
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Tsuga heterophylla/ Clintonia unifolia 570 11 
Clintonia unifolia 571 11 8 

Aralia nudicaulis 572 11 8 

Xerophyllum tenax 573 11 8 

Menziesia ferruginea 574 11 8 

Tsuga heterophylla/ Asarum caudatum 
575 11 

Aralia nudicaulis 576 11 8 

Menziesia ferruginea 577 11 8 

Asarum caudatum 578 11 8 

HABITAT GROUP 7 - COOL and MOIST 

These types are characterized by cool and moist site conditions. Species diversity 
can be high with Larix occidentalis, Pseudotsuga menziesii, Pinus monticola, Pi-
cea Engelmannii, Pinus contorta, Abies lasiocarpa and Abies grandis. Other sites 
are dominated by Pinus contorta after stand replacement burns. These sites are 
probably too cool for Tsuga heterophylla and Thuja plicata. 

Fire history information is scarce. Fire intervals are estimated at greater than 120 
years for most sites (Fischer, 1987). 

HABITAT TYPE PHASE CODE FIRE GROUP 

Picea/Clintonia uniflora 
Vaccinium caespitosum 

Clintonia uniflora 

420 
421 

422 

MT ID 

9 
9 

Picea/ Linnaea borealis 470 



Tsuga heterophylla/ Menziesia ferruginea 579 

Abies lasiocarpa/ Clintonia uniflora 
620 9 

Clintonia uniflora 621 9 5 

Aralia nudicaulis 622 9 

Vaccinium caespitosum 623 9 

Xerophyllum tenax 624 9 5 

Menziesia ferruginea 625 9 5 

Abies lasiocarpa/ Linnaea borealis 
Linnaea borealis 

660 
661 

9 
9 

Xerophyllum tenax 662 9 

Abies lasiocarpa/ Menziesia ferruginea 
Coptis occidentalis 

670 
671 

9 
5 

Luzula hitchcockii 672 5 

Xerophylum tenax 673 5 

Vaccinium scoparium 674 5 

Tsuga mertensiana/ Menziesia ferruginea 
Luzula hitchcockii 

680 
681 

9 
5 

Xerophylum tenax 682 5 

Tsuga mertensiana/ Clintonia uniflora 
Menziesia ferruginea 

685 
686 5 

Xerophylum tenax 687 5 

Abies lasiocarpa/ Vaccinium scoparium 
Thalictrum occidentale 

730 
733 

3 
3 

Abies lasiocarpa/ Alnus sinuata 740 

Abies lasiocarpa/ Luzula hitchcockii 
Menziesia ferruginea 832 10 
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The following Habitat Type groups are from Green and others (1992) which were used in 
conjuction with cover types and age and size criteria to define an old-growth type. Old-
growth type 4 in north Idaho includes the following habitat type groups, when Douglas-
fir, grand fir, western larch, subalpine fir, western white pine or western hemlock cover 
types occur on them: 

Habitat Type Group Alpha Code Numeric Code 

C ABGR/SETR 529 
ABGR/ASCA 516 
ABGR/ASCA-MEFE 518 
ABGR/ASCA-ASCA 517 
ABGR/CLUN 520 
ABGR/CLUN-MEFE 525 
ABGR/CLUN-PHMA 524 
ABGR/CLUN-CLUN 521 

CI ABGR/ASCA-TABR 519 
ABGR/CLUN-TABR 526 

D ABGR/LIBO 590 
ABGR/LIBO-XETE 510 
ABGR/LIBO-COOC 511 
ABGR/LIBO-VAGL 512 
ABGR/CLUN-XETE 523 

E ABGR/PHMA 506 
ABGR/PHMA-COOC 507 
AB GR/PHM A-PHM A 508 
ABGR/SPEBE 505 

F THPL/OPHO 550 
THPL/ATFI 540 
THPL/ATFI-ADPE 541 
THPL/ATFI-ATFI 542 
THPL/ADPE 560 

G THPL/GYDR 555 
THPL/ASCA 545 
THPL/ASCA-MEFE 547 
THPL/ASCA-ASCA 546 
THPL/CLUN 530 
THPL/CLUN-MEFE 533 
THPL/CLUN-CLUN 531 
THPL/CLUN-XETE 534 
TSHE/GYDR 565 
TSHE/ASCA 575 
TSHE/ASCA-ARNU 576 
TSHE/ASCA-MEFE 577 
TSHE/ASCA-ASCA 578 
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TSHE/CLUN 570 
TSHE/CLUN-ARNU 572 
TSHE/CLUN-MEFE 574 
TSHE/CLUN-CLUN 571 
TSHE/CLUN-XETE 573 

G1 THPL/ASCA-TABR 548 
THPL/CLUN-TABR 535 

H ABLA/STAM 635 
ABLA/STAM-MEFE 636 
ABLA/STAM-LICA 637 
ABLA/CACA 650 
ABLA/CACA-LEGL 655 
ABLA/CACA-YACA 654 
ABLA/CACA-LICA 652 
ABLA/CACA-CACA 651 
TSME/STAM 675 
TSME/STAMLUHI 676 
TSME/STAM-LUHI 677 

I ABLA/CLUN 620 
ABLA/CLUN-MEFE 625 
ABLA/CLUN-XETE 624 
ABLA/CLUN-CLUN 621 
ABLA/MEFE 670 
AB L A/MEFE-LUHI 672 
ABLA/MEFE-VASC 674 
ABLA/MEFE-COOC 671 
ABLA/MEFE-XETE 673 
TSME/CLUN 685 
TSME/CLUN-MEFE 686 
TSME/CLUN-XETE 687 
TSME/MEFE 680 
TSME/MEFE-LUHI 681 
TSME/MEFE 579 
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The following habitat type groups are for western Montana old-growth type 4, when 
Douglas-fir, grand fir, subalpine fir, western larch or western redcedar cover types occur 
on them: 

Habitat Type Group Alpha Code Numeric Code 

D AGBR/CLUN 520 
ABGR/CLUN-CLUN 521 
ABGR/CLUN-ARNU 522 
ABGR/CLUN -XETE 523 
THPL/CLUN 530 
THPL/CLUN-CLUN 531 
THPL/CLUN-MEFE 532 
TSHE/CLUN 570 
TSHE/CLUN-CLUN 571 
TSHE/CLUN-ARNU 572 

E PICEA/VACA 420 
ABLA/CLUN 620 
ABLA/CLUN-CLUN 621 
ABLA/CLUN - ARNU 622 
ABLA/CLUN-VACA 623 
ABLA/CLUN-XETE 624 
ABLA/CLUN-MEFE 625 
AB LA/LIB 0 660 
ABLA/LIBO-LIB 0 661 
ABLA/LIBO-XETE 662 
ABLA/MEFE 670 
TSME/MEFE 680 
ABLA/LUHI-MEFE 832 

F PICEA/EQAR 410 
PICEA/GATR 440 
PICEA/SMST 480 
THPL/OPHO 550 
ABLA/OPHO 610 
ABLA/GATR 630 
ABLA/GATR-GATR 631 
ABLA/GATR-CACA 632 
ABLA/CACA 650 
ABLA/CACA-CACA 651 
ABLA/CACA-GATR 653 
ABLA/CACA-VACA 654 
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APPENDIX B. Boxplots of the Variables 

minimum maximum 

1_. 
+ 
+ . 

median 

-notches-

hinges 

whiskers 

outside 
value 

far 
outside 
value 

Median of the values is marked with a + sign. It splits the data in half. Hinges split the 
data in half once more, creating quartiles. Whiskers denote the adjacent outermost 
values. The * represents the nonadjacent outside values and the 0 indicates the far 
outside values. The i in the middle of 'minimum' and 'maximum' mark the extreme 
values of the scale. Notches characterized by () are simultaneous conficence intervals 
around the median. If the intervals of the two boxes do not overlap, you can be confi­
dent at the 95% level that the two population medians are different (Wilkinson 1989). 

BOX PLOT OF VARIABLE: TPA_GT5 
GROUPED BY VARIABLE: STAGE 

44 80 
MINIMUM 

N = 54 

1107.20 
MAXIMUM 

(  +  > •  NONOFMS 

( + + )-- OFMS 

BOX PLOT OF VARIABLE: TPA_LT5 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  
MINIMUM 

N = 54 

11100.00 
MAXIMUM 

+ + NONOFMS 

( +  )  OFMS 

BOX PLOT OF VARIABLE: 
GROUPED BY VARIABLE: 

0 . 0 0  
MINIMUM 

TPAJDTOT 
STAGE 

N = 54 

360.00 
MAXIMUM 

NONOFMS 

) +- OFMS 



BOX PLOT OF VARIABLE: DED_GT10 , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 120.00 
MINIMUM MAXIMUM 

( + ) + NONOFMS 

+ ( + ) + OFMS 

BOX PLOT OF VARIABLE: DED_GT18 , N = 54 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  82.10 
MINIMUM MAXIMUM 

+ + ** * 0 0 NONOFMS 
+ 
+ 

+) + 0 OFMS 

BOX PLOT OF VARIABLE: HA_INTOL , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 360.00 
MINIMUM MAXIMUM 

( + ) + * * NONOFMS 

+ ( + ) OFMS 

BOX PLOT OF VARIABLE: BA_TOL , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 300.30 
MINIMUM MAXIMUM 

+ ( + ) + NONOFMS 

-( + + ) + * OFMS 

BOX PLOT OF VARIABLE: BA_TOL21 , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 267.00 
MINIMUM MAXIMUM 

+ 

+0 00 0 0 0 NONOFMS 
+ 

+ 
+ ) + OFMS 
+ 

BOX PLOT OF VARIABLE: BA_INT21 , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 176.20 
MINIMUM MAXIMUM 

+ -

+ + ** 0 0 0 0 0 0 NONOFMS 
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BOX PLOT OF VARIABLE: SNAG_DBH 
GROUPED BY VARIABLE: STAGE 

0.00 
MINIMUM 

41 

27 76 
MAXIMUM 

+ ( + ) 

BOX PLOT OF VARIABLE: BA_DTOT 
GROUPED BY VARIABLE: STAGE 

0  . 0 0  
• MINIMUM 

NONOFMS 

OFMS 

52 

387.20 
MAXIMUM 

NONOFMS 

) + - OFMS 

BOX PLOT OF VARIABLE: BA_DTOL 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  
MINIMUM 

N = 54 

240.10 
MAXIMUM 

+ 
+  )+  —  
+ 

+ 

+ ) +-

0 0 NONOFMS 

OFMS 

BOX PLOT OF VARIABLE: 
GROUPED BY VARIABLE: 

0  00  
MINIMUM 

BA_DINT 
STAGE 

N = 54 

297.00 
MAXIMUM 

+  +  )  + -

NONOFMS 

OFMS 

BOX PLOT OF VARIABLE: SNAG_CON 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  
MINIMUM 

54 

5.00 
MAXIMUM 

NONOFMS 

OFMS 

BOX PLOT OF VARIABLE: ROT_1000 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  
MINIMUM 

36 

63 .46 
MAXIMUM 

- + (  NONOFMS 

-- + 
+ -

OFMS 
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BOX PLOT OF VARIABLE: TOT_1000 , N = 3 6 
GROUPED BY VARIABLE: STAGE 

2.24 104.53 
MINIMUM MAXIMUM 

+ ( + ) + * NONOFMS 

— H 
(-- + + ) + * 0 OFMS 

- + 

BOX PLOT OF VARIABLE: SND_1000 , N = 3 6 
GROUPED BY VARIABLE: STAGE 

0.00 104.53 
MINIMUM MAXIMUM 

( + )+ * NONOFMS 

( + + ) + *  0  O F M S  

BOX PLOT OF VARIABLE: TOT_WOOD , N = 36 
GROUPED BY VARIABLE: STAGE 

3.50 106.32 
MINIMUM MAXIMUM 

+ (  +  ) +  *  N O N O F M S  

- + 

-(-- + + ) + * 0 OFMS 
- + 

BOX PLOT OF VARIABLE: DUFF_LIT , N = 3 6 
GROUPED BY VARIABLE: STAGE 

0.00 ' 6.16 
MINIMUM MAXIMUM 

+ ( + ) + * NONOFMS 

(-+ + ) + OFMS 

BOX PLOT OF VARIABLE: S_TOT , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 90.00 
MINIMUM MAXIMUM 

( + ) + NONOFMS 

+ ( + ) * OFMS 
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BOX PLOT OF VARIABLE: FORB_COV , N = 54 
GROUPED BY VARIABLE: STAGE 

1.00 60.00 
MINIMUM MAXIMUM 

j + NONOFMS 

( + ) + OFMS 

BOX PLOT OF VARIABLE: MOSS_COV , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 70.00 
MINIMUM MAXIMUM 

- + 

(+ ) + * 0 NONOFMS 

(+ + ) + 0 OFMS 

BOX PLOT OF VARIABLE: FERN_COV , N = 54 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  6 0 . 0 0  
MINIMUM MAXIMUM 

+ 
+ * 0 0 NONOFMS 
+ 
+ 

+ 0 OFMS 
+ 

BOX PLOT OF VARIABLE: COV_TOT , N = 54 
GROUPED BY VARIABLE: STAGE 

20.00 98.00 
MINIMUM MAXIMUM 

+ ( + ) + NONOFMS 

+ ) + OFMS 

BOX PLOT OF VARIABLE: COV_SAP , N = 54 
GROUPED BY VARIABLE: STAGE 

0  0 0  6 0 . 0 0  
MINIMUM MAXIMUM 

+ ) + * NONOFMS 

+ ( + ) + , OFMS 

BOX PLOT OF VARIABLE: COV_SEED , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 30 00 
MINIMUM MAXIMUM 

(+ + ) + * NONOFMS 

+ 
+ ( + ) * OFMS 
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BOX PLOT OF VARIABLE: COV_POLE , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 70.00 
MINIMUM MAXIMUM 

+ ( + ) + * NONOFMS 

(-+ + ) + * OFMS 

BOX PLOT OF VARIABLE: COV_MED , N = 54 
GROUPED BY VARIABLE: STAGE 

3.00 80.00 
MINIMUM MAXIMUM 

+ ( + ) + NONOFMS 

+ ( + +) OFMS 

BOX PLOT OF VARIABLE: COV_LG , N = 54 
GROUPED BY VARIABLE: STAGE 

0 00 60.00 
MINIMUM MAXIMUM 

+ 

+ 0 0 0 0 NONOFMS 
+ 

(-+ + ) + * * OFMS 

BOX PLOT OF VARIABLE: COV_VLG , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 10.00 
MINIMUM MAXIMUM 

+ 

+ NONOFMS 
+ 

+ 

+ 0 OFMS 
+ 

BOX PLOT OF VARIABLE: COV_WOOD , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 30.00 
MINIMUM MAXIMUM 

+ 

( + ) + NONOFMS 

( + ) + OFMS 

BOX PLOT OF VARIABLE: MOSS_LIC , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 70.00 
MINIMUM MAXIMUM 

+ 
(+ ) + * 0 0 0 NONOFMS 

) + * OFMS 



BOX PLOT OF VARIABLE: DOFF , N = 54 
GROUPED BY VARIABLE: STAGE 

-1.00 6.20 
MINIMUM MAXIMUM 

( + ) + * * * NONOFMS 

( + ) + OFMS 

BOX PLOT OF VARIABLE: YOUNG , N = 54 
GROUPED BY VARIABLE: STAGE 

1.00 81.00 
MINIMUM MAXIMUM 

+ ( + ) + NONOFMS 

( + ) OFMS 

BOX PLOT OF VARIABLE: YOUNGX , N = 54 
GROUPED BY VARIABLE: STAGE 

1.00 1281.00 
MINIMUM MAXIMUM 

( + ) + * * NONOFMS 

(+ + ) + * 0 OFMS 

BOX PLOT OF VARIABLE: YOBIG , N = 54 
GROUPED BY VARIABLE: STAGE 

1.00 101.00 
MINIMUM MAXIMUM 

( + ) + * NONOFMS 

+ ( + ) + OFMS 

BOX PLOT OF VARIABLE: BIG , N = 54 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  6 0  0 0  
MINIMUM MAXIMUM 

+ 

+ 0 0 0 0 NONOFMS 

-( + + ) + * OFMS 

BOX PLOT OF VARIABLE: YOBMRATO , N = 54 
GROUPED BY VARIABLE: STAGE 

0.02 10.25 
MINIMUM MAXIMUM 

0 0 0 NONOFMS 
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BOX PLOT OF VARIABLE: 
GROUPED BY VARIABLE: 

2 .00 
MINIMUM 

YOBIQX 
STAGE 

N = 54 

2562.00 
MAXIMUM 

0 0 NONOFMS 

) - OFMS 

BOX PLOT OF VARIABLE: 
GROUPED BY VARIABLE: 

0.04 
MINIMUM 

YOBXMRAT 
STAGE 

N = 54 

156.55 
MAXIMUM 

+ 000 0  NONOFMS 

OFMS 

BOX PLOT OF VARIABLE: BA_GT19 
GROUPED BY VARIABLE: STAGE 

0.00 
MINIMUM 

N = 54 

305.90 
MAXIMUM 

1.000 

2  000  

BOX PLOT OF VARIABLE: BA_GT17 
GROUPED BY VARIABLE: STAGE 

0.00 
MINIMUM 

N = 54 

439.10 
MAXIMUM 

+ (  +  )  +  

+(  + )  +-

1.000 

2 .000 

BOX PLOT OF VARIABLE: 
GROUPED BY VARIABLE: 

0 . 0 0  
MINIMUM 

COHO_INT 
STAGE 

N = 54 

5.00 
MAXIMUM 

1.000 

2.000 

BOX PLOT OF VARIABLE: COHO_TOT 
GROUPED BY VARIABLE: STAGE 

1.00 
MINIMUM 

N = 54 

5.00 
MAXIMUM 

1.000 

2.000 
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BOX PLOT OF VARIABLE: BA_21_N , N = 54 
GROUPED BY VARIABLE: STAGE 

0 00 1.00 
MINIMUM MAXIMUM 

+ + * 0 0 0 0 1.000 

(  +  )  2  . 0 0 0  

BOX PLOT OF VARIABLE: BA_TOT , N = 54 
GROUPED BY VARIABLE: STAGE 

40.00 555.80 
MINIMUM MAXIMUM 

+ ( + ) + 1.000 

( +  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: BA.TOT21 , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 305 90 
MINIMUM MAXIMUM 

+ 

+ + * * 0 0 0 1 000 

+  (  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: COHO_SUM , N = 54 
GROUPED BY VARIABLE: STAGE 

2.00 10.00 
MINIMUM MAXIMUM 

+ ( + ) + 1.000 

( + + ) + 2.000 

BOX PLOT OF VARIABLE: BA_GT15 , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 439 10 
MINIMUM MAXIMUM 

-+ ( + ) + * 1.000 

( - - +  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: BA_TOP , N = 54 
GROUPED BY VARIABLE: STAGE 

0 00 80.00 
MINIMUM MAXIMUM 

+ 

+ 00 0 0 0 0 0 1.000 
+ 

+ + )  +  2  000 
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BOX PLOT OF VARIABLE: BA_STEM , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 91.74 
MINIMUM MAXIMUM 

+ 

+ 0 0 0 0 0 1.000 
+ 
H 
+  )  +  *  2 . 0 0 0  

BOX PLOT OF VARIABLE: DECAY , N = 54 
GROUPED BY VARIABLE: STAGE 

0.00 107.50 
MINIMUM MAXIMUM 

+ + * * 0 0 0 1.000 

( +  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: DECAY_N , N = 54 
GROUPED BY VARIABLE: STAGE 

0 . 0 0  8 0 . 0 0  
MINIMUM MAXIMUM 

+ 

+ 00 0 0 0 0 0 1.000 
+ 
+  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: DBH_GT5 , N = 54 
GROUPED BY VARIABLE: STAGE 

7.35 25.16 
MINIMUM MAXIMUM 

+ ( + ) + 0 1.000 

( - +  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: CVHT , N = 54 
GROUPED BY VARIABLE: STAGE 

0.05 0.66 
MINIMUM MAXIMUM 

( + ) + 1.000 

(  +  )  +  2 . 0 0 0  

BOX PLOT OF VARIABLE: CVDBH , N = 54 
GROUPED BY VARIABLE: STAGE 

0.13 0.78 
MINIMUM MAXIMUM 

+ ( + ) + 1.000 

)  +  2 . 0 0 0  
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Appendix C. Plot sample Sizes 

PLOT ID *MACROPLOT * SUBPLOT *BAF 

FS0104029261032 0 .100 0 .25 0 
FS0104029261034 0 .100 0 .25 0 10 
FS0104049261041 0 .100 0 .25 0 
FS0104049261043 0 .100 0 .25 0 
FS0104049261044 0 .100 0 .25 0 5 
FS0104049261045 0 .100 0 .25 0 
FSO104049261050 0 .100 0 .25 0 
FS0104079261037 0 .100 0 .25 0 40 
FS0104089361002 0 .100 1 .00 0 
FS0104089361008 0 .100 0 . 50 0 
FS0104089361010 0 .100 1 .00 0 5 
FS0104089361012 0 .100 1 .00 0 
FS0105019261002 0 .100 0 .25 0 
FS0105019261003 0 .100 0 .25 0 
FS0105019261024 0 .100 0 .25 0 
FS0105019261025 0 .100 0 .25 0 
FS0105019261026 0 .100 0 .25 0 5 
FS01050193 61004 0 .100 1 .00 0 5 
FS0105019361005 0 .100 0 .25 0 5 
FS0105019361007 0 .100 1 . 00 0 5 
FS0105019361008 0 .100 1 .00 0 5 
FS0105 0193 61012 0 .100 1 . 00 0 5 
FS0105019361013 0 . 100 1 .00 0 5 
FS0105039261004 0 .100 0 .25 0 10 
FS0105039261018 0 .100 0 .25 0 
FS0105039261019 0 .100 0 .25 0 
FS0105039261021 0 .100 0 .25 0 
FS0105059261027 0 .100 0 .25 0 5 
FSO105069261028 0 .100 0 .25 0 
FS0105069261051 0 .100 0 , .25 0 
FS01100191BD033 0 .100 1. . 00 0 
FS01100191BD034 0 .100 1, .00 0 
FSO110019271050 0. .100 0. .25 0 
FS0110019271053 0 .100 0 . .25 0 
FS0110019271055 0. .100 0. .25 0 
FS0110019271056 0 .100 0 . .25 0 
FS0110019371301 0 , .100 1. .00 0 5 
FSO110019371302 0. .100 1. .00 0 5 
FSO110019371307 0. .100 1. , 00 0 5 
FS01100193713 09 0. .100 0. .25 0 5 
FS0110019371312 0 . .100 1. .00 0 5 
FSO110019371324 0 . .100 1. ,00 0 
FSO110019371331 0. .100 1. 00 0 5 
FS011001937133 6 0. .100 1. 00 0 5 
FS0110019371337 0 . .100 1. 00 0 
FS01100193 7133 8 0. ,100 1. 00 0 5 
FS0110019371340 0 . ,100 1. 00 0 5 
FSO110019371342 0 . .10 0 0 . 50 0 
FS0110069271057 0 . ,100 0 . 25 0 
FSO114019271077 0 . ,100 0 . 25 0 
FSO114029271093 0 . ,100 0 . 25 0 
FS0114029271095 0 . 100 0 . 25 0 



FS0114029271098 0 . .100 0 , .25 0 
FS0114029271101 0 . .100 0. .13 0 
FS01140491BD029 0 , .100 0 . .25 0 
FSO114069271090 0 . .100 0 , .25 0 
FS0114069271091 0 , .100 0 . .25 0 
FSO1140793DCO04 0 . .010 1. .00 20 
FS01140793DC015 0. . 010 1. .00 10 
FS01140793DC019 0 . .010 1. .00 40 
FS01140793DC020 0. .010 1 .00 40 
FS01140793DC021 0 . .010 1. . 00 40 
FS01140793DC022 0. .010 1. .00 20 
FS01140793DC023 0. .010 1. .00 40 
FSO1140793DCO45 0 . .010 1 .00 20 
FS01140793DC047 0 , .010 1. .00 40 
FSO1140793DCO51 0. .010 1. .00 20 
FSO1140793DCO54 0 . . 010 1. .00 40 
FSO1140793DCO55 0 . .010 1. .00 40 
FSO1140793DCO62 0 , .010 1. .00 40 
FS01140793DCO63 0. .010 1. .00 40 
FS01140793DC064 0. .010 1. .00 20 
FSO1140793DCO72 0 . .010 1. .00 20 
FS01140793DC076 0 . . 010 1. .00 40 
FS01140793DC088 0 . .010 1. .00 40 
FSO1140793DCO89 0 , .010 1. .00 40 
FSO1140793DC095 0 . .010 1. .00 40 
FS01140793DC099 0 , .010 1. .00 40 
FS01140793DC101 0 . . 010 1. .00 40 
FS011604911E003 0 . .100 1. .00 0 
FS011604911E004 0 , .100 1. .00 0 
FS011604911E006 0 . .100 1. .00 0 
FS011604912E001 0 , .025 1. .00 0 
FSO11604912EO04 0. .100 1. .00 0 
FS011604912E006 0 . .050 1. .00 0 
FS011604914E001 0 . .100 1. .00 0 
FS011604914E003 0 . .050 1. .00 0 
FSO116059271002 0 . .100 0 . .25 0 
FS0116069271013 0 , .100 0 . .25 0 
FS011607911E014 0 . .100 1. .00 0 
FS011607911E016 0 .100 1. .00 0 
FS011607911E018 0 . .100 1. .00 0 
FS011607911E020 0 . .050 1. .00 0 
FS011607911E021 0 . .100 0 . .50 0 
FS011607911E023 0 . .100 1. .00 0 
FS011607911E032 0 . .100 1. .00 0 
FS011607911E035 0 . .050 1. .00 0 
FS011607911E038 0 . .100 1. .00 0 
FS011607911E041 0 , .100 1. .00 0 
FS011607911E043 0 . .100 1. .00 0 
FS011607912E018 0 , .100 1. .00 0 
FS011607914E010 0 . .100 1, . 00 0 
FS011607914E012 0 . .100 1. .00 0 
FS011607 914E015 0 . . 050 1. . 00 0 
FS011607914E022 0 . .100 1. .00 0 
FS011607914E024 0 , .100 1, .00 0 
FS011607914E026 0 , .100 1. .00 0 
FS011607914E027 0. .100 1. .00 0 
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FS011607914E028 0.100 1.00 0 
FS011607 914E03 0 0.100 0.50 0 

* Macroplot = the fixed plot size in acres; Subplot = the 
fraction of the macroplot sampled for trees less than 5 in. 
(12.7 cm); BAF = basal area factor used to sample the live 
trees is in the first column and the baf used to sample dead 
trees (snags) 
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Appendix D. Statistics for Discriminant 
Run Variables. 

THE FOLLOWING RESULTS ARE FOR: 
SSMT2$ = NONOFMS 

TOTAL OBSERVATIONS: 58 

TPA GT5 TPA_LT5 TPA DTOT DED GT10 DED GT18 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

58 58 58 58 58 
44.800 0.000 0.000 0.000 0.000 

1107.200 11100.000 360.000 120.000 82.100 
305.257 757.586 58.086 26.641 7.888 
196.967 1668.331 64.666 31.834 15.666 

BA TOL21 BA_INT21 SNAG_DBH BA_DTOT BA_DTOL 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

58 
0.000 

130 .000 
7 . 616 
20 . 596 

58 
0 . 000 

176 .200 
13 . 621 
33 .131 

58 
0.000 

27.763 
8 .730 
6 .892 

58 
0 .000 

387.200 
46.890 
69.624 

58 
0  .  0 0 0  

240.100 
22.362 
44 .001 

BA DINT SNAG_CON 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

58 
0 . 000 

297 . 000 
24.533 
43.966 

58 
0 .000 
5.000 
1.429 
1. 610 

BA_TOP 

58 
0 . 000 

8 0  .  0 0 0  
4 .114 
12.885 

BA_STEM DUFF LIT 

58 
0 . 000 

65.520 
7 .161 
14.867 

37 
0 . 000 
6 .160 
2 .374 
1.428 

DBH_GT5 TOL_GT5 BA_TOT21 BA_GT19 BA_GT17 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

58 
2 .530 
25.155 
11.660 
3 .377 

58 
0  . 0 0 0  

100 . 060 
45.812 
32 .431 

58 
0  . 0 0 0  

224.400 
21.236 
43.124 

58 
0  . 0 0 0  

224 .400 
30 .400 
47 .298 

58 
0  . 0 0 0  

224 . 000 
50 . 698 
56 .353 

COHO INT COHO TOT COV TOT COV SEED 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

58 
0  .  0 0 0  
3 . 000 
1.224 
0 .594 

58 
1.000 
4 . 000 
1.966 
0 .748 

58 
20 .000 
98 .000 
64 .845 
17 .296 

58 
0.000 

30.000 
4 .431 
5.058 

COV_SAP 

58 
0.000 

60.000 
14.552 
13.057 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

COV_POLE 

58 
0 .000 

70.000 
20 . 534 
13 .874 

COV_MED 

58 
3 . 000 

80 . 000 
37.172 
15.769 

COV_LG 

58 
0 . 000 

30.000 
2 . 690 
7.042 

COV VLG COV WOOD 

58 
0 . 000 

20 . 000 
0 .345 
2 . 6 2 6  

58 
0 .000 

30.000 
12 .793 
8 .271 
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YOBIG COHO_ .SUM VALID STAGE 

N OF CASES 58 58 58 58 
MINIMUM 0 . 000 1 . 000 0 . 000 1. 000 
MAXIMUM 63 .000 6 . 000 1.000 1.000 
MEAN 22.017 3 . 121 0 . 655 1 . 000 
STANDARD DEV 16.344 1 . 186 0 .479 0 . 000 

THE FOLLOWING RESULTS ARE FOR: 
SSMT2$ = OFMS 

TOTAL OBSERVATIONS: 26 

TPA GT5 TPA LT5 TPA DTOT DED GT10 DED GT18 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

2 6  
130 . 000 
560 . 000 
250.531 
95 .411 

26 
40 . 000 

3400 . 000 
801.538 
772 . 630 

26 
0  . 0 0 0  

135 . 600 
44 .231 
36 .804 

26 
0 .000 

80 .000 
25 .204 
24 .137 

26 
0 . 000 

44 .400 
6 .165 
10.201 

BA TOL21 BA INT21 SNAG DBH BA DTOT BA DTOL 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

26 
0 . 000 

267.000 
57.688 
83.525 

2 6  
0  . 0 0 0  

297 .000 
66.638 
82.114 

26 
0 .000 
24 .722 
11. 996 
6 .363 

26 
0  . 0 0 0  

136.500 
37 .331 
36 .302 

26 
0 . 000 

79.400 
12.642 
20 . 937 

BA DINT SNAG CON BA TOP BA STEM DUFF LIT 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

26 
0 .000 

143.500 
25.042 
35.602 

26 
0 . 000 
4 . 000 
1.127 
1.651 

2 6  
0  . 0 0 0  

56.210 
12 .420 
15.385 

26 
0 .000 

91.740 
18.532 
27 .211 

23 
1.390 
4.880 
2 .579 
1. 007 

DBH GT5 TOL GT5 BA TOT21 BA GT19 BA GT17 

N OF CASES 
MINIMUM 
MAXIMUM 
MEAN 
STANDARD DEV 

26 
8 . 014 
19.706 
14.120 
3 .176 

26 
0  . 0 0 0  

100 .482 
37 . 508 
28 . 982 

26 
0  .  0 0 0  

309.100 
124 .327 
104.485 

26 
5 .000 

415.700 
141.558 
115.321 

26 
20 . 000 

439 .100 
167 .177 
128 .346 

COHO INT COHO TOT COV_TOT COV_SEED COV_SAP 

N OF CASES 26 26 26 26 26 
MINIMUM 0.000 2.000 40.000 1.000 3.000 
MAXIMUM 5.000 5.000 98.000 30.000 60.000 
MEAN 2.423 3.423 74.077 8.577 21.769 
STANDARD DEV 1.206 0.857 17.013 8.198 13.411 
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COV_POLE 

>
 
O
 
u
 .MED COV_LG COV_VLG COV_WOOD 

N OF CASES 26 26 26 26 26 
MINIMUM 3 .000 3 . . 000 0 .000 0 .000 3 .000 
MAXIMUM 70 .000 70 . , 000 60 .000 20 .000 30 .000 
MEAN 27 .423 32 . , 038 13 . 038 2 .692 12 . 615 
STANDARD DEV 16.919 16. .274 15.629 6.038 8.980 

YOBIG COHO_ _SUM VALID STAGE 

N OF CASES 26 26 26 26 
MINIMUM 11.000 3 . 000 0 .000 2.000 
MAXIMUM 100 . 000 10 . 000 1.000 2 . 000 
MEAN 46.077 5 . 846 0.615 2 .000 
STANDARD DEV 24.884 1. 826 0 .496 0.000 
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APPENDIX E. Discriminant Analysis Group 
Membership, Probabilities and Euclidean 
Distances 

FACTOR DIST(l) DIST(2) PROB(l) PROB(2) GROUP PREDICT PREDICT$ 

CASE 1 -0 .243 0 .926 2 .156 0 .869 0 .131 1 .000 1 .000 N 
CASE 2 -0 044 1 .340 2 .143 0 .802 0 .198 1 .000 1 .000 N 
CASE 3 -1 .302 0 .902 3 151 0 .990 0 .010 1 .000 1 .000 N 
CASE 4 -1 .713 0 .996 3 -489 0 .996 0 004 1 . 000 1 .000 N 
CASE 5 -0 .035 1 .428 2 .188 0 .798 0 .202 1 .000 1 .000 N 
CASE 6 -1 .852 1 .172 3 .640 0 .997 0 .003 1 . 000 1 .000 N 
CASE 7 3 .482 5 .719 4 .217 0 .001 0 .999 2 .000 2 .000 0 
CASE 8 -1 .474 0 .995 3 .312 0 .993 0 .007 1 .000 1 .000 N 
CASE 9 -0 .965 1 .538 3 .128 0 .976 0 .024 1 .000 1 .000 N 
CASE 10 0 .544 2 .652 2 .622 0 .480 0 .520 2 .000 2 .000 0 
CASE 11 3 .041 4 .337 2 .470 0 .002 0 .998 2 .000 2 .000 o 
CASE 12 0 .997 2 .407 1 .831 0 .228 0 .772 2 000 2 .000 0 
CASE 13 -1 .080 1 031 3 .010 0 .982 0 .018 1 .000 1 . 000 N 
CASE 14 -0 .630 1 237 2 .696 0 946 0 .054 1 . 000 1 .000 N 
CASE 15 -0 .779 1 .921 3 .190 0 .9 62 0 .038 1 .000 1 000 N 
CASE 16 -0 .383 0 671 2 .224 0 .904 0 096 1 . 000 1 .000 N 
CASE 17 1 .484 2 .316 0 .692 0 080 0 920 1 .000 2 .000 0 
CASE 18 -1 .266 0 .730 3 .077 0 .989 0 .011 1 .000 1 .000 N 
CASE 19 0 .327 2 .239 2 .437 0 .614 0 386 1 000 1 .000 N 
CASE 20 -0 .725 0 .311 2 .512 0 957 0 .043 1 .000 1 .000 N 
CASE 21 0 .155 1 .818 2 .259 0 .710 0 .290 1 .000 1 000 N 
CASE 22 1 .849 2 . 600 0 .213 0 .034 0 .966 2 .000 2 .000 o 
CASE 23 -0 .988 0 .388 2 .772 0 .977 0 .023 1 . 000 1 .000 N 
CASE 24 1 .511 2 .894 1 .832 0 075 0 .925. 2 .000 2 .000 0 
CASE 25 0 .681 1 .627 1 .342 0 .396 0 604 2 . 000 2 000 0 
CASE 26 2 .089 3 .654 2 .330 0 .019 0 .981 2 . 000 2 .000 0 
CASE 27 1 .498 2 .320 0 .654 0 .077 0 .923 1 . 000 2 .000 0 
CASE 28 2 .195 3 .404 1 .768 0 .014 0 .986 2 . 000 2 .000 o 
CASE 29 -1 852 1 .172 3 . 640 0 .997 0 003 1 .000 1 000 N 
CASE 30 3 .008 4 399 2 .610 0 .002 0 998 2 .000 2 .000 o 
CASE 31 2 . 657 4 .917 3 .661 0 .005 0 995 2 .000 2 .000 o 
CASE 32 0 .372 2 .243 2 .395 0 587 0 .413 1 .000 1 .000 N 
CASE 33 0 .123 1 .511 2 .058 0 .726 0 .274 1 . 000 1 000 N 
CASE 34 0 419 1 .515 1 661 0 .558 0 .442 1 . 000 1 000 M 
CASE 35 -0 . 307 0 968 2 247 0 887 0 113 1 000 1 .000 N 
CASE 36 2 .216 3 086 0 980 0 .014 0 .986 2 .000 2 .000 0 
CASE 37 0 .794 2 567 2 .274 0 .330 0 .670 2 . 000 2 .000 0 
CASE 38 0 872 2 .516 2 .12 6 0 .288 0 712 2 .000 2 000 0 
CASE 39 2 . 680 4 .659 3 .288 0 .004 0 .996 2 . 000 2 .000 0 
CASE 40 -1 .285 2 .862 4. .149 0 .989 0 .011 1. . 000 1 .000 N 
CASE 41 -1. .127 0. .449 2, .905 0. .984 0 . .016 1. . 000 1. .000 N 
CASE 42 -1. .852 1. .172 3 . .640 0. .997 0 . .003 1. .000 1. .000 N 
CASE 43 -0 706 1. .817 3 . .070 0. .955 0 . .045 1. .000 1. .000 N 
CASE 44 -0 789 0. .749 2. .664 0. .963 0 . .037 1. . 000 1. .000 N 
CASE 45 -0. .183 1. .039 2 . .138 0. .852 0. .148 1. .000 1. .000 N 
CASE 46 -0. .174 1. ,559 2. .425 0. .849 0. .151 1. . 000 1. ,000 N 
CASE 47 -1. .713 0 . .996 3 . .489 0. .996 0. .004 1. 000 1. .000 N 
CASE 48 -1. 932 1. 310 3 . 741 0 998 0 . 002 1 000 1. 000 N 
CASE 49 -0. 988 0. 388 2 . 772 0 . 977 0 . 023 1. 000 1 000 N 
CASE 50 -1. 167 0 . 518 2 950 0 . 985 0 015 1. 000 1. 000 N 
CASE 51 1. 057 2 878 2 355 0. 203 0 ; 797 2 000 2 . 000 0 
CASE 52 -1. 127 0. 449 2 . 905 0 . 984 0 . 016 1. 000 1. 000 N 
CASE 53 -0 508 0 805 2. 402 0 . 928 0 . 072 2 . 000 1 000 N 
CASE 54 -1. 127 0 . 449 2 . 905 0. 984 0 . 016 1. 000 1. 000 N 
CASE 55 -1 326 0 . 872 3 161 0 990 0 . 010 1. 000 1. 000 N 
CASE 56 -1. 733 1. 015 3 . 508 0 996 0 . 004 1 000 1. 000 N 
CASE 57 -1. 315 1. 202 3 . 259 0 990 0 . 010 1. 000 1 000 N 
CASE 58 -1. 733 1. 015 3 . 508 0. 996 0 . 004 1. 000 1. 000 N 
CASE 59 -1. 713 0 . 996 3 . 489 0. 996 0 004 1. 000 1. 000 N 
CASE 60 -1 315 1. 202 3 . 259 0. 990 0 . 010 1. 000 1 000 N 
CASE 61 -1. 673 0. 967 3 . 452 0. 996 0 . 004 1. 000 1. 000 N 
CASE 62 -1. 100 1. 083 3 . 045 0. 983 0 . 017 1. 000 1. 000 N 
CASE 63 -1 335 1. 169 3 . 263 0. 990 0 . 010 1. 000 1 000 N 
CASE 64 -1. 266 0 . 730 3 . 077 0 989 0 . 011 1. 000 1 000 N 
CASE 65 -1. 713 0. 996 3 . 489 0 . 996 0 . 004 1 000 1. 000 N 
CASE 66 1 802 3 . 585 2. 524 0 . 038 0 . 962 2 . 000 2 . 000 o 
CASE 67 2 053 3 . 960 2. 817 0 . 020 0 . 980 2 . 000 2 000 0 
CASE 68 -0 . 590 1. 242 2 . 661 0 . 941 0 . 059 1. 000 1. 000 N 
CASE 69 3 . 215 4 043 1. 661 0 001 0 999 2 000 2 000 0 
CASE 70 0 . 556 1. 474 1 398 0 . 473 0 527 2 000 2. 000 0 
CASE 71 5 . 288 6 . 256 3 . 891 0. 000 1. 000 2. 000 2 . 000 O 
CASE 72 1. 281 2 . 494 1. 535 0. 127 0 . 873 2 . 000 2. 000 O 
CASE 73 0. 575 1. 422 1. 306 0 . 460 0 . 540 1. 000 2. 000 O 
CASE 74 -0 . 133 2 . 443 3 . 034 0. 835 0 . 165 1. 000 1. 000 N 
CASE 75 0 . 490 2. 149 2. 174 0. 514 0 . 486 2 . 000 1. 000 N 
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CASE 76 0 .679 3 016 2 .874 0 .397 0 .603 1. .000 2. .000 0 
CASE 77 -0 .391 1 .760 2 763 0 .906 0 .094 1. .000 1. .000 N 
CASE 78 2 .293 4 .087 2 785 0 .011 0 .989 2 , . 000 2. .000 0 
CASE 79 -0 .168 1 .252 2 .232 0 .846 0 .154 1, . 000 1. .000 N 
CASE 80 0. .342 1 .529 1 .786 0 .605 0 .395 2 . .000 1. .000 N 
CASE 81 -1. .673 0 .967 3 .452 0 .996 0 .004 1, . 000 1. .000 N 
CASE 82 0. .281 1. .814 2. .109 0. .641 0. .359 1. .00 0 1. .000 N 
CASE 83 -0 . .928 0 . .462 2 . .729 0 , .974 0 . .026 1. .000 1. .000 N 
CASE 84 -0 . .183 1. .039 2. .138 0, .852 0. .148 1. .000 1. .000 N 
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