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Effects of fire, root disease, and bark beetles on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) 
seed trees were evaluated on the Powell Ranger District, Clearwater National Forest, Idaho. Thirty 
trees on an underburned and an unburned site were sampled for xylem water pressure potential, 
root disease infection, bark beetle infestation, and fine root biomass. Fire intensity was moderate 
to light. Bark beetle girdling and root disease infection by Armillaria obscura (Schaeff.:Secr) was 
higher on the burned site but not significantly (P>.22 and P>.12, respectively). Infection by 
Phaeolus schweinitzii (Fr.) Pat. was not significantly different between the two sites. Visual esti­
mates of stress were used as xylem water pressure potential results were not conclusive. The 
combined effects of fire damage, root disease infection, and bark beetle girdling caused stress and 
tree mortality. 

Director: Dr. Ronald H. Wakimoto 
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INTRODUCTION 

The use of seed trees is an effective and cost efficient method for regeneration in the inland 

northwest. They provide seed well suited to the site, shade for seedling survival, and can help 

maintain the visual quality and other resources of the site. The failure of seed tree systems may 

require artificial regeneration of the site at an increased cost. Successful application of the seed 

tree method depends upon selecting healthy, undamaged, cone producing trees that will survive 

site preparation. 

Seed tree mortality is a persistent problem on U.S. Forest Service lands on the Powell Ranger 

District, Clearwater National Forest, Idaho, in spite of precautions taken in selecting trees and 

protecting trees while underburning. Post-fire examination on one particular site showed most 

trees to be infected with Phaeolus schweinitzii (Fr.) Pat.. The disease had not been detected prior 

to marking the seed trees and site preparation. 

Conifer mortality has been examined primarily within individual disciplines of research with little 

integration. Fire related mortality of trees has been studied in detail but most studies have 

concentrated on crown scorch and bole damage (Ryan et al. 1988, Ryan and Reinhardt 1988, 

Wyant et al. 1986, Peterson 1984, Bevins 1980). Root damage by fire has been associated with 

the physical effects of duff consumption on the site (Shearer 1975, 1976). Tree stress and sec­

ondary insects have been linked to tree survival following fire damage (Ryan 1982a). 

Furniss (1965) found a strong association between fire damaged Douglas-fir (Pseudotsuga men-

ziesii (Mirb.) Franco) and Douglas-fir bark beetles (Dendroctonus pseudotsugae Hopkins). The 

beetle attacks appeared to be concentrated in the area of bole scorch on trees seriously damaged 

with crown scorch. Vigorous trees (as measured by pressure bomb measurements of xylem 
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pressure potential) are able to survive attack by "pitching out" the beetles making the attack 

unsuccessful (Ferrell 1978). 

There is also a strong association reported between bark beetle attack and root disease infection. 

Phaeolus schweinitzii (Fr.) Pat. is a pathogen that primarily decays the heartwood of living trees 

causing structural instability but seldom death unless associated with a bark beetle infestation or 

Armillaria root disease (Hagle 1981, Geizler et al. 1980). Fire damage has also been found in 

association with P. schweinitzii decay by Geizler and others (1980). 

Armillaria obscura (Schaeff.:Secr), on the other hand, infects the sapwood and cambium. It can 

act either as a primary pathogen, killing trees directly or a secondary pathogen which attacks trees 

weakened by other agents (Wargo 1983, Hadfield et al. 1986). Armillaria root disease also com­

monly predisposes trees to attack by bark beetles (Hadfield et al. 1986). 

Fine root biomass (roots less than 2 millimeters in diameter) is also an indication of tree health as 

this is the component responsible for water absorbtion and uptake by the tree. The fine roots are 

concentrated in the top 15 to 20 cm organic layer of forest soil (McQueen 1973, Harvey et al. 1978). 

This vulnerable location exposes them to temperature changes from fire (Grier 1980, Vogt et al. 

1980). In addition, 90-200% of fine roots are replaced annually (Persson 1979) with a spring and 

fall flush (Vogt et al. 1980). Without the recurring root flush in damaged roots, the numbers are 

drastically reduced along with the absorbing capacity of the root system. Disturbance to the 

organic layer and disruptions in the root production process would affect the water balance of the 

tree and yet have not been studied in association with fire damage. 

Water stress as measured on a pressure bomb (negative bars of xylem pressure potential - Ritchie 

and Hinckley 1975) has been studied to measure the impact of environmental effects or tree 
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damage. Ferrell arid Smith (1976,1978) used xylem pressure potential to determine the indicators 

of (Heterobasidion annosum (Fr.) Brey.) root decay in white fir (Abies concolor (Gord. and Glend.) 

and the susceptibility to bark beetles. Waring and Cleary (1967) used xylem pressure potential to 

evaluate plant moisture stress during summer drought periods. Grissom (1985) found reduced 

water stress on trees with crown scorch and hypothesized that reduction of the transpiring surface 

in vigorous trees was responsible. 

In this study, I have evaluated some of the combined effects of fire, root disease, and bark beetle 

infestation on water stress, fine root biomass, and the resulting mortality of seed trees on a site 

on the Powell Ranger District, Clearwater National Forest, Idaho. 

OBJECTIVE 

The major objective of this study was to examine the possible causes contributing to the mortality 

of the Douglas-fir seed trees. This work was an ex post facto study undertaken 2 years after 

underburning treatment was performed. 

METHODS 

Study Area 

Three conifer stands one half mile apart in the Lochsa drainage and similar in biological and 

physical type were selected for comparison on Powell Ranger District, Clearwater National Forest, 

Idaho. Aspects ranged from east to southeast and the elevation ranged from 1340 to 1400 m (4400 

to 4600 feet). Slopes were 50 to 60 percent. Soils were all well drained sandy loams with mixed 

ash. All sites had similar infection levels of Phaeolus schweinitzii. Habitat types are all in the Abies 
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grandis (ABGR) series (Cooper et al., 1985). The habitat type on the burned unit is predominantly 

Abies grandis/Clintonia uniflora with a beargrass phase (ABGR/CLUN/XETE) and Menziesia phase 

(ABGR/CLUN/MEFE) on the cooler, northeast aspect that grades into the unburned/unthinned 

unit. The unburned/thinned stand is in the Abies grandis/Asarum caudatum habitat type with a 

Menziesia phase (ABGR/ASCA/MEFE). 

Climatic conditions are dominated by Pacific maritime airmasses and prevailing westerly winds. 

Annual precipitation is approximately 100 cm (40 inches) with 80 percent occurring during the fall, 

winter and spring. Climate during the summer months is influenced by stationary high pressure 

systems along the northwest coast. Temperature is variable with average annual temperature from 

-1°C to 9°C (30°F to 47°F). 

Treatments 

The stands each received a different treatment: 1. control (untreated), 2. seed tree cut and 

underburned, 3. seed tree cut without underburning. The study trees were 200- to 250-year-old 

Douglas-fir on all three sites. Tree characteristics were measured and found to differ slightly 

between the two treatment stands - trees on the unburned stand were generally smaller in 

diameter, shorter, and averaged 50 years younger than those on the burned site. Trees on the 

burned site were selected from the survivors and were in various stages of decline. Other species 

were present on all sites. 

Burned/Thinned Stand - The burned/thinned stand was harvested in 1982 with approximately 18 

residual trees per acre of primarily Douglas-fir with some ponderosa pine (Pinus ponderosa Laws.) 

and western larch (Larix occidentalis Nutt.) over 42 cm (17 inches) DBH (diameter at breast height 
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or 1.4 m). This stand was underburned after harvest to reduce fuel loads and vegetative competi­

tion for natural regeneration. 

Burning of the stand was accomplished 2 years before the initiation of this study. Slash was cleared 

in a 3.5-meter square area around the seed trees prior to burning. Pre-burn fuel loads were 21 tons 

per acre (6 tons per acre in the <1 inch size class) and the ignition pattern was a strip head fire. 

Burning occurred in the evening of August 16,1983 under standard operational prescribed burn 

conditions. Weather conditions were within prescribed limits (22°C or 72°F and 42 percent relative 

humidity, no wind) to ensure minimum intensity and flame length (1.2 m or 4 feet) for seed tree 

survival. Levels of damage to the residual trees were determined to be within acceptable limits 

based on post burn analysis conducted in the same season. However, heavy mortality occurred 

primarily in the Douglas-fir trees one year after the burn in 1984. 

Previous to burning, the burned site was classified as NFFL Fuel Model levels 11 and 12 or 

low-to-moderate fuel loadings (Anderson 1982, Albini 1976). The burn was observed to be light to 

moderate in intensity for a prescribed underburn. Observations showed maximum flame length of 

less than 2 meters (6 feet) with an average of 0.9 to 1.2 m (3 to 4 feet) and little smoldering 

combustion which is associated with high ground temperatures (personal communication with 

Dave Thomas, formerly of Powell Ranger District). Measured fuel moistures were 8 to 17 percent 

for one hour fuels and within prescription limits. The standard external indicators showed insuffi­

cient damage to trees to explain the delayed mortality that appeared in the spring of 1984, one 

year after the burn. 

Tree mortality from prescribed fire was predicted using the model of Reinhardt and Ryan (1989). 

Variables used in the model were average stand diameter and average crown scorch percent (35 

%) estimated 2 years after the burn. The predictions of tree mortality made with the tree mortality 
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prediction model resulted in .1 probability of mortality given the average tree diameters of the 

underburned stand. This is well below the resulting 40 percent mortality that occurred 1 year after 

the burn, indicating that this situation was not typical of most fire mortality cases. 

Unburned/Thinned Stand - The unburned stand was harvested in 1981 with 12 trees per acre 

retained as a seed source. This stand was scheduled for a prescribed burn in 1984 which was not 

accomplished due to contracting complications. Preliminary observations showed stump infec­

tions with P. schweinitzii similar to the burned stand. Only one dead tree had been observed in 

this stand since harvest. 

Control Stand - This stand, adjacent to the burned stand on private land and similar in site 

characteristics, was used to sample for water stress only. No harvesting or burning occurred but 

infection by P. schweintizii was observed on the site. 

Sample Selection 

Fifteen trees were sampled in each stand representing the full range of crown symptoms including 

those trees without obvious signs of disease infection. Due to the mixed species on both treated 

sites and high mortality on the burned site most of the live Douglas-fir seed trees present were 

included in the sample. A dead tree was also included on both of the treatment sites. 

Root Disease Infection 

Root disease infection extent was determined for a subsample of the root systems in the treated 

stands. Seven trees per stand were randomly selected, cut and the stumps were excavated using 
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water gel explosives (Hagle 1981). The gel explosives loosened the soil around the root system 

with minimum damage. Excavation was completed using hand tools. 

Each root system was ocularly divided into cardinal (longitudinal) quadrants to detect root disease 

throughout the system. Within each quadrant roots from three zones were subsampled at 1 meter 

from the root collar, one half meter, and at the root collar. Three diameter classes within each zone 

were sampled: <1cm, 1-5 cm, and 5 cm and above. Disease location was determined based on 

visual symptoms from cross-sections cut from each sample. Visual symptoms included red discol­

oration, pitch streaking, decay, mycelial fans, and callous tissue. Random samples of symptomatic 

roots were selected for fungus isolation to confirm pathogen identification. 

Specimens were kept cool during the day and isolates were made each evening from symptomatic 

tissue. Symptomatic tissue was surface sterilized by dipping in 95 percent alcohol and flaming for 

1 second using standard laboratory procedures. Cultures were made on petri plates with Nobles' 

special agar (1964) and transported back to the laboratory. As isolates grew, they were subisolated 

onto agar slants in screw cap test tubes for storage. Isolates were kept at room temperature and 

subisolated monthly for 1 year. They were grown on Nobles' special agar and tannic acid agar 

(Nobles 1964) for identification. Six-week old cultures were identified with the assistance of Dr. Sue 

Hagle (Plant pathologist, USDA, Forest Service, Missoula, MT) using Nobles (1948, 1964) and 

Stalpers' (1978) keys for basidiomycetes in culture. 

Bark Beetle Impact 

After trees were cut bark samples measuring 20 cm by 20 cm were cut and removed from two sides 

(sun and shade) of the bole at three locations; 3 meters from the ground, 3 meters down from the 

12 inch top diameter and half way between the first two locations. Square bark samples were cut 
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down to the cambium layer and peeled off of the tree to examine for beetle galleries. Percent of 

sample that was occupied by larval galleries was recorded. Secondary beetle galleries were 

present but only those of the Douglas-fir beetle were counted. 

Direct Fire Impact 

Direct fire damage was assessed on the burned site using methods described by Ryan (1982b) 

and Ryan and Noste (1983). These methods involved visual estimates of percent bole scorch, 

percent crown scorch, percent live cambium, and ground char. Bole scorch on the circumference 

of the tree at dbh (4.5 feet, 1.37 m) was estimated in percent. Percent of the original crown 

scorched by fire was visually estimated 2 years after the burn with the assistance of Kevin Ryan, 

U.S.F.S. Fire Research Lab, Missoula, MT. Percent of the cambium at stump height that was alive 

was estimated with the use of a solution of orthotolidine (Ryan 1982b). Orthotolidine reacts with 

the enzyme peroxidase which is present in living cambium tissue. Ground char was categorized 

from circular areas around the base of the tree to determine the amount of litter consumption and 

ground char that occurred (Ryan and Noste 1983). The classifications were unburned, light burn, 

moderate burn, and deep burn. 

Fine Root Biomass 

Soil cores were taken in mid-June 1985 to sample the fine root biomass. Samples were taken with 

a 10-cm by 30-cm tube driven flush into the ground. Two soil core samples were taken per tree 

1 meter uphill and 1 meter downhill from the root collar. Samples were immediately bagged and 

kept cool to minimize continued respiration. Samples were sieved using a 2-mm screen to separate 

root material from soil and organic matter. All roots were placed in formalin acetic acid for 

preservation until counted and weighed. Root samples were sorted to separate live Douglas-fir 
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roots from dead or non-Douglas-fir roots. Fine Douglas-fir roots less than 1 mm diameter were 

separated, oven dried at 70°C for 48 hours and then weighed. 

Water Stress 

Leaf xylem pressure potential (water stress measured in negative bars) was selected to test as a 

variable to represent the overall vigor of the tree. As a measure of the water potential of the xylem 

sap, it indicates the amount of water flow through the soil-plant-atmosphere continuum and reflects 

any relative deficiencies in tree moisture. 

The leaf xylem pressure potential was measured at midday using pressure chamber methods of 

Ritchie and Hinckley (1975) on the burned, unburned, and control stands. Branches with 2 years' 

growth from midcrown samples were used. Midday measurements were used in place of predawn 

measurements in an attempt to measure tree physiological water stress responses during periods 

of most active uptake and not soil water deficits. 

Radial growth for the past 10 years was measured in millimeters (1/20 inch) on the two treatment 

sites to determine if there was any difference in overall vigor before the burn. 

Statistical Analysis 

\ 

All samples were averaged and statistical tests were performed using SPSS-X and BMDP software. 

Analysis was done to evaluate the data for significance in variables between the treated sites to 

determine those that might be contributing to stress. Although root disease was present in the 

control stand, extent of infection was not measured. Xylem pressure potential was the only variable 

measured in the control stand. 
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A test for homogeneity of variance was performed and results indicated analysis of variance 

(ANOVA) was not appropriate. Therefore, a Bonferroni's multiple comparison test was used to 

compare the xylem pressure potential between the three sites - burned, unburned, and control. 

A student's T test was used to determine the significance of differences of all other variables 

between the burned and unburned site trees. Correlation coefficients were calculated for all 

variables on the burned site. 

RESULTS 

Root Disease Infection 

The level of general root disease infection was similar on both sites based on the results of the 

statistical test (table 2) and supported by visual estimates. On both sites many large roots were 

extensively infected by P. schweinitzii and rotted off at the one-half or 1 meter length indicating 

many decades of infection activity. Roots were commonly stubbed with callous tissue. Incipient 

decay by P. schweinitzii was evident even in small adventitious roots 3 mm in diameter. 

The extent of A. obscura infection was significantly higher at the root crown on the burned site. 

These data were supported by field observations. Armillaria incidence also appeared to be greater 

on the burned site. Percent of trees on the burned site with Armillaria infection was 27 percent 

compared to 2 percent on the unburned site. The presence of Armillaria obscura in both stands 

seemed to be limited to dead or nearly dead trees (table 1). 

Heterobasidion annosum (Fr.) Bref. occurred in small, localized infections on 11 trees on both the 

burned and unburned site (table 4). The infections did not appear to be significantly affecting the 

trees. The pathogen was not considered to be aggressive in this situation. By comparison, A. 
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obscura infection was much more extensive and found higher up on the roots closer to the root 

crown. 

Bark Beetle Impact 

There were many more dead trees on the burned site that had indications of past infestations with 

bark beetles that were not included in the sample. Of the sample trees infested, 55 percent of the 

infestations were found in the bottom portion of the bole compared with 35 percent in the middle 

portion of the bole. There was no difference in beetle galleries between the sunny and shaded 

sides of the boles. 

Many of the beetle galleries produced successful brood. In cases where brood did not survive 

galleries still were extensive and killed the phloem. Few galleries were observed to have resin that 

would indicate a wound response and resistance of a healthy tree to attack. All Douglas-fir beetle 

galleries were found in the middle or lower bole samples. Galleries of species of secondary Scolytid 

beetles and wood borers were present in all portions of the bole and in some cases overlapped 

the Douglas-fir beetle galleries. These were a different size and were distinctive upon close 

examination. 

Direct Fire Impact 

Duff consumption and ground char around 5 sample trees on the burned site was classified as 

moderate duff consumption with 4 classed as moderate or less ground char. For the observed 

flame length these classifications were determined to be insufficient to cause direct mortality (Ryan 

and Noste 1983). Root injury due to fire was sustained on only 2 main roots of one tree as observed 

in the root system excavation. 
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Table 1-Measured variables 

Stress Root Fine 
Bars Disease Root Beetles direct Fire Damage 

% A. Gm % % % % Ground 
Tree # % all obscura weight girdle cambium crown bole char 

Burned 
Site 

06 dead 86 16 * 47 0 0 99 Light duff consumption 
08 24 .261 31 99 15 50 Mod. ground char 
07 23 91 62 123 9 70 80 99 Mod.duff/ground char 
13 20 72 00 .389 0 99 05 35 Light duff consump 
01 17 .769 0 90 30 50 Mod.duff/ground char 
12 16 86 07 .647 0 99 10 35 Light duff consump 
04 16 66 29 .406 49 15 85 99 Mod. ground char 
15 15 80 52 .606 0 99 05 40 Light duff consump 
11 14 74 24 .547 0 35 35 90 Light duff consump 
10 14 69 02 .295 0 99 05 99 Light duff consump 
09 14 .790 0 99 05 40 Mod. duff consump 
14 13 .571 0 95 75 60 Light duff consump 
02 11 84 07 .030 0 99 15 00 Light duff consump 
05 11 66 02 .623 0 90 60 99 Mod. duff consump 
03 11 .612 47 40 50 99 Mod. duff consump 



% A .  Gm % % % % Ground 
Tree # % all obscura weight girdle cambium crown bole char 

Unburned 
Site 

29 dead 86 22 * 33 
28 16 83 05 .418 0 
26 16 83 05 .076 0 
23 15 70 .594 0 
25 14 95 .160 0 
30 14 02 .437 0 
22 14 .956 0 
17 14 76 .481 0 
20 14 .932 0 
27 13 .527 0 
19 13 81 17 ,401 0 
24 13 70 .678 0 
16 12 77 136 0 
21 10 .368 0 
18 9 75 .629 0 

* Indicates value not measured 



Fine root biomass 

Fine root biomass averaged slightly less per tree core on the burned site than on the unburned 

site but was not significantly different (table 1). I feel these results may not be meaningful as I had 

difficulty distinguishing Douglas-fir from the non-Douglas-fir roots. This confusion may have affect­

ed the results. Black mycorrhizae were observed but not counted on rootlets from both sites. 

Water Stress 

Temperatures were 28 and 26 degrees C (82 and 79 degrees F) and relative humidities were 25 

percent and 39 percent on the two days that pressure chamber measurements were taken, June 

18 and 20,1985. Drought conditions existed the spring season previous to when measurements 

were taken. However, during root system excavations on the treatment sites soil moisture ap­

peared adequate and not limiting. I had difficulties in obtaining samples with current-season 

growth on the burned sites because trees had produced little or no new growth. Samples with new 

growth were available on the unburned and control sites. 

The Bonferroni test for multiple comparisons indicated that the water stress (negative bars of xylem 

pressure potential) on the burned stand was significantly higher than the control stand at the 90 

percent level of confidence (table 1). The burned stand stress was not significantly higher than the 

unburned stand. However, environmental factors were not measured and the pressure readings 

are not adjusted to reflect the diurnal fluctuations inherent in mid-day xylem pressure potential 

measurements. 

Other observations were used to generally represent stress as the xylem pressure potential 

measurements were not conclusive. The absence of new growth on samples from the burned site 
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was an obvious indication of complications. In addition, crowns were more chlorotic on the burned 

site although this variable was not measured. 

Student T Test 

The average percent bark beetle girdling was higher but not significantly on the burned site (table 

1). There was clearly no significant difference between the average level of P. schweinitzii infection 

on the burned and unburned sites. The levels of Armillaria obscura at the root crown were 

significantly higher on the burned site. Fine root biomass and 10-year radial growth also were not 

significantly different between the two treated sites. 

Table 2--Means and multiple comparison test using Bonferroni and Student's T Test. 

BURNED SITE UNBURNED SITE CONTROL P 

Mean Std dev Mean Std dev Mean Std dev 

WATER Bars 15.6 (4.16) 12.9 (2.50) 0.08* 

STRESS Bars 15.6 (4-16) 13.4 (1.98) 0.16 

FINE ROOT 
(dry weight) 

.47 gm (.23) .48 gm (.26) 1.84 

INFECTION 
All disease 

77% (.09) 79% (.07) 1.20 

INFECTION 
A. obscura 

27% (.22) 2% (.08) 0.10* 

INFECTION 
P. schweinitzii 

58% (.27) 36% (.42) 0.34 

10 YEAR 14 mm (6.14) 18 mm (6.84) 0.56 

GROWTH (11/20") (14/20") 

BARK BEETLE 12% (.20) 2% (.08) 0.22 

•Statistically significant at the 90 percent level of confidence. 

15 



Correlation Coefficients 

Correlation coefficients in general were very low. No results were over r = .77. Some of the most 

highly correlated readings were between the degree of bark beetle infection and percent live 

cambium, percent bole scorch, and percent crown scorch, in descending order (table 3). Fine root 

biomass was negatively correlated with the amount of total root disease infection (r = -.57). 

Separating Armillaria infection data from that of P.schweinitzii resulted in a correlation of r = .67 

between A. obscura and moisture stress. Correlations within the fire damage variables alone were 

all very high - percent live cambium was highly negatively correlated with bole and crown scorch. 

Table 3~Correlation coefficients. 

Variable r n Sig 

BARK BEETLE with % live cambium -.6992 15 .002 
with % crown scorch +-4792 15 0.35 
with bole scorch +.4450 15 .048 
with root biomass -.2928 30 .058 
with A. obscura +.2463 21 .141 
with P. schweinitzii -.2042 21 .187 

ROOT BIOMASS with % root disease -.5737 21 .003 
with % live cambium +.3872 15 .077 
with % crown scorch -.2493 15 .185 
with % bole scorch -.0932 15 .370 
with water stress -.2197 28 .131 

% CROWN SCORCH with % bole scorch +.6624 15 .003 
with % live cambium -.7712 15 .000 

% BOLE with % live cambium -.6922 15 .002 
A. obscura with water stress +.6748 19 .001 
in Root with % live cambium -.7376 10 .007 
Crown with % bole scorch +.4130 10 .117 

with % crown scorch +.6481 10 .020 
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Cultures 

Species confirmed from culture identification are listed in table 4. Eighty-eight isolates were made 

initially- Of these, 41 were hymenomycetes. These were retained for further study. Forty one 

basidiomycete isolates were identified as nine species of known root pathogens. In some cases 

multiple species were isolated from the same sample. Phaeolus schweintzii was typically very 

difficult to isolate in culture in spite of obvious visual symptoms of the disease on samples. 

Armillaria obscura was present but only cultured and identified three times as it was easily 

confirmed in the field. Heterobasidion annosum was the most common species isolated and 

identified in culture with 13 occurrences. 

Table 4--ldentified cultures 

Species Identification Frequency Tissue Type 

Fomitopsis pinicola (Swartz:Fr.) Karst. 3 Red heartwood decay 
Heterobasidion annosum ((Fr.) Bref. 13 Red heartwood decay 
Perenniporia subacida (Peck) Donk 6 Red heartwood decay 
Phellinus weirii (Mrr.)Gilb. 2 Red heartwood decay 
Phellinus spp. B * 4 Red heartwood decay 
Phellinus pini (Thore.:Fr.) A.Ames 2 Red heartwood decay 
Resinecium bicolor (Alb. et Schw.:Fr.)Parm. 5 Red heartwood decay 

* Not identified to species 

DISCUSSION 

The high level of mortality observed in the burned stand was a result of the amount of combined 

damages imposed on the trees. Although the xylem pressure potential was significantly higher on 

the burned site it was only by about 3 bars. Without environmental data to explain the variation 

in these measurements it is difficult to be totally conclusive based only on the water stress. 

Therefore, the visual estimates of poor vigor (new branch growth, poor crown condition) are relied 
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upon to draw conclusions concerning the impact of fire damage, root disease infection, and bark 

beetle infestation. 

Root Disease Infection 

Infection by P. schweinitzii alone seldom causes standing mortality except on rocky, dry sites in 

the northern Rocky mountains.1 It predisposes host trees to infection by other pathogens such as 

A obscura or to bark beetle attack (Hadfield et al. 1986, Hagle 1981). Similar infection rates by P. 

schweinitzii on both the burned and unburned sites and between trees with the least and most 

severe crown symptoms indicates that mortality on the burned site was not attributable to P. 

schweinitzii infection alone. Within the 2 years since burning the stress imposed by underburning 

did not cause an increase in the level of infection of P. schweinitzii on the burned site. All of the 

trees sampled had high rates of infection by P. schweinitzii. This is supported by the insignificant 

difference in 10-year radial growth between the two treatment sites. The infection probably con­

tributed to the visible decline, and subsequent infection by A obscura, in conjunction with the 

effects of burning. 

The significantly higher level of A obscura (P <.10) on root crowns on the burned site follows 

patterns observed elsewhere. Armillaria has been observed to form localized, latent infections on 

Douglas-fir roots which become more active and extensive as the tree loses resistance (Wargo and 

Shaw 1985). Wargo (1983) states that a strong relationship exists between stress and 

1 Unpublished report on file with Dr. Susan Hagle, USDA Forest Service, P.O. Box 7669, Missoula, 
MT 59806 
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Armillaria mellea as a tree pathogen in eastern hardwoods. Hagle (1981) also found Armillaria 

invading and killing roots previously infected with P. schweinitzii. Although there was no reliable 

correlation found between Armillaria infection and other damage factors it was more extensive on 

the burned site and in locations on the roots that would indicate primary, advanced infections. Its 

prevalence on dead or dying trees demonstrates its tendency to infect trees weakened and 

predisposed to attack. This would support the hypothesis that the combined effects of fire damage 

and P. schweinitzii infection would result in increased stress and infection by Armillaria. 

Once infected by A. obscura, the tree is further stressed by that infection. Tkacz and Schmitz (1986) 

hypothesized that Armillaria interfere with water absorption as it kills the phloem (although in this 

case A. obscura was not highly correlated in a negative manner with percent live cambium) and 

decays the stem. Ferrell and Smith (1976) found Abies concolor (Gord. and lend) Lindl. saplings 

exhibiting high moisture stress (-20 bars in mid August, predawn readings) when greater than 95 

percent of the root system was infected by Heterobasidion annosum. Root disease infection lowers 

the resistance of trees to secondary attack by bark beetles (Geizler et al. 1980, Hertert et al. 1975). 

Hagle (1981) found P. schweinitzii associated with dead rootlets and frequent adventitious rooting 

on severely infected Douglas-fir roots. The levels of P. schweinitzii infection in her study were 

similar to these stands. She suggested that adventitious roots may compensate for rootlets lost 

due to infection and aid in tree survival by supplementing water uptake. Adventitious rooting was 

observed in this study on both thinned stands. However, fire damage to the root systems may have 

counteracted any benefits of the adventitious roots resulting in greater restriction of water uptake 

on the burned site. 

Phaeolus schweinitzii is difficult to capture in live culture and is sensitive to drying out (personal 

communication, Dr. Sue Hagle). The high frequency of H. annosum among isolates reflect its 
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relatively easy isolation and identification. It was infrequently diagnosed from visual symptoms in 

the field. The paucity of annosus root disease symptoms in the root system indicates that H. 

annosum was relatively unaggressive in this situation compared to P. schweinitzii and A obscura. 

Bark Beetle Impact 

The relationship between Douglas-fir beetle mortality and fire damage has been documented 

(Furniss 1965) as has the association between beetle mortality and disease infection (James and 

Goheen 1981, Hertert et al. 1975, Partridge and Miller 1972) and beetle mortality and water stress 

(Rudinsky 1966, Ferrell 1978). The slightly higher (although not statistically significant) level of 

cambium girdling by bark beetle (P < .22) on the burned site suggests the beetles played a similar 

role in this situation. The association is compounded by two unrelated, predisposing factors; root 

disease infection and fire damage. 

White fir has been found to have a moisture stress threshold of -20 bars (predawn) for susceptibility 

to fir engraver beetle (Scolytus ventralis Leconte) attack (Ferrell 1978). Also, trees with xylem 

pressure potential above -15 bars produced resinosis which limited beetle mining. Berryman 

(1969) found a similar relationship in grand fir (Abies grandis). The average moisture stress 

readings for trees attacked by beetles in this study was -17 bars (table 2), but two of the five 

attacked trees had died. These trees may have represented the high end of the population with 

regard to moisture stress. Water stress measurement only on survivors probably yielded an 

artificially low level of stress in the burned stand where nearly half of the trees had died. 

The association between root disease and bark beetles is partially represented in this study by the 

correlation between the percent infection by A. obscura and beetle girdling (table 3). Though the 

correlation and significance level was not high between A. obscura and percent bark beetle girdle, 
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the association was negative with percent P. schweinitzii infection and percent beetle girdling. This 

reflects the additional water stress Armillaria imposes as it kills the cambium and decays the 

sapwood (Tkacz and Schmitz 1986) or zone of water transport. Phaeolus schweinitzii acts more 

slowly to kill rootlets and stub roots. Adventitious roots produced in response to P. schweinitzii 

infection also may offset some of the root damage. This is also supported by the positive correla­

tion between Armillaria infection and moisture stress (r = +.5365). Ferrel and Smith (1976) found 

that susceptibility of white fir to bark beetles was only evident in trees with medium to severe root 

decay by H. annosum which, like Armillaria, also infects the cambium and sapwood area. 

Increased susceptibility of root diseased trees to infestation by bark beetles occurs by one of two 

theoretical methods (Tkacz and Schmitz 1986) - 1) reducing the resin exudation for wound 

response in the tree or 2) causing the tree to produce primary attractants to draw the beetles for 

attack. Resin was not observed in most of the Douglas-fir beetle galleries in this study indicating 

the trees were sufficiently stressed to be unable to respond. In lodgepole pine, infection is thought 

to possibly cause production of trans-verbenol, the aggregating pheromone for mountain pine 

beetle (Dendroctonus ponderosae Hopk.), which predisposes trees to attack (Pitman et al. 1968). 

In either case, the beetles preferentially attacked stressed trees infected with root disease and 

injured by fire. 

Douglas-fir beetle attacks in this study were most highly correlated with all forms of fire damage 

(table 3). This follows similar patterns to those found by Furniss (1965). Location of attacks support 

this also because most attacks were observed in the lower portion of the bole where fire damage 

was concentrated on trees in the burned site. The variable most highly correlated with beetle 

damage was percent live cambium. This was not surprising as the beetle damage was measured 

as percent of the sample girdled by larval galleries. The correlation with percent bole scorch, which 
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would be assumed to be related to percent live cambium and percent beetle girdling, was much 

lower. 

Crown scorch, the second highest correlation with beetle damage, is the most common indicator 

of fire damage and is used to rate fire damaged trees for potential mortality (Ryan et al. 1988, 

Ryanand Reinhardt 1988, Reinhardt and Ryan 1989, Wyant et al. 1986, Peterson 1984, Bevins 

1980, Furniss 1965). Peterson and Arbaugh (1986) found that crown scorch and insect damage 

were the best predictors for survival of Douglas-fir and concluded that crown scorch reduced the 

photosynthetic capacity of a tree lowering resistance to insect damage. The correlation between 

crown scorch and beetle girdling supports this pattern in spite of the lack of statistical correlation 

with moisture stress. 

Direct Fire Impact 

The contribution of fire to root system damage is a function of duff consumption and soil moisture 

reduction (Shearer 1975, 1976). The greater the duff consumption, the more heat flux generated 

through the mineral soil and to the superficial roots. The low levels of duff consumption and ground 

char in this study should have resulted in relatively light fire impact on the roots. In the large size 

class of roots (greater than 5 cm diameter) only 2 roots on one tree exhibited fire injury. Yet with 

a reduced root system this damage may have been sufficient to affect the fine root production 

capacity. Ryan (1989) states that increased moisture stress, stomatal closure, and reduced photo­

synthesis can result from a reduced root volume size. Ultimately, the combined effects of fire, root 

disease, and bark beetles resulted in high rates of tree mortality. 

In addition, the lethal rate of crown scorch is reported to be 60 percent for mature Douglas-fir 

(Norum 1977, Wyant et al. 1986). The average percent crown scorch measured in this study was 
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37 percent. This would also indicate that fire damage alone was not sufficient to cause high levels 

of mortality. Ryan (1989) and Chambers and others (1986) state that vigor and crown ratio 

influence survival of mature trees with crown scorch. As trees age, they have less allocated carbon 

for repair and defense due to large respiring areas. Crown reduction in this study could have 

resulted in stress due to extreme pest damage combined with impaired photosynthesis due to 

crown damage. 

Crown scorch and bole scorch, the two most reliable predictors of fire related mortality, both 

showed a highly negative relationship to percent live cambium. This was not surprising as the 

primary factors in cambial damage are bark thickness and duration of the fire (Ryan 1982b). 

Although not measured, bark was observed to be very thick as would be expected in this species 

and size class (average diameter of 67 cm or 27 inches). The correlation between percent live 

cambium and extent of infection by A. obscura was much lower than for the fire variables or bark 

beetles. 

Large trees are more resistant to fire due to bark thickness which reduces injury to the cambium 

(Ryan and Reinhardt 1988, Ryan et al. 1988, Peterson and Arbaugh 1986, Wyant et al. 1986) and 

higher crowns reducing crown scorch. The trees in this study would normally escape damage due 

to their large size class and the fact that the average percent live cambium was 79 percent. This 

is also confirmed by the results from using Reinhardt and Ryan's model (1989). Ryan and others 

(1988) also found a high probability of mortality if greater than 25 percent of the cambium is dead 

at breast height. Ryan (1989) suggests that carbohydrate flow to roots may be disrupted with 

extensive cambial killing leading to moisture stress. 

The relatively low percent of dead cambium directly from fire damage in this study suggests that 

cumulative effects must have played a part in the high rate of mortality. Several trees had greater 
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than 25 percent dead cambium resulting from the combination of damages and have high 

probabilities of death. Increased conifer mortality when crown scorch was accompanied by root 

and bole damage was also observed by others (Peterson and Arbaugh 1986, Wagener 1961, 

McConkey and Gedney 1951). In this case, the damage was inflicted by pest interactions. 

Fine Root Biomass 

As the primary source of absorbed water and nutrients for conifers, the fine root system plays a 

crucial role in tree survival. Damage to the root system of trees by fire and disease infection would 

reduce the overall size of the system with consequences for water uptake. Due to the concentration 

in the top 15 to 20 cm of forest soil the roots are in a vulnerable location exposed to temperature 

changes from fire (Vogt et al. 1980). Without the recurring root flush in damaged roots, the 

numbers are drastically reduced along with the absorbing capacity of the root system. Moisture 

requirements of the tree are not satisfied and water stress can result due to the reduced absorption 

capacity. 

Grier and others (1980) found greater fine root biomass in the forest floor litter layer of mature (180 

year old), subalpine forests and associated it with detritus accumulation. They suggested disturb­

ance of the forest floor would reduce the litter layer and consequently the zone of maximum fine 

root production. Harvey and others (1978) also found the greatest number of ectomycorrhizal root 

tips in the organic soil fractions in Montana and suggested soil wood reduction would reduce 

mycorrhizae. These works imply that prescribed burning for site preparation would reduce the 

amount of fine root biomass produced. 

Insignificant results between the burned and unburned sites for fine root biomass are felt to be 

partly a result of difficulty in species identification, as stated previously. Although fine root biomass 
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was not significantly lower on the burned site it was found to be negatively correlated with the 

percent of all disease infected roots. This reflects the reduction in the effective size of the root 

system. 

Water Stress 

The xylem pressure potential measurements documented here do not approach the extremes for 

water stress documented by other researchers. Base potential (predawn pressure potential) 

readings reported by Waring and Cleary (1967) for Douglas-fir at the peak of summer drought were 

-14 bars. Running (1976) reported diurnal xylem pressure potential thresholds of -20 bars in 

Douglas-fir in Oregon. As soil moisture appeared not limiting, it was hoped that mid-day water 

stress measurements would reflect the physiological stress imposed by fire, insect, and root 

disease damage on water uptake and transport. The results were not conclusive as diurnal 

environmental changes were undoubtedly responsible for some of the differences in water stress 

readings. 

Although the use of xylem pressure potential to measure relative stress was not successful, visual 

observations of crowns indicated increased stress on the burned site. New growth was not 

common on lateral branches of burned site trees. Cryptoporus volvatous (Pk.) Shear conks were 

present on some of the more extensively burned but living trees indicating sapwood decay in the 

stem. The significantly higher level of infection by A. obscura at the root crown 

also indicated a rapid and advanced colonization of the root system. 

The reduced root system size caused by root disease probably caused some reduced water 

uptake even though this was not reflected in the xylem pressure potential data. Teskey et al. (1985) 

found a decline in xylem pressure potential when half of the root system of Abies amabilis (Dougl.) 
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Forbes was severed. Running (1980) found that water relations in lodgepole pine (Pinus contorta 

Dougl ex. Loud) were controlled primarily by root and soil resistance. Root systems reduced in 

overall size would be less likely to compensate for this resistance and produce a favorable flow 

of water. 

The slightly decreased xylem pressure potential on the burned site in spite of reduced vegetative 

competition could be influenced by the cumulative effects of the damage agents. Thinning and 

removal of understory vegetation reduces vegetative competition for soil moisture (Brix and 

Mitchell 1986, Petersen et al. 1988). Though not conclusive, the slightly lower pressure potential 

might suggest a degree of water stress that is supported by visual estimates of tree vigor. The 

additional impact of fire on the infected root system stressed the trees to the point that new growth 

was absent on crown samples and crown condition was poor. In addition, trees attacked by bark 

beetles were unable to resist attack by producing resins in a wound response. 

Grissom (1985) measured water stress on 10-year-old crown scorched slash pine and found a less 

negative xylem pressure potential compared to the unscorched trees. He postulated that the 

difference was due to reduction in the transpiring area of the tree. Reinhardt and Ryan (1988) found 

that individual tree growth was not reduced by low levels of crown scorch. Chambers and others 

(1986) state that tree growth and survival are correlated to tree vigor at the time of fire impact. The 

trees examined in this study were overmature and not vigorous. Therefore, the impact of crown 

scorch would have a negative effect on the carbon balance of the tree overriding any potential 

water balance benefits. 
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CONCLUSIONS 

The high frequency of mortality of unsampled trees in the burned stand reflects the combined 

impact of fire damage, bark beetle infestation, and root disease infection. The level of fire damage 

on the burned site, as reflected by low crown scorch percents and relatively high percent live 

cambium, was judged not to be sufficient to cause death. Nevertheless, the combination of fire 

damage to some subsurface lateral roots, root system reduction by advanced P. schweinitzii and 

A. obscura infection, and girdling of the phloem by beetle galleries resulted in stress of the residual 

trees based on crown condition observations. 

The use of xylem pressure potential to measure the moisture stress was not conclusive due to 

diurnal environmental variation. In addition, the most extremely stressed trees died prior to this 

study perhaps resulting in an unbalanced range of samples for water stress. It is postulated that 

some water stress was present due to a reduced root system size caused by root disease infection. 

This, when combined with disturbance of the organic layer where fine root production occurs, 

resulted in impaired fine root production and reduced water absorption. Reduced water transport 

in the xylem due to infection and decay would also be a contributing factor. 

The water stress combined with reduction of the photosynthetic area probably resulted in carbon 

stress, and in many cases death, as the trees on the burned site were not capable of maintaining 

growth or resisting insect and disease attack. Trees were predisposed due to extensive P. 

schweinitzii infection for many years previous to the burn. The limited sample sizes produced high 

levels of variation. Combined with the ex post facto nature of the study it was difficult to produce 

conclusive results. 

27 



LITERATURE CITED 

Albini, F.A. 1976. Estimating wildfire behavior and effects. USDA For. Serv., Gen. Tech. Rep. INT-30, 
92 p. 

Anderson, H.E. 1982. Aids for determining fuels models for estimating fire behavior. USDA, For. 
Serv. Gen. Tech. Rep. INT-122. 22 pp. 

Berryman, A.A. 1969. Response of Abies grandis to attack by Scolytus ventralis 
(Coleoptera:Scolytidae). Can. Ent. 101:1033-1041. 

Bevins, C.D. 1980. Estimating survival and salvage potential of fire-scarred Douglas-fir. USDA, For. 
Serv. Pap. INT-287. 8 pp. 

Brix, H., and A.K. Mitchell. 1986. Thinning and nitrogen fertilization effects on soil and tree water 
stress in a Douglas-fir stand. Can. J. For. Res. 16:1334-1338. 

Chambers, J.L., P.M. Dougherty, and T.C. Hennessey. 1986. Fire: Its effects on growth and 
physiological processes in conifer forests. P. 171-189 in Hennessey, T.C., P.M. Dougherty, S.V. 
Kossuth, and J.D. Johnson, Stress physiology and forest productivity. Kluwer Academic 
Publishers. 

Cooper, S.V., K.E. Neiman, R. Steele, and D.W. Roberts. 1987. Forest habitat types of northern 
Idaho: a second approximation. USDA, For. Serv. Gen. Tech. Rep. INT-236. 136 pp. 

Ferrell, G.T. 1978. Moisture stress threshold of susceptibility to fir engraver beetles in pole-size 
white firs. For. Sci. 24(2):85-92. 

Ferrell, G.T. and R.S. Smith. 1976. Indicators of Fomes annosus root decay and bark beetle 
susceptibility in sapling white fir. Forest Sci. 22:365-369. 

Furniss, M.M. 1965. Susceptibility of fire-injured Douglas-fir to bark beetle attack in southern Idaho. 
J. For. 63:8-11. 

Geiszler, D.R., R.I. Gara, C.H. Driver, V.F.Gallucci, and R.E. Martin. 1980. Fire, fungi, and beetle 
influences on a lodgepole pine ecosystem of south-central Oregon. Oecologia 46:239-243. 

Grier, C.C., K.A. Vogt, M.R. Keyes, and R.L. Edmonds. 1980. Biomass distribution and above- and 
below-ground production in young and mature Abies amabilis zone ecosystems of the Wash­
ington Cascades. Can. J. For. Res. 11:155-167. 

28 



Grissom, J.E. 1985. Effect of crown scorch on water status and growth of slash pine trees. M.S. 
Thesis, U. Of Florida. 

Hadfield, S.H., D.J. Goheen, G.M. Filip, C.L. Schmitt, and R.D. Harvey. 1986. Root diseases in 
Oregon and Washington conifers. USDA For. Serv. Rep. R6-FPM-250-86. 65 pp. 

Hagle, S.K. 1981. Occurrence, symptoms, and interactions of Phaeolus schweinitzii and 
associated fungi causing decay and mortality of conifers. Dissertation University of Idaho, 
College of Natural Resources. 157 pp. 

Harvey, A.E., M.F. Jurgensen, and M.J. Larsen. 1978. Seasonal distribution of ectomycorrhizae in 
a mature Douglas-fir/Larch forest soil in western Montana. Forest Sci. 24(2):203-208. 

Hertert, H.D., D.L. Miller, and A.D. Partridge. 1975. Interaction of bark beetles 
(Coleoptera:Scolytidae) and root-rot pathogens in grand fir in northern Idaho. Can. Ent. 
107:899-904. 

James, R.L. and D.J. Goheen. 1981. Conifer mortality associated with root disease and insects in 
Colorado. Plant Disease 65:506-507. 

McConkey, T.W. and D.R. Gedney. 1951. A guide for salvaging white pine injured by forest fires. 
USDA For. Serv. Northeast Exper. Sta. Res. Note No. 11.4 pp. 

McQueen, D.R. 1973. Changes in understory vegetation and fine root quantity following 
thinning of 30 year P. radiata in central N. Island, New Zealand. J. Appl. Ecol. 10(1):13-21. 

Nisbet, T.R. and C.E. Mullins. 1985. A comparison of live and dead fine root weights in stands of 
Sitka spruce in contrasting soil water regimes. Can. J. For. Res. 16:394-397. 

Nobles, M.K. 1948. Studies in forest pathology VI. Identification of cultures of wood-rotting fungi. 
Canadian Journal of Research C, 26:281 -431. 

Nobles, M.K. 1964. Identification of cultures of wood-inhabiting hymenomycetes. Can. J. of 
Botany. 43:1097-1139. 

Norum, R.A. 1977. Preliminary guidelines for prescribed burning under standing timber in western 
larch/Douglas-fir forests. USDA For. Serv. Res. Note INT-229. 14 pp. 

Partridge, A.D. and D.L. Miller. 1972. Bark beetle and root rots related in Idaho conifers. Plant 
Disease Reporter. 56(6):498-500. 

Persson, H. 1979. Fine root production, mortality and decomposition in forest ecosystems. 
Vegetatio. 41:101 -109. 

Peterson, D.L. 1984. Predicting fire-caused mortality in four northern Rocky Mountain conifers. IN: 
Proceedings of Convention of Society of American Foresters, 1983, pp 276-280. 

Petersen, T.D., M. Newton, and S.M. Zedaker. 1988. Influence of Ceanothus velutinus and associat­

29 



ed forbs on the water stress and stemwood production of Douglas-fir. For. Sci. 34(2):333-343. 

Peterson, D.L. and M.J. Arbaugh. 1986. Postfire survival in Douglas-fir and lodgepole pine: 
comparing the effects of crown and bole damage. Can. J. For. Res. 16:1175-1179. 

Pitman, G.B., J.P. Vite, G.B. Kinzer, A.F. Fentiman. 1968. Bark beetle attractants: Trans-verbenol 
isolated from Dendroctonus. Nature 218:168-169. 

Reinhardt, E.D. and K.C. Ryan. 1988. Eight-year tree growth following prescribed underburning 
in a western Montana Douglas-fir/western larch stand. USDA For. Serv. Intermountain Re­
search Station, Res. Note INT-387, 6 pp. 

Reinhardt, E.D. and K.C. Ryan. 1989. How to estimate tree mortality resulting from underburning. 
Fire Management Notes 49(4):30-36. 

Ritchie, G.A. and T.M. Hinckley. 1975. The pressure chamber as an instrument for ecological 
research. Adv. Ecol. Res., 9:165-254. 

Rudinsky, J.A. 1966. Host selection and invasion by the Douglas-fir beetle, Dendroctonus 
pseudotsugae Hopkins, in Coastal Douglas-fir forests. Canad. Ent. 98:98-111. 

Running, S.W. 1976. Environmental control of leaf water conductance in conifers. Can. J. For. Res. 
6(1) :104-112. 

Running, S.W. 1980. Field estimates of root and xylem resistance in Pinus contorta using root 
excision. J. Exp. Bot. 31:555-569. 

Ryan, K.C. 1982a. Evaluating potential tree mortality from prescribed burning. IN: Proceedings 
from Site Preparation and Fuels Management on Steep Terrain. David Baumgartner, editor. 
Spokane, WA., Feb. 15, 16, and 17, 1982. 12 pp. 

Ryan, K.C. 1982b. Techniques for assessing fire damage to trees. IN: Proceedings from Fire-It's 
Field Effects. Intermountain Fire Council and Rocky Mountain Fire Council Symposium, Jack­
son, WY., Oct. 19-21, 1982. 11 pp. 

Ryan, K.C. 1989. Predicting prescribed fire effects on trees in the interior west. IN: 
Proceedings from the Art and Science of Fire Management. Interior West Fire Council Annual 
Meeting and Workshop. Kananaskis Village, Alberta, Can. Oct. 24-27, 1988. 22 pp. 

Ryan, K.C. and N.V. Noste. 1983. Evaluating prescribed fire. IN: Proceedings from Wilderness Fire 
Symposium, Missoula, MT., Nov. 15-18, 1983. 

Ryan, K.C., D.L. Peterson, and E.D. Reinhardt. 1988. Modeling long-term fire caused mortality of 
Douglas-fir. For. Sci. 34(1 ):190-199. 

Ryan, K.C. and E.D. Reinhardt. 1988. Predicting postfire mortality of seven western conifers. Can. 
J. For. Res. 18:1291-1297. 

30 



Shearer, R.C. 1975. Seedbed characteristics in western larch forests after prescribed burning. 
USDA, For. Serv. Res. Pap. INT-167. 26 pp. 

Shearer, R.C. 1976. Early establishment of conifers following prescribed broadcast burning in 
western larch/Douglas-fir forests. IN: Proceedings, Tall Timbers fire ecology conference and 
Intermountain Fire Research Council fire and land management symposium; 1974 Oct. 8-10; 
Missoula, MT. Tallahassee, FL: Tall Timbers Research Station; 1976:14:481-500. 

Stalpers, J.A. 1978. Identification of wood inhabiting fungi in pure culture. Centraalbureau voor 
Schimmelcultures, Baarn, Netherlands; Studies in Mycology 16:1-248. 

Teskey, R.O., C.C. Grier, and T.M. Hinckley. 1985. Relation between root system size and water 
inflow capacity of Abies amabilis growing in a subalpine forest. Can. J. For. Res. 15:669-672. 

Tkacz, B.M. and R.F. Schmitz. 1986. Association of an endemic mountain pine beetle population 
with lodgepole pine infected by Armillaria root disease in Utah. USDA For. Serv. Res. Note, 
INT-353. 7 pp. 

Vogt, K.A., R.L. Edmonds, and C.C. Grier. 1980. Seasonal changes in biomass and vertical 
distribution of mycorrhizal and fibrous-textured conifer fine roots in 23- and 180-year-old Abies 
amabilis stands. Can. J. For. Res. 11:223-229. 

Wagener, W W. 1961. Guidelines for estimating the survival of fire-damaged trees in California 
USDA For. Ser. Pacific Southwest Research Sta. Berkeley, CA. Misc. Pap. No. 60, 11 pp. 

Wargo, P.M. 1983. How stress predisposes trees to attack by Armillaria mella - a hypothesis. IN: 
Proceedings of the Sixth International Conference on Root and Butt Rots of Forest Trees; 1983 
Aug. 25-31; Melbourne, Australia; 1983:115-130. 

Wargo, P.M. and C.G. Shaw, III. 1985. Armillaria root rot: The problem is being solved. Plant 
Disease 69(10): 826-832. 

Waring, R.H. and B.D. Cleary. 1967. Plant moisture stress: Evaluation by pressure bomb. Science, 
N.Y. 155:1248-1254. 

Wyant, J.G. and P.N. Omi, R.D. Laven. 1986. Fire induced tree mortality in a Colorado ponderosa 
pine/Douglas-fir stand. For. Sci. 1:49-59. 

31 


	Evaluation of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seed tree mortality on the Clearwater National Forest, ID
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

