
University of Montana University of Montana 

ScholarWorks at University of Montana ScholarWorks at University of Montana 

Graduate Student Theses, Dissertations, & 
Professional Papers Graduate School 

2006 

Ecosystem engineering: beaver and the population structure of Ecosystem engineering: beaver and the population structure of 

Columbia spotted frogs in western Montana Columbia spotted frogs in western Montana 

Stephen Joseph Amish 
The University of Montana 

Follow this and additional works at: https://scholarworks.umt.edu/etd 

Let us know how access to this document benefits you. 

Recommended Citation Recommended Citation 
Amish, Stephen Joseph, "Ecosystem engineering: beaver and the population structure of Columbia 
spotted frogs in western Montana" (2006). Graduate Student Theses, Dissertations, & Professional 
Papers. 346. 
https://scholarworks.umt.edu/etd/346 

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of 
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an 
authorized administrator of ScholarWorks at University of Montana. For more information, please contact 
scholarworks@mso.umt.edu. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267577822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/346?utm_source=scholarworks.umt.edu%2Fetd%2F346&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu


ECOSYSTEM ENGINEERING: BEAVER AND THE 
POPULATION STRUCTURE OF COLUMBIA SPOTTED 

FROGS IN WESTERN MONTANA 
 
 

By 
 

Stephen Joseph Amish 
 

B.A., Whitman College, Walla Walla, WA, 1989 
 

Thesis 
 

presented in partial fulfillment of the requirements 
for the degree of 

 
Master of Science 

in Wildlife Biology  
 

The University of Montana 
Missoula, MT 

 
Autumn 2006  

 
Approved by: 

 
Dr. David A. Strobel, Dean 

Graduate School 
 

Dr. Lisa Eby, Chair 
Department of Conservation and Ecosystem Sciences 

 
Dr. Fred Allendorf 

Division of Biological Sciences 
 

Dr. P. Stephen Corn  
U.S.G.S. Northern Rocky Mountain Science Center 

 
 
 
 

 



 

 ii 
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ECOSYSTEM ENGINEERING: BEAVER AND THE POPULATION STRUCTURE OF COLUMBIA SPOTTED 

FROGS IN WESTERN MONTANA 

Chairperson: Lisa Eby 
 
 
    Beavers (Castor canadensis) are considered ecosystem engineers, altering hydrologic regimes, 
ecosystem processes, and modifying community structure. Effects of beaver on the spatial pattern of 
lentic habitat and populations using those habitats have not been examined. I used a landscape 
database and eight microsatellite markers to compare the scale and pattern of lentic sites, their 
occupancy, and population structure by Columbia spotted frogs (Rana luteiventris) between 
watersheds with and without beaver activity. Across all watersheds frog breeding sites were more 
clustered than the underlying pattern of lentic habitat. Beaver watersheds had four times as many 
lentic and breeding sites than non-beaver watersheds. Non-beaver watersheds often had only one frog 
breeding site. Frog breeding sites were more dispersed within beaver drainages.  In addition, frog 
breeding sites were evenly distributed across the elevational gradient in beaver watersheds while they 
were centered above the watershed midpoint in non-beaver watersheds. Columbia spotted frog 
breeding sites were more dispersed within drainages with evidence of beaver presence than would be 
expected given the configuration of the underlying lentic habitat and have persisted despite being 
separated by distances larger than its dispersal ability.  The genetic divergence seen within watersheds 
revealed that landscape configuration affected the fine scale population structure of Columbia spotted 
frogs.  Landscape patterns of breeding sites were reflected in the presence and strength of isolation by 
distance equilibriums and the overall level of population subdivision within watersheds.  Watersheds 
with beaver presence and an average distance of less than five kilometers between breeding sites 
showed higher levels of connectivity than did non-beaver watersheds with an average distance of 
more than five kilometers between breeding sites.  More importantly, short beaver watersheds had 
lower levels of genetic divergence between breeding sites than those in long non-beaver watersheds 
separated by the same distance, even when distances were within the commonly observed dispersal 
ability of the frogs.  Typical beaver watersheds in southwestern Montana with similar habitat 
configurations are likely composed of a single population, while non-beaver watersheds likely contain 
a single or a few isolated population/s.  Careful consideration of potential population effects for 
species dependent upon habitat beaver create is required. 
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Chapter 1 
Introduction 

Over the past two decades amphibians have been the focus of increasing concern because of 

potential population declines around the world (Houlahan et al. 2000).  Although amphibian 

populations naturally undergo wide fluctuations in number and many factors negatively affect 

amphibian populations, habitat loss and fragmentation are often cited as key factors behind 

population declines and decreasing overall diversity (e.g., Semlitsch 2002).  Although the importance 

of current land use practices and other anthropogenic activities in recent losses around the world is 

still unknown, the historic loss of habitat through both changing land use and management activities 

in temperate regions of North America have affected amphibian populations.  For example, losses in 

amphibian diversity have been tied to the historic draining of wetlands and clearing of forests (Hecnar 

& M’Closkey 1996), and the introduction of fish to alpine lakes led to population declines of the 

mountain yellow-legged frog (Knapp & Matthews 2000). 

Much of the historical lentic habitat in North America was created by American beaver (Castor 

canadensis) activity.  In the upper Mississippi and Missouri river basins, Hey and Philippi (1995) 

estimated that a pre-trapping population of 40 million beaver could have created 207,000 km2 of 

beaver ponds (an area roughly half the size of Montana).  A dramatic decrease in beaver numbers 

from exploitation resulted in a large change in the landscape, converting a considerable portion of the 

U.S wetlands to dry land (Naiman et al. 1986).  For example, in the upper Mississippi and Missouri 

river basins, only one percent of the estimated historic area of beaver ponds remains today (Hey & 

Philippi 1995).  Although this habitat was lost rapidly after beaver removal, its rate of creation where 

beaver have returned has been slow (Johnston & Naiman 1990, Snodgrass 1997).   

Beaver wetlands have important effects on water storage and water table levels, 

biogeochemical cycling such as nitrogen flow and carbon storage, biotic productivity of invertebrate 

communities, plant and bird biodiversity, and aquatic vertebrate communities in several regions of 

North America (for reviews see Naiman et al. 1986, Hammerson 1994, Collen & Gibson 2001).  In 

the Intermountain West, alterations to the hydrology and nutrient flow of subalpine and mid-elevation 

valleys by beaver are important for maintaining the characteristics of aquatic and riparian systems 

(Jonas 1955, Neff 1957, Munther 1982, Maret 1985, Parker et al. 1985, Dahm 1986).  Beaver 

wetlands also are habitat for many species of amphibians.  Disruption of the temporal and spatial 
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distribution of these critical habitats may fragment amphibian populations dependent on a landscape 

shaped by beaver disturbance. 

Rapid pond drying can result in a decline and the eventual extinction of a local amphibian 

population (Semlitsch 2002).  In southwestern Montana the ephemeral nature of most water bodies 

(69%; Maxell, unpub. data), small population sizes, and high variability in recruitment may make 

dispersal of individuals critical for overcoming the effects of habitat fragmentation and for long-term 

population persistence of pond breeding species.  

Metapopulation theory is often invoked in discussions about conservation biology or 

management of populations at the landscape and regional scale because of its ability to tie population 

dynamics and landscape processes such as habitat fragmentation together (McCullough 1996).  The 

theory implies that the size, number, and distribution of habitat patches affect the dynamics and long-

term persistence of a population (Rieman & Dunham 2000).  However, even with the current 

concerns about habitat fragmentation and the intuitive appeal of metapopulation theory, it is rare to 

find data that compare movement behavior among landscapes that differ in the amount and 

configuration of suitable habitat for a species (Wiens 1997).  Consequently, little is known about the 

mechanisms that link changes in habitat pattern with potential short and long-term ecological 

consequences (McGarigal and Cushman 2002).   

The loss of beaver and the associated standing water bodies and wetlands they create may be an 

important source of habitat loss and fragmentation for lentic breeding amphibians.  This research 

investigated how ecosystem engineering by beaver may be altering the quantity and distribution of 

breeding habitat for amphibians within watersheds across southwestern Montana and the genetic 

population structure of one amphibian species, the Columbia spotted frog (Rana luteiventris), in these 

watersheds.  I focused on Columbia spotted frogs because of their abundance and because their 

ecology links them tightly to the lentic habitat created by beaver.  

 

1.1 Columbia spotted frog 

1.1.1 Natural history 

Columbia spotted frogs have the smooth skin, long legs, and jumping ability typical of a 

member of the family Ranidae, or true frogs.  They are highly aquatic and are usually not found far 

from the edge of lentic or riparian habitat used for foraging.  Adults generally over-winter in larger 
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permanent water bodies or in springs (Turner 1960, Pilliod 2002).  Breeding typically occurs soon 

after snow melt or pond ice out.  Females usually deposit eggs in shallow water among emergent 

vegetation.  Most data currently available for spotted frogs from mark recapture and telemetry studies 

focus on seasonal migrations and short distance dispersal (< 2 km; see Turner 1960, Pilliod 2002, 

Funk et al. 2005b).  For example, mark recapture work on Keeler and Marten Creeks by Funk et al. 

(2005b), showed most juvenile dispersals covered distances of ≤ 1 km, with low frequency dispersals 

of ≤ 6 km.  Almost all adults in the same area covered distances of ≤ 1 km, while one or two 

dispersals of ≤ 3 km were recorded (Funk et al. 2005b).  

 

1.1.2 Conservation status 

Columbia spotted frogs are common in Pacific Northwest and the Rocky Mountains where they 

are continuously distributed from eastern Washington, to western Montana and northward to 

southeast Alaska. Disjunct populations occur on isolated mountains and in arid-land springs in eastern 

Oregon, northern Nevada and Utah, and southern Idaho.  Isolated southern populations in the Great 

Basin (Idaho, Nevada) are declining due to habitat loss and degradation from dewatering and exotic 

species (NatureServe 2006).  In Montana, within the center of its range, the species is experiencing a 

loss of habitat from a host of mechanisms commonly cited for amphibian declines in temperate 

regions including the stocking of historically fishless lakes, loss of habitat due to exotic species like 

the bullfrog, changing land use (e.g., the draining and filling of wetlands due to development and 

agricultural uses), the extirpation of beaver, pollution, and the spread of disease (Maxell 2000).  Some 

of these same mechanisms, specifically changing land use and beaver extirpation, have been 

implicated in declines which led to the protection of two populations at the southern periphery of the 

species’ range (USFWS 2002).   

Although range-wide differentiation (Green et al. 1996) and possible patterns of regional 

isolation have been described (Funk et al. 2005a), the level and importance of current gene flow for 

local population persistence is still unknown for Columbia spotted frogs (USFWS 2002) and other 

threatened ranid species in the West.  Local population dynamics and ecological connectivity of 

subpopulations that have not undergone decline need to be investigated if current threats from 

fragmentation are going to be addressed (Semlitsch 2002).  Variation in landscape composition, vital 

rates, and gene flow in undisturbed landscapes need to be quantified so that their importance to 

population dynamics can be judged.  Studies of local genetic variation using high-resolution 
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microsatellite markers can help identify fine scale temporal and spatial mechanisms leading to habitat 

fragmentation and for defining appropriate management units. 

 

1.2 Objectives 

 Examining dispersal across different landscapes is essential to understand connectivity 

among amphibian populations and how humans are altering it. Examining genetic divergence within 

watersheds describes a species’ long-term dispersal signature across different breeding habitat 

distributions, providing critical information about the importance of landscape in determining 

population structure.  

This thesis focused on two main topics involving how landscape influences populations of 

Columbia spotted frogs in western Montana watersheds. In chapter two, I addressed two main 

questions: How do spotted frog detection patterns compare to the underlying lentic habitat 

distribution and their estimated dispersal distances? And, how do lentic habitat and spotted frog 

detections patterns in beaver and non-beaver watersheds differ? In chapter three, I used among and 

within watershed patterns of Columbia spotted frog genetic variation to address two questions: How 

are Columbia spotted frog populations structured? And, how does the configuration of breeding sites 

within watersheds affect population structure? 

 

1.3 Summary and synthesis 

 

1.3.1 How do spotted frog detection patterns compare to the underlying lentic habitat 
distribution and their estimated dispersal distances? 

Habitat patterns within watersheds were explored using three types of lentic habitat: lentic 

sites (slow moving or standing bodies of water), potential spotted frog breeding sites (lentic sites with 

shallow water and emergent vegetation where adult frogs were detected), and spotted frog breeding 

sites (lentic sites where egg masses, tadpoles, or breeding adults were detected).  I compared the scale 

and pattern of breeding sites to the underlying patterns of lentic habitat using univariate and point 

pattern statistics. Overall, the landscape structure of Columbia spotted frog breeding sites was more 

clustered than the underlying pattern of lentic habitat.  Since the configurations for lentic sites and 
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potential breeding sites were similar the availability of breeding habitat does not appear to constrain 

the distribution of frog breeding sites. Dispersal appears to be more limited than might be predicted 

based on the availability of suitable habitat, but the data cannot distinguish whether spatial 

dependence (too few sites at longer distances) or an ecological spatial processes (physical limit to 

dispersal ability) produced the observed pattern of spotted frog breeding sites.  Columbia spotted frog 

breeding sites were positively spatially autocorrelated up to 7 km given the underlying pattern of 

lentic sites. Possible mechanisms explaining the scale of clustering seen for spotted frog breeding 

sites include: lentic sites are too dispersed at longer distances, limited dispersal ability, and 

demographic stochasticity.  Mark-recapture studies and landscape genetics work suggest dispersal of 

Columbia spotted frogs is common at distances less than 2 km and rare over distances of 5 to 7.5 km 

(Funk et al. 2005b, Amish Chap. 3).  Columbia spotted frog dispersal could explain the higher 

clustering of breeding sites within the 2.5 to 6 km range than seen in the underlying pattern of lentic 

habitat.  

1.3.2 How do lentic habitat and spotted frog detection patterns in beaver and non-
beaver watersheds differ? 

 Beaver watersheds had higher numbers of all types of lentic habitat (~4x) and much higher 

spotted frog detection levels than non-beaver watersheds. Columbia spotted frogs and their breeding 

sites were detected at higher percentages (presence: +28%, breeding: +25%, >1 breeding site: +15%) 

in beaver than non-beaver watersheds.  Although differences in the spatial pattern of lentic habitat 

were minor between beaver and non-beaver watersheds, major differences in configurations of 

breeding sites were seen.  Breeding sites in beaver watersheds were much more dispersed than in non-

beaver watersheds.  Distances between different habitat types (lentic sites, potential and breeding 

sites), and the longest nearest-neighbor distance were significantly longer in beaver watersheds 

including many that were beyond the estimated dispersal distances for spotted frogs. In contrast, the 

median number of spotted frog breeding sites in non-beaver watersheds was one.  Where multiple 

breeding sites were detected in non-beaver watersheds, they were tightly clustered in the upper 

portion of the watershed with shorter (2 - 4 km) median distances between all habitat types well 

within estimated dispersal distances.  
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1.3.3 Overall genetic structure 

Population structure for Columbia spotted frogs in six western Montana watersheds varied 

from a single population to five populations for each of the five breeding sites sampled.  In general 

watersheds were characterized by low genetic connectivity between breeding sites with moderate 

levels of within population genetic diversity.  The level of genetic differentiation seen in this study 

across scales of 1 to 25 km (FST = 0.01 – 0.232) was similar to recent work done on R. luteiventris 

(Funk et al. 2005a) and R. cascadae (Monsen and Blouin 2004).  Lower values for the same scale 

(FST = 0.04 – 0.09) were seen for R. temporaria (Johansson et al. 2006) across a landscape with less 

physical relief and set in a matrix more hospitable to movement among sites.  Estimated levels of 

expected heterozygosity were within the range seen in other anuran studies (reviewed Hoffman et al. 

2004, Monsen and Blouin 2004). 

Across the study area, watersheds structure spotted frog populations. Similar to results in 

Funk et al. (2005a), basin or watershed groupings of breeding sites explained the highest portion of 

loci variation (18.1%) after breeding sites (23.9%).  Landscape structures associated with watersheds 

boundaries (like ridges) have been seen to be important for structuring populations of Columbia 

spotted frogs (Funk et al. 2005a) and are well supported for other amphibians (García-Paris et al. 

2000, Shaffer et al. 2000, Tallmon et al. 2000, Monsen and Blouin 2004).  The strong genetic 

subdivisions seen in two montane frog species (Monsen and Blouin 2004, Funk et al. 2005a, this 

study) and known effects of ridges suggest headwater watersheds are well suited for use as 

conservation and management units. 

Patterns of isolation by distance and levels of population subdivision within watersheds were 

different between ecoregions and are reflected in Columbia spotted frog population structure even 

though the hierarchical analysis found differences between ecoregion’s genetic variation to be non-

significant. Differences in effective population size do not appear to be responsible, because expected 

heterozygosity and the average number of alleles were similar across ecoregions. Geomorphology or 

patterns of human settlement may have influenced colonization and dispersal histories between 

regions.    

 

1.3.4 Population structure within watersheds 

Within watersheds, both the landscape pattern of sites and the relative location of sites within 

a watershed affected site levels of genetic subdivision. Bayesian analysis of breeding site allele 



15 

 

frequencies subdivided most watersheds into three or more populations. The range of population 

subdivision seen agreed with earlier work (1 – 5 populations; Funk et al. 2005a) and suggests fine-

scale population structure for Columbia spotted frogs varies widely.  General patterns of watershed 

subdivision fit well with drainage topography and likely dispersal corridors. Breeding sites organized 

along a linear riparian corridor showed the highest levels of connectivity.  In contrast, breeding sites 

separated even by short over-land distances showed high levels of genetic divergence and in some 

cases evidence of inbreeding and isolation.  

Low elevation clusters or complexes of sites separated by short dispersal distances (< 2 km) 

showed the highest genetic diversity and the lowest levels of genetic differentiation. Sites at the top of 

headwater basins showed lower genetic diversity and higher genetic differentiation over the same 

distances. Although many high elevation sites undoubtedly have very small effective population sizes 

because breeding aggregations are composed of few individuals, even those with large breeding 

aggregations had low genetic diversity thus small effective population sizes. 

 

1.3.5 How does the pattern of breeding sites within the watershed affect population 
structure? 

Short beaver and long non-beaver watersheds showed significantly different average FST 

values for two distance classes (0-2.5, 2.5-7.5 km).  The level of genetic differentiation exhibited over 

short and medium distances classes suggested population subdivision in long non-beaver watersheds 

but population connectivity in short beaver watersheds.  Estimates of the population subdivision 

within these watersheds supported these conclusions.  Other beaver and non-beaver watersheds 

examined in earlier studies have shown similar patterns (Funk et al. 2005).  There are several possible 

explanations for these differences.  In short beaver watersheds, the location of lentic habitat in 

riparian corridors may be important for maintaining connectivity between breeding sites, if dispersal 

success is higher along riparian corridors than over-land.  Alternatively, larger breeding aggregations 

with a higher number of juvenile dispersers in short beaver watersheds would maintain lower genetic 

divergence. With only one exception, the numbers of frogs or egg masses observed at breeding sites 

within watersheds during sample collection suggest they represent breeding aggregations of typical 

(~50 individuals; Werner et al. 2004) or smaller sizes with no differences between watershed types. 
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1.3.6 Synthesis 

As ecosystem engineers, beaver physically alter their environment changing the pattern of 

lentic habitat on the landscape (Power et al. 1996). Although many studies have examined how 

beaver have influenced the abundance, distribution, and diversity of biota (Naiman et al. 1986, 

Johnston and Naiman 1990, Snodgrass 1997, Stevens et al. 2007), none have linked these changes to 

population connectivity (Moore 2005).  Because Columbia spotted frogs have limited vagility and 

stochastic recruitment (Funk et al. 2005a,b, Maxell unpub. data), dispersal is important for 

maintaining populations over time. By creating habitat, beaver increase the number of frog breeding 

sites and redistribute them across the landscape more evenly.   

In general, breeding sites occurred in patches within the background of clustered lentic sites. 

The distribution of Columbia spotted frog breeding sites differed from the underlying pattern of lentic 

habitat, reflecting a combination of lentic site distribution patterns and dispersal ability. Median 

distances between breeding sites for all of the watersheds were within the range of estimated dispersal 

distances (1.6 km), and were in agreement with the most common dispersal distances from intensive 

mark-recapture studies of the species (< 2 km; Funk et al. 2005b). Breeding sites showed significant 

positive spatial autocorrelation over distances of approximately seven kilometers given the pattern of 

available lentic habitat.   

The composition and configuration of breeding sites within watersheds in the landscape 

database was different between beaver and non-beaver watersheds.  Beaver watersheds had four times 

the number of lentic and breeding sites than non-beaver drainages had.  Beaver engineering altered 

the pattern of spotted frog breeding sites dispersing them across a wide range of elevations.  In 

contrast, Columbia spotted frog breeding sites in non-beaver watersheds were strongly clustered, with 

most sites located in the upper portion of the drainage.  Because most non-beaver watersheds had few 

lentic sites tightly clustered together – separated by distances less than five kilometers – pair-wise 

distances between breeding sites were short.  The more dispersed patterns in beaver watersheds 

produced pair-wise distances between breeding sites at or above estimates of spotted frog dispersal 

distances. Beaver appear to alter the distribution of spotted frogs on the landscape by facilitating more 

movement amongst the available lentic habitat. 

In the landscape analysis, the configuration of lentic habitat across all watersheds was similar: 

sites were clustered within the watershed, and this pattern held true for both beaver and non-beaver 

watersheds.  However, the number and location of Columbia spotted frog breeding sites were very 

different between beaver and non-beaver watersheds.  Because multiple breeding sites were necessary 
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to address differences in population structure within watersheds, typical non-beaver watersheds 

couldn’t be used.  Instead, non-beaver watersheds with multiple breeding sites were selected (Fig. 1).   

The fine scale population structure of spotted frogs in watersheds with contrasting habitat 

patterns was examined to investigate the effects of landscape configuration and beaver presence on 

population connectivity.  Patterns of historic and contemporary gene flow were evident in the 

population structure. Watershed configuration affected the amount of genetic divergence between 

breeding sites and the fine scale population structure of Columbia spotted frogs.  Specifically, 

variations in the landscape patterns of breeding sites altered the presence and strength of isolation by 

distance equilibriums and the amount of population subdivision within the watershed.  Watersheds 

with beaver presence and an average distance of < 5 km between breeding sites showed higher levels 

of connectivity than did non-beaver watersheds with an average distance of > 5 km between them.  

More importantly, short beaver watersheds had lower levels of genetic divergence than long non-

beaver watersheds for the same distance, even when the distance was within the commonly observed 

dispersal ability of the frogs.   

What do the observed differences in the Columbia spotted frog population structures tell us 

about the typical watersheds in southwestern Montana, based on their habitat configurations?  First, 

historic patterns of migration and/or colonization may still be evident in fine-scale population 

structures.  Large differences in the level of genetic differentiation between populations in short and 

long watersheds in the northern Bitterroots suggests historic patterns of dispersal or the 

geomorphology surrounding these watersheds are still strongly evident in population processes.  The 

loss of beaver created spotted frog breeding sites detected during earlier amphibian surveys changed 

the average distance between breeding sites from short to long in Cache Creek.  The effects of beaver 

alterations to landscape patterns may be temporary or transient and dependent upon current beaver 

occupancy.  Within the Pintler and Pioneer ranges, beaver watersheds will have low levels of 

divergence between breeding sites separated by moderate distances (< 7.5 km) and will likely consist 

of a single population. This implies that even sites separated by long distances are not isolated from 

neighboring sites within the watershed.  Third, non-beaver watersheds will have moderate to high 

levels of divergence between breeding sites separated by moderate distances.  Since most non-beaver 

watersheds consist of a single breeding site, they represent isolated populations.  In non-beaver 

watersheds where multiple breeding sites are found separated by moderate or longer distances, 

watersheds likely contain several isolated populations.  Finally, in non-beaver watersheds even sites 

separated by short distances may have high levels of genetic divergence. 
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Although this study focused on one species, the Columbia spotted frog, the redistribution of 

lentic habitat may have similar effects on the population structure of other lentic breeding amphibians 

and suggests that subtle differences in landscape patterns may have far reaching population 

consequences.  For beaver management, a more careful consideration of potential population effects 

for species using the lentic habitat they create is required.  Limiting harvest of beaver in some areas 

may be important for maintaining existing populations of lentic breeding amphibians, or may improve 

connectivity among isolated populations. In some areas where limited habitat has led to the isolation 

of populations, beaver reintroductions may provide managers with the ability of connect low and high 

elevation populations, or to increase the number of breeding sites available within a watershed. 

 

 



19 

 

Figure 1.  Diagram comparing Columbia spotted frog breeding site configurations for the three 

watersheds types described in this thesis.  Blue dots represent breeding sites located in lentic habitat 

created through geomorphology while red dots are breeding sites located in lentic habitat created by 

beaver. Non-beaver landscape and beaver: typical non-beaver and beaver watersheds in the landscape 

database.  Beavers alter the structure of the watershed by adding lentic sites used for spotted frog 

breeding along the riparian corridor.  Beaver watersheds in the landscape and genetic analyses did not 

differ. Non-beaver genetic: the configuration of spotted frog breeding sites for watersheds used in the 

genetic analysis.  These watersheds are atypical compared to most non-beaver watersheds in the 

landscape database because they have more sites which were widely dispersed within the watershed. 
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(a) Non-beaver landscape 

 

 

(b) Beaver 

 

 

(c) Non-beaver genetic 
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Chapter 2 

Ecosystem engineering: beaver, landscape patterns of lentic 
habitat, and the distribution of Columbia spotted frogs in 
southwestern Montana 

 

 

2.1 Abstract  

 

Beavers (Castor canadensis) are considered ecosystem engineers, altering hydrologic 

regimes, ecosystem processes, and modifying community structure. The effect of beaver on the 

spatial pattern of lentic habitat and on populations using those habitats has not been examined. I used 

a database of over 100 watersheds in southwestern Montana to compare the scale and pattern of 

different lentic sites and their occupancy by Columbia spotted frogs (Rana luteiventris) between 

watersheds with and without signs of beaver activity. Univariate and point pattern statistics were used 

to analyze the observed patterns of lentic habitat and of spotted frog breeding habitat. Across all 

watersheds spotted frog breeding sites were more clustered than the underlying pattern of lentic 

habitat. Breeding sites were spatially autocorrelated up to distances of approximately seven 

kilometers.  Clustering of breeding sites across all watersheds agreed with known dispersal distances 

for spotted frogs but may be limited by the configuration of lentic sites.  More importantly, the 

composition and configuration of Columbia spotted frog breeding sites was different in beaver and 

non-beaver watersheds. Breeding sites were evenly distributed across the elevational gradient in 

beaver watersheds while they were centered above the watershed midpoint in non-beaver watersheds.  

In addition, beaver watersheds had four times as many lentic and breeding sites than non-beaver 

watersheds.  Spotted frog breeding sites were more dispersed within beaver drainages, with positive 

spatial autocorrelation only up to distances of one kilometer.  Non-beaver watersheds, in contrast, 

often had only one spotted frog breeding site and watersheds with two or more sites had a single 
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group of strongly clustered spotted frog breeding sites with positive spatial autocorrelation up to 

distances of five kilometers.  Columbia spotted frog breeding sites were more dispersed within 

drainages with evidence of beaver presence than would be expected given the configuration of the 

underlying lentic habitat.  In addition, beaver watersheds contained breeding sites where nearest 

neighbor distances exceeded estimated dispersal ability.  Beaver altered the distribution of spotted 

frogs on the landscape by creating watersheds where spotted frog breeding sites were more widely 

dispersed.  Isolated breeding sites have persisted despite being separated by distances larger than the 

frogs’ dispersal ability. 

 

2.2 Introduction 

 

Ecosystem engineers physically change their environment, redistributing physical resources and 

altering landscape patterns (Jones et al. 1994, 1997, Moore 2005).  Research on ecosystem engineers 

has primarily focused on small spatial and temporal scales (Moore 2005).  The importance of 

ecosystem engineers on larger or longer scale processes, such as regional patterns of habitat or 

evolutionary processes have remained largely unexamined (Moore 2005).  Although the ecological 

effects of keystone species and ecosystem engineers have been the focus of much study (see reviews 

Power et al. 1996, Jones et al. 1997, Moore 2005), mechanistic links between these species, landscape 

changes, and conservation consequences are not often demonstrated. 

Beaver (Castor canadensis) are considered ecosystem engineers, changing hydrologic regimes 

and ecosystem processes, increasing species productivity and diversity within watersheds, improving 

riparian habitats, and modifying community structure (see reviews Naiman et al. 1986, Hammerson 

1994, Collen and Gibson 2001).  Previous research has quantified the rate and total area of lentic 

habitat created by beaver (Naiman et al. 1986, Johnston and Naiman 1990, Snodgrass 1997), but 

effects of beaver on the spatial pattern of lentic habitat and effects on populations using those habitats 

has not been examined. 

The spatial pattern of lentic habitat (temporary and permanent water bodies) may be especially 

important for amphibians, because habitat loss and fragmentation are often cited as key factors behind 

population declines and decreasing overall diversity (e.g., Semlitsch 2002).  For example, decreases 

in amphibian diversity in temperate regions of North America occurred from historic draining of 

wetlands and clearing of forests (Hecnar and M'Closkey 1996).  In North America beaver have 
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historically created vast areas of lentic habitat, but dramatic decreases in beaver numbers due to the 

fur trade resulted in a considerable portion of the U.S wetlands converting to dry land (Naiman et al. 

1986).  In the upper Mississippi and Missouri river basins it was estimated only one percent of the 

historic area of beaver ponds remained in the mid-1990s (Hey and Phillippi 1995). This habitat loss is 

important for many species of lentic breeding amphibians (e.g., Russell 1999, e.g., Stevens et al. 

2007).  Beaver wetlands can serve as both over-wintering and breeding habitat, and may be especially 

important in arid regions with limited habitat.  Disruption of the temporal and spatial patterns of these 

critical habitats may depress or fragment amphibian populations.  Loss of beaver and the habitat they 

create may have played an important role in the decline of Columbia spotted frogs at the southern 

edge of its range (USFWS 2002). Although these effects have been suggested, the relationship 

between landscape patterns of beaver ponds and the distribution of amphibians has not yet been 

examined. 

For many amphibian species in southwestern Montana, small population sizes and high 

variability in recruitment (Maxell 2000, Werner et al. 2004) may make the landscape pattern 

(configuration and composition) of habitat and the dispersal of individuals critical for long-term 

population persistence. Most water bodies in southwestern Montana are ephemeral (69%; Maxell, 

unpub. data), and rapid pond drying often results in the loss of a year class (pers. obs.) or in the 

decline and eventual extinction of a local amphibian breeding site (Semlitsch 2002).  The extended 

hydroperiod of beaver sites may make them focal points for amphibian breeding, foraging, and over-

wintering in arid regions.  These more permanent sites potentially play an important role in 

maintaining and connecting lentic-breeding amphibian populations at a landscape scale.  In addition, 

an increase in number of lentic sites within a watershed due to beaver activity might increase the 

number of breeding populations, insulating species against demographic stochasticity.  Thus, in arid 

regions with limited lentic sites, species dependent on lentic habitat might be more widely distributed 

in beaver watersheds than in non-beaver watersheds.  

The limited vagility, breeding site fidelity, and aquatic nature of Columbia spotted frogs 

make them a good candidate to examine how beaver alterations to the spatial pattern of lentic habitat 

across southwestern Montana influence another species.  A common pond-breeding amphibian found 

in western North America, spotted frogs use lentic sites for both breeding and over wintering. 

Telemetry and capture-recapture studies for Columbia spotted frogs describe short distance (< 2 km) 

seasonal migrations and dispersals by adults (4% moved) and juveniles (25% moved) (Turner 1960, 

Pilliod et al. 2002, Funk et al. 2005b). Approximately 90% of movements occur over Euclidian 
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distances < 2 km (Funk et al. 2005b), with rare (2%) long distance dispersal by juveniles covering 5 

to 7 km (Reaser 1996, Funk et al. 2005b). The population structure of spotted frogs in southwestern 

Montana show statistically and biologically significant genetic divergence between breeding sites 

beyond overland distances of 5 kilometers or riparian distances of 7.5 kilometers (Funk et al. 2005a, 

Amish Chap. 3).  

I examined patterns of lentic habitat, beaver detection, and Columbia spotted frog detection in 

western Montana to investigate landscape-scale processes important to the distribution and population 

persistence of R. luteiventris. I addressed two main questions: 1) How do spotted frog detection 

patterns compare to the underlying lentic habitat distribution and their estimated dispersal distances? 

2) How do lentic habitat and spotted frog detection patterns in beaver and non-beaver watersheds 

differ?  

 

2.3 Materials and Methods   

2.3.1 Database 

I adapted an existing database developed for monitoring lentic amphibian presence in 

Montana to examine the spatial composition and configuration of lentic habitat within watersheds.  

The database consists of approximately 155 sixth hydrological unit code (HUC) watersheds that were 

randomly selected in southwestern Montana or chosen as focal watersheds for the collection of water 

quality, demographic, or genetic data.  A 6th field HUC is a headwater watershed or subwatershed of 

4,047 -16,188 hectares (federal standards for the delineation of hydrologic unit boundaries).  The 

database was created by Bryce Maxell collaboratively with multiple state and federal agencies 

(Department of Environmental Quality, National Heritage Program, Montana Fish Wildlife and 

Parks, United States Forest Service) and is now overseen by the Montana Natural Heritage program.  

Most (92%) 6th field HUCs were selected using a stratified random cluster sampling design.  Western 

Montana was stratified by level three ecoregions resulting in separate bioregions with similar abiotic 

conditions (Nesser 1997).  Watersheds (6th field HUCs) within each ecoregion containing at least 25% 

federal or state land were randomly selected.  The total area of the watersheds chosen within each 

ecoregion was proportional to the area of the ecoregion relative to the total area of all ecoregions 

(Maxell 2005). 
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Within each watershed, field crews surveyed all standing water bodies identified from 

topographic maps or aerial photos on public lands (and some private lands).  Amphibians were 

counted using timed visual encounter and dip net sampling. In addition, habitat characteristics 

associated with site origin (glacial, beaver, river, human), site classification (pond, lake, wetland, 

oxbow), hydroperiod (permanent, temporary, dry) and spotted frog breeding (breeding observed, 

potential breeding) were recorded (for details on survey methods see Maxell 2004a,b). Site origin was 

determined by noting evidence of current or historic beaver activity, location of water body relative to 

current stream channel, or evidence that the site was modified or created by people. Hydroperiod of 

sites was estimated, based on water depth, the presence of inlets and outlets, and the type of emergent 

vegetation at the site. Water bodies with amplexed pairs, egg masses, or tadpoles were identified as 

spotted frog breeding sites.  The physical characteristics required for a site to be classified as a 

potential breeding site for Columbia spotted frogs included the presence of the species, along with 

shallow water and emergent vegetation. A direct comparison of beaver created lentic habitat to sites 

of glacial, human, or riverine origin was not done because identifying historic beaver ponds can be 

difficult, beaver complexes are often multi-pooled sites covering large areas, and beaver residence 

times can vary greatly.  Instead, beaver presence was denoted at the watershed level, when at least 

one survey site showed current or historic occupancy.  

I projected survey data in ArcMap (version 9.1) and collected additional data on watershed 

geomorphology and composition to create a database of lentic habitat distribution and Columbia 

spotted frog detection for southwestern Montana.  Digital USGS 7.5’ maps of the study area and 

detailed Montana Fish Wildlife and Parks (MFWP) stream and lake layers were added to the 

database.  I recorded elevations for different site types, as well as the intersection of the main 

drainage with the lower drainage boundary.  In addition, I measured the shortest route between pairs 

of spotted frog breeding sites and pairs of potential breeding sites along riparian corridors. Creeks and 

rivers present on USGS maps or the MFWP stream layer were used to define riparian corridors. In 

areas where water was not indicated, I followed topographic relief indicative of potential riparian 

corridors. In areas of little or no topographic relief where maps did not indicate any riparian corridors, 

I measured the shortest straight-line path.  
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2.3.2 Data analyses   

I identified variables from the database describing the composition and configuration of lentic 

habitat and spotted frog detection within watersheds.  I ran a multivariate ordination on variables 

describing watershed characteristics, land ownership and survey characteristics, quantity of lentic 

habitat within a watershed, and the distribution of lentic habitat within a watershed (appendix A, table 

1) and examined whether there were any biases in the data set that influenced my results. Specifically, 

I was interested in whether the proportion of sites surveyed and the proportion of sites on private land 

were negatively correlated with the total number of lentic sites detected or the number of sites where 

spotted frog breeding was detected. Binary variables such as beaver detection and ecoregion were 

examined within the ordination space to identify possible groupings or trends correlated with 

ordination axes.   

I used PC-ORD (version 4) to run a non-metric multidimensional scaling ordination (NMS).  I 

standardized all variables using z scores, and used Sorensen distances to place watersheds in the 

ordination space.  Random starting coordinates were used and dimensionality was stepped down from 

six axes with a maximum of 200 iterations per cycle.  I used a stability criterion of 0.0005 standard 

deviations over the last 10 iterations to determine the final stress of the solution.   

I used SPSS version 11 for summary statistics, as well as univariate and non-parametric 

analyses to examine differences in the number of sites, the relative elevation of sites compared to the 

watershed’s mid-elevation, and distances between sites in beaver and non-beaver watersheds and 

between ecoregions. The watershed’s mid-elevation was estimated as the average elevation between 

the HUC’s lower boundary and highest lentic site.  The site’s relative elevation was calculated as the 

difference between its elevation and the watershed’s mid-elevation.  Mann-Whitney U and 

Kolmogorov-Smirnov tests were run to determine whether beaver and ecoregion comparisons had 

significantly different medians or distributions for variables describing the composition or 

configuration of lentic habitat within watersheds and whether beaver watersheds had significantly 

different gradients or areas than non-beaver watersheds.  

 To investigate the configuration of lentic and spotted frog breeding sites and whether beaver 

altered these patterns I examined the pair correlation function in R using a combination of packages 

that allow mapped point pattern data to be projected and analyzed.  Watershed boundaries were 

imported from shapefiles along with point data from the lentic habitat database using MAPTOOLS 

version 0.5-4. Pair correlation functions were run on point data using SPATSTAT version 1.8-5 

(Baddeley & Turner 2005), SPSPATSTAT version 0.1-1, and SP version 0.8-9. Within watershed 
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patterns were aggregated across all watersheds after testing for regional differences. The pair-

correlation function represents the cumulative frequency distribution of observations at a given point-

to-point distance and captures the spatial structure of the variable. The pair correlation function of a 

stationary point process is 

 

g(r) = K'(r)/ ( 2 * pi * r) 

 

where K'(r) is the derivative of K(r), the reduced second moment function (aka ``Ripley's K 

function'') of the point process. For a stationary Poisson process the pair correlation function is equal 

to 1, with values g(r) < 1 suggesting inhibition between points (negative spatial correlation) and 

values greater than 1 suggesting clustering (positive spatial correlation).  Default settings were 

applied (Epanechnikov smoothing kernel with a bandwith = h / sqrt[5]) following Stoyan and Stoyan 

(1994) with a translation correction for borders. Boundaries between adjacent watersheds were 

removed to reduce the effects of border correction. Patterns at scales greater than 20 km were not 

included because they reach beyond the within watershed scale and because Columbia spotted frog 

population structure suggests most watersheds represent multiple populations (Funk et al. 2005a, 

Amish Chap. 3).  To determine whether breeding sites were themselves aggregated within the 

background of lentic sites a neutral landscape was created from the empirical data to use as a null 

model (Lancaster & Downes 2004, Lancaster 2006).  A neutral landscape distribution was generated 

from the empirical distribution of lentic sites by permuting site type labels (i.e. potential breeding site, 

breeding site, unoccupied lentic site) among locations within watersheds 100 times to generate 100 

simulated spotted frog breeding site patterns. I evaluated the intensity and pattern of the pair 

correlation functions to investigate differences among empirical breeding site configurations and 

neutral landscape patterns across all watersheds and between beaver and non-beaver drainages.  

Values greater than zero represent points which are more positively spatial correlated than expected 

by chance.  

 



28 

 

2.4 Results  

2.4.1 Database biases 

Of the 109 watersheds, 105 watersheds were used in the multivariate ordination to check for 

biases.  The ordination converged on a solution with two axes having an R2 of 0.875.  The second 

axis explained most (74.2 %) of the variation in the watershed database.  Variables with the highest 

correlation to the second axis described watershed composition, specifically the number of wet lentic 

sites, number of mid-elevation lentic sites, and number of dry lentic sites (appendix A, table 2).  

Watershed geomorphology variables strongly correlated with the second axis included the highest site 

elevation and watershed mid-elevation (appendix A, table 2).  The first axis explained another 13.3% 

of the variation in the watershed database.  Additional variables associated with watershed 

geomorphology had the highest correlation to the first axis and included the distance from the lowest 

site to the lower watershed boundary and the distance from the highest to the lowest lentic site 

(appendix A, table 2). 

Variables associated with the proportion of sites surveyed and the proportion of sites on 

private land that might indicate sampling bias did not show strong correlation with either axis and 

were not significantly different between ecoregions or beaver watersheds (data not shown).  

Therefore, differences in the proportion of sites surveyed did not confound the composition and 

configuration of lentic sites within watersheds described in the database.  In addition, variables that 

might suggest a correlation between lentic sites and local (i.e. watershed gradient) or regional (i.e. 

subbasin) topography were not strongly correlated with either axis (data not shown).  For example, 

lower watershed gradient was not associated with a higher number of lentic sites.  A correlation 

between local or regional topography with either axes would have confounded the interpretation of 

beaver effects on watershed patterns of lentic habitat. 

There was no bias in the watershed database when patterns due to ecoregion, drainage, 

aspect, or beaver presence were examined.  Ecoregions only varied significantly in detection rates for 

the number of watersheds with more than one Columbia spotted frog breeding site or the number of 

watersheds where beaver presence had been detected (Table 1).  The southwestern ecoregion had 

more watersheds with greater than one frog breeding site and approximately twice as many beaver 

watersheds than the west-central ecoregion.  Median number of all lentic habitat types and spotted 

frog detection reflected this regional pattern, with more lentic habitat in the southwestern ecoregion 

providing additional habitat for breeding (Table 1). 
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2.4.2 Lentic habitat patterns 

Since no biases in the database were detected, survey results from both ecoregions were 

combined for further analyses.  One hundred and fifty-five watersheds were surveyed and of those 

109 watersheds contained wet lentic sites.  In watersheds with wet lentic sites, beaver were detected 

in 44% and Columbia spotted frogs were found in 83%.  Where R. luteiventris were observed, 

breeding was detected in 87%, while multiple breeding sites were detected in only 63% of the 

watersheds (Table 2). 

  

2.4.3 Beaver and lentic habitat patterns  

The number of lentic sites, and detection rates for both Columbia spotted frog presence and 

breeding were higher in beaver watersheds than non-beaver watersheds (Table 3).  In beaver 

watersheds, spotted frogs were almost always detected breeding at multiple sites, while non-beaver 

watersheds had lower occupancy and breeding detection rates (Table 3).  Beaver watersheds have 

four times the median number of lentic sites, potential spotted frog breeding sites, and detected 

spotted frog breeding sites than non-beaver watersheds (Table 3). 

 To investigate whether the larger number of breeding sites detected in beaver watersheds was 

a product of increased number of lentic sites, I examined the proportions of different R. luteiventris 

site types (potential breeding, breeding) versus total lentic sites in beaver versus non-beaver 

watersheds.  Beaver watersheds had a higher proportion of lentic habitat important to the breeding 

and over-wintering of Columbia spotted frogs - permanent (0.423 vs. 0.284) and potential breeding 

(0.607 vs. 0.440) sites per wet lentic site, and a higher proportion of spotted frog detection - spotted 

frog detection per wet lentic (0.598 vs. 0.423).  However, breeding occupancy rates - the proportion 

of spotted frog breeding sites per wet lentic site (0.318 vs. 0.265) and per potential breeding site (.523 

vs. 0.603) were similar. 

 First, I compared watershed gradient and area across beaver and non-beaver watersheds to 

explore potential correlations in the data set.  Gradient did not differ significantly between beaver and 

non-beaver watersheds, but beaver were detected in slightly lower gradient watersheds.  Watershed 

area differed significantly, with the median area of beaver watersheds roughly 1000 hectares larger 

than non-beaver watersheds (Table 3).   
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Second, I examined whether beaver presence influenced distances between sites within 

watersheds with more than one breeding site.  In general, riparian distances between sites were 

significantly longer in beaver than non-beaver watersheds.  Specifically, the distance between the 

lowest and highest lentic sites, potential Columbia spotted frog breeding sites, and breeding sites were 

all approximately 1.5 times longer in beaver watersheds.  Similarly, the longest nearest-neighbor 

distance between breeding sites was also significantly longer in beaver watersheds.  The median 

distance among breeding sites was within the range of expected dispersal distances seen for spotted 

frogs (up to 5 – 7.5 km) and was not significantly different between beaver and non-beaver 

watersheds (Table 3).  In beaver watersheds, longest nearest-neighbor distances were greater than 8 

km, which were greater than observed dispersal distances.  In non-beaver watersheds median pair-

wise distances for both potential and observed breeding sites were less than known spotted frog 

dispersal distances, including the median longest nearest-neighbor distance (Table 3).   

Third, I investigated whether the relative elevation of sites differed between beaver and non-

beaver watersheds. The median relative elevation and the distribution of relative elevations for 

spotted frog breeding sites are both significantly different (p < 0.001) between beaver and non-beaver 

watersheds. Columbia spotted frog breeding sites in non-beaver watersheds represent a similar range 

of elevations seen in beaver watersheds but the distribution was skewed (g1 = -0.563) above the 

midpoint of the watershed. Breeding sites were distributed across the elevational gradient in beaver 

watersheds while they were centered above the watershed midpoint in non-beaver watersheds.  

Overall the median distance between breeding sites within watersheds was short, but beaver 

watersheds had more dispersed habitat and breeding activity (Table 3). Because there are more lentic 

sites in beaver watersheds, the larger area associated with beaver do not explain the longer distances 

or larger elevational gradient seen between different habitat types or between spotted frog breeding 

sites.   

I also compared the distribution of observed Columbia spotted frog breeding sites to observed 

lentic sites across all watersheds. The pair correlation functions of all lentic sites and known breeding 

sites both showed sharp declines with distance, approaching no spatial correlation at distances of 

approximately 7 km. The spatial autocorrelation of sites was strongest over distances of < 2 km with 

weak clustering evident up to 7 km (Fig. 2a). Columbia spotted frog breeding sites showed stronger 

autocorrelation over distances from 0 - 5 km ( > g(r)) than the underlying pattern of lentic habitat did 

(Fig. 2b).  The neutral landscape of breeding sites generated from the permutation process showed 

spatial autocorrelation of the same intensity as observed lentic sites, with significant clustering at 
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distances up to 4 km (Fig. 2c).  The difference in the observed breeding sites and the neutral 

landscape breeding sites revealed significant positive spatial correlation of spotted frog breeding sites 

up to distances of 7 km after accounting for the pattern and intensity of the available lentic sites on 

the landscape (Fig. 2d).  

For beaver watersheds the pair correlation functions of observed lentic and breeding sites 

both showed a sharp decline with the spatial autocorrelation strongest over distances of < 3 km, a 

scale similar to what was seen across all watersheds (Fig. 3a,b).  Columbia spotted frog breeding sites 

had a stronger autocorrelation over distances from 0 - 5 km than the underlying pattern of lentic 

habitat did, but of a weaker intensity than seen for breeding sites across all watersheds (Fig. 3b).  The 

neutral landscape of spotted frog breeding sites for beaver watersheds showed a higher level of 

positive spatial autocorrelation than observed lentic sites, with significant clustering at distances up to 

4 km (Fig. 3c).  Despite the similarity in the lentic and breeding site distributions to those seen 

previously for all watersheds, the weaker intensity of the breeding site clustering and the higher 

intensity of the neutral landscape model of breeding sites resulted in positive spatial correlation only 

at very short distances for beaver watersheds (1 km; Fig. 3d).  

For non-beaver watersheds the pair correlation functions of observed lentic and breeding sites 

also showed a sharp decline with the spatial autocorrelation strongest over distances of < 4 km (Fig. 

4a,b).  Non-beaver lentic sites had weak positive correlation up to distances of 9 km, while the pair 

correlation function for Columbia spotted frog breeding sites in these watersheds showed a scale of 

positive correlation more typical of the other distributions (4 km).  The spotted frog breeding sites in 

non-beaver watersheds had stronger autocorrelation over distances from 0 - 5 km than the underlying 

pattern of lentic habitat did (Fig. 4b).  The neutral landscape of breeding sites for non-beaver 

watersheds showed a weaker level of positive spatial autocorrelation than the observed lentic sites, 

with significant clustering at distances up to 3 km (Fig. 4c).  The stronger breeding site clustering 

combined with the weaker pattern generated by the neutral landscape model resulted in strong 

positive spatial correlation at distances up to 5 km in non-beaver watersheds (Fig. 4d).  

In general, spotted frog breeding sites were clustered at short distances across all watersheds 

(1 – 7 km).  Beaver watersheds produced weaker clustering patterns than seen in non-beaver 

watersheds and had configurations reflecting no positive spatial correlation among spotted frog 

breeding sites. These results are supported by the univariate results examining distances between 

Columbia spotted breeding sites in beaver and non-beaver watersheds.  The random distribution of 

sites within beaver watersheds resulted in more dispersed habitat and spotted frog breeding sites, 
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while the strong clustering in non-beaver watersheds was evident in the restricted distribution and 

availability of breeding and habitat (Table 3). 

 

2.5 Discussion 

The distribution of Columbia spotted frog breeding sites differed from the underlying pattern 

of lentic habitat, reflecting a combination of lentic site distribution patterns and dispersal ability. 

Median distances between breeding sites for all of the watersheds were within the range of estimated 

dispersal distances (1.6 km), and was in agreement with the most common dispersal distances from 

intensive mark-recapture studies of the species (< 2 km; Funk et al. 2005b). Breeding sites occurred 

in patches within the background of clustered lentic sites. Breeding sites showed significant positive 

spatial autocorrelation over distances of < 7 km given the pattern of available lentic habitat used to 

estimate the neutral landscape.   

The composition and configuration of breeding sites was also different between beaver and 

non-beaver watersheds.  Beaver watersheds had four times the number of lentic and breeding sites 

than there were in non-beaver drainages. Beaver activity also altered the pattern of spotted frog 

breeding sites, producing more dispersed distributions, with positive spatial correlation only up to 

distances of 1 km, and with sites distributed across a wider range of distances and elevations.  In 

contrast, Columbia spotted frog breeding sites in non-beaver watersheds reflected the underlying 

distribution of lentic habitat.  Spotted frog breeding sites were strongly clustered in non-beaver 

watersheds, with most sites located in the upper portion of the drainage with positive spatial 

correlation up to distances of 5 km.  Finally, the longer distances between spotted frog breeding sites 

observed in beaver watersheds exceeded estimates of its dispersal ability based on mark-recapture 

studies. Beaver appear to alter the distribution of spotted frogs on the landscape by facilitating more 

movement amongst the available lentic habitat. 

 

2.5.1 How do spotted frog detection patterns compare to the underlying lentic habitat 
distribution and their estimated dispersal distances? 

The landscape structure of Columbia spotted frog breeding sites was more clustered than the 

underlying pattern of lentic habitat over distances up to 7 km.  Because the configurations for lentic 

sites and potential lentic sites were similar, the availability of breeding habitat does not appear to limit 
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the distribution of frog breeding sites.  At distances < 7 km spotted frog breeding sites were positively 

spatially correlated given the underlying pattern of lentic sites, suggesting the scale of their dispersal 

ability.  The underlying lentic habitat displayed only weak positive correlation at larger distances, 

therefore the geomorphology associated with the distribution of lentic sites or the sampling of 

watersheds may have limited the ability to detect patterns at a larger scale. The pair correlation 

function is isotropic, so the direction of the structure function is undefined, thus observed spatial 

autocorrelation cannot be assumed to describe within watershed processes alone, especially at scales 

greater than the average shortest dimension of the drainages (~10km). Because watershed shape was 

highly variable and a delineation of within and between watershed point patterns was not possible, 

both within watershed processes or regional processes such as geomorphology, may explain patterns 

at scales greater than 10 km.  However, watersheds were aggregated where they shared boundaries 

(the window for the analysis was the perimeter around both watersheds), so the scale of the patterns 

described by the mapped lentic habitat data accurately reflects lentic site configurations over 

distances less than 20 km.   

Possible mechanisms explaining the clustering of Columbia spotted frog breeding sites 

include limited dispersal and demographic stochasticity.  Mark-recapture studies and landscape 

genetics work suggest dispersal of spotted frogs is common at distances less than 2 km and rare over 

distances of 5 - 7.5 km (Funk et al. 2005b, Amish Chap. 3).  Columbia spotted frog dispersal could 

explain the higher clustering of breeding sites within the 2.5 - 6 km range than seen in the underlying 

pattern of lentic habitat.  Dispersal appears to be more limited than might be predicted based on the 

availability of suitable habitat, but it is not possible to distinguish from the data whether spatial 

dependence (sites are too dispersed at longer distances) or an ecological spatial processes (physical 

limit to dispersal ability) has resulted in the observed pattern of spotted frog breeding sites.  

 

2.5.2 How do lentic habitat and spotted frog detection patterns in beaver and non-
beaver watersheds differ? 

 Although there were minor differences in the intensities of clustering seen for lentic habitat 

between beaver and non-beaver watersheds, a major difference between the pattern of breeding sites 

was seen.  Beaver watersheds had much more dispersed Columbia spotted frog breeding sites than 

non-beaver watersheds.  Distances between different habitat types (lentic sites, potential and breeding 

sites), as well as the longest nearest-neighbor distance were significantly longer in beaver watersheds 
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including many that are beyond the estimated dispersal distances for spotted frogs. In contrast, most 

non-beaver watersheds only had a single spotted frog breeding site, with shorter (2 to 4 km) median 

distances between all habitat types which did not exceed estimated dispersal distances.  

 The underlying pattern of lentic habitat in beaver watersheds was not more widely dispersed 

when compared to non-beaver watersheds, but spotted frog breeding sites were, suggesting that 

alternative hypotheses explaining the configuration need to be explored.  The longest nearest-

neighbor distances between breeding sites observed in beaver watersheds are slightly longer than 

current estimates of dispersal, and mechanisms explaining these distances need to be explored.  First, 

beaver may indirectly increase successful dispersals because a higher number of lentic sites would 

produce larger population sizes, either locally (patches of breeding sites separated by short distances) 

or at the watershed scale. Either contemporary populations need to be large enough to produce this 

effect, or historic populations may have been large enough to establish outlying populations and they 

have been able to persist.   

Second, temporal patterns of lentic habitat creation may have allowed Columbia spotted frogs 

to move throughout the watershed. This suggests that historic patterns of lentic habitat are reflected in 

the current distribution of breeding sites.  As beaver moved up and down the watershed, they left a 

series of ponds available for breeding and overwintering. Spotted frogs may have colonized this new 

habitat and subsequently dispersed to new areas. Over time, some lentic sites may have been lost to 

spotted frogs through flooding or successional processes, leaving isolated populations on the 

landscape. Alternatively, since spotted frogs showed higher gene flow along riparian corridors 

(Amish Chap. 3), increased riparian area and improvements to the riparian corridors and creek flows 

may have made the intervening matrix between breeding sites more hospitable. 

Finally, a combination of these alternatives may have produced the current pattern. Current 

populations may be large enough to maintain isolated populations established when historic 

population sizes were larger or when habitat was more continuously distributed in the watershed, 

while no longer being large enough to colonize new habitat. Genetic evidence and survey data 

suggest that historic processes may be the most likely source of the observed landscape pattern of 

breeding sites. Current estimates of gene flow in beaver watersheds revealed isolated populations at 

high elevations (Amish Chap. 3). Moreover, survey data collected during 2003-2004 was typical for 

the region (approx. 50 or fewer individuals per breeding site, Werner et al. 2005) and did not reflect 

higher population sizes in beaver watersheds.   
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As ecosystem engineers, beaver physically alter their environment changing the pattern of 

lentic habitat on the landscape (Power et al. 1996). Although many studies have examined how 

beaver have influenced the abundance, distribution, and diversity of biota (Naiman et al. 1986, 

Johnston and Naiman 1990, Snodgrass 1997, Stevens et al. 2007), none have linked these changes to 

population connectivity (Moore 2005).  Because Columbia spotted frogs have limited vagility and 

stochasitic recruitment (Funk et al. 2005a,b; Maxell unpub. data), connectivity is important for 

maintaining populations over time. By creating habitat, beaver redistribute frog breeding sites across 

the landscape more evenly, potentially altering their population structure (Amish Chap. 3). Larger 

populations and more connectivity between breeding sites on the landscape may reduce the threat of 

local extinction from demographic stochasticity and inbreeding.   

Although this study focused on one species, the Columbia spotted frog, the redistribution of 

lentic habitat may have similar effects on the population structure of other lentic breeding amphibians 

and suggests that subtle differences in landscape patterns may have far reaching population 

consequences.  For beaver management, a more careful consideration of potential population effects 

on species utilizing the lentic habitat they create is required.  Limited harvest of beaver in some areas 

may be important for maintaining existing populations of lentic breeding amphibians, or may improve 

connectivity among isolated populations. In some areas where limited habitat has led to the isolation 

of populations, beaver reintroductions may provide managers with the ability of connect low and high 

elevation populations, or to increase the number of breeding sites available within a watershed. 
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Table 1. Summary of watershed detection rates (number of watersheds with activity detected) for 

beaver and Columbia spotted frogs (CSF) and median number of lentic habitat types observed or 

detected between two ecoregions and beaver and non-beaver watersheds. Variables include lentic 

sites holding water at time of survey (wet), permanent hydroperiod (perm), potential CSF breeding 

sites, and CSF breeding detected at one or more site. 

 

 Watershed detection rates Median number of sites within 
watersheds 

 Beaver CSF 

presence 

CSF 

breeding 

>1 CSF 

breeding 

site 

Wet 

lentic 

Perm 

lentic 

Potential 

CSF 

breeding 

CSF 

breeding 

         

West-central  27% 83% 74% 45% 6.5 2.5 3.0 1.5 

Southwestern 53% 83% 71% 60% 11.0 3.0 5.0 2.0 

Non-beaver NA 70% 57% 65% 4 1 2 1 

Beaver NA 98% 92% 80% 16 6 8 4 

 

 

 

 

Table 2. General detection patterns at the watershed scale for beaver presence, Columbia spotted frog 

(CSF) presence, and one or more CSF breeding sites. 

 

Survey Characteristic  Proportion of 
Watersheds 

Percentage of 
Watersheds 

   

Beaver 48 / 109 44% 

CSF presence 90 / 109 83% 

CSF breeding 78 / 109 72% 

>1 CSF breeding site 57 / 109 52% 
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Table 3.  A comparison of watershed characteristics and lentic habitat configurations for beaver and 

non-beaver watersheds. Gradient and median watershed area was investigated as possible sources of 

bias in the data set. Distances were measured along riparian corridors. Median values and Mann-

Whitney U (M-W) and Kolmogorov-Smirnov (K-S) test p-values are reported. 

 

 p-value 

 
All Beaver Non-beaver 

M-W K-S 
      

Gradient (m/km) 46 41.3 49.6 0.158 0.142 

 

Watershed area (hectares) 

 

7111 

 

8346 

 

7067 

 

0.040 

 

0.212 

      

Distance between lowest to highest 

lentic site (km) 

 

12.1 15.1 9.8 0.005 0.008 

Distance between lowest to highest 

potential CSF breeding sites (km) 

 

7.0 9.2 5.1 0.032 0.041 

Distance between lowest to highest 

CSF breeding sites (km) 

 

7.7 8.6 5.1 0.002 0.013 

Longest nearest-neighbor distance 

between breeding sites (km) 

 

7.1 8.3 5.7 0.017 0.077 

Distance between all CSF breeding 

sites (km) 

 

1.6 1.9 1.2 0.586 0.978 

Relative elevation lentic sites (m) 

 
43 16 101 0.001 0.001 

Relative elevation CSF breeding sites 

(m) 

 

101 27 216 0.001 0.001 
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Figure 1.  Map showing the distribution of lentic sites identified from maps and aerial photographs 

included in the southwestern Montana database. a) All lentic sites and the watershed boundaries 

created when adjacent drainages were aggregated. b) All spotted frog breeding sites and the 

corresponding watershed polygons. c) All spotted frog breeding sites in beaver watersheds.  D) All 

spotted frog breeding sites in non-beaver watersheds. Each dot represents a single lentic site with 

watersheds as shaded polygons.  
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a) All lentic sites and watersheds 

b) 
All breeding sites and watersheds 
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c) All breeding sites in beaver watersheds 

d) 
All breeding sites in non-beaver watersheds 
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Figure 2. Spatial patterns of observed lentic and Columbia spotted frog breeding sites and for the 

neutral landscape breeding sites as given by the pair correlation function (g(r)).  The x-axis represents 

the distance in meters between sites. The area above the grey dashed line at g(r) = 1 (for figures a - c) 

represents positive spatial correlation while below the line represents negative spatial correlation 

compared to a random distribution. In figure d, g(r) = 0 represents no spatial correlation after 

accounting for the correlation in the neutral landscape. The upper and lower bounds of the 95% 

confidence intervals are shown with red dotted lines.  a) Observed lentic sites across all watersheds 

were positively spatially correlated at distances up to 10 km.  b) Observed breeding sites across all 

watersheds were more strongly spatially correlated than lentic sites but only up to distances of 

approximately 7 km.  c) Neutral landscape breeding sites were spatially autocorrelated at the same 

intensity as observed lentic sites, but only up to a distance of 5 km.  d) Observed breeding sites were 

positively spatially autocorrelated after subtracting the neutral landscape at distances up to 7 km. 
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a) 
Observed lentic sites 

 

b) 
Observed breeding sites 
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c) 
Neutral landscape breeding sites 

d) 
Difference between observed and 

neutral landscape breeding sites 
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Figure 3. Spatial patterns of observed lentic and Columbia spotted frog breeding sites and for the 

neutral landscape breeding sites as given by the pair correlation function (g(r)) for beaver watersheds.  

The x-axis represents the distance in meters between sites. The area above the grey dashed line at g(r) 

= 1 (for figures a - c) represents positive spatial correlation while below the line represents negative 

spatial correlation compared to a random distribution. In figure d, g(r) = 0 represents no spatial 

correlation after accounting for the correlation in the neutral landscape. The upper and lower bounds 

of the 95% confidence intervals are shown with red dotted lines.  a) Observed lentic sites across all 

beaver watersheds were positively spatially correlated at distances up to 5 km.  b) Observed breeding 

sites across all beaver watersheds were more strongly spatially correlated than lentic sites over a 

slightly longer distance (approximately 7 km).  c) Beaver neutral landscape breeding sites were 

spatially autocorrelated at the same intensity as observed lentic sites.  d) Observed breeding sites in 

beaver watersheds were positively spatially autocorrelated after subtracting the neutral landscape only 

at very short distances (approximately 1 km).
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a) 
Observed lentic sites beaver watersheds 

 

b) 
Observed breeding sites beaver watersheds 
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c) 
Neutral landscape breeding sites beaver watersheds 

d) Difference between observed and neutral landscape breeding sites 

beaver watersheds 



47 

 

Figure 4. Spatial patterns of observed lentic and Columbia spotted frog breeding sites and for the 

neutral landscape breeding sites as given by the pair correlation function (g(r)) for non-beaver 

watersheds.  The x-axis represents the distance in meters between sites. The area above the grey 

dashed line at g(r) = 1 (for figures a - c) represents positive spatial correlation while below the line 

represents negative spatial correlation compared to a random distribution. In figure d, g(r) = 0 

represents no spatial correlation after accounting for the correlation in the neutral landscape. The 

upper and lower bounds of the 95% confidence intervals are shown with red dotted lines.  a) 

Observed lentic sites across non-beaver watersheds were positively spatially correlated at distances 

up to 9 km.  b) Observed breeding sites across non-beaver watersheds were more strongly spatially 

correlated than lentic sites but only up to distances of approximately 5 km.  c) Non-beaver neutral 

landscape breeding sites were spatially autocorrelated at the same intensity as observed lentic sites, 

but only up to a distance of approximately 3 km.  d) Observed breeding sites in non-beaver 

watersheds were positively spatially autocorrelated after subtracting the neutral landscape at distances 

up to 5 km. 
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Observed lentic sites non-beaver watersheds a) 

 

b) 
Observed breeding sites non-beaver watersheds 
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c) 
Neutral landscape breeding sites non-beaver watersheds 

 

d) Difference between observed and neutral landscape breeding sites non-

beaver watersheds 
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Chapter 3  

 

Landscape genetics of Rana luteiventris: landscape patterns and 
fine scale population structure 

 

3.1 Abstract 

Examining dispersal patterns across different landscapes is essential for understanding 

population connectivity as well as how humans are altering it.  How the frequency and importance of 

these dispersal events vary with changes in habitat configuration is largely unknown. This uncertainty 

makes possible sources of habitat fragmentation difficult to identify and the importance of dispersal 

to specific populations hard to estimate.  The fine scale population structure of Columbia spotted 

frogs (Rana luteiventris) in watersheds with contrasting habitat patterns was examined to investigate 

the effects of landscape configuration and beaver presence. I estimated genetic connectivity for 

spotted frogs from eight microsatellite markers using tissue from tadpoles. The observed 

heterozygosity and number of alleles were similar to levels detected in previous studies using tissue 

from adults. Hierarchical analysis confirmed that watersheds within regions and breeding sites within 

watersheds were both statistically significant groupings of genetic variation.  Different patterns of 

historic and contemporary gene flow were evident in the fine scale population structure of spotted 

frog breeding sites between ecoregions.  The genetic divergence seen within watersheds revealed that 

landscape configuration affected the fine scale population structure of Columbia spotted frogs.  

Landscape patterns of breeding sites were reflected in the presence and strength of isolation by 

distance equilibriums and the overall level of population subdivision within watersheds.  Watersheds 

with beaver presence and an average distance of less than five kilometers between breeding sites 

showed higher levels of connectivity than did non-beaver watersheds with an average distance of 

more than five kilometers between breeding sites.  More importantly, short beaver watersheds had 

lower levels of genetic divergence between breeding sites than those in long non-beaver watersheds 

separated by the same distance, even when distances were within the commonly observed dispersal 

ability of the frogs. 
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3.2 Introduction 

Metapopulation theory is often invoked in discussions about the conservation or management 

of species at the landscape and regional scale because of its ability to tie population and landscape 

processes together (McCullough 1996).  A key result of the theory is that the size, number, and 

distribution of habitat patches affects the dynamics and long-term persistence of populations (Rieman 

and Dunham 2000).  Despite current concerns about habitat fragmentation few studies have compared 

movement patterns for landscapes differing in the amount and configuration of critical habitat for a 

species (Wiens 1997, Smith and Green 2005).  Consequently, links between habitat patterns and 

population dynamics and their potential short and long term ecological consequences are poorly 

understood (McGarigal and Cushman 2002, Smith and Green 2005).  

Several characteristics of pond breeding amphibian populations suggest conservation plans may 

need to account for the number and distribution of habitat patches: they vary widely in abundance, 

have occasional and irregular recruitment, experience local extinctions, have limited dispersal ability, 

and demonstrate high natal site fidelity (Skelly et al. 1999, Semlitsch 2002).  Some general landscape 

characteristics and anthropogenic activities have already been demonstrated to affect dispersal and the 

subsequent population structure of amphibians (reviewed in Marsh and Trenham 2001).  Mountain 

ridges limit gene flow between populations in the frog species Epipedobates femoralis (Lougheed et 

al. 1999), Rana luteiventris, (Funk et al. 2005a) and likely several other amphibians (García-Paris et 

al. 2000, Shaffer et al. 2000, Tallmon et al. 2000). In addition interpopulation distance, land use, and 

roads have all shown negative correlations to demographic and genetic parameters for several 

European amphibians (Hitchings and Beebee 1997, Scribner et al. 2001, Vos et al. 2001).   In 

undeveloped and rural landscapes possible sources of habitat fragmentation may be less obvious.  

Changing land use and beaver extirpation have been implicated in the declines of amphibians in 

North America (Hecnar and M'Closkey 1996), including Columbia spotted frog populations at the 

southern periphery of the species’ range (USFWS 2002).  

Historically much of the lentic and riparian habitat in North America was created through 

beaver activity. The dramatic decrease in beaver numbers due to overexploitation during the fur trade 

resulted in a large change in the landscape, converting a considerable portion of the U.S wetlands to 

dry land (Naiman et al. 1986).  Current and historic harvest pressures as well as the loss of riparian 

vegetation due to ungulate and livestock over-grazing have likely resulted in population numbers far 
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below historic levels in many areas (Jonas 1955).  In the intermountain west, reductions in beaver 

numbers has led to alterations in the hydrology and nutrient flow of subalpine and midelevation 

valleys and subsequently the characteristics of these aquatic and riparian systems (Neff 1957, Dahm 

and Sedell 1986, Maret and Fanin 1987).   

Although community and ecosystem effects from beaver have been demonstrated, population 

effects for species directly affected by their ecosystem engineering have not been examined (Moore 

2005).  For many species of lentic breeding amphibians in arid landscapes, beaver wetlands provide 

over-wintering and breeding habitat and may be vital for establishing connections between widely 

dispersed permanent water bodies.  Disruption of the temporal and spatial distribution of these critical 

habitats may fragment amphibian populations that evolved in a landscape shaped by beaver activity.  

These landscape changes have the potential to strongly influence Columbia spotted frog populations 

because the species is highly aquatic and has limited dispersal abilities. 

Current patterns of lentic habitat in watersheds with beaver presence show very different 

configurations of Columbia spotted frog breeding than watersheds where they were not detected.  In 

western Montana, beaver watersheds have more spotted frog breeding sites distributed across a 

broader elevational range than non-beaver watersheds.  Non-beaver watersheds typically had a single 

or a small group spotted frog breeding sites clustered in the upper portion of the watershed. Beaver 

altered the distribution of spotted frogs on the landscape by producing watersheds where breeding 

sites were more widely dispersed and have persisted despite being separated by distances larger than 

its dispersal ability (Amish Chap.2). 

These differences in the presence of Columbia spotted frogs between beaver and non-beaver 

watersheds suggest different population processes may be operating within watersheds with different 

breeding site configurations.  Although range-wide differentiation (Green et al. 1996) and possible 

patterns of regional isolation have been described (Funk et al. 2005a), the level and importance of 

current gene flow for local population persistence is still unknown for spotted frogs (USFWS 2002) 

and other threatened Rana species in the West.  I investigated both among and within watershed 

patterns of Columbia spotted frog genetic variation to address the following questions: (1) how are 

Columbia spotted frog populations structured?  And (2) how does the configuration of breeding sites 

within watersheds affect population structure? 
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3.3 Materials and Methods 

 

3.3.1 Columbia spotted frog natural history 

Columbia spotted frogs are common in Pacific Northwest and the Rocky Mountains where they 

are continuously distributed from eastern Washington, to western Montana and northward to 

southeast Alaska. Disjunct populations occur on isolated mountains and in arid-land springs in eastern 

Oregon, northern Nevada and Utah, and southern Idaho.  Isolated southern populations in the Great 

Basin (Idaho, Nevada) are declining due to habitat loss and degradation from dewatering and exotic 

species (NatureServe 2006).   

Spotted frogs are usually not found far from the edge of lentic or riparian areas used for 

foraging.  Adults generally over winter in large permanent water bodies or in springs (Turner 1960, 

Pilliod et al. 2002) while breeding typically occurs after snowmelt or pond ice-out in shallow water 

among emergent vegetation.  In Montana most breeding sites consist of fewer than 50 individuals and 

can contain anywhere from two to several hundred egg masses and demonstrate high annual variation 

in recruitment (Werner et al. 2004, B. Maxell pers. comm.). 

Capture-recapture and telemetry studies for Columbia spotted frogs describe adult seasonal 

migrations and common short distance (< 2 km) dispersals by adults and juveniles (Turner 1960, 

Pilliod et al. 2002, Funk et al. 2005b). Approximately 90% of movements occur over Euclidian 

distances of less than 2 kilometers (Funk et al. 2005b), with rare long distance dispersals covering 4 

to 7 kilometers (Reaser 1996, Funk et al. 2005b). Juveniles are the primary dispersers with annual 

rates up to 68% recorded (Funk et al. 2005b). Dispersers display high breeding site fidelity with 95% 

of all movements permanent (Funk et al. 2005b).  In two watersheds with large Columbia spotted frog 

populations, estimates of migration based on pair-wise genetic divergence matched dispersal 

frequencies seen in capture-recapture data (Funk et al. 2005b), but we do not know how well this 

applies to populations of a more typical size or the importance of landscape patterns at the local scale 

for shaping population connectivity.  

 

3.3.2 Study design and sample collection 

I selected one pair of headwater watersheds (6th code HUCs) from three mountain ranges in 

two ecoregions of western Montana: the northern Bitterroots, the Pioneers, and the Pintlers (Fig. 1). I 
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assumed shorter distances between breeding sites would be the largest effect of beaver presence on 

the fine scale population structure of spotted frogs. Paired watersheds were less than 30 km apart, 

similar in geomorphology, climate and size and were paired based on differences in average distance 

between breeding sites (short < 5 km, long > 5 km) and beaver presence (Table 1, Fig. 2). Within 

these six watersheds I sampled all potential spotted frog breeding sites identified from topographic 

maps, aerial photos, and previous amphibian surveys.   

Whenever tadpole numbers permitted thirty samples were collected from each breeding site 

by removing 1 cm of tissue from the tip of its tail.  Overall 1267 tissue samples from 48 breeding 

sites in western Montana were analyzed. Tadpole tail-clips were used for tissue samples instead of 

adult toes to facilitate obtaining samples across a large area (see Appendix A). Collecting tadpoles 

may lead to a sample representing the reproduction of only a few adults (e.g., Allendorf and Phelps 

1981, Hansen et al. 1997).  To avoid this problem, I collected tadpoles from throughout the entire 

breeding site. General survey information including number of egg masses, tadpoles, juveniles and 

adults was repeatedly gathered during the field season to establish relative population sizes. 

 

3.3.3 Microsatellites 

Eight microsatellite loci originally developed for use with Oregon spotted frog (Rp 3, Rp 15, 

Rp 17, Rp 23, Rp 193) and Columbia spotted frog (SFC 128, SFC 134, SFC 139) were amplified. 

Loci specific annealing temperatures and repeat sizes for Rp 17, Rp 193, SFC 128, SFC 134, and SFC 

139 can be found in Monsen & Blouin (2003) while Rp 3, Rp 15, and Rp 23 can be found in Funk et 

al. (2005a).  I amplified loci using fluorescently labeled primers in two multiplex polymerase chain 

reactions (PCR) following K. Goldberg (pers. comm.) and the Multiplex PCR Kit following the 

manufacturer’s instructions (Qiagen). I conducted PCR in a PTC-100 thermocycler (MJ Research) 

with a total reaction volume of 10 µl. Capillary electrophoresis of microsatellite PCR product was 

done on an ABI 3130 sequencer.  Allele sizes were scored using the program Genemapper version 

3.7. 

 

3.3.4 Data analyses 

I set a minimum sample size of 10 individuals, and aggregated breeding sites less than 100 

meters apart.  Allele frequencies, observed and expected heterozygosities, average number of alleles, 
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FIS and mean within breeding site relatedness (Lynch and Ritland 1999) were calculated using 

GENALEX version 6 (Peakall and Smouse 2006).  I estimated exact probabilities for Hardy-Weinberg 

proportions (Guo and Thompson 1992), exact probabilities for genotypic disequilibrium, and pair-

wise FST (Weir and Cockerham 1984) using Genepop version 3.4 (Raymond and Rousset 1995). All 

watersheds had sites separated by a range of Euclidian and riparian distances from 0.5 kilometer to 22 

kilometers. I calculated Euclidian distances between sites from UTM coordinates and measured 

riparian distances in ARCMAP version 9 using a GIS database and digital USGS 7.5 minute maps.  

To investigate large-scale patterns which might be present in the genetic variation of 

watersheds, the hierarchical structure of genetic variation in the data was investigated and isolation by 

distance plots from different mountain ranges and ecoregions were compared. Nested hierarchical 

levels of genetic variation based on ecoregion, mountain range, watershed, breeding site and 

individual were computed and tested for significance using the package HIERFSTAT version 0.04-2 

(Goudet 2005) in the program R version 1.13 (R Development Core Team 2005).  Tests for 

statistically significant differences in the genetic variation between ecoregions and among mountain 

ranges, watersheds, and breeding sites were computed based on a generalized likelihood ratio using 

1000 iterations.  I plotted genetic distance between sites (FST / 1 – FST) against geographic distance to 

check for patterns of isolation by distance (IBD). Plots examining the correlation of pair-wise genetic 

and geographic distance measures assume a stepping stone model of dispersal and compare the 

relative effects of random genetic drift and gene flow between pairs of sampling points (Hutchinson 

and Templeton 1999). If sampling points in the study area are in migration-drift equilibrium a linear 

relationship between genetic and geographic distance is expected. I used FSTAT version 2.9.3 (Goudet 

1995) for Mantel’s tests of global correlation between genetic and geographic distance matrices with 

significance based on 2000 randomizations.  

I also investigated whether watershed characteristics describing the pattern of sites (e.g. 

average distance between breeding sites) was evident in the population structure of Columbia spotted 

frogs. Short (average distances between breeding sites < 5km) and long (distances > 5km) watersheds 

were selected to obtain pairs with contrasting configurations of known breeding sites at the watershed 

scale.  I compared average FST between short and long watershed types (Table 1) for three distance 

classes and used Mantel’s tests and IBD plots o compare levels of genetic divergence between 

watershed pairs. 

 Finally, I used the Bayesian clustering algorithm in the program STRUCTURE version 2.1 

(Pritchard et al. 2000) to estimate the number of populations (K) breeding sites within each watershed 
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represented.  I used the admixture and correlated allele frequencies models which assume gene flow 

among populations and that historic allele frequencies should be similar based on shared ancestry or 

migration.  Each breeding site was assigned to the population in which it had the highest proportion 

of membership. For each watershed, I ran two sets of simulations estimating the number of 

populations from one to the total number of breeding sites sampled.  The most parsimonious model 

with the largest natural log of the probability of the data given the number of populations (ln P(X|K)) 

was taken as the best estimate of the number of populations in each watershed (Pritchard et al. 2000).  

If more than one model converged on a similar value of ln P(X|K), the one with the smallest number 

of populations where breeding site membership was not distributed symmetrically among clusters 

was used (Pritchard et al. 2000). 

 

3.4 Results 

 

3.4.1 Sampling and locus variation 

From the 48 breeding sites, 1267 samples were successfully run at all eight microsatellite 

profiles. Between five (SFC128) and 18 (SFC139) alleles were observed at each locus, with an 

average of 9 ± 2.85 (95% CI), with per locus expected heterozygosities ranging from 0.292 (Rp17) to 

0.723 (SFC139). The allele frequency distributions tended to be multimodal, with the exceptions of 

SFC128 and Rp23, which were generally bimodal.  

 

3.4.2 Tests of disequilibrium and intrapopulation structure 

 Genotypic frequencies generally conformed to Hardy Weinberg proportions (HWE). If 

tadpole samples represent the reproductive output of a few adults, the sampling scheme may generate 

significant heterogeneity among and within sampling sites (Allendorf and Phelps 1981) and may be 

more sensitive to tests of HWE and linkage disequilibrium. Specifically, heterozygote excess at loci 

or higher levels of linkage disequilibrium may result from sampling tadpoles instead of adults at 

breeding sites. Fifty-seven of 472 tests departed from HWE instead of the 24 expected by chance (p < 

0.05). Of these statistically significant departures, 17 were by locus SFC139, while all other loci had 

at least three and no more than nine. When grouping by locus and using sequential Bonferroni 

correction for multiple tests, five tests at three loci remained significant (p < 0.05). Loci SFC139 and 
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Rp3 both deviated from HWE twice and had an excess of heterozygotes in all four occurrences. Locus 

Rp193 was out of HWE once, and showed a deficit of heterozygotes (App. B, Table 1). Previous 

work using Rp193 reported no evidence of a null allele (Monsen and Blouin 2003, 2004), and locus 

amplification at the site in question was consistent. When grouping by site and using sequential 

Bonferroni correction for multiple tests, 16 tests representing samples taken from 14 different 

breeding sites showed significant departures from HWE proportions (p < 0.05) (App. B, Table 2).   

Of the sixteen sites not conforming to HWE, only sites A2 and C2 had more than one significant 

result after sequential Bonferroni correction. At site A2, both loci indicate heterozygote excess, with 

SFC139 having an FIS = -0.046 and Rp23 having an FIS = -0.512, suggesting either recent admixture 

or non-representative sampling. At site C2 the two loci are split, with Rp3 showing a slight 

heterozygote deficit with an FIS = 0.092 while Rp17 has a heterozygote excess with an FIS = -0.613.  

Of 1652 possible comparisons, 50 exhibited significant linkage disequilibrium after 

sequential Bonferroni correction for loci pairs (p < 0.05) (App. B, Table 3). Linkage was detected in 

20 different loci pairs in 27 different breeding sites across the study area. One loci pair, SFC139 and 

Rp3 accounted for 15 of the significant results while another loci pair, Rp23 and Rp193 had five 

(App. B, Table 3). Weak linkage between SFC139 and Rp3 was suggested previously (Funk et al. 

2005a). Fourteen loci pairs with one to three significant linkage disequilibrium tests, showed no 

linkage during earlier testing (Monsen and Blouin 2003, 2004, Funk et al. 2005a). Five loci pairs with 

significant tests represent previously untested combinations: Rp23 and Rp193, Rp3 and Rp193, 

SFC128 and Rp15, SFC128 and Rp23, and Rp193 and Rp15. Multiple significant tests, listed here in 

parentheses following the site number, at S13 (14), A2 (7), and S12 (4) suggest some degree of 

population subdivision within these breeding sites (App. B, Table 4). None of the previously untested 

loci pairs had more than one significant test result after accounting for subdivided sites with multiple 

significant tests.  

 

3.4.3 Tadpole sampling 

Overall levels of genetic variation were in agreement with earlier work done on Columbia 

spotted frog adults.  At the watershed scale, there were no statistically significant differences between 

the average numbers of alleles, mean expected heterozygosity, and pair-wise FST values observed for 

samples collected from tadpoles instead of adult frogs (Table 2).  Across the study area and within 

watersheds the genetic characteristics of sites spanned a wide range. The total number of alleles per 
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site varied from 14 (site A6) to 44 (site C1). For breeding sites the average expected heterozygosity 

ranged from 0.259 (site A6) to 0.645 (site NF4), while the average observed heterozygosity varied 

from 0.281 (site C4) to 0.695 (site C1).  Among watersheds, average expected heterozygosities and 

average number of alleles were similar, with the highest values being observed in the North Fork of 

Fish Creek (He = 0.588, Na = 4.125) and the lowest values being observed in Alder Creek (He = 0.442, 

Na = 3.357)(Table 1). 

 

3.4.4 Hierarchical structure of genetic variation 

Fine scale groupings of samples explained the largest portion of the genetic variation in the 

data set.  F-statistics were computed for a nested hierarchy with five levels: ecoregion, mountain 

range, watershed, breeding site, and individual.  Grouping data by breeding site explained 23.9%, by 

watershed 18.1%, by mountain range 13.6%, and by ecoregion 14.9% of the total variation in the 

data. Differences in patterns of genetic divergence were apparent between ecoregions (p = 0.068, 

nperm = 1000) and among mountain ranges (p = 0.17, nperm = 1000) but were not statistically 

significant. Fine scale patterns of genetic divergence were evident as tests among watersheds within 

ecoregions and among sites within watersheds were both significant (p = 0.001, nperm = 1000).  

In agreement with the hierarchical analysis, the significance and level of correlation observed 

for Mantel’s tests of genetic and geographic distance measures increased as the scale of the ecological 

groupings decreased.  When points from all six watersheds were aggregated Mantel’s tests detected a 

significant linear correlation for both Euclidian (SL) and riparian distance (RP) measures with genetic 

distance (SL R2 = 0.0725, p = 0.0015; RP R2 = 0.1474, p = 0.0005).  When points were grouped by 

ecoregion, riparian distance explained four times as much of the genetic variation in the west-central 

ecoregion than in the southwestern ecoregion (Table 3). Within the southwestern ecoregion, the 

Pintler range watersheds showed a significant correlation between Euclidian and genetic distances 

while the Pioneer range watersheds had no significant pattern (Pintlers R2 = 0.17, Table 3). Genetic 

and geographic distance were most strongly correlated in the northern Bitterroot watersheds, where 

the highest levels of genetic differentiation were observed for distances greater than ~3 km Euclidian 

or ~9 km riparian (Fig. 3).  

Within watersheds, two drainages contained small isolated populations demonstrating high 

genetic divergence despite the presence of neighboring sites at relatively short distances. In Alder 

Creek, an inbred (mean r = 0.359), genetically isolated (mean pair-wise FST = 0.206) breeding site 
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only 2 kilometers Euclidian distance from the nearest neighboring breeding site was excluded. In 

Pintler Creek, a similar outlier (mean r = 0.252, mean pair-wise FST = 0.165) just outside of the 

watershed boundary but only 1 - 2 kilometers from several breeding sites was also excluded. An IBD 

pattern was not seen in Alder Creek before removing the outlier, but was seen using riparian distance 

once the outlier was excluded. Excluding the outlier did not change the IBD pattern in Pintler Creek 

(Fig. 3). 

 

3.4.5 Within watershed population structure 

Different equilibrium and non-equilibrium conditions were detected within watersheds pairs 

despite being separated by less than 30 km and having similar levels of genetic variation (Na, He; 

Table 1).  Mantel’s tests were significant for Seymour, Alder, and Cache Creeks between genetic and 

riparian distance, and between genetic and Euclidian distance for Seymour Creek.  Neither Pintler 

Creek nor Squaw Creek showed any correlation between genetic and geographic distance measures 

while a weak non-significant pattern was evident in the North Fork of Fish Creek when using 

Euclidian distance (Table 3, Fig. 3).  Low pair-wise FST values between breeding sites in Squaw creek 

even at long distances suggest high levels of gene flow caused non-equilibrium conditions, while the 

high pair-wise FST values in Pintler Creek, Cache Creek and the North Fork of Fish Creek even at 

short distances suggest they are dominated by genetic drift (Fig. 3). 

Bayesian analysis of the breeding site allele frequencies subdivided most watersheds into 

three or more populations (Fig. 2).  Watersheds averaged 2.8 populations; the northern Bitterroot 

drainages averaged four while basins in the Pintler and Pioneer ranges averaged 2.3.  General patterns 

of watershed subdivision fit well with drainage topography and likely dispersal corridors.  Selection 

of the most parsimonious number of populations in each watershed was straightforward except for 

Seymour Creek.  The two largest values for the natural log of the probability of the data given the 

number of populations (ln P(X|K)) were -7263.0 for K=10 and -7265.0 for K=1 which suggested that 

10 populations was the highest probability solution.  However, the run data for K=10 revealed that 

each breeding site had a symmetrically distributed proportion of membership (0.1 for each 

population) and was an over-estimate of the true number of populations (Pritchard et al. 2000).    
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3.4.6 Watershed characteristics and population subdivision 

Watersheds were paired based on the average distance between breeding sites and beaver 

presence to examine how the pattern of breeding sites affected the spotted frog population structure.  

Average distance was used to select drainages instead of beaver presence and absence so a 

comparison between beaver and non-beaver watersheds could be made while limiting possible effects 

on spotted frog population structure due differences in the number and configuration of breeding sites 

within each watershed type.  The absence of breeding activity at several low elevation sites in the 

northern Bitterroot watersheds during sampling in 2003 and 2004 reversed the beaver and average 

distance relationship for this pair.  The Cache Creek watershed had breeding sites separated by longer 

distances than any other drainage without the riparian breeding sites detected earlier (Fig. 3).  The N. 

Fork of Fish Creek became a short watershed when no breeding was detected at two sites separated 

from the others by long distances.  Although levels of genetic differentiation and population 

subdivision were much higher in the northern Bitterroot watersheds, differences observed between 

short and long watersheds were in agreement with those seen in the Pintler and Pioneer watersheds. 

With the loss of beaver created sites the configuration of spotted frog breeding in Cache Creek 

resembles the long non-beaver watersheds in the Pintlers and Pioneers (Fig. 2).   Similarly, although 

distances in the N. Fork of Fish Creek are relatively short, the watershed differs from short beaver 

drainages in the relative location of breeding sites.  The most direct route between breeding sites 

involves overland travel, without a direct connection along downstream riparian corridors (Fig. 2).  

When points from short and long watersheds in the Pintlers and Pioneers were plotted using 

genetic and Euclidian distance, an IBD pattern was seen but long watersheds had no correlation with 

distance (Fig. 4).  A Mantel’s test of the correlation between these two distance measures for short 

watersheds was significant (R2 = 0.2345, p = 0.0005). Long watersheds had a non-equilibrium pattern 

with high pair-wise FST values at all distances suggesting they were dominated by genetic drift (Fig. 

4).  Over distances up to 7.5 km, average pair-wise FST values were significantly lower in short than 

in long watersheds (Fig. 5).  Patterns of population subdivision for short and long watersheds 

reflected the patterns of genetic divergence already described using IBD and pair-wise FST data.  As 

suggested by the low levels of genetic differentiation, the two short watersheds (Squaw and Seymour 

Creek) each consisted of a single population.  Similarly, the level of genetic divergence in the two 

long watersheds (Pintler and Alder Creek) was consistent with population subdivision.  Pintler Creek 

consisted of 3 populations while Alder Creek was subdivided into 4 populations (Fig. 2). 
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3.5 Discussion 

 

At the watershed scale, Columbia spotted frog breeding sites displayed migration – genetic 

drift equilibrium suggesting fine scale patterns of population structure. Differences in the IBD 

patterns between regions and overall levels of genetic differentiation suggest ecoregions have 

experienced different colonization or dispersal histories.  The average distance between breeding sites 

within a watershed was reflected in current gene flow patterns and the level of population 

subdivision. Short beaver watersheds were characterized by a single population with very low levels 

of genetic differentiation between breeding sites while long non-beaver watersheds were subdivided 

into multiple populations and had higher levels of genetic differentiation over the same distance.   

 

3.5.1 Genetic variation 

Population structure for Columbia spotted frogs in six western Montana watersheds varied 

widely from a single population to five populations for each of the five breeding sites sampled (Fig. 

2).  In general watersheds were characterized by low genetic connectivity between breeding sites with 

moderate levels of within population genetic diversity.  The level of genetic structure seen (FST = 0.01 

– 0.232) in this study across scales of 1 to 25 km is similar to recent work done on R. luteiventris 

(Funk et al. 2005a) and R. cascadae (Monsen and Blouin 2004).  Lower values for the same scale 

(FST = 0.04 – 0.09) are seen for R. temporaria (Johansson et al. 2006) across a landscape with less 

physical relief and a more hospitable matrix.  Estimated levels of expected heterozygosity were 

within the range seen in other anuran studies (reviewed Hoffman et al. 2004, Monsen and Blouin 

2004).   

Across the study area, watershed structure determines the distribution of spotted frog 

populations. Similar to results in Funk et al. (2005a), basin or watershed groupings of breeding sites 

explained the highest portion of loci variation (18.1%) after breeding sites (23.9%).  Landscape 

structures associated with watersheds boundaries (like ridges) have been seen to be important for 

structuring populations of Columbia spotted frogs (Funk et al. 2005a) and are well supported for other 

amphibians (García-Paris et al. 2000, Shaffer et al. 2000, Tallmon et al. 2000, Monsen and Blouin 

2004).  The strong genetic subdivisions seen in two montane frog species (Monsen and Blouin 2004, 
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Funk et al. 2005a, this study) and known effects from ridges suggest headwater watersheds are well 

suited for use as conservation and management units. 

Regional patterns in genetic variation and divergence evident in previous work (Funk et al. 

2005) and this study suggest that watersheds separated by distances of 100-200 km may have 

experienced very different colonization or dispersal histories. Within this study IBD patterns and 

levels of population subdivision within watersheds were different between ecoregions and are 

reflected in Columbia spotted frog population structure even though the hierarchical analysis found 

differences between ecoregion’s genetic variation to be non-significant. Differences in effective 

population size do not appear to be responsible, as expected heterozygosity and the average number 

of alleles were similar across ecoregions. Geomorphology or patterns of human settlement may have 

influenced colonization and dispersal histories between regions.  Landscape analyses of the 

configuration of lentic habitat in the west-central and southwestern ecoregions of Montana suggested 

similar geomorphology for most watersheds.  However, the valley at the bottom of these headwater 

watersheds may important for colonization and dispersal dynamics (Funk et al. 2005a).  Source 

populations may be limited for watersheds without stable low elevation breeding sites, changing the 

frequency of dispersal into headwater areas (Funk et al. 2005a).   In addition, human settlement may 

have altered dispersal patterns through the draining of wetlands and the removal of beaver. 

 

3.5.2 Population structure within watersheds 

Within watersheds, both landscape patterns of sites and a sites relative location within a 

watershed had effects on site levels of genetic subdivision. Bayesian analysis of breeding site allele 

frequencies subdivided most watersheds into three or more populations (Fig. 2). The range of 

population subdivision seen agreed with earlier work (Funk et al. 2005) and suggests fine-scale 

population structure for spotted frogs varies widely.  General patterns of watershed subdivision fit 

well with drainage topography and likely dispersal corridors. Breeding sites organized along a linear 

riparian corridor showed the highest levels of connectivity (Fig. 2).  In contrast, even breeding sites 

separated by short over-land distances showed high levels of genetic divergence and in some cases 

evidence of inbreeding and isolation.  

Clusters or complexes of sites separated by short dispersal distances (< 2 km) showed higher 

genetic diversity and low genetic differentiation, especially at lower elevations. At these distances 

enough migration between breeding sites may exist to maintain a higher level of genetic diversity 
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than would otherwise be possible. Sites at the top of headwater basins showed lower genetic diversity, 

and higher genetic differentiation over the same distances. Although many high elevation sites 

undoubtedly have a very small effective population sizes because breeding aggregations are 

composed of only a couple of individuals, even those with large breeding aggregations had low 

genetic diversity and small effective population sizes (e.g. Table 1, A3 & S14, but not P6).  Variation 

associated with anuran demography increases at higher elevations (shorter growing season, variation 

in snow pack) and implies that complexes or clusters of sites may be vital for maintaining population 

processes in headwater basins and for the long-term persistence of isolated populations. 

 

3.5.3 How does the pattern of breeding sites within the watershed affect population 
structure? 

Short beaver and long non-beaver watersheds showed significantly different average FST 

values for the two shortest distance classes (0-2.5, 2.5-7.5 km) (Fig. 5).  The level of genetic 

differentiation exhibited over short and medium distances classes suggested population subdivision in 

long non-beaver watersheds but population connectivity in short beaver watersheds.  Estimates of the 

population subdivision within these watersheds supported these conclusions.  Other beaver and non-

beaver watersheds have examined in earlier studies have shown similar patterns (Funk et al. 2005).  

There are several possible explanations for these differences.  For short beaver watersheds, the 

location of lentic habitat in riparian corridors may be important for maintaining connectivity between 

breeding sites if dispersal success is higher along riparian corridors than over-land.  Alternatively, 

larger breeding aggregations with a higher number of juvenile dispersers in short beaver watersheds 

would maintain lower genetic divergence. With one exception (S14), the numbers of frogs or egg 

masses observed at breeding sites within watersheds during sample collection suggest they represent 

breeding aggregations of typical (~50 individuals; Werner et al. 2004) or smaller sizes with no 

differences between watershed types. 

What do the observed differences in the Columbia spotted frog population structures tell us 

about the typical watersheds in southwestern Montana, based on their habitat configurations?  First, 

historic patterns of migration and/or colonization may still be evident in fine-scale population 

structures.  Large differences in the level of genetic differentiation between populations in short and 

long watersheds in the northern Bitterroots suggests historic patterns of dispersal or the 

geomorphology surrounding these watersheds are still strongly evident in population processes.  In 
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addition, the loss of beaver created spotted frog breeding sites detected during earlier amphibian 

surveys changed the watershed characteristics of Cache Creek.  The effects of beaver alterations to 

landscape patterns may be temporary or transient and dependent upon current beaver occupancy.  

Within the Pintler and Pioneer ranges, beaver watersheds will have low levels of divergence between 

breeding sites separated by moderate distances (< 7.5 km) and will likely consist of a single 

population. This implies that even sites separated by long distances are not isolated from neighboring 

sites within the watershed.  Third, non-beaver watersheds will have moderate to high levels of 

divergence between breeding sites separated by moderate distances.  Since most non-beaver 

watersheds consist of a single breeding site, they represent isolated populations.  In non-beaver 

watersheds where multiple breeding sites are found separated by moderate or longer distances, 

watersheds likely contain several isolated populations.  Finally, in non-beaver watersheds even sites 

separated by short distances may have high levels of genetic divergence. 

Although this study focused on one species, the Columbia spotted frog, the redistribution of 

lentic habitat may have similar effects on the population structure of other lentic breeding amphibians 

and suggests that subtle differences in landscape patterns may have far reaching population 

consequences.  For beaver management, a more careful consideration of potential population effects 

on species utilizing the lentic habitat they create is required.  Limiting harvest of beaver in some areas 

may be important for maintaining existing populations of lentic breeding amphibians, or may improve 

connectivity among isolated populations. In some areas where limited habitat has led to the isolation 

of populations, beaver reintroductions may provide managers with the ability of connect low and high 

elevation populations, or to increase the number of breeding sites available within a watershed. 
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Egg UTM
Location & Site Number Distance Beaver N Na He  Masses Elevation Zone UTME UTMN

West-central Montana Ecoregion
Northern Bitterroot Mountains
Cache Creek L Y
C1 25 5.500 0.628 - 1195 11 677396 5184482
C2 25 3.625 0.531 - 1280 11 678066 5183416
C3 32 4.000 0.524 - 1899 11 670567 5186025
C4 32 2.000 0.286 - 1921 11 669314 5183148
C5 32 2.875 0.424 - 1927 11 670643 5178585
Watershed average 3.600 0.479 1645

North Fork Fish Creek S N
NF1 33 3.750 0.519 - 1899 11 658511 5203903
NF2 32 4.250 0.616 - 1829 11 659861 5199601
NF3 16 3.500 0.522 - 1909 11 656897 5199001
NF4 31 4.375 0.645 - 1976 11 658304 5197711
NF5 34 4.875 0.634 - 1757 11 656302 5197843
NF6 20 4.000 0.594 - 1915 11 655038 5200819
Watershed average 4.125 0.588 1881

Southwestern Monatan Ecoregion
Pioneer Range
Alder Creek L N
A1 18 4.125 0.543 - 2184 12 336002 5074716
A2 31 3.625 0.532 - 2626 12 333746 5072359
A3 29 3.875 0.438 16 2621 12 333581 5072493
A4 25 3.375 0.418 - 2631 12 333950 5071851
A5 13 2.625 0.465 2 2808 12 333333 5025469
A6 10 1.750 0.259 1 2863 12 331887 5068054
A7 25 4.125 0.436 4 2760 12 334274 5067413
Watershed average 3.357 0.442 2642

Squaw Creek S Y
SQ1 10 3.125 0.507 - 2161 12 323919 5070170
SQ2 15 3.875 0.468 - 2174 12 324156 5070337
SQ3 24 3.625 0.510 - 2471 12 325837 5067442
SQ4 23 3.875 0.476 - 2403 12 326050 5067875
SQ5 14 3.750 0.452 - 2386 12 327346 5069299
Watershed average 3.650 0.483 2319

Pintler Range
Pintler Creek L N
P1 39 4.625 0.508 - 2147 12 309924 5076789
P2 30 4.000 0.526 - 2156 12 311048 5078736
P3 31 4.125 0.456 - 2147 12 310324 5080659
P4 31 4.375 0.396 9 2198 12 308580 5083413
P5 16 2.625 0.351 - 2829 12 304679 5087382
P6 32 4.125 0.496 - 2737 12 303806 5086491
P7 15 2.750 0.368 - 2856 12 304612 5087454
P8 29 3.500 0.474 - 2917 12 304239 5088054
P9 32 3.875 0.505 - 2733 12 305631 5089061
PX 15 2.125 0.370 - 2706 12 303523 5085827
Watershed average 3.613 0.445 2543

Seymour Creek
S1 S Y 32 3.875 0.502 - 2042 12 330416 5088038
S2 34 4.125 0.515 5 2181 12 332365 5090859
S3 18 4.125 0.497 - 2174 12 331977 5091255
S4 32 4.000 0.529 - 2236 12 332929 5092162
S5 33 4.375 0.572 - 2413 12 330247 5093579
S6 36 4.500 0.547 - 2454 12 330224 5094284
S7 31 4.375 0.580 - 2467 12 330129 5094520
S8 30 4.000 0.520 - 2311 12 330781 5094870
S9 30 4.375 0.546 - 2324 12 330883 5095427
S10 28 4.000 0.546 - 2372 12 330883 5095724
S11 30 4.125 0.566 20 2348 12 330799 5095724
S12 28 3.625 0.484 - 2377 12 330130 5096333
S13 32 3.375 0.511 - 2617 12 325691 5100797
S14 31 3.000 0.471 111 2863 12 323931 5099542
Watershed average 3.991 0.528 2370

Watershed Type

Table 1. Sampled breeding sites organized by ecoregion, mountain range, and watershed: Site 

number; watershed type based on average distance between breeding sites (S = short or < 5 km , L = 

long or > 5 km) and beaver presence; number of complete genotypes (N); average number of alleles 

(Na); expected heterozygosity (He); number of egg masses detected; site elevation (meters); Universal 

Transverse Mercator coordinates (UTME & UTMN). 
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Table 2. Comparison of genetic variation and relatedness when sampling Columbia spotted frog 

tadpoles and adults: regional comparison of tadpole and adult Columbia spotted frog study areas 

listed by mountain range, average number of alleles (Na), mean expected heterozygosity (He), and 

watershed and study wide means of FST and relatedness (r). 

Avg Na* Mean He FST** r
C. Bitterroot Range (Amish) 3.886 0.539 0.097 0.1343
Anaconda Range (Amish) 3.833 0.493 0.039 0.0471
Pioneer Mountains (Amish) 3.538 0.452 0.046 0.0563
Tadpole Study Mean (Amish) 3.766 0.492 0.066 0.0682
95% CI (+) 3.978 0.541 0.102 0.122
95% CI (-) 3.554 0.444 0.030 0.014

Cabinets & Cour D'Alene Range (Funk) 5.083 0.601 0.067
S. Bitterroot Range (Funk) 3.000 0.405 0.093
Bighorn Crag Mountains (Funk) 2.800 0.322 0.149
Adult Study Mean (Funk) 3.628 0.443 0.067
95% CI (+) 4.892 0.586 0.109
95% CI (-) 2.197 0.281 0.019

* Average number of alleles computed based on 6 microsatellite markers used by Funk plus an additional 2 
markers for Amish.

** Average based on pair-wise FST values within watersheds.

Watershed Average

 

 

Table 3. Summary of Mantel’s tests of the correlation between genetic and geographic distance across 

a spatial hierarchy: Geographic and genetic distance correlation, beta for the geographic distance 

measure with its p-value, and the R2 for the model are shown. Significant values are in bold. 

 

Ecoregion Range Watershed Correlation Beta P(Beta) R2 Correlation Beta P(Beta) R2

0.5343 0.000023 0.003 0.286 0.7312 0.000016 0.0015 0.535
0.5343 0.000023 0.003 0.286 0.7312 0.000016 0.0015 0.535

Cache 0.1493 0.000006 0.6705 0.0223 0.6364 0.000013 0.0425 0.405
N. Fork Fish 0.4058 0.000009 0.1290 0.1647 -0.0271 0.000000 0.9210 0.0007

0.3449 0.000003 0.0005 0.119 0.3430 0.000002 0.0005 0.118
0.1334 0.000003 0.5185 0.0179 0.3034 0.000003 0.1280 0.0922

Alder 0.0494 0.000001 0.8410 0.0024 0.5465 0.000007 0.0265 0.299
Squaw 0.1607 0.000004 0.6615 0.0258 -0.3161 -0.000003 0.3760 0.0999

0.4150 0.000004 0.0005 0.172 0.3794 0.000002 0.0005 0.144
Pintler -0.1744 -0.000001 0.3285 0.0304 -0.2265 -0.000001 0.2015 0.0513
Seymour 0.6423 0.000006 0.0005 0.413 0.6012 0.000004 0.0005 0.361

Pioneers

Pintlers

Straight-line Riparian

West central
N. Bitterroots

Southwestern
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Figure 1. Map of study area in southwestern Montana: Focal watershed pairs are shown in beige; 

northern Bitterroots pair due west of Missoula, Pintler range pair shown on the north side of the Big 

Hole River, with the Pioneer range pair to the south. 
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Figure 2. Detail of watershed pairs: northern Bitterroot range watersheds are the North Fork Fish 

Creek and Cache Creek in the Lolo National Forest; Pintler range watersheds are Pintler Creek and 

Seymour Creek; Pioneer range are Alder Creek and Squaw Creek; breeding sites are numbered from 

the bottom to the top of the watershed; colored circles denote groupings from the most parsimonious 

STRUCTURE model with sites being assigned to the cluster from which individuals had the highest 

proportion of membership. 
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Figure 3. Isolation by distance graphs A - F: Graphs are identified by the mountain range where the 

watersheds are located, with watersheds labeled by creek. Distance in meters is shown on the X-axis, 

while genetic distance (FST / 1- FST) is shown on the Y-axis. 
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C) 

N Bitterroot Straight Line Distance vs Genetic Distance
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Figure 4. Isolation by distance graph for short and long watersheds: Watersheds are identified by the 

average distance between breeding sites (short and long), with Euclidian distance plotted against 

genetic distance.  Short watersheds show a significant IBD pattern while long watersheds show a drift 

dominated pattern with no significant correlation between genetic and geographic distance. 
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Figure 5.  Pair-wise FST over three geographic distance classes when watersheds are classified by 

average distance between breeding sites: Two short beaver watersheds and two long non-beaver 

watersheds were used to investigate the effects of the distribution of lentic sites on the relationship 

between genetic divergence and the Euclidian distance between the sites. Distance categories with 

significantly different average pair-wise FST values (non-overlapping 95% CI) between watershed 

types are starred. 
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Appendix A 
 

 Watershed database 

 

Appendix A, table 1.  Database variables related to watershed geomorphology and lentic habitat 
composition used in multivariate ordination. 
 

Variable Explanation

Land Ownership Characteristics
Proportion of sites on private land Proportion of all potential lentic sites on private land

Survey Characteristics
Proportion of sites surveyed Proportion of all potential lentic sites successfully surveyed

Watershed Characteristics
Ecoregion Level three ecoregion
Orientation General aspect / orientation of the watershed 
Subbasin Level four hydrologic unit code (HUC) that contains the sixth code HUC
Beaver Beaver created lentic sites detected within the watershed
Lower boundary elevation Lowest point along the watershed boundary
Watershed mid-elevation Mid-point between lower boundary elevation and highest lentic site
Change in elevation Change in elevation between lower boundary and highest lentic site

Quantity of Lentic Sites within Watersheds
Wet lentic Lentic sites with water during survey
Dry lentic Lentic sites without water during survey
Permanent lentic site Lentic sites holding water year-round 
Riparian lentic Lentic sites created originating from beaver activity or river activity
Lentic with CSF Lentic sites where CSF were also detected
Lentic with CSF breeding Lentic sites where CSF breeding was also detected
Lentic with potential CSF breeding Lentic sites where CSF were detected and breeding habitat was present
Lentic sites at midelevation Lentic sites within the mid-elevation zone 

(1/4 change in elevation above and below watershed mid-elevation)
Lentic sites with CSF breeding at midelevation Lentic sites where CSF breeding was detected within mid-elevation zone

Distribution of Lentic Sites within Watersheds
Lowest site elevation Lowest potential lentic site within watershed
Distance lowest site to watershed boundary Distance from lowest potential lentic site to lowest boundary elevation
Highest site elevation Highest lentic site
Distance highest site to watershed boundary Distance from highest site to nearest watershed boundary
Distance highest to lowest sites Distance from lowest site to highest site
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Appendix A, table 2. Variables correlated with the two axes of the NMS ordination related to 

watershed composition and geomorphology, with rankings based on average of r2 (Pearson’s 

correlation coefficient) and tau (Kendall correlation coefficient).  

 

Ranking Watershed Composition Axis r2 tau
1 # Wet lentic sites 2 0.643 -0.669
2 # Mid-elevation lentic sites 2 0.598 -0.658
3 # Dry lentic sites 2 0.459 -0.618
4 # Riparian lentic sites 2 0.325 -0.391

Ranking Watershed Geomorphology Axis r2 tau
1 Highest site elevation 2 0.461 -0.462
2 Watershed mid-elevation 2 0.432 -0.466
3 Distance lowest site to boundary 1 0.723 -0.671
4 Distance lowest to highest site 1 0.371 0.451
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Appendix B 
 

 Tadpole sampling 

 

Introduction 

 

Tadpole tail-clips were used for tissue samples instead of adult toes to facilitate obtaining 

samples across a large area. There are several reasons why sampling tadpoles instead of adults may be 

preferable for a landscape genetics study: females often migrate to nearby foraging areas immediately 

after reproduction (Pilliod et al. 2002), different post-breeding migration patterns have been observed 

by age and sex (Turner 1960, Pilliod et al. 2002), provides a longer sampling window, effort per site 

is lower so more sites can be sampled, and high elevation sites may be difficult to access until after 

breeding has occurred. However, collecting tadpoles may lead to a sample representing the 

reproduction of only a few adults (e.g., Allendorf and Phelps 1981, Hansen et al. 1997).  To avoid this 

problem, I collected tadpoles from the entire breeding site and gathered general survey information 

including number of egg masses, tadpoles, juveniles and adults repeatedly during the field season.  

 
Methods 

 

Samples 

Tissue samples were collected at a subset of sites over two years to estimate annual variation 

in genetic data. At higher elevations females are believed to breed every 2-3 years (Turner 1960) and 

have variable recruitment (Turner 1960, Funk et al. 2005b) potentially leading to temporal differences 

in the genetic signature of a breeding site. Two watersheds in the Pioneers were sampled in 2003 and 

2004, while watersheds in the northern Bitterroots and the Pintlers were sampled in 2004. Only 

samples from one site in Alder Creek were successfully run for two years. 

 

Data analyses 

Allele frequencies, observed and expected heterozygosities, average number of alleles, FIS 

and mean within breeding site relatedness (Lynch and Ritland 1999) were calculated using GenAlEx 
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version 6 (Peakall and Smouse 2006).  I estimated exact probabilities for Hardy-Weinberg 

proportions (Guo and Thompson 1992), exact probabilities for genotypic disequilibrium, and pair-

wise FST (Weir and Cockerham 1984) using Genepop version 3.4 (Raymond and Rousset 1995).  

To evaluate whether tadpole sampling produced a representative sample of the breeding 

population, I used expected heterozygosities, average number of alleles, FIS, and relatedness. Data 

were checked for patterns indicative of sampling a limited number of breeding pairs.  If tadpole 

sampling produced a sampling bias, I would expect low allelic richness, high relatedness, and an 

excess of heterozygotes across most populations.  In addition, I used number of egg masses, adults, 

and tadpoles, as well as breeding site size and location in conjunction with genetic data to examine 

whether sampling reflected general patterns of population size observed within watersheds. I 

compared samples from one breeding site collected in both 2003 and 2004 to estimate annual 

variation in allele frequencies.  Expected heterozygosities, average number of alleles, pair-wise FST, 

and relatedness were used to estimate the magnitude of yearly variation.  

 

 

Results 
 

Annual variation 

 I examined temporal variation at one breeding site in the Alder Creek watershed (A5), with 

23 individuals collected in 2003 and 13 collected in 2004 where complete genotypes across all eight 

loci amplified successfully. All alleles in the 2004 sample except two were found in the 2003 sample, 

while eight alleles found in the 2003 sample were not found in 2004. In 2003, the average number of 

alleles (Na) was 4.25 with an average expected heterozygosity (He) of 0.373 (95% CI = 0.274 to 

0.464) compared to 2004 when the Na was 2.63 with a He of 0.465 (95% CI = 0.342 to 0.589). 

Differences in the average number of alleles may be due to sample size alone.  

Relatedness values for the two samples suggest individuals in the 2003 sample are more 

highly related (0.137) than individuals in the 2004 sample (0.086).  Breeding surveys during 2003 

found three egg masses while two were found during 2004. Average relatedness between individuals 

for these two years at this site represents the second and third highest values seen in the watershed, in 

general agreement with the higher number of egg masses found at other breeding sites in the 

watershed.  
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The pair-wise FST between the two years (0.066) was approximately three times higher than 

the lowest pair-wise FST values seen between other sites sampled during 2004. UPGMA clustering 

based on Nei’s genetic distance grouped the two A5 samples together as an out-group to the rest of 

the Alder Creek samples. Average pair-wise FST values for this site in 2003 and 2004 with other 

breeding sites sampled in the watershed during 2004 reflect higher allele frequency similarities 

between samples taken during the same year (2004 A5 – Alder Creek sites avg. FST = 0.071, 2003 A5 

– Alder Creek sites avg. FST = 0.142). Unfortunately, poor success at amplifying samples collected 

during the 2003 field season has so far precluded evaluation at more than one site. 

 

Tadpole sampling 

If tadpole samples represent the reproductive output of a few adults, the sampling scheme 

may generate significant heterogeneity among sampling sites (Allendorf and Phelps 1981) and may 

be more sensitive to tests of HWE and linkage disequilibrium. Specifically, heterozygote excess 

across loci may be the result of sampling tadpoles instead of adults at breeding sites. Both regional 

and study means of the average number of alleles and mean He conducted on tadpoles and adult 

Columbia spotted frogs overlap (Table 3, Figure 3). Expected heterozygosities for the two studies 

were nearly identical, with He varying from 0.259 to 0.645 in this study, and from 0.23 to 0.70 when 

sampling adult Columbia spotted frogs (Table 3, Figure 3). When examining tadpole samples across 

all breeding sites, FIS varied from -0.387 to 0.161, and over all sites was significantly less than zero 

(mean = -0.05, 99% CI = -0.076 to -0.023, Table 3), reflecting a slight excess of heterozygotes. 

Similarly, mean relatedness per breeding site appears low (average r = 0.0665, 95% CI = 0.037 to 

0.096, Table 3) for a species with limited dispersal abilities and strong breeding site fidelity. High 

variation in mean breeding site relatedness both within watersheds and across all sites, suggested that 

representative samples were successfully collected at most sites (r = -0.032 to 0.359).  Mean 

relatedness values mirrored the survey data collected at sites (number of egg masses, tadpoles, 

juveniles, or adults detected) and apparent site isolation. 
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Discussion 
 

 Overall levels of genetic variation are in accordance with earlier work done on Columbia 

spotted frogs and other species in the family Ranidae (Monsen and Blouin 2003).  The low level of 

mean relatedness and the high variation in relatedness within and across all watersheds suggests 

tadpole sampling reflects the variation in population sizes within and across watersheds. Tadpole 

sampling provides several advantages for projects surveying landscape genetics of amphibian species 

when care is taken to collect a representative sample.  Large areas can be surveyed efficiently while 

avoiding possible biases associated with sex and age biased migration patterns.  

 However, temporal variation seen in Alder Creek (A5) reflects substantial genetic 

differentiation between sampling years 2003 and 2004.  It is possible that this level of differentiation 

is amplified due to the relatively small Ne of the site.  In very small populations, demographic 

stochasticity associated with marginal habitats and extreme environmental fluctuations along with 

genetic drift can produce discontinuities in the distribution of allele frequencies.  The sharp contrast 

in differentiation between 2003 and 2004 samples at this site with the rest of the breeding sites in 

Alder Creek may be the result of demographic synchrony at either the site or watershed level. Site 

level annual variation may be developed by small populations, high site fidelity (isolation), an 

inhospitable matrix, and alternate year breeding of both sexes.  Explosive breeders might display 

allele frequency synchrony across sites at the watershed level.   If sites are not normally connected by 

dispersal, but Ne fluctuates with environmental variables across the watershed then explosive 

breeding may lead to occasional synchronous episodes of migration when population sizes are large 

enough.  Alternatively, even if demographic synchrony is not present, occasional population 

explosions at a limited number of sites may be enough to increase migration between sites across the 

watershed and result in high annual variation.   

Comparisons of annual variation between low and high elevation populations would clarify 

whether females at low and high elevation populations exhibit different lags between breedings. More 

samples collected at sites over the same two years need to be analyzed to whether synchrony is 

evident across the watershed, and how strongly annual variation is affected by population size.  If 

similar levels of genetic subdivision are seen multiple sites and synchrony is not evident at the 

watershed scale, several years of data need to be collected if tadpole samples are going to be used to 

estimate genetic distances. However, sampling of adults is not easily applied to landscape genetic 
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questions for amphibians, and may mask synchrony if differences in allele frequencies are generated 

by sampling breeding and non-breeding individuals.   
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Appendix B, Table 1. Comparison of genetic variation and relatedness when sampling Columbia 

spotted frog tadpoles and adults: regional comparison of tadpole and adult Columbia spotted frog 

(CSF) study areas listed by mountain range, average number of alleles (Na), mean expected 

heterozygosity (He), and watershed and study wide means of FST and relatedness (r). 

 

Avg Na* Mean He FST** r
C. Bitterroot Range (Amish) 3.886 0.539 0.097 0.1343
Anaconda Range (Amish) 3.833 0.493 0.039 0.0471
Pioneer Mountains (Amish) 3.538 0.452 0.046 0.0563
Tadpole Study Mean (Amish) 3.766 0.492 0.066 0.0682
95% CI (+) 3.978 0.541 0.102 0.122
95% CI (-) 3.554 0.444 0.030 0.014

Cabinets & Cour D'Alene Range (Funk) 5.083 0.601 0.067
S. Bitterroot Range (Funk) 3.000 0.405 0.093
Bighorn Crag Mountains (Funk) 2.800 0.322 0.149
Adult Study Mean (Funk) 3.628 0.443 0.067
95% CI (+) 4.892 0.586 0.109
95% CI (-) 2.197 0.281 0.019

* Average number of alleles computed based on 6 microsatellite markers used by Funk plus an additional 2 
markers for Amish.

** Average based on pair-wise FST values within watersheds.

Watershed Average
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Appendix B, Figure 1. CSF Regional Genetic Variation: mean number of alleles is given on the x-

axis, while expected heterozygosity is given on the y-axis. Breeding sites sampled by collecting tissue 

from adult CSF from Funk et al. 2005 are shown using hollow symbols. Breeding sites sampled by 

collecting tissue from tadpoles are shown using solid symbols. Legend lists watersheds in order from 

North to South. 
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Appendix C 
 
 

 Tests of disequilibrium and intrapopulation structure 

 

 

Appendix C, Table 1.  Summary of per-locus tests and information: the number of significant tests 

using a p < 0.05 without and with sequential Bonferroni correction (SBC), whether the FIS indicated a 

deficit (-) or excess (+) of heterozygotes, the number of alleles, and the number of populations where 

a locus was monomorphic. 

 

 

HWE Summary by Locus with All Sites 
# Signif Heterozygosity # Signif Heterozygosity

Locus P<.05 - + # Monomorphic # Alleles SBC - +
SFC139 17 4 12 0 18 2 0 2
SFC134 5 2 3 1 6 0 0 0
SFC128 7 5 2 2 5 0 0 0
RP3 8 1 7 0 10 2 0 2
RP23 4 2 2 2 6 0 0 0
RP193 9 6 3 1 10 1 1 0
RP17 4 3 1 4 8 0 0 0
RP15 3 1 2 1 9 0 0 0

Total 57 5

 92 
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Appendix C, Table 2.  Summary of per-site tests and information: the number of significant tests 

using a p < 0.05 without and with sequential Bonferroni correction (SBC), whether the FIS indicated a 

deficit (-) or excess (+) of heterozygotes, the average FIS across these loci, the sample size (N), and 

the number of loci indicating an excess or deficit of heterozygotes after SBC. 

 

HWE Summary by Population with All Sites

Pop # Loci - + Avg Fis N - +
11_30 4 2 2 0.122 32 0 0
11_10 3 2 1 0.167 32 1 0
19_03 3 2 1 0.155 31 1 0
24_05B 3 3 0 0.077 23 1 0
24_70 3 0 3 0.557 31 0 2
35_26 3 3 0 -0.279 39 1 0
57_04 3 0 2 -0.113 23 0 1
995_37 3 1 2 -0.054 32 0 1
11_02 2 0 2 0.111 25 0 0
11_12 2 1 1 0.098 25 1 1
35_41 2 1 1 -0.061 29 0 1
35_49 2 0 2 0.398 15 0 0
995_26 2 0 2 -0.052 33 0 1
995_35 2 1 1 -0.147 28 1 0
11_20 1 1 0 0.512 32 1 0
57_03B 1 1 0 0.116 24 1 0
995_80 1 1 0 0.431 32 1 0
Total 40 9

# Hets .05 sig # Hets SBC
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Appendix C, Table 3.   Summary of linkage disequilibrium by loci pair: the two loci in the pair, and 

the number of significant tests after correcting for multiple tests using sequential Bonferroni 

correction (p < 0.05). 

Linkage Disequilibrium Detail by Loci Pair

Locus#1 Locus#2 SBC
SFC139 RP3 15
RP23 RP193 5
SFC134 RP193 3
RP3 RP15 3
RP3 RP193 3
SFC139 RP15 2
RP3 RP23 2
SFC134 RP23 2
SFC128 RP193 2
RP3 RP17 2
SFC139 RP193 2
SFC139 RP23 1
RP23 RP17 1
SFC134 SFC128 1
SFC128 RP15 1
SFC134 RP3 1
SFC139 SFC134 1
RP17 RP15 1
SFC128 RP23 1
RP193 RP15 1

total 50
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Appendix C, Table 4.  Summary of linkage disequilibrium by population: the number of significant 

tests without correcting for multiple tests, after correcting for multiple tests using Bonferroni 

correction, and sequential Bonferroni correction, all using P < 0.05.) 

  

Linkage Disequilibrium Detail by Population

Pop P = 0.05 BC SBC
995_37 20 12 14
24_70 14 7 7
995_35 10 4 4
11_12 8 3 3
11_20 6 3 3
19_03 8 3 3
995_19 5 3 3
11_30 3 2 2
24_05 5 2 2
35_26 4 2 2
35_41 7 2 2
57_04 6 2 2
995_24 6 2 2
995_34 5 2 2
11_02 4 1 1
19_104 3 1 1
19_11 3 1 1
24_05B 2 1 1
24_06 6 1 1
35_34 2 1 1
35_45 3 1 1
35_49 2 1 1
995_28 2 1 1
995_29 6 1 1
995_32 3 1 1
995_33 1 1 1
995_42 6 1 1
11_10 2 0 0
19_07 4 0 0
19_103 2 0 0
19_12 7 0 0
24_03 2 0 0
24_08 3 0 0
24_12 4 0 0
35_31 3 0 0
35_39 2 0 0
35_40 5 0 0
35_51 2 0 0
35_53 3 0 0
57_03B 6 0 0
57_09B 5 0 0
995_11 3 0 0
995_22 2 0 0
995_31 3 0 0
995_80 6 0 0

Total 214 60 64

# Loci Pairs
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