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  In recent decades, climate change has been invoked in the apparent collapse of some 
of the best-known examples of cyclic and synchronous population dynamics among 
boreal species. Simultaneously, some studies have predicted that as species’ ranges shift 
poleward and southern habitats fragment in response to climate change, we will lose 
the southern glacial refugial populations that have historically harbored species’ highest 
genetic diversity and uniqueness. I investigated how climate change and habitat 
fragmentation may impact genetic and population dynamic processes for the snowshoe 
hare (Lepus americanus), a species historically recognized as a key driver of North 
American boreal community dynamics.  

I collected >1000 genetic samples and >300 time series from 175 cooperators in 30 
U.S. states and Canadian provinces and territories. Based on analyses of nuclear and 
mitochondrial DNA, I identified three highly divergent groups of snowshoe hares in the 
Boreal, Pacific Northwest, and Southern Rockies regions of North America. I found high 
genetic diversity in mid-range (Boreal) hare populations, and high genetic uniqueness 
but lower diversity in the species’ southern range (Pacific Northwest and Rockies). If 
southern populations decline due to climate change, snowshoe hares may still retain 
high genetic diversity, but will lose many alleles currently unique to southern 
populations. 

In a simulation study comparing five synchrony metrics, I found the Kendall metric 
performed best with short, noisy time series similar to those available for snowshoe 
hares. I used this metric in partial Mantel tests, modified correlograms, and shifting 
window analyses of hare synchrony patterns. Confirming long-held but previously 
untested assumptions, I found northern hare populations are significantly synchronized 
at distances up to several thousand kilometers, while southern populations are not 
significantly synchronized at any of the distance classes evaluated. I found that historical 
patterns of synchrony still persist for snowshoe hares, in contrast to reports for some 
other synchronous species. Hare synchrony patterns clustered into groups defined 
according to genetic criteria—but not ecoregions or climatic regions—highlighting the 
importance of dispersal and population connectivity in snowshoe hare synchrony. 
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CHAPTER 1 

INTRODUCTION TO THE DISSERTATION 

Two central tenets of conservation biology are to maintain the biodiversity we 

have and to restore what we have lost. Conserving biodiversity means protecting 

tangibles including landscapes, species, and populations. It also means understanding 

and protecting intangibles such as genetic diversity and the large-scale ecological 

processes (e.g., wildfires, predator-prey dynamics, and long-distance migrations) that 

sustain functioning ecosystems. 

Climate change and habitat fragmentation are well-recognized threats to the 

current and future persistence of species biodiversity (Pereira et al. 2010). How do these 

anthropogenic disturbances impact ecological processes and other intangible 

components of biodiversity? My dissertation addresses this question, by investigating 

patterns and mechanisms of genetic diversity and synchronized population dynamics for 

the snowshoe hare (Lepus americanus), and how these dynamics may change in the face 

of future climate change and habitat fragmentation.  

 

IMPETUS FOR RESEARCH 

Current patterns of genetic diversity may primarily reflect effects of historical 

climate cycles (a phylogeography mechanism; Hewitt 1996; Hewitt 2000) or current 

distribution and dispersal (a core-periphery mechanism; reviewed in Eckert et al. 2008). 

For snowshoe hares and other boreal species these competing, but not mutually 
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exclusive, hypotheses generate different predictions for how genetic diversity and 

uniqueness should be distributed across a latitudinal gradient.  

Under many scenarios of climate change, southern populations of boreal species 

are at great risk of decline and fragmentation over the next century (Iverson and Prasad 

1998; IPCC 2001; IPCC 2007). Losing these southern populations could mean losing a 

large portion of species’ total genetic diversities, potentially compromising their abilities 

to persist in a rapidly changing world. Knowing how genetic diversity is distributed and 

the processes leading to these patterns could help us pre-empt genetic losses, by 

identifying conservation challenges and management options. 

Similar to genetic diversity, the phenomenon of synchronized population 

dynamics—the simultaneous rise and fall of populations over large spatial scales—is an 

intangible, but important, component of ecosystem biodiversity and function that may 

be threatened by climate change and habitat fragmentation. Over the past two decades, 

several studies have reported collapses of population cycles and synchrony in voles, 

grouse, and forest insect species (Williams et al. 2004; Bierman et al. 2006; reviewed in 

Ims et al. 2008; Kausrud et al. 2008). The apparent shift in the historically predictable 

dynamics of these species, and concerns about potential loss of associated ecosystem 

functions (e.g., large-scale pulsed resource flows and disturbances), raise urgencies for 

increased research attention on mechanisms of population synchrony, and potential 

dampening effects of climate change and habitat fragmentation on cycles and 

synchrony (Ims et al. 2008). 
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STUDY SYSTEM 

The snowshoe hare provides an excellent model system for this study because it 

is abundant and at least patchily distributed across northern latitudes where intense 

climate-induced habitat change is predicted to first occur (Soja et al. 2006). The 

snowshoe hare has also historically been recognized as a key component of North 

America’s boreal food web, making up 48% of the vertebrate biomass in a vast 

ecosystem spanning almost six million square kilometers (Krebs 2011). Snowshoe hares 

undergo dramatic ten-year population cycles, with repercussions for predators, other 

herbivores, and plants. These large fluctuations are synchronized across much of the 

species range, magnifying the spatial scale at which snowshoe hare population cycles 

drive boreal ecosystem dynamics (Bulmer 1974; Krebs et al. 2001). Thus, snowshoe 

hares play a critical role in boreal communities: their persistence should be a primary 

focus of ecological research and conservation efforts. 

 

OVERVIEW OF DISSERTATION 

As manifestations of large-scale, complex ecological processes, the study of 

genetic structure and population synchrony face common challenges in their necessity 

for large amounts of spatially distributed data and the difficulties of inferring processes 

from patterns. I approached the genetic structure and population synchrony of 

snowshoe hares in a similar framework. I cast a wide net across the North American 

range of snowshoe hares to compile genetic and time series data from hunters, 

trappers, agency scientists, and academic researchers. In total, I collected >1000 genetic 
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samples and >300 time series from 175 cooperators in 30 U.S. states and Canadian 

provinces and territories. From these data I quantified range-wide patterns of genetic 

diversity and population synchrony. I compared observed to expected patterns under 

competing, but not mutually exclusive, mechanistic hypotheses. 

In my analysis of snowshoe hare genetic structure (Chapter 2), I asked if 

observed patterns of genetic diversity and uniqueness were more consistent with a 

core-periphery mechanism (lower genetic diversity in southern and northern peripheral 

populations compared to core populations) or with a southern refugia phylogeography 

mechanism (greatest genetic diversity and uniqueness in species’ southern range). I 

found three genetically distinct evolutionary lineages of snowshoe hares, connected by 

limited gene flow—an extensive Boreal lineage comprising Canada, Alaska, and the 

northeastern U.S.; and two small, southern lineages occurring in the U.S. Pacific 

Northwest and southern Rockies. Genetic patterns supported the core-periphery model 

and revealed a more complex phylogeographic history than the southern refugia 

hypothesis would suggest—post-glacial recolonization apparently occurred from 

multiple source refugia, with secondary contact between refugial groups. This complex 

history, combined with current core-periphery dynamics, generated high genetic 

diversity and hotspots of genetic uniqueness in core (mid-range) populations, and high 

genetic uniqueness but low diversity in the species’ southern peripheral populations. 

What do these results mean for the future genetic diversity of snowshoe hares, 

in the face of climate change? The prognosis is mixed. If southern hare populations are 

lost or further fragmented due to climate change, the species will still maintain high 
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genetic diversity. However, this genetic diversity would represent a reduced subset of 

current genetic variation in snowshoe hares—many locally unique alleles currently 

found in the southern genetic groups (Pacific NW & Rockies populations) may be lost as 

southern populations decline.  

While analyzing data on snowshoe hare genetic structure, I discovered that 

snowshoe hares in the Pacific Northwest of the U.S. have mitochondrial genes more 

closely related to that found in black-tailed jackrabbits (Lepus californicus) than in 

snowshoe hares. Preliminary results on this topic are presented in the appendix for the 

snowshoe hare genetics chapter. I will continue this study after completing my 

dissertation. 

The snowshoe hare genetic results fed into my analysis of range-wide synchrony. 

If hare dispersal is a primary mechanism synchronizing dynamics, patterns of snowshoe 

hare genetic structure should correspond with patterns of synchrony. Therefore, 

although I present my research on snowshoe hare genetic structure and population 

synchrony as separate dissertation components, I use results from my investigation of 

genetic structure (Chapter 2) to determine if dispersal may be synchronizing range-wide 

hare dynamics (Chapter 4). 

Collecting the geographically distributed, long-term time series data necessary to 

quantify synchrony patterns at a large spatial scale is a difficult task. The metrics used to 

quantify synchrony patterns have typically been evaluated in simulation studies 

assuming minimum time series lengths of 100 years and obvious cyclicity in the data. 

For snowshoe hares and many other synchronous species, available time series are 
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short, noisy, and range from barely fluctuating to highly cyclic. Prior to analyzing 

snowshoe hare synchrony patterns, I compared the performance of five synchrony 

metrics with simulated data representing typical snowshoe hare time series of varying 

lengths and different degrees of error (Chapter 3). I found that a metric based on the 

Kendall rank correlation coefficient exhibited the lowest variance and bias and the 

highest statistical power when applied to relatively short, noisy time series similar to 

those available for snowshoe hares. I used the findings from this simulation study to 

inform my analysis of snowshoe hare synchrony. 

In my range-wide evaluation of snowshoe hare synchrony (Chapter 4), I 

determined if snowshoe hare populations are more synchronous in the northern 

compared to southern range—a common assumption that had not previously been 

tested. For northern hare populations, I asked if current synchrony patterns are similar 

to those reported from the early 1900’s, given the reported loss of cycles and synchrony 

in some other systems. As an initial step in elucidating mechanisms of hare synchrony, I 

also asked if range-wide hare synchrony patterns correspond with ecoregions, climatic 

regions, or with the three genetic regions (Boreal, Pacific NW, and Rockies) identified in 

Chapter 2.  

 Based on time series primarily covering the past three decades, I found that 

northern hare populations are highly synchronous and synchrony ‘travels’ across the 

boreal ecosystem in a pattern similar to that observed for snowshoe hares 70 years ago. 

Thus, while historical cycles and synchrony have apparently collapsed for some species, I 

found no evidence of major dynamic shifts for snowshoe hares. 
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In contrast to northern populations, southern hare populations are not 

significantly synchronous at the large spatial scales (thousands of kilometers) examined. 

This result confirms long-held assumptions of a latitudinal gradient in hare population 

dynamics, similar to that reported for other taxa, including voles in northern Europe and 

Japan (Bjornstad et al. 1995, Saitoh et al. 1998, Tkadlec and Stenseth 2001), muskrats 

(Erb et al. 2000), autumnal moths (Epirrita autumnata; Klemola et al. 2002), and several 

species of grouse (Cattadori and Hudson 1999).  

From my comparison of observed and expected patterns of synchrony, only 

genetically-defined regions significantly corresponded with observed patterns of hare 

synchrony. Patterns of snowshoe hare synchrony did not significantly correspond with 

ecoregions or climatic regions, counter to high-profile patterns suggested for a major 

predator of snowshoe hares, Canada lynx (Lynx canadensis) (Stenseth et al. 1999, 2004). 

Results do not preclude the possibility that climate influences large-scale hare dynamics, 

but three lines of evidence from this study suggest dispersal of hares or their major 

predators plays an important role in synchronizing northern hare dynamics:  1) the 

observed traveling wave of synchrony among northern hare populations is a common 

signature of dispersal-mediated synchrony (Haydon and Greenwood 2000; Bjornstad et 

al. 2002; Blasius et al. 1999); 2) high gene flow and synchrony in the relatively 

homogeneous northern boreal range compared to the naturally fragmented southern 

range suggest population connectivity promotes synchrony for hares; and 3) higher 

synchrony of populations within, compared to between, genetic groups (when 
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confounding effects of geographic distance are controlled for) is consistent with a 

dispersal mechanism for synchrony.  

 

CONCLUDING THOUGHTS 

Throughout my graduate career, a prevailing focus of my work has been the 

question of how can we monitor wildlife and distill the critical information needed to 

manage and conserve species? These were, after all, the objectives of most of the 

biologists and trappers who generously provided me with time series or genetic data, 

and are the goals of conservation biologists worldwide. My dissertation employed 

computer modeling and genetic analysis tools to assay key questions for population 

dynamics, while concurrent side projects on hare-habitat relations in Glacier National 

Park and the cost-efficiency of non-invasive genetic versus traditional estimates of 

snowshoe hare abundance gave me experience collecting and interpreting the field data 

crucial to these evaluations of population dynamics. Results of these side projects will 

be prepared for publication separately from the dissertation. However, the field work 

provided an important foundation for my dissertation, presenting me the tools to link 

field data on distribution, abundance, and genetic structure to the important, though 

less tangible, biodiversity processes of population synchrony and range-wide genetic 

structure.    
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CHAPTER 2 

SNOWSHOE HARES AND CLIMATE CHANGE: 

HOW MUCH DOES THE SOUTHERN EDGE MATTER? 

 

ABSTRACT 

With climate change, the ranges of many boreal and northern temperate species 

are predicted to shift poleward, with increasing fragmentation and loss of populations in 

their southern ranges. Two competing models of genetic diversity make different 

predictions about the relative importance of these southern range populations as 

storehouses of species’ genetic diversity, with implications for the effects of climate-

related habitat loss on adaptive potential. Under a southern refugia phylogeography 

model, highest genetic diversity and uniqueness is found in a species’ southern range, 

where populations have persisted and evolved through past ice ages. Under a core-

periphery model, northern and southern peripheral populations harbor low genetic 

diversity due to low gene flow and chronic genetic drift characteristic of populations at 

the edge of a species’ range. I conducted a range-wide study of snowshoe hare (Lepus 

americanus) genetic structure, to test these hypotheses on patterns of boreal genetic 

diversity and to improve our understanding of potential climate change impacts on 

boreal species. Trappers, hunters, agency biologists, and other researchers contributed 

to a large-scale sampling effort that yielded >1000 snowshoe hare genetic samples from 

16 U.S. states and 12 Canadian provinces and territories. Based on analyses of 

mitochondrial DNA (cyt b and d-loop) and eight microsatellite loci, I identified three 
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highly divergent genetic groups of snowshoe hares: a Boreal group covering Canada, 

Alaska, and the northeastern U.S.; and two smaller groups in the Pacific Northwest and 

Rockies regions of the hare’s southern range. Genetic patterns supported the core-

periphery model and revealed a more complex phylogeographic history than the 

southern refugia hypothesis would suggest—post-glacial recolonization apparently 

occurred from multiple source refugia, with secondary contact between refugial groups. 

This complex history, combined with current core-periphery dynamics, generated high 

genetic diversity and hotspots of genetic uniqueness in core populations, and high 

genetic uniqueness but lower diversity in the species’ southern range. If southern 

populations are further lost due to climate change, snowshoe hares may still retain high 

genetic diversity, but this genetic diversity would represent a reduced subset of current 

genetic variation in snowshoe hares due to loss of  alleles currently unique to southern 

populations.  

 

INTRODUCTION 

Over the next century, North America’s boreal forests are predicted to undergo 

major fragmentation and loss in their southern range due to global warming and human 

activities (1998; IPCC 2001; IPCC 2007). Current patterns of species genetic diversity may 

primarily reflect effects of historical climate cycles (a phylogeography hypothesis, Hewitt 

1996; Hewitt 2000), current geography (a core-periphery hypothesis; reviewed in Eckert 

et al. 2008), or an interaction of these forces. These competing, but not mutually 

exclusive, hypotheses generate different predictions for how genetic diversity should be 
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distributed across the species range, and how future climate-associated habitat losses 

may impact species genetic diversity and adaptive potential. In a range-wide study of 

snowshoe hare (Lepus americanus) genetic structure, I tested two hypotheses of boreal 

patterns of genetic diversity, to improve our understanding of potential climate change 

impacts on boreal species. 

According to one long-standing phylogeography model (‘southern refugia’;  

Hewitt 1996; Hewitt 2000), genetic diversity and uniqueness should be greatest at the 

southern edge of the range for boreal and other northern hemisphere species, where 

populations persisted in glacial refugia through recurrent 90,000-year glacial periods of 

the Quaternary ( ~2.6 mya–present). During relatively brief 10,000-year interglacial 

periods, previously frozen habitats of the northern hemisphere were recolonized by 

refugial populations (Pielou 1991; Hewitt 1996; Hewitt 2000; Shafer et al. 2010). By this 

mechanism, recolonization via successive founding events generates a pattern of 

decreasing genetic diversity with increasing distance from southern refugia.  

The core-periphery model—an alternative to the southern refugia 

phylogeography model—states that populations in the geographic core of a species’ 

range may be more genetically variable than populations in the periphery. Peripheral 

populations often occur as small populations in marginal habitats, with low gene flow 

and chronic genetic drift (Lawton 1993; Vucetich and Waite 2003). The southern range 

for many North American boreal species consists of narrow peninsular range extensions 

into high latitude montane habitats of the USA, including the Olympic Mountains, Coast 

and Cascade Ranges, Sierra Nevada, Rocky Mountains, and Appalachian Mountains. 
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These southern peninsular populations tend to be smaller and more fragmented than 

core populations. Consistent with the core-periphery model, studies on fishers (Wisely 

et al. 2004), wolverines (Kyle and Strobeck 2002; Schwartz et al. 2007), and brown bears 

(Paetkau et al. 1998) have demonstrated greater genetic diversity in core populations 

compared to southern peripheral populations.  

In the face of certain climate change and southern habitat loss for boreal 

species, the conservation implications of the southern refugia phylogeography and the 

core-periphery models of genetic diversity are very different, so it is important to 

distinguish the relative influence of these alternative mechanisms in distributing current 

genetic diversity and uniqueness. If patterns of boreal genetic diversity are primarily 

driven by phylogeographic history and a founding effect of northern populations since 

the Last Glacial Maximum (LGM, approximately 18,000 years ago) we would expect 

highest diversity below the southernmost extent of the LGM (45N – 49N, just below the 

U.S.-Canada border). Under many scenarios of climate change, much of the boreal and 

subalpine forests that currently support boreal species south of this delineation will 

decline over the next century (Iverson and Prasad 1998; IPCC 2001; IPCC 2007). In this 

case, we would lose a large portion of boreal species’ total genetic diversities, 

potentially compromising their abilities to persist and adapt in a rapidly changing world. 

Alternatively, if patterns of genetic diversity are driven primarily by drift in 

fragmented populations, we would expect lowest diversity in the southernmost 

montane extensions of the species range and highest diversity in mid-range core 

habitats, with diversity decreasing again toward the northern range periphery. In this 
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case, further loss of southern habitats due to climate change may have a relatively small 

impact on total species genetic diversity.  

The snowshoe hare is an ideal species for a range-wide study of patterns of 

boreal genetic diversity. The hare has a distribution shared by many other North 

American boreal species. It is generally abundant and is a popular game animal in many 

parts of its range, so genetic samples are relatively easy collect. Snowshoe hares are also 

critical prey for Canada lynx (Lynx canadensis) and many other boreal carnivores and 

raptors (Keith 1963; Bulmer 1974; Finerty 1980; Hodges 2000).  

Research to date lends mixed support for hypothesized patterns of snowshoe 

hare genetic diversity. Burton et al. (2002) reported high genetic diversity for snowshoe 

hares in Yukon, Canada, and two populations in Alaska and northern Montana, USA. The 

Montana population was highly genetically differentiated (FST = 0.20) and had several 

unique alleles, suggesting low gene flow between Montana and more northern hare 

populations. Morphological evidence also indicates the Pacific Northwest may divide 

into genetically differentiated populations—out of fifteen recognized subspecies of 

snowshoe hare, ten occur in British Columbia, Washington, Oregon, and Idaho (Dalquest 

1942).  

A few Late Wisconsin (20 kya – 10 kya) snowshoe hare fossils from Alaska, 

Yukon, Alberta, British Columbia, and Ontario suggest snowshoe hares may have 

survived the Last Glacial Maximum in the northern refugium of Beringia, and persisted 

near or quickly recolonized an ice-free corridor that opened between the Laurentide 
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and Cordilleran ice sheets (roughly along the British Columbia-Alberta border) during 

initial phases of glacial contraction (FAUNMAP Working Group 1994; Appendix 2.1).  

I conducted an extensive range-wide nuclear and mitochondrial DNA (mtDNA) 

analysis to quantify snowshoe hare genetic structure and test these two mechanistic 

hypotheses of genetic diversity. I specifically asked if snowshoe hare genetic diversity 

and uniqueness are higher in southern populations (southern refugia phylogeography 

model) or mid-range populations (core-periphery model).  

Gene flow, especially between southern and northern populations, may reduce 

genetic losses associated with climate change. I therefore used cluster analyses and 

several measures of genetic differentiation (FST, Nei’s D, and PiXY) to assess patterns and 

levels of gene flow within the species range. In this study, I used the maximum southern 

extent of the LGM as an initial rough delineation for the southern species range because 

this region separates post-LGM recolonized populations from likely southern glacial 

refugia. Based on observed patterns of genetic structure, I discuss potential ecological 

implications of global warming and opportunities for prioritizing conservation efforts for 

snowshoe hares and other boreal species. 

 

METHODS 

Sample Collection 

I collected 1014 snowshoe hare genetic samples from 16 U.S. states and 12 

Canadian provinces and territories within the species’ current range (Appendix 2.2). Ten 

samples were fecal pellet sets collected from individual hare tracks on Isle Royale, 
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Michigan, in winter 2009. Eleven samples were University of British Columbia Cowan 

Museum tissue samples from specimens collected near Vancouver, British Columbia, 

from 1929 to 1970. The remaining samples were snowshoe hare tissues collected from 

road kill, game harvests, and live-trapping during 1989–2010. Hunters and trappers, 

agency biologists, and other researchers donated many of the samples used in this 

study. Some samples came from on-going demographic studies in Montana and 

Wyoming (Mills et al. 2005; Hodges et al. 2009). I also conducted additional live-trapping 

in 2008–2010 to increase sample sizes from the western United States. Samples were 

stored in silica dessicant and maintained in cool, dry conditions prior to DNA extraction.  

DNA Extraction and Mitochondrial DNA Sequencing 

Most samples collected from the United States were extracted and amplified in 

our laboratory at The University of Montana (Missoula, MT), and submitted to The 

University of Washington’s Hi-Throughput Sequencing Solutions laboratory (UWHTSEQ; 

Seattle, WA) for ExoSAP purification and bi-directional sequencing. A subset of U.S. 

samples was amplified at University of Porto’s Research Center in Biodiversity and 

Genetic Resources (CIBIO; Vairão, Portugal) and sequenced at the Center of Molecular 

Analysis (CTM; Vairão, Portugal).  Laboratory work was primarily conducted by the same 

author (E. Cheng) at both facilities. Samples collected from Canada were extracted and 

bi-directionally sequenced at University of British Columbia Okanagan’s Fragment 

Analysis and DNA Sequencing Services laboratory (FADSS; Kelowna, BC). 

I used Qiagen DNeasy Blood & Tissue Kits, following the manufacturer’s protocol, 

to extract DNA from smaller tissue samples (e.g., 3 mm samples from live-trapped 
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hares). Larger tissue samples were digested in a detergent-based cell lysis buffer and 

purified by isopropyl alcohol precipitation. Pellet samples were extracted with the 

QIAamp DNA Stool Mini Kit in a laboratory at The University of Montana designated 

exclusively for samples collected non-invasively. I initially incubated single pellets in 1.6 

mL Qiagen ASL buffer for 20 minutes at 54°C. The DNA-containing supernatant from 

each pellet was then used for extraction, following the manufacturer’s protocol. Tissue 

or pellet samples that did not successfully extract after two attempts were omitted from 

analyses. 

A 468 bp segment of the mitochondrial control region (D-loop) was amplified 

with primers LCRSEQ (Melo-Ferreira et al. 2007) and LepD2H (Pierpaoli et al. 1999). The 

15 μL PCR reaction volume comprised 15 ng template DNA, 1X PCR buffer, 1.7 mmol 

MgCl2, 0.13 mmol each dNTP, 0.13 μmol each primer, and 0.4 units Invitrogen Platinum 

Taq. I used a PCR program of 92°C for 2 minutes; 35 cycles of 92°C for 30 seconds, 52°C 

for 30 seconds, and 72°C for 30 seconds; followed by 72°C for 2 minutes. PCR products 

were visualized on a 1% agarose gel stained with ethidium bromide. Prior to purification 

and sequencing at UWHTSEQ, tissue PCR products were diluted 1:1 with DNA-grade 

water.  

The mitochondrial cytochrome b (cyt b) gene has a slower mutation rate and 

lower tendency than D-loop for homoplasy over long time scales. Therefore, for 80 

geographically distributed genetic samples I amplified a 633 bp segment of cyt b, to 

confirm D-loop groupings of haplotype lineages and to calculate deep divergence times 

between lineages. I used primers LGCYF (Alves et al. 2003) and LCYTBR (Melo-Ferreira et 
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al. 2005); reaction mixtures and PCR conditions were the same as described for the D-

loop gene. 

For both D-loop and cyt b, sequences were run on either an ABI 3730 or ABI 

3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA). Sequences with 

unresolved bases were re-amplified and re-sequenced once; those still unresolved after 

two attempts were omitted from analyses. I aligned sequences using CodonCode Aligner 

v. 3.5.4 (CodonCode Corporation, Dedham, MA). Final sequences will be deposited in 

GenBank. 

Microsatellite Genotyping 

Microsatellite analyses were conducted at The University of Montana. I 

genotyped samples at 8 loci originally developed in the European rabbit, Oryctolagus 

cuniculus, and successfully used with snowshoe hares (Burton et al. 2002; Schwartz et al. 

2007): 7L1D3 (Korstanje et al. 2003); SAT02, SAT12, SAT13, SAT16 (Mougel et al. 1997); 

SOL08, SOL30 (added "GTGTCTT" tail) (Rico et al. 1994); and SOL33 (Surridge et al. 

1997). PCR amplifications were conducted as two multiplex reactions, each with 10 μL 

total volume. Primer ratios for Multiplex 1 were 9:12:12 for SAT13 : SOL08 : SOL30tailed. 

For Multiplex 2, primer ratios were 11:6:7:3.5:4 for SAT02 : SAT16 : 7L1D3 : SAT12 : 

SOL33. Each multiplex consisted of 0.2 μL 10X primer mix (forward primer was dye-

labeled), 1X QIAmultiplex, and 1.5 ng template DNA.   

I used two different touchdown PCR profiles. The program for Multiplex 1 was 

95°C for 15 minutes; 24 cycles of 94°C for 30 seconds, 60-50°C for 3 minutes (step down 

0.5°C/cycle for first 20 cycles), and 72°C for 1 minute; followed by 60°C for 30 minutes. 
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Multiplex 2 used an identical program but with a 58-48°C step down temperature cycle. 

PCR amplifications were run on an ABI 3130xl Genetic Analyzer at the Murdoch DNA 

Sequencing Facility (Missoula, MT) and scored with GeneMapper v. 3.7 (Applied 

Biosystems Inc., Foster City, CA).  

I manually checked all microsatellite genotypes to confirm allele calls. A 

genotype was accepted if confirmed with at least two clear chromatograms. A 

homozygote genotype was not accepted for a locus if any amplification of the sample 

yielded a clear heterozygote genotype at that locus. If a heterozygote genotype could 

not be confirmed with a second clear chromatogram, the sample-locus was recorded as 

missing data in the final set. If one locus in a multiplex was not confirmed, the multiplex 

for that sample was re-amplified and re-genotyped up to three times. All samples in the 

final data set had at least seven confirmed loci. 

Delimitation of Populations for Analyses 

Samples were initially grouped into populations based on geographic location. I 

subsequently redefined some populations for which preliminary analyses identified 

genetic substructure (Wahlund effect). I used two geographic criteria: 1) no major 

landscape features such as large lakes, mountain ranges, or non-forested regions 

bisecting samples in a population; and 2) a maximum distance of 260 km between any 

two samples in a population. The second criterion (260 km between populations) was 

based on the spatial clustering of samples collected in this study, and Burton et al.’s 

(2002) finding of high gene flow among snowshoe hares separated by >600 km.   
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Next, for each population separately, I used Genepop v. 4.0.11 (Rousset 2008) to 

test for Hardy Weinberg Equilibrium (HWE) in all loci, and linkage disequilibrium in all 

pairs of loci. Markov chain parameters for exact tests were set at 10,000 

dememorizations, 100 batches, and 5000 iterations per batch (Raymond and Rousset 

1995). I corrected for multiple significance testing Type I error by using the false 

discovery rate (FDR) approach described by Benjamini and Hochberg (1995) and 

executed by the R software package “fdrtool” (Strimmer 2008; http://cran.r-

project.org/). Potential null alleles and scoring errors due to stuttering and allelic drop-

out were identified using Monte Carlo simulation in Micro-Checker v. 2.2.3 (Van 

Oosterhout et al. 2004). Based on these genetic criteria, I redefined population 

designations for genetic analyses described below. Populations with fewer than seven 

samples were not analyzed. 

Mitochondrial DNA Analyses 

I identified broad-scale genetic groups based on D-loop haplotypes, to 

distinguish snowshoe hare lineages with different evolutionary histories. I used the 

simulated annealing procedure in SAMOVA v. 1.0 (Dupanloup et al. 2002) to assign 

populations to genetic groups for K (number of groups) from 2 to 10. Likely group 

partitions are associated with high values of ΦCT, which measures proportion of total 

genetic variation attributed to differences among groups. I ran SAMOVA with 500 initial 

population partitions and 10,000 iterations for each K. Significance of variance 

components was evaluated by 1000 permutations of populations among groups. 

http://cran.r-project.org/
http://cran.r-project.org/
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D-loop haplotypes as identified in DnaSP v. 5.10 (Librado and Rozas 2009) were 

used in NETWORK v. 4.5.1.6 (http://www.fluxus-engineering.com/) to generate an 

unrooted median-joining network for inferring ancestral haplotypes that might reveal 

source populations for post-glacial expansions, and for visualizing finer-scale 

evolutionary relationships. Nucleotide transitions were 19 times more likely to occur 

than transversions in my data (see RAxML analysis below), so I weighted transversions 

three times as high as transitions, as recommended by NETWORK for human mtDNA 

regions with a similar transitions : transversions rate. I compared the genetic clusters 

identified by SAMOVA and NETWORK to define the most likely groups (hereafter 

referred to as haplotype lineages) for subsequent lineage-based mtDNA analyses.  

I estimated lineage divergence and expansion times based on mtDNA data by 

using RAxML 7.0.3 (Stamatakis 2006) to calculate parameters of a nucleotide 

substitution model.  Two measures of genetic diversity—haplotype and nucleotide 

diversities averaged across loci for each population—were calculated in ARLEQUIN v. 

3.5.1.2 (Excoffier et al. 2005). Haplotype diversity is the probability that two individuals 

randomly selected from a population have the same mitochondrial haplotype. 

Nucleotide diversity is the average number of nucleotide differences (per base pair) 

between individuals. For all populations combined, I conducted a quadratic regression 

analysis between diversity and latitude, to determine if geographic patterns of within-

population genetic diversity are consistent with the core-periphery model of genetic 

drift at range edges. For all populations combined and for each haplotype lineage 

separately when sample sizes permitted, I also tested for significant linear correlations 

http://en.wikipedia.org/wiki/Nucleotide
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between diversity and latitude and longitude, to identify geographic patterns that might 

reflect post-glacial expansion patterns from southern refugia (southern refugia 

phylogeography model). 

To evaluate genetic differentiation between populations, I calculated pairwise FST 

and PiXY for all population pairs. FST is a measure of genetic differentiation (between 

populations) due to drift and fixation, whereas PiXY is the average number of pairwise 

differences between individuals from different populations. Both measures increase as 

gene flow decreases and populations diverge. Significance of tests was determined with 

10,000 bootstraps and FDR control for multiple comparisons (ARLEQUIN v. 3.5.1.2).  

Post-glacial expansion from refugia can generate signals of major spatial 

expansion from an initial equilibrium state to a final equilibrium state, which can follow 

a stepping-stone model of gene flow (e.g., Ray et al’s 2003 simulations of spatial 

expansions occurring over a span of 400–4000 generations). I used ARLEQUIN v. 3.5.1.2 

to test the D-loop mismatch distribution for each haplotype lineage against a model of 

spatial expansion. A mismatch distribution is a frequency histogram tabulating the 

number of pairwise differences among DNA sequences. Major spatial expansions 

generate unimodal mismatch distributions from which expansion parameters (time 

since expansion, pre-expansion and post-expansion effective population sizes) can be 

estimated (Excoffier 2004). I assessed data fit to expansion models and generated 

parameter confidence intervals with 20,000 coalescent simulations of the expansion 

process.  
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Microsatellite Analyses 

Analyses of microsatellite data paralleled tests with mitochondrial DNA, allowing 

me to compare the long-term historical structure revealed by mtDNA with the more 

contemporary structure identified by independent microsatellite analyses. I used an 

individual-based Bayesian clustering program, STRUCTURE v. 2.3.3 (Pritchard et al. 

2000), to identify the most likely number of microsatellite genetic clusters in samples, 

and to assign individuals to their probable cluster of origin. For each model run I used an 

admixture model with allele frequencies correlated among populations.  Parameters 

were set for a burn-in period of 20,000 generations and 100,000 MCMC iterations after 

burn-in, as recommended by Pritchard et al. (2000). I used STRUCTURE-generated 

summary statistics (e.g., α, F, divergence distances among populations) and parameter 

plots to confirm the burn-in phase was adequate for the Markov chain to converge and 

parameters to reach equilibrium. To ensure MCMC replicates were sufficient, I checked 

for consistent results across twenty independent runs for each of K (number of clusters) 

from 2 to 10. I plotted the log-likelihood of each run against K. The smallest value of K at 

which the log-likelihood values begin to asymptote indicates an optimal partitioning of 

the genetic data. I compared results from STRUCTURE with those from SAMOVA on 

microsatellite data (model parameters:  K = 2 to 10; 500 initial partitions and 10,000 

iterations for each value of K). The microsatellite genetic clusters jointly defined by 

these two programs were used for subsequent cluster-based analyses. 

I used GENALEX v. 6.3 to calculate summary statistics of genetic diversity 

averaged across all loci for each population:  number of alleles, effective number of 
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alleles, observed and unbiased expected heterozygosity (Nei 1978), and the population 

inbreeding coefficient FIS. For all pairs of populations I estimated two measures of 

genetic differentiation:  Nei’s D (Nei 1972) and Weir and Cockerham’s (1984) FST. Nei’s D 

is analogous to PiXY as a measure of the actual differentiation in allele frequencies 

between populations, whether due to drift or mutation. FST was calculated in ARLEQUIN 

v. 3.5.1.2 and significance was determined with 1000 permutations of samples among 

populations, with FDR correction for multiple comparisons.   

Allelic richness (AR) is an important indicator of a population’s genetic diversity 

and long-term evolutionary potential (Hill and Rabash 1986). I used the rarefaction 

procedure implemented in HP-RARE v. 1.0 (Kalinowski 2005) to calculate the average 

number of alleles per locus for each population, standardized to the smallest sample 

size (7 individuals) used in this study. The same program, in combination with GENALEX 

v. 6.3, allowed me to calculate a variety of statistics associated with the private allelic 

richness of each population and of each microsatellite genetic cluster.  

Private allelic richness (PAR), the average number of alleles unique to a 

population, is often used to identify populations for priority conservation and to 

pinpoint regions within a species’ current range that may have served as source refugia 

during glacial maxima. Populations must be relatively isolated for a sufficiently long time 

to accumulate private alleles. However, estimates of PAR can be biased by uneven 

density and distribution of sampling effort. In this study, northeastern states were more 

densely sampled than were some other portions of the species range. If private alleles 

were evenly distributed across the species range, PAR estimates for the northeast U.S. 
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could be lower simply due to sampling bias— less distance separates sampled 

populations in this region, so it would be more difficult to find alleles unique to only one 

sampled population. 

To identify and account for these potential sampling biases in PAR estimates, I 

calculated the traditional standardized (to a sample of 7 individuals) PAR estimate as 

well as two “buffered” PAR estimates for each population:  PAR350 is standardized PAR 

for each population when all sampled populations within a 350 km radius are excluded 

from calculation, and PAR500 is the same calculation with a 500 km buffer.  

I distinguished between the various population PAR estimates (described above) 

and cluster PAR, which I estimated individually for each population as the average 

number of alleles private to the genetic cluster but potentially shared by multiple 

populations within the cluster. Cluster PAR (PARclus) was calculated as Kalinowski’s 

(2004) hierarchical measure of PAR standardized to one population per genetic cluster 

and 7 individuals per population. To further identify patterns in the distribution of 

cluster private alleles I also calculated %PAclus, the proportion of alleles in each 

population that were cluster private alleles. As in mitochondrial DNA analyses, I 

conducted quadratic regression and linear correlation tests between genetic metrics 

(unbiased expected heterozygosity, allelic richness, PAR) and latitude and longitude to 

identify geographic patterns of population expansion or genetic drift at range periphery. 
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RESULTS 

Mitochondrial DNA Data 

I obtained D-loop sequences for 1006 samples and cytochrome b sequences for 

80 samples. After exclusion of populations with fewer than seven complete sequences, 

the final data set for D-loop analyses comprised 39 populations with 893 samples 

represented by 365 haplotypes. Cyt b data were used only for confirming haplotype 

lineages and estimating lineage divergence times; I used the full 80-sample data set, 

which was represented by 43 haplotypes. 

SAMOVA identified three major snowshoe hare haplotype groups with striking 

geographic correspondences:  (i) a Pacific Northwest lineage including California, 

western Oregon, and western Washington but excluding the Olympic peninsula; (ii) a 

Rockies lineage comprising only Utah and Wyoming; and (iii) a Boreal lineage that 

covered the entire northern and eastern range of the species. In addition to the three 

major lineages, three smaller but also evolutionarily distinct lineages were associated 

with individual sampled populations: (i) WA3 in Olympic National Park, USA; (ii) OR2 in 

Malheur National Forest, eastern Oregon, USA; and (iii) CO1 (Colorado). (Fig. 2.1; Table 

2.1) 

The Pacific NW and WA3 snowshoe hares were highly diverged from all other 

lineages. A BLAST-search of their haplotypes (Altschul et al. 1990) showed all individuals 

sampled from these populations were more closely related to black-tailed jackrabbits 

(Lepus californicus) than to snowshoe hares. This finding was further confirmed by 
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phylogenetic and network analyses that located black-tailed jackrabbits basal to these 

introgressed snowshoe hare lineages (Appendix 2.3).  

Because the introgressed hares were so genetically distinct from all other 

snowshoe hares, the proportion of genetic variation explained by differences among 

lineages (ΦCT) was very high and differed by only 1% for K = 2 to 10 in SAMOVA analysis 

(Table 2.1A). To better identify an optimal K, I reran SAMOVA with the introgressed 

hares excluded (Table 2.1B). In this subset analysis K = 4 identified the same non-

introgressed lineages defined by K = 6 in the full SAMOVA run. The introgressed lineages 

did not further subdivide in the full SAMOVA until K = 9. Thus, the best-supported 

groups were derived from K = 6 in the full SAMOVA. Both SAMOVA analyses indicated 

strong differentiation of these lineages, which were also clearly defined in the haplotype 

networks for the D-loop (Fig. 2.2) and cyt b (not shown). 

No haplotypes were shared by populations in different lineages (Appendix 2.4). 

However, two populations (WA4 and MT1) with primarily Boreal haplotypes also had 

haplotypes associated with a non-Boreal lineage as defined in the D-loop haplotype 

network (Fig. 2.3). These mixed-lineage populations appear to be points of contact and 

limited gene flow between otherwise highly distinct snowshoe hare lineages. D-loop 

haplotypes were shared among populations in the Boreal lineage. A few haplotypes, 

such as Hap2 found in British Columbia (BC1) and Quebec (QC3), were shared by distant 

populations. The most ancestral haplotypes within the Boreal lineage occurred in the 

eastern species range (New Brunswick /New England region). West Virginia was the only 

Boreal population for which I did not find shared haplotypes. This population has been 
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relatively isolated from more northern populations since the early 1900’s (Brooks 1955). 

Within the Pacific Northwest introgressed lineage, haplotypes were shared only among 

the three southernmost populations sampled:  Oregon (OR1) and California (CA 1 and 

CA2). Although UT1 (Utah) and WY1 (Wyoming) were combined in a single lineage, I did 

not find any shared haplotypes between these populations. In summary, the haplotype 

network confirmed SAMOVA results that snowshoe hare populations are divided among 

several highly differentiated evolutionary lineages. Populations in the Boreal lineage 

share many haplotypes, due to high gene flow and/or incomplete lineage sorting. Most 

populations in other lineages retain unique haplotype sets. 

Most lineages and populations were characterized by high haplotype and 

nucleotide diversities (Table 2.2; Appendices 2.5 and 2.6), suggesting historical 

accumulations of genetic variation and/or secondary admixture of dispersers from 

different refugial populations. In general, the UT-WY lineage had the lowest diversities 

of all. Within the Boreal lineage, BC1 (Vancouver, British Columbia) had unusually low 

diversity (only 2 haplotypes among 17 samples), which may reflect relative geographic 

isolation or recent glacial recession. Island and southern range peninsular populations 

also had low diversities, especially noticeable for IR1 (Isle Royale island, Michigan), WV1 

(West Virginia, at the southern edge of the Boreal lineage range), and CA1 and CA2 

(California, at the southern edge of the Pacific NW lineage range). Most other 

populations had haplotype diversities >0.85 and correspondingly high nucleotide 

diversities. The unusually high nucleotide diversity for WA4 (π = 0.0681) can be 
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attributed to the joint occurrence of haplotypes from introgressed and non-introgressed 

lineages in this population (Figs. 2.2 and 2.3).  

For analyses of geographic patterns in genetic diversity, I omitted BC1 because 

its unusually low diversity could have obscured large-scale patterns. I also excluded the 

two mixed-lineage populations, WA4 and MT1. With all other populations combined, 

haplotype diversity (r2 = 0.35, p = 0.0003; Fig. 2.4) and nucleotide diversity (r2 = 0.20, p = 

0.009) had significant quadratic relationships with latitude. I did not find significant 

correlations between longitude and any measure of genetic diversity (all p > 0.17). 

The two measures of genetic differentiation, FST  and PiXY,were highly correlated 

(r = 0.85, p < 0.001). Average pairwise differences across lineages (PiXY) were high, 

especially between introgressed and non-introgressed lineages (Appendix 2.7). Within 

the Boreal lineage, low values of FST and PiXY between populations suggested moderate 

to high gene flow. Other lineages showed strong genetic structure and little gene flow.  

I used the subset of cyt b data to calculate time since divergence of snowshoe 

hare lineages. Two studies of Lepus phylogeny have placed the divergence between 

snowshoe hares and black-tailed jackrabbits at 4.79 mya (95% CI 4.03–5.90 mya; 

Matthee et al. 2004) and 5.649 mya (95% CI 3.504–8.097 mya; Wu et al. 2005). I 

obtained an average divergence between black-tailed jackrabbits and non-introgressed 

snowshoe hares of Dxy(JC) = 0.10232 in this study (Dxy calculated in DnaSP v. 5.10 with 

Jukes-Cantor correction; cyt b data included five black-tailed jackrabbit samples). Using 

this average species divergence and the published divergence times, I calculated a cyt b 

divergence rate ranging from 1.26% to 2.92% per million years. I used this range of 
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divergence rates to determine that snowshoe hare haplotype lineages likely separated 

during the Pleistocene, prior to the LGM. Most recently, CO1 separated from the UT-WY 

lineage approximately 40 kya (60 kya–26 kya; Table 2.3). The oldest divergence was 

probably between the Boreal lineage and all other non-introgressed lineages ~ 1 mya 

(1.5 mya–65 kya), although there is considerable overlap between the range of 

divergence times for many lineage separations. Post-introgression divergence of Pacific 

NW and WA3 snowshoe hare populations from black-tailed jackrabbits seems to have 

occurred around the same time as divergence of Boreal snowshoe hares from all other 

lineages. Although there can be considerable error associated with divergence estimates 

from genetic data, it seems most snowshoe hare haplotype lineages separated from 

each other at some time in the early- to mid-Pleistocene, with onset of the major 

Quaternary glacial cycles. Thus, recolonization of recently unglaciated northern 

territories after the LGM (~18,000 years ago) must have occurred primarily by species 

expansion from Boreal refugia, rather than from refugia of more southern lineages. 

The data suggest the Boreal and Pacific NW lineages underwent spatial 

expansions during the late Pleistocene but well before the LGM. The pairwise mismatch 

distributions of D-loop haplotypes for these lineages fit expected distributions from a 

spatial expansion model (Fig. 2.5). I used the estimated lineage divergence times for 

CO1 / UT-WY (0.60–0.26 mya) to calibrate a D-loop mutation rate that could be used to 

estimate time since expansion of these lineages. A divergence of Dxy(JC) = 0.038 for CO1 

/ UT-WY yielded a mutation rate of 3.2% to 7.3% per million years. For a 460 bp D-loop 

segment (indels excluded), this rate translates to 14.5 to 33.5 mutations per million 
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years. Based on this mutation rate and mismatch model parameters for tau (units of 

mutational time since expansion), the Boreal and Pacific NW lineages may have 

undergone spatial expansions around the same time, between 211 kya and 90 kya.  

Microsatellite Data 

I obtained final microsatellite genotypes for 922 samples. After excluding 

populations with fewer than 7 confirmed genotypes, I had 853 samples in 39 

populations. Four percent of 343 population-loci combinations were significantly out of 

Hardy Weinberg Equilibrium after FDR-control for multiple comparisons. Almost half (N 

= 6 of 14) of the significant results were for two populations, ME1 (Maine) and NY1 

(New York). Deviations from HWE were not associated with any particular loci. 

Significant results were generally associated with positive FIS values, indicating a deficit 

of heterozygotes. Slightly over 5% of 1026 tests for linkage disequilibrium (covering all 

loci pairs for all populations) were significant after FDR-control. Most of the significant 

results (46 out of 53) were again associated with ME1 and NY1. Micro-checker identified 

potential null alleles in 7.6% of 328 population-loci tests. Null alleles and deviations 

from HWE were not associated more frequently with any particular loci, and genotypic 

disequilibrium was not consistently attributed to a particular locus pair. Burton et al’s 

(2002) study also did not report problems with any of the microsatellite markers used in 

common with my research. I therefore retained all loci for analyses. I re-examined ME1, 

NY1, and other populations with high FIS and significant deviation from HWE, to 

determine if heterozygote deficits could be due to clustered sampling within 
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populations. I redefined one population (MB1 in Manitoba) for which elimination of 

sample clusters restored population equilibrium. 

The microsatellite data largely confirmed the independent findings from 

mitochondrial data regarding patterns of snowshoe hare genetic structure and diversity. 

To distinguish between microsatellite-based genetic groups and mtDNA-based 

haplotype lineages, I will refer to the former as genetic clusters. Microsatellite data 

identified three genetic clusters that broadly corresponded with the three major 

haplotype lineages from mtDNA analyses:  Boreal, Pacific NW, and Rockies (Fig. 2.1; 

Table 2.4). However, with microsatellite analyses the Pacific NW cluster was larger—it 

included all introgressed hare populations as well as populations from eastern Oregon, 

eastern Washington, southern British Columbia, and northern Montana. Microsatellite 

data also grouped CO1 with the Rockies cluster. Group composition was identical at K = 

3 in both SAMOVA and STRUCTURE, and the log-likelihood plot for STRUCTURE 

identified K = 3 as the best-supported division for microsatellite data (Appendix 2.8). 

With K = 3, the estimated membership of every population in its most likely genetic 

cluster was > 90%, when averaged across all individuals in the population. Differences 

among the three genetic clusters accounted for 16% of total genetic variation. 

Most snowshoe hare populations were characterized by high allelic richness and 

high expected heterozygosities (Table 2.5). These measures of genetic diversity were 

highly correlated (r = 0.94, p < 0.001). Among Boreal populations I found low genetic 

diversities in Alaska, Yukon, and British Columbia (Figs. 2.6 and 2.7). This region of 

western North America was the last to recover from the most recent ice age (Fulton 
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1991), although some areas of central Alaska and far western Yukon (eastern Beringia) 

remained ice-free through the glaciations. Consistent with mitochondrial data and with 

the effects of drift on genetic diversity, I also found low diversities in the Rockies 

microsatellite cluster and in southern range peninsular populations:  PA1 and PA2 

(Pennsylvania) and WV1 (West Virginia) of the Boreal cluster, and CA1 and CA2 

(California) in the Pacific NW.   

BC1 grouped with the Pacific NW cluster but its geographic position and its very 

low genetic diversity suggest it was recolonized within the past 6,000 years, when the 

southern remnant of the Cordilleran glacier finally disappeared. Alternatively or in 

addition, genetic drift may explain its low diversity. As in mitochondrial analyses, I 

omitted this population from my examination of large-scale geographic trends in genetic 

diversity. Genetic diversity was weakly correlated with longitude for the Boreal cluster 

(allelic richness, r = 0.32, p = 0.10; heterozygosity, r = 0.56, p = 0.003) and for all 

populations combined (allelic richness, r = 0.32, p = 0.05; heterozygosity, r = 0.45, p = 

0.005). With all populations combined, genetic diversity had a significant quadratic 

relationship with latitude (r2= 0.35 – 0.37, p < 0.0002). Diversity was also highly linearly 

correlated with latitude for the Pacific NW cluster (allelic richness, r = 0.74, p = 0.04; 

heterozygosity, r = 0.77, p = 0.03; Table 2.6; Figs. 2.8 and 2.9).  

The two measures of genetic differentiation, FST and Nei’s D, were highly 

correlated across all populations (r = 0.93, p < 0.001). An FST of 0.20 means 

approximately 20% of genetic variation is distributed among populations and 80% 

within populations, when variation is measured as expected heterozygosity. Under 



 

36 

simplifying assumptions, an FST of 0.20 translates to one migrant per generation, a level 

of gene flow adequate for minimizing inbreeding depression while maintaining adaptive 

variation (Wright 1931; Mills and Allendorf 1996). High pairwise FST (usually > 0.20) and 

Nei’s D supported my earlier findings of little gene flow between genetic clusters and 

between populations in the Pacific NW and Rockies clusters (Table 2.7). In contrast, 

gene flow was moderate to high (FST ~ 0.03 to 0.15) between populations of the Boreal 

cluster.  

I found high private allelic richness (PAR) in many Rockies and northern Pacific 

NW populations, consistent with their high FST and Nei’s D estimates and long-term 

refugial status (Table 2.5; Fig. 2.10). However, Wyoming and California had notably low 

population PAR. It is difficult to pinpoint causes, but genetic drift or recent bottlenecks 

can reduce PAR through loss of rare private alleles (Nei et al. 1975). In the Boreal 

cluster, several populations stood out for relatively high PAR values: AK6 (southeast 

Alaska), AB1 and AB2 (southern Alberta), SK1 (Saskatchewan), MI1 (Michigan), and NB1 

(New Brunswick). An equal number of Boreal populations had very low PAR values. 

When I buffered PAR estimates to minimize biases due to uneven spatial sampling 

densities (PAR350 and PAR500), the same populations as above were identified for high 

PAR. Estimates for northern Pacific NW populations increased sharply with a 350 km 

PAR buffer, suggesting many alleles were shared by nearby sampled populations but not 

by more distant populations. Results changed little when the PAR buffer was increased 

to 500 km (not shown).  
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PARclus and %PAclus estimates give a different picture with useful insights on the 

distribution of alleles among sampled populations. High PARclus and %PAclus values for 

most Boreal populations and especially for the eastern Boreal range reveal a high 

diversity of microsatellite alleles that are found only in the Boreal cluster (“cluster 

private alleles”), but are well-distributed among Boreal populations (Fig. 11). On 

average, cluster private alleles constituted 15% of total allelic richness in Boreal 

populations but only 2 - 4% of total allelic richness in Pacific NW and Rockies 

populations (Table 2.5).  

 

DISCUSSION 

Large-scale Genetic Structure 

Based on multiple genetic markers analyzed in over 1000 individuals sampled 

across the entire range of snowshoe hares, I detected three major genetic groups of 

snowshoe hares in the Boreal, Rockies, and Pacific Northwest regions of North America. 

MtDNA and microsatellite analyses differed slightly in delineation of haplotype lineages 

and genetic clusters. I use “groups” to broadly reference the three genetically distinct 

snowshoe hare assemblages identified by both types of markers, and “lineages” when 

specifically referring to delineations based on mtDNA analyses.  

The Boreal group includes the entire northern, core, and eastern range of the 

snowshoe hare. Much of this area was covered by glaciers during the LGM and prior 

glacial advances. This large group is characterized by extensive gene flow across its 6000 

km span. The Rockies and Pacific NW groups occur in the southwest species range, 
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which was largely ice-free during the Pleistocene. Both groups are characterized by low 

gene flow and highly differentiated populations.  

The Pacific Northwest has previously been identified for exceptionally high levels 

of genetic differentiation (both within the Pacific NW and between the Pacific NW and 

other regions) for many boreal and temperate species, including Oregon spotted frogs 

(Rana pretiosa), Pacific giant salamanders (Dicamptodon tenebrosus), American black 

bear (Ursus americanus), various genera of squirrels, voles, and several species of birds 

(Arbogast 1999; Arbogast and Kenagy 2001). The Pacific NW group of snowshoe hares is 

unique in its nuclear DNA and in its inclusion of snowshoe hare populations apparently 

completely fixed for introgressed black-tailed jackrabbit mitochondrial DNA from 

historical hybridization. After introgression, divergence of Pacific NW hares from black-

tailed jackrabbits is estimated to have occurred ~1 mya (1.5 mya–65 kya), coincident 

with early- to mid-Pleistocene glacial cycles and also with divergence of Boreal 

snowshoe hares from the Rockies group.   

Very little recent or historical gene flow connects hares among these groups 

since their divergence. Lines of evidence supporting this conclusion include similarities 

in the major genetic groups determined by mtDNA and microsatellite analyses, the large 

number of mutations separating the groups in a haplotype network, a complete absence 

of haplotypes shared between groups, a large number of microsatellite alleles and 

mtDNA haplotypes private to each group, and high estimates of genetic differentiation 

(FST, PiXY and Nei’s D) between groups.  Given the deep divergences for these groups, 

recolonization of newly available Boreal habitats after the LGM must have occurred 
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primarily from refugial populations within the Boreal group rather than from the Pacific 

NW or Rockies groups.  

Latitudinal Patterns of Genetic Diversity 

A primary objective of this study was to test competing hypotheses about 

latitudinal patterns of genetic diversity in snowshoe hares. With all groups combined, I 

found a significant quadratic relationship between all measures of genetic diversity and 

latitude. Consistent with the core-periphery model, diversity was lowest in southern 

range peninsular populations, highest for core populations at mid-range latitudes, and 

declined again for populations in the northern range.  

Recolonization of the Boreal group likely did not occur by rapid, successive 

founding from a primary southern refugium. The data do not support this scenario, 

which should have generated a pattern of southern richness and northern purity. 

Instead, high genetic diversities, complex patterns of haplotype sharing among 

populations, and prior fossil evidence (FAUNMAP Working Group 1994) all point to 

multiple-source recolonization of the Boreal with high levels of secondary admixture. 

Therefore, both current geography and a complex phylogeographic history may have 

contributed to observed patterns of genetic diversity for snowshoe hares, supporting a 

more nuanced view of mechanisms generating and distributing genetic diversity 

(Stewart and Lister 2001; Petit et al. 2003; Shafer et al. 2010). 

Spatial Expansions 

My assessment of nucleotide mismatch distributions determined that major 

spatial expansions of snowshoe hare mitochondrial lineages pre-dated the LGM. Using 
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best-fit parameters to expansion models and a calibrated D-loop mutation rate, I 

estimated that spatial expansions occurred within both the Boreal and Pacific NW 

groups approximately 211 kya – 90 kya. These estimates are approximations because 

they are based on several assumptions about homogeneity of mutation rates in mtDNA. 

However, it seems reasonable to conclude at a minimum that major expansions in these 

lineages occurred prior to the LGM. This finding corresponds with the high genetic 

diversities currently observed in Boreal populations. The haplotype network also 

supports this scenario. Within the Boreal D-loop network, several star-shaped 

phylogenies indicate episodes of rapid demographic growth, but multiple mutations had 

accumulated on the phylogenies since the expansions, suggesting they occurred well 

before the LGM.  

Minor population bottlenecks can be obscured by the strong signals of an initial 

major expansion from an equilibrium population (Rogers 1995). The data suggest 

refugial populations during the LGM were relatively numerous, and recolonizing 

individuals may have moved north in moderately large numbers.  I would therefore not 

expect to find a post-LGM signal of major expansion. Instead, the most recent major 

expansion of the Boreal and Pacific NW lineages may have coincided with the end of the 

Illinoian ‘great glaciation’ (300 kya – 130 kya) that preceded the Wisconsin glaciation. 

The Illinoian glaciers extended farther south in the hare range than did many prior 

glaciations and also compared to the LGM. It is plausible this glacial cycle severely 

restricted Boreal hare populations, such that post-Illinoian recolonization of the Boreal 

range generated the observed signal of expansion in the Boreal group. Effects on the 
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Pacific NW group may have been similar. An Oregon population (OR1) was basal within 

the Pacific NW D-loop network, suggesting spatial expansion may have occurred north 

and south from here.  

Private Allelic Richness 

Private allelic richness (PAR) is a component of genetic diversity, but I consider it 

separately as an important measure of the genetic uniqueness of populations, for 

prioritizing conservation actions and for identifying potential source populations of post-

LGM range expansion. Glacial refugial populations are often characterized by high PAR. 

Within the Boreal group I identified several populations with relatively high PAR, 

supporting earlier results consistent with a hypothesis of multiple refugia within the 

Boreal, and post-glacial recolonization originating from many fronts. New Brunswick has 

high PAR and is also basal within the Boreal haplotype network, along with other 

eastern populations (primarily Maine and Quebec). Eastern populations were probably a 

major refugial source for post-glacial expansion in the Boreal. This idea is also supported 

by a weak but significant longitudinal gradient in expected heterozygosity, with higher 

diversity in the eastern Boreal. Eastern forests expanded across North America five 

times faster than western forests as glaciers contracted after the LGM, allowing early 

expansion from eastern refugia (Delcourt and Delcourt 1987; Williams et al. 1993).  

Population PAR was very high for Michigan and Saskatchewan. In addition, 

moderately high PAR estimates for southern Alberta and southeast Alaska were 

consistent with the fossil evidence and paleogeographic reconstructions of the most 

recent ice age, which point to a possible refugium for snowshoe hares in eastern 
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Beringia (central Alaska and western Yukon). Any relict snowshoe hare populations in 

Beringia were probably small and isolated— by most accounts Beringia was primarily 

tundra, although small stands of poplar may have persisted (Pielou 1991). Given the 

earlier described biases of PAR estimates, high PAR for a sampled population should not 

be considered proof of refugial status, but simply an indicator of potential refugia. 

As expected, most populations in the Rockies and Pacific NW groups had high 

population PAR. The relative stability of these southern refugial zones through past 

glacial cycles, combined with low gene flow among populations, allowed them to 

accumulate private alleles over long time periods. Populations within these groups are 

unique at small spatial scales. Most studies of North American boreal and north 

temperate species have similarly found high differentiation of populations at southern 

latitudes compared to the boreal north (Green et al. 1996). This pattern is not 

surprising, given the long-term stability of southern populations and the fragmented 

nature of their montane habitats.  

Although most boreal populations were characterized by low population PAR, 

many had a high frequency of alleles private to the Boreal group (PARclus). In addition, 

these cluster private alleles made up a much larger proportion of total alleles in Boreal 

(15%) versus Pacific NW (4%) and Rockies (2%) populations. These findings are 

congruent with a scenario of multiple source refugia and high gene flow among newly 

recolonized Boreal populations. Multiple refugial populations could independently 

accumulate private alleles during glacial periods. High gene flow during post-glacial 

expansion would then ensure many of these private alleles would be widely distributed 
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among Boreal populations. Thus, most alleles private to the Boreal group would be 

shared among populations within the group, consistent with the data. These dynamics 

promote high genetic diversity in Boreal populations despite repeated continental-scale 

range contractions and expansions. 

Gene Flow 

Gene flow was very low among genetic groups and within the Pacific NW and 

Rockies groups, but moderate to high within the Boreal group. I observed very low 

levels of admixture for K=3 in STRUCTURE analysis, confirming limited contemporary 

gene flow among the three genetic groups. However, with mitochondrial data, I found 

two populations near the border between Boreal and non-Boreal groups that appeared 

to be points of contact between genetic groups. These populations in northern 

Washington and northern Montana each had Boreal D-loop haplotypes as well as a 

small proportion of haplotypes from a non-Boreal group. My classification of haplotypes 

to groups was based on visual assessment of their positions within the haplotype 

network. While this approach is somewhat subjective, haplotype groups were well-

differentiated by many mutations in the network. My ability to detect contact 

populations between genetic groups was limited by my sampling scheme. The two 

contact populations I identified were the only populations I sampled at the border 

between Boreal and non-Boreal groups. Greater sampling of populations at this border 

probably would have revealed greater gene flow between adjacent Boreal and non-

Boreal genetic groups. Nevertheless, it seems the zones of contact between Boreal and 

non-Boreal groups are narrow. My inability to detect contact populations between any 
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two non-Boreal genetic groups may also reflect limited sampling. However, given the 

very low gene flow among non-Boreal populations, it would probably be difficult to 

locate a zone of contact between two non-Boreal groups. 

In addition to the three major haplotype lineages, mitochondrial analyses 

identified three sublineages (Washington’s Olympic Peninsula, eastern Oregon, and 

Colorado) within the Rockies and Pacific Northwest populations that diverged from the 

main lineages over 20,000 years ago. Gene flow within and among these western USA 

groups is very limited. Except for the southernmost California population I sampled 

(CA2), populations in these groups did not share mitochondrial haplotypes. As found 

with other species (Payseur et al. 2004; Sequeira et al. 2005; Brito 2007), the 

discrepancy between microsatellite and mtDNA markers in delineation of the contact 

zone between the Boreal and Pacific NW groups may be related to different effective 

population sizes for mtDNA versus nuclear markers, differences in marker evolutionary 

rates or modes of inheritance, or marker-related differences in selection associated with 

introgression of black-tailed jackrabbit mtDNA in Pacific NW snowshoe hare 

populations. 

Conservation and Management Implications 

The data revealed three deeply diverged major lineages and three sublineages of 

snowshoe hares, equivalent to six distinct Evolutionarily Significant Units (ESU’s), as 

defined by Moritz (1994). I found high genetic diversity throughout most of the species 

range, and high differentiation among populations in the U.S. southern Rockies and 

Pacific Northwest. The Boreal north is a dynamic source of genetic diversity for 
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snowshoe hares, in large part due to high levels of gene flow among populations and a 

large geographic coverage that has allowed persistence of multiple refugial populations 

during glacial periods. In contrast to the low diversity characteristic of successive 

founding from an individual source population, the high diversity of the Boreal appears 

to derive from expansion and secondary admixture in large numbers primarily from 

southern and eastern refugia but also potentially from Beringia. In terms of remaining 

genetic diversity, the genetic consequences of global warming for snowshoe hares, 

whereby southern populations are lost but northern ones persist, may not be large 

because of this genetic pattern. 

Although results indicated genetic variation would be retained under a future 

global warming scenario, it would represent a reduced subset of current genetic 

variation in snowshoe hares. A large proportion of the species’ PAR is found in the 

southern Rockies and Pacific NW, where long-term relative stability and isolation have 

allowed populations to accumulate mutations and unique genetic constitutions. Based 

on estimates of population PAR, loss of a population in the Rockies or Pacific NW would 

have 50% greater impact on total allelic richness of the species than would loss of a 

population in the Boreal group. In contrast to the highly connected Boreal populations, 

loss of a population in the Rockies and Pacific NW could mean complete loss of many 

alleles unique to that population.  

If conserving overall species genetic diversity is the goal, my findings support 

Hampe and Petit’s (2005) call for prioritizing conservation of rear edge populations. For 

snowshoe hares and many other boreal species these rear edge populations are already 
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losing genetic diversity due to natural (and possibly anthropogenic) habitat 

fragmentation and genetic drift (Paetkau et al. 1998, Kyle and Strobeck 2002, Wisely et 

al. 2004, Schwartz et al. 2007). The topographic complexity of these southern range 

extensions means species may be able to track warming-related habitat shifts to higher 

altitudes (Hewitt 2000; Guralnick 2007), but at a cost of further fragmenting 

populations. Because they are highly differentiated at a relatively small spatial scale, it 

would be difficult to find genetically similar sources to supplement declining populations 

in the Rockies and Pacific NW. Furthermore, past attempts at translocating and 

supplementing snowshoe hares have been largely unsuccessful (Murray 2003), with the 

notable exception of their introduction to Newfoundland. 

Loss of southern hare habitats due to global warming does not necessarily mean 

loss of snowshoe hare populations and their genes. It is possible snowshoe hares may 

adapt to habitat changes associated with global warming; additionally, populations 

currently persisting in warmer environments may expand their range. In addition, the 

data suggest the border region between British Columbia and Alberta and Washington, 

Idaho, and Montana  may be an important contact zone for several snowshoe hare 

ESU’s. Gene flow is still limited in this region, but for genes with a strong selective 

advantage (selection coefficient > 5%) immigration rates as low as one individual per 10 

generations may be sufficient to maintain adaptive connectivity across a species range 

(Rieseberg and Burke 2001; Lowe and Allendorf 2010). Conservation of these points of 

contact may facilitate adaptively beneficial gene flow among genetic groups.  
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Neutral genetic variation, as measured in this study, is often used as a surrogate 

for adaptive genetic variation, which is the real metric of interest when evaluating 

adaptive potential and for ranking populations by long-term conservation value. This 

study provides important insights on how loss of southern hare populations may affect 

overall species genetic diversity. However, a more targeted question that should be 

addressed is, “How much would loss of southern hare populations impact the species’ 

ability to adapt to global warming?” Such studies would require evaluation of 

quantitative genetic trait variations directly linked to traits with adaptive value for 

warmer environments.  

In the face of certain climate change with uncertain impacts it is difficult to 

predict how species conservation efforts can best be prioritized to maximize long-term 

persistence. Predator-prey dynamics may change as the species composition of 

ecosystems are reshuffled, routes of population connectivity and gene flow may shift, 

and entire ecosystems may temporarily imbalance as new ecological thresholds are 

breached (Running and Mills 2009). We cannot anticipate the unforeseen, but we can 

use our understanding of the present to heed the advice of geneticist Otto Frankel 

(1974) that “...at this point of decision-making it may be our evolutionary responsibility 

to keep evolutionary options open so far as we can...” Given the important role of 

snowshoe hares in boreal and montane forest ecosystems, maintaining the genetic 

diversity and future adaptive potential of snowshoe is a conservation objective with 

widespread impact. 
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Figure 2.1 
Sampling locations and geographic distribution of major genetic groups. The range of the snowshoe hare, as determined by 
Erxleben (1777), is outlined in red. Population names are indicated in circles. Color of circle indicates membership in one of 
three microsatellite genetic clusters, as defined by STRUCTURE. Thick blue lines separate six haplotype lineages (names 
italicized) based on SAMOVA analysis of D-loop haplotypes. 

Microsatellite genetic clusters 
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purple = Boreal 
green = Pacific NW 
blue = Rockies 
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Figure 2.2 
D-loop median-joining network showing six 
snowshoe hare lineages. We analyzed 893 
snowshoe hare samples at a 468 bp segment of 
mtDNA. Haplotype lineages based on SAMOVA 
are labeled corresponding to Fig. 2.1. Some 
haplotypes for two populations in the Boreal 
lineage (WA4 and MT1) group with haplotypes 
for non-Boreal lineages in this network. These 
haplotypes are identified as WA4* and MT1*. 
Each circle represents a unique D-loop haplotype. 
Size is proportional to the number of samples 
represented. Branch lengths are proportional to 
the number of substitutions (italicized number) 
separating haplotypes. A white-tailed jackrabbit 
(WTJR, Lepus townsendii) D-loop haplotype is 
included as an outgroup. Two inset boxes show 
close-ups of non-Boreal lineages.  
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Figure 2.3 
Geographic distribution of D-loop haplotypes. Pie 
charts indicate the proportion of each population 
represented by different haplotype groups, 
corresponding to overlay colors in Fig. 2.2. 
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Figure 2.4 
For each sampled population, haplotype diversity (Hd) plotted against 
latitude. Populations are color-coded by haplotype lineage. The 
significant quadratic relationship for all lineages combined (r2 = 0.35, p = 
0.0003) is largely driven by the low haplotype diversities (Hd < 0.70) of 
three southern range peninsular populations (two in California, one in 
West Virginia). The southernmost extent of the LGM is identified by the 
gray vertical bar. 
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Figure 2.5 
For Boreal and Pacific NW lineages, D-loop mismatch distributions (solid bars) plotted 
against expected distributions under a model of spatial expansion. Expected 
distribution is drawn as a solid line with 95% confidence intervals (dotted lines). The 
null for Model(SSD) is an expansion model; therefore, a non-significant Model(SSD) 
indicates the expansion model cannot be statistically rejected.  
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Figure 2.6 
Geographic distribution of allelic richness (AR) 
scaled to a sample size of seven individuals. AR 
estimates for sampled populations range from 
3.63 to 6.20. Circles are proportional to AR 
divided into 10 evenly spaced categories. Thick 
blue lines separate three microsatellite genetic 
clusters identified by STRUCTURE. 
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Figure 2.7 
Geographic distribution of unbiased expected 
heterozygosities (He). Heterozygosity estimates 
for sampled populations range from 0.51 to 0.80. 
Circles are proportional to He divided into 10 
evenly spaced categories. Thick blue lines 
separate three microsatellite genetic clusters 
identified by STRUCTURE. 
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Figure 2.8 
For each sampled population, allelic richness (AR) plotted against latitude (top) 
and longitude (bottom). Populations are color-coded by genetic cluster, as 
identified by STRUCTURE and SAMOVA. Allelic richness is significantly correlated 
with latitude for Pacific NW (r = 0.42, p = 0.4). With all lineages combined, allelic 
richness has a significant quadratic relationship with latitude (r2 = 0.37, p = 
0.0001). The southernmost extent of the LGM is marked by the gray vertical bar.  
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Figure 2.9 
For each sampled population, unbiased heterozygosity (He) plotted against latitude 
(top) and longitude (bottom). Populations are color-coded by STRUCTURE genetic 
cluster.  Heterozygosity is significantly correlated with latitude for Pacific NW (r = 
0.77, p = 0.03). With all lineages combined, heterozygosity has a significant quadratic 
relationship with latitude (r = 0.35, p =.0003). The southernmost extent of the LGM 
is marked by the gray vertical bar. Heterozygosity is correlated with longitude for the 
Boreal cluster (r = 0.56, p = 0.003). 
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Figure 2.10 
Geographic distribution of population private allelic 
richness (PAR) scaled to a sample size of seven 
individuals. PAR estimates for sampled populations 
range from 0.00 to 0.33. Circles are proportional to 
PAR divided into 10 evenly spaced categories. Thick 
blue lines separate three microsatellite genetic 
clusters identified by STRUCTURE. 
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Figure 2.11 
Geographic distribution of cluster private allelic 
richness (PARclus) scaled to a sample size of one 
population per genetic cluster and seven 
individuals per population. PAR estimates for 
sampled populations range from 0.00 to 0.33. 
Circles are proportional to PAR divided into 10 
evenly spaced categories. Thick blue lines 
separate three microsatellite genetic clusters 
identified by STRUCTURE. 
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Table 2.1 
Best groupings based on mitochondrial D-loop sequences for K= 2 to 10, using SAMOVA.  Significance levels were evaluated by 
1,000 permutations of populations among groups. All results are significant at p < 0.01. (A) SAMOVA analysis with all populations 
included; (B) SAMOVA analysis with Pacific NW populations omitted. Bolded row (K = 6 in Table 2.1A) identifies the haplotype 
grouping used in mtDNA analyses. Accompanying figures show ΦCT (proportion of total genetic variation attributed to 
differences among groups) plotted against K (number of groups).   

Among 

Groups

(Φct)

Among 

Populations

Within 

Populations

2 (CA1, CA2, OR1, WA1, WA3) (all others) 77.0 13.3 9.7

3 (CA1, CA2, OR1, WA1) (WA3) (all others) 77.6 12.9 9.6

4 (CA1, OR1, WA1) (CA2) (WA3) (all others) 77.2 13.1 9.7

5 (CA1, CA2, OR1, WA1, WA3) (CO1) (OR2) (UT1, WY1) (all others) 77.3 6.7 16.0

6 (CA1, CA2, OR1, WA1) (WA3) (CO1) (OR2) (UT1, WY1) (all others) 78.4 5.7 15.9

7 (CA1, CA2, OR1, WA1) (WA3) (CO1) (OR2) (UT1, WY1) (MI1) (all others) 78.0 5.8 16.2

8 (CA1, CA2, OR1, WA1) (WA3) (CO1) (OR2) (UT1, WY1) (MI1) (WA4) (all others) 78.3 4.6 17.1

9 (CA1, CA2) (OR1, WA1) (WA3) (CO1) (OR2) (UT1, WY1) (WA4) (AK6) (all others) 78.3 4.5 17.2

10 (CA1, CA2) (OR1, WA1) (WA3) (CO1) (OR2) (UT1, WY1) (WA4) (BC1) (NL1) (all others) 77.9 4.3 17.9

K SAMOVA Groups

% of Variation

0.65

0.70

0.75

0.80

2 3 4 5 6 7 8 9 10

Φ
ct

K

(A) 

0.55

0.60

0.65

0.70

2 3 4 5 6 7 8 9 10

Φ
ct

K

Among 

Groups 

(Φct)

Among 

Populations

Within 

Populations

2 (OR2, CO1, UT1, WY1) (all others) 56.7 16.5 26.7

3 (CO1) (OR2, UT1, WY1) (all others) 62.8 11.5 25.8

4 (CO1) (OR2) (UT1, WY1) (all others) 66.1 8.9 25.1

5 (CO1) (OR2) (UT1, WY1) (WA4) (all others) 66.7 6.9 26.4

6 (CO1) (OR2) (UT1, WY1) (WA4) (BC1) (all others) 66.1 6.5 27.4

7 (CO1) (OR2) (UT1) (WY1) (WA4) (NL2) (all others) 66.1 6.3 27.6

8 (CO1) (OR2) (UT1) (WY1) (WA4) (BC1) (MI1) (all others) 66.5 5.6 27.9

9 (CO1) (OR2) (UT1) (WY1) (WA4) (BC1) (AK6) (IR1) (all others) 65.9 5.6 28.5

10 (CO1) (OR2) (UT1) (WY1) (WA4) (IR1) (ME2) (MI1) (PA1) (all others) 64.7 6.5 28.8

% of Variation

K SAMOVA Groups

(B) 
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Table 2.2 
D-loop haplotype (Hd) and nucleotide (π) diversities for each of 39 sampled 
populations. Populations are grouped into six haplotype lineages identified by 
SAMOVA, with lineage averages and total sample size for each lineage in bold italics. 
N = number of individuals; Haplotypes = number of unique haplotypes per 
population.  Cluster standard deviations are in parentheses. 

Pop N Haplotypes Hd π

AB1 9 7 0.94 (0.07) 0.0091 (0.0056)

AB2 18 17 0.99 (0.02) 0.0193 (0.0104)

AK2 28 13 0.91 (0.03) 0.0081 (0.0047)

AK4 15 6 0.80 (0.08) 0.0126 (0.0072)

AK6 10 7 0.91 (0.08) 0.0092 (0.0056)

BC1 17 2 0.12 (0.10) 0.0003 (0.0005)

BC2 25 14 0.88 (0.05) 0.0096 (0.0055)

BC4 9 7 0.94 (0.07) 0.0144 (0.0085)

IR1 8 4 0.79 (0.11) 0.0166 (0.0099)

MB1 13 7 0.87 (0.07) 0.0136 (0.0078)

ME1 40 16 0.93 (0.02) 0.0141 (0.0076)

ME2 10 9 0.98 (0.05) 0.0130 (0.0077)

MI1 8 6 0.89 (0.11) 0.0092 (0.0058)

MN1 35 28 0.98 (0.01) 0.0164 (0.0087)

MN2 12 11 0.98 (0.04) 0.0187 (0.0104)

MT1 127 31 0.94 (0.01) 0.0195 (0.0100)

NB1 20 13 0.96 (0.03) 0.0129 (0.0072)

NWT1 9 9 1.00 (0.05) 0.0181 (0.0105)

NWT2 18 14 0.97 (0.03) 0.0174 (0.0095)

NY1 13 8 0.90 (0.06) 0.0127 (0.0073)

ON1 14 12 0.97 (0.03) 0.0183 (0.0101)

ON3 19 18 0.99 (0.02) 0.0199 (0.0106)

PA1 10 6 0.84 (0.10) 0.0093 (0.0057)

PA2 13 8 0.88 (0.07) 0.0163 (0.0091)

QC3 19 10 0.86 (0.07) 0.0153 (0.0084)

QC4 17 9 0.89 (0.05) 0.0118 (0.0067)

SK1 9 9 1.00 (0.05) 0.0184 (0.0107)

WA4 29 10 0.87 (0.04) 0.0681 (0.0341)

WV1 13 3 0.62 (0.07) 0.0109 (0.0064)

YK2 30 20 0.97 (0.02) 0.0133 (0.0072)

BOREAL
20.57  (21.78)

Total N= 617
11.13 (6.63) 0.89 (0.17) 0.0155 (0.0108)

OR2 17 8 0.90 (0.04) 0.0147 (0.0081)

CO1 64 17 0.92 (0.01) 0.0058 (0.0035)

UT1 25 6 0.62 (0.10) 0.0024 (0.0019)

WY1 80 15 0.84 (0.02) 0.0048 (0.0030)

UT-WY
52.50  (38.89)

Total N= 105
10.50 (6.36) 0.73 (0.16) 0.0036 (0.0017)

CA1 12 2 0.41 (0.13) 0.0009 (0.0010)

CA2 7 2 0.47 (0.17) 0.0052 (0.0036)

OR1 32 15 0.93 (0.02) 0.0160 (0.0086)

WA1 30 11 0.86 (0.04) 0.0164 (0.0087)

PACIFIC 

NW

20.25  (12.61)

Total N= 81
7.50 (6.56) 0.67 (0.27) 0.0096 (0.0078)

WA3 9 7 0.91 (0.09) 0.0084 (0.0053)
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Table 2.3 
Estimated divergence times for haplotype lineages, in millions of years before 
present. Results are ordered from most recent (top row) to oldest (bottom row) 
divergence. In first column, a forward slash (“/”) separates the lineages or groups of 
lineages for which divergence times are estimated. Lineages are as identified by 
SAMOVA. Divergences between introgressed and non-introgressed lineages are not 
calculated because timing of lineage divergence would have been obscured by 
subsequent introgression. Four estimates are presented for each lineage divergence, 
reflecting uncertainties in timing of snowshoe hare / black-tailed jackrabbit 
divergence time. This species divergence estimate was used to calibrate divergence 
rate (% divergence per million years) for the cyt b segment used in this study. Cyt b 
divergence rate was subsequently used to estimate lineage divergence times. 
Matthee et al. (2004) estimated SSH-BTJR divergence at 4.79 mya (95% CI:  4.03–
5.90 mya). Wu et al. (2005) estimated SSH-BTJR divergence at 5.65 mya (95% CI:  
3.50–8.10 mya). The columns in this table represent lineage divergence times 
calculated using (Col 2) Matthee mean estimate of 4.79 mya; (Col 3) Wu mean 
estimate of 5.65 mya; (Col 4) Wu 95% LOW estimate of 3.50 mya; and (Col 5) Wu 
95% HIGH estimate of 8.10 mya for SSH-BTJR divergence time. 

Divergence Event Matthee Wu LOW HIGH

CO1 / UT-WY 0.353 0.416 0.258 0.597

OR2 / UT-WY 0.653 0.770 0.478 1.104

PacNW / WA3 0.769 0.907 0.562 1.299

Boreal / (UT-WY, CO1, OR2) 0.888 1.047 0.650 1.501

Pacific NW-WA3 / BTJR 0.995 1.174 0.728 1.682
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Table 2.4 
Best groupings based on eight microsatellite loci for K= 2 to 10, 
using SAMOVA.  Significance levels were evaluated by 1,000 
permutations of populations among groups. All results are 
significant at p < 0.01. Bolded row (K = 3) identifies the genetic 
grouping that corresponds with STRUCTURE cluster results and 
was therefore used in microsatellite analyses. Accompanying 
figure shows Φct (proportion of total genetic variation attributed 
to differences among groups) plotted against K (number of 
groups). 

Among 

Groups 

(Φct)

Among 

Populations

Within 

Populations

2 (UT1, WY1) (all others) 14.6 13.6 71.8

3 (CO1, UT1, WY1) (BC1, CA1, CA2, MT1, OR1, OR2, WA1, WA3, WA4) (all others) 15.7 7.9 76.4

4 (CO1) (UT1, WY1) (BC1, CA1, CA2, MT1, OR1, OR2, WA1, WA3, WA4) (all others) 17.0 6.8 76.2

5 (CO1) (UT1, WY1) (CA1, CA2) (BC1, MT1, OR1, OR2, WA1, WA3, WA4) (all others) 17.4 6.3 76.3

6 (CO1) (UT1, WY1) (CA1, CA2) (BC1) (MT1, OR1, OR2, WA1, WA3, WA4) (all others) 17.7 6.0 76.3

7 (CO1) (UT1, WY1) (CA1, CA2) (BC1) (MT1, OR2, WA4) (OR1, WA1, WA3) (all others) 17.9 5.5 76.7

8 (CO1) (UT1, WY1) (CA1) (CA2) (BC1) (MT1, OR2, WA4) (OR1, WA1, WA3) (all others) 18.1 5.3 76.6

9 (CO1) (UT1, WY1) (CA1) (CA2) (BC1) (MT1, OR2, WA4) (OR1, WA1, WA3) (NL1, NL2) (all others) 18.2 4.7 77.1

10 (CO1) (UT1, WY1) (CA1) (CA2) (BC1) (MT1, WA4) (OR2) (OR1, WA1, WA3) (NL1, NL2) (all others) 18.3 4.5 77.2

K SAMOVA Groups

% of Variation

0.10

0.15

0.20

0.25

2 3 4 5 6 7 8 9 10

Φ
ct

K
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Table 2.5 
Microsatellite diversities averaged across 8 polymorphic loci for each of 39 sampled 
populations. Populations are grouped into three genetic clusters identified by 
STRUCTURE and SAMOVA, with cluster averages and total sample size for each 
cluster in bold italics. N = number of individuals; A = number of different alleles; Aeff 

= effective  number of alleles, AR = allelic richness standardized to seven samples 
per population; Ho= observed heterozygosity; He= unbiased expected 
heterozygosity; FIS = inbreeding coefficient; PAR = Population private allelic richness 
standardized to seven samples per population; PAR350 = Population private allelic 
richness, with all sampled populations within a 350 km radius excluded; PARclus = 
Kalinowski’s (2004) hierarchical measure of PAR standardized to one population per 
cluster and seven individuals per population; %PAclus = proportion of alleles in each 
population that are cluster private alleles. Standard deviations are in parentheses.  

POP N A Aeff AR Ho He FIS PAR PAR350 PARclus %PAclus

AB1 9 7  (0.94) 4.46  (0.93) 6.2 0.69  (0.09) 0.76  (0.04) 0.06  (0.08) 0.13 0.13 3.14 21%

AB2 18 8.63  (1.39) 5.32  (1.18) 5.95 0.69  (0.06) 0.77  (0.05) 0.08  (0.04) 0.14 0.14 2.96 12%

AK2 28 7.5  (1.6) 4.06  (1.2) 4.79 0.56  (0.07) 0.62  (0.08) 0.06  (0.04) 0.01 0.02 2.28 9%

AK4 15 5.75  (1.33) 3.9  (0.89) 4.63 0.56  (0.08) 0.64  (0.09) 0.09  (0.07) 0.07 0.07 2.22 10%

AK6 9 4.75  (0.82) 3.32  (0.75) 4.38 0.61  (0.08) 0.64  (0.07) 0  (0.08) 0.18 0.19 2.09 14%

BC2 25 7.88  (2.07) 5.09  (1.51) 5.09 0.57  (0.09) 0.67  (0.08) 0.14  (0.05) 0.07 0.07 2.55 12%

BC4 9 4.75  (0.67) 2.96  (0.4) 4.33 0.56  (0.07) 0.65  (0.05) 0.09  (0.1) 0.08 0.08 2.30 14%

IR1 10 5.88  (1.06) 3.99  (0.85) 5.13 0.66  (0.07) 0.71  (0.06) 0.01  (0.07) 0.05 0.05 2.40 13%

MB1 13 6.5  (0.96) 3.96  (0.73) 5.12 0.59  (0.08) 0.71  (0.05) 0.16  (0.07) 0.10 0.10 2.52 15%

ME1 40 9.75  (1.83) 5.68  (1.47) 5.89 0.72  (0.06) 0.77  (0.04) 0.05  (0.05) 0.05 0.06 3.32 20%

ME2 10 5.63  (1.12) 4.12  (0.96) 4.97 0.7  (0.08) 0.73  (0.05) 0  (0.09) 0.03 0.03 2.55 15%

MI1 8 6.5  (0.87) 4.47  (0.57) 6.1 0.72  (0.06) 0.8  (0.04) 0.03  (0.07) 0.33 0.33 3.16 17%

MN1 34 9.63  (2) 5.64  (1.52) 5.62 0.58  (0.06) 0.73  (0.07) 0.2  (0.05) 0.07 0.07 2.68 11%

MN2 12 7.5  (1.3) 5.25  (1.13) 5.97 0.7  (0.03) 0.79  (0.04) 0.07  (0.04) 0.04 0.04 2.78 9%

NB1 20 9  (1.68) 4.99  (1.52) 5.86 0.68  (0.06) 0.74  (0.04) 0.06  (0.06) 0.16 0.17 3.25 23%

NWT1 9 6.5  (1.13) 4.61  (0.99) 5.83 0.69  (0.06) 0.74  (0.06) 0.01  (0.06) 0.11 0.11 3.04 13%

NWT2 18 7.63  (1.55) 5.17  (1.31) 5.59 0.67  (0.07) 0.72  (0.07) 0.02  (0.08) 0.01 0.01 2.75 13%

NY1 13 6.75  (0.77) 4.5  (0.5) 5.58 0.7  (0.04) 0.79  (0.03) 0.07  (0.05) 0.10 0.10 3.03 16%

ON1 11 7  (1.41) 4.96  (1.34) 5.86 0.67  (0.07) 0.75  (0.06) 0.05  (0.1) 0.01 0.02 3.06 14%

ON3 19 9.25  (1.66) 5.18  (1.33) 5.85 0.66  (0.04) 0.75  (0.05) 0.08  (0.04) 0.15 0.15 3.01 15%

PA1 10 5.25  (0.98) 3.4  (0.66) 4.63 0.63  (0.07) 0.65  (0.07) -0.03  (0.06) 0.07 0.15 2.57 18%

PA2 13 6.63  (1.22) 4.18  (1.02) 5.23 0.7  (0.07) 0.68  (0.07) -0.07  (0.04) 0.07 0.07 2.70 15%

QC3 20 8.5  (1.61) 5.34  (1.29) 5.8 0.7  (0.07) 0.77  (0.05) 0.06  (0.07) 0.09 0.09 2.87 13%

QC4 17 7  (1.24) 4.48  (0.84) 5.38 0.71  (0.07) 0.76  (0.04) 0.05  (0.06) 0.04 0.05 2.99 23%

SK1 8 6.13  (1.14) 4.42  (1.09) 5.78 0.56  (0.11) 0.72  (0.07) 0.2  (0.12) 0.20 0.20 3.09 17%

WV1 14 4.5  (0.6) 2.77  (0.33) 3.9 0.5  (0.08) 0.63  (0.05) 0.2  (0.08) 0.02 0.10 2.25 19%

YK2 30 8.5  (2.13) 4.23  (1.15) 5.1 0.62  (0.05) 0.65  (0.07) 0.02  (0.04) 0.11 0.11 2.52 16%

BOREAL
Total 

N= 442
7.05  (1.50) 4.46  (0.78)

5.35  

(0.61)
0.64  (0.06) 0.72  (0.06) 0.06  (0.07)

0.09 

(0.07)

0.10 

(0.07)

2.74 

(0.35)
15% (4%)

CO1 58 7.75  (1.94) 3.61  (0.88) 4.25 0.55  (0.1) 0.57  (0.11) 0  (0.05) 0.14 0.14 1.98 1%

UT1 25 4.88  (1.03) 2.78  (0.49) 3.66 0.5  (0.09) 0.54  (0.09) 0.1  (0.07) 0.24 0.27 1.60 4%

WY1 77 7.25  (1.57) 3.43  (0.92) 4.06 0.53  (0.1) 0.55  (0.1) 0.03  (0.03) 0.07 0.10 1.62 1%

ROCKIES
Total 

N= 160
6.63  (1.53) 3.27  (0.44)

3.99  

(0.30)
0.53  (0.02) 0.55  (0.02) 0.04  (0.05)

0.15 

(0.08)

0.17 

(0.09)

1.73 

(0.21)
2% (1%)

BC1 15 4.25  (0.8) 2.23  (0.27) 3.3 0.46  (0.08) 0.51  (0.08) 0.05  (0.09) 0.00 0.02 1.02 0%

CA1 12 4.88  (1.08) 3.06  (0.66) 4.16 0.59  (0.1) 0.61  (0.07) -0.01  (0.1) 0.12 0.13 1.79 1%

CA2 7 3.63  (0.63) 2.58  (0.48) 3.63 0.48  (0.11) 0.52  (0.12) -0.03  (0.06) 0.01 0.01 1.42 2%

MT1 100 12.13  (3.36) 5.88  (1.83) 5.58 0.7  (0.07) 0.73  (0.06) 0.04  (0.03) 0.17 0.17 2.13 4%

OR1 32 9  (2.15) 5.39  (1.75) 5.29 0.64  (0.09) 0.68  (0.09) 0.05  (0.03) 0.11 0.23 2.37 5%

OR2 17 5.88  (1.23) 3.66  (0.88) 4.48 0.62  (0.11) 0.61  (0.09) -0.01  (0.09) 0.19 0.23 1.73 5%

WA1 30 9.25  (2.1) 5.88  (1.2) 5.91 0.71  (0.06) 0.77  (0.06) 0.05  (0.03) 0.17 0.38 2.58 6%

WA3 9 5.13  (1.16) 3.76  (0.76) 4.64 0.71  (0.11) 0.65  (0.11) -0.17  (0.06) 0.19 0.29 2.34 10%

WA4 29 9.38  (2.37) 5.96  (1.47) 5.73 0.67  (0.08) 0.76  (0.06) 0.12  (0.05) 0.25 0.35 2.32 4%

PACIFIC 

NW

Total 

N= 251
7.06  (2.94) 4.27  (1.52)

4.75  

(0.94)
0.62  (0.09) 0.65  (0.10) 0.01  (0.08)

0.13 

(0.08)

0.20 

(0.13)

1.97 

(0.51)
4% (3%)



 

74 

Table 2.6 
Column 1 shows the quadratic relationship (r2) between microsatellite genetic 
diversity and latitude for all lineages combined. Columns 2-4 show Pearson’s 
correlation (r) between microsatellite genetic diversity and latitude / longitude for all 
lineages combined, Boreal and Pacific NW lineages each separately. The Rockies 
lineage was not evaluated separately due to small sample sizes. Significant results are 
marked (*p < 0.05; **p < 0.01). 

COMBINED_Quad COMBINED Boreal Pacific NW

AR 0.37** 0.26 -0.05 0.74*

He 0.35** 0.17 -0.3 0.77*

PAR 0.001 -0.07 0.05 0.85**

PAR350 0.008 -0.19 -0.07 0.73*

PARclus 0.08 0.21 -0.46* 0.64

AR 0.32* 0.32 0.22

He 0.45** 0.56** 0.17

PAR -0.15 -0.05 0.13

PAR350 -0.18 0.02 -0.22

PARclus 0.51** 0.53** -0.31

LATITUDINAL TREND

LONGITUDINAL TREND
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AB1 AB2 AK2 AK4 AK6 BC2 BC4 IR1 MB1 ME1 ME2 MI1 MN1 MN2 NB1 NWT1 NWT2 NY1 ON1 ON3 PA1 PA2 QC3 QC4 SK1 WV1 YK2 CO1 UT1 WY1 BC1 CA1 CA2 MT1 OR1 OR2 WA1 WA3 WA4

AB1 0.38 0.37 0.44 0.39 0.27 0.43 0.49 0.31 0.22 0.35 0.37 0.33 0.27 0.25 0.23 0.24 0.31 0.23 0.29 0.34 0.29 0.40 0.38 0.30 0.46 0.39 1.41 1.33 1.49 1.02 0.98 0.74 0.74 0.78 0.79 0.75 0.87 0.64 AB1

AB2 0.07 0.18 0.17 0.19 0.14 0.21 0.26 0.20 0.17 0.22 0.32 0.08 0.15 0.16 0.15 0.11 0.25 0.18 0.12 0.37 0.20 0.22 0.16 0.16 0.37 0.16 0.71 0.80 0.78 0.84 1.09 0.98 0.74 0.99 0.93 0.72 1.13 0.69 AB2

AK2 0.11 0.06 0.11 0.12 0.10 0.18 0.40 0.22 0.24 0.28 0.52 0.13 0.22 0.22 0.14 0.15 0.29 0.19 0.24 0.40 0.18 0.31 0.33 0.14 0.43 0.05 1.02 1.32 1.48 1.06 1.14 1.09 0.82 1.20 0.83 0.96 1.47 0.79 AK2

AK4 0.12 0.04 0.04 0.16 0.15 0.29 0.27 0.25 0.25 0.30 0.55 0.18 0.28 0.25 0.23 0.16 0.33 0.26 0.21 0.55 0.24 0.35 0.32 0.21 0.55 0.11 0.97 1.18 1.19 0.70 1.12 0.97 0.73 1.16 1.10 0.83 1.42 0.68 AK4

AK6 0.09 0.04 0.03 0.04 0.14 0.27 0.36 0.24 0.29 0.32 0.50 0.19 0.25 0.29 0.17 0.15 0.37 0.26 0.21 0.49 0.26 0.33 0.39 0.20 0.55 0.12 1.16 1.34 1.49 0.94 0.93 0.92 0.84 1.09 0.94 0.92 1.20 0.83 AK6

BC2 0.07 0.04 0.03 0.05 0.03 0.13 0.25 0.15 0.15 0.20 0.36 0.11 0.22 0.16 0.08 0.10 0.26 0.11 0.15 0.27 0.14 0.30 0.30 0.13 0.30 0.11 1.12 1.26 1.32 0.87 0.82 0.78 0.77 0.89 0.77 0.74 1.17 0.68 BC2

BC4 0.10 0.04 0.06 0.09 0.08 0.03 0.44 0.24 0.28 0.29 0.46 0.17 0.23 0.23 0.17 0.21 0.36 0.23 0.21 0.39 0.24 0.32 0.39 0.22 0.35 0.22 1.23 1.59 1.54 1.17 1.15 1.04 0.93 1.00 0.75 0.86 1.26 0.89 BC4

IR1 0.09 0.04 0.12 0.07 0.09 0.06 0.11 0.35 0.23 0.32 0.46 0.28 0.42 0.30 0.30 0.25 0.39 0.33 0.21 0.51 0.37 0.45 0.31 0.37 0.46 0.36 0.98 0.84 0.87 1.07 0.91 0.94 1.20 1.41 1.72 1.20 1.97 1.00 IR1

MB1 0.06 0.04 0.08 0.07 0.06 0.04 0.06 0.07 0.27 0.28 0.34 0.18 0.20 0.29 0.17 0.20 0.34 0.23 0.17 0.42 0.26 0.29 0.34 0.24 0.46 0.21 1.03 1.02 1.01 0.91 1.03 0.93 0.76 0.89 0.74 0.72 1.11 0.74 MB1

ME1 0.03 0.03 0.08 0.07 0.08 0.04 0.07 0.04 0.06 0.15 0.31 0.17 0.23 0.08 0.14 0.14 0.16 0.10 0.15 0.26 0.12 0.27 0.17 0.18 0.27 0.23 1.11 1.14 1.16 1.00 1.00 0.93 0.94 1.11 1.25 0.92 1.21 0.83 ME1

ME2 0.06 0.04 0.09 0.08 0.08 0.05 0.07 0.06 0.06 0.02 0.39 0.23 0.28 0.19 0.27 0.24 0.25 0.22 0.22 0.37 0.23 0.35 0.25 0.26 0.45 0.31 1.08 1.18 1.17 1.06 0.99 0.85 0.96 0.99 1.11 0.83 1.20 0.83 ME2

MI1 0.05 0.04 0.14 0.13 0.11 0.08 0.10 0.07 0.06 0.05 0.06 0.33 0.26 0.35 0.30 0.33 0.33 0.36 0.31 0.44 0.43 0.39 0.43 0.42 0.55 0.48 0.98 1.22 1.13 0.98 1.10 1.17 0.91 0.80 0.97 0.66 0.95 0.79 MI1

MN1 0.07 0.01 0.05 0.05 0.05 0.03 0.04 0.05 0.04 0.04 0.05 0.06 0.14 0.16 0.12 0.09 0.26 0.11 0.12 0.26 0.16 0.19 0.17 0.12 0.34 0.13 0.68 0.89 0.93 0.98 1.29 1.20 0.72 1.21 0.80 0.89 1.29 0.73 MN1

MN2 0.03 0.01 0.07 0.07 0.05 0.05 0.05 0.07 0.03 0.04 0.04 0.02 0.02 0.26 0.20 0.16 0.24 0.21 0.15 0.43 0.28 0.21 0.29 0.28 0.47 0.26 0.83 0.93 0.97 1.04 1.11 1.13 0.81 0.92 0.81 0.73 1.05 0.79 MN2

NB1 0.04 0.03 0.08 0.07 0.08 0.04 0.06 0.06 0.07 0.01 0.03 0.06 0.04 0.04 0.14 0.14 0.16 0.13 0.15 0.29 0.11 0.27 0.15 0.15 0.29 0.22 1.12 1.31 1.32 1.04 1.20 1.09 0.91 1.20 1.09 0.97 1.45 0.88 NB1

NWT1 0.02 0.01 0.04 0.06 0.03 0.00 0.02 0.05 0.02 0.01 0.04 0.03 0.01 0.02 0.01 0.08 0.27 0.11 0.15 0.23 0.16 0.26 0.26 0.12 0.30 0.13 1.03 1.19 1.25 1.04 0.96 0.93 0.83 0.99 0.84 0.81 1.14 0.75 NWT1

NWT2 0.04 0.01 0.05 0.04 0.03 0.02 0.05 0.04 0.04 0.03 0.05 0.06 0.01 0.02 0.02 -0.01 0.25 0.13 0.12 0.30 0.15 0.29 0.21 0.11 0.35 0.14 0.77 1.09 1.15 0.86 0.91 0.99 0.81 1.09 0.99 0.79 1.32 0.69 NWT2

NY1 0.04 0.04 0.09 0.09 0.09 0.07 0.08 0.06 0.07 0.02 0.04 0.04 0.05 0.02 0.02 0.04 0.05 0.22 0.22 0.44 0.26 0.25 0.21 0.31 0.37 0.31 1.22 1.20 1.23 1.12 1.12 1.12 0.95 1.05 1.26 0.91 1.18 0.92 NY1

ON1 0.03 0.02 0.06 0.07 0.06 0.02 0.05 0.06 0.04 0.00 0.03 0.05 0.01 0.02 0.01 -0.01 0.01 0.03 0.16 0.24 0.12 0.24 0.20 0.13 0.29 0.19 0.90 1.07 1.14 1.17 1.16 1.08 0.84 1.20 0.94 0.98 1.40 0.80 ON1

ON3 0.05 0.01 0.08 0.06 0.05 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.02 0.01 0.03 0.01 0.02 0.03 0.02 0.38 0.24 0.16 0.22 0.20 0.45 0.25 0.94 1.01 0.95 0.92 1.01 0.90 0.84 1.03 0.99 0.81 1.16 0.82 ON3

PA1 0.08 0.09 0.15 0.17 0.15 0.09 0.12 0.13 0.12 0.07 0.10 0.10 0.07 0.10 0.08 0.05 0.08 0.10 0.05 0.10 0.25 0.51 0.39 0.30 0.24 0.42 1.51 1.76 1.91 1.46 1.35 1.29 1.12 1.40 1.00 1.23 1.46 1.10 PA1

PA2 0.06 0.04 0.06 0.08 0.07 0.04 0.06 0.08 0.07 0.02 0.05 0.09 0.04 0.06 0.02 0.02 0.03 0.05 0.01 0.06 0.07 0.34 0.23 0.16 0.24 0.19 1.17 1.39 1.57 0.93 1.07 1.04 0.85 1.23 1.05 0.96 1.51 0.79 PA2

QC3 0.07 0.04 0.10 0.10 0.09 0.08 0.08 0.08 0.06 0.05 0.07 0.06 0.04 0.03 0.06 0.04 0.06 0.04 0.04 0.02 0.12 0.08 0.25 0.31 0.55 0.30 1.11 1.03 1.05 1.07 1.51 1.34 0.83 1.17 0.99 0.97 1.06 0.93 QC3

QC4 0.07 0.02 0.11 0.09 0.10 0.08 0.10 0.05 0.07 0.03 0.04 0.07 0.03 0.04 0.02 0.04 0.04 0.03 0.03 0.04 0.10 0.05 0.04 0.26 0.31 0.31 0.84 0.84 0.88 1.14 1.59 1.47 0.92 1.51 1.31 1.15 1.39 0.97 QC4

SK1 0.05 0.02 0.04 0.05 0.04 0.02 0.04 0.07 0.05 0.03 0.04 0.07 0.01 0.04 0.02 -0.01 0.00 0.05 0.00 0.03 0.07 0.02 0.06 0.04 0.35 0.11 0.94 1.27 1.34 1.05 1.12 1.04 0.79 1.20 0.91 0.88 1.31 0.75 SK1

WV1 0.12 0.10 0.16 0.18 0.18 0.10 0.12 0.13 0.14 0.08 0.13 0.13 0.10 0.12 0.09 0.08 0.10 0.10 0.08 0.13 0.08 0.07 0.14 0.09 0.10 0.48 1.51 1.64 1.83 1.52 1.42 1.57 1.27 1.62 1.28 1.39 1.61 1.23 WV1

YK2 0.11 0.05 0.01 0.03 0.03 0.04 0.07 0.10 0.06 0.07 0.09 0.12 0.04 0.07 0.07 0.03 0.04 0.08 0.05 0.07 0.14 0.06 0.09 0.09 0.02 0.16 0.94 1.19 1.30 0.96 1.08 1.08 0.80 1.21 0.94 0.93 1.41 0.76 YK2

CO1 0.30 0.21 0.30 0.29 0.31 0.30 0.32 0.26 0.28 0.25 0.28 0.25 0.21 0.23 0.27 0.27 0.24 0.27 0.25 0.25 0.34 0.30 0.26 0.24 0.26 0.34 0.28 0.49 0.44 1.47 1.65 1.90 0.97 1.87 1.22 1.19 2.18 0.94 CO1

UT1 0.30 0.23 0.34 0.32 0.34 0.31 0.35 0.26 0.28 0.25 0.29 0.28 0.24 0.24 0.29 0.29 0.28 0.27 0.28 0.26 0.36 0.32 0.25 0.24 0.31 0.36 0.31 0.23 0.10 1.68 1.12 1.69 1.03 1.51 1.54 1.23 1.48 0.93 UT1

WY1 0.32 0.24 0.36 0.33 0.36 0.33 0.36 0.27 0.29 0.28 0.31 0.28 0.27 0.27 0.31 0.31 0.30 0.29 0.30 0.27 0.38 0.35 0.28 0.26 0.33 0.38 0.33 0.22 0.06 1.51 1.03 1.52 0.96 1.25 1.60 0.95 1.36 0.87 WY1

BC1 0.27 0.23 0.32 0.26 0.30 0.27 0.33 0.29 0.27 0.24 0.28 0.26 0.26 0.26 0.27 0.28 0.25 0.27 0.29 0.25 0.36 0.28 0.26 0.27 0.29 0.37 0.29 0.38 0.41 0.40 0.99 0.66 0.33 0.59 0.76 0.37 0.77 0.29 BC1

CA1 0.22 0.22 0.30 0.28 0.26 0.23 0.28 0.22 0.24 0.21 0.23 0.22 0.25 0.22 0.24 0.22 0.22 0.22 0.24 0.22 0.30 0.26 0.25 0.26 0.25 0.32 0.27 0.36 0.33 0.33 0.33 0.41 0.88 0.35 1.12 0.44 0.75 0.51 CA1

CA2 0.21 0.24 0.32 0.29 0.29 0.25 0.30 0.26 0.26 0.22 0.24 0.26 0.27 0.25 0.26 0.25 0.26 0.25 0.27 0.23 0.33 0.28 0.27 0.28 0.28 0.36 0.30 0.40 0.41 0.40 0.30 0.18 0.53 0.37 0.63 0.42 0.62 0.40 CA2

MT1 0.14 0.15 0.20 0.18 0.19 0.18 0.20 0.19 0.16 0.17 0.18 0.15 0.16 0.15 0.17 0.16 0.17 0.16 0.16 0.16 0.22 0.18 0.16 0.17 0.16 0.24 0.19 0.24 0.25 0.26 0.13 0.21 0.17 0.41 0.21 0.25 0.56 0.14 MT1

OR1 0.17 0.19 0.27 0.25 0.24 0.22 0.23 0.23 0.20 0.20 0.20 0.16 0.22 0.17 0.22 0.20 0.22 0.19 0.22 0.20 0.26 0.24 0.21 0.23 0.23 0.29 0.25 0.34 0.32 0.32 0.21 0.12 0.14 0.12 0.48 0.11 0.25 0.21 OR1

OR2 0.20 0.21 0.25 0.28 0.26 0.22 0.22 0.29 0.20 0.23 0.25 0.21 0.20 0.19 0.24 0.21 0.23 0.24 0.22 0.22 0.26 0.26 0.22 0.25 0.23 0.30 0.25 0.33 0.36 0.37 0.29 0.30 0.24 0.07 0.16 0.44 0.66 0.37 OR2

WA1 0.13 0.13 0.21 0.18 0.19 0.17 0.18 0.18 0.14 0.15 0.15 0.10 0.16 0.12 0.16 0.14 0.15 0.14 0.16 0.14 0.21 0.18 0.15 0.17 0.16 0.23 0.20 0.27 0.27 0.26 0.14 0.13 0.14 0.06 0.03 0.13 0.29 0.13 WA1

WA3 0.18 0.20 0.31 0.29 0.27 0.26 0.27 0.27 0.23 0.21 0.23 0.18 0.23 0.19 0.24 0.22 0.24 0.20 0.24 0.21 0.28 0.27 0.20 0.23 0.24 0.31 0.28 0.37 0.35 0.35 0.27 0.23 0.23 0.14 0.08 0.21 0.07 0.42 WA3

WA4 0.12 0.12 0.20 0.16 0.18 0.16 0.18 0.16 0.15 0.14 0.15 0.12 0.14 0.13 0.16 0.13 0.14 0.14 0.14 0.15 0.20 0.16 0.15 0.16 0.14 0.22 0.18 0.24 0.24 0.25 0.12 0.14 0.14 0.04 0.06 0.12 0.02 0.11 WA4

AB1 AB2 AK2 AK4 AK6 BC2 BC4 IR1 MB1 ME1 ME2 MI1 MN1 MN2 NB1 NWT1 NWT2 NY1 ON1 ON3 PA1 PA2 QC3 QC4 SK1 WV1 YK2 CO1 UT1 WY1 BC1 CA1 CA2 MT1 OR1 OR2 WA1 WA3 WA4

Table 2.7 
FST (below diagonal) and Nei's D (above diagonal) for each population pair.  Populations are 
grouped into three genetic clusters identified by STRUCTURE.   



 

76 

Site Name
State/ Prov/ 

Territory
Latitude Longitude MIN MAX

North Cove NE 400700 992200 10000 10000

North Cove NE 400700 992200 10000 10000

North Cove NE 400700 992200 10000 10000

North Cove NE 400700 992200 10000 10000

North Cove NE 400700 992200 10000 10000

Itasca MN 470700 950700 10000 10000

Charlie Lake Cave BC 561635 1205615 10000 10000

Charlie Lake Cave BC 561635 1205615 10000 10000

Charlie Lake Cave BC 561635 1205615 10000 10000

Layser Cave WA 462200 1214500 10000 10000

Layser Cave WA 462200 1214500 10000 10000

Layser Cave WA 462200 1214500 10000 10000

Judd Peak South WA 463000 1215200 10000 10000

Kelso Cave ON 433000 795500 10000 10000

Boss Hill AB 523500 1124500 10000 10000

Broken Mammoth AK 641600 1460700 10000 10000

Broken Mammoth AK 641600 1460700 10000 10000

Broken Mammoth AK 641600 1460700 10000 10000

Broken Mammoth AK 641600 1460700 10000 10000

Lindenmeier CO 405200 1050000 10000 10000

Moonshiner ID 432200 1123700 10000 10000

Little Box Elder Cave WY 423700 1053700 10000 10000

New Paris #4 PA 400500 783900 10000 10000

Mummy Cave WY 442700 1094500 10000 10000

Mummy Cave WY 442700 1094500 10000 10000

Frankstown Cave PA 402200 781500 10000 10000

Welsh Cave KY 375225 844450 10000 10000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

January Cave AB 501118 1143106 10000 20000

Blue Fish Caves I-III YU 670800 1404700 10000 20000

Little Box Elder Cave WY 423700 1053700 10000 20000

Clark's Cave VA 380510 793925 10000 20000

Crystal Ball Cave UT 390000 1130000 10000 20000

Jaguar Cave ID 441653 1125455 10000 40000

Natural Chimneys VA 382200 780500 10000 40000

Bat Cave MO 375200 921500 10000 40000

Back Creek Cave #2 VA 380400 795330 10000 40000

Appendix 2.1 
Locations and estimated ages of snowshoe hare fossils from Late Wisconsin 
period, approximately coinciding with LGM. MIN and MAX are estimated years 
before present. Data are from FAUNMAP Working Group (1994). 
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State/ Province/ Territory Genetic Samples Donors

Alaska Dubois, Golden, Kielland, Johnson, Morton, Paragi

Alberta Donahue, Grandjambe, Myers, TEvans, Walde

British Columbia Boland, Doyle, Gautron, Pellerin, Polfus, Ransome

California Cheng, Cheyne, Simons

Colorado Ivan, Wait  

Maine Blood, Gomm, Harrison, Jakubas 

Manitoba Duncan, Koshel, Olson, Roberts 

Michigan Peterson, Quigley, Spreeman

Minnesota Erb, Mortensen, Palas, Schrage 

Montana Cheng, Hodges, Mills, Tyers

New Brunswick Lavigne, Wheelwright  

New York Cucharale, Fuhs, Huston, Platoni 

Newfoundland & Labrador Crowe, Jennings, Lane, McGrath 

Northwest Territories Carriere

Nova Scotia OBrien

Ontario Chartrand, Thompson  

Oregon Cheng, Hennings, Strauser

Pennsylvania Allabaugh, Bodenhorn, Kerner, Mills, Pawelski

Prince Edward Island Dibblee

Quebec Jolicoeur, Sirois  

Saskatchewan Gordon, Luthi, Weber

Utah Olsen, Strauser  

Vermont Richardson

Washington Gremel, Griffin, MacCracken, Strauser, Walker

West Virginia Tolin

Wisconsin Janak, Meyer  

Wyoming Berg, Hodges, Mills  

Yukon Doyle, ODonoghue, Sealy, Sheriff

Appendix 2.2 
Donors of snowshoe hare genetic samples used in this study, listed 
alphabetically by state/ province/ territory of collection. 
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Appendix 2.3 
Evolutionary relationship between black-tailed jackrabbits 
and PacNW introgressed snowshoe hares, based on 
neighbor-joining phylogenetic tree created in MEGA v. 4.0 
(Tamura et al. 2007 ). Tree is drawn to scale, with branch 
lengths proportional to evolutionary distance. Blue segment 
is all PacNW snowshoe hares; brown segment is black-tailed 
jackrabbits (from California, Nevada, and New Mexico); 
Yellow branch is white-tailed jackrabbits (from Colorado and 
Utah). Remaining (non-highlighted) segments are snowshoe 
hares from all other (non-PacNW) lineages. 
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Appendix 2.4 
Distribution of D-loop haplotypes among populations. Populations are grouped into 
six haplotype lineages identified by SAMOVA. For each population, N= number of 
individuals. For each haplotype, HN = number of sampled individuals carrying that 
haplotype; Unique Pops= number of different populations carrying that haplotype.  
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9 18 28 15 10 17 25 9 8 13 40 10 8 35 12 127 20 9 18 13 14 19 10 13 19 17 9 29 13 30 17 64 25 80 12 7 32 30 9

Haplotype 

Name
HN

Unique 

Pops

Hap1 2 1 2

Hap2 17 2 16 1

Hap3 1 1 1

Hap4 3 1 3

Hap5 1 1 1

Hap6 1 1 1

Hap7 7 4 2 2 2 1

Hap9 1 1 1

Hap10 7 2 3 4

Hap11 1 1 1

Hap12 1 1 1

Hap13 1 1 1

Hap14 2 1 2

Hap15 1 1 1

Hap16 10 3 2 2 6

Hap17 1 1 1

Hap18 2 2 1 1

Hap19 1 1 1

Hap20 2 2 1 1

Hap21 1 1 1

Hap22 1 1 1

Hap23 1 1 1

Hap24 1 1 1

Hap25 1 1 1

Hap26 1 1 1

Hap27 1 1 1

Hap28 6 4 1 3 1 1

Hap29 2 2 1 1

Hap30 1 1 1

Hap31 2 2 1 1

Hap32 2 1 2

Hap33 3 1 3

Hap34 1 1 1

Hap35 1 1 1

Hap36 15 6 6 1 2 4 1 1

Hap37 2 1 2

Hap38 3 2 2 1

Hap39 2 1 2

Hap40 1 1 1

Hap41 1 1 1

Hap42 1 1 1

Hap43 2 1 2

Hap44 3 2 2 1

Hap45 1 1 1

Hap46 9 2 8 1

Hap47 1 1 1

Hap48 1 1 1

Hap49 1 1 1

Hap50 3 2 1 2

Hap51 1 1 1

Hap52 2 2 1 1

Hap53 1 1 1

Hap54 1 1 1

Hap55 2 1 2

Hap56 1 1 1

Hap57 1 1 1

Hap58 2 1 2

Hap59 1 1 1

Hap60 2 1 2

Hap63 1 1 1

Hap64 1 1 1

Hap65 1 1 1

Hap66 1 1 1

Hap67 1 1 1

Hap68 1 1 1

Hap69 5 2 4 1

Hap70 1 1 1

Hap71 1 1 1

Hap72 4 1 4

Hap73 1 1 1

Hap74 5 3 1 1 3

Hap75 3 1 3

Hap76 1 1 1

Hap77 1 1 1

Hap78 1 1 1

Hap79 1 1 1

Hap80 2 1 2

Hap81 1 1 1

Hap82 1 1 1

Hap83 2 1 2

Hap84 1 1 1

Hap86 14 3 5 6 3
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Hap87 1 1 1

Hap88 1 1 1

Hap89 1 1 1

Hap90 1 1 1

Hap91 3 3 1 1 1

Hap92 3 2 2 1

Hap93 1 1 1

Hap94 1 1 1

Hap95 1 1 1

Hap96 2 1 2

Hap97 1 1 1

Hap98 1 1 1

Hap99 1 1 1

Hap100 1 1 1

Hap101 1 1 1

Hap102 3 2 1 2

Hap103 1 1 1

Hap104 1 1 1

Hap105 1 1 1

Hap106 1 1 1

Hap107 1 1 1

Hap108 1 1 1

Hap109 2 2 1 1

Hap110 1 1 1

Hap111 1 1 1

Hap112 1 1 1

Hap113 7 1 7

Hap114 2 1 2

Hap115 1 1 1

Hap116 2 1 2

Hap117 6 2 1 5

Hap118 2 1 2

Hap119 1 1 1

Hap120 1 1 1

Hap121 1 1 1

Hap122 1 1 1

Hap123 1 1 1

Hap124 1 1 1

Hap125 3 1 3

Hap126 1 1 1

Hap127 1 1 1

Hap128 1 1 1

Hap129 4 2 3 1

Hap130 5 2 4 1

Hap131 2 1 2

Hap132 3 2 1 2

Hap133 1 1 1

Hap134 1 1 1

Hap135 2 2 1 1

Hap136 2 2 1 1

Hap137 1 1 1

Hap138 2 1 2

Hap139 6 3 2 1 3

Hap140 1 1 1

Hap141 1 1 1

Hap142 1 1 1

Hap143 1 1 1

Hap144 1 1 1

Hap145 1 1 1

Hap146 2 2 1 1

Hap147 1 1 1

Hap148 1 1 1

Hap149 1 1 1

Hap150 1 1 1

Hap151 1 1 1

Hap152 5 2 4 1

Hap153 27 1 27

Hap154 2 1 2

Hap155 7 1 7

Hap156 3 1 3

Hap157 1 1 1

Hap158 1 1 1

Hap159 4 2 1 3

Hap160 2 2 1 1

Hap161 1 1 1

Hap162 1 1 1

Hap163 1 1 1

Hap164 1 1 1

Hap165 1 1 1

Hap166 3 1 3

Hap167 1 1 1

Hap168 1 1 1

Hap169 1 1 1

Hap170 1 1 1

Hap171 1 1 1

Hap172 1 1 1

Hap173 1 1 1

Hap174 1 1 1

Hap175 1 1 1

Hap176 2 2 1 1

Hap177 6 1 6

Hap178 6 1 6

Hap179 1 1 1

Hap180 1 1 1

Hap181 2 1 2
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Hap182 6 1 6

Hap183 4 1 4

Hap184 1 1 1

Hap185 2 1 2

Hap186 1 1 1

Hap187 6 1 6

Hap188 8 1 8

Hap189 2 1 2

Hap190 6 1 6

Hap191 1 1 1

Hap192 5 1 5

Hap193 3 1 3

Hap194 3 1 3

Hap195 9 1 9

Hap196 4 1 4

Hap197 2 1 2

Hap198 1 1 1

Hap199 1 1 1

Hap200 1 1 1

Hap201 2 1 2

Hap202 1 1 1

Hap203 1 1 1

Hap204 1 1 1

Hap205 1 1 1

Hap206 1 1 1

Hap207 1 1 1

Hap208 9 1 9

Hap209 1 1 1

Hap210 1 1 1

Hap211 10 1 10

Hap212 3 1 3

Hap213 1 1 1

Hap214 1 1 1

Hap215 8 1 8

Hap216 3 1 3

Hap217 1 1 1

Hap218 2 1 2

Hap219 1 1 1

Hap220 9 1 9

Hap221 1 1 1

Hap222 2 1 2

Hap223 1 1 1

Hap224 2 1 2

Hap225 1 1 1

Hap226 2 2 1 1

Hap227 1 1 1

Hap228 1 1 1

Hap229 1 1 1

Hap230 1 1 1

Hap231 15 1 15

Hap232 2 1 2

Hap233 1 1 1

Hap234 4 1 4

Hap235 2 1 2

Hap236 1 1 1

Hap237 10 2 2 8

Hap238 1 1 1

Hap239 4 1 4

Hap240 1 1 1

Hap241 1 1 1

Hap242 2 1 2

Hap243 1 1 1

Hap244 1 1 1

Hap245 1 1 1

Hap246 1 1 1

Hap247 1 1 1

Hap248 1 1 1

Hap249 2 1 2

Hap250 1 1 1

Hap251 2 1 2

Hap252 1 1 1

Hap253 1 1 1

Hap254 1 1 1

Hap255 1 1 1

Hap256 1 1 1

Hap257 2 1 2

Hap258 14 1 14

Hap259 10 1 10

Hap260 7 1 7

Hap261 9 1 9

Hap262 6 1 6

Hap263 15 1 15

Hap264 2 1 2

Hap265 3 1 3

Hap266 5 1 5

Hap267 3 1 3

Hap268 4 1 4

Hap269 1 1 1

Hap270 1 1 1

Hap271 13 1 13

Hap272 2 1 2

Hap273 1 1 1

Hap274 1 1 1

Hap275 2 1 2

Hap276 1 1 1
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Hap277 1 1 1

Hap278 9 1 9

Hap279 1 1 1

Hap280 1 1 1

Hap281 7 1 7

Hap282 1 1 1

Hap283 1 1 1

Hap284 1 1 1

Hap285 2 1 2

Hap286 1 1 1

Hap287 1 1 1

Hap288 1 1 1

Hap289 1 1 1

Hap290 1 1 1

Hap291 1 1 1

Hap292 1 1 1

Hap293 3 1 3

Hap294 2 1 2

Hap295 6 2 1 5

Hap296 1 1 1

Hap297 2 1 2

Hap298 1 1 1

Hap299 2 1 2

Hap300 1 1 1

Hap301 1 1 1

Hap302 2 1 2

Hap303 2 1 2

Hap304 3 1 3

Hap305 3 1 3

Hap306 1 1 1

Hap307 1 1 1

Hap308 1 1 1

Hap309 1 1 1

Hap310 3 1 3

Hap311 3 1 3

Hap312 1 1 1

Hap313 1 1 1

Hap314 1 1 1

Hap315 1 1 1

Hap316 1 1 1

Hap317 2 1 2

Hap318 1 1 1

Hap319 1 1 1

Hap320 1 1 1

Hap321 2 1 2

Hap322 1 1 1

Hap323 1 1 1

Hap324 3 1 3

Hap325 4 1 4

Hap326 1 1 1

Hap327 3 1 3

Hap328 2 1 2

Hap329 1 1 1

Hap330 1 1 1

Hap331 2 1 2

Hap332 14 2 9 5

Hap333 3 1 3

Hap334 3 1 3

Hap335 1 1 1

Hap336 1 1 1

Hap337 1 1 1

Hap338 3 2 2 1

Hap339 7 1 7

Hap340 1 1 1

Hap341 2 1 2

Hap342 3 1 3

Hap343 5 1 5

Hap344 1 1 1

Hap345 4 1 4

Hap346 1 1 1

Hap347 8 1 8

Hap348 4 1 4

Hap349 1 1 1

Hap350 1 1 1

Hap351 1 1 1

Hap352 1 1 1

Hap353 1 1 1

Hap354 1 1 1

Hap355 1 1 1

Hap356 1 1 1

Hap357 1 1 1

Hap358 6 1 6

Hap359 4 1 4

Hap360 1 1 1

Hap361 4 1 4

Hap362 1 1 1

Hap363 3 1 3

Hap364 2 1 2

Hap365 3 1 3

Hap366 2 1 2

Hap367 1 1 1

Hap368 1 1 1

Hap369 1 1 1
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Appendix 2.5 
Geographic distribution of D-loop 
haplotype diversities (Hd). Haplotype 
diversities for sampled populations range 
from 0.12 to 1.0. Circles are proportional 
to haplotype diversity divided into 10 
evenly spaced categories from 0.41 to 1.0. 
Vancouver, British Columbia (BC1) 
population had unusually low haplotype 
diversity (Hd = 0.12) and is represented 
with “X”—the next highest haplotype 
diversity (0.41) was used to set the lower 
limit for haplotype diversity categories in 
this figure. Thick blue lines separate six 
mtDNA haplotype lineages identified by 
SAMOVA.  
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Appendix 2.6 
Geographic distribution of D-loop 
nucleotide diversities (π). Nucleotide 
diversities for sampled populations 
range from 0.0003 to 0.0681. Circles 
are proportional to nucleotide diversity 
divided into 10 evenly spaced 
categories from 0.0003 to 0.0199. 
Northern Washington (WA4) 
population had unusually high 
nucleotide diversity (π = 0.0681) and is 
represented with “X”—the next lowest 
nucleotide diversity (π = 0.0199) was 
used to set the upper limit for 
nucleotide diversity categories in this 
figure. Thick blue lines separate six 
mtDNA haplotype lineages identified 
by SAMOVA. 
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AB1 AB2 AK2 AK4 AK6 BC1 BC2 BC4 IR1 MB1 ME1 ME2 MI1 MN1 MN2 MT1 NB1 NWT1 NWT2 NY1 ON1 ON3 PA1 PA2 QC3 QC4 SK1 WA4 WV1 YK2 OR2 CO1 UT1 WY1 CA1 CA2 OR1 WA1 WA3

AB1 4.27 0.91 0.84 1.25 1.20 4.37 1.93 1.87 2.31 0.48 2.88 2.06 0.39 0.55 0.81 1.08 2.15 0.57 0.81 1.55 1.22 1.02 2.07 1.75 1.59 2.93 1.06 9.08 1.81 1.49 23.30 25.09 20.79 22.48 62.05 61.11 58.03 59.49 63.53 AB1

AB2 0.09 9.03 1.63 1.34 2.18 4.22 0.79 0.99 0.46 0.34 1.23 0.97 1.26 0.14 0.37 0.48 0.76 0.38 0.31 0.57 0.37 0.02 1.68 0.83 0.53 1.17 0.00 7.08 1.02 1.87 21.21 23.91 19.94 22.51 60.30 59.08 54.79 56.60 60.39 AB2

AK2 0.18 0.22 3.81 0.56 0.34 5.01 2.50 2.11 3.04 1.14 3.33 2.62 1.97 1.70 2.11 1.43 2.78 0.46 1.15 2.40 2.31 1.81 3.46 2.78 2.03 3.25 1.84 10.06 2.70 0.21 23.90 25.38 21.99 23.80 64.16 63.17 59.79 61.31 65.17 AK2

AK4 0.19 0.15 0.12 5.88 0.89 3.82 1.29 1.14 2.25 0.96 2.74 1.91 2.01 1.68 2.04 1.31 2.08 0.45 1.07 1.81 2.23 1.63 3.46 2.34 1.06 2.50 1.55 8.77 2.34 0.86 23.27 25.45 22.13 24.64 64.16 62.99 58.74 60.65 64.04 AK4

AK6 0.22 0.22 0.08 0.14 4.32 4.95 3.08 2.45 3.90 1.48 4.15 3.09 2.19 2.17 2.54 1.98 3.28 0.88 1.61 2.94 2.83 2.27 4.13 3.35 2.51 3.79 2.39 10.52 3.41 0.50 24.64 25.82 22.95 24.91 63.45 62.60 58.84 60.64 65.00 AK6

BC1 0.75 0.47 0.67 0.58 0.76 0.12 3.41 3.62 5.43 4.44 6.71 5.83 4.90 4.87 5.31 4.66 5.93 4.26 4.35 5.53 5.35 4.68 6.38 5.98 3.19 6.61 4.79 9.70 5.80 5.36 24.97 27.21 23.54 25.24 61.43 60.49 57.28 58.59 62.83 BC1

BC2 0.30 0.11 0.38 0.21 0.41 0.55 4.51 0.25 0.86 1.00 1.87 1.35 2.30 1.53 1.60 1.13 1.51 0.99 0.96 1.24 1.73 1.22 3.35 1.67 0.24 1.91 1.06 6.51 1.71 2.76 22.00 25.65 20.81 23.70 61.20 59.79 55.26 57.32 60.79 BC2

BC4 0.25 0.10 0.33 0.16 0.31 0.62 0.06 6.70 0.81 1.00 2.23 1.54 2.31 1.67 1.79 1.39 1.54 0.47 0.76 1.55 2.16 1.44 3.74 1.93 0.87 1.99 1.37 6.78 2.08 2.46 22.46 25.01 21.54 23.62 59.62 58.55 54.18 56.40 60.56 BC4

IR1 0.28 0.05 0.41 0.26 0.40 0.70 0.16 0.10 7.77 0.81 1.25 0.90 2.20 1.05 0.87 1.17 0.69 0.72 0.78 0.72 1.24 0.87 2.57 1.00 1.14 1.22 0.48 7.96 1.38 3.32 21.27 25.09 20.40 22.78 63.00 61.63 56.75 58.88 61.90 IR1

MB1 0.07 0.04 0.21 0.14 0.21 0.62 0.17 0.13 0.11 6.36 1.75 0.95 0.56 0.25 0.03 0.55 1.09 0.06 0.12 0.65 0.77 0.29 1.81 0.84 1.09 1.63 0.13 8.54 1.11 1.67 22.29 24.84 20.43 22.18 63.49 62.34 58.33 60.15 64.01 MB1

ME1 0.31 0.15 0.38 0.30 0.40 0.58 0.24 0.25 0.16 0.21 6.59 0.06 3.01 1.73 1.88 1.62 0.26 1.72 1.65 0.22 0.99 1.14 3.08 0.40 1.38 0.23 1.41 8.28 0.93 3.42 20.09 22.81 19.43 22.81 63.77 62.28 56.33 59.32 62.85 ME1

ME2 0.28 0.10 0.38 0.24 0.37 0.72 0.22 0.20 0.12 0.13 0.01 6.10 1.97 1.12 1.11 1.25 0.00 1.15 1.04 0.00 0.86 0.76 2.68 0.10 1.15 0.09 0.95 8.29 0.56 2.97 21.19 22.76 19.95 23.08 64.14 62.79 56.89 59.97 64.23 ME2

MI1 0.08 0.12 0.34 0.27 0.34 0.78 0.34 0.29 0.27 0.08 0.32 0.27 4.32 0.47 0.43 1.59 2.14 1.25 1.18 1.45 1.11 0.90 1.87 1.41 2.23 2.78 1.04 9.88 1.84 2.67 23.66 24.83 22.12 23.74 63.39 62.56 59.07 60.56 64.91 MI1

MN1 0.06 0.02 0.22 0.19 0.23 0.48 0.19 0.18 0.12 0.03 0.20 0.13 0.04 7.65 0.00 0.67 1.06 0.65 0.39 0.62 0.41 0.00 1.54 0.61 1.37 1.55 0.00 8.74 1.03 2.10 21.59 24.31 20.52 22.61 62.69 61.72 57.72 59.40 63.09 MN1

MN2 0.10 0.04 0.30 0.22 0.27 0.60 0.22 0.18 0.09 0.00 0.22 0.13 0.05 0.00 8.73 1.06 1.24 0.80 0.58 0.66 0.35 0.19 1.58 0.55 1.69 1.70 0.00 8.82 0.96 2.55 22.29 24.23 20.67 22.34 62.54 61.53 57.55 59.37 63.28 MN2

MT1 0.09 0.05 0.14 0.12 0.17 0.35 0.11 0.12 0.11 0.05 0.16 0.11 0.13 0.07 0.10 9.09 1.22 0.28 0.30 0.91 1.08 0.38 2.43 1.16 0.90 1.65 0.25 7.58 1.60 1.74 20.43 24.19 19.05 21.98 61.78 60.46 56.17 57.87 61.24 MT1

NB1 0.28 0.09 0.37 0.26 0.37 0.64 0.23 0.20 0.11 0.15 0.04 0.00 0.27 0.13 0.16 0.12 6.02 1.05 0.97 0.00 0.80 0.66 2.35 0.32 1.10 0.02 0.79 8.34 0.69 2.96 19.92 22.67 19.02 21.83 63.57 62.23 56.32 59.34 62.80 NB1

NWT1 0.08 0.04 0.12 0.07 0.13 0.61 0.17 0.06 0.08 0.01 0.21 0.14 0.16 0.08 0.08 0.03 0.14 8.47 0.00 0.92 1.26 0.60 2.58 1.32 0.93 1.61 0.37 7.71 1.40 0.89 20.94 24.02 19.44 21.72 61.29 60.14 55.98 57.83 61.78 NWT1

NWT2 0.09 0.03 0.18 0.13 0.18 0.50 0.14 0.08 0.09 0.01 0.19 0.12 0.13 0.05 0.07 0.03 0.12 0.00 8.16 0.82 1.08 0.26 2.03 0.99 0.95 1.49 0.09 7.97 1.34 1.47 21.37 24.32 20.46 22.14 62.22 61.12 57.04 58.75 62.42 NWT2

NY1 0.22 0.06 0.35 0.23 0.36 0.68 0.20 0.20 0.10 0.10 0.03 0.00 0.21 0.07 0.08 0.08 0.00 0.12 0.10 5.94 0.41 0.34 1.83 0.00 1.02 0.24 0.47 8.38 0.44 2.62 20.44 23.50 19.83 22.76 64.05 62.74 57.28 60.00 63.46 NY1

ON1 0.14 0.04 0.31 0.24 0.29 0.58 0.23 0.21 0.13 0.09 0.13 0.10 0.12 0.05 0.04 0.11 0.11 0.13 0.11 0.05 8.54 0.13 1.19 0.40 1.07 1.11 0.53 8.10 0.65 2.38 20.37 22.06 18.43 21.41 60.46 59.32 55.12 56.99 60.96 ON1

ON3 0.10 0.00 0.24 0.17 0.22 0.48 0.16 0.14 0.08 0.03 0.14 0.08 0.08 0.00 0.02 0.04 0.08 0.06 0.03 0.04 0.01 9.27 1.44 0.36 0.97 0.95 0.00 7.69 0.82 1.95 20.43 23.25 19.20 21.31 60.83 59.79 55.61 57.18 61.47 ON3

PA1 0.32 0.17 0.47 0.39 0.49 0.80 0.43 0.41 0.31 0.24 0.33 0.34 0.30 0.17 0.19 0.20 0.30 0.29 0.22 0.26 0.14 0.15 4.36 2.00 3.01 3.03 1.79 10.42 2.12 3.70 23.25 25.67 21.42 23.30 63.70 62.68 59.19 60.68 64.06 PA1

PA2 0.21 0.09 0.36 0.26 0.35 0.65 0.24 0.21 0.12 0.11 0.06 0.01 0.17 0.07 0.06 0.11 0.05 0.14 0.11 0.00 0.05 0.04 0.24 7.60 1.55 0.51 0.52 8.93 0.65 2.94 20.68 23.80 20.32 22.87 64.11 62.94 57.60 60.27 63.75 PA2

QC3 0.19 0.06 0.29 0.14 0.28 0.45 0.04 0.11 0.14 0.14 0.17 0.14 0.25 0.15 0.18 0.09 0.14 0.11 0.11 0.13 0.12 0.11 0.32 0.18 7.13 1.50 0.98 6.36 1.57 2.14 21.30 24.13 19.41 22.80 60.23 58.70 54.10 56.00 59.52 QC3

QC4 0.36 0.14 0.42 0.31 0.42 0.70 0.28 0.25 0.17 0.22 0.03 0.02 0.35 0.18 0.20 0.15 0.00 0.21 0.18 0.04 0.14 0.11 0.37 0.08 0.19 5.54 1.22 8.62 0.83 3.29 21.27 22.63 19.74 22.95 64.23 62.81 56.29 59.89 63.90 QC4

SK1 0.14 0.00 0.29 0.19 0.28 0.63 0.18 0.15 0.05 0.02 0.18 0.12 0.13 0.00 0.00 0.02 0.11 0.04 0.01 0.07 0.06 0.00 0.22 0.06 0.12 0.17 8.60 7.87 1.13 2.12 20.68 24.88 20.00 22.48 62.21 61.01 56.52 58.34 61.84 SK1

WA4 0.24 0.23 0.36 0.26 0.28 0.31 0.25 0.18 0.20 0.25 0.33 0.23 0.25 0.32 0.25 0.37 0.28 0.20 0.25 0.25 0.24 0.25 0.27 0.26 0.22 0.27 0.21 31.81 8.47 9.83 23.46 24.30 19.35 23.56 29.39 27.76 24.69 25.96 34.22 WA4

WV1 0.27 0.12 0.39 0.30 0.42 0.72 0.27 0.27 0.19 0.16 0.12 0.09 0.28 0.12 0.12 0.14 0.11 0.19 0.16 0.07 0.09 0.09 0.31 0.09 0.20 0.13 0.15 0.25 5.08 2.95 22.35 23.06 19.83 22.41 63.29 62.09 57.09 59.90 63.30 WV1

YK2 0.20 0.21 0.04 0.12 0.07 0.57 0.34 0.28 0.34 0.21 0.35 0.32 0.31 0.23 0.27 0.17 0.33 0.13 0.18 0.30 0.26 0.21 0.39 0.31 0.25 0.35 0.25 0.34 0.33 6.22 23.43 25.66 21.94 23.96 62.71 61.67 58.18 59.58 63.55 YK2

OR2 0.89 0.84 0.89 0.88 0.89 0.92 0.87 0.88 0.87 0.87 0.83 0.87 0.89 0.83 0.86 0.75 0.85 0.86 0.85 0.86 0.85 0.83 0.89 0.86 0.85 0.87 0.86 0.67 0.88 0.86 2.71 19.16 14.04 15.94 71.04 68.68 63.04 64.96 62.46 OR2

CO1 0.81 0.75 0.84 0.80 0.81 0.89 0.82 0.79 0.78 0.79 0.77 0.78 0.80 0.77 0.76 0.73 0.78 0.76 0.76 0.78 0.74 0.74 0.81 0.77 0.78 0.78 0.77 0.51 0.79 0.80 0.84 6.86 18.03 18.13 64.85 63.98 59.49 62.55 64.22 CO1

UT1 0.92 0.82 0.90 0.88 0.92 0.97 0.88 0.90 0.89 0.88 0.81 0.89 0.92 0.80 0.85 0.71 0.85 0.87 0.83 0.88 0.83 0.81 0.91 0.86 0.84 0.87 0.87 0.52 0.89 0.85 0.86 0.84 1.16 5.19 59.23 57.55 53.09 55.68 57.83 UT1

WY1 0.90 0.87 0.90 0.90 0.91 0.93 0.90 0.90 0.90 0.89 0.86 0.90 0.91 0.85 0.88 0.77 0.88 0.89 0.87 0.89 0.87 0.86 0.90 0.89 0.88 0.89 0.89 0.71 0.90 0.88 0.87 0.86 0.72 2.26 62.09 61.67 59.83 60.36 63.53 WY1

CA1 0.97 0.91 0.96 0.95 0.97 1.00 0.95 0.95 0.95 0.95 0.92 0.96 0.97 0.91 0.93 0.88 0.94 0.94 0.92 0.95 0.93 0.91 0.97 0.94 0.93 0.95 0.94 0.55 0.96 0.93 0.97 0.94 0.98 0.97 0.42 0.29 4.26 2.20 23.44 CA1

CA2 0.95 0.89 0.95 0.93 0.95 0.99 0.94 0.92 0.92 0.92 0.91 0.93 0.95 0.90 0.90 0.87 0.92 0.91 0.90 0.93 0.90 0.89 0.95 0.91 0.91 0.93 0.91 0.50 0.94 0.92 0.96 0.92 0.98 0.96 0.24 2.45 2.58 1.06 21.19 CA2

OR1 0.89 0.87 0.91 0.89 0.90 0.92 0.90 0.88 0.88 0.89 0.89 0.89 0.89 0.88 0.88 0.86 0.89 0.88 0.88 0.89 0.88 0.87 0.90 0.88 0.88 0.89 0.88 0.57 0.89 0.89 0.94 0.89 0.92 0.94 0.42 0.26 7.50 2.36 18.24 OR1

WA1 0.90 0.87 0.91 0.90 0.90 0.92 0.90 0.88 0.88 0.89 0.89 0.89 0.90 0.89 0.88 0.87 0.89 0.88 0.88 0.89 0.88 0.87 0.90 0.89 0.88 0.90 0.88 0.57 0.90 0.90 0.94 0.89 0.92 0.94 0.26 0.10 0.24 7.67 19.19 WA1

WA3 0.94 0.89 0.94 0.93 0.94 0.98 0.93 0.92 0.92 0.92 0.91 0.93 0.94 0.90 0.90 0.87 0.92 0.91 0.90 0.93 0.90 0.89 0.94 0.91 0.91 0.93 0.91 0.56 0.93 0.92 0.96 0.92 0.97 0.96 0.93 0.87 0.73 0.74 3.94 WA3

AB1 AB2 AK2 AK4 AK6 BC1 BC2 BC4 IR1 MB1 ME1 ME2 MI1 MN1 MN2 MT1 NB1 NWT1 NWT2 NY1 ON1 ON3 PA1 PA2 QC3 QC4 SK1 WA4 WV1 YK2 OR2 CO1 UT1 WY1 CA1 CA2 OR1 WA1 WA3

Appendix 2.7 
FST (below diagonal) and PiXY (corrected average pairwise differences, above diagonal) for each population pair. Populations are 
grouped into six haplotype lineages identified by SAMOVA.  
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Appendix 2.8 
Program STRUCTURE results on microsatellite data.  Log-likelihood 
of genetic clusters plotted against K, number of clusters.  The most 
likely number of genetic clusters is K = 3, where graph reaches an 
inflection. With K = 3, the estimated membership of every 
population in its most likely genetic cluster is > 90%, when 
averaged across all individuals in the population. 



 

87 

  

CHAPTER 3 

 IS SYNCHRONY DETECTABLE WHEN TIME SERIES ARE 

 SHORT AND DATA LESS THAN PERFECT? 

 

ABSTRACT 

Synchrony is a widespread phenomenon that has been documented for species 

across many taxa. Identifying patterns and causes of synchrony is fundamental to 

understanding the factors that influence animal numbers and large-scale population 

processes, with broad implications for conserving and managing ecological systems. Two 

statistical issues hamper current synchrony research. First, different metrics define 

synchrony in subtly different ways and therefore generate different numeric or 

qualitative estimates when applied to the same data, making it challenging to compare 

results across studies. Second, we have little understanding of how real-world data 

limitations, such as short time series length and sampling error, interact with data 

smoothing and cyclicity to affect synchrony estimates. I conducted a simulation study of 

five commonly used synchrony metrics (Pearson, Spearman, Kendall, Percent Match, 

and Symbolic) to address these issues. Synchrony estimates were highly correlated 

under most simulated scenarios. The Symbolic metric was monotonically, but not 

linearly, correlated with the other metrics, suggesting results can be at least 

qualitatively compared across studies applying these metrics. In comparisons of the four 

most similar metrics (i.e., excluding the Symbolic metric), the Kendall metric exhibited 
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the lowest standard deviation and bias, and had the highest statistical power, regardless 

of time series length (15 – 100 years), sampling error (σ=0-30% of mean abundance), or 

data smoothing, for both cyclic and  non-cyclic time series. For all metrics, increasing 

time series from 15 to 25 years considerably reduced variability in synchrony estimates. 

Data smoothing greatly reduced bias in synchrony estimates, especially for cyclic time 

series, when sampling error was high (15-30%). However, smoothing also increased 

variability of estimates in all cases, most noticeably for time series < 50 years in length. 

Overall, the correspondence of the metrics is good news for comparing studies that 

apply different synchrony metrics.  For the types of dynamics and measures of 

performance examined in this study, the Kendall metric performed best under most 

data scenarios, suggesting it should perform well in future studies of synchrony. 

 

INTRODUCTION 

Population ecology has been marked by periods of rapid advances in theory, 

inspired and grounded by empirical observations and experimental research. In a classic 

example, Charles Elton’s (1924) pioneering paper on the cycles of Norwegian lemmings 

(Lemmus lemmus)—nearly coincident with Lotka’s (1925) and Volterra’s (1926) 

mathematical formulations for predator-prey cycles—initiated substantial  advances in 

our understanding of factors that regulate animal populations. Subsequent interest in 

population cycles spurred not only vigorous scientific debates, but also relevant 
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laboratory and field experiments (e.g., Nicholson 1954; Krebs et al. 1995) and initiation 

of many long-term studies on cyclic populations (Turchin 2003). 

Many species that cycle also exhibit synchrony in these cycles over large spatial 

scales, i.e., populations increase and decline simultaneously (or with a consistent time 

lag) across much of the species range. Although this phenomenon of synchrony did not 

receive the level of attention that population cycles did in the early 1900’s, it had long 

been recognized and anecdotally reported among trappers and fur traders. In 1953, 

Moran published one of the first statistical analyses and mechanistic explanations of this 

phenomenon (later dubbed the ‘Moran effect’), based on Canada-wide lynx (Lynx 

canadensis) fur return data kept by the Hudson’s Bay Company. Interest in synchrony 

resurged in the 1990’s, with growing interest in landscape-level ecological processes, 

and the recognition that large-scale spatial correspondence in population dynamics 

characterizes many species of high conservation and economic interest. In the two 

decades since, the ecological literature has been rife with examinations of synchronous 

dynamics in forest insects, marine fishes, oaks and other trees, viruses, birds, small and 

medium-sized boreal and arctic mammals, and large mammals including caribou 

(Rangiffer tarandus) and muskox (Ovibos moschatus )(reviewed in Liebhold et al. 

2004a). 

Despite theoretical, computational, and statistical advances in synchrony 

research, a substantial gap persists between development of synchrony theory and its 

application to real populations. A primary obstacle to application of this theory is the 
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absence of a standard operational definition of what constitutes synchrony.  Most 

synchrony metrics identify two time series as fully synchronized when they are identical 

(but see Cazelles 2004 for the Symbolic metric). However, when time series are not 

identical, metrics may generate different estimates of synchrony when applied to the 

same data, depending on how each metric defines synchrony (Buonaccorsi et al. 2001).  

Synchrony metrics can be broadly categorized as those that measure correlation 

synchrony, those that measure phase synchrony, and hybrid metrics. The Pearson 

correlation is a commonly applied measure of correlation synchrony that quantifies the 

linear relationship between two time series. Two time series correlated in relative, but 

not absolute, yearly abundances may exhibit low synchrony as measured by the Pearson 

correlation, but they may be highly synchronized based on nonparametric measures of 

correlation synchrony (e.g., Spearman or Kendall correlations) that simply ask if years 

rank in a similar order when sorted by abundance (Zar 1999).  

Hybrid metrics employ a more general definition of synchrony than metrics of 

correlation synchrony. For example, Buonaccorsi et al. (2001) proposed a hybrid metric 

that quantifies the proportion of times two populations increase or decrease 

simultaneously, regardless of degree of change. Studies have also defined synchrony as 

the proportion of times two cyclic populations peak or trough simultaneously (e.g., 

Krebs et al. 2002).  

Within the past decade, a class of synchrony metrics based on the concept of 

phase synchrony has emerged in the ecological literature, appropriate for (but not 
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restricted to) quantifying synchrony of systems with dynamics characterized as Uniform 

Phase evolution with Chaotic Amplitudes (UPCA; Blasius and Stone 2000; Grenfell et al. 

2001; Cazelles and Stone 2003; Cazelles 2004; Liebhold et al. 2004a). This type of 

oscillation has been observed in many cyclic systems, including Canada lynx (Ranta et al. 

1997), ruffed grouse (Bonasa umbellus) and snowshoe hares (Lepus americanus; Keith 

1963), and several species of voles and lemmings (Krebs and Myers 1942), which cycle 

with relatively constant frequency but erratic peak abundances among populations. 

Phase synchrony metrics broadly define synchrony as oscillation in rhythm, with or 

without a time lag, and regardless of the amplitude of peaks. For example, two 

populations with a consistent time lag between peaks and very different peak 

amplitudes each cycle could exhibit the same degree of phase synchrony as two 

populations that always peak simultaneously with equal peak amplitude. In contrast, 

correlation or hybrid synchrony metrics would consider the latter time series more 

synchronized than the former.  

Choice of synchrony metric primarily depends on how a researcher chooses to 

define synchrony, but may also be limited by the type and quality of time series data. 

For example, a researcher interested in whether forest insect outbreaks co-occur but 

not interested in correspondence of population abundances between major outbreaks 

could estimate synchrony as the proportion of times outbreaks occur simultaneously. 

However, if the data consist of a few 25-year time series with an average of 2–3 

outbreaks per population, data may be insufficient for applying this metric.  Frequently, 
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different researchers apply subtly different metrics to studies of the same species. In 

these cases, it may be unclear how to interpret conflicting estimates among metrics or 

how to compare results across studies.   

In addition to differing interpretations of what constitutes “synchrony”, we have 

little information on how real-world data limitations affect metric performance. Most 

theoretical synchrony studies have been based on a minimum of 100 years of simulated 

time series data (but see Cazelles 2004, who used 50 years)—much longer than is 

available for most species (Cazelles and Stone 2003). Further, it is not clear how 

sampling error, the common practice of smoothing data prior to analyses, or the level of 

cyclicity in time series data interact with time series length to affect synchrony 

estimates and our ability to determine when two populations are significantly 

synchronized. Addressing such uncertainties would improve our ability to quantify 

synchrony patterns in real data and, ultimately, our ability to infer synchrony 

mechanisms from these patterns. 

The gap between synchrony theory and application would be reduced through 

attention to three areas of synchrony research: 

1) How comparable are synchrony estimates calculated by different metrics? 

2) How do data quality (time series length and sampling error), data smoothing, 

and cyclicity in time series affect synchrony estimates? 

3)  How do data quality (time series length and sampling error), data smoothing, 

and cyclicity in time series affect statistical power of synchrony metrics? 
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I address these questions in a simulation analysis of five commonly used 

synchrony metrics. To ground the simulations in natural history, I mimic time series 

representing the approximately 10-year population cycles of snowshoe hares in their 

northern species range, and the more erratic fluctuating time series representative of 

hares in their southern range. A simulation study based on the dynamics of snowshoe 

hares is widely applicable to a large number of mammalian and avian species that 

exhibit 10-year cyclic and synchronous dynamics in at least part of their range, including 

Canada lynx (Ranta et al. 1997), mink (Mustela vison; Holmengen et al. 2008), muskrat 

(Ondatra zibethicus; Erb et al. 2000), marten (Martes americana; Cowan 1938), rock 

ptarmigan (Lagopus muta; Gundmundsson 1958), and ruffed and red grouse (Lagopus 

lagopus scoticus; Moss et al. 1996). I develop recommendations for comparing 

synchrony estimates across studies that use different metrics and for interpreting 

results in light of known data issues. 

 

METHODS 

Measuring Synchrony 

Synchrony analysis begins with the collection of population data on a regular 

(usually, yearly) basis from multiple sites distributed across a study region. Populations 

can be synchronized in abundance, reproductive timing, or mortality. A single measure 

of synchrony can be calculated across all sites. However, for identification of geographic 

patterns in synchrony and causal mechanisms, pairwise synchrony estimates are usually 
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calculated. The spatial scale of synchrony and the locations of geographic ‘breaks’ in 

synchrony are compared against expectations for hypothesized mechanisms. My 

simulations focus on methods for estimating pairwise synchrony in population 

abundance, which is the most common form of synchrony examined in animals. 

I identified five synchrony metrics for comparison, including the most frequently 

used correlation metrics (Pearson, Spearman, and Kendall correlation), a hybrid metric 

(Percent Match), and a phase synchrony metric (Symbolic; Cazelles and Stone 2003). 

Attributes of each metric are outlined in Table 3.1.   

Synchrony in population abundances can be measured on raw abundance 

counts, but is more typically applied to first-differenced log-transformed abundances, or 

to residuals after fitting a linear regression or autoregressive model to the data. 

Synchrony on first-differenced log-transformed abundances [log(Nt) – log(Nt-1), where Nt 

= abundance at time t] measures synchrony in population growth rates rather than in 

abundances themselves. In this study I was interested in examining synchrony in 

population growth rates. Therefore, I applied the standard correlation measures of 

synchrony (Pearson, Spearman, and Kendall correlation) to first-differenced log-

transformed abundances. The Percent Match and Symbolic metrics transform data to 

growth or cyclic phase categories prior to analyses, so were applied to raw abundance 

data. 
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Data Simulations 

Each of the five metrics applies a different operational definition of synchrony. 

Because my goal was to compare synchrony estimates based on different metrics, and 

their sensitivities to quality issues common in real time series data, I did not compare 

synchrony metrics against a ‘standard’ definition of synchrony that might favor some 

metrics over others. Instead, I compared the performance of each metric against a 

baseline of its own performance on ‘ideal’ data—1000-year data simulated without 

sampling error and without data smoothing.  

I selected four actual snowshoe hare time series representative of northern 

(cyclic) and southern (non-cyclic) populations to serve as base models for generating 

time series for simulations (Fig. 3.1). For each of the four simulations (representing two 

cyclic and two non-cyclic data sets) and five synchrony metrics, I calculated the standard 

deviation and bias of synchrony estimates (relative to baseline ideal synchrony 

estimates) for all combinations of these factor-levels: 

1) Time series length:  15, 25, 35, 50, 75, 100 years 

2) Sampling error:  0, 15%, 30% error 

3) Data treatment:  smoothed vs. unsmoothed prior to synchrony analysis 

For each base model, separate simulations were conducted in R (http://cran.r-

project.org/; Appendix 3.8) as follows: 

1) Data smoothing is a subjective visualization technique commonly used in time 

series and synchrony analyses to minimize potential effects of anticipated but 

http://cran.r-project.org/
http://cran.r-project.org/
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unknown sampling error in data. I applied loess (locally weighted regression) 

smoothing to the base data, using a smoothing parameter of 7 surrounding data 

points (span = 7 / length of time series) with normally distributed weighting, to 

arrive at the smoothed estimate for each year [R function:  loess()]. On average, 

this smoothing parameter seemed to best capture most fluctuations in the time 

series data while smoothing over minor potential ‘noise’. I used the same loess 

parameters for all data smoothing in these simulations. 

2) I fit an autoregressive (AR) time series model to the smoothed base data, using 

the Akaike Information Criterion to choose the order of the AR model [R 

function:  ar()]. 

3) One thousand pairs of 1000-year time series were simulated from an AR model 

using the same model coefficients determined for the base data [R function:  

arima.sim()]. These time series pairs were the null time series for testing 

performance of metrics in a scenario of ‘no synchrony’. The paired time series 

were generated independently from the same AR model, to mimic the level of 

synchrony that might be observed due to chance between populations with 

similar endogenous dynamics, but with no specific synchronizing mechanism 

acting on the populations. 

4) I used a Cholesky decomposition to correlate the 1000 time series pairs at a 

range of values, from Pearson’s r = 0.05 to 0.95 *R function:  chol()+. Although 

Pearson’s correlation is only one way to measure synchrony between time 



 

97 

  

series, it seemed reasonable that time series pairs spanning the full range of 

correlation values as measured by Pearson’s coefficient would also span a wide 

range of correlation values as measured by each of the other synchrony metrics 

examined.  

5) The 1000 time series pairs correlated by Cholesky decomposition represented an 

approximately uniform distribution of Pearson synchrony estimates. However, 

when a different synchrony metric (e.g., Percent Match) is applied to these same 

data they produce a different distribution of synchrony estimates, because 

different metrics calculate synchrony in different ways. To evaluate the 

performance of each metric using data representing a uniform distribution of 

synchrony values, I selected metric-specific subsets of 500 time series pairs (from 

the full set of 1000 time series pairs) evenly spanning the range from no 

synchrony to maximum synchrony, as calculated by each metric. For example, 

the Percent Match subset of data had approximately 100 time series pairs in 

each of five categories of Percent Match synchrony estimates ranging from 0.5 

(no synchrony) to 1.0  (maximum synchrony). For each metric, the metric-

specific subset of 500 time series pairs with error = 0 and data treatment = 

unsmoothed were considered ‘baseline’ data for evaluating metric performance.  

6) Multiple levels of simulated error were applied to the simulated time series, to 

generate data for evaluating the influence of sampling error on metric 

performance. To each data point in each time series, I added an error value 
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randomly selected from a normal distribution with mean = 0 and standard 

deviation = y × mean abundance of the time series, where y represented the 

three levels of simulated sampling error:  0, 0.15, and 0.30.  

7) I also evaluated the influence of data smoothing and time series length on metric 

performance. Data smoothing was simulated by applying a loess smooth as 

described earlier. The effects of time series length were simulated by truncating 

the 1000-year time series to specified lengths (15, 25, 35, 50, 75, 100 years), 

resmoothing the time series for these shorter lengths (when data treatment = 

smoothed), and recalculating synchrony estimates. 

8) Finally, I evaluated the performance of each metric under a scenario of ‘no 

synchrony’, by calculating synchrony on the null time series data generated in 

Step #3. I generated error, applied data smoothing, and truncated time series 

lengths on the null data pairs as described for the correlated time series pairs.  

Evaluation of Results 

To determine if synchrony estimates calculated by different metrics are 

comparable, I examined scatterplots of synchrony estimates for each pair of metrics 

applied to the same time series data. I calculated Pearson’s r on these synchrony 

estimates, to quantify the linear association for each pair of metrics. The data I used for 

this analysis were the 1000 pairs of correlated 1000-year time series (Step #4) from 

which metric-specific data subsets were subsequently chosen. I compared synchrony 
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estimates for three error levels (0, 0.15, 0.30) and two data treatments (smoothed vs. 

unsmoothed), for cyclic and non-cyclic time series. 

Performance of each metric for different combinations of data quality (time 

series length and sampling error), data treatment (smoothing versus no smoothing), and 

cyclicity (cyclic versus non-cyclic) are reported as the standard deviation and bias of 

synchrony estimates relative to baseline synchrony estimates. For example, for the 

Kendall metric I evaluated the influence of short (25-year) time series length and 

moderate (0.15) sampling error on synchrony of unsmoothed, cyclic data by estimating 

synchrony on the 500 pairs of cyclic time series in the Kendall subset under this 

scenario. I compared these synchrony estimates to those obtained on the corresponding 

baseline (1000-year, error = 0, data treatment = unsmoothed) Kendall time series. In this 

way, the performance of each metric under different data scenarios was compared 

against its performance on ‘ideal’ baseline data, rather than against a specific definition 

of synchrony. 

In this study, I define statistical power as the ability of a metric to distinguish (as 

significant) time series synchronized at a specified level (measured in Step #5 above) 

versus independently generated null time series (Step #3 above). To evaluate statistical 

power of each metric under different data scenarios, I used a 10% moving window 

analysis to calculate the proportion of time series pairs that were significant at α = 0.05 

for the range of synchrony estimates from ‘no synchrony’ to ‘full synchrony’. To provide 

a reference level of statistical power for comparison across metrics and data scenarios, I 
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calculated the minimum baseline synchrony at which 50% of estimated synchrony 

values were significant at α = 0.05. A higher baseline 50% significance level translates to 

lower statistical power. For example, I applied the following steps to evaluate statistical 

power of the Spearman metric for unsmoothed, cyclic 25-year time series with sampling 

error = 0.15:  

1) I truncated cyclic, null time series from Step #3 to a length of 25 years and 

applied a simulated error level of 0.15.  

2) I calculated the Spearman synchrony estimate for these 1000 pairs of modified 

null time series data. I identified the 95% upper CI bound for null data under this 

data scenario.  

3) I identified all correlated time series pairs (Step #5 above) with baseline 

Spearman synchrony ranging from r = 0 – 0.10 (a 10% window). Because the 

subset of 500 time series pairs for each metric was chosen to achieve a uniform 

set of correlations, on average each 10% moving window of baseline synchrony 

estimates included 50 time series pairs.  

4) Within the range of baseline synchrony estimates covered by the 10% window, I 

calculated the proportion of time series pairs with an estimated synchrony 

higher than the 95% upper CI bound for null data, for the specific combination of 

factors evaluated (in this case, unsmoothed, cyclic 25-year time series with 

sampling error = 0.15). This proportion approximately represented the power of 
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the Spearman metric when baseline Spearman synchrony was r = 0.05 (the 

middle value in the 10% window range), for this data scenario. 

5) I shifted the moving window by 1% (to a baseline synchrony range of r = 0.01 – 

0.11) to calculate power when baseline Spearman synchrony was r = 0.06. I 

repeated this moving window calculation for the entire range of Spearman 

synchrony values.  

 

RESULTS 

Data Simulations 

The simulated time series were visually comparable to the four snowshoe hare 

time series (two cyclic, two non-cyclic) from which they were modeled (Fig. 3.1). Results 

were similar using the two cyclic data sets and the two non-cyclic data sets. Therefore, I 

present results from one cyclic simulation and one non-cyclic simulation. 

For all metrics except for the Symbolic metric, Cholesky decomposition was able 

to simulate correlated baseline time series pairs equally spanning the full range of 

synchrony from no synchrony to maximum synchrony. For the Symbolic metric, the 

maximum synchrony of 2.0 is obtained only when time series are identical and each of 

the four cycle phases (increase, peak, decrease, and trough) occurs equally, i.e., 25% of 

the time. In this study, the Symbolic synchrony of most Cholesky decomposed baseline 

time series pairs was less than 1.0 (out of a maximum synchrony of 2.0). As shown in Fig. 

3.2 and Appendix 3.1, baseline time series pairs with high Pearson correlation (close to r 
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= 1.0) had Symbolic synchrony estimates close to 1.0. My inability to generate baseline 

time series with Symbolic synchrony much greater than 1.0 was likely due to the fact 

that simulated time series did not have approximately equal representation of the cycle 

phases. Ten-year cyclic time series are approximately represented by 10% peak phase, 

10% trough phase, 40% increase phase, and 40% decrease phase cycles. Therefore, 10-

year cyclic time series cannot achieve maximum synchrony, as defined by the Symbolic 

metric.  

Correspondence in Synchrony Estimates Across Metrics 

Can synchrony estimates be compared across studies that apply different 

metrics?  To gain a general sense of similarities among metrics, I examined scatterplots 

and calculated Pearson’s correlation on synchrony estimates calculated by different 

metrics, under various data scenarios. For each comparison in this analysis, synchrony 

was calculated by two different metrics on the same set of 1000 simulated long (1000-

year) time series pairs. High correspondence between estimates for 1000-year data 

does not necessarily mean high correspondence for shorter time series. 

I found very high correlation in synchrony estimates calculated using the three 

standard correlation metrics (Pearson, Spearman, Kendall), regardless of error rate, data 

treatment (smoothing versus no smoothing), and cyclicity (cyclic versus non-cyclic) 

(Pearson’s r = 0.98 – 1.00; Table 3.2; Appendix 3.2). The Percent Match metric was also 

highly correlated with the standard correlation metrics under most scenarios (Pearson’s 

r = 0.83 – 1.00). The Symbolic metric showed moderate to high correspondence in 
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synchrony estimates with other metrics (Pearson’s r = 0.73 – 0.96). Fig. 3.2 and 

Appendix 3.1 show that the relationship between the Symbolic and other metrics is 

monotonic, but not linear, under some data scenarios. Percent Match and Symbolic 

metric correspondence with other metrics dropped quickly as error rate increased from 

0.15 to 0.30 for unsmoothed (especially cyclic) data. Data smoothing maintained high 

levels of correspondence among metrics, regardless of error rate (Pearson’s r = 0.90 – 

1.00).  

Influence of Data Quality, Data Treatment, and Cyclicity on Synchrony Estimates 

Among the correlation (Pearson, Spearman, Kendall) and hybrid (Percent Match) 

synchrony metrics, the Kendall metric exhibited the lowest standard deviations and bias 

(Fig. 3.3; Table 3.3; Appendix 3.3) and the highest statistical power (Figs. 3.6 and 3.7; 

Table 3.5; Appendices 3.5, 3.6 and 3.7), under most data scenarios. The Symbolic metric 

applies a very different definition of synchrony from the other metrics evaluated in this 

study. It is difficult to interpret what it means for this metric to exhibit larger or smaller 

standard deviation or bias in its estimates compared to the other metrics in this study. 

Therefore, I do not compare these qualities of the Symbolic metric against other 

metrics; I only evaluate the influence of data quality, data treatment, and cyclicity on 

Symbolic synchrony estimates relative to baseline Symbolic synchrony estimates 

(below). 

Time series length greatly affected the standard deviation of synchrony 

estimates compared to baseline synchrony (i.e., ‘ideal’, 1000-year time series with no 



 

104 

  

error and no data smoothing) for all metrics (Fig. 3.3; Table 3.3; Appendix 3.3). As time 

series length increased, standard deviation decreased. For all metrics, increasing time 

series from 15 to 25 years resulted in a relatively large reduction in standard deviation 

of synchrony estimates. The effects of time series length on bias varied by metric, but in 

general synchrony estimates for longer time series exhibited lower or similar bias 

compared to shorter time series. For the Pearson and Kendall metrics, time series length 

had little effect on synchrony bias. For the Spearman and Percent Match metric, with 

smoothed data, bias decreased moderately as time series length increased. For the 

Symbolic metric, bias was greatly influenced by time series length. The Symbolic metric 

consistently overestimated synchrony with shorter time series (Fig. 3.3 and 3.4; Table 

3.3; Appendix 3.3), and this bias was less pronounced for longer time series. 

As error increased, standard deviation and bias also increased (Figs. 3.3 and 3.5; 

Table 3.3; Appendix 3.3). Increasing error led to underestimation of synchrony, 

particularly at higher synchrony values. Error essentially flattened out the relationship 

between actual (baseline) and estimated synchrony.  

Under all scenarios, smoothing considerably reduced bias when error was 

present and did not have much effect when error was not present (Figs. 3.3 and 3.5; 

Table 3.3; Appendix 3.3). Smoothing increased the standard deviation of synchrony 

estimates with lower error rates and shorter time series (Table 3.3). However, when 

error rates were high or time series long, smoothing reduced standard deviation of 

synchrony estimates. 
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In most cases, standard deviation and bias of synchrony estimates were lower 

for non-cyclic compared to cyclic time series (Figs. 3.3 and 3.5; Table 3.3; Appendix 3.3). 

Smoothing was much more effective at reducing standard deviation and bias of 

synchrony estimates for cyclic compared to non-cyclic data. Bias and variance of the 

Symbolic metric were similar for cyclic and non-cyclic data. 

Influence of Data Quality, Data Treatment, and Cyclicity on Statistical Power 

In evaluations of statistical power, the Kendall metric performed best among the 

correlation and hybrid metrics compared in this study (Figs. 3.6 and 3.7; Table 3.5; 

Appendices 3.5–3.7). The higher statistical power of this metric across all simulated 

scenarios is likely due to its lower 95% CI bounds rather than to higher synchrony 

estimates (Table 3.4; Appendix 3.4). Because the Symbolic metric applies a very 

different definition of synchrony compared to other metrics in this study, I do not 

compare statistical power of the Symbolic metric against other metrics. However, I 

evaluate the influence of data quality, data treatment, and cyclicity on Symbolic 

statistical power (below). 

For all metrics, the effects of time series length, error, and data treatment on 

statistical power were opposite to the effects of these factors on standard deviation of 

synchrony estimates. This result makes sense because, across different data scenarios, 

the statistical power of a metric is negatively correlated with its standard deviation 

when synchrony = 0. In general, statistical power was positively correlated with time 

series length and negatively correlated with error. Smoothing reduced statistical power 
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(especially for cyclic time series) when error rates were low and time series were short, 

and increased statistical power when error rates were high and time series were long. 

Cyclic time series exhibited lower statistical power than non-cyclic time series.     

 

DISCUSSION 

Identifying patterns and causes of synchrony is fundamental to applied 

population ecology because it addresses the age-old question of what determines 

animal numbers. Two persistent questions in synchrony analyses are how to choose 

among metrics that calculate synchrony in subtly different ways, and how to compare 

estimates across studies that apply different metrics. This simulation provides insights 

for choosing and interpreting synchrony metrics.  

Correspondence in Synchrony Estimates Across Metrics 

Except when error rates were high and data unsmoothed, I found generally high 

correspondence in the synchrony estimates for the metrics compared, suggesting it may 

be reasonable to qualitatively compare results across studies employing these different 

metrics. Although Symbolic synchrony estimates were non-linearly related to estimates 

of the other metrics in this study, the relationship was monotonic, i.e., the relative 

ranking of synchrony estimates was consistent across metrics.  

Influence of Data Quality, Data Treatment, and Cyclicity on Synchrony Estimates 

High correspondence among metrics does not translate to equal performance, 

when performance is measured as variance and bias in synchrony estimates compared 
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to baseline (‘true’) synchrony. Results suggest that in studies examining correlation 

synchrony of 10-year cyclic species, the Kendall and Percent Match metrics would 

perform well compared to the Pearson and Spearman metrics, for a broad range of time 

series lengths, sampling error rates, and data cyclicity. Among the correlation and hybrid 

synchrony metrics analyzed in this study, the Kendall metric exhibited the lowest bias 

and standard deviation relative to baseline (‘true’) synchrony estimates, and had the 

highest statistical power, under most simulated scenarios. By these same measures, the 

Percent Match metric typically performed better than or comparable to the Pearson and 

Synchrony metrics. Among the metrics compared, the Percent Match metric has the 

added advantage of being applicable to a wide range of data collection methods, 

including surveys in which respondents are simply asked if population numbers 

increased or decreased from previous years (e.g., Canada’s national Wildlife Enquiry 

Surveys; Chitty 1948). Therefore, the Percent Match metric may be particularly suitable 

for synchrony studies that combine qualitative and quantitative time series data.  

Both time series length and sampling error greatly affect synchrony estimates. 

The shortest time series length (15 years) and highest error level (0.30) used in this 

study produced synchrony estimates that were largely incapable of distinguishing 

between high and low synchrony. When time series were short, the variability around 

the actual (baseline) synchrony estimate was very high for all metrics. When error was 

high, estimated synchrony was always biased low regardless of the actual (baseline) 
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synchrony value. Thus, both time series length and error affect our ability to distinguish 

high from low synchrony, but through different effects on the data.  

While time series length did not affect bias for most synchrony metrics 

evaluated, the Symbolic metric overestimated synchrony compared to baseline 

synchrony for short time series. It is unclear why this bias occurs (Fig. 3.4; Table 3.3). 

However, Cazelles (2004) emphasized that the appropriate question to consider with 

the Symbolic metric is not “What is the level of synchrony between two time series?“ 

but is rather “Is this level of synchrony significant or not?” Given the observed bias in 

Symbolic synchrony estimates for short time series, my study supports Cazelles’ (2004) 

suggestion that this metric may be more appropriate for distinguishing significant from 

non-significant synchrony, than than for comparing actual synchrony estimates.  

Increasing data length from 15 to 25 years substantively reduced the variability 

of synchrony estimates. Given the 10-year cycles simulated in this study, this finding 

roughly concurred with the rule-of-thumb for analyzing cyclic data (minimum of three 

cycle lengths; Turchin 2003). This finding also held for the non-cyclic data, but to a lesser 

degree. Although increasing the length of time series data from 15 to 25 years decreases 

variability of synchrony estimates, it requires extensive additional money, effort, and 

elapsed time. In some cases, a more cost-efficient option for improving data for 

synchrony analyses might be to reduce sampling error in the time series abundance 

data.  
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Data smoothing greatly reduced error-associated bias in these simulations, but it 

came at the cost of increasing variability in synchrony estimates, especially for the 

shorter data lengths (< 50 years) that are typically available with real data. Depending 

on how data are collected, sampling error may be reduced in the data by increasing the 

per-area sampling effort, averaging results over multiple sampling sessions or sites, or 

better standardizing data collection efforts over time and space. At this time it is unclear 

how or if standard errors on abundance estimates can be used to ‘correct’ the 

underestimation bias of error in synchrony estimates (Buonaccorsi et al. 2001). 

When error rates are high, the choice of whether or not to smooth data depends 

in part on how bias and variance of pairwise synchrony estimates may influence 

interpretation of results. When pairwise synchrony estimates are used to evaluate 

geographic patterns in synchrony data, high variance may reduce statistical power to 

detect a significant geographic pattern in the data. On the other hand, bias in pairwise 

synchrony estimates may lead to incorrect conclusions about geographic patterns if the 

bias is not randomly distributed with respect to geography. For example, all metrics in 

this study underestimated synchrony when simulated sampling error was high. If 

sampling error rates are generally higher in one part of the species range (e.g., due to 

reduced sampling efforts), we may incorrectly conclude that populations are less 

synchronized in that region. In this case, the benefits of smoothing the data to reduce 

bias may outweigh the costs of increased variability in synchrony estimates. 
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Cyclicity interacted with data quality and data treatment to influence variability 

and bias in synchrony estimates. I found that the standard deviation and bias of 

synchrony estimates (relative to baseline synchrony) was typically lower for non-cyclic 

compared to cyclic time series. When error was present, data smoothing was much 

more effective at reducing both bias and variability in synchrony estimates for cyclic 

compared to non-cyclic data. This finding makes sense—with cyclic data, smoothing was 

more likely to ‘remove’ error but retain the underlying periodic cycles. With non-cyclic 

data, the distinction between error and the underlying population dynamics was not as 

clear, and smoothing was less effective in reducing noise. Thus, smoothing to remove 

anticipated but unknown error in time series data would be more useful with cyclic 

data.  

Influence of Data Quality, Data Treatment, and Cyclicity on Statistical Power 

The Kendall metric exhibited higher statistical power than other metrics, under 

the data scenarios simulated in this study. However, for short time series (15 years) and 

in the presence of sampling error (error = 0.15 and 0.30), all metrics had little power to 

distinguish synchrony from independently generated null time series. Smoothing data 

greatly increased statistical power, consistent with the finding that smoothing reduces 

bias when error is high.  

Study Limitations and Suggestions for Future Research 

This study was designed to examine the relative advantages and limitations of 

five synchrony metrics when faced with data quality issues common in real data. I 
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simulated the very short time series (as little as 15 years) that are frequently available 

for synchrony studies. However, I employed only one data smoothing method (loess) 

with a single set of smoothing parameters. It is possible that other smoothing methods 

would be more effective at reducing bias and variability of synchrony estimates. 

Likewise, the levels of sampling error I chose (0, 0.15, and 0.3) fell within the range of 

errors observed in actual snowshoe hare time series data, when sampling error could be 

calculated. However, the method of randomly selecting independent error values from a 

normal distribution represents only one form of error that may be present in real data.  

It is difficult to predict how results might differ for dynamics different from the 

10-year cyclic and non-cyclic time series simulated in this study. For example, several 

species of oak cycle with 2-4 year periods (Sork et al. 1993; Liebhold et al. 2004b), voles 

and lemmings exhibit 3-5 year cycles (Korpimaki and Krebs 1996), and some grouse 

populations exhibit 4-6 year cycles (Williams 1985). With shorter cycles, it may be 

possible to generate time series with higher estimates of Symbolic synchrony because 

these shorter cycles (especially 4-year cycles) should be much better able to satisfy this 

metric’s criterion of equal representation of cycle phase within a time series. Thus, it 

may possible to evaluate the performance of the Symbolic metric at a greater range of 

values than in this study. The general relationship between time series length, bias, and 

standard deviation may not change with shorter cycles, but low standard deviation may 

be achieved with shorter time series when cycles are shorter, i.e., the number of cycles 

may be as important as the number of years in reducing standard deviation.  
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For forest insect species with sudden, large outbreaks in abundance interspersed 

with periods of relative dormancy (e.g., some gypsy moth populations, Lymantria dispar; 

Williams and Liebhold 1995; Liebhold et al. 2000), data smoothing may lead to 

correspondence among synchrony metrics  even greater than observed in this study 

because estimates for all synchrony metrics should be highly influenced by timing of 

peak outbreaks, and little influenced by subtle changes in population numbers between 

outbreaks. 

Calculating pairwise synchrony is the first step in synchrony analysis. After 

pairwise estimates are calculated, they are typically incorporated in Mantel tests, cluster 

tests, and a variety of other statistical treatments for identifying spatial patterns in 

synchrony and, ultimately, proposing likely mechanisms. It would be useful to examine 

how variability and bias in this early step of pairwise estimates of synchrony influences 

identification of spatial patterns in synchrony. Further, it may be possible to use 

simulation-based results on variability in synchrony estimates to inform analysis of 

spatial synchrony patterns. For example, in Mantel tests, weighting synchrony estimates 

based on time series length (shorter time series = lower weight) may improve our ability 

to identify distance-synchrony relationships.  

In this study, I evaluated statistical power by the proportion of significant time 

series when baseline data exhibited synchrony above zero (for Percent Match, this ‘no 

synchrony’ threshold was 0.5). In reality, most researchers probably would not consider 

very low levels of synchrony (e.g., Kendall synchrony of 0.05 out of a maximum 1.0) to 
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be biologically significant. Future investigations might address the question, “What is a 

biologically derived threshold value for synchrony?” so we can consider the ability of 

metrics to distinguish biologically significant synchrony from ‘no synchrony’. 
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Figure 3.1 
Actual and simulated snowshoe hare time series data. (A) Cyclic time series. Top panel:  Actual snowshoe hare live-trap data 
collected in Yukon (courtesy of C.J. Krebs and the Kluane Boreal Forest Ecosystem Project; Krebs et al. 2001). Bottom panel:  
Representative 100-year subsets for six forms of simulated time series generated from an autoregressive model based on the 
Yukon data.  (B) Non-cyclic time series. Top panel:  Actual snowshoe hare harvest data collected in Utah (courtesy of Utah 
Division of Wildlife Resources). Bottom panel:  Representative 100-year subsets for six forms of simulated time series generated 
from an autoregressive model based on the Utah data.   
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Figure 3.2     [CYCLIC TIME SERIES, ERROR = 0] 
Scatterplots comparing synchrony estimates for each pair of metrics. The red line is the expected relationship for perfect 
correlation between metrics. Results for unsmoothed time series are above the diagonal; smoothed time series, below 
diagonal. The same time series data pairs were used for all scatterplots. 
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Figure 3.3     [CYCLIC, UNSMOOTHED TIME SERIES, ERROR = 0] 
Boxplots showing difference in synchrony from baseline (1000-yr, error = 0, unsmoothed) synchrony. For each metric, results are 
shown for time series ranging in length from 15 to 100 years (x-axis).  The red lines are the expected relationships for no difference 
between estimated and baseline synchrony. Values below the line (as for Symbolic metric) indicate synchrony is overestimated 
compared to baseline synchrony. In each boxplot, the center line is the median value, the box encloses the first to third quartiles of 
data, and box whiskers extend to 1.5 times the interquartile range. Data points exceeding this range are shown as circles.  



 

121 

  

Figure 3.4     [CYCLIC, UNSMOOTHED TIME SERIES, ERROR = 0] 
For the Symbolic metric, scatterplots of estimated synchrony (y-axis) vs. baseline synchrony (x-axis; baseline means 1000-yr, 
error = 0, unsmoothed) for six time series lengths. Red lines are expected relationships for no difference between estimated 
and baseline synchrony. For shorter time series, a positive bias in estimated synchrony is evident. Dashed blue line shows 
the 95% upper confidence interval for ‘no synchrony’, i.e., synchrony estimates above this line are considered significant.  
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Figure 3.5     [CYCLIC, 100-YEAR TIME SERIES] 
For each metric (rows), scatterplots of estimated synchrony (y-axis) vs. baseline synchrony (x-axis; baseline means 1000-
yr, error = 0, unsmoothed) under various scenarios of error (0, 0.15, 0.30) and data treatment (smoothed vs. 
unsmoothed). Red lines are expected relationships for no difference between estimated and baseline synchrony. 
Dashed blue lines show the 95% upper confidence interval for ‘no synchrony’. 
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Figure 3.6     [CYCLIC, 15-YEAR TIME SERIES] 
For each metric (rows), proportion of time series pairs significant at α = 0.05 (y-axis) vs. baseline synchrony (x-axis; baseline means 
1000-yr, error = 0, unsmoothed) under various scenarios of error (0, 0.15, 0.30) and data treatment (smoothed vs. unsmoothed). 
For Pearson, Spearman, and Kendall metrics, baseline synchrony ranges 0 – 1.0; for Percent Match metric, 0.5 – 1.0; for Symbolic 
metric, 0 – 2.0. Red lines indicate 50% of time series pairs are significant. This figure corresponds with data in Table 3.5. 
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Figure 3.7     [CYCLIC, 100-YEAR TIME SERIES] 
For each metric (rows), proportion of time series pairs significant at α = 0.05 (y-axis) vs. baseline synchrony (x-axis; baseline means 
1000-yr, error = 0, unsmoothed) under various scenarios of error (0, 0.15, 0.30) and data treatment (smoothed vs. unsmoothed). 
For Pearson, Spearman, and Kendall metrics, baseline synchrony ranges 0 – 1.0; for Percent Match metric, 0.5 – 1.0; for Symbolic 
metric, 0 – 2.0. Red lines indicate 50% of time series pairs are significant. This figure corresponds with data in Table 3.5. 
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Table 3.1.  Synchrony metrics compared in this study 

Synchrony 

Metric
Description of Metric

Minimum 

Value

No 

Synchrony

Maximum 

Value

Pearson 

product 

moment 

correlation

Pearson correlation measures the linear dependence between two variables. Often, the relationship between 

abundances of two 'synchronized' populations can be much more complex than a simple linear relation. For 

example, two populations may cycle with the same frequency, peaking simultaneously. If the amplitudes of 

these cyclic peaks are not correlated (e.g., in a year when one population has a high peak, the other 

population has a relatively low peak), Pearson synchrony between these two populations may be low, despite 

the visual appearance that these populations are oscillating in synchrony.  Examples:  Ranta et al. 1997; Ims and 

Andreassen 2000

-1 (perfect 

negative 

correlation)

0 1

Spearman 

rank 

correlation 

coefficient

Spearman correlation measures how well the relationship between two variables can be described using a 

monotonic function. Spearman synchrony estimates are not affected by logarithmic transformations of the 

data. A perfect Spearman correlation of 1 results when two time series are monotonically related, even if their 

relationship is not linear. Spearman correlation is often thought of as a Pearson correlation between ranked 

variables. Examples:  Shanker and Sukumar 1999; Orell et al. 2007 

-1 (perfect 

negative 

correlation)

0 1

Kendall rank 

correlation 

coefficient

Proponents of Kendall correlation in statistical analyses have argued that the Kendall coefficient has an 

intuitively simple and direct interpretation, in constrast to the Spearman coefficient. The Kendall coefficient is 

the difference between P(same) and P(different), where P(same) is the probability for population numbers at 

two randomly selected time points to move in the same direction. For example, if abundances for Population 

A in Years 2 and 6 are 12 hares and 18 hares respectively, abundance is "increasing" between these time 

points. If abundances for Population  B in the same years are also increasing, the population numbers are said 

to move in the same direction for these randomly selected time points. Examples:  Noakes 2009; Gouhier et al. 

2010   

-1 (perfect 

negative 

correlation)

0 1
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Synchrony 

Metric
Description of Metric

Minimum 

Value

No 

Synchrony

Maximum 

Value

Percent 

Match

Percent Match is a simple, straightforward metric proposed by Buonaccorsi et al. (2001) as a measure of how 

two time series change together. It is calculated as: (number of times series i & j move in the same 

direction)/(T-1), where T = the number of data points in a time series. The first step in estimating Percent 

Match is converting each time series to a string of variables ("I"ncrease and "D"ecrease) describing the growth 

or decline in each time series between successive time points. Percent Match is similar to Kendall correlation 

except the former uses only adjacent time points whereas Kendall correlation uses all possible pairs of points. 

This metric can be applied to a wide range of data, including survey data in which respondents report only if 

population numbers for a species increased or decreased from the previous year.  Examples:  Ims and 

Andreassen 2005 

0 (perfect 

negative 

correlation)

0.5 1

Symbolic

The Symbolic metric, as proposed by Cazelles (2004), measures the degree of phase synchrony between two 

time series. Phase synchrony occurs when two time series oscillate at the same 'pace', rising and falling with 

the same rhythm. The amplitude of population cycles between the time series does not need to be correlated, 

nor does the timing of cyclic peaks need to match. A population that consistently peaks one year after another 

population would be as synchronized as two populations that always peak simultaneously. The first step in 

estimating the Symbolic metric is converting each time series to a string of variables ("I"ncrease, "P"eak, 

"D"ecrease, and "T"rough) based on examining the abundance at a time point relative to abundance in the 

previous and subsequent time points. A unique characteristic of this metric is that it is a function of the 

amount of the "mutual information" between two time series. Consequently, two time series that increase 

every year from Year 1 to Year 10 (whether with the same or different growth rates) would have a Symbolic 

synchrony of zero. Similarly, two identical time series that change direction (in population growth) five times 

in 20 years would be more synchronized than would two identical time series that change direction only two 

times in 20 years—despite the fact that in both scenarios the two time series are identical. For the Symbolic 

metric, the maximum synchrony of 2.0 is obtained only when two conditions are satisfied: 1) the four cycle 

phases are equally represented in both time series, i.e., the symbolic sequence for each time series comprises 

25% increase, 25% peak, 25% decrease, and 25% trough phases; and 2) there is exact phase correspondence 

between the two time series, i.e., given the symbolic sequence of one time series, the sequence of the paired 

time series can be exactly predicted. The Symbolic metric does not distinguish between negative and positive 

correlation, just as it does not distinguish between time series that peak simultaneously versus with a 

consistent lag. Examples:  Menard et al. 2007; Descamps et al. 2010

0 (no 

synchrony)
0 2



 

127 

  

Table 3.2     [CYCLIC TIME SERIES] 
Correlation (Pearson’s r) in synchrony estimates for each pair of metrics, under 
various scenarios of error (0, 0.15, 0.30). Correlations for unsmoothed time series 
are above the diagonal; smoothed time series, below diagonal. These results 
correspond with Figure 3.2.   

ERROR: 0
Pearson Spearman Kendall Percent Match Symbolic

Pearson 1.00 0.99 0.98 0.90

Spearman 1.00 1.00 0.99 0.91

Kendall 0.99 1.00 0.99 0.95

Percent Match 0.98 0.99 0.99 0.95

Symbolic 0.90 0.91 0.94 0.95

ERROR: 0.15
Pearson Spearman Kendall Percent Match Symbolic

Pearson 1.00 1.00 0.95 0.92

Spearman 1.00 1.00 0.97 0.93

Kendall 1.00 1.00 0.97 0.94

Percent Match 0.98 0.99 0.99 0.94

Symbolic 0.92 0.93 0.95 0.95

ERROR: 0.30
Pearson Spearman Kendall Percent Match Symbolic

Pearson 0.98 0.98 0.83 0.73

Spearman 1.00 1.00 0.88 0.76

Kendall 1.00 1.00 0.88 0.76

Percent Match 0.98 0.99 0.99 0.79

Symbolic 0.92 0.93 0.94 0.95
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.33 0.27 0.23 0.19 0.17 0.15 0 0.30 0.25 0.21 0.18 0.15 0.13

0.15 0.33 0.28 0.25 0.23 0.21 0.20 0.15 0.32 0.26 0.23 0.20 0.18 0.18

0.3 0.37 0.32 0.30 0.28 0.27 0.26 0.3 0.33 0.29 0.26 0.24 0.23 0.22

0 0.44 0.35 0.29 0.24 0.21 0.18 0 0.37 0.31 0.25 0.22 0.18 0.16

0.15 0.47 0.36 0.29 0.24 0.21 0.19 0.15 0.37 0.30 0.25 0.21 0.18 0.16

0.3 0.45 0.35 0.31 0.27 0.23 0.20 0.3 0.38 0.31 0.26 0.22 0.20 0.17

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.32 0.27 0.23 0.20 0.17 0.15 0 0.35 0.32 0.29 0.24 0.20 0.16

0.15 0.33 0.28 0.25 0.23 0.21 0.20 0.15 0.32 0.30 0.27 0.24 0.23 0.22

0.3 0.38 0.33 0.30 0.28 0.27 0.26 0.3 0.32 0.29 0.27 0.26 0.25 0.25

0 0.42 0.34 0.29 0.24 0.20 0.18 0 0.40 0.36 0.32 0.27 0.23 0.20

0.15 0.44 0.36 0.31 0.25 0.21 0.19 0.15 0.39 0.35 0.32 0.27 0.23 0.21

0.3 0.43 0.34 0.32 0.27 0.22 0.20 0.3 0.37 0.32 0.29 0.25 0.23 0.22

ERROR 15 25 35 50 75 100

0 0.24 0.20 0.16 0.13 0.12 0.11

0.15 0.26 0.22 0.20 0.18 0.17 0.16

0.3 0.29 0.26 0.24 0.23 0.22 0.21

0 0.32 0.25 0.21 0.17 0.15 0.13

0.15 0.33 0.25 0.21 0.17 0.15 0.13

0.3 0.33 0.26 0.22 0.19 0.17 0.15

KENDALL

U
N

SM
O

O
TH

SM
O

O
TH

PERCENT MATCH **scaled

U
N

SM
O

O
TH
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O
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TH
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TH

PEARSON

U
N

SM
O
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TH
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O

O
TH

SPEARMAN

U
N

SM
O

O
TH

SM
O

O
TH

SYMBOLIC (synchrony range 0 - 2.0)

U
N

SM
O

O
TH

 ** Percent Match metric is scaled as SD/range, where range of synchrony values for Percent 
Match = 0.5. This metric is scaled to facilitate comparison of metric performance with the 
correlation synchrony metrics. The Symbolic metric is not scaled because it applies a 
definition of synchrony that cannot be easily compared with other metrics in this study. 

Table 3.3A     [CYCLIC TIME SERIES] 
Standard deviation of the difference between estimated and baseline 
(1000-yr, error = 0, unsmoothed) synchrony. For each metric, upper 
panel = unsmoothed time series and lower panel = smoothed time 
series. Blue shading indicates smoothing increased standard deviation of 
synchrony estimates (compared to unsmoothed data); yellow shading 
indicates smoothing reduced standard deviation of synchrony estimates.  
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.02 0.02 0.01 0.01 0.01 0.01 0 0.08 0.05 0.03 0.02 0.01 0.01

0.15 0.30 0.30 0.29 0.29 0.29 0.29 0.15 0.30 0.27 0.26 0.25 0.25 0.24

0.3 0.44 0.43 0.42 0.42 0.42 0.42 0.3 0.41 0.38 0.37 0.35 0.34 0.34

0 0.04 0.03 0.01 0.01 0.01 0.01 0 0.09 0.05 0.04 0.03 0.02 0.02

0.15 0.12 0.09 0.08 0.07 0.06 0.06 0.15 0.13 0.10 0.09 0.08 0.06 0.06

0.3 0.17 0.16 0.16 0.15 0.15 0.15 0.3 0.22 0.17 0.16 0.15 0.14 0.14

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.04 0.03 0.02 0.01 0.01 0.01 0 -0.54 -0.35 -0.25 -0.17 -0.11 -0.07

0.15 0.30 0.29 0.29 0.29 0.29 0.29 0.15 -0.33 -0.08 0.04 0.12 0.19 0.22

0.3 0.44 0.43 0.42 0.41 0.41 0.41 0.3 -0.25 0.01 0.12 0.20 0.26 0.29

0 0.06 0.03 0.02 0.01 0.02 0.02 0 -0.51 -0.36 -0.24 -0.16 -0.09 -0.06

0.15 0.12 0.10 0.09 0.07 0.07 0.06 0.15 -0.44 -0.26 -0.15 -0.06 0.01 0.04

0.3 0.21 0.18 0.17 0.15 0.15 0.15 0.3 -0.35 -0.14 -0.04 0.04 0.11 0.14

ERROR 15 25 35 50 75 100

0 0.01 0.01 0.00 -0.01 0.00 0.00

0.15 0.24 0.24 0.24 0.24 0.25 0.25

0.3 0.36 0.35 0.35 0.34 0.34 0.34

0 0.00 0.01 0.00 -0.01 0.00 0.00

0.15 0.08 0.07 0.06 0.05 0.05 0.05

0.3 0.14 0.14 0.13 0.13 0.13 0.13

KENDALL

U
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O

O
TH
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O

O
TH

PERCENT MATCH **scaled

U
N

SM
O

O
TH

SM
O

O
TH

SPEARMAN
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N
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O
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SM
O

O
TH

PEARSON
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N
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O
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O
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TH

SYMBOLIC (synchrony range 0 - 2.0)

U
N

SM
O

O
TH

SM
O

O
TH

 ** Percent Match metric is scaled as SD/range, where range of synchrony values for Percent 
Match = 0.5. This metric is scaled to facilitate comparison of metric performance with the 
correlation synchrony metrics. The Symbolic metric is not scaled because it applies a definition 
of synchrony that cannot be easily compared with other metrics in this study. 

Table 3.3B     [CYCLIC TIME SERIES] 
Bias of estimated synchrony compared to baseline (1000-yr, error = 0, 
unsmoothed) synchrony. For each metric, upper panel = unsmoothed 
time series and lower panel = smoothed time series. Blue shading 
indicates smoothing increased absolute bias of synchrony estimates 
(compared to unsmoothed data); yellow shading indicates smoothing 
reduced absolute bias of synchrony estimates.  
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.21 0.16 0.13 0.11 0.08 0.07 0 0.23 0.18 0.15 0.12 0.10 0.09

0.15 0.30 0.25 0.22 0.19 0.17 0.16 0.15 0.28 0.23 0.20 0.18 0.16 0.16

0.3 0.38 0.33 0.31 0.28 0.26 0.25 0.3 0.33 0.29 0.27 0.24 0.22 0.21

0 0.38 0.27 0.22 0.18 0.14 0.12 0 0.31 0.26 0.21 0.17 0.14 0.12

0.15 0.40 0.29 0.24 0.20 0.16 0.14 0.15 0.33 0.27 0.24 0.20 0.16 0.14

0.3 0.45 0.33 0.29 0.26 0.22 0.20 0.3 0.38 0.29 0.26 0.22 0.19 0.17

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.22 0.16 0.14 0.12 0.09 0.08 0 0.34 0.28 0.25 0.20 0.16 0.13

0.15 0.31 0.25 0.22 0.19 0.18 0.17 0.15 0.36 0.30 0.27 0.25 0.25 0.24

0.3 0.38 0.34 0.31 0.28 0.27 0.26 0.3 0.38 0.32 0.31 0.29 0.29 0.28

0 0.39 0.28 0.22 0.18 0.14 0.13 0 0.38 0.30 0.28 0.23 0.17 0.15

0.15 0.39 0.31 0.26 0.21 0.17 0.15 0.15 0.38 0.31 0.29 0.26 0.22 0.21

0.3 0.46 0.35 0.31 0.27 0.23 0.21 0.3 0.38 0.33 0.31 0.29 0.27 0.25

ERROR 15 25 35 50 75 100

0 0.16 0.12 0.10 0.08 0.06 0.05

0.15 0.24 0.20 0.17 0.16 0.15 0.14

0.3 0.29 0.25 0.23 0.21 0.21 0.20

0 0.29 0.21 0.17 0.13 0.10 0.09

0.15 0.30 0.23 0.19 0.16 0.13 0.11

0.3 0.34 0.26 0.23 0.20 0.17 0.16

SM
O

O
TH

PERCENT MATCH **scaled

SYMBOLIC (synchrony range 0 - 2.0)

U
N

SM
O

O
TH

SM
O

O
TH

U
N
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O

O
TH

KENDALL
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N

SM
O

O
TH

SM
O

O
TH

U
N

SM
O

O
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N

SM
O

O
TH

SM
O

O
TH

PEARSON

SM
O

O
TH

SPEARMAN

 ** Percent Match metric is scaled as SD/range, where range of synchrony values for Percent 
Match = 0.5. This metric is scaled to facilitate comparison of metric performance with the 
correlation synchrony metrics. The Symbolic metric is not scaled because it applies a definition of 
synchrony that cannot be easily compared with other metrics in this study. 

Table 3.3C     [NON-CYCLIC TIME SERIES] 
Standard deviation of the difference between estimated and baseline 
(1000-yr, error = 0, unsmoothed) synchrony. For each metric, upper 
panel = unsmoothed time series and lower panel = smoothed time series. 
Blue shading indicates smoothing increased standard deviation of 
synchrony estimates (compared to unsmoothed data); yellow shading 
indicates smoothing reduced standard deviation of synchrony estimates. 
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 ** Percent Match metric is scaled as SD/range, where range of synchrony values for Percent 
Match = 0.5. This metric is scaled to facilitate comparison of metric performance with the 
correlation synchrony metrics. The Symbolic metric is not scaled because it applies a definition 
of synchrony that cannot be easily compared with other metrics in this study. 

Table 3.3D     [NON-CYCLIC TIME SERIES] 
Bias of estimated synchrony compared to baseline (1000-yr, error = 0, 
unsmoothed) synchrony. For each metric, upper panel = unsmoothed 
time series and lower panel = smoothed time series. Blue shading 
indicates smoothing increased absolute bias of synchrony estimates 
(compared to unsmoothed data); yellow shading indicates smoothing 
reduced absolute bias of synchrony estimates.  

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.01 0.01 0.01 0.01 0.00 0.01 0 0.09 0.05 0.04 0.03 0.02 0.02

0.15 0.22 0.22 0.22 0.22 0.22 0.22 0.15 0.26 0.23 0.22 0.21 0.19 0.19

0.3 0.38 0.37 0.39 0.38 0.39 0.39 0.3 0.34 0.32 0.32 0.32 0.31 0.31

0 0.03 0.00 0.01 0.01 0.00 0.01 0 0.11 0.08 0.07 0.07 0.05 0.04

0.15 0.12 0.08 0.09 0.09 0.09 0.09 0.15 0.20 0.17 0.16 0.14 0.13 0.12

0.3 0.27 0.23 0.24 0.24 0.24 0.24 0.3 0.29 0.25 0.25 0.24 0.23 0.23

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.02 0.02 0.01 0.01 0.00 0.00 0 -0.51 -0.34 -0.24 -0.16 -0.10 -0.07

0.15 0.24 0.23 0.23 0.23 0.23 0.23 0.15 -0.27 -0.03 0.08 0.16 0.22 0.24

0.3 0.39 0.39 0.39 0.39 0.39 0.39 0.3 -0.21 0.04 0.15 0.24 0.30 0.33

0 0.07 0.04 0.02 0.01 0.00 0.00 0 -0.41 -0.26 -0.17 -0.10 -0.03 0.00

0.15 0.16 0.13 0.12 0.11 0.09 0.09 0.15 -0.31 -0.15 -0.04 0.04 0.11 0.14

0.3 0.30 0.27 0.26 0.25 0.24 0.24 0.3 -0.26 -0.04 0.07 0.16 0.23 0.26

ERROR 15 25 35 50 75 100

0 -0.01 -0.01 0.00 0.00 0.00 0.00

0.15 0.19 0.19 0.20 0.20 0.20 0.20

0.3 0.31 0.31 0.32 0.32 0.32 0.32

0 -0.01 -0.01 -0.01 -0.01 -0.01 0.00

0.15 0.08 0.08 0.09 0.08 0.08 0.09

0.3 0.23 0.20 0.20 0.20 0.20 0.21

SYMBOLIC (synchrony range 0 - 2.0)SPEARMAN

PEARSON PERCENT MATCH **scaled

U
N

SM
O

O
TH

SM
O

O
TH

KENDALL
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N
SM

O
O

TH
SM

O
O

TH
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** Percent Match metric is scaled as (x-0.50)/range, where range of synchrony values for 
Percent Match = 0.5. This metric is scaled to facilitate comparison of metric performance with 
the correlation synchrony metrics. The Symbolic metric is not scaled because it applies a 
definition of synchrony that cannot be easily compared with other metrics in this study. 

 

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.70 0.60 0.52 0.45 0.39 0.35 0 0.47 0.44 0.43 0.32 0.28 0.26

0.15 0.51 0.40 0.33 0.28 0.24 0.20 0.15 0.33 0.28 0.26 0.24 0.20 0.18

0.3 0.49 0.40 0.33 0.26 0.22 0.20 0.3 0.33 0.28 0.26 0.24 0.20 0.18

0 0.86 0.73 0.66 0.56 0.47 0.43 0 0.73 0.60 0.54 0.44 0.33 0.32

0.15 0.85 0.72 0.63 0.53 0.46 0.41 0.15 0.73 0.52 0.49 0.40 0.33 0.30

0.3 0.79 0.63 0.56 0.47 0.40 0.35 0.3 0.60 0.52 0.43 0.36 0.28 0.26

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.71 0.60 0.53 0.45 0.37 0.35 0 1.14 0.79 0.59 0.42 0.29 0.21

0.15 0.50 0.40 0.32 0.29 0.24 0.21 0.15 1.02 0.70 0.48 0.33 0.20 0.15

0.3 0.48 0.39 0.33 0.27 0.23 0.19 0.3 0.99 0.63 0.47 0.32 0.20 0.14

0 0.82 0.72 0.65 0.54 0.46 0.42 0 1.30 0.95 0.71 0.53 0.35 0.27

0.15 0.82 0.69 0.64 0.56 0.45 0.40 0.15 1.30 0.92 0.67 0.47 0.33 0.25

0.3 0.77 0.62 0.54 0.48 0.39 0.34 0.3 1.24 0.85 0.61 0.42 0.29 0.22

ERROR 15 25 35 50 75 100

0 0.54 0.42 0.37 0.30 0.26 0.23

0.15 0.36 0.28 0.22 0.20 0.16 0.14

0.3 0.34 0.28 0.24 0.18 0.15 0.13

0 0.67 0.54 0.47 0.38 0.32 0.29

0.15 0.65 0.51 0.47 0.38 0.31 0.28

0.3 0.60 0.46 0.39 0.32 0.27 0.23

PEARSON PERCENT MATCH **scaled

U
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SM
O
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TH
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N

SM
O

O
TH
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O
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SPEARMAN SYMBOLIC (synchrony range 0 - 2.0)
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O

O
TH

SM
O

O
TH

Table 3.4     [CYCLIC TIME SERIES] 
The 95% upper confidence limit for ‘no synchrony, calculated on 
independent (uncorrelated) time series. These values correspond with 
the blue dotted lines in Figs. 3.4 and 3.5. For each metric, upper panel 
= unsmoothed time series and lower panel = smoothed time series. For 
Percent Match and Symbolic metrics, data are not scaled, but the 
range of synchrony values for these metrics is provided in parentheses 
because they differ from the 0 – 1 range of other metrics. 
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.69 0.57 0.44 0.38 0.38 0.37 0 0.62 0.56 0.52 0.34 0.30 0.26

0.15 NA 0.86 0.82 0.65 0.61 0.40 0.15 NA NA NA 0.70 0.60 0.56

0.3 NA NA NA NA NA NA 0.3 NA NA NA NA NA NA

0 0.74 0.71 0.63 0.49 0.40 0.40 0 NA 0.70 0.58 0.50 0.32 0.32

0.15 0.86 0.72 0.70 0.66 0.45 0.44 0.15 NA 0.80 0.62 0.50 0.42 0.36

0.3 NA 0.84 0.72 0.66 0.60 0.53 0.3 NA NA 0.76 0.60 0.48 0.44

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.73 0.52 0.52 0.39 0.36 0.34 0 0.76 0.45 0.40 0.30 0.22 0.18

0.15 NA 0.85 0.78 0.70 0.65 0.54 0.15 NA NA 1.01 0.89 0.52 0.44

0.3 NA NA NA NA NA NA 0.3 NA NA NA NA NA NA

0 0.84 0.65 0.61 0.45 0.45 0.43 0 0.95 0.71 0.43 0.37 0.29 0.25

0.15 NA 0.70 0.72 0.68 0.50 0.45 0.15 NA NA 0.86 0.45 0.38 0.27

0.3 NA 0.84 0.74 0.67 0.58 0.52 0.3 NA NA NA 0.69 0.56 0.38

ERROR 15 25 35 50 75 100

0 0.54 0.40 0.39 0.29 0.27 0.23

0.15 NA 0.66 0.46 0.53 0.38 0.38

0.3 NA NA NA NA NA NA

0 0.67 0.47 0.45 0.39 0.33 0.30

0.15 0.75 0.55 0.53 0.44 0.34 0.34

0.3 NA 0.66 0.51 0.47 0.43 0.36

PERCENT MATCH **scaled
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SM
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TH

SM
O
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TH

SYMBOLIC (synchrony range 0 - 2.0)
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** Percent Match metric is scaled as (x-0.50)/range, where range of synchrony values for 
Percent Match = 0.5. This metric is scaled to facilitate comparison of metric performance with 
the correlation synchrony metrics. The Symbolic metric is not scaled because it applies a 
definition of synchrony that cannot be easily compared with other metrics in this study. 

 Table 3.5     [CYCLIC TIME SERIES] 
The 50% significance categories for each metric. This number indicates 
the minimum baseline synchrony value for which at least 50% of 
estimated synchrony values are significant at α = 0.05. “NA” indicates 
no baseline synchrony value had at least 50% of estimated synchrony 
values significant at α = 0.05. 
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Appendix 3.1     [CYCLIC TIME SERIES, ERROR = 0.30] 
Scatterplots comparing synchrony estimates for each pair of metrics. The red line is the expected relationship for perfect 
correlation between metrics. Results for unsmoothed time series are above the diagonal; smoothed time series, below 
diagonal. The same time series data pairs were used for all scatterplots. 
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Appendix 3.1     [NON-CYCLIC TIME SERIES, ERROR = 0] 
Scatterplots comparing synchrony estimates for each pair of metrics. The red line is the expected relationship for perfect 
correlation between metrics. Results for unsmoothed time series are above the diagonal; smoothed time series, below 
diagonal. The same time series data pairs were used for all scatterplots. 
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Appendix 3.1     [NON-CYCLIC TIME SERIES, ERROR = 0.30] 
Scatterplots comparing synchrony estimates for each pair of metrics. The red line is the expected relationship for perfect 
correlation between metrics. Results for unsmoothed time series are above the diagonal; smoothed time series, below 
diagonal. The same time series data pairs were used for all scatterplots. 
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ERROR: 0
Pearson Spearman Kendall Percent Match Symbolic

Pearson 1.00 0.99 0.99 0.92

Spearman 1.00 1.00 0.99 0.92

Kendall 0.99 1.00 1.00 0.95

Percent Match 0.99 0.99 0.99 0.96

Symbolic 0.91 0.92 0.95 0.95

ERROR: 0.15
Pearson Spearman Kendall Percent Match Symbolic

Pearson 1.00 1.00 0.97 0.92

Spearman 1.00 1.00 0.98 0.93

Kendall 1.00 1.00 0.98 0.94

Percent Match 0.98 0.99 0.99 0.95

Symbolic 0.93 0.94 0.95 0.96

ERROR: 0.30
Pearson Spearman Kendall Percent Match Symbolic

Pearson 0.98 0.98 0.87 0.78

Spearman 1.00 1.00 0.91 0.82

Kendall 1.00 1.00 0.91 0.82

Percent Match 0.96 0.98 0.98 0.88

Symbolic 0.91 0.92 0.92 0.95

Appendix 3.2     [NON-CYCLIC TIME SERIES] 
Correlation (Pearson’s r) in synchrony estimates for each pair of metrics, under 
various scenarios of error (0, 0.15, 0.30). Correlations for unsmoothed time 
series are above the diagonal; smoothed time series, below diagonal.  
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Appendix 3.3     [CYCLIC, SMOOTHED TIME SERIES, ERROR = 0] 
Boxplots showing difference in synchrony from baseline (1000-yr, error = 0, unsmoothed) synchrony. For each metric, results are 
shown for time series ranging in length from 15 to 100 years (x-axis).  The red lines are the expected relationships for no difference 
between estimated and baseline synchrony. Values below the line (as for Symbolic metric) indicate synchrony is overestimated 
compared to baseline synchrony. In each boxplot, the center line is the median value, the box encloses the first to third quartiles of 
data, and box whiskers extend to 1.5 times the interquartile range. Data points exceeding this range are shown as circles.  
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Appendix 3.3     [CYCLIC, UNSMOOTHED TIME SERIES, ERROR = 0.30] 
Boxplots showing difference in synchrony from baseline (1000-yr, error = 0, unsmoothed) synchrony. For each metric, results are 
shown for time series ranging in length from 15 to 100 years (x-axis).  The red lines are the expected relationships for no difference 
between estimated and baseline synchrony. Values below the line (as for Symbolic metric) indicate synchrony is overestimated 
compared to baseline synchrony. In each boxplot, the center line is the median value, the box encloses the first to third quartiles of 
data, and box whiskers extend to 1.5 times the interquartile range. Data points exceeding this range are shown as circles. 
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Appendix 3.3     [CYCLIC, SMOOTHED TIME SERIES, ERROR = 0.30] 
Boxplots showing difference in synchrony from baseline (1000-yr, error = 0, unsmoothed) synchrony. For each metric, results are 
shown for time series ranging in length from 15 to 100 years (x-axis).  The red lines are the expected relationships for no difference 
between estimated and baseline synchrony. Values below the line (as for Symbolic metric) indicate synchrony is overestimated 
compared to baseline synchrony. In each boxplot, the center line is the median value, the box encloses the first to third quartiles of 
data, and box whiskers extend to 1.5 times the interquartile range. Data points exceeding this range are shown as circles.  
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.45 0.35 0.29 0.23 0.19 0.16 0 0.33 0.28 0.26 0.20 0.17 0.16

0.15 0.50 0.35 0.31 0.25 0.20 0.18 0.15 0.33 0.28 0.26 0.24 0.17 0.16

0.3 0.50 0.36 0.32 0.28 0.22 0.18 0.3 0.33 0.28 0.26 0.24 0.17 0.16

0 0.78 0.57 0.49 0.41 0.32 0.28 0 0.47 0.44 0.37 0.28 0.20 0.18

0.15 0.78 0.58 0.48 0.40 0.33 0.28 0.15 0.47 0.44 0.31 0.28 0.20 0.20

0.3 0.71 0.55 0.45 0.38 0.29 0.25 0.3 0.47 0.36 0.31 0.28 0.20 0.18

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.46 0.35 0.29 0.23 0.18 0.16 0 1.00 0.64 0.46 0.31 0.20 0.13

0.15 0.49 0.34 0.29 0.24 0.20 0.17 0.15 1.03 0.63 0.45 0.32 0.20 0.15

0.3 0.50 0.37 0.32 0.28 0.22 0.18 0.3 1.00 0.63 0.47 0.30 0.20 0.15

0 0.76 0.59 0.49 0.41 0.32 0.27 0 1.02 0.70 0.52 0.36 0.23 0.17

0.15 0.73 0.56 0.47 0.39 0.31 0.27 0.15 1.09 0.70 0.51 0.35 0.23 0.17

0.3 0.68 0.53 0.45 0.38 0.28 0.26 0.3 1.09 0.70 0.51 0.34 0.23 0.17

ERROR 15 25 35 50 75 100

0 0.34 0.25 0.20 0.16 0.12 0.11

0.15 0.36 0.25 0.20 0.17 0.14 0.12

0.3 0.36 0.26 0.23 0.19 0.15 0.13

0 0.58 0.42 0.33 0.29 0.21 0.18

0.15 0.56 0.41 0.33 0.26 0.21 0.18

0.3 0.52 0.37 0.30 0.26 0.19 0.18

PEARSON PERCENT MATCH **scaled
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** Percent Match metric is scaled as (x-0.50)/range, where range of synchrony values for 
Percent Match = 0.5. This metric is scaled to facilitate comparison of metric performance with 
the correlation synchrony metrics. The Symbolic metric is not scaled because it applies a 
definition of synchrony that cannot be easily compared with the other metrics in this study. 

 Appendix 3.4     [NON-CYCLIC TIME SERIES] 
The 95% upper confidence limit for ‘no synchrony, calculated on 
independent (uncorrelated) time series. For each metric, upper panel = 
unsmoothed time series and lower panel = smoothed time series. For 
Percent Match and Symbolic metrics, data are not scaled, but the 
range of synchrony values for these metrics is provided in parentheses 
because they differ from the 0 – 1 range of other metrics. 
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ERROR = 0 
Unsmoothed     Smoothed 

ERROR = 0.30 
Unsmoothed     Smoothed 

ERROR = 0.15 
Unsmoothed     Smoothed 

Pearson 
Metric 

Spearman 
Metric 

Kendall 
Metric 

Percent 
Match 
Metric 

Symbolic 
Metric 

 

Appendix 3.5     [NON-CYCLIC, 15-YEAR TIME SERIES] 
For each metric (rows), proportion of time series pairs significant at α = 0.05 (y-axis) vs. baseline synchrony (x-axis; baseline means 
1000-yr, error = 0, unsmoothed) under various scenarios of error (0, 0.15, 0.30) and data treatment (smoothed vs. unsmoothed). 
For Pearson, Spearman, and Kendall metrics, baseline synchrony ranges 0 – 1.0; for Percent Match metric, 0.5 – 1.0; for Symbolic 
metric, 0 – 2.0. Red lines indicate 50% of time series pairs are significant. This figure corresponds with data in Table 3.5. 
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Pearson 
Metric 

Spearman 
Metric 

Kendall 
Metric 

Percent 
Match 
Metric 

Symbolic 
Metric 

ERROR = 0 
Unsmoothed     Smoothed 

ERROR = 0.30 
Unsmoothed     Smoothed 

ERROR = 0.15 
Unsmoothed     Smoothed 

Appendix 3.6     [NON-CYCLIC, 100-YEAR TIME SERIES] 
For each metric (rows), proportion of time series pairs significant at α = 0.05 (y-axis) vs. baseline synchrony (x-axis; baseline means 
1000-yr, error = 0, unsmoothed) under various scenarios of error (0, 0.15, 0.30) and data treatment (smoothed vs. unsmoothed). 
For Pearson, Spearman, and Kendall metrics, baseline synchrony ranges 0 – 1.0; for Percent Match metric, 0.5 – 1.0; for Symbolic 
metric, 0 – 2.0. Red lines indicate 50% of time series pairs are significant. This figure corresponds with data in Table 3.5. 
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ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.45 0.28 0.23 0.23 0.19 0.19 0.00 0.44 0.36 0.30 0.26 0.24 0.20

0.15 0.79 0.57 0.55 0.49 0.32 0.33 0.15 0.84 0.78 0.68 0.52 0.36 0.34

0.3 NA NA NA NA NA 0.73 0.30 NA NA NA NA NA NA

0 0.74 0.52 0.43 0.39 0.30 0.28 0.00 0.62 0.58 0.48 0.36 0.28 0.22

0.15 NA 0.67 0.55 0.48 0.35 0.31 0.15 NA NA 0.58 0.46 0.30 0.30

0.3 NA 0.94 0.75 0.74 0.57 0.45 0.30 NA NA NA 0.78 0.52 0.50

ERROR 15 25 35 50 75 100 ERROR 15 25 35 50 75 100

0 0.48 0.39 0.33 0.21 0.17 0.18 0.00 0.52 0.30 0.23 0.16 0.13 0.12

0.15 0.89 0.70 0.50 0.47 0.32 0.31 0.15 NA NA 0.93 0.88 0.43 0.32

0.3 NA NA NA NA NA 0.87 0.30 NA NA NA NA NA NA

0 0.72 0.62 0.48 0.34 0.29 0.24 0.00 0.64 0.55 0.44 0.22 0.16 0.14

0.15 0.80 0.58 0.50 0.47 0.33 0.28 0.15 NA 0.78 0.77 0.43 0.30 0.21

0.3 NA 0.95 0.86 0.73 0.50 0.44 0.30 NA NA NA 1.05 0.89 0.53

ERROR 15 25 35 50 75 100

0 0.36 0.24 0.20 0.16 0.13 0.12

0.15 0.77 0.44 0.37 0.35 0.27 0.23

0.3 NA NA NA NA 0.79 0.70

0 0.53 0.39 0.33 0.29 0.18 0.18

0.15 0.76 0.48 0.36 0.33 0.29 0.21

0.3 NA 0.75 0.47 0.50 0.35 0.28
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** Percent Match metric is scaled as (x-0.50)/range, where range of synchrony values for 
Percent Match = 0.5. This metric is scaled to facilitate comparison of metric performance 
with the correlation synchrony metrics. The Symbolic metric is not scaled because it applies a 
definition of synchrony that cannot be easily compared with other metrics in this study. 

 Appendix 3.7     [NON-CYCLIC TIME SERIES] 
The 50% significance categories for each metric. This number 
indicates the minimum baseline synchrony value for which at least 
50% of estimated synchrony values are significant at α = 0.05. “NA” 
indicates no baseline synchrony value had at least 50% of estimated 
synchrony values significant at α = 0.05. 
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#################################################################### 
# CHAPTER 3--SYNCHRONY METRICS SIMULATION 
# APPENDIX R CODE 
# 
# NOTES: 
# 1) Code is presented in this order: a) simulation functions, b) code for the main simulation, c) graphing functions. 
# 2) Code is a subset of the original code and presents only the main simulation components. In several areas I present the code for Pearson  
# metric, then indicate the code needs to be repeated (usually with slight modifications in parameter names) for the other simulation metrics. 
# 3) Cholesky decomposition equation generates an error if asked to correlate time series to r = 0 or r = 1. Therefore, I correlate time series 
#  at r = 0.05 to 0.95. The actual range of correlation values after Cholesky decomposition is close to r = 0 to 1.0. 
#################################################################### 
 
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> CODE FOR SIMULATION FUNCTIONS  
#################################################################### 
# 
# FUNC.FIRST.LAST:  FUNCTION TO GENERATE A VECTOR OF FIRST AND LAST DATA COLUMNS & TOTAL NUMBER OF DATA COLUMNS 
# 
# Input  
# [x]  Matrix of time series data 
# 
# Output 
# [z]  Matrix where col1=column of first TS value, col2=column of last TS value, col3=length of TS 
# 
# Notes 
#  [1]  This function is called by FUNC.SMOOTH 

Appendix 3.8 
R code for the main components of this simulation study. To minimize repetition, some segments of code are presented only 
for the Pearson metric. These segments, which are identified by the text ‘----- REPEAT FOR EACH METRIC -----‘, typically require 
minor modifications in parameter names or values prior to application with other synchrony metrics. 
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# 
#################################################################### 
 
Func.first.last<-function(x) 
 { 
 ##### INITIALIZE MATRIX ##### 
 z<-matrix(NA,nrow(x),3) 
 
 ##### GENERATE FIRST-LAST MATRIX ##### 
 for (i in 1:nrow(x)) 
  { 
  z[i,1]<-min(which(!is.na(x[i,]))) 
  z[i,2]<-max(which(!is.na(x[i,]))) 
  z[i,3]<-z[i,2]-z[i,1]+1 
  }   # END FOR-I 
 return(z) 
 }    # END FUNC.FIRST.LAST 
 
 
#################################################################### 
# 
# FUNC.SMOOTH:  FUNCTION TO SMOOTH TIME SERIES 
# 
# Input 
# [x]  Matrix or vector of (raw) time series data 
# [yr.vec]  X-axis vector of years for time series data 
# [prec]  Vector or value of data precision 
# [win.span] Approximate number of neighboring datapoints used to smooth each point 
# [rows]  Number of rows in 'x' (if 'x' is a vector, rows=1) 
#  
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# Output 
# [z] Matrix or vector of smoothed time series data, same dimensions as 'x' 
# 
# Notes 
#  [1]  This function code has some components that are not necessary for this simulation, but are included 
#     because they are necessary for other simulations that call this function. 
# [2] Loess is a nearest neighbor smoother, using (100 x span) % of the data to estimate at each point. 
#  Default span is 7/(length of TS). This default was chosen by eyeballing the graphs of smoothed TS.  
#  This span smooths TS in a way that seems, on average, to best capture the primary fluctuations in  
#  TS and smooth over potential ‘noise’. It is equivalent to using 7 surrounding datapoints (weighting 
#  normally distributed) to smooth each point. 
# 
#################################################################### 
 
Func.smooth<-function(x,yr.vec,prec,win.span,rows) 
 { 
 if(rows==1){x<-t(as.matrix(x))}   # if x is a vector, convert x to a matrix 
  
 ##### INITIALIZE MATRICES ##### 
 z<-matrix(NA,rows,ncol(x))    # initialize output matrix 
 first.last<-matrix(NA,rows,3)    # initialize first-last matrix 
   
 ##### SMOOTH THE DATA ##### 
 first.last<-Func.first.last(x)   
 for (i in 1:rows) 
  { 
  x[i,]<-x[i,]*(1/prec[i])   # multiply every value in the time series by 1/precision 
  len<-first.last[i,3] 
  z[i,first.last[i,1]:first.last[i,2]]<-loess.smooth(yr.vec,x[i,],span=(win.span/len),family="gaussian", 
  evaluation=len,na.rm=TRUE)$y 
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         # loess.smooth returns a list ($x) of years and a list ($y) of estimates 
  z[i,]<-z[i,]*prec[i]   
  z[i,]<-ifelse((z[i,]%%prec[i])>(prec[i]/2),(trunc(z[i,]/prec[i])+1)*prec[i],(trunc(z[i,]/prec[i])*prec[i]))  
         # restore time series to original precision  
  z[i,]<-ifelse(z[i,]<prec[i],prec[i],z[i,]) # replace zeroes in smoothed TS with lowest possible value 
  }       # END FOR-I  
 return(z) 
 }        # END FUNC.SMOOTH 
 
 
#################################################################### 
# 
# FUNC.CHOLESKY:  FUNCTION TO CORRELATE TIME SERIES BY CHOLESKY DECOMPOSITION 
# 
# Input 
# [dat] Matrix with 2 rows, each row has a separate time series 
# [r] Desired correlation level 
# 
# Output 
# [dat2] Matrix with 2 rows, each row has a separate time series--they are correlated as specified 
# 
#################################################################### 
 
Func.Cholesky<-function(dat,r) 
 { 
 ##### INITIALIZE MATRICES ##### 
 dat2<-matrix(NA,2,ncol(dat)) 
 R<-matrix(NA,2,2)   
 
 ##### CORRELATE TIME SERIES ##### 
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 R<-matrix(c(1,r,r,1),2,2)    
 ch<-chol(R) 
 
 dat2<-t(ch)%*%dat    # dat2 matrix now has the two time series correlated with specified rho 
 
 return(dat2) 
 }      # END FUNC.CHOLESKY 
 
 
#################################################################### 
# 
# FUNC.PERCMATCH.CATEG:  FUNCTION TO ASSIGN PECENT MATCH CATEGORIES TO A TIME SERIES MATRIX 
# 
# Input 
# [x] Matrix or vector of time series data 
# [rows] Number of rows in 'x' (if 'x' is a vector, rows=1) 
# 
# Output 
# [z] Matrix or vector of PercMatch-categorized time series data (-1,0,1) 
# 
####################################################################  
 
Func.PercMatch.categ<-function(x,rows) 
 { 
 if(rows==1){x<-t(as.matrix(x))}    # if x is a vector, convert x to a matrix 
  
 ##### INITIALIZE VECTORS ##### 
 a.TS<-matrix(NA,rows,ncol(x))    # pre-TS matrix for categorizing A.synchrony 
 b.TS<-matrix(NA,rows,ncol(x))    # mid-TS matrix for categorizing A.synchrony 
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 diff<-matrix(NA,rows,ncol(x))    # matrix of b.TS - a.TS 
 z<-matrix(NA,rows,ncol(x))    # matrix of TS data transformed to A.synchrony categories 
 
 ##### ASSIGN MATRICES ##### 
 a.TS[,2:ncol(x)]<-x[,1:(ncol(x)-1)]    
 b.TS[,2:ncol(x)]<-x[,2:ncol(x)]    
 
 diff<-b.TS-a.TS 
 z<-diff/abs(diff)      # convert diff to logicals -1,0,1 
 z[is.nan(z)]<-0      # convert NaN's to 0's 
 return(z) 
 }       # END FUNC.PERCMATCH.CATEG 
 
 
#################################################################### 
# 
# FUNC.PHASE.CATEG:  FUNCTION TO ASSIGN PHASE CATEGORIES TO TIME SERIES 
# 
# Input 
# [x] Matrix or vector of time series data 
# [rows] Number of rows in 'x' (if 'x' is a vector, rows=1) 
# 
# Output 
# [z] Matrix or vector of phase-categorized time series data 
# 
# Notes 
# [1] In some cases, the time series has consecutive numbers of the same value (i.e., TS not increasing  
#  or decreasing). For these, I determined phase category by looking forward or backward to the first  
#  unequal value. For example, 4-3-3-3-3-2 would be categorized as D-D-D-D and 4-3-3-3-5-7 would be  
#  categorized as T-T-T-I (where D=Decrease, T=Trough, I=Increase). Sometimes this causes “problems”  
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#  when the string of consecutive numbers comes at the beginning or end of a time series. For example,  
#  if the time series begins with 4-4-4-4-5-7 I would categorize this as NA-NA-NA-I because, without  
#  knowing what number precedes the string of 4’s I can’t tell if the 4’s are trough or increasing  
#  years. This is a modification of Cazelles (2004), which did not specify how to categorize such trends. 
# 
#################################################################### 
 
Func.phase.categ<-function(x,rows) 
 { 
 if(rows==1){x<-t(as.matrix(x))}   # if x is a vector, convert x to a matrix 
 yrs<-ncol(x) 
 
 ##### INITIALIZE VECTORS ##### 
 a.TS<-matrix(NA,rows,ncol(x))   # pre-TS matrix for categorizing phase synchrony 
 b.TS<-matrix(NA,rows,ncol(x))   # mid-TS matrix for categorizing phase synchrony 
 c.TS<-matrix(NA,rows,ncol(x))   # post-TS matrix for categorizing phase synchrony 
 
 pre.diff<-matrix(NA,rows,ncol(x))  # matrix of b.TS - a.TS 
 post.diff<-matrix(NA,rows,ncol(x))  # matrix of c.TS - b.TS 
 
 conv.pre.diff<-matrix(NA,rows,ncol(x))  # pre.diff matrix converted to logicals (-1,0,1) and *2 
 conv.post.diff<-matrix(NA,rows,ncol(x))  # post.diff matrix converted to logicals (-1,0,1) and *3 
  
 numeric.cat<-matrix(NA,rows,ncol(x))  # matrix symbolizing TS data as numeric growth categories 
 z<-matrix(NA,rows,ncol(x))   # matrix of TS data transformed to phase categories 
 
 ##### ASSIGN MATRICES ##### 
 a.TS[,2:(ncol(x)-1)]<-x[,1:(ncol(x)-2)]    
 b.TS[,2:(ncol(x)-1)]<-x[,2:(ncol(x)-1)]    
 c.TS[,2:(ncol(x)-1)]<-x[,3:ncol(x)]    
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 num.list<-c(-5,-1,1,5)    # numeric equivalent of growth categories 
 cat.list<-c("D","P","T","I")   # category equivalent of growth categories 
 
 ##### CATEGORIZE DATA AS I(ncrease),P(eak),D(ecrease),T(rough) ##### 
 pre.diff<-b.TS-a.TS 
 post.diff<-c.TS-b.TS 
  
 conv.pre.diff<-2*(pre.diff/abs(pre.diff))  # convert pre.diff to logicals -1,0,1 then multiply by 2 
 conv.post.diff<-3*(post.diff/abs(post.diff)) # convert post.diff to logicals -1,0,1 then multiply by 3 
 
 for (i in 1:rows) 
  { 
  which.pre.nan<-which(is.nan(conv.pre.diff[i,]))  # which pre.diff columns are FLAT  
  pre.lag<-1      # number of values to go back for flats  
  conv.pre.NA<-which((which.pre.nan-pre.lag)<1)  # avoid 'subscript out of bounds' error 
  conv.pre.diff[i,which.pre.nan[conv.pre.NA]]<-NA 
  if(length(conv.pre.NA)>0){which.pre.nan<-which.pre.nan[-conv.pre.NA]}  
    
  while(length(which.pre.nan)>0)    # while there are still flat pre.diff columns 
   {      # keep looking back one step to decide appropriate category 
   replace.pre.nan<-b.TS[i,which.pre.nan]-a.TS[i,(which.pre.nan-pre.lag)]   # substitute pre.diff vector 
   conv.pre.diff[i,which.pre.nan]<-2*(replace.pre.nan/abs(replace.pre.nan)) 
   which.pre.nan<-which(is.nan(conv.pre.diff[i,])) 
   pre.lag<-pre.lag+1    # keep going back one TS value 
   
   conv.pre.NA<-which((which.pre.nan-pre.lag)<1)  # avoid 'subscript out of bounds' error 
   conv.pre.diff[i,which.pre.nan[conv.pre.NA]]<-NA 
   if(length(conv.pre.NA)>0){which.pre.nan<-which.pre.nan[-conv.pre.NA]}  
   }      # END WHILE-LENGTH 
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  which.post.nan<-which(is.nan(conv.post.diff[i,])) # which post.diff columns are FLAT  
  post.lag<-1      # number of values to go forward for flats   
  conv.post.NA<-which((which.post.nan+post.lag)>yrs) # avoid 'subscript out of bounds' error 
  conv.post.diff[i,which.post.nan[conv.post.NA]]<-NA 
  if(length(conv.post.NA)>0){which.post.nan<-which.post.nan[-conv.post.NA]} 
   
  while(length(which.post.nan)>0)   # while there are still flat post.diff columns 
   {      # keep looking forward one step to decide appropriate category 
   replace.post.nan<-c.TS[i,(which.post.nan+post.lag)]-b.TS[i,which.post.nan]  # substitute post.diff vector 
   conv.post.diff[i,which.post.nan]<-3*(replace.post.nan/abs(replace.post.nan)) 
   which.post.nan<-which(is.nan(conv.post.diff[i,]))  
   post.lag<-post.lag+1    # keep going forward one TS value 
 
   conv.post.NA<-which((which.post.nan+post.lag)>yrs)# avoid 'subscript out of bounds' error 
   conv.post.diff[i,which.post.nan[conv.post.NA]]<-NA 
   if(length(conv.post.NA)>0){which.post.nan<-which.post.nan[-conv.post.NA]}   
   }      # END WHILE-LENGTH 
  }        # END FOR-I 
 
 numeric.cat<-conv.pre.diff+conv.post.diff   # sum of pre&post.diff; represents TS vector as numeric categories 
 z<-numeric.cat 
  
 for(i in 1:length(num.list)) 
  { 
  z<-replace(z,which(numeric.cat==num.list[i]),cat.list[i]) # matrix of growth categories 
  }       # END FOR-I 
 return(z) 
 }        # END FUNC.PHASE.CATEG 
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#################################################################### 
# 
# FUNC.PHASE.ENTROPY:  FUNCTION TO CALCULATE ENTROPY OF PHASE-CATEGORIZED TIME SERIES 
# 
# Input 
# [x.vec] Vector of a phase-categorized time series 
# 
# Output 
# [z.val] Value representing entropy of 'x' 
#################################################################### 
 
Func.phase.entropy<-function(x.vec) 
 { 
 if(all(is.na(x.vec))){z.val<-NA}else    # if vector all NA's, entropy value is NA (not zero!) 
  { 
  cat.prob<-table(x.vec)/sum(!is.na(x.vec))  # for each TS, probability of each category 
  log2.cat.prob<-ifelse(cat.prob==0,0,log2(cat.prob)) # if prob=0, log2=0 
  z.val<-(-1)*sum(cat.prob*log2.cat.prob) 
  }       # END IF-ELSE 
 return(z.val) 
 }        # END FUNC.PHASE.ENTROPY 
 
 
#################################################################### 
# 
# FUNC.JOINT.ENTROPY:  FUNCTION TO CALCULATE JOINT ENTROPY OF TWO PHASE-CATEGORIZED TIME SERIES 
# 
# Input 
# [x,y] Two phase-categorized time series matrices or vectors 
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# [rows] Number of rows in 'x' & 'y' (if vectors, rows=1) 
# 
# Output 
# [z] Joint entropy(ies) for the time series 
# 
#################################################################### 
 
Func.joint.entropy<-function(x,y,rows) 
 { 
 if(rows==1)  # if x & y are vectors, convert them to matrices 
  { 
  x<-t(as.matrix(x)) 
  y<-t(as.matrix(y)) 
  }  # END IF-ROWS 
 joint.data<-rowSums(!is.na(x)&!is.na(y))  # per row, sums number of cells of x that have joint data with y 
 cum.entropy<-0 
 for (k in c("D","I","P","T"))    # for each category in x 
  { 
  for (l in c("D","I","P","T"))   # for each category in y 
   { 
   cat.pair.count<-rowSums((x==k)&(y==l),na.rm=TRUE)    # per row, number of cells that meet criteria 
   cat.pair.prob<-cat.pair.count/joint.data     # probability vector of specified cat.pair 
   log2.cat.pair.prob<-ifelse(cat.pair.prob==0,0,log2(cat.pair.prob))  # if prob=0, log2=0 
   cum.entropy<-cum.entropy+cat.pair.prob*log2.cat.pair.prob 
   }      # END FOR-L 
  }       # END FOR-K 
  z<-(-1)*cum.entropy     # joint entropy for TS pair 
  return(z) 
 }        # END FUNC.JOINT.ENTROPY   
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#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> CODE FOR MAIN SIMULATION  
 
#################################################################### 
# 
# INITIALIZE VARIABLES FOR SIMULATION 
# 
#################################################################### 
 
# Simulation parameters selected by user 
Base.TS.vec<-[CAN READ IN TIME SERIES FROM AN EXTERNAL FILE]    # Actual time series data (abundance estimates) that the simulated time 
series will be based on 
Smooth.def<-7                # Span parameter for loess smoothing 
Tot.sub<-1000                # Number of surrogate time series pairs to generate for each Base TS 
Tot.pick<-500               # Number of surrogate time series pairs to select for each metric (multiple of 10) 
Max.TS.length<-1000             # Maximum TS length simulated      
Overlap<-c(15,25,35,50,75,100,1000)    # TS Overlap lengths to examine   
Err.SD<-c(0,.15,.3)      # Data error rates to simulate 
Meth<-c("Pearson","Spearman","Kendall","PercMatch","Symbolic") # Synchrony metrics 
Treat<-c("U","Sm")       # Simulation data treatment (smooth vs. not smooth the data) 
Base.prec<-0.01                   # Specify the precision of time series data (e.g., 0.1, 0.01) so simulated smoothed data will have same precision 
 
# Array to store synchrony estimates for all 1000-yr TS pairs. This array will be used by Func.Plot.Metrics to compare metrics.  
Full.dat<-array(NA,dim=c(length(Err.SD),length(Treat),length(Meth),Tot.sub))  
dimnames(Full.dat)<-list(Err.SD,Treat,Meth,1:Tot.sub)      
 
# Arrays to store synchrony estimates for each metric ----- REPEAT FOR EACH METRIC ----- 
Sim.Pearson.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Overlap),Tot.pick))  
dimnames(Sim.Pearson.ary)<-list(Err.SD,Treat,paste("Overlap.",Overlap,sep=""),1:Tot.pick) 
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# Arrays to store 'no synchrony' (i.e., pre-Cholesky) estimates for each metric ----- REPEAT FOR EACH METRIC ----- 
N.Sim.Pearson.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Overlap),Tot.sub))       
dimnames(N.Sim.Pearson.ary)<-list(Err.SD,Treat,paste("Overlap.",Overlap,sep=""),1:Tot.sub) 
 
# Arrays to store difference between synchrony and baseline synchrony estimates ----- REPEAT FOR EACH METRIC 
D.Sim.Pearson.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Overlap),Tot.pick))      
dimnames(D.Sim.Pearson.ary)<-list(Err.SD,Treat,paste("Overlap.",Overlap,sep=""),1:Tot.pick) 
 
# Arrays for power analysis ----- REPEAT FOR EACH METRIC ----- 
Power.Pearson.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Overlap)-1,200)) 
dimnames(Power.Pearson.ary)<-list(Err.SD,Treat,paste("Overlap.",c(15,25,35,50,75,100),sep=""),1:200) 
 
# Arrays for power analysis calculation of baseline synchrony estimates with at least 50% significant values ----- REPEAT FOR EACH METRIC ----- 
Sig50.Pearson.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Overlap)-1)) 
dimnames(Sig50.Pearson.ary)<-list(Err.SD,Treat,paste("Overlap.",c(15,25,35,50,75,100),sep="")) 
 
# Interim arrays for calculating correlation synchrony (Pearson, Spearman, Kendall)  
a.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
b.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
a.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
b.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
N.a.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.b.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.a.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.b.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
# Interim arrays for calculating Percent Match synchrony 
a.PercMatch.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
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b.PercMatch.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
check.match<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
N.a.PercMatch.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.b.PercMatch.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.check.match<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
# Interim arrays for calculating Symbolic synchrony 
a.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
b.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
HS.a<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
HS.b<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
HSU.sim<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
 
N.a.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
N.b.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length)) 
 
N.HS.a<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
N.HS.b<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
N.HSU.sim<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
 
# Other arrays 
Temp.sync.categ<-matrix(NA,length(Meth),Tot.sub)    # Temporarily store baseline synchrony decile categories for all metrics 
rownames(Temp.sync.categ)<-Meth 
 
Big.ary<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length,2))    # Store the post-Cholesky TS data  
dimnames(Big.ary)<-list(Err.SD,Treat,1:Tot.sub,1:Max.TS.length,1:2)    
 
N.Big.ary<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Max.TS.length,2)) # Store the pre-Cholesky TS data to evaluate 'no synchrony' 
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dimnames(N.Big.ary)<-list(Err.SD,Treat,1:Tot.sub,1:Max.TS.length,1:2)  
 
Select.col.mat<-matrix(NA,5,Tot.pick)      # Store the index numbers representing the 500 selected TS pairs for each metric 
rownames(Select.col.mat)<-Meth 
 
Met.Pearson<-array(NA,dim=c(length(Err.SD),length(Treat),length(Meth),length(Meth)))  # Array of Pearson correlation btwn metrics 
dimnames(Met.Pearson)<-list(Err.SD,Treat,Meth,Meth) 
 
No.sync.summ<-array(NA,dim=c(length(Meth),length(Err.SD),length(Treat),length(Overlap))) #Array to store 95% upper CI bound 
dimnames(No.sync.summ)<-list(Meth,Err.SD,Treat,Overlap) 
 
SD.1000UE.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Meth),length(Overlap)))     
 #  Array of SD of synchrony difference from baseline 
dimnames(SD.1000UE.ary)<-list(Err.SD,Treat,Meth,paste("Overlap.",Overlap,sep="")) 
 
Bias.1000UE.ary<-array(NA,dim=c(length(Err.SD),length(Treat),length(Meth),length(Overlap)))   
 #  Array of bias of synchrony difference from baseline 
dimnames(Bias.1000UE.ary)<-list(Err.SD,Treat,Meth,paste("Overlap.",Overlap,sep="")) 
 
 
#################################################################### 
# 
# BEGIN SIMULATION 
# 
####################################################################   
 
##### GENERATE PAIRS OF ERROR = 0, UNSMOOTHED TIME SERIES, BASED ON AR COEFFICIENTS FOR THE BASE TIME SERIES 
for (i in 1:Tot.sub)  
 # The arima parameters for generating surrogate TS should be determined separately for each Base TS--replace in arima.sim eqn 
 { 



 

160 

  

 N.Big.ary[1,1,i,,1]<-arima.sim(n = Max.TS.length, list(ar =.6835, ma = c(0,0)),sd = sqrt(.3236))  
 N.Big.ary[1,1,i,,2]<-arima.sim(n = Max.TS.length, list(ar =.6835, ma = c(0,0)),sd = sqrt(.3236)) 
  }              # END FOR-I 
 
##### APPLY ERROR AND DATA SMOOTHING TO 'NO SYNCHRONY' (PRE-CHOLESKY) TIME SERIES 
# Generate error in 'no synchrony'(pre-Cholesky) time series as Err.SD X half the range of each surr TS pair 
for (e in 2:length(Err.SD))                # Omit first Err.SD, which which error = 0           
 { 
 for (i in 1:Tot.sub)     
  { 
  range.half<-(max(N.Big.ary[1,1,i,,])-min(N.Big.ary[1,1,i,,]))/2 
  N.Big.ary[e,1,i,,1]<-N.Big.ary[1,1,i,,1]+rnorm(Max.TS.length,0,Err.SD[e]*range.half)  
  N.Big.ary[e,1,i,,2]<-N.Big.ary[1,1,i,,2]+rnorm(Max.TS.length,0,Err.SD[e]*range.half) 
  }   # END FOR-I 
 }    # END FOR-E 
 
# Call FUNC.SMOOTH to smooth 'no synchrony' (pre-Cholesky) time series 
for (e in 1:length(Err.SD))      
 {  
 N.Big.ary[e,2,,,1]<-Func.smooth(N.Big.ary[e,1,,,1],1:Max.TS.length,rep(Base.prec,Tot.sub),Smooth.def,Tot.sub)  
 N.Big.ary[e,2,,,2]<-Func.smooth(N.Big.ary[e,1,,,2],1:Max.TS.length,rep(Base.prec,Tot.sub),Smooth.def,Tot.sub) 
 }                   # END FOR-E 
 
##### CHOLESKY DECOMPOSITION TO CORRELATE ERROR =0, UNSMOOTHED TIME SERIES 
Rho.vec<-.01*seq(5,95,(90/Tot.sub))  # Vector of Pearson correlations to simulate, from r = 0.05 to 0.95 
 
for (i in 1:Tot.sub)       
 { 
 Big.ary[1,1,i,,]<-t(Func.Cholesky(t(N.Big.ary[1,1,i,,]),Rho.vec[i])) 
 }    # END FOR-I 
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##### APPLY ERROR AND DATA SMOOTHING TO CORRELATED (POST-CHOLESKY) TIME SERIES 
# Generate error in correlated (post-Cholesky) time series as Err.SD X half the range of each surr TS pair 
for (e in 2:length(Err.SD))            
 { 
 for (i in 1:Tot.sub) 
  { 
  range.half<-(max(Big.ary[1,1,i,,])-min(Big.ary[1,1,i,,]))/2   
  Big.ary[e,1,i,,1]<-Big.ary[1,1,i,,1]+rnorm(Max.TS.length,0,Err.SD[e]*range.half) 
  Big.ary[e,1,i,,2]<-Big.ary[1,1,i,,2]+rnorm(Max.TS.length,0,Err.SD[e]*range.half) 
  }   # END FOR-I 
 }    # END FOR-E 
 
# Call FUNC.SMOOTH to smooth correlated (post-Cholesky) time series 
for (e in 1:length(Err.SD))      
 {  
 Big.ary[e,2,,,1]<-Func.smooth(Big.ary[e,1,,,1],1:Max.TS.length,rep(Base.prec,Tot.sub),Smooth.def,Tot.sub)  
 Big.ary[e,2,,,2]<-Func.smooth(Big.ary[e,1,,,2],1:Max.TS.length,rep(Base.prec,Tot.sub),Smooth.def,Tot.sub) 
 }                # END FOR-E 
 
##### FOR EACH METRIC, SELECT A SUBSET OF TIME SERIES PAIRS REPRESENTING AN APPROXIMATELY UNIFORM DISTRIBUTION OF  
#     SYNCHRONY VALUES FROM NO SYNCHRONY TO FULL SYNCHRONY. APPLY THESE STEPS TO ERROR = 0, UNSMOOTHED, CORRELATED TIME  
#     SERIES (I.E., CORRELATED BASELINE TIME SERIES):  
#         1) CALCULATE METRIC-SPECIFIC SYNCHRONY OF ALL TIME SERIES PAIRS 
#         2) CATEGORIZE BY SYNCHRONY ESTIMATE 
#         3) SELECT SUBSET OF TIME SERIES  
#     IN THIS SECTION, CALCULATE SYNCHRONY OF 'NO SYNCHRONY' BASELINE TIME SERIES FOR GENERATING 'NO SYNCHRONY' DISTRIBUTIONS 
##### 
 
##### THIS IS STEP 1:  CALCULATE METRIC-SPECIFIC SYNCHRONY OF ALL TIME SERIES PAIRS 
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for (e in 1:length(Err.SD))       # For each error rate 
 { 
 for (t in 1:length(Treat))       # For each simulation type 
  { 
  ##### FOR PEARSON, SPEARMAN & KENDALL METRICS, CALCULATE SYNCHRONY OF ALL BASELINE TIME SERIES PAIRS 
   # Find first differenced natural logs for correlation metrics  
  a.ln[e,t,,]<-log(Big.ary[e,t,,,1])     # Natural log of TS data for TS1 of each pair 
  b.ln[e,t,,]<-log(Big.ary[e,t,,,2])     # Natural log of TS data for TS2 of each pair 
  a.diff.ln[e,t,,2:Max.TS.length]<-t(apply(a.ln[e,t,,],1,diff))   
   # Calculate difference btwn ln values of consecutive years & assign to latter year  
  b.diff.ln[e,t,,2:Max.TS.length]<-t(apply(b.ln[e,t,,],1,diff))    
 
      # Repeat for the 'no synchrony' time series 
  N.a.ln[e,t,,]<-log(N.Big.ary[e,t,,,1])    # Natural log of TS data for TS1 of each pair 
  N.b.ln[e,t,,]<-log(N.Big.ary[e,t,,,2])    # Natural log of TS data for TS2 of each pair 
  N.a.diff.ln[e,t,,2:Max.TS.length]<-t(apply(N.a.ln[e,t,,],1,diff))  
   # Calculate difference btwn ln values of consecutive years & assign to latter yr  
  N.b.diff.ln[e,t,,2:Max.TS.length]<-t(apply(N.b.ln[e,t,,],1,diff))    
 
  # Calculate synchrony for correlation metrics 
  for (i in 1:Tot.sub) 
   { 
   Full.dat[e,t,"Pearson",i]<-cor(a.diff.ln[e,t,i,],b.diff.ln[e,t,i,],method="pearson",use="na.or.complete") 
   Full.dat[e,t,"Spearman",i]<-cor(a.diff.ln[e,t,i,],b.diff.ln[e,t,i,],method="spearman",use="na.or.complete") 
   Full.dat[e,t,"Kendall",i]<-cor(a.diff.ln[e,t,i,],b.diff.ln[e,t,i,],method="kendall",use="na.or.complete") 
 
   N.Sim.Pearson.ary[e,t,length(Overlap),i]<-
cor(N.a.diff.ln[e,t,i,],N.b.diff.ln[e,t,i,],method="pearson",use="na.or.complete") 
   N.Sim.Spearman.ary[e,t,length(Overlap),i]<-
cor(N.a.diff.ln[e,t,i,],N.b.diff.ln[e,t,i,],method="spearman",use="na.or.complete") 
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   N.Sim.Kendall.ary[e,t,length(Overlap),i]<-cor(N.a.diff.ln[e,t,i,],N.b.diff.ln[e,t,i,],method="kendall",use="na.or.complete") 
   }  # END FOR-I 
   
  ##### FOR PERCENT MATCH METRIC, CALCULATE SYNCHRONY OF ALL BASELINE TIME SERIES PAIRS 
  # Call FUNC.PERCMATCH.CATEG to find matching trends (between time series in a pair) for Percent Match metric 
  # Categorize matrix of time series data as increase, decrease, or no change 
      a.PercMatch.cat[e,t,,]<-Func.PercMatch.categ(Big.ary[e,t,,,1],Tot.sub)  
  b.PercMatch.cat[e,t,,]<-Func.PercMatch.categ(Big.ary[e,t,,,2],Tot.sub) 
  check.match[e,t,,]<-b.PercMatch.cat[e,t,,]-a.PercMatch.cat[e,t,,]  # Puts zero in every cell where series dxn matches 
  
  # Categorize matrix of time series data as increase, decrease, or no change 
      N.a.PercMatch.cat[e,t,,]<-Func.PercMatch.categ(N.Big.ary[e,t,,,1],Tot.sub)  
  N.b.PercMatch.cat[e,t,,]<-Func.PercMatch.categ(N.Big.ary[e,t,,,2],Tot.sub) 
  N.check.match[e,t,,]<-N.b.PercMatch.cat[e,t,,]-N.a.PercMatch.cat[e,t,,] 
  
  # Calculate synchrony for Percent Match metric 
  Full.dat[e,t,"PercMatch",]<-apply(check.match[e,t,,]==0,1,sum,na.rm=TRUE)/Max.TS.length # proportion of matches 
  N.Sim.PercMatch.ary[e,t,length(Overlap),]<-apply(N.check.match[e,t,,]==0,1,sum,na.rm=TRUE)/Max.TS.length  
   # proportion of matches 
 
  ##### FOR SYMBOLIC METRIC, CALCULATE SYNCHRONY OF ALL BASELINE TIME SERIES PAIRS 
  # Call FUNC.PHASE.CATEG to calculate synchrony for Symbolic metric 
  # Categorize matrix of time series data as increase, decrease, peak, or trough 
      a.phase.cat[e,t,,]<-Func.phase.categ(Big.ary[e,t,,,1],Tot.sub)       
  b.phase.cat[e,t,,]<-Func.phase.categ(Big.ary[e,t,,,2],Tot.sub) 
 
  # Categorize matrix of time series data as increase, decrease, peak, or trough 
      N.a.phase.cat[e,t,,]<-Func.phase.categ(N.Big.ary[e,t,,,1],Tot.sub)   
  N.b.phase.cat[e,t,,]<-Func.phase.categ(N.Big.ary[e,t,,,2],Tot.sub) 
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  # Call FUNC.PHASE.ENTROPY to calculate entropy of phase-categorized time series 
      HS.a[e,t,]<-apply(a.phase.cat[e,t,,],1,Func.phase.entropy) 
  HS.b[e,t,]<-apply(b.phase.cat[e,t,,],1,Func.phase.entropy)  
   
  # Call FUNC.JOINT.ENTROPY to calculate joint entropy of paired phase-categorized time series 
      HSU.sim[e,t,]<-Func.joint.entropy(a.phase.cat[e,t,,],b.phase.cat[e,t,,],Tot.sub) 
  Full.dat[e,t,"Symbolic",]<-HS.a[e,t,]+HS.b[e,t,]-HSU.sim[e,t,] 
 
      # Repeat steps for 'no synchrony' pre-Cholesky time series 
  N.HS.a[e,t,]<-apply(N.a.phase.cat[e,t,,],1,Func.phase.entropy) 
  N.HS.b[e,t,]<-apply(N.b.phase.cat[e,t,,],1,Func.phase.entropy)  
  N.HSU.sim[e,t,]<-Func.joint.entropy(N.a.phase.cat[e,t,,],N.b.phase.cat[e,t,,],Tot.sub) 
  N.Sim.Symbolic.ary[e,t,length(Overlap),]<-N.HS.a[e,t,]+N.HS.b[e,t,]-N.HSU.sim[e,t,] 
  }           # END FOR-T 
 }            # END FOR-E 
 
##### THESE ARE STEPS 2 & 3: CATEGORIZE BASELINE TIME SERIES BY SYNCHRONY ESTIMATE & SELECT SUBSET OF TIME SERIES  
Temp.sync.categ<-ceiling(Full.dat[1,1,,]*10)   # Categorizes synchrony values 1-10, with 1=synchrony up to .1, etc. 
Temp.sync.categ[Temp.sync.categ<=0]<-NA   # Time series pairs with synchrony <0 are excluded 
Temp.sync.categ[Temp.sync.categ[4,]<=.5]<-NA   # For Percent Match, time series pairs with synchrony <0.5 are excluded 
Tab.sync.categ<-apply(Temp.sync.categ,1,table)   # For each metric, tabulate the number of synchrony estimates in each category 
   
# THE SECTION BELOW IS FOR PEARSON SYNCHRONY METRIC, BUT SHOULD BE REPEATED FOR EACH METRIC  
# ----- START SECTION TO BE REPEATED FOR EACH METRIC -----         
Index.temp<-rep(NA,Tot.pick) 
Temp.vec<-sort(unique(Temp.sync.categ["Pearson",]))  # Vector of all synchrony categories for the metric 
Pick.per.cat<-floor(Tot.pick/length(Temp.vec))              # Number of time series pairs to select per synchrony category 
Low.cat<-which(Tab.sync.categ$Pearson<Pick.per.cat)  # Identifies which synchrony categories have <Pick.per.cat values 
Low.cat.OK<-length(Low.cat)>0   # TRUE if there are synchrony categories with insufficient time series pairs to choose from 
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# For categories with insufficient time series pairs to choose from, take all available pairs                             
if(Low.cat.OK) 
 { 
 Index.temp<-which(Temp.sync.categ["Pearson",]%in%Temp.vec[Low.cat])   # Identifies index number of estimates in the low categories 
 Cat.left<-Temp.vec[-Low.cat] 
 } else 
 { 
 Cat.left<-Temp.vec 
 } 
Cum.count<-length(na.omit(Index.temp))  # Running count of the number of time series pairs selected so far (from low categories) 
Diff.count<-Tot.pick-Cum.count    # The number of time series pairs remaining to select 
Full.vec<-1:Tot.sub 
Pick.per.cat<-floor(Diff.count/length(Cat.left))  # Recalculate Pick.per.cat 
 
for (j in Cat.left)   # From each remaining synchrony category, randomly select the specified number of time series pairs 
 { 
 if (length(which(Temp.sync.categ["Pearson",]==j))<Pick.per.cat) 
  { 
  Index.temp<-c(na.omit(Index.temp),which(Temp.sync.categ["Pearson",]==j)) 
  } else 
  { 
  Index.temp<-c(na.omit(Index.temp),sample(which(Temp.sync.categ["Pearson",]==j),Pick.per.cat)) 
  }   # END IF-THEN-ELSE 
 }    # END FOR-J 
Diff.last<-Tot.pick-length(Index.temp)      # Determine how many values left to pick 
skip.na<-which(is.na(Temp.sync.categ["Pearson",])) 
Full.vec[skip.na]<-NA 
Remain.vec<-Full.vec[-Index.temp] 
Remain.vec.whole<-na.omit(Remain.vec) 
if(Diff.last>0){Index.temp<-c(Index.temp,sample(Remain.vec.whole,Diff.last))} # Randomly select remaining values from remaining indices 
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Select.col.mat["Pearson",]<-Index.temp 
# ----- END SECTION TO BE REPEATED FOR EACH METRIC -----  
 
# Assign baseline synchrony estimates to metrics for the longest overlap length 
for (e in 1:length(Err.SD))    # For each error rate 
 { 
 for (t in 1:length(Treat))    # For each data treatment 
  { 
  Sim.Pearson.ary[e,t,length(Overlap),]<-Full.dat[e,t,"Pearson",Select.col.mat["Pearson",]]     # ----- REPEAT FOR EACH METRIC ----- 
  }    # END FOR-T 
 }     # END FOR-E 
 
##### SO FAR, SYNCHRONY HAS ONLY BEEN CALCULATED FOR THE LONGEST TIME SERIES LENGTH. THE NEXT STEP IS TO CALCULATE  
#     SYNCHRONY FOR SHORTER TIME SERIES LENGTHS, ONLY USING THE SUBSET OF TIME SERIES PAIRS SELECTED FOR EACH METRIC. FOR  
#     SYNCHRONY OF SMOOTHED TIME SERIES,SMOOTHING HAS TO BE RE-APPLIED TO THE SHORTER TIME SERIES RATHER THAN TRUNCATING  
#     A SUBSET OF THE SMOOTHED LONGEST TIME SERIES (RESULTS WOULD BE DIFFERENT). MUCH OF THIS CODE IS A REPEAT OF EARLIER  
#     CODE FOR CALCULATING SYNCHRONY, WITH MINOR CHANGES. 
##### 
 
for (L in 1:(length(Overlap)-1))       # For each of the remaining overlap lengths to calculate 
 { 
 Smooth.ary<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L],2)) # Arrays to hold the shortened, smoothed time series data 
 N.Smooth.ary<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L],2)) 
 
 ##### CALL FUNC.SMOOTH TO SMOOTH THE SHORTER TIME SERIES 
 for (e in 1:length(Err.SD))        
  {  
  Smooth.ary[e,,,1]<-Func.smooth(Big.ary[e,,1:Overlap[L],1],1:Overlap[L],rep(Base.prec,Tot.sub),Smooth.def,Tot.sub)  
  Smooth.ary[e,,,2]<-Func.smooth(Big.ary[e,,1:Overlap[L],2],1:Overlap[L],rep(Base.prec,Tot.sub),Smooth.def,Tot.sub) 
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  N.Smooth.ary[e,,,1]<-Func.smooth(N.Big.ary[e,,1:Overlap[L],1],1:Overlap[L],rep(Base.prec,Tot.sub),Smooth.def,Tot.sub)  
  N.Smooth.ary[e,,,2]<-Func.smooth(N.Big.ary[e,,1:Overlap[L],2],1:Overlap[L],rep(Base.prec,Tot.sub),Smooth.def,Tot.sub) 
  }  # END FOR-E 
 
 ##### INITIALIZE AND ASSIGN TEMPORARY ARRAYS FOR CALCULATING CORRELATION SYNCHRONY ON SHORTER TIME SERIES 
 # For unsmoothed data, can simply truncate the original data 
 sub.a.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 sub.b.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 
 sub.a.diff.ln[,1,,]<-a.diff.ln[,,1:Overlap[L]]   
 sub.b.diff.ln[,1,,]<-b.diff.ln[,,1:Overlap[L]] 
             
 N.sub.a.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 N.sub.b.diff.ln<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 
 N.sub.a.diff.ln[,1,,1:Overlap[L]]<-N.a.diff.ln[,,1:Overlap[L]]  
 N.sub.b.diff.ln[,1,,1:Overlap[L]]<-N.b.diff.ln[,,1:Overlap[L]] 
 
  # For smoothed data, need to recalculate synchrony  
 sub.a.ln<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 sub.b.ln<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 
 N.sub.a.ln<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 N.sub.b.ln<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
  
  # Find first differenced natural logs for correlation metrics  
 for (e in 1:length(Err.SD)) 
  { 
  sub.a.ln[e,,]<-log(Smooth.ary[e,,,1]) 
  sub.b.ln[e,,]<-log(Smooth.ary[e,,,2]) 
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  sub.a.diff.ln[e,2,,2:Overlap[L]]<-t(apply(sub.a.ln[e,,],1,diff)) 
  sub.b.diff.ln[e,2,,2:Overlap[L]]<-t(apply(sub.b.ln[e,,],1,diff)) 
   
  N.sub.a.ln[e,,]<-log(N.Smooth.ary[e,,,1]) 
  N.sub.b.ln[e,,]<-log(N.Smooth.ary[e,,,2]) 
  N.sub.a.diff.ln[e,2,,2:Overlap[L]]<-t(apply(N.sub.a.ln[e,,],1,diff)) 
  N.sub.b.diff.ln[e,2,,2:Overlap[L]]<-t(apply(N.sub.b.ln[e,,],1,diff)) 
  }    # END FOR-E 
 
 ##### INITIALIZE AND ASSIGN TEMPORARY ARRAYS FOR CALCULATING PERCENT MATCH SYNCHRONY ON SHORTER TIME SERIES 
 # For unsmoothed data, can simply truncate the original data 
 sub.check.match<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 sub.check.match[,1,,]<-check.match[,,1:Overlap[L]]    
 
 N.sub.check.match<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 N.sub.check.match[,1,,]<-N.check.match[,,1:Overlap[L]] 
 
   # For smoothed data, need to recalculate synchrony  
 sub.a.PercMatch.cat<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 sub.b.PercMatch.cat<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 
 N.sub.a.PercMatch.cat<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 N.sub.b.PercMatch.cat<-array(NA,dim=c(length(Err.SD),Tot.sub,Overlap[L])) 
 
 # Call FUNC.PERCMATCH.CATEG to find matching trends (between time series in a pair) for Percent Match metric 
 for (e in 1:length(Err.SD)) 
  { 
  # Categorize matrix of time series data as increase, decrease, or no change 
      sub.a.PercMatch.cat[e,,]<-Func.PercMatch.categ(Smooth.ary[e,,,1],Tot.sub)   
  sub.b.PercMatch.cat[e,,]<-Func.PercMatch.categ(Smooth.ary[e,,,2],Tot.sub) 
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  sub.check.match[e,2,,]<-sub.b.PercMatch.cat[e,,]-sub.a.PercMatch.cat[e,,]   
   # Puts zero in every cell where series dxn matches 
  
  # Categorize matrix of time series data as increase, decrease, or no change 
   N.sub.a.PercMatch.cat[e,,]<-Func.PercMatch.categ(N.Smooth.ary[e,,,1],Tot.sub)  
  N.sub.b.PercMatch.cat[e,,]<-Func.PercMatch.categ(N.Smooth.ary[e,,,2],Tot.sub) 
  N.sub.check.match[e,2,,]<-N.sub.b.PercMatch.cat[e,,]-N.sub.a.PercMatch.cat[e,,]  
   # Puts zero in every cell where series dxn matches 
  }    # END FOR-E 
 
 ##### INITIALIZE AND ASSIGN TEMPORARY ARRAYS FOR CALCULATING SYMBOLIC SYNCHRONY ON SHORTER TIME SERIES 
 # For unsmoothed data, can simply truncate the original data; for smoothed data, need to recalculate synchrony  
 sub.a.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L]))  
 sub.b.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 
 sub.a.phase.cat[,1,,]<-a.phase.cat[,,1:Overlap[L]]   
 sub.a.phase.cat[,1,,Overlap[L]]<-NA     # The last value should be NA 
 sub.b.phase.cat[,1,,]<-b.phase.cat[,,1:Overlap[L]] 
 sub.b.phase.cat[,1,,Overlap[L]]<-NA     # The last value should be NA 
 
 sub.HS.a<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.pick)) 
 sub.HS.b<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.pick)) 
 sub.HSU.sim<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.pick)) 
 
 N.sub.a.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 N.sub.b.phase.cat<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub,Overlap[L])) 
 
 N.sub.a.phase.cat[,1,,]<-N.a.phase.cat[,,1:Overlap[L]] 
 N.sub.a.phase.cat[,1,,Overlap[L]]<-NA     # The last value should be NA 
 N.sub.b.phase.cat[,1,,]<-N.b.phase.cat[,,1:Overlap[L]] 
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 N.sub.b.phase.cat[,1,,Overlap[L]]<-NA     # The last value should be NA 
 
 N.sub.HS.a<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
 N.sub.HS.b<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
 N.sub.HSU.sim<-array(NA,dim=c(length(Err.SD),length(Treat),Tot.sub)) 
 
 # Call FUNC.PHASE.CATEG to calculate synchrony for Symbolic metric 
 # Categorize matrix of time series data as increase, decrease, peak, or trough 
 for (e in 1:length(Err.SD)) 
  { 
  sub.a.phase.cat[e,2,,]<-Func.phase.categ(Smooth.ary[e,,,1],Tot.sub)    
  sub.b.phase.cat[e,2,,]<-Func.phase.categ(Smooth.ary[e,,,2],Tot.sub) 
 
  N.sub.a.phase.cat[e,2,,]<-Func.phase.categ(N.Smooth.ary[e,,,1],Tot.sub)    
  N.sub.b.phase.cat[e,2,,]<-Func.phase.categ(N.Smooth.ary[e,,,2],Tot.sub) 
  }    # END FOR-E 
 
 ##### CALCULATE SYNCHRONY 
 for (e in 1:length(Err.SD))       # For each error rate 
  { 
  for (t in 1:length(Treat))       # For each data treatment 
   { 
    # For Pearson, Spearman, and Kendall metrics 
   for (i in 1:Tot.pick) 
    { 
    Sim.Pearson.ary[e,t,L,i]<-
cor(sub.a.diff.ln[e,t,Select.col.mat["Pearson",i],],sub.b.diff.ln[e,t,Select.col.mat["Pearson",i],], 
     method="pearson",use="na.or.complete") 
    Sim.Spearman.ary[e,t,L,i]<-
cor(sub.a.diff.ln[e,t,Select.col.mat["Spearman",i],],sub.b.diff.ln[e,t,Select.col.mat["Spearman",i],], 



 

171 

  

     method="spearman",use="na.or.complete") 
    Sim.Kendall.ary[e,t,L,i]<-
cor(sub.a.diff.ln[e,t,Select.col.mat["Kendall",i],],sub.b.diff.ln[e,t,Select.col.mat["Kendall",i],], 
     method="kendall",use="na.or.complete") 
    }               # END FOR-I 
 
   for (i in 1:Tot.sub) 
    { 
    N.Sim.Pearson.ary[e,t,L,i]<-
cor(N.sub.a.diff.ln[e,t,i,],N.sub.b.diff.ln[e,t,i,],method="pearson",use="na.or.complete") 
    N.Sim.Spearman.ary[e,t,L,i]<-
cor(N.sub.a.diff.ln[e,t,i,],N.sub.b.diff.ln[e,t,i,],method="spearman",use="na.or.complete") 
    N.Sim.Kendall.ary[e,t,L,i]<-
cor(N.sub.a.diff.ln[e,t,i,],N.sub.b.diff.ln[e,t,i,],method="kendall",use="na.or.complete") 
        }                # END FOR-I 
 
   # For Percent Match metric 
   Sim.PercMatch.ary[e,t,L,]<-apply(sub.check.match[e,t,Select.col.mat["PercMatch",],]==0,1,sum,na.rm=TRUE)/Overlap[L] 
   N.Sim.PercMatch.ary[e,t,L,]<-apply(N.sub.check.match[e,t,,]==0,1,sum,na.rm=TRUE)/Overlap[L]   
 
       # For Symbolic metric 
       # Call FUNC.PHASE.ENTROPY to calculate entropy of phase-categorized time series 
   sub.HS.a[e,t,]<-apply(sub.a.phase.cat[e,t,Select.col.mat["Symbolic",],],1,Func.phase.entropy) 
   sub.HS.b[e,t,]<-apply(sub.b.phase.cat[e,t,Select.col.mat["Symbolic",],],1,Func.phase.entropy)  
   
       # Call FUNC.JOINT.ENTROPY to calculate joint entropy of paired phase-categorized time series 
   sub.HSU.sim[e,t,]<-Func.joint.entropy(sub.a.phase.cat[e,t,Select.col.mat["Symbolic",],], 
   sub.b.phase.cat[e,t,Select.col.mat["Symbolic",],],Tot.pick) 
   Sim.Symbolic.ary[e,t,L,]<-sub.HS.a[e,t,]+sub.HS.b[e,t,]-sub.HSU.sim[e,t,] 
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     # Repeat for 'no synchrony' pre-Cholesky time series 
   N.sub.HS.a[e,t,]<-apply(N.sub.a.phase.cat[e,t,,],1,Func.phase.entropy) 
   N.sub.HS.b[e,t,]<-apply(N.sub.b.phase.cat[e,t,,],1,Func.phase.entropy)  
   N.sub.HSU.sim[e,t,]<-Func.joint.entropy(N.sub.a.phase.cat[e,t,,],N.sub.b.phase.cat[e,t,,],Tot.sub) 
   N.Sim.Symbolic.ary[e,t,L,]<-N.sub.HS.a[e,t,]+N.sub.HS.b[e,t,]-N.sub.HSU.sim[e,t,] 
   }   # END FOR-T 
  }    # END FOR-E 
 }     # END FOR-L 
  
##### CALCULATE DIFFERENCE BETWEEN SYNCHRONY AND BASELINE SYNCHRONY ESTIMATES 
for (e in 1:length(Err.SD)) 
 { 
 for (t in 1:length(Treat)) 
  { 
  for (L in 1:length(Overlap)) 
   { 
   D.Sim.Pearson.ary[e,t,L,]<-Sim.Pearson.ary[1,1,length(Overlap),]-Sim.Pearson.ary[e,t,L,]  
    #----- REPEAT FOR EACH METRIC ----- 
   }    # END FOR-L 
  }     # END FOR-T 
 }      # END FOR-E 
 
##### INITIALIZE LIST FOR PLOTTING GRAPHS AND ALSO FOR FILLING STANDARD DEVIATION & BIAS ARRAYS  ----- REPEAT FOR EACH METRIC -----     
Methods.list<-list() 
Methods.list$Pearson<-list(ary=Sim.Pearson.ary,d.ary=D.Sim.Pearson.ary,n.ary=N.Sim.Pearson.ary,Meth.min=0,Meth.max=1, 
 dmax=1,Type.min=-.3,Type.max=1,pow=Power.Pearson.ary,Pow.min=0,Pow.max=100,sig50=Sig50.Pearson.ary) 
 
##### CALCULATE STANDARD DEVIATION, BIAS, AND 95% UPPER CI BOUND 
for (e in 1:length(Err.SD)) 
 {        
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 for (t in 1:length(Treat))   
  { 
  for (m in 1:length(Meth))  
   { 
   for (L in 1:length(Overlap)) 
           { 
    SD.1000UE.ary[e,t,m,L]<-sd(Methods.list[[m]]$d.ary[e,t,L,])     
     # Calculate standard deviation of difference from baseline 
         Bias.1000UE.ary[e,t,m,L]<-mean(Methods.list[[m]]$d.ary[e,t,L,])      
     # Calculate bias of difference from baseline 
         
        Sort.sync<-sort(Methods.list[[m]]$n.ary[e,t,ov,],na.last=NA)         # Sort the 'no synchrony' estimates 
    No.sync.summ[m,e,t,ov]<-Sort.sync[floor(.95*length(Sort.sync))]       # Identify the 95% upper CI bound 
     }   # END FOR-L 
        }                 # END FOR-M 
    }     # END FOR-T 
   }                     # END FOR-E 
 
##### CALCULATE PEARSON'S CORRELATION BETWEEN SYNCHRONY METRICS 
for (e in 1:length(Err.SD)) 
 { 
 for (t in 1:length(Treat)) 
  { 
  for (i in 1:length(Meth)) 
   { 
   for (j in 1:length(Meth)) 
    { 
    Met.Pearson[e,t,i,j]<-cor(Full.dat[e,t,i,],Full.dat[e,t,j,],method="pearson") 
    }     # END FOR-J 
   }      # END FOR-I 



 

174 

  

  }       # END FOR-T 
 }        # END FOR-E 
 
##### THE POWER ANALYSIS BELOW IS FOR PEARSON, SPEARMAN AND KENDALL SYNCHRONY METRICS, BUT SHOULD BE REPEATED FOR 
#  PERCENT MATCH AND # SYMBOLIC METRICS REMEMBER TO CHANGE THE RANGE OF SYNCHRONY VALUES FOR PERCENT MATCH AND 
#  SYMBOLIC METRICS 
##### 
 
# ----- START SECTION TO BE REPEATED FOR PERCENT MATCH AND SYMBOLIC METRICS -----   
for (m in 1:3)                     
 { 
 for (e in 1:length(Err.SD)) 
  { 
  for (t in 1:length(Treat)) 
   { 
   for (ov in 1:length(Overlap)-1)       # Omit the longest (1000-yr) time series length for power analysis 
    { 
        for (x in 5:95)   
     # For all synchrony estimates (need to change this range for Percent Match and Symbolic metrics) 
           { 
              win.min<-x/100-.05        
     # Window size is 0.10 (e.g., r = 0 - 0.10) (need to change for Percent Match and Symbolic metrics) 
               win.max<-x/100+.05 
               # Identify which synchrony estimates fall within the window 
               pick.list<-which(Methods.list[[m]]$ary[1,1,7,]>=win.min &  Methods.list[[m]]$ary[1,1,7,]<win.max) 
               if(length(pick.list)>10)      # Only calculate if there are at least 10 values within the window range 
                { 
                # Calculate the proportion of estimates greater than the 95% CI for 'no synchrony' 
                Methods.list[[m]]$pow[e,t,ov,x]<-sum(Methods.list[[m]]$ary[e,t,ov,pick.list]> 
       No.sync.summ[m,e,t,ov])/length(pick.list)      
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      }  # END IF-LENGTH 
               }          # END FOR-X 
         # If there are any baseline synchrony values with at least 50% significant values in this category (of error-treatment-overlap) 
    if(length(which(Methods.list[[m]]$pow[e,t,ov,]>.5,arr.ind=TRUE))>0)  
               { 
               # Calculate the minimum baseline synchrony value at which at least 50% of values are significant 
       Methods.list[[m]]$sig50[e,t,ov]<-
min(which(Methods.list[[m]]$pow[e,t,ov,]>.5,arr.ind=TRUE),na.rm=TRUE) 
               }              # END IF-LENGTH 
            }          # END FOR-OV 
        }             # END FOR-T 
    }                # END FOR-E 
 }                  # END FOR-M 
# ----- END SECTION TO BE REPEATED FOR PERCENT MATCH AND SYMBOLIC METRICS -----   
 
save.image(file=paste("ARMA1000_",substr(as.character(Sys.time()),1,10),".RData",sep=""))# save workspace--name includes date 
 
 
 
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> CODE FOR GRAPHING FUNCTIONS  
 
#################################################################### 
# 
# FUNC.PLOT.SIMTYPE:  FUNCTION TO PLOT THE VARIOUS SIMULATION TYPES (DIFFERENT ERROR & TREATMENT LEVELS) FOR A BASE  
# TIME SERIES 
#  
# Input  
# [TS.vec] List of Big.ary vector values 
# 
#################################################################### 
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Func.plot.simtype<-function(TS.vec) 
 { 
 Yr<-1:Max.TS.length 
 for (i in 1:length(TS.vec))    # For every time series 
  { 
  par(mfrow=c(6,1))     # Display six graphs per page 
  par(mar=c(0,0,0,0))    # Pack graphs tightly 
  par(oma=c(2,2,0,0))    # Create outer margin for labels for (t in 1:4) 
  for (e in 1:length(Err.SD))   # For each error rate 
   {  
   for(t in 1:length(Treat))  # For each data treatment 
    { 
    lo<-min(Big.ary[,,TS.vec[i],,1],na.rm=TRUE) 
    hi<-max(Big.ary[,,TS.vec[i],,1],na.rm=TRUE) 
    plot(Big.ary[e,t,TS.vec[i],,1]~Yr,lwd=2,type='l',xaxt="n",yaxt="n",ylim=c(lo,hi))  
    }     # END FOR-T 
   title(xlab="Year",ylab="Density",cex.lab=1.2,outer=T) 
   }      # END FOR-E 
  }       # END FOR-I 
 }        # END FUNC.PLOT.SIMTYPE 
  
 
#################################################################### 
# 
# FUNC.PLOT.OVERLAP.ACTUAL:  FUNCTION TO PLOT RELATIONSHIP BTWN SYNCHRONY ESTIMATE & 1000-YR UNERRORED  
# SYNCHRONY ESTIMATE  
# 
# Input 
# [typ]  Treat:  U, Sm 
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# [err]  Error:  0,.25,.3 
# [m]  Metric: Pearson, Spearman, Kendall, PercMatch, Symbolic 
# 
#################################################################### 
 
Func.plot.overlap.actual<-function(typ,err,m)  
 { 
 t<-which(Treat==typ) 
 e<-which(Err.SD==err) 
 x.lo<-Methods.list[[m]]$Meth.min 
 x.hi<-Methods.list[[m]]$Meth.max 
 y.lo<-.1*floor(min(Methods.list[[m]]$ary[e,t,,],na.rm=T)*10) 
 y.hi<-.1*ceiling(max(Methods.list[[m]]$ary[e,t,,],na.rm=T)*10) 
  
 par(mfrow=c(2,3)) 
  
 for (ov in 1:(length(Overlap)-1)) 
  { 
  plot(Methods.list[[m]]$ary[e,t,ov,]~Methods.list[[m]]$ary[1,1,length(Overlap),],xlab='Baseline 1000-year Synchrony', 
        xlim=c(x.lo,x.hi),ylab='Synchrony Estimate',main=paste("Overlap = ",Overlap[ov]," years"),type='p',pch=1, 
   ylim=c(y.lo,y.hi),cex.lab=1.2,cex.axis=1.1) 
  segments(x.lo,x.lo,x.hi,x.hi,col="red",lwd=2) 
  abline(h=No.sync.summ[which(Meth==m),e,t,ov],col="blue",lwd=2.5,lty="dashed")  # 95% upper CI line 
  }   # END FOR-OV 
 }    # END FUNC.PLOT.OVERLAP.ACTUAL 
 
 
 
#################################################################### 
# 
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# FUNC.PLOT.OVERLAP.DIFF.B:  FUNCTION TO PLOT THE BOXPLOT RELATIONSHIP BTWN TIME SERIES OVERLAP &  
# SYNCHRONY DIFFERENCE FROM BASELINE  
# 
# Input 
# [typ]  Treat:  U, Sm 
# [err]  Error:  0,.25,.30  
# 
#################################################################### 
 
Func.plot.overlap.diff.b<-function(typ,err)  
 { 
 t<-which(Treat==typ) 
 e<-which(Err.SD==err) 
 
 ov<-1:(length(Overlap)-1) 
 par(mfrow=c(2,3)) 
 for(m in 1:5) 
  { 
  boxplot(Methods.list[[m]]$d.ary[e,t,ov,]~ov,xlab='TS Overlap length',ylab='Difference from Baseline 1000-yr Synchrony', 
         ylim=c(-1*Methods.list[[m]]$dmax,Methods.list[[m]]$dmax),axes=FALSE,main=paste(Meth[m],"    
   Synchrony"),cex.lab=1.2,cex.axis=1.1) 
  axis(1,at=1:length(Overlap),labels=Overlap,cex.lab=1.2,cex.axis=1.1) 
  axis(2,seq(-1*Methods.list[[m]]$dmax,Methods.list[[m]]$dmax,.2),cex.axis=1.1) 
  abline(h=0,col="red",lwd=2) 
  }        # END FOR-M 
 }         # END FUNC.PLOT.OVERLAP.DIFF.B 
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#################################################################### 
# 
# FUNC.PLOT.METRICS:  FUNCTION TO PLOT THE RELATIONSHIP BTWN 5 METRICS' SYNCHRONY ESTIMATES, for 1000-yr TIME SERIES ONLY 
# 
# Input 
# [err]  Error:  0,.25,.3  
# 
#################################################################### 
 
Func.plot.metrics<-function(err) 
 { 
 e<-which(Err.SD==err) 
 
 par(mfrow=c(5,5)) 
 par(mar=c(0,0,0,0)) 
 par(oma=c(3,10,3,10)) 
  
 for(ro in 1:5)  # For its row, the metric is the y-axis 
  { 
   real.y.lo<-Methods.list[[ro]]$Meth.min 
  real.y.hi<-Methods.list[[ro]]$Meth.max 
  # Min & max are determined across both smoothed & unsmoothed types. Min and max may extend beyond normal range. 
  y.lo<-min(real.y.lo,.1*floor(min(Methods.list[[ro]]$ary[e,,length(Overlap),],na.rm=T)*10)) 
  y.hi<-max(real.y.hi,.1*ceiling(max(Methods.list[[ro]]$ary[e,,length(Overlap),],na.rm=T)*10)) 
      
  for(co in 1:5) # For its column, the metric is the x-axis 
   { 
   real.x.lo<-Methods.list[[co]]$Meth.min 
   real.x.hi<-Methods.list[[co]]$Meth.max 
   x.lo<-min(real.x.lo,.1*floor(min(Methods.list[[co]]$ary[e,,length(Overlap),],na.rm=T)*10)) 
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   x.hi<-max(real.x.hi,.1*ceiling(max(Methods.list[[co]]$ary[e,,length(Overlap),],na.rm=T)*10)) 
    
   if(ro<co){t<-1} else {t<-2}   # Upper triangle will be unsmoothed, lower is smoothed 
    
      plot(Full.dat[e,t,ro,]~Full.dat[e,t,co,],type=ifelse(ro==co, "n", "p"),xlim=c(x.lo,x.hi),ylim=c(y.lo,y.hi),axes=FALSE,pch=1) 
   
         box(lty="solid")           # Make a solid box around each plot 
      if(ro==co) text(mean(c(x.lo,x.hi)),mean(c(y.lo,y.hi)),Meth[ro],cex=2.5) 
 
        if(ro==5&&even(co)) 
    {axis(1,at=seq(x.lo,x.hi,.2),labels=seq(x.lo,x.hi,.2),cex.lab=1.2,cex.axis=1.1,las=3,xpd=TRUE)}  
     #x axis on bottom for type even 
   if(ro==1&&odd(co)) 
            {axis(3,at=seq(x.lo,x.hi,.2),labels=seq(x.lo,x.hi,.2),cex.lab=1.2,cex.axis=1.1,las=3,xpd=TRUE)}  
     #x axis on top for type odd 
 
   if(co==1&&even(ro)) 
    {axis(2,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)}  
     #y axis on left for type even 
   if(co==5&&odd(ro)) 
    {axis(4,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)}  
     #y axis on right for type odd 
   if(ro!=co) segments(real.x.lo,real.y.lo,real.x.hi,real.y.hi,col="red",lwd=2) 
   }                       # END FOR-CO 
    }                         # END FOR-RO 
 }                          # END FUNC.PLOT.METRICS 
 
 
#################################################################### 
# 
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# FUNC.PLOT.TYPE:  FUNCTION TO PLOT THE RELATIONSHIP BETWEEN SYNCHRONY ESTIMATE AND BASELINE SYNCHRONY, IN ONE  
# LARGE MATRIX 
# 
# Input 
# [ov.num]  Overlap 1:6 
# 
#################################################################### 
 
Func.plot.type<-function(ov.num) 
 { 
 par(mfrow=c(5,6)) 
 par(mar=c(0,0,0,0)) 
 par(oma=c(3,10,3,10)) 
  
 for(m in 1:5)   # For each metric (one metric per row) 
  { 
  x.lo<-Methods.list[[m]]$Meth.min 
  x.hi<-Methods.list[[m]]$Meth.max 
  y.lo<-Methods.list[[m]]$Type.min       
  y.hi<-Methods.list[[m]]$Type.max        
  for (e in 1:length(Err.SD))      # For each error type 
   { 
      for(t in 1:length(Treat))        # For each data treatment   
      { 
      
 plot(Methods.list[[m]]$ary[e,t,ov.num,]~Methods.list[[m]]$ary[1,1,length(Overlap),],type='p',pch=1,axes=FALSE,xlim=c(x.lo,x.hi), 
     ylim=c(y.lo,y.hi)) 
    segments(x.lo,x.lo,x.hi,x.hi,col='red',lwd=2) 
    abline(h=No.sync.summ[m,e,t,ov.num],col="blue",lwd=2.5,lty="dashed") # 95% upper CI line 
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          box(lty="solid")               # Make a solid box around each plot 
       
         # Last column for even-numbered metrics should have axes; odd, metric names  
    if(e==length(Err.SD)&& t==length(Treat)&& even(m))        
  
     {axis(4,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)} 
    if(e==length(Err.SD)&& t==length(Treat)&& odd(m))  
     {axis(4,yaxt="n",title(ylab=Meth[m]),cex.lab=1.2)} 
   
    if(e==1 && t==1 && even(m)) # First column for even-numbered metrics should have names; odd, axes 
   
     {axis(2,yaxt="n",ylab=Meth[m],cex.lab=1.2)} 
    if(e==1 && t==1 && odd(m))    
     {axis(2,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)} 
    }  # END FOR-T 
   }   # END FOR-E 
      }             # END FOR-M 
 }                    # END FUNC.PLOT.TYPE 
 
 
#################################################################### 
# 
# FUNC.PLOT.POWER:  FUNCTION TO PLOT %SIGNIFICANT (AT ALPHA=0.05) SYNCHRONY ESTIMATES AGAINST BASELINE SYNCHRONY 
# 
# Input 
# [ov.num]  Overlap 1:6 
#################################################################### 
 
Func.plot.power<-function(ov.num) 
 { 
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 par(mfrow=c(5,6)) 
 par(mar=c(0,0,0,0)) 
 par(oma=c(3,10,3,10)) 
  
 for(m in 1:5)   # For each metric (one metric per row) 
  { 
  x.lo<-Methods.list[[m]]$Pow.min 
  x.hi<-Methods.list[[m]]$Pow.max 
  y.lo<-0 
  y.hi<-1 
 
  for (e in 1:length(Err.SD))      # For each error type 
   { 
      for(t in 1:length(Treat))        # For each data treatment   
      { 
       plot(Methods.list[[m]]$pow[e,t,ov.num,x.lo:x.hi],type='l',pch=1,axes=FALSE,ylim=c(y.lo,y.hi)) 
    abline(h=.5,col="red") 
          box(lty="solid")               # Make a solid box around each plot 
       
         if(e==length(Err.SD)&& t==length(Treat)&& even(m))# Last column for even-numbered metrics should have axes 
   
     {axis(4,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)} 
   
    if(e==1 && t==1 && odd(m)) # First column for odd-numbered metrics should have axes    
     {axis(2,at=seq(y.lo,y.hi,.2),labels=seq(y.lo,y.hi,.2),cex.lab=1.2,cex.axis=1.1,las=1,xpd=TRUE)} 
    }  # END FOR-T 
   }   # END FOR-E 
      }    # END FOR-M 
 }                           # END FUNC.PLOT.POWER
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CHAPTER 4 

REVISITING THE LEGENDARY SYNCHRONY OF SNOWSHOE HARES 

 

ABSTRACT 

In recent decades, alarming collapses in the dynamics of several historically cyclic 

and synchronous species have underscored the profound effects these phenomena can 

have on trophic webs and ecosystem function. Identifying the mechanisms that 

synchronize population cycles could help us understand the role of anthropogenic 

disturbances, such as habitat fragmentation and climate change, in these large-scale 

processes. In the first range-wide analysis of snowshoe hare (Lepus americanus) 

dynamics, I used partial Mantel tests, modified correlograms, and shifting window 

analyses to quantify patterns and test hypothesized mechanisms of synchrony. 

Confirming long-held but previously untested assumptions, I found northern hare 

populations (boreal forests of Alaska and Canada) were significantly synchronized at 

distances up to several thousand kilometers, while southern populations (montane 

forests in the contiguous U.S.) were not significantly synchronized at any of the distance 

classes evaluated. I found that historical patterns of synchrony still persist for snowshoe 

hares, in contrast to reports for some other synchronous species. Hare synchrony 

patterns clustered into groups defined according to genetic criteria—but not ecoregions 

or climatic regions—suggesting an important role for dispersal in synchronizing northern 

snowshoe hare populations. 
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INTRODUCTION 

Since its origins in the early 1900’s, the discipline of population ecology has been 

concerned with answering the fundamental question: “How and why do population 

numbers change in time and space?” (Royama 1992; Kingsland 1995).  At the core of 

this effort has been a quest to unravel the puzzle of population cycles and the related 

phenomenon of synchrony, the simultaneous rise and fall of populations over large 

spatial scales, sometimes across millions of square kilometers (Turchin 2003; Liebhold et 

al. 2004).  

Population cycles and synchronous dynamics, famously exemplified by snowshoe 

hares (Lepus americanus) and Canada lynx (Lynx canadensis), are widespread 

phenomena reported for many taxa (reviewed in Liebhold et al. 2004). Understanding 

mechanisms of cycles and synchrony in ecological systems is not only relevant to 

conservation of threatened and endangered species, but also has economically 

important applications in the management of forest insect outbreaks (Peltonen et al. 

2002) and regional fisheries (Fréon et al. 2003). For example, studies have shown that 

synchrony can affect long-term species persistence: climate-mediated synchrony can 

increase the chance of subpopulations simultaneously declining to extinction during a 

period of harsh weather, whereas dispersal-mediated synchrony can enhance 

population persistence via the regular movement of individuals from higher to lower 

density populations (Allen et al. 1993; Heino et al. 1997; Palmqvist and Lundberg 1998; 

Lloyd and May 1999; Matter 2001; Johst and Drechsler 2003; Roy et al. 2005). 
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Ecologically, population cycles and synchrony can also have profound effects on trophic 

dynamics and the functioning of ecosystems, as has been demonstrated with lemmings 

(Dicrostonyx and Lemus spp.) and snowshoe hares in boreal forests (Keith 1963; Bulmer 

1974; Ims and Fuglei 2005; Krebs 2011), voles in Fennoscandia (Microtus and 

Clethrionomys spp.; Hanski et al. 2001; Hanski et al. 2006), various oaks (Quercus spp.; 

Koenig and Knops 2001; Haynes et al. 2009), and gypsy moths (Lymantria dispar) and 

other forest insects (Klemola et al. 2002; Stone 2004). 

Over the past two decades, studies have reported alarming collapses of 

population cycles or synchrony in several species of voles, grouse, and forest insects 

(Bierman et al. 2006; reviewed in Ims et al. 2008; Kausrud et al. 2008). The significance 

and persistence of these recent shifts in population dynamics have yet to be 

determined. The restoration of ‘lost’ cycles and synchronous dynamics has already been 

reported for some species (Brommer et al. 2010). Nevertheless, the possible regime 

changes reported in the dynamics of historically cyclic and synchronous species, and 

concerns about potential loss of ecosystem functions (e.g., pulsed flows of resources 

and disturbances), raise urgencies for increased research attention on mechanisms 

driving these ecological processes. Identifying mechanisms would help us understand 

the potential role of anthropogenic disturbances, such as habitat fragmentation and 

climate change, in dampening cyclic and synchronous population dynamics.  

Cyclic populations have a greater tendency than non-cyclic populations to 

synchronize over substantial distances, through a process known as “phase locking” 
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(Jansen 1999). We have a reasonably good understanding of the delayed density 

dependent processes that generate population cycles for many species (reviewed in 

Turchin 2003). However, the factors generating cycles are typically distinct from the 

mechanisms synchronizing these cycles across a species’ range (Turchin and Hall 2003). 

Researchers have identified three primary mechanisms for synchrony: 1) dispersal from 

higher to lower density populations; 2) trophic interactions with predators or other 

species that are themselves synchronized or highly mobile; and 3) strong weather 

impacts on population growth combined with climatic similarities over broad geographic 

regions. Any combination of these factors can act in tandem (Liebhold et al. 2004a). 

Geographic patterns, such as the spatial scale of synchrony or correspondence between 

synchrony patterns and ecological gradients, can give us clues regarding the major 

mechanisms operating on a particular species (Koenig 1999).  

For example, cyclic dynamics and spatial synchrony may break down at lower 

latitudes, a pattern suggested for snowshoe hares (Smith 1983; Hodges 2000b; Murray 

2000), voles (Bjornstad et al. 1995; Saitoh et al. 1998; Tkadlec and Stenseth 2001), 

muskrats (Ondatra zibethicus; Erb et al. 2000), autumnal moths (Epirrita autumnata; 

Klemola et al. 2002), and grouse (Cattadori and Hudson 1999). For many of these boreal 

and northern temperate species, dampened cycles and synchrony appear to be driven 

by source-sink dynamics in the naturally heterogeneous landscapes prevalent in their 

southern range, whereby movement to and mortality in open-canopy stands is capable 
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of depressing landscape-level population growth (Howell 1923; Bjornstad et al. 1995; 

Griffin and Mills 2009).  

The snowshoe hare has historically been recognized as a key driver of boreal 

community dynamics in North America (Keith 1963; Bulmer 1974; Keith 1983; Krebs et 

al. 2001; Ruesink et al. 2002). The large-scale synchrony of its high-amplitude population 

cycles has rippling impacts at multiple trophic levels and across almost 6 million square 

kilometers of Canada’s and Alaska’s boreal forests. While the mechanisms driving hare 

cycles have been intensively studied (e.g., MacLulich 1937; Keith and Windberg 1978; 

Hodges et al. 1999; Krebs et al. 2001; Sinclair et al. 2003), we have limited 

understanding of the processes synchronizing these cycles across large areas. Likewise, 

for hares and lynx, a range-wide north-south break in synchrony has not been 

empirically tested. 

For snowshoe hares, as with many other species, the long-term, geographically 

extensive time series data required for synchrony analysis are difficult to come by 

(Bulmer 1974; Koenig 1999). The only quantitative analyses to date of snowshoe hare 

synchrony over a large part of the species range are based on 17 years of questionnaire 

data collected across Canada and a few northern U.S. states during the 1930’s and 

1940’s, an effort known as the Canadian Snowshoe Rabbit Enquiry (e.g., Chitty 1948). 

These data were analyzed in two separate studies to reveal large-scale synchrony across 

much of Canada, with population trends in eastern and western Canada lagging those of 

central Canada by approximately three years (Smith 1983; Ranta et al. 1997a). A 
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traveling wave of synchrony has similarly been reported for Canada lynx, based on fur 

return data for the past two centuries (Elton and Nicholson 1942; Smith and Davis 1981; 

Ranta et al. 1997b; Haydon and Greenwood 2000).  

It has been a decade since these attempts to evaluate southern snowshoe hare 

synchrony patterns, and reported patterns of northern hare synchrony are based on 

data collected 70 years ago. Over the next century, North America’s boreal forests are 

predicted to undergo major fragmentation and habitat shifts due to global warming and 

human activities (IPCC 2001; IPCC 2007). Given recent apparent collapses in cycles and 

synchrony for other species and indications that natural habitat fragmentation may 

depress large-scale dynamics, how have patterns of hare synchrony changed in the past 

century, and what changes can we predict for the future? 

In the first range-wide analysis of snowshoe hare dynamics, I quantified 

synchrony patterns and tested hypothesized mechanisms of hare synchrony. I compiled 

all available snowshoe hare time series from throughout the species distribution to 

answer three questions relevant to understanding current patterns and likely 

mechanisms of hare synchrony, necessary precursors to predicting future dynamics: 1) 

Do synchrony patterns differ between northern and southern hare populations?; 2) 

Have synchrony patterns changed in recent decades?; and 3) Do range-wide synchrony 

patterns correspond with ecoregions, climatic regions, or genetic groups? 

To address these questions, I calculated synchrony for all time series pairs with 

at least 12 years of overlapping data. I combined partial Mantel tests and modified 
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correlograms (Koenig and Knops 1998) to quantify and contrast the geographic scale of 

synchrony for northern and southern hare populations. Finally, I tested the 

correspondence between synchrony patterns and three grouping factors (ecoregions, 

climatic regions, or genetic groups) in partial Mantel tests to evaluate the importance of 

two external abiotic factors (habitat and weather) and one internal biotic factor (hare 

dispersal, as measured by gene flow) in synchronizing hare populations. 

 

METHODS 

Compiling Time Series 

Over the past several decades, many disparate efforts by Canadian 

provincial/territorial and U.S. federal and state wildlife agencies and independent 

researchers have accumulated snowshoe hare time series exceeding the 17-year span of 

the Rabbit Enquiry data. My starting points for data compilation were the collections of 

snowshoe hare time series reported in Keith (1963) and Hodges (2000a, 2000b). I 

updated time series for which more recent data were available and sought additional 

snowshoe hare time series from: 

1) Authors of snowshoe hare literature cited in review papers by Hodges (2000a, 

2000b), Murray (2003), Ellsworth and Reynolds (2006), and Ferron and St-

Laurent (2007)  
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2) Authors of snowshoe hare literature published since 1995, identified by a Web of 

Knowledge database search using keywords “Lepus americanus” or “snowshoe 

hare*” 

3) Canadian National Parks 

4) Trappers Associations for Canadian provinces and territories 

5) Canadian provincial/territorial and U.S. federal and state wildlife agencies 

6) Large U.S. National Forests within the range of snowshoe hares 

Data ‘Cleaning’ 

For analyses, I excluded all time series spanning less than 14 years, to ensure at 

least one full cycle was represented in the data. I did not use time series collected at 

recent post-clearcut or post-fire sites, to eliminate biases associated with these habitat 

treatments, as hare numbers are known to decline in the years immediately following 

these disturbances (Griffin and Mills 2009; Hodges et al. 2009). I also excluded time 

series that did not extend into the second half of the twentieth century, because my 

primary focus was on current hare synchrony patterns. 

The time series data varied in survey method (harvest, live-trap, sightings, 

pellets, winter tracks), geographic extent (ranging from 14-ha study sites to entire 

Canadian provinces/ territories), and temporal overlap. The challenge of this study was 

to maximize the number and spatial distribution of time series incorporated in a single 

range-wide analysis of snowshoe hare synchrony, while minimizing potential biases due 

to combining different types of data. I approached this challenge in four ways.  
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First, I used Kendall rank correlation (Zar 1999) to identify synchrony patterns in 

the data, because a previous simulation study (Chapter 3) showed this metric was more 

robust to short time series and sampling error, and less prone to Type I error than other 

synchrony metrics evaluated. Because the Kendall metric is a nonparametric test of 

synchrony, I also expected this metric to be less affected by biases associated with 

survey method (e.g., potential over-estimation by pellet indices when population sizes 

are low; Mills et al. 2005) compared to parametric alternatives such as Pearson 

correlation. Although the Kendall metric had not been previously applied in snowshoe 

hare synchrony analyses, I demonstrate this metric performed comparably with other 

methods in identifying the traveling wave pattern of synchrony earlier reported for 

Canada lynx and snowshoe hares (Appendix 4.1). 

Second, I combined time series for some small-scale study sites (<30 ha), so time 

series would more likely reflect annual changes in population abundance instead of 

seasonal movements or local source-sink dynamics (Griffin and Mills 2009). Data were 

combined only when they were collected using the same method and when sites were 

less than 30 km apart (Appendix 4.2). For the data I compiled, this scale tended to 

separate population clusters occurring in different habitat types (e.g., mature spruce-fir 

versus young lodgepole habitats). Within a set of time series, data were sometimes 

missing for one or more years for a subset of time series. In addition, the mean and 

variance of population estimates often differed among time series because even at 

small spatial scales, study sites can differ greatly in habitat quality for snowshoe hares. 
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Therefore, to ensure the combined abundance estimates for these data would not be 

biased by which time series were missing data, I scaled time series to a mean of zero 

and unit variance prior to averaging the data across a set of time series.  

Third, I standardized the recorded years of data collection, so data collected at 

similar times of the year were consistently assigned to the same year for Lag 0 

synchrony analyses. For example, most winter harvest data were collected from 

autumn/winter of one year to early spring of the subsequent year. I consistently 

recorded winter harvest numbers as estimates for the autumn/winter season (e.g., 

harvest data collected October 2007 – March 2008 would be assigned to 2007). Data 

collected between January and April of a year using ‘snapshot’ methods, such as live-

trapping, winter track counts, or sightings, were also recorded as estimates for the 

previous year. The justification was that these short-term estimates and indices of 

population sizes overlapped winter harvest seasons recorded for the previous year. 12 

out of 49 time series (25%) were pellet counts that averaged pellets deposited over the 

course of a year, or snapshot methods collected during the summer. For these time 

series, it was difficult to determine whether estimates should correspond better with 

winter harvests recorded for that year or for the previous year. Therefore, I analyzed 

them in two ways. First, I simply used the calendar year, which means that summer 

counts were included with the harvest data for that same year’s fall/winter season. 

Second, I used the higher of two synchrony estimates (data recorded as current year 
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versus previous year) for these twelve time series. Hereafter, I refer to the second 

method as Adjusted Lag 0 synchrony. 

Finally, to evaluate the potential validity of combining different data in a single 

range-wide analysis, I asked if synchrony estimates were correlated between different 

survey methods (e.g., harvest compared to harvest per hunter, or pellets compared to 

harvest) for geographically overlapping areas. For this analysis, I calculated Pearson’s 

correlation coefficient between synchrony estimates for each pair of methods. For 

example, when both harvest and sightings time series were available for the same U.S. 

state, I calculated synchrony between the harvest time series and the 48 other time 

series in my analysis, calculated synchrony between the sightings time series and the 48 

other time series in my analysis, then determined the correlation between these two 

sets of synchrony estimates.  

Synchrony Analyses 

All analyses were conducted in Program R (http://cran.r-project.org/; Appendix 

4.7). The first step in identifying synchrony patterns and influencing factors was to 

estimate Lag 0 and Adjusted Lag 0 Kendall synchrony for every pairwise comparison of 

snowshoe hare time series with at least 12 years of overlapping data. Although the 

minimum time series length included in this analysis was 14 years, the number of years 

a pair of time series actually overlapped depended on which years each time series 

spanned. For example, a time series spanning 1960-1974 and a time series spanning 

1970-1984 overlap in only five years, 1970-1974.  

http://cran.r-project.org/
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After I calculated pairwise synchrony estimates, I used a partial Mantel test to 

determine if synchrony patterns differ between northern and southern hare 

populations, using the 49th parallel to distinguish these groups (similar to lynx; Parker 

2001). The partial Mantel test determines correspondence between two pairwise 

variables while controlling for potential confounding effects of a third pairwise variable 

(typically, the geographic distance between populations). The matrices used in my 

partial Mantel analysis were: 1) a matrix of pairwise Kendall synchrony estimates, 2) a 

categorical matrix coded as “0” if both populations occurred south of the 49th parallel 

and “1” if both populations occurred north of the 49th parallel, and 3) a matrix of 

geographic distance between each pair of populations. Significance of partial Mantel 

test statistics was evaluated with 1000 resamples.  

To gain additional insight on how synchrony patterns differ between northern 

and southern snowshoe hares, I compared the spatial scale of synchrony (i.e., the 

maximum geographic distance between two time series exhibiting significant 

synchrony) for these two regions. For this analysis I used the modified correlogram 

(Koenig and Knops 1998). Unlike the Mantel correlogram, which tests synchrony within 

each geographic distance category against the overall average synchrony of the entire 

dataset, the modified correlogram tests whether the synchrony within each geographic 

distance category is significantly different from zero, thus identifying the spatial scale of 

synchrony. I conducted separate modified correlogram analyses for northern and 

southern hare time series and for a range (3–5) of geographic distance categories. 
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Significance of synchrony within each distance category was evaluated with (the smaller 

of) 100 resamples or the maximum number of resamples possible given the number of 

population pairs within a distance category. 

To determine if hare synchrony patterns have changed in recent decades, I 

conducted separate analyses for northern and southern hare populations. Separate 

analyses were necessary because different data were available for northern and 

southern populations. For northern hare populations, I determined if the modified 

correlogram for northern time series I had compiled (primarily spanning the past three 

decades) exhibited a U-shaped relationship between synchrony and geographic distance 

qualitatively similar to that demonstrated for the 1931–1947 Canadian Snowshoe Rabbit 

Enquiry data (Ranta et al. 1997a). This pattern, in which synchrony first declines and 

then increases with geographic distance, is indicative of a traveling wave of synchrony 

(Ranta et al. 1997a; Ranta et al. 1997b). Although the similarity of my results with Ranta 

et al.’s (1997) scatterplot could not be statistically tested, I expected a U-shaped 

synchrony pattern to be significantly synchronous at least within the smallest and 

largest geographic distance categories.  

For southern hare populations (south of the 49th parallel), no large-scale 

historical assessment of snowshoe hare synchrony was available for comparison with 

current synchrony patterns. Therefore, I evaluated long-term trends in synchrony of 

southern hare populations by conducting a shifting window analysis on the five longest 

southern hare time series I had compiled. These five time series (NY1, MI3, MN2, PA1, 
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WI2) covered the Great Lakes and northeast U.S. region and spanned 37–69 years in 

length. Beginning with a window size of 15 years, for every pairwise comparison of the 

five time series I estimated synchrony for the first 15 years of data, shifted the analysis 

window by one year, estimated synchrony for the next 15 years of data, and repeated 

this procedure to the end of the time series. I plotted successive synchrony estimates 

against time, calculated the slope of the regression, and averaged this slope over all 

pairwise comparisons for each window size. To ensure conclusions were not influenced 

by window size, I repeated this analysis with window sizes of 25 and 35 years. 

I used the partial Mantel test to evaluate potential mechanisms of hare 

synchrony. I asked if snowshoe hare populations were significantly more synchronized 

within versus between groups defined by five Level I Ecoregions (Eastern Temperate 

Forests, Marine West Coast Forests, Northern Forests, Northwestern Forested 

Mountains, and Taiga; CEC 1997), three climatic regions, or three genetic groups, while 

controlling for geographic distance. For this analysis, a time series pair was coded as “0” 

if both populations occurred in different (ecoregion, climatic, or genetic) groups and “1” 

if they occurred in the same group. The climatic regions (Pacific, Continental, and 

Atlantic) were defined by the spatial influences of the North Atlantic Oscillation (NAO), 

following Stenseth et al. (1999). To facilitate comparisons with Stenseth et al’s (1999) 

finding that Canada lynx dynamics are similar within NAO climatic regions, I limited my 

analysis of climatic regions to snowshoe hare time series from the northern species’ 

range, as Stenseth did with lynx. The genetic groups (Boreal, Pacific NW, and Rockies) 



 

198 

 

were defined in my earlier range-wide analysis (Chapter 2) of snowshoe hare genetic 

structure. 

 

RESULTS 

Time Series and Data ‘Cleaning’ 

Wildlife agencies and individual researchers generously donated 309 snowshoe 

hare time series at least six years in duration. Approximately half of these time series 

consisted of pellet counts and nearly a quarter were hunter harvests (Fig. 4.1). Only 45% 

(139) of the time series met criteria for inclusion in analyses; the others were shorter 

than 14 years or were collected in post-clearcut or post-burn treatments. After 

combining time series for small-scale study sites (Appendix 4.2), a final set of 49 time 

series within the years 1923-2010 and ranging from 14 to 75 years in duration were 

analyzed in this study (Appendices 4.3 and 4.4). 

The final set of time series covered a large portion of the snowshoe hare range, 

but with notable gaps of data for the Pacific Northwest, British Columbia, and 

southeastern U.S. states (Fig. 4.2). Few time series were available for central Canada. 

Most harvest time series occurred in the eastern half of the species range. These were 

among the longest time series used in this study. Therefore, there was a strong 

geographic bias in both time series length and survey method. Time series were also 

more spatially clustered in the southern and eastern species range than in the western 

range. 
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Comparisons of different survey methods for harvest data (harvest, 

harvest/hunter, harvest/hunter-day, and harvest/area) yielded good correlations, with a 

minimum Pearson’s r = 0.76 across ten comparisons (Appendix 4.5). Few data were 

available for evaluating non-harvest survey methods. My comparisons involving non-

harvest data were limited to southern population evaluations of harvest against non-

harvest methods that were applied to (often much smaller) geographic subsets of the 

harvest area. Correlations between synchrony estimates based on harvest and non-

harvest methods were poor, ranging from Pearson’s r = 0.0 (for comparison of harvest 

and pellet-based synchrony estimates) to r = 0.43 (for comparison of harvest and track-

based synchrony estimates).  

Because my analysis comparing survey methods revealed poor correlation 

between harvest and non-harvest methods, I used the partial Mantel test to further 

examine methods biases associated with survey methods. In this test I coded a time 

series pair as “0” if data were collected using different methods, and “1” if they were 

collected using the same method. Synchrony estimates were not significantly higher for 

time series pairs with the same compared to different survey methods (r=0.07, p = 

0.13).  

Results based on Lag 0 and Adjusted Lag 0 synchrony estimates were 

qualitatively similar across all tests (not shown), so results are presented only for Lag 0 

synchrony. 
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Synchrony Analyses 

Northern hare populations exhibited higher synchrony than southern hare 

populations (r = 0.39, p<0.001). All modified correlogram results were qualitatively 

similar regardless of the number of geographic distance categories (3–5), so I present 

results for four distance categories, consistent with the four clusters of hare synchrony 

Ranta et al. (1997a) identified from the Canadian Snowshoe Rabbit Enquiry data. For 

northern hare populations, synchrony was significant for 3 of 4 geographic distance 

categories (p < 0.01; Fig. 4.3). Southern hare populations were not significantly 

synchronized with each other within any distance category (p = 0.11–0.42; Fig. 4.4). To 

investigate a potential bias due to survey methods, I re-analyzed southern hare data 

using harvest estimates only—results were still non-significant in all distance categories 

(p = 0.11–0.46). The distribution of geographic distances for southern versus northern 

populations were similar (Fig. 4.5), suggesting their different synchrony patterns were 

not due to greater separation of southern populations within distance categories. 

The modified correlogram for northern hare populations exhibited a U-shaped 

relationship between synchrony and geographic distance (Fig. 4.3). Northern hare 

populations were significantly synchronized in all distance categories except for 

intermediate distances (2901–4350 km). In this study, the largest distance category (> 

4350 km) comprised Alaska snowshoe hare populations paired with northern Quebec 

snowshoe hare populations (QC3 and QC7). Synchrony was significant or nearly 

significant for all pairwise comparisons between Alaska and the northern Quebec 
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populations, except for comparisons with combined pellet data from five study sites 

across Kenai National Wildlife Refuge (AK5; Table 4.1). In contrast, synchrony was not 

significant between Alaska and many southern Quebec populations (Table 4.1). 

I did not find a significant long-term trend in synchrony for southern hare 

populations, based on a shifting window analysis of synchrony for the five longest 

southern hare time series available (e.g., Appendix 4.6). Averaged across all pairwise 

population comparisons for each window size, mean slopes when synchrony was 

plotted over time were < 0.01; mean standard deviations were < 0.02.  

Synchrony was not higher for populations within versus between ecoregions (r = 

0-.05, p = 0.27) or climatic regions (r = 0.08, p = 0.25), when partial Mantel analyses 

controlled for the confounding effects of geographic distance. Using the same analysis 

method, populations occurring in the same genetic group were more synchronized than 

populations in different genetic groups (r = 0.17, p = 0.02). 

 

DISCUSSION 

In the first range-wide, quantitative analysis of snowshoe hare synchrony, I 

confirmed the long-held, but previously untested, assumption that northern hare 

populations are more synchronized than southern hare populations. I found that 

historical patterns of synchrony still persist for snowshoe hares, in contrast to recent 

apparent collapses in the dynamics of some other synchronous species. Hare synchrony 

patterns clustered into groups defined according to genetic criteria, suggesting a likely 
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role for dispersal (of hares or their predators) in synchronizing snowshoe hare 

populations. 

Northern vs. Southern Hare Dynamics 

Based on the partial Mantel test, I found a significant difference in synchrony 

between northern and southern hare populations. This result was also supported by 

independent modified correlogram analyses, which identified a large spatial scale of 

synchrony in the northern hare range (populations separated by several thousand 

kilometers were significantly synchronized) and a relative lack of synchrony among 

southern hare populations. These findings are consistent with previous assumptions 

that snowshoe hares exhibit a latitudinal gradient in cycles and synchrony, similar to 

several other boreal and north temperate species (Bjornstad et al. 1995, Saitoh et al. 

1998, Tkadlec and Stenseth 2001).  

Temporal Patterns of Hare Synchrony 

While the past few decades have seen dampening population dynamics for 

several historically cyclic and synchronous species (Bierman et al. 2006; reviewed in Ims 

et al. 2008; Kausrud et al. 2008), northern snowshoe hare populations appear to have 

retained historical patterns of synchrony. Time series data based primarily on the past 

three decades echo the spatial scale and U-shaped pattern of synchrony reported in 

analyses of northern hare time series from the 1930’s and 1940’s and Canada lynx data 

based on the past two centuries (Elton and Nicholson 1942; Smith and Davis 1981; 

Ranta et al. 1997b; Haydon and Greenwood 2000).  
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Likewise, the relatively low synchrony among southern hare populations appears 

to reflect long-term dynamics rather than a recent collapse of formerly synchronous 

dynamics. These results suggest the factors generating the current latitudinal gradient in 

hare synchrony have been operating since at least the mid-1900’s. This finding does not 

preclude an anthropogenic influence on hare synchrony patterns. While habitat clearing 

and fragmentation have increased in recent decades, these and many other 

anthropogenic activities (e.g., fire suppression) have been influencing the quality of lynx 

and hare habitat in North America for much of the past century, especially in southern 

portions of the  species’ range (Poole 2003).     

Mechanisms of Hare Synchrony  

Hare synchrony patterns did not significantly correspond with ecoregions or 

climatic regions in this analysis. This finding contrasts a large number of studies, 

especially from the past decade, that have identified major climatic influences on 

species dynamics (e.g., Ottersen et al. 2001; Post and Forchhammer 2002; Stenseth et 

al. 2004; Grotan et al. 2005) and a primary role for global warming in collapsing cycles 

and synchrony (Ims et al. 2008; Kausrud et al. 2008; Gilg et al. 2009). Stenseth et al. 

(1999) had suggested Canada lynx population dynamics are more similar within than 

between the NAO climatic regions I analyzed in this study, and that lynx were less likely 

to disperse across climatic region boundaries due to unfamiliarity with different snow 

conditions in different regions. If lynx were synchronizing snowshoe populations directly 

or indirectly, I would have expected similar climate-influenced boundaries on snowshoe 
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hare synchrony as suggested for lynx. I did not find this pattern, which suggests some 

combination of:  1) the proposed climatic boundary for lynx is incorrect; 2) snowshoe 

hares are not synchronized by lynx; or 3) the snowshoe hare data were insufficient to 

detect a climate-influenced boundary on synchrony patterns.  

Hare synchrony patterns significantly corresponded with genetic groups. In 

Chapter 2, I found a north-south pattern in snowshoe hare genetic structure, with gene 

flow higher at northern latitudes. The finding that synchrony and gene flow patterns are 

significantly associated for snowshoe hares suggests dispersal may play an important 

role in synchronizing hare dynamics. The observed traveling wave of synchrony among 

northern hare populations is also a common signature of dispersal-mediated synchrony 

(Haydon and Greenwood 2000; Bjornstad et al. 2002; Blasius et al. 1999). These 

patterns—a latitudinal gradient in synchrony and traveling wave synchrony in northern 

habitats—are equally consistent with a mechanism of hare dispersal and a mechanism 

of lynx (or other specialist predator) dispersal (Schwartz et al. 2002) combined with 

strong predator-prey interactions: more data are needed to determine which 

mechanisms are in fact operating.   

Making Full Use of Disparate Data for Range-wide Analyses 

This study tentatively suggests strong patterns of synchrony can be revealed by 

analyses combining data using different survey methods. Most previous studies of 

synchrony, including the most frequently cited classic studies, have been based on a 

limited number of large-scale, long-term time series data collected using standardized 
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survey methods across all study sites. For example, most synchrony studies of North 

American mammals have been based on Hudson’s Bay Company Canada-wide fur return 

data (e.g., Elton 1942; Moran 1953; Erb 2000; Haydon 2001); many studies of synchrony 

in forest insect outbreaks used tree mortality patterns determined from aerial survey 

maps (e.g., Bjornstad et al. 2002; Aukema et al. 2008; Haynes et al. 2009); synchrony in 

microtine rodents and their predators in Fennoscandia have been based on trap data 

(e.g., Steen et al. 1996; Lambin et al. 1998); studies of disease epidemics use nationally 

collected medical data (Bjornstad 2000; Grenfell 2001); and many bird studies employ 

large-scale breeding bird survey or harvest data (e.g., Paradis et al. 2000; Bellamy et al. 

2003; Kvasnes et al. 2010).  

For these studies, it is possible that other time series sources might extend 

inferences, and for many other species, mixed-source time series are the only data 

available for studying large-scale population processes such as synchrony. My study 

takes a different approach to synchrony analysis—I bring together time series data from 

30 different sources, representing six survey methods, and ranging from 14 to 75 years 

in duration.  

My results suggest at least partial success in detecting synchrony using mixed-

source data. Survey method was not a significant grouping factor in a partial Mantel 

test, and the large-scale synchrony patterns revealed in this study matched expectations 

based on historical patterns and expectations. However, I cannot discount the possibility 

that results were influenced by the combination of multiple data types. Most notably, 
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when I explicitly compared synchrony estimates from harvest versus non-harvest survey 

methods, I did not find a strong correlation in these estimates. The lack of correlation 

may be due to differences in geographic area covered (e.g., track data for the northern 

third of Wisconsin compared to harvest data for all of Wisconsin), temporal coverage 

(e.g., harvest estimates collected over a 5-month period versus pellet counts averaged 

over a year), or differences associated with the survey methods themselves. The data 

are insufficient for distinguishing among these possibilities. Because all the data for 

methods comparisons came from southern populations, it is likely the low correlations 

are due in part to real differences in dynamics for the different geographic areas 

covered (rather than differences inherent to the methods themselves)—because in the 

southern range, populations fluctuate relatively independently at small spatial scales. 

Anthropogenic Impacts on Snowshoe Hare Synchrony 

How might habitat fragmentation and climate change impact future snowshoe 

hare dynamics? Results suggest that synchrony in hares is greater where populations 

are more connected. Major fragmentation of North America’s relatively homogeneous 

boreal forests could disrupt the large-scale, synchronized snowshoe hare cycles that 

have historically driven boreal community dynamics. Climate change has been invoked 

as the most likely cause of recent declines in cycles and synchrony of other species 

(Bierman et al. 2006; Ims et al. 2008; Kausrud et al. 2008). For snowshoe hares, there is 

no evidence that climate change has yet impacted or is likely to dampen hare dynamics 

in the near future. 
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Figure 4.1 
Snowshoe hare time series compiled for this study. 
(TOP) Proportion of time series based on each survey 
method. (BOTTOM) Frequency distribution of time 
series lengths. Data to the right of red arrow (> 14 years 
length) were included in the analysis. 
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ECOREGIONS 

Figure 4.2 
Distribution of 49 snowshoe hare time series data analyzed in this study. Size of circle is 
proportional to length of time series. Color of circle indicates data type: red = harvest, 
brown = pellets, blue = tracks, black = sightings, green = questionnaires, purple = live-
trap. Ecoregions are color-coded as shown in legend. Blue lines separate three NAO 
climatic regions. Red lines delineate three genetic groups. Black dotted line indicates 
49th parallel separating northern from southern hare populations in this study. 
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Figure 4.3 
Modified correlogram of synchrony against distance for northern snowshoe hares. Error bars represent 95% confidence intervals. 
The red line indicates zero synchrony. 
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Figure 4.4 
Modified correlogram of synchrony against distance for southern snowshoe hares. Error bars represent 95% confidence intervals. 
The red line indicates zero synchrony. 
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Figure 4.5 
Distribution of pairwise geographic distances for (TOP) northern and (BOTTOM) 
southern snowshoe hare populations. Red lines separate the geographic distance 
categories used in modified correlogram analyses. All analyzed time series are 
included. 
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QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8

AK1 0.29 0.06 0.05 0.29 0.46 0.29 0.10 0.60

AK2 0.08 0.12 0.04 0.71 0.79 0.05 0.09 NA

AK3 0.01 0.05 0.01 0.39 0.80 0.00 0.02 NA

AK4 0.03 0.10 0.01 0.57 0.21 0.00 0.00 NA

AK5 0.43 0.88 0.63 0.44 0.62 0.55 0.41 0.95

QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8

AK1 0.11 0.30 0.32 0.12 -0.01 0.09 0.23 -0.09

AK2 0.32 0.26 0.40 -0.14 -0.18 0.32 0.30 NA

AK3 0.44 0.33 0.51 0.05 -0.21 0.54 0.49 NA

AK4 0.46 0.33 0.49 -0.05 0.18 0.67 0.56 NA

AK5 0.04 -0.20 -0.08 0.03 -0.05 -0.04 0.03 -0.38

Table 4.1 
(TOP) Kendall synchrony estimate between Alaska and Quebec snowshoe hare populations. QC3 and QC7 (highlighted yellow) 
are northern populations; remainder of Quebec populations are southern. (BOTTOM) P-values for synchrony estimates. “NA” 
indicates insufficient (<12 years of data overlapping) to estimate synchrony. 
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Appendix 4.1:  Evaluation of Kendall synchrony metric 
 
Justification 

Previous studies have taken a variety of approaches to analyzing snowshoe hare 

and Canada lynx synchrony patterns (e.g., Smith 1983; Ranta et al. 1997a, 1997b; 

Stenseth et al. 1999) across their northern range. One of the most famous results of 

these studies has been identification of traveling wave dynamics across large portions of 

Canada (Smith 1983; Ranta et al. 1997a, 1997b). To my knowledge, the Kendall 

synchrony metric has not yet been applied to studying lynx and hare synchrony 

patterns. I chose this metric for my study because a previous simulation study (Chapter 

3) showed the Kendall metric was more robust to short time series and sampling error, 

and less prone to Type I error than other metrics evaluated. These metric qualities were 

important for my study, which combined data from multiple sources, survey methods, 

and time periods into a single synchrony analysis.  

Prior to using the Kendall metric in this analysis, I wanted to confirm it 

performed comparably with other methods previously applied to the Canadian 

Snowshoe Rabbit Enquiry data. However, those data were recorded as categorical 

variables (“Increase”, “Decrease”, “No Trend”), which could not be analyzed with the 

Kendall metric. I did not use a similar metric proposed by Buonoccorsi et al. (2001; 

Percent Match metric) for analysis of categorical data because simulations showed this 

metric had relatively high Type I error rates (Chapter 3). Therefore, instead of using 

Snowshoe Rabbit Enquiry data, I applied the Kendall metric to the Canada lynx fur 
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return data collected by Statistics Canada for 1919-1986. Ranta et al. (1997b) had 

identified a traveling wave pattern of synchrony in these data similar to the pattern 

observed from the Snowshoe Rabbit Enquiry Data.  

Methods 

To test the Kendall metric’s performance on the lynx data, I calculated Kendall 

synchrony for every pairwise comparison of the eight time series used in Ranta et al. 

(1997b). I calculated a modified correlogram (Koenig and Knops 1998) of these data 

binned into three equal distance categories from 0 to 4350 km, the maximum distance 

between two time series. If the Kendall metric performed comparably with previous 

metrics in identifying traveling wave synchrony in the lynx data, I expected to find a U-

shaped relationship between synchrony and geographic distance, with highest 

synchrony in the smallest and largest distance classes. Ranta et al. (1997a; 1997b) have 

identified this U-shaped pattern as a signature of traveling wave synchrony in previous 

studies of Canada lynx and snowshoe hares. 

Results 

The Kendall metric recovered a U-shaped synchrony-distance relationship 

qualitatively similar to that reported by Ranta et al. (1997b), using the same eight 

Canada lynx time series spanning 1919-1986. Synchrony was significant in all distance 

classes. 
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Appendix 4.1 (cont’d) 
Modified correlogram of synchrony against distance for Canada lynx, 1919-1986. Error bars represent 95% confidence 
intervals. The red line indicates zero synchrony. 
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Appendix 4.2 
Small-scale time series data combined for synchrony analysis. Each graph 
represents a set of time series combined for analysis. The red line represents the 
combined time series.  
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AK1 - Pellets Bonanza LTER, Fairbanks (June)

AK2 - Sightings Denali NP(April - June) 

AK3 - Pellets N. Wrangle-St. Elias NP (June)

AK4 - Pellets S. Wrangle-St. Elias NP (June)

AK5 - Pellets Kenai NWR (June - Aug)

YK1 - Capture Jacquot Island, Kluane (Spring & Fall)
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Appendix 4.3 
Snowshoe hare time series analyzed in this study, grouped by region. 
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MT1 - Tracks Flathead Region (Jan - April)

MT2 - Tracks Missoula Region (Jan - April)

MT3 - Tracks Beaverhead Region (Jan - April)

MT4 - Pellets Garnet (May)
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UT1 - Harvest (Sept - Feb)

WY1 - Harvest (Sept - Feb)
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MN1 - Harvest (Sept - Feb)

MN2 - Sightings N. MN (Spring)
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MN3 - Pellets N. Central MN (April - May)

MB1 - Capture Long Point (Sept)
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IR1 - Sightings (Summer)
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MI2 - Harvest S. Lower Penin. (Sept - Mar)

MI3 - Harvest Upper Penin. (Sept - Mar)

MI1 - Harvest N. Lower Penin. (Sept - Mar)

WI1 - Tracks N. WI (Nov - Dec)

WI2 - Harvest (Year-round)
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QC1- Harvest Bas St. Laurent (Sept - Mar)

QC5 - Harvest Lanaudiere (Sept - Mar)

QC6 - Harvest Mauricie (Sept - Mar)
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QC7 - Harvest Saguenay Lac St. Jean (Sept - Mar)

QC2 - Harvest Capitale Nationale (Sept - Mar)
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QC3 - Harvest Cote Nord (Sept - Mar)
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QC4- Harvest Gaspesie (Sept - Mar)

QC8 - Harvest Outaouais (Sept - Mar)
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NL1 - Harvest (Oct - Mar)

NS1 - Harvest (Long Island)

NS2 - Questionnaire Cape Breton (Spring)

NS3 - Questionnaire E. NS (Spring)

NS4 - Questionnaire  W. NS (Spring)

NS5 - Harvest (Nov - Feb)
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PEI1 - Harvest (Oct - Feb)
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Appendix 4.4     Summary of snowshoe hare time series analyzed in this study. 

Population 

State / Province / 

Territory Data Source Data Type

Collection 

Months

Beginning 

Year

Ending 

Year

Total 

Years

AB1 Alberta L. Keith Capture Jan - Dec 1962 1975 14

AK1 Alaska K. Kielland Pellets June 1985 2007 23

AK2 Alaska C. McIntyre Sightings April - June 1988 2007 20

AK3 Alaska C. Mitchell Pellets June 1991 2008 18

AK4 Alaska C. Mitchell Pellets June 1991 2008 18

AK5 Alaska J. Morton Pellets June - Aug. 1983 2010 28

CT1 Connecticut W. Sondrini Harvest Nov -Jan 1923 1955 33

IR1

Isle Royale, 

Michigan R. Peterson Sightings Summer 1974 2010 36

MB1 Manitoba W. Koonz Capture Sept 1971 1990 19

ME1 Maine W. Jakubas Harvest Oct - Mar 1955 1983 29

MI1 Michigan G. Karasek Harvest Sept - Mar 1954 2007 52

MI2 Michigan G. Karasek Harvest Sept - Mar 1954 2007 52

MI3 Michigan G. Karasek Harvest Sept - Mar 1954 2007 52

MN1 Minnesota M. Dexter Harvest Sept - Feb 1941 2009 69

MN2 Minnesota J. Erb Sightings Spring 1974 2010 37

MN3 Minnesota T. Fuller Pellets April - May 1969 1984 16

MT1 Montana B. Giddings Tracks Jan - April 1992 2007 16

MT2 Montana B. Giddings Tracks Jan - April 1990 2007 17

MT3 Montana B. Giddings Tracks Jan - April 1990 2007 18

MT4 Montana Anonymous Pellets May 1989 2008 20

NL1 Newfoundland M. McGrath Harvest Oct - Mar 1965 2006 40

NS1 Nova Scotia D. Dodds Harvest/Area Nov - Feb 1950 1963 14

NS2 Nova Scotia M. O'Brien Questionnaire 1989 2008 20

NS3 Nova Scotia M. O'Brien Questionnaire 1989 2008 20

NS4 Nova Scotia M. O'Brien Questionnaire 1989 2008 20

NS5 Nova Scotia M. O'Brien Harvest Nov - Feb 1966 2007 40

NWT1

Northwest 

Territories S. Carriere Pellets June 1988 2002 15

NWT2

Northwest 

Territories S. Carriere Pellets June 1988 2007 20

NWT3

Northwest 

Territories S. Carriere Pellets June 1988 2007 20

NWT4

Northwest 

Territories S. Carriere Pellets June 1988 2007 18

NY1 New York A. Jacobson Harvest Oct - Mar 1958 2007 37

ON1 Ontario J. Bendell Pellets Aug - Oct 1986 2007 22

PA1 Pennsylvania D. Diefenbach Harvest Dec 1930 2009 75

PEI1

Prince Edward 

Island R. Dibblee Harvest/Hunter Oct - Feb 1971 2007 29

QC1 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1971 2004 34

QC2 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1980 2004 25

QC3 Quebec H. Jolicoeur Harvest/Area Sept - Mar 1979 2004 26

QC4 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1984 2004 21

QC5 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1976 2003 26

QC6 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1978 2004 27

QC7 Quebec H. Jolicoeur Harvest/Hunter Sept - Mar 1982 2004 23

QC8 Quebec M. St-Laurent Harvest/Hunter Sept - Mar 1971 1996 26

SK1 Saskatchewan A. Arsenault Harvest Winter 1940 1979 30

UT1 Utah D. Mitchell Harvest/Hunter Sept - Feb 1975 2009 35

WI1 Wisconsin B. Dhuey Tracks Nov - Dec 1977 2009 33

WI2 Wisconsin B. Dhuey Harvest Year-round 1931 2009 69

WY1 Wyoming R. Schilowsky Harvest Sept - Feb 1974 2008 35

YK1 Yukon C. Krebs Capture Spring & Fall 1977 2008 32

YK2 Yukon C. Krebs Capture Spring & Fall 1986 2010 25
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POPULATIONS DATA TYPES

NUMBER OF 

OVERLAPPING 

YEARS

RHO

WY1 - WY2 Harvest - Harvest/Hunter 35 0.77

WI1 - WI2 TrackA - Harvest 33 0.43

WI2 - WI3 Harvest - Harvest/Hunter 27 0.94

UT1 - UT3 Harvest - Harvest/Hunter 32 0.91

UT1 - UT2 Harvest - Harvest/Hunter-Day 32 0.87

QC6 - QC9 Harvest/100 Hunter-Days - Harvest/100km2 27 0.95

QC6 - QC10 Harvest/100 Hunter-Days - Harvest 27 0.95

PA1 - PA2 Harvest - Harvest/Hunter 28 0.79

NY1 - NY2 Harvest - Harvest/Hunter 37 0.82

NS2 - NS5 Harvest / QuestionnaireB 20 0.44

NS5 - NS6 Harvest - Harvest/Hunter 28 0.76

MN1 - MN3 PelletsC / Harvest 16 0

MN1 - MN4 Harvest - Harvest/Hunter 19 0.87

MN1 - MN2 Harvest / SightingsD 37 0.38

A Track data covered the northern 1/3 of Wisconsin; Harvest data covered Wisconsin 

B Questionnaires covered Cape Breton (a separate island in the eastern 1/4 of Nova Scotia); 
Harvest data covered Nova Scotia 

C Pellet data covered 839 km2 in northeastern Itasca County, Minnesota; Harvest data 
covered Minnesota 

D Sightings covered grouse lek sites distributed throughout ~2/3 of eastern and northern 
Minnesota; Harvest data covered Minnesota 

Appendix 4.5 
Pearson’s correlation (r) between pairwise Kendall synchrony estimates for hare 
time series data collected using two different survey methods with overlapping, but 
not necessarily identical, geographic areas. Each pair of survey methods compared 
is listed in Column 1. Methods covering different geographic areas are 
superscripted with a letter. 
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Appendix 4.6 
Example of shifting window analysis to examine if synchrony between two time series (PA1 and MN1) exhibits an 
increasing or decreasing long-term trend. Each point represents the synchrony estimate for the pair of time series 
calculated on 15, 25, or 35 (window sizes ) of time series data centered on the year. 
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#################################################################### 
# 
# CHAPTER 4--SNOWSHOE HARE SYNCHRONY ANALYSIS 
# APPENDIX R CODE 
# 
# NOTE: 
# 1) Code is presented in this order: 1) code for the calculating Kendall synchrony, 2) graphing and analysis functions. 
# 2) Data for this analysis should be read in as a .csv file with these columns: 
#     - TS_ID: Provides a unique ID for each time series, for identifying time series in graphing functions 
#     - Genetic: "B" (Boreal), "P" (Pacific NW), or "R" (Rockies) to designate which genetic group each time series falls within 
#     - Climatic: "C" (Continental), "P" (Pacific), or "A" (Atlantic) to designate which climatic group each time series falls within,  
# as definedby Stenseth et al. 1999 
#     - Ecoregion: "E" (Eastern Temperate Forests), "M" (Marine West Coast Forests), "N" (Northern Forests), "NW"  
# (Northwestern Forested Mountains), or "T" (Taiga) to designate which of five ecoregions each time series falls within,  
# as defined by CEC 1997. 
#     - NorthSouth: "N" (North) or "S" (South) to designate each time series as above or below the 49th parallel 
#     - DataType: "H" (Harvest), "C" (Capture), "P" (Pellets), "S" (Sightings), "Q" (Questionnaire), or "T" (Tracks) to identify  
# sampling method for each time series                                                                                                          
#     - Remaining columns store the abundance estimate for each year, so column headings should indicate year (e.g., 1923,  
# 1924... 2010) 
# 
#################################################################### 
 
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> CODE FOR CALCULATING KENDALL SYNCHRONY 

Appendix 4.7 
R code for the main components of this analysis.  
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#################################################################### 
# 
# INITIALIZE VARIABLES 
# 
#################################################################### 
 
# Variables corresponding to data 
TS.yr.col.start<-13            # Column in which TS year data begin 
TS.start.yr<-1923      # First year in time series data (e.g., 1923) 
TS.end.yr<-2010      # Last year in time series data (e.g., 2010) 
TS.N<-nrow(TS.dat)       # Number of time series 
 
# Other variables 
min.overlap<-10      # Minimum number of overlap years for calculating synchrony 
 
Yr.vector<-c(TS.start.yr:TS.end.yr)    # Create vector for x-axis of graphs 
 
TS.dat.only<-data.matrix(TS.dat[,TS.yr.col.start:dim(TS.dat)[2]])  # Working submatrix of time series data only 
rownames(TS.dat.only)<-TS.dat[,"Source"]                         
 
num.yrs<-ncol(TS.dat.only)                                          # Maximum time series length 
 
TS.ln<-matrix(NA,TS.N,num.yrs)    # Matrix of log-transformed time series 
rownames(TS.ln)<-TS.dat[,"TS_ID"]                            
colnames(TS.ln)<-colnames(TS.dat.only) 
 
TS.diff.ln<-matrix(NA,TS.N,num.yrs)     # Matrix of first difference logged time series 
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rownames(TS.diff.ln)<-TS.dat[,"TS_ID"] 
colnames(TS.diff.ln)<-colnames(TS.dat.only) 
 
Sync.Kendall.est<-matrix(NA,TS.N,TS.N)                # Matrix of pairwise Kendall synchrony 
rownames(Sync.Kendall.est)<-TS.dat[,"TS_ID"] 
colnames(Sync.Kendall.est)<-TS.dat[,"TS_ID"] 
 
overlap<-matrix(NA,TS.N,TS.N)                # Tracks number of overlapping years for each pair of time series 
rownames(overlap)<-TS.dat[,"TS_ID"] 
colnames(overlap)<-TS.dat[,"TS_ID"] 
 
 
#################################################################### 
# 
# BEGIN SIMULATION 
# 
####################################################################   
 
TS.ln<-log(TS.dat.only)    # Natural log of time series data 
TS.diff.ln[,2:num.yrs]<-t(apply(TS.ln,1,diff))   
 # Calculate difference between log values of consecutive years and assign result to later year 
                 
# Calculate Kendall synchrony 
for(m in 1:TS.N)     # For each time series, m 
 { 
 m.vec<-TS.diff.ln[m,1:num.yrs]                    # Assign first differenced log time series 
  
 for(n in 1:TS.N)                                   # For each time series, n 
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  { 
  n.vec<-TS.diff.ln[n,1:num.yrs]               # Assign first differenced log time series 
 
  overlap[m,n]<-sum(!is.na(m.vec)&!is.na(n.vec))   # Calculate number of overlapping years for each time series pair 
    
  # Must meet minimum overlap criterion, and don't calculate synchrony of a time series on itself 
  if ((overlap[m,n]>=min.overlap)&&(m!=n))             
   { 
   Sync.Kendall.est[m,n]<-cor(m.vec,n.vec,method="kendall",use="na.or.complete") 
   }                  # END IF-OVERLAP 
  }                   # END FOR-N    
 }                    # END FOR-M 
 
save.image(file=paste("SSHsync_",substr(as.character(Sys.time()),1,10),".RData",sep="")) # save workspace--name includes date 
 
             
#>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> CODE FOR GRAPHING AND ANALYSIS FUNCTIONS  
 
 
#################################################################### 
# 
# FUNC.MODCOR:  FUNCTION TO CALCULATE AND PLOT MODIFIED CORRELOGRAM 
#               
# Input 
#   [sub.mat]    "N", "S" (for northern or southern hares) 
#   [num.dist]   Number of distance categories to use (try multiple, to see if qualitative results remain same) 
#   [reps]      Number of sample sets to generate distribution of means within each distance class 
# 
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#################################################################### 
 
Func.modcor<-function(sub.mat="N",num.dist=4,reps=100) 
 { 
 library(gplots) 
 
 sub.vec<-switch(sub.mat,         
    N = which(TS.dat$NorthSouth=="N"), 
  S = which(TS.dat$NorthSouth=="S"))            
 
 ##### INITIALIZE MATRICES & ARRAYS 
 sync.ary<-matrix(NA,length(sub.vec),length(sub.vec))  # Array of base synchrony estimates 
  
 samp.ary<-array(NA,dim=c(num.dist,reps,length(sub.vec)))     
  # Array to hold sampled synchrony estimates for each distance class  
 
 dimnames(samp.ary)<-list(paste("dist.",1:num.dist),paste("draw.",1:reps),1:length(sub.vec)) 
 
 rep.means<-matrix(NA,num.dist,reps)   # Store mean synchrony for each rep for each distance class 
  
 dist.temp<-matrix(NA,TS.N,TS.N)                                # Store geographic distances for each pair of time series 
 dist.mat<-matrix(NA,length(sub.vec),length(sub.vec)) 
 
  dist.cat.mat<-matrix(NA,length(sub.vec),length(sub.vec))  # Store distance categories 
 
 summary.out<-matrix(NA,num.dist,4)                            # Store summary data from modified correlogram analysis 
 rownames(summary.out)<-c(paste("dist.class.",1:num.dist)) 
 colnames(summary.out)<-c("mean","se","p.val","avg.N") 
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 sync.ary<-Sync.Kendall.est[sub.vec,sub.vec]    # Subset synchrony matrix for northern or southern hares 
 
 dist.temp<-read.table("SSH_geodist_fullmat.txt",header=TRUE)      
  # Read in matrix of geographic distance (km) for each pair of time series 
 dist.mat<-dist.temp[sub.vec,sub.vec]                                    
  # Subset geographic distance matrix for northern or southern hares 
   dist.mat[lower.tri(dist.mat,diag=TRUE)]<-NA  # Create upper triangular distance matrix   
  
   max.dist<-5800                    
  # Maximum distance (km) between time series, so x-axis is on same scale for northern and southern hares 
   
   ##### PLOT HISTOGRAM OF GEOGRAPHIC DISTANCES 
  x<-as.matrix(dist.mat)                                          # Convert to matrix 
   y<-as.vector(x)                                                 # Then convert matrix to vector, for histogram function 
   hist(y,breaks=seq(0,6000,by=250),main="Pairwise geographic distances for time series")      # Plot histogram 
 
   ##### CALCULATE MODIFIED CORRELOGRAM 
   # Divide synchrony estimates into distance-based categories 
  dist.space<-max.dist/num.dist                                  # Create equal-spaced distance categories 
  dist.thresh<-c((0:(num.dist-1))*dist.space)  # Lower limit of each distance category 
 
   # Assign distance category to each time series pair, 1:num.dist 
  for(k in 1:num.dist)         
   { 
   if(k==num.dist) 
     {dist.cat.mat[which(dist.mat>=dist.thresh[k])]<-k}     # Assign last distance category differently 
      else 
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        {dist.cat.mat[which((dist.mat>=dist.thresh[k])&(dist.mat<dist.thresh[k+1]))]<-k}  
   }                 # END FOR-K 
 
  # For each distance category, randomly select synchrony estimates without duplicating any time series 
   # Repeat to get distribution of synchrony estimates 
 
   for (k in 1:num.dist)       # For each distance class 
    { 
   dist.ind<-which(dist.cat.mat==k,arr.ind=TRUE)  # Identify row & column of each time series pair in this 
distance category 
   dist.ind.len<-1:(length(dist.ind)/2)           # Vector of original index values to sample from 
   ind.track<-matrix(NA,reps,length(dist.ind.len))  # Track indices sampled to remove replicates 
   r<-1        # Initialize reps 
    
      while (r<=reps) 
        { 
    used.vals<-rep(NA,length(sub.vec))  # Vector of time series that can not be further sampled from 
    ind.omit<-rep(NA,length(dist.ind.len))  # Vector of indices that can not be further sampled from 
   count<-1                  # Track number of samples 
   ind.vec<-rep(NA,length(dist.ind.len))   # Track indices sampled 
   ind.remain<-rep(NA,length(dist.ind.len))  # Vector of indices that can still be sampled from 
 
           while(sum(!is.na(ind.omit))<length(dist.ind.len)) # While there are still values that can be sampled 
             {  
             # Remaining distance indices that can still be sampled from 
    if(count==1){ind.remain<-as.vector(dist.ind.len)}else{ind.remain<-as.vector(dist.ind.len[-ind.omit])} 
  
    # Sample one time series pair (can only sample from vectors) 
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    if(length(ind.remain)>1){a<-sample(ind.remain,1)}else{a<-ind.remain}        
    ind.vec[count]<-a 
    # Assign corresponding synchrony values to sample array  
    samp.ary[k,r,count]<-sync.ary[dist.ind[a,"row"],dist.ind[a,"col"]]               
    # Send row and column of sampled synchrony value to "used" vector 
     used.vals[min(which(is.na(used.vals))):(min(which(is.na(used.vals)))+1)]<-as.vector(c(dist.ind[a,])) 
     # Identify which distance index values can no longer be sampled from 
              ind.omit<-which(dist.ind[,"row"]%in%used.vals|dist.ind[,"col"]%in%used.vals)   
    count<-count+1 
      }   # END WHILE-SUM--DONE WITH THIS DRAW 
           dup<-FALSE     # Set duplicates tally to false 
          for(i in 1:(r-1))      # Check for duplicate sample sets in previous drawings 
      { 
              if(identical(sort(ind.vec,na.last=TRUE),ind.track[i,])) # tally up duplicates 
      {dup<-TRUE}      # END IF-IDENTICAL 
      }        # END FOR-I 
      if(!isTRUE(dup))       # If no duplicate sample set exists... 
      { 
      ind.track[r,]<-sort(ind.vec,na.last=TRUE)    # Update ind.track with sample set...    
      r<-r+1                    # and advance r to next drawing 
      }                 # END IF-ISTRUE 
      else                                         # otherwise just advance to next drawing, but don't include this set in results 
      { 
      samp.ary[k,r,]<-NA 
      r<-r+1 
      }   # END IF-ISTRUE-ELSE 
      }    # END WHILE-R-REPS--FINISH ALL DRAWINGS FOR THAT DISTANCE CLASS 
      summary.out[k,4]<-sum(!is.na(samp.ary[k,,]))/sum(!is.na(ind.track[,1])) 
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    }     # END FOR-K 
 
 # For each distance category, calculate summary statistics 
 rep.means<-apply(samp.ary,c(1,2),mean,na.rm=TRUE) 
 summary.out[,1]<-apply(rep.means,1,mean,na.rm=TRUE)                # Calculate means across reps 
 summary.out[,2]<-apply(rep.means,1,sd,na.rm=TRUE)    # Calculate standard errors 
 summary.out[,3]<-1-pnorm(abs(summary.out[,1]/summary.out[,2]))   # Calculate p-values 
 
 # Graph results 
 plotCI(x=1:num.dist,y=dist.lag.means[,1],uiw=(1.96*dist.lag.means[,2]),liw=(1.96*dist.lag.means[,2]),err='y',ylim=c(-1,1), 
  xlim=c(1,num.dist),ylab=paste(estim," synchrony"),xlab="distance class",main="Modified correlogram for Kendall  
  Lag0") 
 abline(h=0,col='red') 
 }        # END FUNC.MODCOR 
                       
 
##################################################################### 
# 
#  FUNC.TEMPORAL:  FUNCTION TO PLOT SHIFTING WINDOW ANALYSIS RESULTS 
# 
#  Input 
#   [x.source, y.source]    Two TS_ID to compare 
#   [win.vec]   Vector of 3 window sizes 
# 
#################################################################### 
 
Func.temporal<-function(x.source,y.source,win.vec)    
 { 
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 ##### INITIALIZE MATRICES & ARRAYS 
 temp.growth.est<-array(NA,dim=c(11,11,length(win.vec),num.yrs))   
   # Kendall matrix of synchrony estimate for each window and year 
 dimnames(temp.growth.est)<-list(TS.dat[1:11,"Source"],TS.dat[1:11,"Source"],win.vec,Yr.vector) 
 
  x.num<-which(TS.dat["TS_ID"]==x.source 
   y.num<-which(TS.dat["TS_ID"]==x.source  
  
 ##### CALCULATE GROWTH SYNCHRONY FOR EACH 'WINDOW' ##### 
 for (win in win.vec)    # For each window size 
  { 
  mid.yr<-floor(win/2+0.5)-1       
   # Synchrony estimate will be assigned to mid-yr of window. Subtracted one so can just add    
   # mid.yr to starting year to find middle point 
  # Initialize variables 
  i.vec<-rep(NA,num.yrs) 
  j.vec<-rep(NA,num.yrs) 
 
  # Assign variables   
  i.vec<-TS.dat.only[x.num,]  
  j.vec<-TS.dat.only[y.num,]   
   
  # Next step is to find the actual overlap range 
  joint.start<-min(which(!is.na(i.vec)&!is.na(j.vec))) 
  joint.end<-max(which(!is.na(i.vec)&!is.na(j.vec))) 
 
  for (z in joint.start:(joint.end-win+1))  # All the TS-i starting points to use 
   { 
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   # Initialize variables 
   i<-rep(NA,win)     # vector of specified window size 
   j<-rep(NA,win) 
   ij<-matrix(NA,2,win) 
   ij.ln<-matrix(NA,2,win)  
   ij.diff.ln<-matrix(NA,2,win) 
    ij.a<-matrix(NA,2,win) 
     
   # Identify the time series subset 
   i<-i.vec[z:(z+win-1)]    
   j<-j.vec[z:(z+win-1)]    
   ij<-matrix(c(i,j),nrow=2,byrow=TRUE) 
 
   # Calculate Kendall synchrony 
   ij.ln<-log(ij)       # Natural log of time series data 
   ij.diff.ln[,2:ncol(ij.ln)]<-t(apply(ij.ln,1,diff))   # Calculates difference btwn ln values of consecutive years 
 
   temp.growth.overlap<-sum(!is.na(ij.diff.ln[1,])&!is.na(ij.diff.ln[2,])) 
   if(temp.growth.overlap>=10)     # If there are at least 10 overlapping datapoints 
    {   
    temp.growth.est[c,d,which(win.vec==win),(z+mid.yr)]<-       
     cor(ij.diff.ln[1,],ij.diff.ln[2,],method="kendall",use="na.or.complete") 
    }        # END IF-TEMP.GROWTH.OVERLAP 
   }        # END FOR-Z 
  }         # END FOR-WIN 
   
   ##### PLOT RESULTS 
   par(mfrow=c(3,1))     # Display three graphs on same page, one for each window size 
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 for(w in 1:3)             # For each window size 
  { 
  plot(temp.growth.est[w,]~Yr.vector,lwd=2.5,xlab='year',main=paste("Kendall synchrony for ", 
   TS.dat[x.num,"TS_ID"]," & ",TS.dat[y.num,"TS_ID"],": win= ",win.vec[w]),ylab='Kendall synchrony estimate', 
   type='b',pch=16,col="blue",ylim=c(-1,1)) 
  }             # END FOR-W 
 }              # END FUNC.TEMPORAL 
 
 
##################################################################### 
# 
# FUNC.MANTEL:  FUNCTION TO CALCULATE PARTIAL MANTEL TEST 
# 
##################################################################### 
 
Func.mantel<-function()    
 { 
   library(ncf) 
 
   ##### INITIALIZE VARIABLES 
   A.ary<-matrix(NA,TS.N,TS.N) 
   A.ary<-Sync.Kendall.est 
   A.ary[upper.tri(A.ary,diag=TRUE)]<-NA  # Lower triangle matrix with Kendall synchrony estimates 
 
   A.Geo.dist<-matrix(NA,TS.N,TS.N) 
   A.Geo.dist<-as.matrix(read.table("SSH_geodist_fullmat.txt",header=TRUE)) 
   A.Geo.dist[upper.tri(A.Geo.dist)]<-NA  # Lower triangle geographic distance matrix 
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   A.cat<-matrix(NA,TS.N,TS.N)   
   x<-TS.dat[,"XXX"] # REPLACE 'XXX' WITH COLUMN NAME FOR THE CATEGORY ANALYSIS WILL BE BASED ON 
 
   ##### ASSIGN CATEGORIES TO SYNCHRONY ESTIMATES--WITHIN OR BETWEEN GROUPS 
   for (i in 1:TS.N) 
   { 
   for (j in 1:TS.N) 
   {    
   A.cat[i,j]<-ifelse(x[i]==x[j],1,0)      # '1' if time series are in same group, '0' if time series are in different groups 
   }       # END FOR-J 
   }          # END FOR-I 
 
   A.cat[is.na(A.ary)]<-NA  # If there is no corresponding synchrony estimate, change category value to NA 
   A.Geo.dist[is.na(A.ary)]<-NA  # Do same for distance category 
 
   partial.mantel.test(A.ary,A.Geo.dist,A.cat) 
   }        # END FUNC.MANTEL 
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