
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1993

Design of the software interface for a multimaster bus system Design of the software interface for a multimaster bus system

Jie Yang
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Yang, Jie, "Design of the software interface for a multimaster bus system" (1993). Graduate Student
Theses, Dissertations, & Professional Papers. 5118.
https://scholarworks.umt.edu/etd/5118

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5118&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5118?utm_source=scholarworks.umt.edu%2Fetd%2F5118&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

JJb VAH6-

Maureen amd Mike
MANSFIELD) LIBRARY

a

The University of

Permission is granted by the author to reproduce this material in its entirety,.
provided that this material is used for scholarly purposes and is properly cited
in published works and reports.

** Please check “Yes ” or “No ” and provide signature**

Yes, I grant permission JL
No, I do not grant permission----

Author’s Signature

Date: /

Any copying for commercial purposes or financial gain may be undertaken
only with the author’s explicit consent.

The Design of the Software

Interface for a M ultim aster Bus System

By

Jie Yang

Presented in partial fulfillment of the requirements

for the degree of

M aster of Science

University of Montana

1993

Approved bv

Chairman, Board of Examiners

Deffix, Graduate

UMI Number: EP40582

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependen t upon the quality of the copy submitted.

In the unlikely event that the author did not send a com plete m anuscript
and there a re missing pages, th ese will be noted. Also, if material had to be rem oved,

a note will indicate the deletion.

UMI EP40582

Published by P roQ uest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQ uest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United S ta te s C ode

ProQ uest LLC.
789 E ast Eisenhow er Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 -1 3 4 6

Jie Yang., M.S., December 1993 Computer Science

The Design of the Software Interface for a Multimaster Bus System

(44 pp.)

Director: Dr. Youlu Zhen4,

Abstract

This work deals with the design and implementation of the software interface

for the Small Computer System Interface (SCSI) system, which is a parallel,

multimaster I/O bus that provides a standard interface between computer and

peripherial devices, and SCSI device drivers on the BSD/386 Operating System.

The SCSI is a bus structure that expects intelligence in all the devices it con­

nects, and works with those devices in terms of the data to be exchanged rather

than low-level hardware functions. This frees up resources on the BSD/386 and

other UNIX systems, which are quite happy to leave the hardware-level details

up to peripheral intelligence.

Compared with the protocol of conventional device driver, the protocol of

SCSI device driver treats peripherials as logical devices that use a well defined

set of commands, which eliminates hardware incompatibilities. It is possible

for one SCSI bus to communicate up to seven physical devices through a single

SCSI device driver.

Table o f C ontents

1. Project Formulation 1

1.1. M ultim aster Bus - S C S I ... 1

1.2. An Introduction To The P r o je c t .. 3

2. B S D /386 Operating System 5

2.1. Overall Structure of the B S D /386 Operating S y s te m 5

2.2. Buffer C a c h e .. 8

2.3. Buffer Cache I n te r fa c e .. 10

2.4. D evice D r iv e r ... 12

2.5. System C onfiguration 15

3. Basic Concept of SCSI Host Bus 17

3.1. W hat is S C S I ? .. 17

3.2. SCSI P h a se s .. 18

3.3. T r a n sa c tio n .. 22

3.4. SCSI C om m an d s... 23

4. The Design of SCSI Host Adapter Driver Interface 27

4.1. Basic Requirements of The SCSI D evice D r i v e r 27

4.2. Specification of S C S I ... 27

4.3. B S D /386 SCSI H ost Adapter D r i v e r .. 28

4.4. Overall Structure ... 29

5. The Im plem entation of the SCSI Host Adapter Driver Interface 31

5.1. The Configuration Driver S tru ctu re ... 31

5.1.1. cd _d evs... 32

iii

5.1.2. c cL n a m e ... 32

5.1.3. c d -d e v s iz e 34

5.1.4. Function x x p r o b e () ... 34

5.1.5. Function x x a tta c h () .. . 35

5.2. SCSI H ost Bus Adapter Driver Structure . . 37

5.2.1. hdJcm d - SCSI Im m ediate Command F u n c tio n 38

5.2.2. hd.dum p - SCSI Dum ping F u n c t io n .. 38

5.2.3. hd_start - Restarting SCSI Bus F u n c t io n 38

5.2.4. hd_go — Start I /O Transfer F u n c t io n .. 40

5.2.5. hd_reset - R eseting SCSI Adapter F unction 40

6. Conclusion 41

6.1. O p tim iz a t io n ... 41

6.1.1. The Third Generation S C S I ... 41

6.1.2. Object-Oriented Host Adapter D r i v e r ... 42

6.1.3. The Standardized Design and Im p lem en ta tio n 42

iv

List of Figures

1 Block Diagram of the System K e r n e l .. 6

2 Driver Entry P o i n t .. 13

3 SCSI Bus P h a s e s .. 20

4 The 6-Byte Command Descriptor B l o c k ... 24

5 SCSI Device Driver In terface.. 30

6 The data structure of configuration driver .. 32

7 Struct fdom ain_softc ... 33

8 The in t r _ e s ta b l i s h () function ... 36

9 The data structure of SCSI Host Adapter D river...................................... 39

10 The class of the SCSI Host Adapter D r iv e r .. 43

v

List o f Tables

1 Buffer Head D escriptions.. 9

2 SCSI Bus Phase D e te rm in a tio n ... 18

3 SCSI Status C o d e s .. 21

4 Sense Key D escriptions.. 25

vi

Acknowledgements

I would like to offer special thanks to Dr. Youlu Zheng, Dr. James R. Ullrich,

and Dr. weiming Hao, the members of my project committee. The time they have

spent advising me and proofing drafts could have been spent in more pleasant ways.

Thanks go to the Department of Computer Science for purchasing the 486 system

for my experiement, and thanks also go to BSDI for providing BSD/386 Operating

System and the Future Domain SCSI Board for this project.

I should thank all of those who have helped me along the way to where I am now.

Parents, professors, instructors, wonderful friends in the LINUX world and fellow

students have all influenced my education and are all due this thanks; without them

I would be a very different person.

1. Project Formulation

1.1. M ultim aster Bus — SCSI

A bus is physically embodied in the connectors that carry its signals, and the logic

on each board that implements the bus protocol and connection. Essentially, there

are three m ajor types of buses: The system bus, the I/O bus, and the memory bus.

Personal computers often use only I/O bus, with the CPU and memory having a close

non-bus connection.

In any I/O bus transaction, there is a master and a slave. The master initiates the

transaction, and the slave responds. In the XT and AT buses, there is generally only

one master, the motherboard. The ESIA1 and SCSI2 buses are multimaster buses.

The basic use of the multimaster capability is to allow I/O cards to perform true

direct memory access (DMA) and to access data from main memory of the central

processor independently .

XT and AT buses are 8-bit or 16-bit bus. These buses lack auto-configuration and

high-performance multimaster capabilities.

In comparison with a single master bus, such as an XT or AT bus, SCSI is a

parallel, m ultimaster I/O that provides a standard interface between computer and

peripheral devices. Despite its misleading name3, SCSI is fast becoming the method

of choice for connecting disks, tape drives, CD-ROMs, WORM (write once, read many

times) drives, and communication devices to computers of all sizes. The SCSI gets

all devices to cooperate with each other.

Like Micro Channel, VME, and NuBus, SCSI is a true bus in the sense that it

defines standard physical and electrical connections for devices. The fundamental and

^ S I A is Extended Industry Standard Architecture

2S C S I is Small Computer System Interface

3S C S I incorrectly implies that it is useful only for small computer

1

2

distinguishing difference between SCSI and the other buses is that SCSI facilitates

the use of many diverse peripherals. Its communication protocols treat peripherals

as logical devices that use a defined set of commands, which eliminates hardware

incompatibilities. It is possible for a SCSI bus to communicate, through a single

device driver, to many physical devices (up to seven).

The SCSI specification outlines several commands for many device types: Hard

disk (random access), tape (sequential access), printers, and others. The specification

includes mandatory, optional, and vendor-unique commands. The SCSI bus treats a

hard disk as a defined-capacity random-access device that responds to standard read,

write and format commands. A built-in SCSI controller translates the commands

into interface specific control signals.

The SCSI hardware specification description details the physical characteristics,

such as the cable, signal pin-outs, connector types, and so on. There are two com­

monly used types of SCSI connectors: A standard 50-pin cable for connecting internal

peripherals, and a centronics-style 50-pin cable for connecting external devices.

The SCSI lets the physical bus exceed the bound of a typical microcomputer

chassis. You can “stretch” the SCSI bus via a cable of up to 6 meters in length

by using single-ended drivers, or via a cable of up to 25 meters in length by using

differential drivers. This eliminates the problem of trying to pack every peripheral

into the computer. It also allows you to connect large peripheral devices, such as

scanners, that wouldn’t fit otherwise.

This combination of connectivity and economy of hardware delivers many capa­

bilities to users with demanding I/O needs. SCSI’s standard connectors allow easy

connection to many peripherals, while its standard command set simplifies the sys­

tem design. The end user can select SCSI peripherals from several different vendors

with the assurance that they will be compatible. SCSI’s versatile nature has helped

it to emerge as a standard on most companies’ system-level and storage peripheral

3

products.

Command queuing is another im portant SCSI feature. If one or more hosts make

many requests for a peripheral device, that peripheral (if it implements queuing) can

queue up commands for later execution. This allows a controller to optimize I/O by

implementing strategies such as elevator seeks algorithm.

1.2. An Introduction To The Project

Low-cost PCs are making UNIX hotter than ever. Prices for IBM-compatible

desktop computers have been dropping dramatically in recent years. W ith prices

plummeting and performance zooming, there has never been a better time to put

UNIX, the multitasking and multiuser 32-bit Operating System, on a PC.

Much of the advantage of running UNIX on a PC comes from the nature of

the hardware itself. Unlike RISC workstations, PCs are standardized, high-volume

commodity products. PC hardware from one vendor can generally be swapped with

that of any of hundreds of other competing vendors without a problem. However,

PC-related peripherals are not absolutely interchangeable: Many network adapters

and m ultiport boards require customized device drivers, for example. But with the

right device drivers, the same add-in boards will work in almost any PC.

For computer science students who want to delve deeply - but inexpensively -

into the internals of a real multitasking system, PC-UNIX is a good choice.

More and more companies are working on the PC-UNIX. Currently, there are

more than 15 versions of PC-UNIX, including BSD/386.

The BSD/386 is a UNIX4-like operating system for 386 and i486 system.5 It is

based on the Net2 distribution of BSD 4.3 which does not require a UNIX source

4UNIX is a registered trademark of AT&T Bell Laboratories.

5386 and i486 are trademarks of Intel Corporation.

4

code license from USL6. BSD/386 provides support for a variety of I/O devices and

the installation is reasonably easy. The complete source code of the UNIX operating

system from the BSDI7 makes it possible for one to dig into the kernel of UNIX,

study, implement and develop some part of the kernel. The code is also very helpful

for establishing an operating system course lab. The students not only have an

opportunity to get the secret of the implementation of the UNIX operating system,

but also get a chance to learn how to manage and maintain the UNIX system.

The current BSD/386 is still a gamma version, tha t means there are many bugs

and problems that need to be solved. The purpose of the project is to study the

kernel of the BSD/386, and improve its I/O Subsystem through the design and im­

plementation of the software interface for a popular multimaster bus - the Future

Domain TMC18c50 SCSI Board. After the project is finished and refined, the result­

ing software and documentation will be included in the new release of BSD/386 by

BSDI.

6USL is UNIX System Laboratories.

7BSDI is Berkeley Software Design, Inc.

2. B S D /386 Operating System

2.1. Overall Structure of the B SD /386 Operating System

In the overall architecture of the UNIX system, the hardware provides the oper­

ating system with basic services. The operating system interacts directly with the

hardware, providing common services to programs and insulating them from hard­

ware idiosyncrasies. Viewing the system as a set of layers, the operating system is

commonly called the system kernel, or the kernel, emphasizing its isolation from user

programs. User level programs such as the shell and editors interact with the kernel

by invoking a well defined set of system calls. The system calls instruct the kernel to

do various operations for the calling program and exchange data between the kernel

and the program.

Figure 1 shows three levels: User, kernel, and hardware. The system call and

library interface represent the border between user programs and the kernel. System

calls look like regular function calls in C programs, and libraries map these function

calls to the primitives needed to enter the operating system.

The UNIX system (kernel) supports the illusions that the file system has “places”

and tha t processes have “life”. The two entities, file and process, are the two central

concepts in the UNIX system model. Figure 1 gives a block diagram of the kernel,

showing various modules and their relationships to each other. In particular, it shows

the file subsystem on the left and the process control subsystem on the right, the two

major components of the kernel.

The process control subsystem is responsible for process synchronization, interpro­

cess communication, process scheduling, and memory management.

BSD/386 supports a multitasking environment. Each task of execution is termed

a process. The context of a UNIX process consists of user-level state, including the

contents of its address space and the run-time environment, and kernel-state, which

5

6

INTRODUCTION TO THE KERNEL

user program

User Level

Kernel Level

libraries

buffer cache

system call interface

character

device drivers

block

hardware control

file subsystem process control subsystem

Kernel Level

Hardware Level

hardware

Figure 1: Block Diagram of the System Kernel

7

includes scheduling parameters, resource control, and identification information. The

context includes everything used by the kernel in providing services for the process.

Users can create processes, control a process’ execution, and receive notification when

the process’ execution status changes. Every process is assigned a unique value,

termed a process identifier (PID). This value is used by the kernel to identify a

process when reporting status changes to a user, and by a user when referencing a

process in a system call.

The file subsystem manages files, allocates file space, administers free space, con­

trols access to files, and retrieves data for users. A regular file is a linear array of

bytes, and can be read and written starting at any location in the file. The kernel

distinguishes no record boundaries in regular files, although many programs recog­

nize line-feed characters as distinguishing the ends of lines, and other programs may

impose other structure. No system-related information about a file is kept in the file

itself, but the file system stores a small amount of ownership, protection, and usage

information with each file.

A filename component is a string of up to 255 characters. These filenames are

stored in a type of file called a directory. The information in a directory about a file

is called a directory entry and includes, in addition to the filename, a pointer to the

file itself. Directory entries may refer to other directories as well as to plain files. A

hierarchy of directories and files is thus formed, and is called a file system. A file

system may include not only plain files and directories, but also references to other

objects, such as devices and sockets.

The file system implementation converts the user abstraction of a file as an array

of bytes into a structure imposed by the underlying physical medium. Although the

user may wish to write a single byte to a file, the disk can read and write only in

multiples of sectors. Here, the system must arrange to read in the sector containing

the byte to be modified, to replace the affected byte, and to write the sector back to

8

the disk. This operation of converting random access to an array of bytes into reads

and writes of disk sectors is known as block I/O .

First, the system breaks the user’s request into a set of operations to be done

on each logical block of the file. Logical blocks describe block-sized pieces of a file.

The system calculates the logical blocks by dividing the array of bytes into filesystem­

sized pieces. Thus, if a filesystem’s block size is 8192 bytes, then logical block 0 would

contain bytes 0 to 8192, logical block 1 would contain bytes 8192 to 16,383, and so

on. If the user’s request is incomplete, the process is repeated with the next logical

block of the file.

The data in each logical block is stored in a physical block on the disk. A physical

block is the location on the disk to which the system maps a logical block. A physical

disk block is constructed from one Or more contiguous sectors. For a disk with 512-

byte sectors, an 8192-byte file system block would be built up from 16 contiguous

sectors. Although the contents of a logical block are contiguous on disk, the logical

blocks of the file need not be laid out contiguously.

The file subsystem accesses file data using a buffering mechanism that regulates

data flow between the kernel and secondary storage devices. The buffering mechanism

interacts with block I/O device drivers to initiate data transfer to and from the kernel.

2.2. Buffer Cache

The kernel could read and write directly to and from the disk for all file system

accesses, but system response time and throughput would be poor because of the

slow disk transfer rate. The kernel therefore attem pts to minimize the frequency of

disk access by keeping a pool of internal data buffers, called the buffer cache8, which

contains the data in recently used disk blocks.

®The buffer cache discussed here is a software structure that should not be confused with hardware

caches that speed memory references

9

Figure 1 shows that the position of the buffer cache module in the kernel archi­

tecture is between the file subsystem and (block) device drivers. When reading data

from the disk, the kernel attem pts to read from the buffer cache. If the data is already

in the cache, the kernel does not have to read from the disk. If the data is not in

the cache, the kernel reads the data from the disk and caches it, using an algorithm

that tries to save as much good data in the cache as possible. Similarly, data being

w ritten to disk is cached so that it will be there if the kernel later tries to read it.

The kernel also attem pts to minimize the frequency of disk write operations by de­

termining whether the data must actually be stored on disk or whether it is transient

data that will soon be overwritten. Higher-level kernel algorithms instruct the buffer

cache module to pre-cache data or to delay-write data to maximize the caching effect.

Depending on available memory, a system may be configured with anything from a

hundred to a thousand buffers. The larger the number of buffers, the longer a given

disk block can be retained in memory, and the greater the chance that disk I/O can

be avoided.

HASH LINK

QUEUE LINK

FLAGS

DEVICE

BLOCK NUMBER

BYTE COUNT

BUFFER SIZE

' BUFFER POINTER TO BUFFER CONTENTS (8K)

Table 1: Buffer Head Descriptions

Table 1 shows the format of a buffer. The buffer is composed of two parts. The

10

first part is the buffer header, which contains information used to find the buffer

and to describe its contents. The content information includes the device (i.e., disk

and partition on that disk), the starting physical block number (counting from the

beginning of the partition), and the number of bytes contained in the buffer. The

flag’s entry tracks status information about the buffer, such as whether the buffer

contains useful data, whether the buffer is in use, and whether the data must be

written back to the disk before the buffer can be reused.

The second part is the actual buffer contents. There is a pointer to the data and

a field that shows the size of the data buffer. The buffer size is always at least as

big as the fragment size. Data is maintained separately from the header .to allow

easy manipulation of the buffer sizes with the page-mapping hardware. If the headers

were prepended, either each header would have to be on a page by itself or the kernel

would have to avoid remapping buffer pages that contained headers.

The size of buffer requests from the file system range from 512-byte fragments up
oto 8192-byte full-sized blocks. If many small files'are being accessed, then many small

buffers are needed. Alternatively, if several large files are being accessed, then fewer

large buffers are needed. To allow the system to adapt efficiently to these changing

needs, each buffer is allocated 8192 bytes of virtual memory, but the address space

is not fully populated with physical memory. Initially, each buffer is assigned 2048

bytes of physical memory. As smaller buffers are allocated, they give up their excess

physical memory to other buffers that need to hold more than 2048 bytes.

2.3. Buffer Cache Interface

The internal kernel interface to the buffer p.ool is simple. The file system allocates

and fills buffers by calling the bread() routine. Bread() takes a device, a block number,

and a size, and returns a pointer to a locked buffer. Any other process that tries to

access the buffer will be put to sleep until the buffer is released. A buffer can be

11

released in one of four ways. If the buffer has not been modified, it can simply

be released through use of brels(). If the buffer has been modified, it is called dirty.

Dirty buffers must eventually be written back to the disk. Three routines are available

based on the urgency with which the data must be written to disk. In the typical

case, bdwriteQ is used; it assumes that the buffer probably will be modified again

soon, so should be marked as dirty, but should not be immediately written to disk.

The heuristic is that, if the buffer will be modified again soon, the disk I/O would be

wasted. Because the buffer is held for an average of 15 seconds before it is written,

a process doing many small writes will not repeatedly access the disk. If the buffer

has been completely filled, then it is unlikely to be written again soon, so it should

be released with bawriteQ. Bawrite() schedules a write to disk, but allows the caller

to continue running while the output completes. The final case is bwriteQ, which

ensures tha t the disk write is complete before proceeding. Because this mechanism can

introduce a long latency to the requester, it is used only when the process explicitly

requests the behavior (such as the fsync system call), or when the operation is critical

to ensure the consistency of the file system in case of a system crash.

The primary interface to getting a buffer is through breadQ, which is called with

a request for a data block of a specified size on a specified disk. BreadQ first calls

getblkQ to find out whether the data block is available in a buffer that is already in

memory. If the block is available in a buffer, getblkQ calls notavailQ to take the buffer

off whichever free list it is on and to mark it busy; breadQ can then return the buffer

to the caller.

If the disk block is not already in memory, getblkQ calls newbufQ to allocate a

new buffer. The new buffer is then passed to breallocQ to ensure that there will not

be any overlap with other buffers. Next, the buffer is passed to allocbufQ, which

ensures that the buffers has the right amount of physical memory. GetblkQ then

returns the buffer to breadQ marked busy and unfilled. Noticing that the buffer is

12

unfilled, breadQ passes it to the disk driver to have the data read in. When the disk

read completes, the buffer can be returned.

To maintain the consistency of the file system, breallocQ ensures that a disk block

is mapped into at most one buffer. The final task in allocating a buffer is to ensure

that the buffer has enough physical memory allocated to it; this task is handled by

allocbufQ.

2.4. D evice Driver

A hardware device is a peripheral such as a disk or tape drive, terminal mul­

tiplexer, or network controller. For each hardware device supported by UNIX, a

software module termed a device driver is required. The device driver provides a

consistent interface to various hardware devices by hiding device-specific details from

the rest of the UNIX kernel and user applications.

UNIX must provide two internal interfaces that a device driver may support.

These interfaces perm it a device to be used in two different ways: As a block-oriented

device suitable for holding one or more file systems, or as an unstructured device that

is potentially suitable for use by the terminal I/O system.

A block-device interface, as the name indicates, supports only block-oriented I/O

operations. The block-device interface uses the buffer cache to minimize the number

of I/O requests tha t actually require an I/O operation, and to synchronize with file

system operations on the same device. All I/O is done to or from I/O buffers that

reside in the kernel’s address space. This approach requires at least one memory-to-

memory copy operation to satisfy a user request, but also allows UNIX to support I/O

requests of nearly arbitrary size and alignment. A character-device interface comes

in two styles depending on the characteristics of the underlying hardware device.

Internal to the system, I/O devices are accessed through a fixed set of entry points

provided by each device’s device driver. The set of entry points varies according

13

File Subsystem

open close read write ioctl mount unmount read write

Character Device Switch Table

open close reaid write ioctl

Driver

device inte rrupt handler

Interrupt Vector

buffer cache

Block Device Switch Table

open close strategy

Driver

device interrupt handler

Interrupt Vector

Device Interrupts

Figure 2: Driver Entry Point

14

to whether the I/O device supports a block- or character-device interface. For a

block-device interface, a device driver is described by a bdevsw structure, whereas for

character-device interface, it accesses a cdevsw structure.

Devices are identified by a device number that is constructed from a m ajor and

a minor device number. The major device number uniquely identifies the type of

device (actually the device driver) and it is the index of the device’s entry in the

block- or character-device table. Devices that support both block- and character-

device interfaces have two major device numbers, one for each table. The minor

device number is interpreted solely by the device driver and is used by the driver to

identify to which, of potentially many, hardware devices an I/O request refers. For

magnetic tapes, for example, minor device numbers are used to identify a specific

controller and tape transport.

Every device driver must have entries in at least one of the switch tables. The

position of each driver’s entry in the array that forms the table is determined by its

major number. There are two data tables called the character device switch table

and the block device switch table. Drivers can appear in both tables if the driver is

both character and block type. This is usually done to support raw character I/O on

a block device.

The kernel to driver interface is described by the block device switch table and

the character device switch table (Figure 2). Each device type has entries in the table

that direct the kernel to the appropriate driver interfaces for the system calls. The

open and close system calls for a device file funnel through the two device switch

tables, according to the file type. The mount and unmount system calls also invoke

the device open and close procedures for block devices. Read, write, and ioctl system

calls for character special files pass through the respective procedures in the character

device switch table. Read and write system calls for block devices and for files on

mounted file systems invoke the algorithms of the buffer cache, which invoke the

15

device strategy procedure.

The hardware to driver interface consists of machine-dependent control registers

or I/O instructions for manipulating devices and interrupt vectors: When a device

interrupt occurs, the system identifies the interrupting device and calls the appropri­

ate interrupt handler. Obviously, software devices such as the kernel profile driver

do not have a hardware interface, but other interrupt handlers may call a “software

interrupt handler” directly.

Device drivers deal with both I/O bus addresses and virtual addresses. Implemen­

tations of BSD/386 use a demand-paged virtual memory system. The addresses used

in source and executable code in device drivers and in almost all other kernel and

user code are never physical memory addresses. They are virtual addresses, which

are translated by hardware at run tim e into physical memory references. The trans­

lations are made with the aid of address translation tables, called page tables, which

are created and maintained by the kernel.

The method used by system hardware to translate I/O bus addresses is that

CPU references to some portion of physical memory are placed on the particular

I/O bus, either as memory or as I/O references. DMA (Direct Memory Access)

device references to memory may be translated into physical memory addresses by

I/O mapping hardware.

Device drivers execute in system virtual address space; in most cases the relation­

ship of this address space to physical memory is unknown. On the BSD/386 system,

explicit mappings must be set up between kernel virtual address space and the I/O

bus. Kernel initialization and configuration routines will set up these mappings.

2.5. System Configuration

Device drivers are code modules that must be incorporated into the executable

image of the kernel. For a particular device driver, the kernel needs to know what

16

entry points exist and what those entry points are. The device driver needs to know

what physical devices are attached to the system and what their addresses are. This

information is stored in a variety of driver-specific data structures.

Although the data structure can he built mostly as C code, with small amounts

of machine-specific assembly language for interrupt handlers on some systems, the

configuration data structures are normally constructed by a special system configu­

ration utility. The configuration utility takes a description of what device drivers are

available and what devices are attached to the system, and then constructs one or

more configuration files. These are compiled or assembled, then linked with the main

part of the operating system, along with the device drivers, to produce a complete

kernel.

System configuration is the procedure by which administrators specify parameters

tha t are installation dependent. Some parameters specify the sizes of kernel tables,

such as the process table, inode table, file table, and the number of buffers to be

allocated for the buffer pool. Other parameters specify device configuration, telling

the kernel which devices are included in the installation and information about their

switch tables, address tables, and data structures.

3. Basic Concept of SCSI Host Bus

3.1. W hat is SCSI?

The SCSI protocol is designed to provide an efficient peer-to-peer I/O bus with up

to 8 devices, including one or more hosts. Data may be transferred asynchronously

at rates that only depend on device implementation and cable length. Synchronous

data transfers are supported at rates up to 10 mega-transfers per second. W ith the

32 bit wide data transfer option, data rates of up to 40 megabytes per second are

possible.

SCSI-2 includes command sets for magnetic and optical disks, tapes, printers,

processors, CD-ROMs, scanners, medium changers, and communications devices.

In 1985, when the first SCSI standard was being finalized as an American National

Standard, several manufacturers approached the X3T9.2 Task Group. They wanted to

increase the mandatory requirements of SCSI and to define further features for direct-

access devices. Rather than delay the SCSI standard, X3T9.2 formed an ad hoc group

to develop a working paper that was eventually called the Common Command Set

(CCS). Many disk products were designed using this working paper in conjunction

with the SCSI standard.

In parallel with the development of the CCS working paper, X3T9.2 began work

on an enhanced SCSI standard which was named SCSI-2. SCSI-2 included the re­

sults of the CCS working paper and extended them to all device types. It also

added caching commands, performance enhancement features, and other functions

that X3T9.2 deemed worthwhile. While SCSI-2 has gone well beyond the original

SCSI standard (now referred to as SCSI-1), it retains a high degree of compatibility

with SCSI-1 devices.

17

18

3.2. SCSI Phases

When the SCSI bus operates, it makes orderly transitions between bus states

known as phases. The phase determines the direction and content of the data lines.

A single transaction between an “initiator” and a “target” can involve up to 8 distinct

“phases.” These phases are almost entirely determined by the target (e.g., the hard

disk drive). The current phase can be determined from an examination of five SCSI

bus signals, as shown in Table 2.

-SEL -BSY -MSG -C/D -I/O PHASE

HI HI ? ? ? BUS FREE

HI LO ? ? ? ARBITRATION

I I&T ? ? ? SELECTION

T I&T ? ? ? RESELECTION

HI LO HI HI HI DATA OUT

HI LO HI HI LO DATA IN

HI LO HI LO H I COMMAND

HI LO HI LO LO STATUS

HI LO LO LO HI MESSAGE OUT

HI LO LO LO LO MESSAGE IN

I = Initiator Asserts, T = Target Asserts, ? = HI or LO

Table 2: SCSI Bus Phase Determination

The eight possible phases are BUS FREE, ARBITRATION, SELECTION, RE

SELECTION, COMMAND, DATA, STATUS, and MESSAGE. The last four of these

are called information transfer phases.

The phase diagram in Figure 3 shows the relationships between the phase and

19

the possible phase transitions. The system always comes up in the BUS FREE phase

or reenters this phase after the bus is reset. A system can be nonarbitrating (a)

or arbitrating (b); if arbitration is not implemented, there is no ARBITRATION or

RESELECTION phase. Nonarbitrating systems usually consist of a single host and a

single peripheral controller; ARBITRATION and RESELECTION are not necessary

because the host is always in control, and there is no need for a disconnect/reconnect

operation.

In the BUS FREE phase, the BSY (Busy) signal is not asserted (as it is in all the

other phases).

In the ARBITRATION phase, all would-be bus masters compete for control of

the bus. This phase begins when an initiator, or a target that wants to get back in

touch with an initiator after being disconnected, attem pts to gain control of the SCSI

bus. Each potential m aster asserts the BSY signal (which is a wired OR, so there is

no electrical conflict) and sets the data bit (0 through 7) corresponding to its SCSI

ID. The device with the highest ID wins, and the others then back off.

In the SELECTION phase, an initiator selects a target for a command by placing

the target’s ID on the data lines and asserting the SEL (Select) signal. If the system

is nonarbitrating, the initiator does not need to compete for the bus and can skip

to this phase from the BUS FREE phase. At the end of this phase, the target (if it

exists) takes over control of the bus timing and phase transitions for the remainder

of the transaction.

The RESELECTION phase occurs when a target wins the arbitration and reestab­

lishes contact with an initiator that previously sent it a command. The target places

the initiator’s ID on the data lines and asserts the I/O signal, as well as SEL, to

distinguish this phase from a SELECTION phase.

In the COMMAND Phase, 6, 10, or 12 bytes of command information are trans­

ferred from the initiator to the target.

20

Power-up or reset

SELECTION phaseBUS FREE phase

COMMAND, DATA, STATUS, or MESSAGE phase

(a) SCSI phases without arbitration

Power-up or reset

BUS FREE phase ARBITRATION phase

SELECTION or RESELECTION phase

COMMAND, DATA, STATUS, or MESSAGE phas.

(b) SCSI phases with arbitration

Figure 3: SCSI Bus Phases

21

In the DATA OUT and DATA IN phases, data is transferred between the initiator

and the target. For example, the DATA OUT phase transfers data from the host

adapter to the disk drive. The DATA IN phase transfers data from the disk drive to

the host adapter. If the SCSI command does not require data transfer, then neither

phase is entered.

The STATUS Phase is entered after completion of all commands, and allows the

target to send a status byte to the initiator. There are nine valid status bytes, as

shown in Table 3. Note that since bits9 1-5 are used for the status code (the other bits

are reserved), the status byte should be masked with 0x3e before being examined.

Value t Status

0x00 GOOD

0x02 CHECK CONDITION

0x04 CONDITION MET

0x08 BUSY

0x10 INTERMEDIATE

0x14 INTERMEDIATE-CONDITION MET

0x18 RESERVATION CONFLICT

0x22 COMMAND TERMINATED

0x28 QUEUE FULL

t After masking with 0x3e

Table 3: SCSI Status Codes

The meanings of the three most important status codes are outlined below:

o GOOD : The operation completed successfully.

9Bit 0 is the least significant bit.

22

o CHECK CONDITION : An error occurred. The REQUEST SENSE command

should be used to find out more information about the error.

o BUSY : The device was unable to accept a command. This may occur during

a self-test or shortly after power-up.

In the MESSAGE OUT and MESSAGE IN phases, additional information is trans­

ferred between the target and the initiator. This information may regard the status

of an outstanding command, or may be a request for a change of protocol. Multiple

MESSAGE IN and MESSAGE OUT phases may occur during a single SCSI trans­

action. If RESELECTION is supported, the driver must be able to correctly process

the SAVE DATA POINTERS, RESTORE POINTERS, and DISCONNECT mes­

sages. Although required by the SCSI-2 standard, some devices do not automatically

send a SAVE DATA POINTERS message prior to a DISCONNECT message.

The system cycles through one or more information transfer phases. The target

uses the MSG (Message), C/D (Control/Data), and I/O signals to guide the system

through the phases.

A typical SCSI transaction would consist of a COMMAND phase, followed by

a series of DATA IN or DATA OUT phases, followed by a STATUS phase and a

MESSAGE IN phase (in which the target sends the mandatory “Command Complete”

message). However, the initiator can cause the target to enter the MESSAGE OUT

phase (and accept a message) by asserting the ATN (Attention) signal on the bus. It

can also reset the bus at any time by asserting RST (Reset).

3.3. Transaction

These phases can be grouped into a transaction (a sequence of phases that starts

and ends in the BUS FREE phase). Interestingly, it is the target - not the initiator

- of the SCSI transaction that determines the sequence of phases from the command

23

it has been asked to process. The initiator finds out what phase the bus is in by

watching the SCSI control lines.

Commands and data can be transferred either asynchronously or synchronously

during the information transfer phases. During an asynchronous transfer, the REQ

(Request) and ACK (Acknowledge) signals operate in lockstep with the transfer. On

a transfer from initiator to target, the target asserts REQ when it is ready for data,

and the host asserts ACK when the data is on the bus. The target deasserts REQ

when it latches the data, and the initiator, seeing this, deasserts ACK. When data is

sent from target to initiator, the REQ line indicates that the target has placed data

on the bus, and ACK indicates that the initiator has latched the data.

If the target and initiator agree, however, they can avoid waiting for handshake

signals by “windowing” the transfer. The target pulses REQ for each byte of data,

and the initiator will eventually pulse ACK the same number of times, but they are

allowed to get ahead of one another. This is a synchronous transfer.

3.4. SCSI Commands

The original SCSI standard was developed at a time when each equipment man­

ufacturer used a different set of commands for its devices. All SCSIs, therefore had

loose requirements for commands, and almost none of them were mandatory. How­

ever, the specification did specify classes and required formats for the commands.

Each SCSI command is sent to a device as a command descriptor block. The first

byte of each block is the operation code, which in turn has two fields. The first is

a group code (contained in the three most significant bits) which indicates the type

of command and the number of bytes it contains, and the second is a command code

which specifies the command itself.

Figure 4 shows the layout of a 6-byte (groupO) command descriptor block. The

larger formats (i.e., 10-byte commands) are similar but leave room for larger addresses

24

Bit

Operation code

Logical unit number Logical block address (if required) (MSB)

Logical block address(if required)

Logical block address(if required)(LSB)

Transfer length(if required) or parameter list length(if required)

or allocation length(if required)

Control

Figure 4: The 6-Byte Command Descriptor Block

and transfer lengths. The eight groups of command codes are divided by length.

Group 0 contains 6-byte commands, groups 1 contains 10-byte commands, and group

2 contains 12-byte commands. The other groups are either reserved or vendor-specific.

A command descriptor block always ends with a control byte, which contains flags

that allow several commands to be linked together in a sequence and sent all at once.

Command linking is a powerful SCSI feature. By sending a sequence of linked

commands, an initiator can avoid the delays involved in waiting for a command to

complete, rearbitrating for the bus, and issuing another command. For instance,

suppose the host wants to find a disk block tha t contains a certain byte sequence

and read it into memory. If it sends a SEARCH DATA EQUAL command followed

by a READ command to an intelligent SCSI disk drive, the drive will automatically

return the correct data with no further intervention.

The following commands are very important to a SCSI driver developer.

o RQUEST SENSE : Whenever a command returns a CHECK CONDITION sta­

tus, the high-level BSD/386 SCSI code automatically obtains more information

25

Sense Key Description

0x00 NO SENSE

0x01 RECOVERED ERROR

0x02 NOT READY

0x03 MEDIUM ERROR

0x04 HARDWARE ERROR

0x05 ILLEGAL REQUEST

0x06 UNIT ATTENTION

0x07 DATA PROTECT

0x08 BLANK CHECK

0x09 (Vendor specific error)

0x0a COPY ABORTED

0x0b ABORTED COMMAND

0x0 c EQUAL

OxOd VOLUME OVERFLOW

OxOe MISCOMPARE

OxOf RESERVED

Table 4: Sense Key Descriptions

26

about the error by executing the REQUEST SENSE. This command returns

a sense key and a sense code (called the “additional sense code,” or ASC, in

the SCSI-2 standard). Some SCSI devices may also report an “additional sense

code qualifier” (ASCQ). The 16 possible sense keys are described in Table 4.

For information on the ASC and ASCQ, we can refer to the SCSI standard or

to a SCSI device technical manual.

o TEST UNIT READY : This command is used to test the target’s status. If

the target can accept a medium-access command (e.g., a READ or a W RITE),

the command returns with a GOOD status. Otherwise, the command returns

with a CHECK CONDITION status and a sense key of NOT READY. This

response usually indicates that the target is completing power-on self-tests.

o INQUIRY : This command returns the target’s make, model, and device type.

The high-level BSD/386 code uses this command to differentiate among mag­

netic disks, optical disks, and tape drives.

o READ and W RITE : These commands are used to transfer data to and from

the target.

4. T he D esign of SCSI H ost A dapter Driver Interface

4.1. Basic Requirements of The SCSI D evice Driver

In the BSD/386 Operating System, the SCSI device driver is divided into three

layers, the high-level SCSI interface, middle-level SCSI interface and low-level SCSI

interface. The high-level SCSI interface, usually called SCSI device driver, manages

all of the interaction between the kernel and the low-level SCSI interface through

the middle-level SCSI interface, which is the generic part. The middle-level SCSI

interface communicates with both high-level and low-level SCSI interfaces. Because

of this layered design, the low-level SCSI driver, usually called SCSI Host Adapter

Driver, needs only provide a few basic services to the high-level code. The author of a

low-level driver does not need to understand the intricacies of the kernel I/O system

and, hence, can write a low-level driver in a relatively short amount of time.

4.2. Specification of SCSI

SCSI host adapters vary in complexity from a simple parallel port that directly

reads and writes the SCSI bus control and data lines to a self-contained controller

board with its own microprocessor that handles queues of commands for multiple

SCSI buses.

The Future Domain TMC-1800 SCSI Host Interface provides a low-cost, high-

performance way to interface SCSI peripheral devices to IBM PC/AT, 80386, and

Micro Channel Architecture (MCA) systems. It operates as a host interface in SCSI

initiator mode and supports up to seven SCSI targets, each with up to eight logic

units attached. Arbitration and reselection are supported.

The TMC-1800 is designed to facilitate easy integration of a SCSI interface into an

IBM PC/A T, 80386, or MCA system. The Host Interface is optimized for the INTEL

8086/8088 and 80286/80386 families of microprocessors. The TMC-1800 provides

27

28

the following features:

o Incorporates all SCSI drivers and receivers for PC/A T or Micro Channel Archi­

tecture (MCA) buses.

o SCSI-2 compatible;

o Supports asynchronous and synchronous SCSI;

o Uses FIFO for very-high-speed data transfer;

o Provides full parity generation and checking;

o Provides a configurable interrupt level, and I/O and memory base addresses;

o Requires no host DMA channels;

o Requires no host system memory;

o Includes 8k x 8-bit static RAM;

o Performs full SCSI arbitration in hardware;

o Low power consumption using CMOS technology;

4.3. B S D /386 SCSI Host Adapter Driver

The SCSI bus is a cable that connects device controllers to a host adapter. The

host adapter is a board that converts computer-independent SCSI protocol to specific

information for a particular computer. The SCSI Bus is also an industry standard

local I/O bus that allows certain device classes, such as random-access read/w rite

disks, sequential access tape drives, image scanners, or CD-ROM to be added to a

system without modifying the generic system hardware or software. This provides the

operating system with a certain amount of device independence within device classes.

29

The SCSI interface provides logical rather than physical addressing, so a logical unit

may be only a part of a physical device.

In BSD/386 operating system, the SCSI device driver does not communicate di­

rectly with the hardware. Rather, it communicates with SCSI Host Adapter Driver.

The SCSI Device Driver has all the usual driver entry points. The SCSI Host Adapter

Driver has only a subset of those routines. It is responsible for getting access to the

SCSI bus, sending a CDB (Command Descriptor Block) to the selected target (physi­

cal) device, sending or receiving any data packet associated with the CDB, and storing

the status byte at the conclusion of each command. The overall structure of the SCSI

Device Driver Interface is shown in figure 5.

4.4. Overall Structure

The overall structure of SCSI Interface, including the SCSI Host Adapter Driver,

Generic Host Adapter Driver and SCSI Device Driver, is a subset of the I/O system

structure. Figure 5 shows its overall structure. SCSI device drivers communicate with

the Host Adapter Driver through a set of entry points that hide the implementation

details of the host adapter from the SCSI device driver. Each specific Host Adapter

Driver is a subclass of the Generic Host Adapter Driver. The SCSI Host Adapter

Driver is the lowest level in the I/O subsystem. It communicates with the Generic

Host Adapter Driver and sends and receives messages to or from physical devices at

the same time. From the over structure, we can see whenever we want to add any

kind of SCSI Board to the Operating System, we only need to write a SCSI Host

Adapter Driver for this specific board. The high-level SCSI device driver should not

be changed.

30

File Subsystem

open close read write ioctl mount unmount read write

Character Device Switch Ta

buffer cache

sle Block Device Switch able

open close read write ioctl open close strategy

SCSI Device Drivers SCSI Device Drivers

Device Interrupt Handler Device Interrupt Handler

All Entry Points All Entry Points

SCSI Generic Host Adapter Driver

Passing Entry Points To Adapter Drivers

hdJcm d hd_start hd_go hd_rel hdJcm d hd_start hd_go hd_rel

SCSI Host A dapterl SCSI Host Adapter2

Adapter 1 Interrupt Handler Adapter2 Interrupt Handler

Physica’ Devicel Physical Device2 Physical Device3

Physical Device4 Physical Device5 Physical Device6

Figure 5: SCSI Device Driver Interface

5. T he Im plem entation of the SCSI H ost A dapter Driver Interface

The SCSI software interface is designed in two layers: the lower layer consists of the

SCSI Adapter Driver, including generic host adapter driver and host adapter driver,

and the upper layer consists of SCSI Device Drivers. The SCSI Host Adapter Driver

handles the actual hardware interface to the SCSI bus; it sends and receives commands

but does not interpret the contents of the command. The upper layer traditionally

controls a particular device or device class-building I/O requests containing SCSI

commands and sending them to the Host Adapter Driver to be passed on to the device.

This shields the SCSI device driver from the details of the hardware interface. The

SCSI Host Adapter Driver also is shielded from the unique requirements of different

devices th a t can be attached to the bus.

Two main structures (c fd r iv e r and h b ad riv e r) are used to communicate be­

tween the high-level code and the low-level code. The following sections will provide

detailed information about these structures and the requirements of the low-level

driver.

5.1. The Configuration Driver Structure

The D ata Structure of the Configuration Driver (cfdriver) is defined in Figure 6.

The system assumes tha t the source code of your driver declares a cfdriver structure

named xxdriver. This structure contains information relevant to the device driver as

a whole, as opposed to information about individual devices or adapter. It differs

in several im portant ways from the device and adapter structures. For one thing,

it contains a number of pointers to driver functions. These pointers, like those in

cdvsw and bdevsw, are used by the kernel as entry points into the driver. For another,

it is initialized not by the configuration system, but within the driver source code

itself - in fact, several of the routines in xxdriver are actually called by the kernel

31

32

autoconfiguration process to complete the driver-related kernel initialization.

struct cfdriver
■C

void **cd_devs;
char *cd_name;
cfmatch_t cd_match;
void (*cd_attach)__P((struct device *,

struct device *, void *));
size_t cd.devsize;
void *cd_aux;
int cd.ndevs;

>;

Figure 6: The data structure of configuration driver

5.1.1. cd_devs

Variable cd_devs contains the name of a device supported by this driver. This field

takes the form of a regular null-terminated C string. Fill in this field if a controller

is used.

5.1.2. cd_name

Varible cd_name holds a pointer to a short description of the SCSI host adapter.

34

5.1.3. ccLdevsize

Varible cd_devsize is the size - in bytes - of the memory tha t the kernel allocates

for this host adapter driver’ data structure. This field is initialized with a value

identical to that which xxprobe returns upon success. This is the amount of space

that needs to be mapped into the system memory by the autoconfiguration code. For

the drivers of the Future Domain SCSI adapter, this size is for struct fdomain_softc,

whose data structure is shown in Figure 7.

5.1.4. Function xxprobeQ

The probe function takes three pointers as its arguments. Two of them point

to two globe data structures, called struct cfdata, and struct isa_attach_args. These

data structures show the base port addresses of all the devices and the relationships

between the devices.

35

This function is called for every adapter and every independent device given in the

kernel config file. It determines whether the device/controller is actually installed.

The probe function should return 1 if the host adapter board is probed successfully,

and return 0 otherwise.

5.1.5. Function xxattach()

This function is called during the autoconfiguration process, where it does prelim­

inary setup and initialization for a device or controller. It is commonly used within

disk and tape drivers to perform setup tasks such as reading of labels, and in charac­

ter drivers for tasks like initializing interrupt vectors and reserving blocks of memory.

This function will return 1 if the host adapter is attached, and zero otherwise.

Usually, each host adapter has a series of I/O port addresses which are used for

communications. Sometimes these addresses will be hard-coded into the driver, forc­

ing all users who have this host adapter to use a specific set of I/O port addresses.

Other drivers are more flexible, and can find the current I/O port address by scan­

ning all possible port addresses. Usually each host adapter will allow 3 or 4 sets of

addresses, which are selectable via hardware jumpers on the host adapter card.

After the I/O port addresses are found, the host adapter can be interrogated to

confirm that it is, indeed, the expected host adapter. These tests are host adapter

specific, but commonly include methods to determine the BIOS base address (which

can then be compared to the BIOS address found during the BIOS signature search)

or to verify a unique identification number associated with the board. For MCA bus10

machines, each type of board is given a unique identification number which no other

manufacturer can use. Several Future Domain host adapters, for example, also use

this number as a unique identifier on ISA bus machines. Other methods of verifying

10The “MicroChannel Architecture” bus is IBM’s proprietary 32 bit bus for 286, 386 and i486

machines.

36

the host adapter’s existence and function will be available to the programmer.

R e q u e s tin g th e IR Q During attaching, the attachQ routine must request any

needed interrupt or DMA channels from the kernel. There are 16 interrupt channels,

labeled IRQ 0 through IRQ 15. The kernel provides a method for setting up an IRQ

handler: intr.establish().

The intr.establish () function takes three parameters, the IRQ number, a pointer to

the handler routine, and the device type. The prototype of the function intr_estabhsh()

is shown in Figure 8.

i n t i n t r _ e s t a b l i s h (i r q , ih , devtype)

i n t i r q ;

s t r u c t in trh a n d * ih ;

enum d e v c la ss devtype;

Figure 8: The in t r_ e s ta b l is h () function

The first parameter, irq, is the number of the IRQ that is being requested, and

it causes the interrupt handler routine to be invoked; the second parameter, ih, is

a pointer that points to the specific host adapter driver interrupt handler; the third

param eter, devtype, is the device type (disk, tape, etc.).

The kernel uses an Intel “interrupt gate” to set up IRQ handler routines requested

via the irqactionQ function. The Intel i486 manual explains the interrupt gate as

follows:

Interrupts using... interrupt gates... cause the TF flag [trap flag] to be

cleared after its current value is saved on the stack as part o f the saved

37

contents o f the EFLAGS register. In so doing, the processor prevents

instruction tracing from affecting interrupt response. A subsequent IR E T

[interrupt return] instruction restores the TF flag to the value in the saved

contents o f the EFLAGS register on the stack.

. . . An interrupt which uses an interrupt gate clears the IF flag / in-

terrupt-enable flag], which prevents other interrupts from interfering with

the current interrupt handler. A subsequent IR E T instruction restores the

IF flag to the value in the saved contents o f the EFLAGS register on the

stack.

Some SCSI host adapters use DMA to access large blocks of data in memory. Since

the CPU does not have to deal with the individual DMA requests, data transfers are

faster than CPU-mediated transfers and allow the CPU to do other useful work during

a block transfer (assuming interrupts are enabled).

The host adapter uses a specific DMA channel (for instance, Adaptec Board uses

channel 5). This DMA channel will be determined by the attach() function and is

requested from the kernel with the at.dma.cascade (drq) function. This function takes

the DMA channel number as its only parameter and allocates the DMA channel.

Some SCSI Boards, like the Future Domain SCSI, don’t require DMA channel

and system memory. Instead, they use the built-in 8k x 8-bit external static RAM

for buffering data to/from the SCSI data port by setting FIFO data transmission bit

on.

5.2. SCSI Host Bus Adapter Driver Structure

The SCSI Host Bus Adapter Driver is called by a high level SCSI device driver.

Its data structure is defined as shown in Table 9. In general, the variables in the

H badriver structure are not used until after the attach() function is called. Therefore,

38

any variables that cannot be assigned before the host adapter is attached should be

assigned during detection. This situation might occur, for example, if a single driver

provided support for several host adapters with very similar characteristics. Some of

the parameters in the Hbadriver structure might then depend on the specific host

adapter attached.

5.2.1. hdJcm d — SCSI Im m ediate Command Function

The SCSI Command has a 6-byte command or a 10-type command. In this

function, the initiator first allocates enough space for the whole command structure,

which includes command code, logical block address, data length, and control code,

it then sends the SCSI command block to the target and waits for ACK from the

target. If it gets ACK from the control line, data will be sent to the target. Upon

finishing, the first byte of the command block is set to FREE, which tells the target

that is the end of the transaction. From the control line, the initiator senses the

signal, and frees the bus.

5.2.2. hd_dump — SCSI Dum ping Function

This function will dump all the data in the memory into a physical device, if the

system crashes accidently.

5.2.3. hd_start — Restarting SCSI Bus Function

The task of hd_start() is straightforward: Examine the next request on the device

request queue and tell the controller to start the I/O operation. Then it call SCSI

Adapter-resource routines (hd_go function) to request resources needed in doing the

transfer. The system allocates these resources dynamically, rather than statically at

boot time.

39

struct hbadriver
{

int (*hd_icmd) P((struct hba.softc *,
int targ,
struct scsi.cdb *cmd,
caddr_t addr, int len,
int rw));

int (*hd_dump) P((struct hba.softc *,
int targ,
struct scsi_cdb *cmd
caddr_t addr, int len,
int isphys));

scstart.fn hd_start;
scbusgo.fn hd.go
scbusrel_fn hd_rel;
void (*hd_reset) P((struct hba_softc *,

int));
>;

Figure 9: The data structure of SCSI Host Adapter Driver

40

5.2.4. hcLgo — Start I/O Transfer Function

This function is called by hd_start function for allocating resource. When resources

become available (for instance, the adapter is not in use), it calls back to the SCSI

immediate command to begin the I/O data transfer. If the adapter is busy, that

request will be placed on a queue of device request.

5.2.5. hd_reset — R eseting SCSI Adapter Function

The resetQ function is used to reset the SCSI bus. After a SCSI bus reset, any

executing command fails, and all the devices that connect to the bus are reset.

To reset a SCSI command, the initiator should request (by asserting the -ATN
line) that the target enter a MESSAGE OUT phase. Then, the initiator should send

a BUS DEVICE RESET message to the target. It may also be necessary to initiate

a SCSI RESET by asserting the -RST line, which will cause all target devices to be

reset. After a reset, it may be necessary to renegotiate a synchronous communications

protocol with the targets.

6. Conclusion

The compelling factors behind SCSI’s sudden popularity boost are its variety and

compatibility. The old SCSI is SCSI-1 (such as Adaptec Board). It was written as

a catch-all, to accommodate a range of bus users with widely varying needs. As

it turned out, SCSI-1 still wasn’t loose enough. Also it maxes out at about 10-

megabits-per-second transmission speed. On the BSD/386 Operating System, the

Adaptec transfers data at 5-megabits-per-second. Compared to SCSI-1, SCSI-2 (for

instance, Future Domain SCSI Board) extends the 8-bit data path of standard SCSI

to 16-bit or 32-bit (depending on its mode), to directly service the wider I/O buses

on newer small computers. The transmission speed reaches up to 40-megabits.

The original goal of the project: to design an efficient software interface for the

I/O subsystem of the modern operating system, to develop and implement a simple,

reliable, and an efficient SCSI Host Adapter Driver that runs on the BSD/386, has

been achieved. BSD/386 will start to take advantages of SCSI-2 with superior per­

formance when the current project is incorperated into the new release of BSD/386.

6.1. Optim ization

6.1.1. The Third Generation SCSI

A SCSI-3 committee is now working on a general updating of SCSI, mostly to keep

it abreast of advances in bus technology. All these variations can talk to each other

on a lowest-common-denominator basis. This is generally accomplished by starting

a SCSI conversation at the lowest level, after which a higher-capability device will

propose switching the conversation to its natural level. If the other device can not do

this, the conversation merely continues as it started. SCSI devices can also ask each

other to identify their device types to speed up the process.

41

42

6.1.2. Object-Oriented Host Adapter Driver

From Figure 5, we can see the relation between each level of the device driver. The

SCSI Host Adapter Driver is a subclass of the Generic Host Adapter Driver, which

is connected to SCSI Device Drivers, which are subclasses of the I/O subsystem, in

turn. Each subclass has its unique and distinct attributes and functions, and also

inherits some common attributes and functions.

Object-Oriented Programming Languages (like C + +) focus on code model defi­

nition, using an inheritance concept. In order to take advantage of the inheritance

concept, an Object-Oriented Programming Language could be used in the future to

simplify the implementation and shorten the program. For example, two main struc­

tures (c f d r iv e r and h b ad riv e r) can be combined into a class called connection_class.

Its definition is shown in Figure 10. However, this design needs much exploiting work

for the implementation of the lowest level in the device driver subsystem, which, in

general, is hardware dependent.

6.1.3. The Standardized Design and Im plem entation

The SCSI device driver is shielded from the details of the hardware interface,

and the SCSI Host Adapter Driver is also shielded from the unique requirements of

different devices that can be attached to the bus. These features make it possible

that one SCSI device driver works with many SCSI Host Adapter Boards, and one

SCSI Host Adapter Driver works with many types of SCSI device drivers and different

peripheral devices. Compared with the conventional device driver, this is a significant

progress. All the designs and implementations of the SCSI device drivers are based

on SCSI standard.

Even though one SCSI Host Adapter Driver can work with many types of the

peripheral devices, it works with only one type of SCSI Boards. Is it possible to

class connection_class {
private: char *cd_name;

size.t cd_devsize;
public: cfmatch_t cdjmatch;

void (*cd_attach)__P((struct device *,
struct device *, void *))

int (*hd_icmd) P((struct hba.softc *,
int targ,
struct scsi_cdb *cmd,
caddr.t addr, int len,
int rw));

int (*hd_dump) P((struct hba_softc *,
int targ,
struct scsi_cdb *cmd
caddr_t addr, int len,
int isphys));

scstart_fn hd_start;
scbusgo.fn hd_go
scbusrel_fn hd_rel;
void (*hd_reset) P((struct hba_softc *,

int));

Figure 10: The class of the SCSI Host Adapter Driver

44

make the writing of SCSI Host Adapter Driver standardized? Theoretically, that is

possible. On the same UNIX system, the structure of the SCSI Host Adapter Driver

is able to be kept consistent, no m atter what kind of SCSI Host Adapter Board is

installed. Furthermore, for the different SCSI Host Adapter Drivers, the connection

between the high-level and low-level codes is similar, and it can be made standard.

Generally speaking, for the standardized implementation of the SCSI Host Adapter

Driver, the system will provide

o A standard structure of the SCSI Host Adapter Driver.

o A standard softwaxe connector between the SCSI device driver and the SCSI

Host Adapter Driver.

o A standard basic service between the connector and the user functions with

standard definition.

Under this circumstance, a system programmer is required to provide a set of specific

SCSI Host Adapter hardware-dependent functions, which also have standard function

definitions.

The standardized implementation of the Host Adapter Driver will make it easier

for the system programmer to develop a specific SCSI Host Adapter Driver in the

future.

45

References

[1] Janet I. Egan and Thomas J. Teixeira , “ Writing a Unix Device Driver” John

Wiley and Sons, New York, NY, 1992

[2] Maurice J. Bach, “Design of Unix Operating System” Prentice-Hall, New York,

NY, 1986

[3] Peter kettle and Steve Statler, “ Writing Device Drivers for SCO U NIX ’

Prentice-Hall, New York, NY, 1992

[4] Samuel J. Leffler, Marshall Kirk Mckusick, Michael J. Karels and John S. Quar-

terman, “ The Design and Implementation of the 4-3BSD UNIX Operating Sys-

tem” Addison-Wesley, New York, NY, 1987

[5] Berkeley, BSD /386 V I.0 Installation Notes, Berkeley Software Design, INC.

[6] Walter Zintz , “SCSI’s Busting Out All Over” , UNIXWORD, Oct. 1992, pp.

76-79

[7] Future Domain Corporation, “ TMC-1800 SC SI CHIP SPECIFICATIO N ’,

FDC-1800T Specification Errata Sheet, P /N : 02-01800-303-00

[8] William Frederick Jolitz and Lynne Greer Jolitz, aPorting UNIX to the 386

Device Drivers” Dr. Dobb’s Journal, March 1992, pp. 44-50

[9] Roger C. Alford uThe Evolution o f ES D F, BYTE, june 1990, pp. 297-306

[10] Mark L. Van Name and Bill Catchings a486 EISA Machines: A Slow Start in

the Fast Lane”, BYTE, Oct. 1990, pp. 172-176

[11] Nick Baran “EISA Arrives”, BYTE, Nov. 1989, pp. 93-98

[12] L. Brett Glass, “Inside EISA”, BYTE, Nov. 1989, pp. 417-425

46

[13] Corey Sandler, “'New Controller Makes SCSI Palatable to PC's” , BYTE, Nov.

1990, pp. 205-208

[14] George White, “A Bus TonE’, BYTE, Sep. 1989, pp. 296-302

[15] Bruce Van Dyke, “SCSI: The I /O Standard Evolves", BYTE, Fall 1990, pp.

187-191

[16] L. Brett Glass, “Part 1: The SC SI Bus”, BYTE, Feb. 1990, pp. 267-274

[17] L. Brett Glass, “Part 2: The SCSI Bus” , BYTE, March 1990, pp. 291-298

[18] Lynne McCue, “ Writing a SCSI Device Driver: A Pass-Through Implementa­

tion” , A lXpert, Feb. 1993, pp. 24-31

[19] Edwin C. Perkins, “Should Your Next UNIX Workstation be a P C ? \ UNIX-

WORD, Feb. 1993, pp. 90-96

	Design of the software interface for a multimaster bus system
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

