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INTROIUCTION

%e Investigate the conditions on g and b under which there

existe intesral solutions greater than ~K of the pair of eguations:

s S
(1) a = oyx? ; b= D eyx,
EZ; 171 ’ = e

where ¥ is an intezer, while each 4 iz 2 given positive integer.

R >
Since each solution is greater than =X, each x, = =X + 1. For

i

solutions = O we take K = 1, Denote the sum of the o, by b.

NHeceggary conditions for soluiions are:

4

(2) a, b integers, b

LAY

11(1 - K3}, a® b {med 2),

Ao L. Cauchy investigated the conditione on & and b when each

¢y = 1. 1In his paper, "Two-Fold Generalizations of Cauehy'’s

a
Lemma®™, L. E. lickgon [1] treated all cases in which

4

2., t =8, K. Chatlaund [2] investigated the cases in whick
i=1

4 - -

>., t = 9, imma Brave [3) investigated the cases in whieh
i=1

4 4

2., & = 10, In this paper cvses in which g{%, t = 11, are
i=1 =

asonal dered.

Thecrem: Let (01‘ « » ©4) be one of the sleven sets below.

Iet {(£) hold and

(3} $a = bs, (t - 1la<b® + 2bX + tEKs,

Then there exist integral solutions greater than =X of (1) with

8 =4, if the following forms are "regular®, where regular is

« Humbers in brackets refer 0 the referenceg cited st the end
of the papers

- 1 -



defined ass follcus:

DePinition: Let £ denote u certein form. IFf 211 the positive

integers not represented by £ coinelde with all the positive
integers contained in eertain arithmetical progressions, the form
f is 6slled regular.

The general f = ax* ¢ by* ¢ cz® denoted by {(a,b,c} was
treated by B. ¥, Jones [4].

“hen the grestest common divisor of &,b,8 is 1, he found thal
exactliy 102 fTorms are regulare.

The same general method may be spplied in all cases.

The problem of finding the conditions on a aud b has been

reduced by L. Z. Dickson (1] to one of finding the representations

of a ternary quadratic form., He arrives at the identity:

2
S
—~

{4) (03¢84)(ta-b3) = (cl+82}v9 + 61(03+aé§(gvd¢gﬁ*} + ege, tws

gﬂﬁgﬁ»cﬁ-&e%
t = Gy ¢+ Cp + Gy + Oy

ww X, - X

3 4
d = Xl - xg
v = (93 + 0 )%, - 0 x, - 0, %,

By transforming this identity intc one lnvolving onmly squares, we
et our ternary cusirotic forns.

“e ghell then show the %xy's Yo be integers. It them happens
that the eleven ternary guadratics forms of this paper are =1l
shown Lo be irregular by comparison with the table of T. W. Jones

L5]e



Cuse 1:

s =4, t =11, ¢
<@ have by (4)

9(1la = bs) 2ve: ¢ 18vd + 904% + 88w=

4v% ¢ 36vd ¢+ 180¢8% 4+ 176wz

16{1lla =~ ha)
e (2v + 94)2 + 998¢ + 170ws

Set = (8v + Sd) et © = 1la - bs
Then £ = 186 = I* 4 99d*% + 176w2,
e have = xl + xg * xz * 8x4

- 814

b
v o= 932 - 13
a

wwxa-’x

3o0lving these we find that

llxl = b + v + 104

2

99x3 = 9 - 94 - 2v + £8w

99x4 = 9b = %8 - v - 1llw

1z, = b ¢ v - 4

Cur probler here is t0 show thet the x's are integers.

Proof: By hypothesis am b (mod 2). Then §* ¢« 993~ = C (mod 2)
and t* + 4% 8 O (mod 2) and F2 & {mod 2). Therefore v is wn
integer. “rom 76 we have T+ 2 76 (mcd 11} and t+ & =7b% {(mod 11)
and £* % 4b* (mod 11)s &= #2b {(mod 11). By choice of s£iens

¥ 8=2b (mod 11). Then 2v + 2b + 94 # O { mod 11) and

2y + 2b + 20d = O {mod 11), and 2(v + b ¢+ 104) = O (mod 11);
also, v + b + 10d = O {mod 11), and v « b - d 8 O (mod 11)

cnd Xy and X5 are integers.



4

Iet b + v - d = n, znd 92 = 9¢ -~ 2v = m. Then 9n § » (mod 11},
alage -%n + m + 88w = 11(Bw = v). By 6, Ctwe ¢+ 2vs g O (mog 9.
Therefore Sw -~ v & 0 {(mod 9), or Bw + v 2 O {mod %}. Choose
the oign of v so that 8w - v =2 O {mod 9). Then 1ll{Sw-v) = O{mod 99},
6lso %n - m + 44w = 11(4w + v). CSince 8w - v = O (mod 9},
v-fwesve+ws O (mod 9)o Therefore 1llv ¢+ w; = O {mod $9) and

the x,’s are integers.

i
There are eleven possible scmbinations of the sunm of four

integere t, t = 11, ag follows:

{1,1,1,3}, (ltlszsv)o (1,1,3,6), (1919495)3 (loaogoé)a (192I5'5}0
{1'3,4,4), (105t594)9 (3,2,2,5}, (27233’4)’ (2935393)°

Ugsing the identity (4) we get the following ternary gu:xératic forms:

Case 1: t =11, ¢y =1, ¢, =1, Cy = 1, Cy = Ba
3y (4) g(1la - b8) = 2v® 4+ 1Pvad + 90d% + RBwe
18(11la - b*) = 4v* + 36vd + 180a® & 176ws
= (2v 4 9d4)% 4+ 994% 4+ 176ws
Set $% = (2v + 9d)s

Then 18(11la = b®) = 2 4 9Yd® & 176ws

Cage 2: t =11, e =1, e6p=1, o3=2, ¢, =7,
By {4} g{1la - b8) = 2v® & 18vd ¢ 904* + 1lH4w*
18{11la ~ b#) = 4ve 4+ 36vd + 1804* + 308wH
= (2v ¢ 94)® ¢ 994¢ + 30Bws
Set ¥* = {2v + 9d)®
Then 18{(11la -~ b2) = F& 4 993% 4+ 308ws
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Caase 10:

By comparing@%he eleven ternery quadratic forms sabove

the tahle ¢?

e

irregular.

Tefinition:

metical progzression contalining the positive inmteger K, not

= 11, Gy =

18(11a

11,

11, e, =
24(11s

=

11, o,

24(11a

11,

11,
30(11s

Given a form £.

1, o, =

L3

1, ¢, =

-@3) o=

-hﬂ)g

g x

-5-:

6. = 2,
@

+ 176d% 4

ca = 3,

+ 17642 ¢

e, = 4,

3
¢+ 1764¢ +

oy = 3,
¢ 231d¢ +

cg,
+ 7748 +

03 = 3,

¢ T74% +
]

3 = 9

+ 3964% ¢

remuining ternory cundratic forme are:

528we

04“40
528w

110wa

~
C B e

4
158w=

34 & 50

49 5we

¥. Jones [ 5] we find all of these forms to bhe

1f there does noct exist an srith-



represented by £, all of rhose positive terms are not reprssented

by £, ¥ is called irregular.

Six Lemmas useful in obtaining integral soluticns for irregular

Porms [5].

lemma l: If p is an odd prire dividinpg neither & nor » and if X

is any integer, ax® + by* = XK (mod p) is solvable.

Proof: x® takes 1 + %‘(p - 1) valueg inconsruent modulo p. The
anme iz therefore true of ax? - K and of -byd, Une of the values
of the former is congruent to one of the values 07 the latter,
gince otherwise there would be p + 1 integers incongruent modulo p,
which is absurd.

‘rlte £ = ax® + by® + cz®

Lemma 2: If abe is not divisible by the 0&d prime p, and if X is
any integer, £ @ K (mod p) has solutions with x and v nct Leoth
divisible by pe.

Proof: ‘ecording as X is not or is éivisible vy p, take z = O, or
z & 1 (mod pl. Then {= K - ez* is not aivisible by pe iy Lemma 1,

ax®* + by® = [{mod p) has integral solutioms x,y, which cre

evidently not both divisinle by peo

Lemma S: IT abo is not divisible by the odd prime », znd if ¥ and

n are arbitrary integers, n = 1, £ 2 ¥ {moad pn) hag solutiorg with

x ané y not both divisivle br p.

Proof: This lis true when n = 1 by lLemma 2. To procecd b induction
fromn =m&1 t0 n=ma+ 1, let £ = X (mod p®) have rolutions
§,Q,Jf, such that & and /) ere not both divisidble ty pe Then

i X m . 3t
2ER ¢ bq“ + cr®* = K ¢ p g, where ¢ is an integer. 7“ake x =&+ v X,

yoe e o™, and z = 7+ pPZ.



Then 28K + % + 2050 (mog p&*l)

L= afXl + )Y + cJi,

“e can choose %, ¥, 2 am follows sc that g ¢ 8L 2 O (mod pl.
If £ ig not adivisible by p, take Y = Z = O, 2alX = =g {mwod ple
ie g ig not divisible by p, terke L = Z = 0. In either case,
? g K {mod pm¢ } and x and y are not both divizivle 5y v. The

induction is complete.

Lemma 43 I an odd prime p divides ¢, but pot abk, £ = X {moa @ﬁé

has solutions with x and y nod both divisible by pe
Proof: This ig true whenm n = 1 by Ilemma l. It follows for any n

by induetiocn as in the proof of lemmm 3.

Lemmu 5: If an odd prime p divides ¢ and X, bud not s, snd 1P eab
: o n, )
is & quadratic residue ¢f p, £ = ¥ (mcd p ) has solubions with x

and y both prime to p.

rroo®:; There exist lIlntegers P and R, prime % p, sueh that ~ab = Ps

P = aR, whence aR® + b & O (mod ple Hence £ = 7 (mod v} has the
solutions x = R, v = 1, 2z arbitrary. The proof for any n by in-

duetion 1a likeo thet of lemms 3 with Y = 2 = 0,

Lemma 6: IFf K ig odd and if € 2 ¥ (mod 8) is =olvable, theu
p s
P& K (mod 27} ig solvable when n ig arbitraryv.

Yroof: To proceed by induction, let £ = K {(moé 28y nave solntions

TonsTe for m= 3. Then ax* ¢ bn* + or® = K + 2%,
Tare  x = 5+ 27X, y= ope 2™y, ana oz e 27
Then £w X+ 2%+ 2L {moa 25,

L= st ¢+ bpY + crZ,

<

[us

Since ¥ 1s cdd, ax, bn, er, are not all even. Nence there ex



integral solutions X, ¥, Z2, of g + L2 0 (mod 2). Hence
£ % X (md 2™71) and the imuction is eomplete .
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