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Perkins, David Ph.D., May 2005 M athematical Sciences

Investigations of a Chip-firing Game 

Chairperson: Professor M ark Kayl

We investigate a variation on a chip-firing game in w hich a node v  m ay fire 
only if it is possible to transfer a chip to each neighbor of v  and  discard a chip 
from v. The discarded chip provides the variation, so w e call this kind of chip- 
firing game a burn-off game. Chip-firing games have been used by physicists to 
study a property  of complex systems called self-organized criticality. The main 
goal of this dissertation is to study burn-off games using strictly mathematical 
methods.

The chip distributions that occur during a sequence of bum -off games are 
called legal configurations. We characterize legal configurations, and then show 
that each legal configuration is equally likely, in the long run, to arise during a 
sequence of burn-off games played on any connected graph. In the case of 
complete graphs, this allows us to find a closed form ula for the probability of 
experiencing a burn-off game of any desired length. For connected graphs, we 
describe a m ethod for calculating the same probabilities.
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Chapter 1 

Introduction

1.1 Models

Over the past twenty years, physicists have modeled complex physical 

systems with simple computer models that display some of the important 

characteristics of their real-life counterparts. One example of such a complex system 

is the earth's crust. Sudden transfers of energy within the earth's crust create 

seismic events, such as earthquakes, that are felt on the surface. Most of these 

events are brief and minor, while a few cause great damage.

On August 14, 2003, a power blackout affected over 50 million people in 

Canada and the northeastern United States. In [17], Sara Robinson relates that 

engineers who are studying the history of power blackouts consider the electrical 

grid to be a complex system in which blackouts are events just like earthquakes are

1
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events in the earth's crust. Other complex systems that have been modeled include 

snowfields, traffic, and the human brain (see Section 1.4). All of these examples 

qualify as systems in the sense that they are composed of many small interacting 

parts. The earth's crust may be viewed as a collection of small platelets of earth that 

press against each other and occasionally shift. The electrical grid is a web of 

interacting wires and power stations. A snowfield, at its finest level, is a collection 

of snowflakes that pu t weight on each other until a group of them slide downhill.

These systems are complex in that their behaviors, while predictable in 

one sense, are entirely unpredictable in another. If we consider these systems from a 

broad perspective, we can be fairly secure in our predictions about them. For 

example, small earthquakes occur with great frequency, while large earthquakes are 

uncommon. While geologists are able to make relatively accurate predictions about 

when and where the next large earthquake will strike, they rely on macro-level 

observations, like fault lines and historical data, to make their claims as opposed to 

closely observing the tiny interacting chunks of earth. The system they study is far 

too complex for such a micro-level analysis to be helpful; the same is true for power 

blackouts and avalanches.

The models for these complex systems have one feature in common: they 

simulate a network of individuals that, when stimulated, may interact w ith their 

neighbors by distributing some sort of stress. In fact, all of the models mentioned

2
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thus far are special cases of "chip-firing games", studied in a recent paper by 

Bjomer et al. [6 ]. We turn  now to a discussion of these games.

1.2 Chip-firing games

A chip-firing game takes place on a connected graph; all graphs in this 

thesis are simple. We assume throughout this dissertation that the reader is familiar 

with both basic graph theory, as introduced, e.g., in [19], and basic probability 

theory, as introduced, e.g., in [10]. (A glossary of notation and terminology appears 

in Appendix 1.) The nodes of the graph take the role of the individuals in the 

network. Integer-valued stresses upon each individual are represented by chips 

contained on the nodes. When a node fires, chips are moved to its neighbors in 

accordance w ith a firing rule. A node cannot fire until the num ber of chips it 

contains meets or exceeds a threshold, called the node's critical number.

A generalized chip-firing game that includes as special cases the models 

discussed in Section 1.1 has three features:

(a) the game takes place on a connected graph;

(b) each node v has a critical num ber k v;

(c) if the num ber of chips on v is at least kvi then v can fire, sending 

a chip to kv of its neighbors, according to some rule.

If no node is able to fire, we say that the game is relaxed. A  node v containing exactly 

kv chips is critical. If v contains more than k v chips, we say v is supercritical.

3
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Figure 1.1. A chip-firing game

In Figure 1.1, the node numbers enumerate the chips resting on their 

respective nodes. The game operates as follows: each node v has critical number 

kv = deg(v); when a node fires, it sends one chip to each neighbor. The figure shows 

a typical sequence of configurations under these stipulations. In each configuration, 

the shaded node is the one about to fire, which leads to the next configuration.

Note that in the first configuration, all but the lower-left node may fire. 

Bjorner et al. [6 ] showed that when more than one node m ay fire, the order in which 

the nodes are fired does not affect either the num ber of firings until the game is 

relaxed or the final configuration of the chips. Note also that the final configuration 

would lead to a configuration identical to the initial one if the shaded node fired. 

This suggests that this particular chip-firing game will be of infinite length. 

Bjomer et al. proved that if the num ber of chips on a graph exceeds a certain value 

(that depends on the num bers of nodes and edges in the graph), the chip-firing 

game will indeed never terminate.

4
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The chip-firing game studied in this dissertation is similar to that of [6 ], 

with one small difference that will force all games to be of finite length. Before we 

turn our attention to this new game, we formally define "chip-firing game" and a 

few related terms.

1.3 D efinitions involving chip-firing games and bum -off games

Let G = (V,E) be a connected graph. For each node v, we place a 

nonnegative num ber C(v) of chips on v. A particular distribution C : V -*• N of chips 

on V is called a configuration. Any node v that contains at least as many chips as its 

critical number kv—that is, C(v) > kv—m ay be fired) we call such a node v fire-able. A 

node that fires sends a chip to each of its neighbors.

With these definitions in mind, we consider the following chip-firing 

game: Begin with any configuration on G. If there exists a node that may be fired, we 

fire it. This constitutes a turn of the game. As the turns of a game progress, we say 

that the configuration is relaxing. If no node may be fired, the game ends; otherwise, 

a new turn begins in which any fire-able node is fired. The length of the game is the 

number of turns taken from the initial configuration until the game ends. If at the 

start of the game no node may be fired, the game has length zero. If no node is able 

to fire, we say that the configuration is relaxed. To play a new  game, a chip is placed 

on a randomly selected node. This node is called the seed. We also use seed as a verb 

to refer to the process of making this selection.

5
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In most models, including the Bjomer et al. model [6 ], we take kv to be the 

degree deg(v) of v. A theorem in [6 ] states that in such a chip-firing game, the nodes 

may be fired in any allowable order, and

(a) the length of the game will not be affected;

(b) the final configuration will not be affected.

This theorem implies that if the graph contains more than one fire-able 

node, the choice of which node to fire has no bearing on the length of the game or 

the final configuration of the chips. The same paper [6 ] points out that some 

chip-firing games may be of infinite length. For example, if the num ber of chips on 

the graph exceeds twice the number of edges, then, by the pigeonhole principle, we 

may always find at least one node that contains enough chips to fire. The paper also 

establishes that if the number of chips on the graph is less than the num ber of 

edges, then every chip-firing game is of finite length.

In our consideration of models for real-world phenomena, it is helpful to 

study a slightly different chip-firing game in which all games are of finite length. 

Our goal is to enumerate games of each possible length, and infinite games obstruct 

this analysis. Further, since many models are linked to phenomena such as 

earthquakes and avalanches that involve friction and kinetics, it is reasonable to 

build into those models some recognition that the energy in the system may be lost 

through escaping heat. Indeed, Kauffmann [12, pp. 71-92] argues that complex
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systems spontaneously exhibit both order and complexity at the cost of 

thermodynamic energy loss.

Therefore, we consider the following variation of the chip-firing game 

above: a node v may only be fired when C(v) > deg(v) + 1, and when v is fired, one of 

its chips is lost from the system. The chip that escapes at each firing models the loss 

of energy from the system. We call such a game a burn-off game. Such a system is 

referred to as "dissipative" by physicists, in contrast with "conservative" systems 

like classical chip-firing games, that do not lose energy as they are processed. We 

also note that critical takes on a new meaning in the context of bum-off games: a 

critical node is one that will fire when a chip is added to it.

The study of modified chip-firing games is not uncommon. In [9], 

Eriksson summarizes and extends the results of [6 ] by considering games on 

directed graphs and games where the edges are weighted. In the latter case, the 

values placed on the nodes are not limited to integers but allow any real numbers. 

A node fires when its value is negative, and this value is added to the values on its 

neighbors. Both modified games exhibit properties of the original described in [6 ], 

although in some ways they differ drastically.

Eriksson continues to explore modified chip-firing games in [8 ], where he 

considers graphs that m utate between games. After a node fires, the edges incident 

with the node may be erased and then new edges may be added. The mutations
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occur in a predetermined order; this order may or may not have a finite period. As 

in the other papers mentioned so far, close attention is given to discovering the 

conditions under which the games are finite or infinite.

The variant studied by Biggs in [4] includes a vertex that can always fire, 

but will only do so if no other node in the graph can fire. Biggs confirms the results 

in [6] for his variant and demonstrates that the set of "stable", "recurrent" 

configurations of a graph has the structure of an abelian group.

A final example of recent interest in this topic is [5]. Bitar and Goles 

consider the periodic nature of chip-firing games in which all nodes that can fire are 

fired simultaneously. These "parallel" chip-firing games are shown to simulate 

logical functions, like OR and NOT, making chip-firing games of nontrivial interest 

to computer scientists.

1.4 Self-organized criticality

Every firing in a bum-off game removes a chip from the system; clearly, 

every bum-off game is of finite length. Later (see Lemma 4.8) we will see that the 

length of a bum-off game is bounded from above by the num ber of nodes. For 

example, bum-off games played on the graph in Figure 1.1 will be of lengths zero 

through four. Figure 1.2 shows the results of 10,000 sim ulated bum-off games 

played on the graph in Figure 1.1; the code, written in Smallbasic, appears in

8
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Appendix 2. The simulation proceeds as discussed in Section 1.3 (p. 5). Note that 

longer games occur with lower frequency.

51 12

0 1 2  3 4
gam e length

Figure 1.2. Results of 10,000 bum-off games

Empirical results like these are common in papers that investigate simple 

models of complex systems. In [7], for example, Dhar models a pile of sand by 

assigning numerical values to cells in a lattice. Each value represents the steepness 

of the sandpile in that region. Stresses are added at random  until a cell's steepness 

exceeds some threshold—at which point the sand slips. In the model, the simulated 

stress is distributed to the cell's neighbors, and again the cells are checked for 

instability. The simulated avalanche continues until all cells of the grid have 

steepnesses w ithin the threshold, at which point the num ber of cells that slipped 

during the avalanche is recorded. This process continues through many 

computer-driven iterations, and when the data is compiled, it compares favorably 

with measurements taken from real sandpiles.

9
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Complex systems like this sandpile model potentially possess what is 

called self-organized criticality (hereafter abbreviated SOC). The important features of 

SOC are listed in [1], a nontechnical introduction to the subject that appeared in 

Scientific American. The primary characteristic of SOC is this: the system, although 

complex, displays predictable behavior when viewed at a macroscopic level. Such 

systems are simulated using computer software that collects data relating the size 

and frequency of events. In a sandpile model, the events are avalanches (as 

measured by the num ber of sand particles that slipped during the event), and they 

can occur every time a bit of sand is added to the system. In a bum-off game, the 

events are games (as measured by the num ber of cells that fire), and they can occur 

every time a chip is added to a cell.

In some systems, the relationship between the size and frequency of 

events in the system follows a power law, that is, if S  is the size of an event, and Fs is 

the frequency of events of size S, then Fs « Cys for some real constants C and 7 . A 

power law relationship is a hallmark of a system that is in a self-organized critical 

state; on page 1 of [11], for example, the author states, "Although the dynamical 

response of the systems is complex, the simplifying aspect is that the statistical 

properties are described by simple power laws." The results in Figure 1.2 suggest 

this relationship for some 7  < 1. We estimate 7  using regression after considering an 

earthquake model due to Bak and Tang [3].

10
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Their simple model works on a 50 x 50 lattice. The neighbors of each cell 

are defined to be those horizontally and vertically adjacent. A cell fires if its value is 

at least four, increasing the value of each neighbor by one while itself decreasing in 

value by four. Cells on the edge of the lattice operate as if an invisible border of cells 

surrounds the lattice: if a cell on the edge fires, one stress (or two stresses, in the 

case of comer cells) is (are) lost from the system. Figure 1.3 shows the results of 

10,000 such games simulated with a Smallbasic program (the code appears in 

Appendix 2).

1 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35

game length

Figure 1.3. Results of 10,000 Bak games

Before the first game, every cell in the lattice receives between one and 

four stresses with uniform  probability. In Section 2.3, we discuss an alternative 

method of initializing a game. Note that results for games of length zero and of

11
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length greater than 35 are omitted, and that the results are compressed into groups 

of five; both of these decisions were made simply to neaten the presentation. The 

lefthand bar in each pair shows the results from the simulation, while the righthand 

bar depicts the standard (least squares) exponential regression. For this data, the 

regression gives C = 7.834 and y = 0.924, so Fs ~ 7.834(0.924)5. The results in [3] 

exhibit the same behavior. The agreement between the simulated data and the 

regression is at best marginally satisfying. Applying the same analysis to the data in 

Figure 1.2, we find that C -  39 and y = 0.622, so Fs « 39(0.622)5 (see Figure 1.4). 

The results in this dissertation provide a way to predict the simulated data 

mathematically, and Figure 4.6 (p. 96) demonstrates the close agreement we can 

find using our methods.

60

50

5T 40

51.12

39.00

c  30

979 940 714 510.07

m
gam e length

Figure 1.4. Results of 10,000 bum-off games, revisited
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Since SOC was originally identified [3], its possible links with real-world 

phenomena have been widely explored. While earthquakes [3] and sandpile 

avalanches [7] are the events most commonly connected with SOC, investigation 

has also proceeded along less obvious lines. Nagel and Paczuski [15] created a 

simple traffic model and studied its self-organized critical behavior, using traffic 

jams as the "events" in their model. The model considers a single lane of traffic in 

which all cars move at or below the maximum allowable speed, responding to the 

car ahead according to preset rules of acceleration and deceleration. The model then 

introduces a small random  element that interferes with the deterministic motion of 

the cars. Resultant traffic jams are noted, and the system is allowed to relax into its 

original deterministic state. The authors show that the frequency of the jams has a 

power law relationship with the size of the jams.

Stassinopolous and Bak [18] turned their attention to the hum an brain, 

modeling the brain as a graph in which neurons are nodes and their connections are 

edges. Each neuron possesses a firing threshold: when its neighbors fire, they add a 

charge to the neuron; if the charge exceeds the threshold, the neuron fires. An 

"event" in this model is a thought—if the proper neurons fire, the thought is a 

successful one, and the neurons that were involved in the thought are "rewarded" 

by having their thresholds decreased.

13
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Liu et al. [14] investigate the fractal nature of the sandpile model studied 

in [3 ] when the model is allowed to relax from uniform initial conditions—in other 

words, when every cell in the sandpile begins at the same slope. The authors 

experiment with different boundary shapes (e.g., square, triangular) and different 

initial conditions. Despite the uniformity of the initial configurations, the sand 

exhibits behavior typical of systems in a SOC state.

As an example of how the theory of SOC has reached a non-mathematical 

audience, we note a recent article (2002) in Atlantic Monthly [16] that investigates a 

wide variety of systems demonstrating elements of SOC behavior, from persons of 

different ethnic backgrounds tending to live in ethnic neighborhoods, to rival 

religious groups with tendencies toward inter-group violence, to a possible 

explanation for the disappearance of the Anasazi culture of the southwestern 

United States in 1300 A.D.

1.5 SOC and burn-off games

As discussed in Section 1.4, a system that exhibits SOC should 

demonstrate a power law relationship between the frequency and size of the events 

in the system [1 ]. These systems can be modeled by chip-firing games, and the 

particular kind of chip-firing game in question in this work has the bum-off feature 

that not only more realistically models real-world phenomena, bu t also allows us to 

investigate mathematically whether such chip-firing games exhibit SOC. Later, we

14
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discover the closed formula (5.15) relating bum-off game length to frequency on 

complete graphs; restricting the model to complete graphs, however, produces 

analytic results that do not indicate the presence of SOC. Nevertheless, the model 

exhibits interesting properties of its own, which are the focus of this dissertation.

Jensen [11] devotes a chapter to a discussion of computer models of SOC. 

On p. 29, his list of features that characterize the models he studies are all 

characteristics of bum-off games. These features are: "the dynamical variable or 

field is updated in every time step according to some algorithm"; "the choice of the 

updating algorithm is, to some degree, arbitrary"; and "the criteria for choosing the 

relevant definitions are, for the most part, simplicity and intuition". A burn-off 

game exemplifies these features. Of attempts to formalize the study of SOC, such 

as [7], Jensen writes, "Despite their undeniable beauty, the exact solutions have one 

drawback: the specific mathematics tends to be tailored to the details of the solved 

model." In this dissertation, we find analytical results that apply to bum-off games 

played on any connected graph; although these results are not closed formulas, they 

are certainly not "tailored to the details" of the model. Our strictly mathematical 

approach adds a level of rigor to a field typically centering more on empirical 

results.

15
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1.6 Outline

In Chapter 2, we show that bum-off games possess an important feature 

of other chip-firing games and discover an algorithm that helps determine all 

configurations of chips that can occur during a sequence of bum-off games on a 

connected graph. These results are crucial in subsequent chapters.

In Chapter 3, we investigate complete graphs and find a relationship 

between chip configurations that arise during bum-off games and spanning trees of 

related graphs. As an aside, we demonstrate how this result produces a new proof 

of Cayley's Theorem for enumerating the spanning trees of a complete graph.

Before we use the results of Chapter 3 to find a closed formula relating 

bum-off game lengths to frequency, we extend the results on complete graphs to 

connected graphs in Chapter 4. The chapter concludes w ith a method for 

determining the probability that a bum-off game on a connected graph will be of 

any given length. This method is used to generate analytically results like those in 

Figure 1.1, which were generated by computer simulation.

Finally, Chapter 5 contains the remaining results for bum-off games on 

complete graphs. The methods of Chapter 4 are shown to confirm w hat we discover 

about complete graphs in Chapter 3. We conclude with ideas for further research.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 2 

Preliminary results

2.1 Introduction

This chapter establishes results that are fundamental to subsequent 

chapters. We first show that the order in which nodes are fired in a bum-off game is 

irrelevant to the final configuration of chips when the game ends. After discussing 

how we may characterize those relaxed configurations that can occur at the 

beginning of a sequence of bum-off games, we present an algorithm that recognizes 

all relaxed chip configurations that can occur during the sequence of games.

17
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2.2 Bum-off games exhibit strong convergence

Bum-off games enjoy the property that all are of finite length. This is 

clear: after every turn, the total number of chips decreases by one, so eventually no 

node will be able to fire. We now show that bum-off games possess an additional 

important property called strong convergence, as defined in [9], namely, that nodes 

may be fired in any order without affecting the length or final configuration of a 

game.

Proposition 2.1 In a burn-off game on a connected graph G = (V,E), the nodes may be 

fired in any order without affecting the length or final configuration of the game.

In our proof below, we follow the argum ent in [6 ], establishing the same 

conclusion for the chip-firing game considered there. The authors show that the 

"language" of such games possesses three properties that together imply their 

version of the assertion. In order to discuss the essential ingredients of their 

argument, we need to introduce some terminology and notation.

Label the nodes of G. It may be the case that a particular configuration on 

G can be played in more than one way. For each firing sequence, write down the 

labels that correspond to the nodes in the order that they are fired. The resulting 

sequence of labels is a word, and the set of all possible words, over all possible initial 

configurations, is a language L. The empty word A is a member of every language,
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corresponding to a game of length zero. A word need not bring a configuration to its 

eventual relaxed state.

Let n = \V\ be the number of vertices. If a is a word, we define its score 

vector [a] e  N "  as follows:

[a], = k  if the node i occurs k  times in a.

For example, suppose that a four-node graph has labels {1,2,3,4}. If 23424 e £  

(indicating that node 2 fires first, followed by node 3, and so on), then 

[23424] = (0,2,1,2), because node 1 fires 0 times, node 2 fires 2 times, and so on. The 

issue here is whether a firing sequence different from 23424 could result in the same 

final configuration. Now we are ready to state the three aforementioned properties 

sufficient for Proposition 2.1.

Definition 2,2

(1 ) £  is left-hereditary if, whenever a word belongs to £, every initial 

segment of the word also belongs to £. For example, if 

23424 e £, then so m ust A, 2, 23, 234, and 2342 be elements of £.

(2 ) £  is locally-free if, for any a <= £  and any two different nodes x 

and y  w ith ax e £  and ay e £, we also have axy e £. For 

example, if 2342 e £, and both 23421 e £  and 23424 e £, then 

so also are 234214 and 234241 elements of £.
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(3) £  is permutable if whenever a ,p  e £, w ith score vectors 

[a] = [/?], and ax e £  for some node x, then fix e £. In other 

words, if one word is just a permutation of another, then both 

may be extended by the same symbol to obtain a new word of 

£. For example, if 23424 e £  and 22344 e £, and 23424 may be 

extended to 234241 e £, then 223441 is also an element of £.

Proof of Proposition 2.1. We follow the strategy of [6 ], where the authors show that 

any two words (in a language possessing the properties of Definition 2.2) that have 

the same score will describe two different firing sequences, yet will result in the 

same final configuration. Thus, we verify that if £  is the collection of all chip-firing 

words in a burn-off game, then £  possesses the properties of Definition 2.2. Recall 

that in this collection we include all configurations that have not yet relaxed, but are 

merely on their way to a relaxed configuration.

That L  is left-hereditary is clear: for a game to have progressed from one 

configuration to another necessarily means that all intermediate configurations 

must have also belonged to £.

To see that L  is locally free, consider a configuration that allows for two 

different nodes, x and y, to fire. Firing one of them  (say, x) sends one chip to each 

neighbor of x  (and burns one chip from the system). Thus, a node y  that could have
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fired before x  fired can certainly still do so, since the number of chips on y  has either 

remained unchanged or increased by one.

Finally, to see that L  is permutable, we argue that any two partial games 

corresponding to words a and J3 with the same score m ust lead to the same 

configuration. There are only two ways that the num ber of chips on a node x can 

change: if x  fires, the num ber of chips on x  decreases by degQt) + 1; if a neighbor of x 

fires, the num ber of chips on x  increases by one. If two partial games a and /? have 

the same score, then x  fires the same num ber of times in each game, as do the 

neighbors of x. Thus, the configurations at the end of either partial game are 

identical. ■

The property that nodes may be fired in any order w ithout affecting the 

length or final configuration of a bum-off game will be essential to almost every 

argument presented in this dissertation.

2.3 Definition of reverse-firing game

In the literature (e.g., [3], [14]), computer models of complex systems are 

initialized into a state that the authors assume will exhibit SOC as soon as the model 

operates on the system. For example, in Bak's paper [3], which studied SOC on a 

checkerboard-grid, the system was initialized by randomly assigning an integer 

larger than four (and smaller than some pre-determined upper bound) to each cell
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of the grid. Recall that in Bak's model a cell fires if its value exceeds four. Thus, this 

initialization makes it possible for all cells to fire. This grid is then relaxed until no 

cells can fire. Bak assumes that the resulting graph will immediately begin to 

exhibit SOC as the values in the cells begin to be randomly perturbed.

Define a configuration to be supercritical if every node is supercritical. In 

our analysis, we shall play burn-off games only on those configurations that can 

result from relaxing a supercritical configuration. In fact, our first task in the 

following analysis is to establish, for any given connected graph, how to determine 

if a given configuration of chips can indeed be such a result.

To determine those configurations that are the result of relaxed 

supercritical configurations, it is instructive to consider w hat happens when a 

chip-firing game is played in reverse. A reverse-firing game is defined so as to undo 

the firing rule of the chip-firing game under consideration. For example, recall the 

firing rule for the burn-off model: a node v may be fired only w hen C(v) > deg(v) + 1, 

and when a node is fired, one chip from v is lost from the system. In a reverse-firing 

game, chips are added to the graph at each turn. The reverse-firing rule for the 

burn-off model is: select any node v such that all neighbors of v contain at least one 

chip; from each neighbor, move one chip onto v, then add a chip to v from outside 

the system.
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Figure 2.1. An instance of a reverse-firing game. The ellipsis indicates 
that the fifth configuration (lower left) continues to reverse-fire until 
the final supercritical configuration (lower right) is reached.

Example 2.3 Figure 2.1 shows this in action on a graph G. Suppose we begin a 

reverse-firing game on G by reverse-firing v3. Nodes v2 and v4, the neighbors of v3, 

both donate one chip to v3/ and another is added from outside the system, for a total 

of 4 chips on v3. Of course, in the second configuration, v3 is able to fire; if it did, the 

first configuration would be the result. The figure also displays the results if the 

nodes are reverse-fired in the order v3, v4, v2, and vi. In the fifth configuration, the 

nodes v\, v2, and v4 are all able to fire. However, v3 does not have enough chips to 

fire in a bum-off game. If we continued the reverse-firing game by reverse-firing 

the nodes again in the same order, the final configuration would be as shown in the
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figure. In this configuration, all nodes are supercritical. If this configuration were 

used to initialize G, then the first configuration in the figure would result from 

playing the bum-off game to relaxation.

While it is certainly possible that this reverse-firing game can continue 

indefinitely, we will only care to play such games until every node is able to fire. 

Any configuration, like the first one in Figure 2.1, that can be reverse-fired to a 

supercritical state shall be called legal. A relaxed legal configuration is a legal 

configuration in which no nodes may fire. Because the rest of this chapter is 

concerned w ith enumerating relaxed legal configurations, we let L(G) denote the 

number of relaxed legal configurations on a graph G. Note that as we define L we 

drop the stipulation that G be connected. The flexibility allowed by dropping this 

stipulation will be useful in Theorem 4.9, which considers relaxed legal 

configurations on disconnected graphs. None of the subsequent results in this 

chapter require that G be connected.

2.4 Characterizing relaxed legal configurations

Not all relaxed configurations are legal; for example, a graph containing 

no chips is clearly relaxed, but just as clearly cannot be reverse-fired into a 

supercritical state. We are now ready to characterize the relaxed legal 

configurations on any given graph G = (V,E). Our characterization uses the 

notation 1 a '• V -► {0,1} to denote the indicator function of a su b se ts  £  V.
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Proposition 2.4 A  relaxed configuration C : V -> N is legal if  and only if there exists an 

ordered partition (If) of independent sets h  ofVso that, for each v e V, ifv  e /,, then

C(v) > ^  1 {x<_̂  andr<J)-

For convenience later, we call the property of (C, (If)) that every node v 

contains at least as many chips as it has neighbors that are members of earlier 

independent sets Property P.

Figure 2.2. A legal configuration

Example 2.5 Let C be the configuration shown in Figure 2.2. We may assign the 

nodes to independent sets as follows: I\ = {vi,v3}; I 2 = {V4}; / 3 = {v2}. Nodes vi 

and v3 have no neighbors in earlier independent sets because they are members of 

I\, the earliest independent set of all. Node v4 has one neighbor, v3, in an earlier 

independent set; since v4 contains at least one chip, Property P  is not violated at v4. 

Node v2 has three neighbors in earlier independent sets, and it contains three chips. 

Thus, Property P holds for this choice of (C, (If)).
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Proposition 2.4 implies that since this configuration is relaxed, it is legal; 

that is, it may be reverse-fired to a supercritical configuration. As we saw in 

Example 2.3, this configuration is indeed legal. Now we verify (in general) that this 

legality is equivalent to the existence of a partition of V with Property P.

Proof of Proposition 2.4. Suppose that we have a relaxed legal configuration C. By 

definition, a legal configuration is one that can be reverse-fired into a configuration 

where all nodes are supercritical. Further, C is relaxed, so none of the nodes in G are 

supercritical. Thus, in any reverse-firing game that reveals a relaxed configuration 

to be legal, all nodes m ust reverse-fire (because reverse-firing is the only way for a 

node to gain chips during a reverse-firing game).

Consider any reverse-firing sequence that shows C to be legal. List only 

the first time each node reverse-fires during the game; suppose that the nodes are 

reverse-fired in the order v i, v2, ..., v„. Put each node y, into its own set f .  Since each 

Ij contains only one node, each member of the ordered family (If) is independent. 

We now need to show that (C, (Iff) possesses Property P.

Any given node y, will reverse-fire only after each node v1,v2)..., y,_i 

reverse-fires at least once. Each of these nodes that is a neighbor of yt takes a chip 

from Vj w hen it reverse-fires. Since each earlier node is a member of an earlier 

independent set, v; m ust contain at least as m any chips in C as it has neighbors that

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are members of earlier independent sets.

To establish the converse, suppose that the nodes can be partitioned into 

r independent sets so that (C, (/*)) possesses Property P. Reverse fire the nodes of /*, 

for k = 1 ,2 ,... ,r, in that order (although within sets, the nodes may be fired in any 

order). We claim that this reverse-firing results in each node increasing its number 

of chips by one.

Consider a node v e Ijr and let C(v) be the num ber of chips on v before the 

reverse-firing process starts. Because of Property P, the node v contains at least as 

many chips as it has neighbors in all h  w ith k < j. Suppose that there are s such 

neighbors. Each neighbor in these sets h  with k < j  reverse-fires before v does, and 

each reverse-firing will pull one chip from v. This leaves C(v) -  s > 0 chips on v. If 

any nodes that are in Ij reverse-fire before v, the num ber of chips on v is unaffected, 

since Ij is independent. When v reverse-fires, it pulls a chip from each of its deg(v) 

neighbors and receives one extra chip for the reverse bum-off. Finally, all nodes in 

sets Im with m > j  reverse-fire, and each neighbor of v in these sets (say there are / of 

these) pulls a chip from v. Therefore, after each node has been reverse-fired once, 

the number of chips on v is decreased by s + / = deg(v) and increased by deg(v) + 1 

(while never becoming negative), for a net increase of one, as claimed.

Notice that reverse-firing each node once, as described in the preceding 

paragraph, preserves Property P. Thus, this process may be repeated until all nodes
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become supercritical. That is, if t = maxv{deg(v) -  C(v)}, then repeating the process 

t + 1 times will result in every node v containing at least deg(v) + 1 chips. Therefore, 

the original configuration was legal. ■

2.5 Checking legality of any configuration on any graph

Given a configuration C (not necessarily relaxed) on a graph G, we may 

be interested in knowing if C is legal. Though we will not use it immediately, we 

take a short detour here to present an algorithm to answer this question. The 

algorithm will often be useful in Chapter 4 as we consider bum-off games on a 

connected graph. Our proof of the algorithm's efficacy leans on Proposition 2.4.

Algorithm 2.6 INPUT: a graph G = (V,E) and a chip configuration

C : V -> N o n G)

OUTPUT: answer to question "Is C legal?"

(1) Find v e V such that C(v) S deg (v) . If this cannot be done,
then stop: C is not legal. Otherwise, let G* = G .

(2) Delete v  from G* . If all nodes are now deleted, then stop:
C is legal. Otherwise, let G* = (V*, E' ) be the new graph.

(3) Find v  e V* such that c|v>(v) ^ degQ.(v). If this cannot be
done, then stop: C is not legal. Otherwise, go to step (2).
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Example 2.7 Figure 2.3 shows two ways in which Algorithm 2.6 might operate on 

the configuration depicted. In both passes from left to right, appropriate nodes are 

deleted until none remain. In the first step, the algorithm may delete either V2 or V4, 

as they both contain at least as many chips as their degree. At the end of either 

execution sequence, all nodes are deleted, so, by Proposition 2.7 below, the starting 

configuration is legal.

©
©

.©—©

©

©

©

©

Figure 2.3. Two execution sequences o f Algorithm 2.6 on the 
same initial configuration

In the proof of Proposition 2.9, we need the following result.

Lemma 2.8 Let C : V(G) -> N be a configuration and G1 a subgraph of G. I f C|KG<) is not 

legal on G', then C is not legal on G.
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Proof. We will argue the contrapositive: if C is legal on G, then so m ust C|^G>) be 

legal on G1. By Proposition 2.4, the legality of C on G implies that it is possible to 

partition V(G) into independent sets (If) enjoying Property P (see p. 25).

For each k, consider the partition Jk = Ik r1 V(G') of V(G'). Collect all 

nonempty sets J k into the ordered family (Jr) of independent sets, and focus on a 

node v e V(G'). Since (C,(Ik)) has Property P, the node v (considered now in G) 

contains at least as m any chips as it has neighbors (in G) that are members of earlier 

independent sets. In G', the node v may have fewer such neighbors/but it obviously 

cannot have more. Thus, (C\nG^, (Jk)) has Property P, so C|^G») is legal on G1. ■

Let L  be the set of legal configurations on G. Now we are ready to 

establish the correctness of Algorithm 2.6.

Proposition 2.9 Given a graph G = (V,E) and a configuration C : V -> N, Algorithm 2.6 

correctly determines whether C e L .

Proof. First, we show that if at any point during the operation of Algorithm 2.6 

(say, when we have arrived at a subgraph G*) every node v contains fewer than 

degG,(v) chips, then the original configuration is not legal. Suppose, by way of
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contradiction, that an original configuration C* leading to this situation on G* is 

legal. By Lemma 2.8, C*\y^Gr) is legal; then the nodes of G* may be partitioned into 

independent sets (J r) so that (C*|^G»), (Jr)) has Property P. Consider a node v that is 

a member of the last set Js. Since all of its neighbors are members of earlier 

independent sets, v contains at least degG, (v) chips, contradicting our assumption in 

the first sentence. Thus, if every v e V(G*) contains fewer than degG„(v) chips, then 

C* is not legal.

Second, we show that if the algorithm proceeds until all nodes are 

deleted, then C is legal. Suppose that the algorithm's deletion order is ... ,vi.

Place each node Vj into its own set Ij. For y, to be deleted from G* by the algorithm, 

it m ust contain at least as many chips as it has neighbors in G*. Since every one of 

these neighbors is in an earlier independent set, our choice of (C ,(h )) has 

Property P, and so C is legal. ■

2.6 The poset of configurations

Now that we have characterized legal configurations, we turn  our 

attention to a result that allows us (in Chapter 4) to enum erate the relaxed legal 

configurations on any given connected graph. We assume the reader is familiar 

with the topic of posets as discussed, e.g., in [13].

Chip-firing games proceed in cycles beginning with the random  

placement of a stress (one chip) that may trigger a game of nontrivial length. We
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therefore consider configurations that arise from adding a single chip to a legal 

configuration. To this end, it is useful to consider the set (B of all configurations on a 

fixed graph G as a poset (<S, <) whose ordering relates to the numbers of chips on 

the nodes of G as follows: for P,Q  e (B and < the usual (total) ordering on N, let

P < Q iff each v e V(G) satisfies P(v) < Q(v).

Recall that a legal configuration is one that can be reverse-fired to a supercritical 

configuration (see Section 2.3).

Proposition 2.10 IfP  is a legal configuration, then any Q with P < Q is also legal.

Proof. We clearly need only consider those configurations Q w ith P <Q. Such a Q 

has at least as many chips on any given node v as does P, and since P < Q, there 

exists a node x w ith P(x) < Q(x). Starting from the configuration P, add one chip to x 

to create a new configuration P1.

Since P is legal, there exists a reverse-firing sequence that results in a 

supercritical configuration. "Freeze" the new chip on x, and carry out the same 

reverse-firing sequence starting w ith P ]. The frozen chip will not affect the 

reverse-firing game (since it is frozen), and once P is reverse-fired to a supercritical 

configuration, the chip m ay be "thawed". The resulting supercritical configuration 

shows that P' is legal.
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If P' = Q, the assertion is proved; if not, the argument above can be 

repeated with P' in the role of P. ■

Now suppose that a relaxed legal configuration Q has a chip added to a 

randomly selected node v, creating the configuration Q+. By Proposition 2.10, we 

know that Q+ is legal. Suppose that v may fire in Q+, and let R be the relaxed 

configuration that results. Since R  can be reverse-fired back to the legal 

configuration Q+, we know that R is also legal. Thus, if we initialize a sequence of 

bum-off games by relaxing an arbitrary supercritical configuration, then all relaxed 

configurations that occur during the sequence of bum-off games will be legal.

We have demonstrated in this chapter how we may begin playing a 

series of bum-off games on a connected graph and how to recognize when a relaxed 

configuration is legal. This knowledge will be important in Chapter 4, where we 

analyze bum-off games on any given connected graph. First, we consider the 

special case of complete graphs in Chapter 3.
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Chapter 3 

Investigations on complete graphs

Before we investigate how the material in Chapter 2 leads to analytical 

results for general connected graphs, we pause to study complete graphs in this 

chapter. We find a pair of algorithms that give a one-to-one correspondence 

between relaxed legal configurations on K„ and spanning trees of K„+\. These 

algorithms not only provide us w ith a proof of Cayley's Formula (see [19]), bu t also 

prepare us to discuss a similar, but more difficult, pair of algorithms in Chapter 4.

3.1 Statements equivalent to Property P

Proposition 2.4 established that a configuration C on a graph is legal if 

and only if the nodes can be partitioned into independent sets (7r) so that (C, (/,))
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possesses Property P. Here we show that Property P, for complete graphs, may be 

reformulated in two ways that will be helpful later. We continue to let C denote a 

chip configuration, here on V(Kn), and now define q = (q \,q i ,... ,q n) by qt = C(v,).

Proposition 3.1 Let C : V -* N be a configuration on K„. The following statements are 

equivalent:

(1) For some partition of V into independent sets (/r), the pair (C, (/,)) 

satisfies Property P;

(2) For each j  = 1,2, . . . ,n ,a t  most j  o f the qt are at most j  -  1;

(3) For each k = 1,2, n, at least k o f the qi are at least n - k .

Proof of (1) => (2). Suppose that (C,(/r)) has Property P. Then for s = 1,... ,r, every 

node in Is contains at least as many chips as it has neighbors that are members of 

earlier independent sets. In a complete graph, the only way to partition the nodes 

into independent sets is to assign each node to its own set. Thus, each independent 

set contains just one node; label that node y,- for each j  = 1 ,2 ,...,« .

By Property P, each vJ+i contains at least j  chips. The only nodes that 

might contain j  -  1 chips or fewer are vi,v2, . . . , v,-; this implies that at most j  nodes 

contain at most j - I  chips, which establishes statement (2 ).
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Proof o f (2) => (3). If at most j  of the q, are j - 1 or less, then at least n - j  = k  of the q, 

are j  = n - k or more.

Proof of (3) => (1). It will be convenient to relabel the nodes of K„ so that the index 

runs from from 0 to n - 1 and C(v,) > C(v/+i) for i = 0 ,1 , . . . ,« -  2. Define 

p  = (p0,p \ ,. . .  ,p n-\) by Pi -  C(Vj); observe that p  is a perm utation of q. By statement

(3), at least k  of the p t are at least n - k ,  for k  = 1 ,2 ,... ,n. Because (C(v,)) is 

nonincreasing, we have C(vf) = Pj > n - j  -  1 for7  = 0 ,1 ,..., n -  1.

Let Ij = 1} for j  = 0 , 1 , . . . , /? -  1 ; equivalently, I n-j-\ = {v,} for

j  = 0 , 1 , 1 . Since each Ij contains a single node, it is independent. Since each 

Vj e In-j-i and the graph is complete, we see that v7 has n - j -  1 neighbors in earlier 

independent sets. We have C(yf) > n - j - 1 from the preceding paragraph, so 

(C, (If)) has Property P. ■

Example 3.2 Consider and let q = (5,2,1,5,0,2). Statement (2) shows this 

configuration to be not legal: let j  = 3, and observe that the statement "at most 3 

entries of q are at most 2 " is false. Statement (3), w ith k = 3, is "at least 3 entries of q 

are at least 3," which is also false.
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3.2 Enumerating relaxed legal configurations on a complete graph

Here we establish a formula for L(Kn), the num ber of relaxed legal 

configurations C on a complete labeled graph. Our determination includes a 

parameter to bound the maximum value of C(v) for v e V = V(Kn). For n > 1 and 

m > n -  1, let Ln>m be the number of legal configurations satisfying C(v) < m for each 

v e V. For convenience, we also define Lo,m = 1 for all m > 0 . In the proof of the next 

result, we shall find it convenient to use characterizations (2) and (3) in 

Proposition 3.1.

Theorem 3.3 For al l n>  1 and m > n -  1, we have L n,m = ( m - n  + 2){m + 2)"-1. (3.1)

Example 3.4 Suppose that we wish to find the num ber of legal configurations on 

K-4 , where no node contains more than 5 chips, as in Figure 3.1. Note that the nodes 

Vi and V3 have enough chips to fire, so this is not a relaxed legal configuration. To 

count all relaxed legal configurations, we would fix m equal to the degree of each 

node in K n, which is n - 1. Theorem 3.3 asserts that the num ber of legal 

configurations like the one in Figure 3.1 is L 4,5 = (5 -  4 + 2)(5 + 2) 4-1 = 1029.
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Figure 3.1. One of the 1029 legal configurations on K4 for which no 
node contains more than 5 chips

Proof o f Theorem 3.3. We use induction. Since L0,m := 1 for all m > 0, this satisfies

(3.1). For each m > 0, we extend our base case to include L\,m, which counts the 

number of legal configurations on a single node. By condition (3) in Proposition 3.1, 

at least one node m ust contain at least zero chips. Thus, the num ber of chips 

occupying our single node lies in the set {0 , 1 ,... ,m }; so Li,m = m + 1, which satisfies

(3.1). Finally, we observe that for n > 2 , 2 enumerates the legal configurations in 

which all n nodes contain at most n - 2  chips; since condition (2) in Proposition3.1 

requires that at most n - 1  nodes may contain at most n - 2  chips in a legal 

configuration, we have L n,n- 2  = 0  for all n > 2. This result satisfies (3.1), so we 

include it in our base case.

Now fix n > 2 and m > n -  1 and assume that (3.1) is valid for each L„-k,m-\ 

for k = 0,1,...«. To determine we let k  e [0,«] count the num ber of nodes 

containing exactly m chips; there are ways to choose these k  nodes. Consider

the configuration of chips on the remaining n - k  nodes of K„. Focusing on these
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nodes, we see from condition (3) of Proposition 3.1, that for 1 = I , . . . , n - k ,  at least / 

of them  contain at least ( n - k ) -  I chips. Thus, the configuration on the remaining 

n - k  nodes is a legal configuration on K n-k w ith at most m -  1 chips on each node. 

Since the number of such configurations is we have

L n ,m  — ^  ^  ' ^ L n-k itn- \ .

fc=0

We may now apply our inductive hypothesis to simplify the sum:

L n ,m  =  T*'i ^  ^ L n - k ,m - l

= E  ( I )  ((»* - 1) -  (« -  * )+ 2X0» - ! )  + 2)(”“*H

-  22 + 1) -  (w -  n + 1)] + (/w -  n + l))(/w + l)*"*-1

= + l ) n~k + ^j(m -  n + \)(m  + I ) ”"*-1

= (m -  n + 2 ) (  n 7  ̂ Vw +
o ^  '

= (m -  « + 2)((w + 1) + I)”-1.

As suggested in Example 3.4, L„,n-\ = (« + l ) ”_1 gives the num ber of 

relaxed legal configurations for a bum-off chip-firing game on K„. We consider this 

familiar expression again in the following section.
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3.3 A connection between L„,»-\ and Cayley's Formula

In the preceding section, we determined that L(Kn) = (n + I)"-1. Of 

course, this is Cayley's Formula (see, e.g., [19]) for the num ber of spanning trees of 

K„+1. Our next result provides a new proof of this formula.

Theorem 3.5 The number of relaxed legal configurations on K n equals the number of 

spanning trees o fK n+j .

Proof. We establish injections between the set 3  ̂of relaxed legal configurations on 

K„ and the set S  of spanning trees of K„+i by giving algorithms that, given a member 

of one set, generate a unique member of the other set. Define A via

Algorithm 3.6 below and B :S-> via Algorithm 3.7. In both algorithms, score 

refers simply to a numeric label assigned to a node. Define F  : V(K„) -> N as the 

score function that makes this assignment.

Our first algorithm injectively maps <2̂  to S.
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Algorithm 3.6 INPUT: a complete graph K n and relaxed legal

configuration q = (qi ,q2,---, qn)) 

OUTPUT: a spanning tree of K n+l.

(1) Fix a node v0 in Kn+1.

(2) Label the remaining nodes v1( v 2, ... , v n .

(3) Let M0 = (v0) and Mo = {v0} .

(4) Let F(v0) = n -  1 .

(5) Let Q0 = 0 and i = 0 .

(6) Until all Vjj have been included in some sequence , do the
following:

(a) i  + 1 t—> i  •

(b) Let Qx = Q + |Mj-i| .

(c) Let = (v, , v.  , ... , v,. ), for some t S: 1 , be the
sequence (in increasing subscript order) of all nodes 
Vjc for which q k = F(u) for some u 6 Mi-i . Let
Ms = {x : x is an entry of Mj} .

(d) Add an edge from each v̂  in Mi to the node w e Ms-i
for which q k = F(w) .

(e) For each j  = 1, 2, , |Wi|, let F(vi ) = n -  Q± -  j .

Note: The purpose of the variables Q-t is to record the num ber of nodes

that have been included in an earlier Mj. In fact, Qt =
i- 1

U Mj
1=0

. Thus, in step (6 e),

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



each score is given to exactly one node. Therefore, "the node" selected in step (6 d) is 

indeed unique. For an example trace of this algorithm, please see Example 3.8 

starting on p. 47.

Proof that A  is well-defined. Algorithm 3.6 will fail if, at any step, M, is empty, 

because no further edges can then be added in step (6 d). We demonstrate below 

that no Mj is ever empty, but assume for now that this is true. Step (6 d) adds an 

edge from each vk e M, to a node that is already part of a single growing component 

of the subgraph of K„+\ being constructed. The algorithm continues until all nodes 

of K„+i are members of some A?,, so all nodes of K „+1 are eventually connected to the 

growing component. Note also that exactly n edges are created by step (6 d), one for 

each node except v0. A spanning connected subgraph (of an (n + l)-node graph G) 

with n edges is necessarily a spanning tree of G; thus, the algorithm indeed 

constructs a spanning tree of K„+1.

It remains to prove that no Mj is empty. We proceed by induction. It is 

clear in step (3) that M 0 is not empty; suppose that M,_i is not em pty for some fixed 

i > 0. (By definition of M,_i, it is clear thatM,_i is also not empty.) As Algorithm 3.6 

proceeds, the scores assigned to the nodes in step (6 e) descend from n -  1. We m ust 

show that at least one entry of q is large enough to equal the score of one of the 

nodes inM,_i. This will guarantee that M, contains at least one element.
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When, in step 6 (c), the nodes are checked to see if they will be members 

of Mi, the algorithm inspects the scores assigned to the nodes in M,_i (our induction 

hypothesis ensures that there are nodes in Mm to inspect). These scores were 

assigned (during the preceding iteration) in the following order: n - Q ^ - l ,  

n -  <27-1 -  2 , , n -  Qj-i -  |M,_i | = n -  Qi. Thus, the lowest score assigned to a node 

of Mj-i is n -  Qi.

Since q is a legal configuration, at least Q, entries of q are at least n -  Q, 

(see Proposition 3.1). Since Qi -  1 nodes (corresponding to entries of q) have been 

assigned scores (we subtract 1 because vo does not correspond to an entry of q), 

there is at least one unassigned node vk containing at least n -  Q, chips (i.e., 

q k > n -  Qi)', this num ber is at least as big as the lowest score found in Mm - We also 

know that qk equals one of the scores assigned to a node inM,_i, for if qk exceeded 

all of those scores, then vk would have already been assigned to an earlier sequence. 

It follows by induction that no M, is empty and, by our earlier remarks, that A is 

indeed well-defined.

Proof that A  is an injection. Let q = (q \,q i, •••,<?«) and q* = (q*,q2 , ■■■ ,q*n) be two 

distinct relaxed legal configurations o n K n. Let V(K„+0  = {v0 ,v i , . . . ,v„}. Let A(q) = T 

and A(q*) = T*. We will prove that A is an injection by showing that T and T* m ust 

be distinct.
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As q * q*, Algorithm 3.6 must encounter qt * q* for some i e {1

Since the scores are assigned in order of decreasing value, in the first such

encounter either qt or q* will be the largest entry of its corresponding sequence. 

Without loss of generality, suppose that q* > qc, specifically, find 

max{ max {q„ q* : qt =/= q*}}, and (if necessary) interchange the labels q and q* so
ie{ l,...,n>

that q* has this value. We will show that v,- has different neighbors in T  and T*, so 

that T ± T*. Suppose that as Algorithm 3.6 operates on q, the sequences constructed 

in step (6 c) are and suppose that as it operates on q*, the sequences

constructed in step (6 c) are ,M*k. Now suppose that v,- e M s (for some

s e {1,... ,j}) and v,- e M* (for some t e We consider two cases.

Case 1. s = t

Since qi,q* are the earliest unequal entries encountered, we have 

Ms- 1 = M U . Since qt * q*, the node v,- m ust be assigned different neighbors, say x,y,

from among the nodes of Ms-1 and M*_u respectively. Then the edge

{Vi,x} e E(T)\E(T*), implying that T  =£ T*.

Case 2. s * t

Algorithm 3.6 adds an edge between v,- and some node w* in M*_\ ■ Since 

qt,q* are the earliest unequal entries encountered, we know that M t~ i =  M*_v  But we 

have assumed that q* > q if so t < s) this implies that Ms_i ^  M*_\ ■ Thus, the edge 

e E(T*)\E(T), again implying that T *  T*. ■
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Our second algorithm injectively maps S  to ^  Recall that F  : V(K„) -> N 

assigns a numeric score to each node of the complete graph on which the chip-firing 

games are taking place.

Algorithm 3.7 INPUT: a spanning tree of K n+u

OUTPUT: a relaxed legal configuration q = (qi , q2, • ••,#«) on K„.

(1) Fix a node Vo in Kn+1 -

(2) Label the remaining nodes v ir v2, ..., v a .

(3) Let N0 = (v0), No = {v0}, and i = 0.

Repeat:

(4) i + 1 l-> i

(5) Define Ns = (v^, vJa, . . ., v, ), for t > 1, as the
sequence (in increasing subscript order) 
unassigned nodes that are neighbors in T

of all 
of a node

in N1_1 . Let Ni = (x : x is an entry of Ns}.

Until: all nodes have been assigned.

(6) Define N = as the concatenation of all 
their natural order.

the JVj's, in

(7) For k = 1,2, ... , n , set F(uk) = n -  k (note that 
entry is not assigned a score).

the (n + l)st

(8) Let qi represent the number of chips on node Vi of Kn. 
Determine the vector q = (qlf q 2, ... , q D) as follows:

(a) For each i = 1,2, . . . , n ,  v* is an entry of some Nj , and
is thus the neighbor in T of some v t  e  Nj-i  .

(b) Let q s = F{vk) .
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Note: In step (5) we are performing a breadth-first search (see [19]) from 

v0 to determine the N f s. For an example trace of this algorithm, see Example 3.9 

starting on p. 50.

Proof that B is well-defined. Step (7) makes it clear that q is relaxed, since the highest 

score assigned to a node is n -  1. In order to show that q is legal, we demonstrate 

that, for / = 0 , 1 1 , at most / + 1 entries of q could be assigned a value at most / 

(refer to Proposition 3.1). In step (7), a node vk receives the score I after ( n -  1) - /  

other nodes have been labeled. As vk has n neighbors in K n+1, it will have 

n - ( ( n - I )  -  I) = I + 1 unlabeled neighbors in T. These are the only nodes that can be 

assigned q-values at most F(vf) = / in step (8b). Thus, for I = 0,1,... ,n -  1, at most 

/ +1 entries of q are assigned a value at most I. Proposition 3.1 implies that q is 

indeed legal. ■

Proof that B is an injection. Let T  and T* be two distinct spanning trees of Kn+i. Let 

V(Kn+1) = {v o ,v r, ... ,v„}. Let B(T) = q and B(T*) = q*. We will prove that B is an 

injection by showing that the configurations q and q* m ust be distinct.

For v e V(T), let Tr(v) denote the set of neighbors of v that are assigned 

the value F(y) in step (8b); in other words, TT(v) is the set of nodes adjacent to, and 

one edge further from, Vo in T. Define T r  (v) analogously.
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Since T *  T*, we know that r r (v) *  T r ( v )  for some v e  V(Kn+1). Let 

r = min{z : 3 v e n  N* w ith TT(v) * T r  (v)}. Choose any v e N r n  N*r with 

r  r(v) * T 7-(v). Step (8b) assigns the value F(v) to all x  e T r(v) and the value F*(v) to 

ally  e T r  (v). But since r is a minimum, we have F(y) = F*(v); by step (7), we know 

that this score is assigned exclusively to v. To receive this score in step (8b), a node 

must be a member of either Fr(v) or r r (v). Since Tr(v) ^ F r  (v), we have q + q*', 

thus, B is injective. ■

Since we have demonstrated injections between the set <^of relaxed legal 

configurations on K„ and the set S  of spanning trees of K n+1, we have | ^ |  = ,

which finally completes the proof of Theorem 3.5. ■

Notice that Theorems 3.3 and 3.5 together yield a new proof of Cayley's 

Formula. Indeed, the first of these implies that = (n + I ) " -1 (see the remark at

the beginning of this section), while the second yields |< ,̂| = | ^ | . Thus,

= (n + 1)"-1, or, as the result is more typically presented, the num ber of

spanning trees of K n is nn~2.

Example 3.8 We illustrate Algorithm 3.6. Consider the configuration on K 5 shown 

in Figure 3.2. We know it is legal by Algorithm 2.6 (the verification algorithm could,
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e.g., successfully delete the nodes in the order x4, x5, x2, x i, x3). For this 

configuration, q = (1,3,1,4,3), and n = 5.

xi

Xj

Figure 3.2. A legal configuration on K s

Now we trace the execution of Algorithm 3.6 for this configuration as the 

input. Steps (1) through (5) result in the node labels v0, . . . , v5 (with v0 fixed), 

Mo -  {vo}, F(v0) = h -  1 = 4 , i = 0, and go = 0. Now we perform the steps in (6 ) 

until every vk is a member of some A?, (see Figure 3.3). In the first iteration of step 

(6 ), we let i = 1, Qi = Qo + |A^i-i J = 0  + 1 = 1, and M\ = {v4} (because q 4 = 4, the 

score assigned to v0 e Mo). We therefore connect v4 to v0 w ith  an edge, and v4 is 

assigned the score n - Q \ -  \ = 5 - 1 - 1  =3.  (See the leftmost graph in Figure 3.3.) 

In the second iteration of step (6 ), we let i = 2, Q2 -  Q\  + |A?2-i | = 1 +1 = 2 , and 

M 2 = {v2,v5>, because q 2  = qs = 3, the score assigned to v4 e Mi .  We therefore 

connect both v2 and v3 to v4, and v2 is assigned the score n — Q2 — l = 5 -  2 - 1  = 2 , 

whereas v5 is assigned the score n - Q 2 -  2  = 5 - 2 - 2  = 1. (See the rightmost graph 

in Figure 3.3.)
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o a

Vj

O
mO

V j

V j

Vj

o
m

V j

Figure 3.3. Three iterations on K6 (the scores appear in the boxes)

In the final iteration, we let i = 3, Q3 = Q2 + \M3 -1  | = 2  + 2  = 4, and 

M 3 = <vi,v3}, because q\ = #3  = 1, the score assigned to v5 e M 2- We therefore 

connect both vj and v3 to v5, completing the spanning tree. We may assign scores to 

vi and v3, bu t all nodes are now members of some M„ so the algorithm terminates. 

The lower graph in Figure 3.3 shows the spanning tree T  of K 6 associated w ith the 

legal configuration q = (1,3,1,4,3) on K 5 , The interested reader will find that if 

Algorithm 3.7 is given T, the output will be q, but we illustrate Algorithm 3.7 w ith a 

new example.
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Example 3.9 Consider the spanning tree of K-, shown in Figure 3.4. We trace the 

execution of Algorithm 3.7 when this tree is the input.

Vo

Figure 3.4. A spanning tree of K-,

Three iterations of steps (4) and (5) give us No = (v0), N\ = (vi,v5), 

N 2 = ( V 3 ,v 4, v 6) ,  and N 3 = (v2). Thus, N =  (v0,vu v5,v3, v4 ,v 6 ,v 2). Step (7) assigns 

scores to the nodes as shown in Figure 3.5.

a
Vo

a

Figure 3.5. The same spanning tree with scores displayed

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Step (8) assigns the value 5 to q\, since Vi e N i, and its neighbor in No is 

v0. Next, step (8) assigns the value 1 to q2, since v2 e N 2, and its neighbor in N 2 is 

v4. Continuing in this fashion, we find that the relaxed legal configuration on K 6 

associated with the spanning tree of K 2 in Figure 3.4 is q = (5,1,4,3,5,4).

In Chapter 5, we will use Proposition 3.1, Theorem 3.3, and Theorem 3.5 

to find the probabilities associated w ith each possible bum-off game length on a 

complete graph. First, however, we extend the results of this chapter to the more 

general case of a connected graph.
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Chapter 4 

Results for connected graphs

We will return to the preceding chapter's investigation of complete 

graphs in Chapter 5. In this chapter, we generalize the results of Chapter 3 to 

connected graphs. We begin by generalizing Theorem 3.5, and then discuss a 

method for enumerating the pairs of relaxed legal configurations and seeds that 

result in bum-off games of any desired length.

In Section 2.6, we saw that the relaxed configurations that occur in a 

sequence of burn-off games are legal. Theorem 4.13, which concludes the present 

chapter, determines the (stationary) probability distribution of these relaxed legal
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configurations. Thus, we consider a burn-off game as an experiment starting with a 

configuration C on a connected graph G = (V,E) in which each node has uniform 

probability 1/|F| of being the seed; the resulting relaxed legal configuration is the 

outcome.

As we will see in Theorem 4.1, the set 3(of relaxed legal configurations on 

G is finite; therefore, we m ay consider the elements of ^ a s  states in a Markov chain 

(see, e.g., [10]). We employ this idea in Section 4.4, where we finally answer the 

question of whether there is a connection between burn-off games and SOC 

introduced in Section 1.4.

4.1 Enumerating relaxed legal configurations on any connected graph

A burn-off game played on a connected graph G -  (V,E) w ith a relaxed 

legal configuration consists of two phases: first, we choose a seed at random and 

place a chip on it; second, we allow the game to play until we obtain a relaxed legal 

configuration. We continue by choosing a seed in this configuration, and so on. In 

this section, we enumerate such configurations.

We create the graph G* = (V*,E*) by adding a new  node x adjacent to 

every node in G. Specifically, V* = VU  {x} and E* = £ U  ( (Jv e v)-). Perhaps 

surprisingly, relaxed legal configurations on G are related to spanning trees of G* 

just as in Theorem 3.5 for complete graphs.
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Theorem 4.1 The number of relaxed legal configurations on G is the number of spanning 

trees of G*.

We may use the Matrix Tree Theorem (as discussed, e.g., in [19]) to count 

the spanning trees of G*.

Proof We establish algorithmically injections back-and-forth between the set of 

relaxed legal configurations on G and the set of spanning trees of G*. Let ^ b e  the 

set of relaxed legal configurations on G and S  the set of spanning trees of G*. Define 

A : S  via Algorithm 4.2 below, and B : S  -> 5̂ , via Algorithm 4.3 below.
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Algorithm 4.2 INPUT: a connected graph G = (V,E) with

V=  {vi,v2,.--,v„>, and a relaxed 

legal configuration C : V -» N; 

OUTPUT: A(C), a spanning tree T* of G*.

(0) Let T' be the subgraph of G* with V(T*) = {x} , E(T") = ^ .

(1) Let 1 = 1.

(2) Let Mi be the sequence (in increasing subscript order) of 
nodes v k such that = deg0(vk) ; let
Mi = {x : x  is an entry of Mx) .

(3) For each v k e Mi , add v k to VC*) and { x ,  v k] to E(T*) .
(If V(T*) = V, then stop.)

(4) i + 1 H  i .

(5) Let Ms be the sequence (in increasing subscript order) of 
the nodes not yet included in V(T*) that are neighbors of 
nodes in Afi-i. Let Mi = {x : x  is an entry in Mt ) .

For each u e  Mi ,

execute steps (6) through (9):

(6) For r = 1, 2.......i - 1, let
Nr = (vrl, v r2, . . . , v r K ) be the sequence (in 
increasing subscript order) of the k r G-neighbors 
of u that appear in Mr . Let 
Ni = {x : x  is an entry in

(7) Let s = j  Nr | and N = ( ,  v ^ ,  . . . , be the
sequence determined by concatenating the 
sequences Wlt N2, . . . , .

(8) If C{u) < degs(u) - s, then delete u from Mi and M, .

(9) Otherwise, C(u) = degs(u) - j  for some j  with
1 < j  <, s  . Add u to V(T') and (u, v^} to E(T') .

(10) If V(T*) = V, then stop. Otherwise, go to step (4).
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Note the similarity between Algorithm 4.2 and Algorithm 3.6; for a 

complete graph K„, adding a special node jc adjacent to every other node simply 

creates K n+i, and the output of Algorithm 3.6 is a spanning tree of K„+l. However, 

the two algorithms will not necessarily produce the same outputs. In step 6(d) of 

Algorithm 3.6, our choice of edge depends on the sequence formed in step 6(c); this 

sequence is created by arranging nodes simply in increasing subscript order. 

Compare this approach to that of steps (6) and (7) of Algorithm 4.2, which impose 

greater restrictions on this sequence.

For an example trace of Algorithm 4.2, see Example 4.5 starting on p. 67.

Proof that A  is well-defined. Not only m ust we be sure that Algorithm 4.2 outputs a 

spanning tree T*, bu t also we m ust check that it does not halt before doing so. To 

establish both of these results, we look at each step in turn.

Step (2). We have already seen in Algorithm 2.6 that in a legal configuration, at least 

one node contains at least as many chips as its degree. Thus M \  is nonempty.

Step (3). It is clear that T* is thus far a tree; in fact, it is a star.

Step (5). We m ust establish thatM , is nonempty so that the "for each u e M  " step is
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not quantifying over an empty set. We proceed by induction. In the discussion of 

Step (2) above, we observed that Mi is nonempty. By construction, all nodes in Mi 

are critical. Because C is a legal configuration, we may apply Algorithm 2.6 to G and 

delete all of the nodes (in any order) m M \.

With these statements as our base case, our induction hypothesis is in 

two parts: for fixed i > 1, suppose that (a) ... ,M/_i are nonempty; and (b) we

may apply A lgorithm 2.6 to G and delete the nodes in M i,M 2)... ,M,_i without 

halting.

Let M  = IJ 'rj Mj. Lemma 2.8 states that the configuration on any

subgraph of a graph (on which we have a legal configuration) m ust itself be legal. 

So, if our application of Algorithm 2.6 has deleted exactly the nodes of M, then at 

least one of the remaining nodes w of G - M  m ust be critical in G -  M. Suppose that u 

is not a neighbor of any node in M. Because u is critical in G - M ,  and none of its 

neighbors have been deleted in our application of Algorithm 2.6, we see that u is 

also critical in G. But this places u in Mi, which contradicts the choice of u in G -  M.

Thus, we know that u is a neighbor of some node in M. Now if u is not a 

neighbor of a node in M_i, it m ust be adjacent to, say, s > 1 nodes in 

M i,M 2,...,M (_2. Thus, u has been considered previously by step (8) and has been 

deleted each time. Therefore, C(u) < degG(u) -  s. This show s—back in our 

application of Algorithm 2.6—that if we have deleted all of the nodes in M i,... ,M,_i,
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including the j  neighbors of u, then u will not be critical in G - M .  This contradicts 

the fact that u is critical in G - M ,  so u m ust be a neighbor of a node inM,_i.

Because u is critical in G - M ,  step (8) will not delete u from A?,. Thus, A?, 

is nonempty; this fulfills part (a) of the induction hypothesis. We claim that any 

node w placed in M t by step (5) will survive past step (8) only if it, too, is critical in 

G - M .  For w to survive step (8), we require C(w) > degG(vr) - s, where s is the 

number of G-neighbors of w that appear in M. Since degG(w) -  s simply equals 

degG_M(w), we know w is critical in G - M .  Thus, all nodes i n M, may be deleted as 

we apply Algorithm 2.6. This fulfills part (b) of the induction hypothesis.

Step (6). Step (5) assures us that these neighbors exist.

Step (8). The argument given above for step (5) assures us that M, remains 

nonempty after all nodes of M, have been processed in step (8).

Step (9). It is impossible to create a cycle in this step because step (5) only considers 

those nodes that are not yet part of T*.

Step (10). This step assures us that T* will be a spanning tree of G*.
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Observe that step (9) adds at least one edge to T* since M, remains 

nonempty. Once n - 1  edges have been added to T*, step (10) will halt the 

algorithm. Since A does not halt until it outputs a spanning tree T*, A is 

well-defined. ■

Proof that A  is an injection. Let C e  3(, and C' s  ^  be two distinct relaxed legal 

configurations on G. We prove that A is an injection by showing that the spanning 

trees A(C) and A(Cr) m ust be distinct. As Algorithm 4.2 operates on C and C', it 

m ust encounter a node v for which C(v) * C'(v). Let us call such a v special. Step (8) 

might remove v from consideration; if this occurs for both inputs C and C ,  then we 

consider a future pass of the algorithm. Because Algorithm 4.2 includes every node 

in the output before it halts, we know that eventually we will find a special node 

that is not removed by step (8) concurrently for both inputs C and C1.

Now if v is removed by step (8) for one input bu t not the other, then step 

(9) will connect v to a different neighbor for the two inputs. On the other hand, 

suppose v is not removed by step (8) for either input; because C(v) *  C1 (v), step (9) 

will connect v to a different neighbor for the two inputs. In either case, A(C) and 

A(C') m ust be distinct, and A is an injection. ■

Before we turn  to Algorithm 4.3, we recall one definition. Let G = (V,E)
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be a connected graph, and u, v e V. As in [19], we define the distance from u to v 

(denoted dG(u,v)) as the least length of a u,v-path.

Algorithm 4.3 INPUT: a spanning tree T* of G* and an ordering

V -  (vi,v2, ... ,v„) of the nodes of G;

OUTPUT: B(T*), a relaxed legal configuration C : V -> N on G.

(1) Let M0 = (x).

(2) Let m = maxveV{dT,(x, v) } . For j  = 1, 2, ..., m, let Mj be
the sequence (in breadth-first order, breaking ties
lexicographically by subscript) of nodes v for which 
dT. (x, v) = j . Let Mj = {x : x is an entry of M}} .

(3) For each u e Mi , let C(u) = degG(u) .

For i = 2, 3, . . ., m,

For each u e Mi , following the ordering in Mi,

execute steps (4) through (7):
(4) For r = 1, 2, i-1, let

Nr = (vr,i/ v r,i' • • • t Vr,k ) t'le sequence (in their 
Mr -ordering) of the kI > 0 G-neighbors of u that 
appear in Mr . Let Nr = (x : x is an entry of Nr) .

(5) Let s = | Nr |.

(6) Let N = (vhi, vh2, . . ., vhs) be the sequence
determined by concatenating the sequences 
Nlt N2, . . . ,  .

(7) For some t e (1,2, , s ) , we have (v̂ , u) e E{T') . Let
C(u) = degs(u) - t .
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Note the similarity between Algorithm 4.3 and Algorithm 3.7, where a 

spanning tree of K„+\ is the input and a configuration on K„ is the output. However, 

the breadth-first order imposed by step (2) of Algorithm 4.3 is more restrictive than 

the search performed by steps (4) and (5) of Algorithm 3.7. Thus, given the same 

input, the two algorithms do not necessarily produce the same outputs.

For an example trace of Algorithm 4.3, see Example 4.6 starting on p. 69.

Proof that B is well-defined. In step (2), we partition Finto sequences Mi M 2 , ... Mm- 

Step (3) assigns chips to the nodes in Mi, while step (7) assigns chips to the nodes in 

M i , ... Mm- Therefore, Algorithm 4.3 at least produces a function C : V -* N.

Now we use Algorithm 2.6 to establish that C is legal. Since T* is a 

spanning tree of G*, we know that M\ is nonempty (see step (3)); hence, there is at 

least one node u such that C(u) = degG(«). Thus Algorithm 2.6, given C as input, 

may delete the nodes in Mi. This fact is the base case in an induction argument that 

proves that in Algorithm 2.6, the nodes m M i M t ,  - - ■ M m  can be deleted in the order 

given by this list. Suppose that this is true for M i,M 2, ... M k - 1 , where 2 < k < m. For 

any u e Mu, step (7) assigns C(u) = degG(w) -  t>  degG(w) -  s. Recall that s counts the 

neighbors in G of u that are in Mr; in our induction hypothesis, we have 

assumed that these neighbors have been deleted from G, resulting, say, in a 

subgraph G'. If other nodes in M t have been deleted before we consider u, then
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degG/(w) does not increase. Thus, we have C|K(G/)(w) > deg Gi(u), so u can be deleted in 

step (2) of Algorithm 2.6. ■

Proof that B is an injection. Suppose that T\,T*2 e S  satisfy

Ci := B(Tt) = B{Jl) =■ C2 (:= Q i  

we'll show that then 2 7  = T\-

Let V = V(G), n = \V\, and write the breadth-first orderings of V 

determined during the computation of B(T\) and B{Tf) as (w,)£=i and (w,)"=1/ 

respectively. To complete the proof, we shall find it useful to establish the following 

lemma.

Lemma 4.4 Under the hypothesis that C\ = C2, i f  there exists an integer j  > 1 such that 

Uj = Wifor all i e {1,... j} , then the subtree H \ ofT* induced on {x ,u i , ...,«,} is identical 

to the subtree H \ o fT \ induced on {x,w i , ... ,wy}.

Proof We induct on j. First note that H \, H \  are indeed subtrees of T\, T\, 

respectively, since the sequences (w,), (w,) are defined by breadth-first search on 

these trees. It is also clear from the definitions of («,), (w,) that u\, w i are adjacent to 

x in H*, H*2, respectively. In the case when j  = 1, these subtrees both consist of 

2-vertex trees containing the edge and are therefore identical.
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Now fix j  > 1, assume that the lemma holds for smaller instances of j, and 

suppose that w, = w, for all i e {1,... j'} . Let Gq denote the subgraph of G* induced 

on the common vertex set U := {x ,u \ , . . . ,u }}  of H \, H \,  and let G0 = Gq - x .  We 

consider four executions of Algorithm 4.3; in each case, the input vertex ordering is 

inherited from G.

The first pair of executions computes D x := B(H\) and D 2 := B(H*2), two 

configurations on Go- Since (m,){=1, (w,)^=1 are initial segments of (u,), (w,), it is 

evident from Algorithm 4.3 that D x, D 2 are obtained from Cx, C2 by replacing degG 

in steps (3), (7) by degGo and restricting the resulting functions to U. Since C x = C2, 

we have D\ = D 2. For k = 1,2 and for each node u e V(Go), let tk(u) denote the value 

of t in step (7) as Algorithm 4.3 determines Dk(u); if D k(u) is determined in step (3), 

we take tk(u) := 0. Then

Dk{u) = degGo (u) -  tk(u) for k = 1,2 and each u e V(G0). (4.1)

The second pair of executions computes D[ := B{H\ -  uf) and 

D '2 := B{H\ -  Wj), two configurations on G '0 := Go -  u; = G0 -  vty For k  = 1,2 and for 

each node u e V(G'0), define t'k(u) analogously w ith tk(u)-, now we have

D'k(u) = degG<o (u) -  t'k(u) for k -  1,2 and each u e V(G'0). (4.2)

Since (z/,)^, are respectively breadth-first orderings of V{H\),

V(H2), the sequences (»,)£}, (w,y,=l are such orderings of V(H\ -  Uj), V{H2 -W j).
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Thus, during the second pair of executions of Algorithm 4.3 described above, every 

sequence M, (in the statement of the algorithm) is the same as during the first pair 

of respective executions, except, in passing from the first pair to the second, the 

final node of M m (resp. ujr w})  has been deleted. Therefore

t'k(u) = tk(u) for A: = 1,2 and each u e F(G'0). (4.3)

Since D\ = D 2, the equations in (4.1) imply that

h(») = t2{u) for each u e V (G q). (4.4)

Comparing (4.4) with (4.3), we see that

t\(u) = t'2(u) for each u e V(G'0). (4.5)

It follows from (4.2), (4.5) that D[ = D'2. Since these are configurations on G'0, whose 

vertex set is U \  {u}} = U \  {w,}, the induction hypothesis implies that 

H* - U j  =  H \ - W j .  Finally, from (4.4), we have =  t 2 ( U j ) , and in Algorithm 4.3, 

this means that the node w, = w} has the same neighbor in H* -  Uj as in H \ -  wj. 

Therefore H* = H \.  ■

It follows from Lemma 4.4, w ith j  -  n, that if (w,) and (w,) agree entirely, 

then T\ = T*2. Thus, it remains only to address the case w hen u, + w, for some 

i e { 1 and here we'll reach a contradiction.

First, notice that according to Algorithm 4.3, for any u e V, we have
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C(m) = degG(zz) if and only if u is adjacent to x in both of T\, T\. Therefore, T\, T\ do 

not differ in their adjacencies to x, and the sequences (w,), (w,) agree in their initial 

entries, corresponding to the (necessarily nonempty) neighbor sets of x  in Tf, 7%. If 

there are L such neighbors, then zz, = w, for z e {1 ,...,L}, and we're assuming that 

L < n.

Let z'o denote the least z such that u, ± w,. Since L < io < n, it is easy to see 

that Algorithm 4.3 reaches step (7) in defining Ci(w,0) and C2(wi0). Let j  -  z'o -  1, and 

define H \, H \  as in the statement of Lemma 4.4. Since

iii=W j forz e {1,... j> , (4.6)

Lemma 4.4 shows that H \  = H \.  From (4.6), we also see that wia does not appear in 

the subsequence (u,)JI=l, and zz,0 does not appear in the subsequence (w,){=1. Thus, in 

computing B(T\), Algorithm 4.3 processes zz,0 before w,0, while in computing B(T\), 

it processes uiQ after w /o.

Now consider the instants during the two executions of Algorithm 4.3 

when step (7) defines Ci (zz,0) and C2(zz,0). In particular, for k = 1,2, define tk as in the 

proof of Lemma 4.4, so that

Ck(uio) = degG(zz,0) -  tk(uio) for k = 1,2.

Since C\ = C2 by hypothesis, we have

ti(uj 0) = t2 (u,0) (4.7)
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As Algorithm 4.3 executes on T\ and is processing u -  w,0, denote the 

sequence N  in step (6) by N \ . Likewise, during execution on T\ and while processing 

the same node, denote the corresponding sequence by N2. The entries of N\ are the 

G-neighbors of w,0 lying (strictly) closer to x in T\ than w,0. Similarly, the entries of 

N 2 are the G-neighbors of uio lying closer to x  in 7^ than u,0. Since H* = H\, the 

sequence N\ forms an initial segment of the sequence N2. It follows from this and 

(4.7) that the T \-neighbor of w,0 closer to jc (than m,0) in T\ and the -neighbor of m,0 

closer to x in J ] are the same. A similar argument shows that the T\- and 

-neighbors of w,0 closer to x (than w,0) in these trees are identical. Under these 

conditions, Algorithm 4.3 necessarily processes m,0 and w,0 in the same order during 

the computations of B(T\), B(T2 ). But we concluded two paragraphs earlier that this 

is not the case. This contradiction shows that the case when w, ± w, for some 

i <= {1,...,«} is impossible and therefore completes the proof. ■
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Example 4.5 Consider the legal configuration shown in Figure 4.1. We show how 

Algorithm 4.2 associates this configuration with a spanning tree T* of G*.

Vj

Figure 4.1. A legal configuration used to illustrate Algorithm 4.2

The two critical nodes are v5 and v7, so Mi = (v5,v7); the edges {x, v5} and 

{x, v7> are added to T*. The nodes adjacent to those in Mi comprise M2 = (vi,v2,v4). 

Inspecting vi we find that N  = (v5), so s = 1. Since C(vi) = 2 = 3 - 1  = deg(vi) -  s, 

step (9) adds the edge {vi, v5} to T*. Inspecting v2 we find that N  = (v5,v7), so s = 2. 

Now C(v2) = 1 = deg(v2) -  s, so C(v2) = deg(v2) -  2; step (9) adds the edge {v2) v7} to 

T*. (Note that if C(v2) were 2 rather than 1, step (9) instead w ould have added the 

edge {v2,v5} to P . )  Inspecting v4 we find that N  = (v7), so s = 1. However, C(v4) = 1 

and deg(v4) - 5  = 3 - 1  = 2 ; since C(v4) < 2, step (8) deletes v4 from M 2.

The (unused) nodes adjacent to those in M2 = (vi,v2) are M 3 = (v3,v6). 

Inspecting v3 we find that N  = (vi), so s -  1. Since C(v3) = 1 = deg(v3) - s ,  step (9) 

adds the edge {v3,vi} to T*. Inspecting v6 we find that N  = (vi,v2), so 5 = 2. 

However, C(v6) = 0 and deg(v6) - 5  = 3 - 2  = 1; since C(v6) < 1, step (8) deletes v6
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fromM 3. The (unused) node adjacent to the one inM 3 = (v3) isM 4 = (v4).

Inspecting v4 we find that N  = (v7,v3). Note the order in which the two 

elements of N  appear; this occurs because step (7) specifies that when i = 4, the 

order of the neighbors as they appear inM i,M 2,M3 m ust be preserved. Since each 

feature of the algorithm has now been illustrated in this example, we conclude 

simply by  mentioning that the edges {v3, v4} and {v4, v6} are added to T*. Figure 4.2 

shows the output of Algorithm 4.2.

Figure 4.2. The spanning tree T' associated (by Algorithm 4.2) 
with the legal configuration in Figure 4.1
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Example 4.6 Consider the spanning tree T* of G* shown in Figure 4.3. We show 

how Algorithm 4.3 associates this spanning tree w ith a legal configuration C on G.

Figure 4.3. A spanning tree of G* used to illustrate Algorithm 4.3

Step (2) gives Mi = (v3,v5), M 2 = (vi,v7,v6), and M 3 = (v2,v4). Note how 

the requirements in step (2) affect the subscript order in M2. Step (3) assigns 

C(v3) = degG(v3) = 3 and C(v5) = degG(v5) = 3. Inspecting Vi, we find N  = (v3,v5). 

Since the edge {vi,v3} is in T*, we have t = 1, so step (7) assigns 

C(vi) = degG(vi)- / =  4 - 1  = 3 .  (Note that if the edge { v i y 5} had been in T* 

instead, step (7) would have assigned C(vi) = 2.) For v7 and v6, step (7) assigns 

C(v7) = 1 and C(v6) = 1. At this point i becomes 3. Inspecting v2, we find 

N =  (v3,v5,vi). Note the order in which the elements of N  appear; this occurs 

because step (6) specifies that the order of the neighbors as they appear in M \,M 2 

must be preserved. Since the edge {v2, Vi} is in T*, we have t = 3, so step (7) assigns 

C(v2) = degG(v2) - t  = 3 - 3  = 0. Step (7) also assigns C(v4) = 1, since 

{v4, v6} e E(T*). Figure 4.4 shows the output of Algorithm 4.3.
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Figure 4.4. The legal configuration on G associated (by Algorithm 4.3) 
with the spanning tree o f G* shown in Figure 4.3

4.2 An extension of Theorem 4.1

By deleting certain edges from G* (defined in Section 4.1), we may 

enumerate the relaxed legal configurations that correspond to games of length zero 

on G. This result will be useful in Chapter 5, but we mention it here because it 

requires Algorithm 4.2. For v e V, let Tv denote the num ber of spanning trees of 

G* -xv .  Let (C, v) e d ( x F  denote a choice of a relaxed legal configuration C on G and 

a seed v e V.

Proposition 4.7 The number of pairs (C, v) that result in a game of length zero is ^  Tv.
v e K

Proof As shown in the discussion of Algorithm 4.2, an edge {x,v} in T* forces v to 

be critical in the corresponding relaxed legal configuration, whereas v will
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specifically not be critical when that edge is missing in T*. So by removing the edge 

{x, v} from G* and enumerating the spanning trees, we will count the number of 

relaxed legal configurations in which v is not critical. Now if v is the seed, it will not 

fire, and the game length will be zero. We sum  over all v e V to count all the pairs 

(C, v) that result in a game of length zero. ■

We will require Proposition 4.7 in Chapter 5 due to the unusual nature of 

games of length zero; in all other games, at least one node m ust fire, so the seed 

must be critical. A game of length zero requires a seed that is not critical, making 

games of length zero a special case.

4.3 Enumerating games of any length on any connected graph

Before we consider a theorem that allows us to enum erate the bum-off 

games of any length on any connected graph G, we prove that there are a finite 

number of game lengths to investigate.

Lemma 4.8 During a burn-off game that starts with a relaxed legal configuration on 

G -  (V,E), no node may fire more than once.

Proof Let v be the seed. When v fires, it loses all of its chips. For v to fire a second
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time, it m ust gain at least deg(v) +1 chips from its neighbors. By the pigeonhole 

principle, this will happen only if at least one neighbor of v fires at least twice. Thus, 

v cannot be the first node to fire more than once.

Suppose that w e V, with w * v, is the first node to fire a second time. Say

there are

c < deg(w) (4.8)

chips on w when the seed is chosen, and k  neighbors of w have fired once before w 

fires for the first time. Just before w fires, it will contain c + k  > deg(w) chips. After w 

fires, it will contain c + k ~  (deg(w) + 1) chips. For w to fire again it m ust contain at 

least deg(w) + 1 chips, so it m ust gain at least t := deg(w) + 1 -  (c + k -  (deg(w) + 1)) 

chips from its neighbors. But

t -  (deg(w) -  k) + (deg(w) - c ) + 2 > deg(w) -  k, 

by (4.8). Now deg(w) -  k  is precisely the num ber of neighbors of w that did not fire 

before w fired. So for w to gain t > deg(w) -  k chips, either one of these neighbors 

m ust fire at least twice before w fires a second time, or one of the k  neighbors that 

fired before w fired m ust fire a second time. Either case contradicts our assumption 

that w was the first node to fire a second time. ■

So given any connected graph G = (V,E), we know that the length g  of 

any burn-off game m ust satisfy 0 < g  < \V\. While the relatively simple methods of
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Section 4.2 do not extend to enumerating games of any length, the methods 

introduced in this chapter nevertheless give formulas for the number of such 

games.

First we need some new notation. For v e V, let denote the set of 

subtrees of G w ith g  nodes and including v. For a graph X  w ith subgraph X\  and a 

node u e V(X), let TXx (u) be the set of neighbors of u that lie in V(X2). For a 

connected graph G = (V,E), let (C,v) e ^  x V denote a choice of relaxed legal 

configuration C and seed v. Finally, we note that this proof considers legal 

configurations on disconnected graphs and remind the reader that the function L 

enumerating relaxed legal configurations may operate on such graphs (see p. 24).

Theorem 4.9 The number of pairs (C,v) resulting in a game of length g > 0 is

uo-n

Proof For v e V, let denote the set of relaxed legal configurations on G such 

that if v is seeded, then the resulting bum-off game will be of length g. For 

R i ,R2 g (Ryg, define the relation ^ as follows: suppose that w hen v is seeded in Ri 

and R2, the nodes that fire in each game induce the same subgraph H  of G; suppose 

also that R i \h = # 2!h- If both of these conditions hold, we say i?i -  R 2. It is clear 

that — is an equivalence relation on Let Qy  ̂be the set of equivalence classes of
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To prove Theorem 4.9, it will be helpful to establish injections A :‘t V£ -*Qv^ and 

B Qyg ~*r̂ v>g-

Define A ~*Qv,g as follows. Let T e and let H b e  the subgraph of 

G induced on V(T). Create H' as follows: to each u e V(T), append degG(w) -  deg^(w) 

leaves to u. Let J  be this set of leaves. Now let T  be the spanning tree of H' 

consisting of T  and J. Create T* by appending the node x and the edge {x, v} to 7V. 

Use T* (with H' as the underlying graph) as the input in Algorithm 4.3; let C* be the 

output configuration. Let Q be a configuration on G defined by Q(v) = C*(y) and 

Q(u) = C*(u) + 1 for each u e V(H) -  v. Let Z be any relaxed legal configuration on 

G - H .  Define Q(w) = Z(w) for each w e V(G -  H). Now Q is a configuration on G. We 

demonstrate below that Q e thus, we may let Q denote the equivalence class 

of Q. Finally, let A (T) = Q.

Claim 1. A is well-defined.

Proof of claim. To show that Q e <SGtg, we will demonstrate that (a) Q is a relaxed 

legal configuration on G; and (b) seeding v in Q results in a bum-off game of 

length g.

(a) Q is a relaxed legal configuration on G.

Because v is the only neighbor of x in T*, only v is critical in C* (see step
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(7) of Algorithm 4.3). As we define Q, then, adding a chip to each u e V(T) -  v does 

not make any of these nodes supercritical. We choose Z to be any relaxed legal 

configuration on G - T ,  so none of the nodes in V(G -  T) are supercritical. Therefore, 

Q is relaxed.

We appeal to Algorithm 2.6 to demonstrate the legality of Q. We defined 

C* using Algorithm 4.3, so C* is a legal configuration on H 1. Thus, if Algorithm 2.6 

operates on C*, it will provide a deletion sequence S  of V(H'). Since every w e J  is a 

leaf, each deg^ O ) = 1. Since only v is critical in C*, we m ust have C*(w) = 0. 

Without loss of generality, then, we may perm ute S  so that V(H) is processed before 

J  and see that this new deletion sequence S' also satisfies the requirements of 

Algorithm 2.6. In passing from C* to Q, we let Q(v) = C* (v) and Q{u) = C* (w) + 1 for 

each u e V(H) -  v. Because deg^/ (x) = degG(x) for every x e V(H), Algorithm 2.6 may 

begin to process Q on G in the same order found in the initial subsequence of S’ 

containing the nodes of V(H). Since we extended Q to V(G -  T) by choosing any legal 

configuration Z on the subgraph G - T ,  Algorithm 2.6 m ay finish processing Q, 

thereby confirming the legality of Q.

(b) Seeding v in Q results in a game of length g.

We first show that each node in T  fires, and then show that none of the 

nodes in G - T  fire. Since T  has g  nodes, and by Lemma 4.8 no node may fire twice,
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the resulting game will be of length g.

Clearly, v can fire. For u e V(T) -  v, let

Su =  {w e  T h ( u )  : dH>(w,x) < dH<(u,x)} 

and su = \SU\. By step (7) of Algorithm 4.3, we have

C*(u) > degH, ( u ) - s u = degG( u ) - s u.

We defined Q(u) = C*(u) + 1, so once the nodes in Su fire, the num ber of chips on u 

will be at least degG(w) + 1, allowing u to fire as well.

For w e V(G -  T), let sw = |rr(w)|. In each relaxed legal configuration Z on 

G - T ,  we m ust have Z(w) < degG_r (w) = degG(w) -  sw. Because the nodes in T 

contribute a total of sw chips to w once they have all fired, the num ber of chips on w 

will never exceed degG(w). Since we define Q(w) = Z(w), we know w will not fire 

when v is the seed.

We have shown that Q is a relaxed legal configuration on G such that if v 

is seeded, the resulting game will have length g; thus, we know that Q e %,rg. 

Hence, A is well-defined. ■

Claim 2. A is injective.

Proof of claim. We will show that for distinct trees TV,T 2 e %#, we have 

A(T\) ± A (T 2). For this argument, we let Q t^Q t^  denote one of the relaxed legal 

configurations on G that result as we {m d A (T i) ,A (T 2 ) respectively. (Note t\\atA(Tx)
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does not equal QTl but rather QTi) similarly, A(T2) = QTl)

First suppose that T\ and T2 contain the same g nodes. Because T\ and T2 

share the same vertex set, we know Hi and H 2 will be identical. The creation of H[ 

(and H 2) does not involve the structure of T\ (and T2), so H\ and H 2 will be identical 

as well. Consequently, we know J\ = J 2, which implies that w hat makes T\ and Tj; 

distinct is the distinct structures of T\ and T2. When we use T\ and T\ as inputs to 

Algorithm 4.3, the injective nature of the algorithm implies that C* and C2 will be 

distinct; thus, 0 rilr, and Qt2\t2 will be distinct. Because V{T\) = V(T2), we have 

QTl *  Q T2. T h u s^ fT i)  * A (T 2).

Now suppose that T\ and T2 do not contain the same g nodes, and that 

A(T\) = A(T2) = Q for some Q e QVig. When we showed above that A is 

well-defined, we saw that seeding v in Q results in a game in which precisely the 

nodes in the underlying tree fire. But the original trees T \,T 2 considered in this case 

are distinct. The deterministic nature of bum-off games, discussed in 

Proposition 2.1, prohibits this result; the same set of nodes m ust fire in any burn-off 

game played on a given configuration w ith seed v. Thus, A{T\) * A(T2). ■

Having established that A : %>g -*Qj>g is a well-defined injection, we turn 

our attention to showing the same is true of B  :Qv>g ->rTjg, defined as follows. Let 

Q e Qv]g, so that Q e Q. Let H  denote the subgraph induced on the nodes that fire if
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v is seeded in Q.

Because Q e Q, seeding v in Q results in a bum-off game in which the 

nodes of H  fire. With h = |V(H) -  v|, let F =  (v,u \,u 2, . . . , uh) be such a firing sequence 

of V(H). For m = 1,... ,h, let lm denote the number of //-neighbors of um that precede 

um in F. At the time um fires, it must contain at least degG(«m) + 1 chips, so

QiFtn) ^ degG(t/m) + 1 /»)•

This inequality is clearly equivalent to

Q(Mm) ~ deĝ CMm) + 1 — lm,

and since degH(um) > l m, we may subtract \TG-H(um)\ from the right-hand side 

without it becoming negative. On the left-hand side, subtracting |Ta-H(um)\ amounts 

to removing that many chips from um. Let Q*H denote the configuration on H  that 

results if, for each m = 1 we remove jTo-H{um) | chips from um. Thus, we have

Q*H(Mm) > degff (um) + 1 -  lm, for all m =

Since degH(um) > lm, we may remove one additional chip from each w e V{H) -  v. 

Let Qh denote the resulting configuration on H, so that

QH(um) > degff(um) -  lmr for all m = 1 ,.. .  ,/i.

Note that v is the only node in VQJ) that is critical in QH.

Our intention is to input the graph H  and the configuration Qh into 

Algorithm 4.2. The algorithm requires that H  is connected and Qh is a relaxed legal
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configuration. Since i f  is a subgraph of G induced on the nodes that fire during a 

bum-off game, i f  is connected. Our choice of Q comes from an equivalence class of 

the relation on ^ g ,  so Q is a relaxed configuration on G. For each u e V(H), we 

remove | r g-hW )| chips from u, so Q*H is a relaxed configuration on if. In creating Qh 

from Qh, we remove a chip from each w e V(H) -  v, so QH is a relaxed configuration 

on if.

configuration on if. Partition V(H) into independent sets as follows: for 

t = 0 , . . . , h - l ,  let I t = {uh-t}, and let h  = {v}. For all t = 0,... ,h  - 1 ,  those 

ff-neighbors of uh-t that follow Uh-t in F  appear in U£o Ir- Therefore,

It is easy to check that the analogous inequality holds for v, and this proves that Qh 

is legal.

We apply Algorithm 4.2 w ith the connected graph i f  and the relaxed

legal configuration Qh on if. The algorithm outputs a spanning tree T* of if*. 

Because v is the only node in V(H) that is critical in QH/ the only node adjacent to the 

special node x in if* is v. Let T = T* - x .  Finally, define B(Q) = T. This tree is clearly 

a member of %ig, so B  is well-defined.

Finally, we appeal to Proposition 2.4 to show that Qh is a legal

W~Uh~l
for all t = 0 ,... ,h - 1 .
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Claim 3. B  is injective.

Proof of claim. We will show that for distinct QfQ* e Qytg, we have B(Q) * B(Q'). 

Let Q,Q' be representatives of Q,Q’ respectively. Let H,H' denote the subgraphs 

induced on G by the g  nodes that fire when Q, Q1 respectively are seeded at v.

First, we consider the case where H  -  H' =: Ho- Because Q and Q' are 

distinct, we know Q\H0 * Q'\h0- Therefore, Q h0 and Q'Ho will be distinct relaxed legal 

configurations on H 0. The injective nature of Algorithm 4.2 ensures that 

B (Q )* B {Q !).

Second, we consider the case where H  + H 1. When each of these 

subgraphs is used as the underlying graph in an iteration of Algorithm 4.2, the 

output is a spanning tree of that subgraph (with the edge {v,x}, which we 

subsequently delete). Since H  * H', these two trees m ust be distinct, so 

B { Q )* B @ ) . m

Assisted by the following claim, finally, w e'll be able to tu rn  our attention 

to the inner sum  that appears in the statement of Theorem 4.9. Given T  e 1 \ g, let us 

denote A(T) by  Q r.

Claim 4. For each T  e T v,g/ we have \Qt \ -  L(G -  T).

Proof of claim. Because Q T is an equivalence class of the relation on %,#, it collects
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all relaxed legal configurations that agree on V(H). Thus, two elements of Q T can 

differ only on V (G -T ) .  By Lemma 2.8, the legality of Q e Q T on G implies the 

legality of Q\g-t on G - T .  Hence, \Q t \ < L ( G - T ) .  Let L represent any relaxed legal 

configuration counted by L{G -  T), and use L  for Z  in the definition of A(T)  (p. 74). 

This has the effect of extending L to the rest of G  using (2|r, which is common to all 

Q  e Qr . Because we used A ->Qy,g in bringing about this extension, the 

resulting configuration is legal on G.  Since this extension is clearly injective, we 

have \Qt \ >  L ( G -  T). ■

To complete the proof of Theorem 4.9, it suffices to show that for each 

v & V, the num ber Wof relaxed legal configurations C that result in a game of length 

g  when seeded at v is S  : =  ^ Teq- L(G -  T). From the definition of %,!g, we have

J\r = so it remains to show that | ^ g | = S-

Since both of A,B  are injections, and both of TVĵ , Qv,g are finite sets, it 

follows that A  is in fact a bijection. (The same is true of B,  but we w on't need this 

fact.) Thus, as T  runs through its image A(T)  = Q r runs through Qv,g, and it 

follows that

K l =  £ | 3 | -  S l ^ r l -  E  U G - T ) ~ s ,
QeO Te<rv,g »,g

where Claim 4 justifies the third equation. ■
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Example 4.10 We illustrate Theorem 4.9 on the graph G in Figure 4.5. Here we 

consider a game of length three that starts with v as the seed. One of the subtrees 

T eTv>3 is shown with bold lines. To apply Theorem 4.9 in evaluating L(G -  T), we 

add the node x to G - T ,  resulting in the graph on the right.

G —T+ x

Figure 4.5. Determination o f one term in the sum in 
Theorem 4.9

Theorem 4.1 depends on Algorithm 2.6, which may take disconnected 

graphs as input (see p. 24). By Theorem 4.1, then, we have r (G - T + x )  = L{G -  T). 

Using the Matrix Tree Theorem (or by inspection), we find that L(G -  T) = 8 . Thus, 

this particular choice of subtree through v adds 8  legal configurations to the sum  in 

Theorem 4.9. This is just one of the subtrees contributing to the inner sum; there are 

four more such subtrees.

4.4 All relaxed legal configurations are equally likely

Theorem 4.9 does not by itself accomplish our goal of mathematically 

predicting whether a sequence of bum-off games will exhibit the size versus
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frequency relationship exhibited by a system in a state of SOC. The results in this 

section give us the last tool we need in our pursuit of this goal. Recall that for a 

connected graph G = (V,E) we denote the set of relaxed legal configurations on G

by <R>

Proposition 4.11 For C e G^and v e V, there exists at least one C* e such that ifC* 

is seeded at v, then the resulting relaxed configuration is C.

Proof. If removing a chip from v in C results in a legal configuration C*, then C* 

has the desired property, for if C* is seeded at v, then the resulting configuration is 

immediately C  after a game of length zero.

So we may suppose either that C(v) = 0 or that removing a chip from v in 

C creates an illegal configuration in G. In either case, we define C* by first defining 

a subgraph Y of G. If C(v) = 0, then let 7  be the subgraph induced on v alone. Now 

suppose that C(v) > 0. Because C is a legal configuration, we m ay use Algorithm 2.6 

to delete all of the nodes in some sequence according to the conditions specified in 

this algorithm. Since removing a chip from v creates an illegal configuration on G 

(see the preceding paragraph), there exists a set of nodes X =  {v ,y \,y i, ■■■ ,yk}, w ith 

k  > 1, that induces a connected subgraph of G where only v is critical in C\x- Let Y be 

the subgraph induced on the largest such set; the arguments below do not require
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this choice to be unique.

Let C*(v) = degG(v). For each we V - v ,  let

C* (u) = (C(u) -  | r 0(«) H 7|)(mod degG(w) + 1). (4.9)

Note that

C(w) > | r 0 (w) n  Y\ for w £ V(Y) (4.10)

because otherwise we m ust include w in V(Y). We claim that C* has the desired 

property. To establish this claim, we will show that (a) C* is a legal configuration; 

and (b) if C* is seeded at v, the resulting relaxed configuration is C.

(a) C* is a legal configuration.

Since C is legal, using Algorithm 2.6 we may delete the nodes in V  in 

some sequence S  -  (w,)1̂ .  For r  = 1,... ,\V\, let G r be the subgraph of G  that exists 

just prior to the deletion of ur by Algorithm 2.6. Select an edge e = {u}, ui} such that 

(without loss of generality) w, precedes ui in S. Because Algorithm 2.6 can delete uj 

from Gj, we know CGj(uj) > dega .(uj) > 1. Suppose that we delete e from G  to create 

the graph G' (so that degG/(w7) = degG(w7) -1 ) , and simultaneously create 

configuration C' on G1 by removing one chip from uj (so that C'G, (uj) = Cg{uj) - 1) 

and one chip from ui, if possible (we discuss this case later in the paragraph). We 

claim that Algorithm 2.6 may delete the nodes in V(G')  in the same sequence S. The 

only nodes affected by the deletion of e are Uj and « / ,  s o  we consider each in turn.
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Define G'r analogously to G r. If we delete the nodes Hi,.. . ,  Uj-\ of G' in that order, we 

have degG/(wy) = degGj(u/) -  1. To thereupon delete w, we require C'g,(m;) > degG;(w/),

which follows from

C'0,(.Uj) = C0,(Uj)

= Coiuj) - 1  

= CGj(uj) - 1  

>  degg. (u})  -  1 

=  d e g Gj ( u 7).

We now turn  to u\. Because Algorithm 2.6 can delete «/ from Gu then 

Ca,{ui) > degG;(w/). If CGl(ui) = 0 , then all of the G-neighbors of ui m ust precede ut 

in S. In this case, degGi(w/) = 0, so CG,(w/) > degG/(w/) even if we were not able to 

remove a chip from ui as described in the paragraph above. If CG,(ui) > 0, then we 

were able to remove a chip from ut as described above. Here the same argument 

given for Uj applies to «/. Thus, Algorithm 2.6 m ay delete the nodes in V(G')  in the 

order given in S;  this assures us that the new configuration on G 1 is legal.

Let S  be the subsequence of S  that contains the nodes in T. With the help 

of the ideas in the paragraphs above, we now establish that Algorithm 2.6, acting on 

G, can also delete the nodes in S \S  before it deletes the nodes in S. Create the 

subgraph (j of G by deleting every edge in E(G)  that is incident w ith a node in V(Y). 

At each deletion, remove one chip from the nodes incident w ith these edges, if 

possible. Let C be the configuration that results on (5. We know from (4.10) that
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C g (w ) >  \ry (w )| for w g V(Y), so CG(w) > 0; that is, we will be able to remove a chip 

from w  for each edge incident with w that we delete. By the argument given above, 

we know C is legal. Because we have deleted every edge in E(G) that is incident 

with a node in V(Y), we know that deg^Cv) = 0 for all y  e Y. Therefore, if we use 

Algorithm 2.6 to investigate the legality of C, we may delete the nodes in V(Y) at any 

time we choose; in particular, we choose to delete them  after we delete the nodes in 

V(G -  Y). Let Q be the sequence in which we delete the nodes in G; specifically, let 

Q = ( w i ,wa>w [,... ,w'p), where a + f3 = |F|, wa e V (G -Y ), and w'b e Y. Define (j> 

analogously to Gr. For wa e V(G -  Y), we know C^a(wa) > d eg ^ (wa).

We claim that the nodes in V(G -  Y) may be deleted from G by 

Algorithm 2.6 in the same order they appear in Q. Restore the edges that were 

deleted during the creation of G, along w ith the chips that were removed from the 

nodes. After we restore both the deleted edges and the removed chips, we have

Coa(wa) = c 6a(wa) + |r> O fl)| > deg6a(wa) + |Tr(wa)\ = degGa(wa).

Thus, we may let wa be the ath node deleted as Algorithm 2.6 investigates the 

legality of G. Let W denote this sequence (w,)“=1. Since C\r is legal by Lemma 2.8, we 

may use Algorithm 2.6 to delete the nodes in Y  in some order. Let W  be this 

sequence, which we note is a permutation of S.

So, if we concatenate the sequences W and W1 to form the sequence T, we 

know that Algorithm 2.6, acting on G, can delete the nodes in V in the sequence T.
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Now concatenate the sequences W  and W to form the sequence T*. We argue now 

that w hen we check C* for legality using Algorithm 2.6, we can delete the nodes in 

the order found in T*.

First, we show that v m ust be the initial entry in W1. If v is the only entry 

in W , this is clear; further, since v is critical in C*, Algorithm 2.6 may delete v as it 

works on C*. In this case, we may pick up the argument as it resumes after (4.14). If 

v is not the only entry in W1, then supposey e Y, w ithy  * v, is the first entry in W1. 

By definition of 7, we have C(y) < deg7 (y); thus, at least one neighbor of y in Y m ust 

be deleted before Algorithm 2.6 may delete y. This immediately gives our 

contradiction. Suppose then that W1 = (v,yi,y2, ••• ,y*)- For 1 = 1 , 2 ,... ,k, let t, denote 

the num ber of neighbors ofy, that precede y, in W*. For each i we have

C(yi) < degr (y,). (4.11)

But since y, can be deleted (from Y) in the order specified by W1, we have

C(y,) > deg7 (y,) -  A (4.12)

In (4.9) we set

C*(y,) = (C(y,) -  deg7 (y,))(mod degG(y,) + 1).

But (4.11) implies that

C*(y,) = degG(y,) + 1 + C(y,) -  deg7 (y,). (4.13)

Now (4.12) and (4.13) together imply that
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C* (y,) > degG(y,) + 1 + deg7 (y,) -  f, -  deg7 (y,)

> degG(y,) -  tj. (4.14)

By (4.14) we conclude that in C* the nodes in W1 can be deleted in the order given 

by this sequence. It remains to show that the nodes in W may be deleted 

sequentially following the deletion of every node in IF'. By (4.9), the only nodes in W 

for which C(w,) ± C*(w,) are those with neighbors in Y. Specifically, for 

i = 1 , 2 , we  have C*(w,) = C(w,) -  |rrfw,)! by (4.9) and (4.10). However, we 

have just seen that all of the nodes in V(Y) may be deleted first as Algorithm 2.6 

checks the legality of C*, so the |ry(w,)[ neighbors of w, in 7 have been deleted when 

the algorithm begins to delete the nodes in W. Let t\ equal the num ber of neighbors 

of M>t that precede w, in W. Because C is a legal configuration on G, we know that 

C(wi) > degG(w,) -  tl. Thus,

C *(w ,) =  C (w ,) -H > (w ,) |

> degG( w , ) - r ' - | r y(w,)|,

which implies that Algorithm 2.6 may delete w, in the order it appears in W. We 

have now established that we m ay delete all of the nodes in the configuration C* in 

the manner detailed in Algorithm 2.6; thus, by Proposition 2.9 we know that C* is a 

legal configuration. ■
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(b) I fv  is seeded in C*, then the resulting relaxed configuration is C.

In our argum ent for part (a), we saw that an application of Algorithm 2.6 

may delete the nodes of G when they are in the configuration C* by deleting first 

the nodes in W1 and then those in W. We now argue that w hen C* is seeded at v, 

precisely the nodes in W  fire during the game.

It is clear that v will fire when it receives one chip because 

C*(v) = degG(v). For each y, in W1 = (v,yu y 2, ... ,y k), we have C*(y,) > degG(y,) - 1, 

by (4.14). If the nodes in (v,yi,y2, ••• ,y,-i) fire, then the num ber of chips on y, 

increases to C*(yi) + 1, > degG(y,)- Thus y, may now fire as well; so, all nodes in W  

fire during the game. When we create C* from C we remove |Ty(w)| chips from each 

node w e V(Y) (see (4.9) and (4.10)). But if we fire all of the nodes in V(Y), then w 

gains exactly that m any chips. Since w is not supercritical in C, it is also not 

supercritical at any point in the game that starts on C*. Thus none of the nodes in W 

fire during the game. Further, it is evident that w hen C* has relaxed, the num ber of 

chips on w is C(w).

We now establish that w hen C* has relaxed, the num ber of chips on each 

y, e V(Y) -  v is C(y,). Since y, fires during the game, it loses degG(y,) + 1 chips. But all 

degy(y,) of its neighbors also fire during the game, so it gains this m any chips. Thus, 

from (4.13) we see that w hen C* has relaxed, the num ber of chips on each 

y, e V(Y) -  v is C(y,).
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Finally, we recall that C*(v) = degG(v) by definition. When v is seeded 

and it fires, it loses all of its chips, but then it gains one chip from each of its degr(v) 

neighbors in Y. When the game finishes, v will thus contain degy(v) chips, which, as 

we saw when we defined Y, is C(v). We have therefore established that C* relaxes to 

C when v is the seed. ■

We intend to prove that all relaxed legal configurations are equally likely. 

As a step in this direction, it is helpful for us to show that choosing two seeds in a 

given configuration results in two distinct relaxed configurations; before we do, we 

pause to prove the following useful result.

Lemma 4.12 Let C be a relaxed legal configuration on a connected graph G. Consider a 

burn-off game of length at least two that results in the configuration C'. Let H  be the 

subgraph induced on the nodes that fire during the game. After relaxation, only the seed v 

will be critical in H.

Proof. The seed v m ust fire, since the game length is at least two. When v fires it 

loses all its chips. Each of its neighbors in H  fires, sending a chip back to v. By 

Lemma 4.8, none of these nodes may fire a second time. Thus, at the end of the 

game, C'(v) = deg^(v); that is, v is critical in H.
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Consider u e V(H) -  v. We know that C(m) < degG(w) as the game begins. 

By Lemma 4.8, each node in H  fires exactly once. Thus, each of the degff(w) 

neighbors of u in H  fires and adds one chip to u. By Proposition 2.1, the firing order 

has no effect on C'. Thus, C'(u) = C(u) + deg^(w) -  (degG(w) + 1) < degff(w). ■

Now we proceed to the main result that, along with Proposition 4.11, 

allows us to conclude that all relaxed legal configurations in a bum-off game on a 

given connected graph are equally likely.

Proposition 4.13 Given C e ^  on a connected graph G =  (V,E), it is not possible to 

choose two distinct seeds and relax the resulting configurations to the same legal 

configuration.

Proof Define R v : V -> N as the relaxed configuration that results from seeding C 

at v. We wish to show that for u, v e V, with u t̂ v ,  we have R u * R v. Suppose, for a 

contradiction, that R u = R v. If u is the seed and does not fire, then R u(u) = C(u) + 1. If 

v is the seed and does not fire, then R v(u) = C(u). Thus, R u R v, which contradicts 

our assumption. Thus, at least one of u, v must fire when chosen as the seed.

Suppose first (without loss of generality) that if G is seeded at u, then u 

fires, while if G is seeded at v, then v does not fire. Since v is not critical in G and we
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have assumed R u = R v, then C(u) = Rv(u) = R u(u). If u is chosen as the seed, it fires 

and loses all of its chips. Because R u(u) = R v(u), u m ust regain deg(u) chips. This 

happens only if every neighbor of u fires after u itself fires. Now for every neighbor 

of u to fire, at least one of those neighbors m ust itself be critical in G. Suppose that w 

is such a neighbor. In the game where v is the seed and does not fire, we thus know 

that w is critical in G. Because l?u(vr) = it m ust be true that w again becomes

critical, after it fires, in the game where u is the seed. But this is impossible by 

Lemma 4.12.

Now we may suppose that both u and v fire if chosen as the seed. First, 

we show that if v is the seed (without loss of generality), then u m ust also fire. 

Suppose by way of contradiction that u does not fire, so R v(u) = deg(w). If u and v are 

neighbors, then clearly u m ust fire if v is the seed; we therefore assume for the 

remainder of the proof that u and v are not neighbors. Then in the game where u is 

the seed, every neighbor of u m ust also fire so that R u(u) = deg(w). Therefore, at least 

one neighbor w of u m ust be critical in G. By Lemma 4.12, R u(w) < C(vr). But R u = R v 

implies that w m ust also fire in the game where v is the seed. Since u is critical in G, 

it too will fire w hen w fires. This contradicts our assumption. Thus, if either u or v is 

the seed, the other node m ust fire during the game.

So in the game where v is the seed, at least one neighbor of v m ust also 

fire so that u will fire. Suppose that k  neighbors of v fire. After v fires, it contains zero
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chips, so i?v(v) = k. Because Ru = R v, we m ust have Ru(v) = k  as well. In the game 

where u is the seed, at least one neighbor of v m ust fire in order to allow v to fire. 

Say that w is such a neighbor. Now after v fires, it contains zero chips, so k of its 

neighbors m ust now fire to achieve R u(v) = k. Since w has already fired in this game, 

it may not be one of these k neighbors (by Lemma 4.8). So at least k+  1 neighbors of 

v fire in the game that starts with u as the seed.

Thus, we have k neighbors of v firing in the game where v is the seed and 

at least k  + 1 neighbors of v firing in the game where u is the seed. There is therefore 

a node z that is adjacent to v and that fires w hen u is the seed bu t not when v is the 

seed. The number of chips on z at the end of a game in which it does not fire must 

be at least C(z). But the num ber of chips on z at the end of a game in which it does 

fire m ust be at most C(z) + deg(z) -  (deg(z) + 1) < C(z). Thus, Ru(z) < R v(z), 

contradicting our assumption that R u = R v. ■

We may now proceed w ith the m ain result of this section. Recall that we 

are considering a sequence of bum-off games as a Markov chain where the states 

are the relaxed legal configurations and the transitions are determined by the 

configurations that result when a node is chosen as the seed and the configuration is 

relaxed. Let D  be the digraph that represents this Markov chain, and let P  be the
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transition probability matrix. Let Qi be the set of relaxed legal configurations on G 

and let r = | (^ j.

Theorem 4.14 All relaxed legal configurations in a sequence of burn-off games on a 

connected graph G = (V,E) are equally likely.

Proof Let C* e 5Lbe a relaxed legal configuration on G. When we initiate a bum-off 

game on G by seeding one of its nodes, C* relaxes to a legal configuration (by 

Proposition 2.1). As a result, we know that

outdegi)(C*) < \V\ for all C* <= (4.15)

Summing over all relaxed legal configurations, we have

22 outdegx>(C*) <r\V\. (4.16)

In Proposition 4.11 we saw that for any legal configuration C and node v there is at 

least one legal configuration C* that relaxes to C when v is seeded. Then in 

Proposition 4.13 we found that such C* m ust be distinct for each choice of v. 

Together, these results imply that

indegz>(C) >\V\ for all C e 5 .̂ (4.17)

Summing over all relaxed legal configurations, we have

22indeg£,(C) > r\V\. (4.18)
ceaj.
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Inequalities (4.16) and (4.18) together give

r\V\ > ]£outdegc(C) = ]T)indegD(C) > r\V\,
CcVi Ce5{.

which establishes the identity

2>utdeg£>(C) = ^ in d eg o (C ) = r\V\. (4.19)
Ceat, c<=<n

Taking (4.19) along w ith (4.15) and (4.17) respectively, we conclude that

outdegD(C) = indegz>(C) = \V\ for all C e i  (4.20)

In a burn-off game, the seed is chosen at random, so every nonzero entry in P is 

1/|F|. Since indeg£>(C) = \V\ for all C e  ^ , it follows that P  is doubly stochastic. 

Therefore (see, e.g., [10]), the entries of the stationary distribution are all equal. ■

Theorem 4.9 and Theorem 4.14 together give us a method by which we 

may mathematically determine, without resorting to computer simulations, the 

probabilities associated with the lengths of bum-off games on any given connected 

graph. They do not, however, provide a closed formula for finding these 

probabilities. In Chapter 5, we return to the special case of complete graphs and, in 

this more restrictive setting, find such a closed formula. We conclude the present 

chapter with an example to show how our mathematical results can be compared to 

our earlier empirical ones.
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Example 4.15 Consider the graph G shown in Figure 1.1 on p. 4. Applying 

Theorem 4.1 to G, we find that there are 40 relaxed legal configurations. Because G 

has four nodes, there are 160 pairs (C,v) of relaxed legal configurations and seed 

choices. Of these, 82 pairs result in a game of length zero (Proposition 4.7). We 

know that bum-off games on G may not have length greater than four (Lemma 4.8).

10.07 10.00 9.79 9 . 3 8  7 1 4  7 . 5 0

gam e length

Figure 4.6. Comparison o f analytic results to previously simulated 
results in Figure 1.2, p. 9

Four applications of Theorem 4.9 show that the num ber of pairs resulting in games 

of length one, two, three, and four are 35, 16, 15, and 12 respectively. By 

Theorem 4.14, each relaxed legal configuration is equally likely to appear during a 

sequence of bum-off games on G. Thus, we may calculate the probability 

distribution of the game length. These results are shown in Figure 4.6: the lefthand 

bars record the results of 1 0 ,0 0 0  computer simulations, previously appearing in
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Figure 1.2; the righthand bars are those found in this example using the methods of 

the present chapter. The close visual agreement between the analytical and 

simulated data was confirmed by a %2 goodness-of-fit test. Even with the level of 

significance a as high as 0 .1 , this test did not reject the hypothesis that our analytical 

results correctly model the simulated data.
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Chapter 5 

Distribution of game length on a complete graph

Our main goal in this chapter is to find a closed formula for the 

probability distribution of the bum-off game length on a complete graph. By 

finding this distribution, we shall draw conclusions about whether such games 

exhibit SOC behavior.

5.1 Overview

Refer to the introduction of Chapter 4 for a description of the probability 

model we associate w ith burn-off games. Let us define the random  variable X  to be
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the length g > 0 of a bum-off game on K„, and, as in Chapter 3, let < ,̂be the set of 

relaxed legal configurations on Kn. To determine the distribution of X, we condition 

on the configuration q e ^  that is seeded:

Pr{A" = g} = ^ P r{ X  -  g  | q is seeded} Pr{seeded configuration is q}. (5.1)
9

In Section 5.2, we find that Pr{seeded configuration is q} does not depend 

on q, but only on n. In Section 5.3, we find an expression for

Pg,q := Pr{X = g  | q is seeded}

in terms of just n and g. These results yield a formula for finding the probability of 

any game length we choose.

5.2 All relaxed legal configurations on K n are equally likely

Recall from the introduction to Chapter 4 that we view bum-off games as 

a sequence of experiments in which a pair (q,v) results in an outcome

q* e %  In this section, we investigate the long-run probability that, during the 

relaxed phase of a bum-off chip-firing game on Kn, the chips are distributed on the 

nodes in a particular configuration q. We know from Theorem 4.14 that this 

long-run probability does not depend on q; we include this alternate proof because 

it results in an explicit formula in the case of complete graphs.
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Theorem 5.1 In a sequence of burn-off games played on K„, the stationary probability of a 

burn-off game relaxing to configuration q e ^  is +^y«-i •

Recalling Theorem 3.3, we see that the denominator here is the num ber of 

relaxed legal configurations for a bum-off chip-firing game on K„. Theorem 5.1 

simply states that every relaxed legal configuration is equally likely to appear 

during the relaxed phase of a sequence of bum-off games. Since the proof occupies 

a number of pages, we first provide an outline.

Let q be a legal configuration on K„, and v e V(K„). We will find a legal 

configuration q* such that, if v is the seed, the resulting relaxed configuration is q 

(cf. Proposition 4.11, where our proof is less transparent). We will also show that if 

the chips are in a configuration q*, it is impossible to choose two different nodes as 

the seed and result in the same configuration q. Thus, we will show that there are at 

least n configurations on which a particular choice of seed will result in the 

configuration q.

Thanks to the deterministic nature of chip-firing games (see 

Proposition 2.1), it is easy to see that for any given configuration q*, there are at 

most n configurations that can result from adding a chip to a node. Every chip-firing 

game m ust relax to just one configuration, and since there are n nodes to choose as 

the seed, there are at most n possible outcomes.
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These bounds together imply that for each configuration q there are 

exactly n configurations q* that relax to q. Since each node is equally likely to be 

chosen as a seed, we will be able to use a key property of Markov chains with 

doubly-stochastic transition matrices to complete our argument.

Proof of Theorem 5.1. Let q be a legal configuration on K„ and v e K n. We seek a 

legal configuration q* such that, if q* is seeded at v, the resulting relaxed 

configuration is q. We consider two cases. Before jumping in, let us note that if 

q(v) = 0 , then Proposition 3.1 implies that we cannot have q(u) = 0 . Thus, any 

configuration with q(v) = 0 will be addressed in Case 2.

Case 1. There exists u * v such that q(u) = q(v) > 1 .

Suppose that q(u) = q(y) = j. In this case, it suffices to take q* as the 

configuration agreeing with q except for one fewer chip on v. Since q is legal,

Proposition 3.1 shows that at most j  +1 nodes contain j  or fewer chips. But

q(u) = q(v) = j  implies that at most j  - I  nodes contain j  -  1 or fewer chips. When a 

chip is removed from v to obtain q*, at most j  nodes will contain j  -  1 or fewer chips. 

Thus, q* is a legal configuration; clearly, q* relaxes to q (after zero steps).

Case 2. No other node contains the same num ber of chips as does v.

Denote the num ber of chips on the nodes of K„ w ith a vector as follows:
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q = (xn-i,x n-2 , . . . , x M ,x i,x i- i , . . . , x 2,x u xo),

where x„_i > x„_2 > ••• > xi > x0 (we shall refer to this as the canonical order on q), 

and Xi is the num ber of chips on v. Later, it will be useful to rewrite these 

inequalities as: x  > x^+ i)  for 0  < k < i, and jc for 1 < j < n - i .

Since q is legal, at most i nodes contain i - 1  or fewer chips. In addition, q 

is written in canonical order, so x, > i. If x, > i, then we may reduce the number of 

chips on v by one to create q*, a configuration in which at most i nodes contain / - 1  

or fewer chips. Therefore, it remains only to consider those cases where x, =

Since q is legal, we know that x,_t  > i - k ,  for 0  < k < i, and that 

*n-j > n - j ,  for 1 < j < n - i .  We therefore know that x,_i = / - 1 ,  because 

i = Xi > x ^i > i  — l, and v is the only node containing x, chips. Since all legal 

configurations have at least one critical node, and q is written in canonical order, we 

also have x„_i -  n -  1, the common degree in K„. For later reference, we restate and 

label these findings.

x, = i. (5.2)

Xj-1 = / '-  1. (5.3)

Xj-k > i -  k, for 0 < k < i. (5.4)

X„_i = H- l . (5.5)

x»-j > n - j ,  for 1 < j < n - i . (5.6)

xt-k > */-(*+1) for 0 < k < i. (5.7)

x„-j > x„-(j+j) for 1 < j < n -  i. (5.8)
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The configuration q* that we claim relaxes to q when seeded at v is

  /v* v* v* v* v* v* v* \q ... >x 0ix n-\’An-2> ••• >•*«-(«-(/+!))/'

where

x* = w - 1,

x*.* = x,-_fc -  x, + n for 1 < k < i, (5.9)

**_, = x n- j  -  (x, + 1) for 1 < j < n -  (i + 1 ).

Example 5.2 Consider K 6, and q = (5,4,4 ,2 ,1 , 0 ). Suppose we pick the node 

containing 2 chips as our special node v. Note that x, = 2 = i, and that v is the only 

node containing this many chips—these two qualities fit the requirements of Case 2.

According to the definition of q*, we have q* = (5,5,4,2,1,1). Since 

x* -  5, if we add a chip to v, then we obtain the following firing sequence:

(6 ,5,4,2,1,1)
(0 , 6 ,5 ,3 ,2 , 2 )
(1, 0 , 6 ,4,3,3)
(2,1,0,5,4,4).

If re-written in canonical order, the final configuration is q.

Following our outline, to complete the proof of Theorem 5.1, we will first 

establish four facts about q*:
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(a) q* is in canonical order;

(b) q* is a legal configuration;

(c) if v is seeded in q*, then q* will relax to q;

(d) starting from q*, it is not possible to seed a node other than v and relax to q.

(a) q* is in canonical order.

The configuration q* is in canonical order if its entries are nonincreasing. 

To demonstrate this, we observe that the entries x*,x*_i , . . . ,X2,x*,XQ are 

nonincreasing. First note that

= Xi-\  - X j  +  n  

= (i -  1 ) -  i + n  

= n  - 1,

so that x* = n  - 1 = . Now for 0 < k  < i,

x*_k =Xi-k - X i + n

> *,_(*+!) - X i  + n
Y* %~ •*/-(£+1)'

where the inequality holds by (5.7). Observe that x% > because
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Xg =  x o  - X i + n

> n - X j
= n - i  

> n - i - 2  

= ( « - l ) - ( i  + l)
=  X n- \  -  ( X j  +  1 )

wmm V* ̂
“  x n - 1-

Finally, we show that the entries x*_u x*_2, ... ,x * _ ^ j+1)-) are nonincreasing. 

For 1 < j  < n -  (z + 1),

K-j = X n- j - ( X i  + 1)

>  X „-(/+l)  -  ( X j  +  1 )

_  v*

where the inequality holds by (5.8). Thus, q* is in canonical order. ■

(b) q* is a legal configuration.

If a configuration r = (rn- i ,r n-2, ... ,ry,ry_i,ry_2, ... ,r 2,r \ ,r f )  is in canonical 

order, and for all 0  < 7  < « -  1, only the entries rh \ , r y i , . . .  ,r%,r\,r^ are j  -  1 or less, 

then at most j  entries of r are j  - I  or less, so r is legal (by Proposition 3.1). In other 

words, if r is in canonical order and rj > j  for all 0 < j  < n -  1, then r is legal. We 

have established in part (a) that q* is in canonical order, so here we show that q* > j  

for all such j.

We begin by noting that x* = n - 1 , so that q*^ > n - 1 . We tu rn  our
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attention to the terms that follow x*. First, for 0 < k < i, note that q*n_{k+l) = x*_k and 

that

x*_k = xi-k -X i + n 
> i - k - i + n  
= n - k  
> n -  (k+ 1),

where the first inequality holds by (5.2) and (5.4). Second, for 1 < j < n -  (i + 1), note 

that qj—i = K -(n-a+j)) and that

X n-(n-(i+j)) =  X n-(n-(i+j)) ~  ix i +  1 )
= X i+j - X i  -  1

> i + j -  i -  1 

= 7 - 1 ,

where the inequality holds by (5.2) and (5.6). Since q* is in canonical order and each 

of its entries is sufficiently large, q* is legal. ■

(c) I f  q* is seeded at v, then the resulting relaxed configuration is q.

Recall that q*_v = x*, the num ber of chips on v in the configuration q*. 

Since x* = n -  1 (by (5.9)), then v will fire when q* is seeded at v. We proceed to 

show that this causes all of the nodes represented in the next i entries of q* also to 

fire but none of the remaining n -  (i + 1) nodes.

For convenience, we will refer to the nodes of K n by their corresponding 

positions in q*, so, e.g., the node starting w ith x* chips will be called node (n -  1 )
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and the node starting with chips will be called node 0. Note that for

k = 0 , 1 , . . . , / ,  there are x*_k chips on the node n - ( k +  1).

We demonstrate now that the node n -  k, for 2  < k < i + 1, will fire if all 

nodes n -  a, for a = 1,2, ...,& -1 , have fired. The node n - k begins with chips,

and, using the estimates from part (b) above, we h a v e > n - k .  Thus, after the 

nodes n - a ,  for a = 1 , . . . ,k -  1, have fired and thus added k — 1 chips to the node 

n - k ,  the num ber of chips on this node will exceed ( n - k ) +  ( k - \ )  = n - \ .  

Therefore, the node n - k  indeed fires.

We show now that none of the nodes n - a, for a  = i + 2,i + 3 ,... ,n, will 

fire. We need only check the status of the node « - ( / ' + 2), because q* is in canonical 

order, implying that the node n - ( i  + 2 ) contains at least as m any chips as any of the 

nodes n - a  for which a = i + 3 , . . . ,n. The num ber of chips on the node n - ( i  + 2 ) is 

x*_x = x„-\ -  (x, + 1) = (n -  1) -  (/' + 1) - n - i -  2. By the argum ent above, all nodes 

earlier than the node « - ( / ' + 2) in the canonical ordering have fired. There are i + 1 

such nodes, so /' + 1 chips are added to the node containing x*_x = n - i - 2 chips in 

q*. The new num ber of chips on the node « - ( / ' +2), then, is 

(n -  i -  2) + (i + 1) = n -  1, so that node does not fire.

Finally, we argue that q* relaxes to q. First, consider the nodes that do 

fire, namely, the nodes containing x*_k chips (where k -  0 ,1 ,...,/). Recall from (5.9) 

that x*_k = Xt-k -  x t + «, and note that i + 1 nodes fire during the course of the game,
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including the node in question. When a node fires, it loses n chips, so the new 

number of chips on a node that begins w ith x*_k chips is 

x*_k + i - n  -  Xi-k - xt + n + i -  n = x,_*, sincex,- = i (by (5.2)).

Now consider the nodes that do not fire, namely, the nodes with x*_;- 

chips on them (where j  = 1 ,2 ,. . . ,« -  (i + 1)). Since x*_j = x„_; -  (x, + 1 ), and i + 1 

nodes fire (adding one chip each to every other node), the new num ber of chips on a 

node that begins w ith x*_j chips is x*_,- + (/' + 1) = x„_,- -  (x, + 1) + (/ + 1) = x„_;, again 

using (5.2). Thus, we see that for both sets of nodes, the corresponding entries of q* 

are transformed to those of q by the firing sequence. ■

(d) Starting from q*, it is not possible to seed at a node u * v and relax to q.

We show that if we start with the configuration q* and seed a firing 

sequence at a node u * v, the resulting configuration cannot be identical to q.

One of two outcomes can occur: (1) neither u nor v fires if a chip is added,

or (2) one or both fire if a chip is added. In the first case, the conclusion clearly

follows: adding a chip to u increases the num ber of chips on u by one, but does not 

change the num ber of chips on v, while adding a chip to v has the opposite effect.

As we turn  to the second case, we recall Lemma 4.8 which implies that a 

burn-off game started in a relaxed configuration may take at most n turns. (To 

establish that such a game may take exactly n turns, consider K„ w ith every node
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containing n -  1 chips.) Note also that if a node x  fires once during the course of a 

game of length g, then the number of chips on x  increases by g -  1 (or g, if x  is the 

seed) and decreases by n (one chip moves to each neighbor, and one burns off). On 

the other hand, if x does not fire during the course of such a game, then the number 

of chips on x increases by g. Thus, if u is the seed, and it fires once, the number of 

chips on u increases by g  and decreases by n.

Now we consider case (2): let u be the node that fires if a chip is added to 

it and v be the node that may or may not fire. We examine these two possibilities in 

turn. Suppose that v contains fewer than n - 1 chips, so that if it were chosen as the 

seed, it would not fire—in this case, the num ber of chips on u would remain 

constant. If u is the seed, it will fire and lose all of its chips. For u to regain its n -  1 

chips, g  would have to be equal n (by Lemma 4.8, g  cannot exceed n). But if g = n, 

then the num ber of chips on v increases by g - 1  = n -  1 and decreases by n, 

resulting in the loss of one chip from v.

Suppose instead that v contains n -  1 chips, so that if it were chosen as the 

seed, it would fire, and the num ber of chips on it would increase by g  and decrease 

by n. In this case, were u to be the seed, v would fire as well, which would increase 

the number of chips on v by g -  1 and decrease it by n. In these cases, the resulting 

numbers of chips on v differ, so the final configurations cannot be the same. ■
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Combining the results (a) through (d) with the remarks in the outline of 

this proof (p. 1 0 0 ), we have now established that for every relaxed configuration q, 

there are exactly n relaxed configurations that, when seeded, will relax to q.

Consider the bum-off chip-firing game as a Markov chain, where the 

states are the relaxed legal configurations, and the transitions are determined by the 

configurations that result when a node is seeded. Let D  be the digraph representing 

this Markov chain. If is the set of relaxed legal configurations, then

n l&l -  XindegsCC) = 2>utdegz>(C) < n (5.10)
Ce<R. CeSJ,

The first inequality follows from the conclusions just reached, and the second is 

justified in the outline of the proof (p. 100). In a bum-off game, the seed is chosen at 

random, so the transition probabilities are all 1 In. Since by (5.10) we have 

indegc(C) = outdegc(C) = n for all C the transition matrix for this Markov 

chain is doubly stochastic. It follows (see, e.g., [10]) that the entries of the stationary 

distribution are all equal. In other words, we have shown that all relaxed legal 

configurations on K n are equally likely. We saw earlier that the num ber of legal 

configurations on K n is (n + l)"-1. Therefore, the stationary probability of a bum-off 

game relaxing to configuration q is ®
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5.3 The probabilities associated with varying game lengths

In this section, we consider the conditional probability that, during a 

burn-off chip-firing game on K„, a firing sequence will be of a particular length 

g > 0, given that the game is in a particular legal configuration q. In other words, 

we investigate

Pm  = Pr{X = g  | q is seeded},

for a nonnegative integer g  and q e . Recall this is the conditional probability 

appearing in Section 5.1.

Recall that a node in a relaxed configuration is critical if it contains as 

many chips as its degree, that is, if the node will fire with the addition of a single 

chip. Call a node unstable if it will fire only when a critical node is chosen as the 

seed. Finally, call a node a dud if it cannot fire during any game that is played on its 

configuration. Either a node will fire when seeded (so is critical) or will not (so is 

unstable or a dud). But an unstable node will fire when a critical node is seeded, 

whereas a dud will not. Since each node m ust be one of these three types, the nodes 

are partitioned into critical nodes, unstable nodes, and duds.

Example 5.3 Consider the configuration q -  (6 , 6 ,5 ,4 ,1 , 1 , 0 ) on K 7. This 

configuration has two critical nodes, each containing 6  chips. Either of these nodes 

will fire if chosen as the seed. The configuration has two unstable nodes that contain
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5 and 4 chips. If either of these is seeded, it will not fire; however, if one of the 

critical nodes is seeded, both of the critical nodes will fire, and both will contribute 

one chip to- the node containing 5 chips, allowing that node to fire. Now, with the 

addition of the three chips provided by these three firings, the node containing 4 

chips will fire as well. Since none of the remaining three nodes will collect enough 

chips to fire, these nodes are duds.

Given a configuration q, let c denote the num ber of critical nodes and u 

the num ber of unstable nodes. Notice that there are only two possible game lengths 

that can result when a random  node is seeded: either the node will not fire, 

resulting in a game of length zero; or the node will fire, resulting in a game of length 

c + u, by Lemma 4.8. For this reason, we will profit from counting the configurations 

that have c critical nodes and u unstable nodes, for fixed nonnegative integers c 

and u.

We handle the case c = 1 separately after considering the case c >2.

Proposition 5.4 For all integers 2 < c < n , 0 < u < n - c ,  and d  = n -  (c + u), the 

number of configurations on K„ with c critical nodes, u unstable nodes, and d  duds is

3. (5.11)
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Proof. Let Q be the set of configurations that satisfy the conditions of our 

proposition. We shall work toward determining the size of Q by first examining all 

possible chip placements on the duds.

If a critical node of q e Q is chosen as the seed, then all c + u critical and 

unstable nodes will fire, contributing c + u chips to each dud. Therefore, each dud 

contains at most n - ( c  + u) -  1 -  d - I  chips, for otherwise the added chips will 

cause it to fire. Since there are ( ” )  ways to choose which of the n nodes will be 

duds, and Ld,d-1 ways to place chips on these duds, the first two factors in (5.11) 

account for the chip placement on the duds.

Now we shall account for the num ber of ways we m ay place chips on the 

u unstable nodes of q. Since nodes containing n -  1 chips are critical, unstable nodes 

contain at most n - 2  chips. The greatest num ber of chips that may be added during 

a game to an unstable node is c + (u -  1 ), which implies that the smallest num ber of 

chips that an unstable node may contain at the outset is n -  (c + (w - 1 )) = d +  1 . 

Thus, unstable nodes contain between d + 1 and n - 2  chips.

Within the set of u unstable nodes, there is one that contains the fewest 

chips, and it may contain anywhere from d  + 1 to n -  2 chips. If two unstable nodes v 

and w both contain d + l  chips, then there would be at m ost c + ( u -  2 ) other nodes 

that could fire and add chips to v and w. These additional chips would increase the 

number of chips on v and w to at most
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(d + 1) +  c + (u -  2) = c + d  + u -  1 = n - l ,  

which is not enough for either of them to fire. Thus, both v and w would be duds, a 

contradiction. Therefore, if the unstable node containing the fewest chips contains 

d  + 1 chips, then the unstable node containing the next-to-fewest chips m ust contain 

between d  + 2  and n - 2  chips.

By a similar argument, we see that the node containing the kth fewest 

chips (for k = 1 , 2 , . . . ,  u) among the unstable nodes m ust contain at least d  + k and at 

most n - 2  chips. (Note that d  + u < n - 2  because we are considering the case where 

c > 2.)

Consider the vector (xi,x2, ... ,x„), where Xk is the num ber of chips on the 

unstable node containing the k ,h fewest chips. We have just seen that 

d  + k < x j c < n - 2 .  Subtracting d  +1 yields k - l < X k - ( d + l ) < n - d - 3 ,  for 

k = 1 , 2 Since Xk > d  + 1, we see that counting the num ber of ways to distribute 

chips onto the unstable nodes is equivalent to counting the num ber of legal 

configurations on u nodes where each node can have at most n - d - 3  chips (cf. 

characterization (3) of Proposition 3.1). By the definition of L„>m (preceding 

Theorem 3.3), we have Lu,„-d-z ways to distribute the chips. Since there are ( n~d ) 

ways to choose which of the n - d  non-duds will be unstable and L u,„-d-3 ways to 

place chips on these unstable nodes, the second two factors in (5.11) account for the 

chip placement on the unstable nodes.
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Once we have placed chips on all duds and unstable nodes, it remains 

only to place chips on the critical nodes. Since all critical nodes m ust contain n -  1 

chips, and we have no choice as to which nodes will be critical (with the unstable 

nodes and duds already decided), the placement of these remaining chips is 

uniquely determined. Thus, for c > 2, the total number of legal configurations on Kn 

with c critical nodes, u unstable nodes, and d  duds is

( nd ) L M. t ( « - d ) L ^ 3. ■

We shall find it convenient to simplify the expression (5.11). The next 

result is an easy consequence of Theorem 3.3.

Corollary 5.5 With the parameters as in Proposition 5.4, the number of relaxed legal 

configurations on K n is

( « ) ( d + l ) d-1 ( « - rf) ( c - l ) ( n - d - l ) “-1. ■

Since the expression in Corollary 5.5 equals zero when c = 1, it does not apply in 

this case. We therefore turn  to the case c = 1 now.

Proposition 5.6 The number of relaxed legal configurations on K n with one critical node 

is nn~l .
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Proof. A relaxed legal configuration with just one critical node cannot have any 

unstable nodes since, when the critical node fires, it gives just one chip to each other 

node, which is not sufficient to fire any of the non-critical nodes. Thus, in the proof 

of Proposition 5.4, once we count the num ber of ways to distribute the chips on the 

duds, the remaining choice for the critical node is determined. We find that the 

number of relaxed legal configurations on K„ w ith c -  1 critical node and d = n -  1 

duds is

In our investigation of Pm  = Pr{X = g  | legal configuration is q}, we may 

now group together all configurations q that have c > 2  critical nodes, u unstable 

nodes, and d  duds. Each of these has probability of having a game of length 

g > c, since one of the c critical nodes m ust be chosen in order for this to occur. 

Thus,

E = E (; V +  n‘w (" u d Y ‘ - D(»- d - 1)"" (£)■ <5-12)
q:c>2 c=2 K U  '  x '

The sum stops at g  because we cannot have more than g  critical nodes w ithout 

having a game length longer than g, should a critical node be chosen as the seed.

Note that if a critical node is chosen as the seed, then c + u = g  (by 

Lemma 4.8). Now (5.12) m ay be simplified to a form involving only n, g, and c\
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T , q -,>2P M  =  EL («-g)(«-^+1)""g'1(g-c)(C- 1X«-(«-^-1)g~C“1(f) 
= n { ng y n - 8 + E  (  f  )c (c  -  l)(g -  l ) ^ - 1 •

The summation in this last expression may be simplified further.

g
Lemma 5.7 For g  > 2, we have ^  ( f ) c ( c - l ) ( g  -  l ) g-c_1 = gg_1.

c=2

Proof. The lefthand side is

g-c - 1

c=2 c=2

Sg
=  ctV'' _________ ( g ~ _2)!__________/- 1 N(g-2)—(c-2)

8 ^ ( c ~ 2 ) \ { { g - 2 ) - { c - 2 ) ) \ Kg V)

-2 )-c
V c J

c=0

= gO + ( g ~ l ) ) g”2-

Applying Lemma 5.7 to (5.13) yields

E P^  = ^ ( g ) ( « - ^ + i )”"g" V _1 = (5.i4)
q:c>2 ^ '

Note that this expression does not depend on q.

A necessary condition for having a game length g  at least two is that
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c > 2 . Thus, it follows from (5.1), (5.14), and Theorem 5.1 that for g  > 2 , we have

\ n - g - l a g -2
P . 1 =  I n ~  * I v * 6  1

8,q (n 4- n « - i  \  P - ' \  J r i .4 . 1
g-.c>2

Proposition 5.6 and Theorem 5.1 together imply that

Pr{X = 1} = — nH~l , = -  n r 2 . (5 . i6)
n(n + 1)" 1 (in + I ) " -1

Conveniently, (5.16) agrees w ith (5.15) with g =  1; the remark following 

Corollary 5.5 necessitated the separate handling of this case here. We delay 

discussion of the remaining case g  = 0  until Section 5.4, where we will employ the 

methods of Chapter 3.

At this point, we may use our analytical results to see if a sequence of 

bum-off games on a complete graph exhibit one of the main properties of a system 

in a state of SOC: namely, that the frequency of games and their lengths have a 

power law relationship (as discussed on p. 10). We show now that the relationship 

is in fact vertically symmetric and thus does not follow any power law.

Proposition 5.8 For 1 < g < n ,  we have Pr{X = g} = Pr{X = n - g + 1 } .

Proof. Using (5.15), we have
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Y r { X = n - g  + \ }  = (
f n - \ \ ( n - ( n - g  + l) + l)"-(»-g+D-i (n - g +  l)"-«+1-

n ~ g )  (« + 1 ) ”" 1

- t e i )
= J>r{X=g}.

g8 2( n - g +  l ) ”~g 1

(n + 1) n-1

We can thus conclude that a bum-off chip-firing game on a complete 

graph will not possess one of the key features of a system that exhibits SOC. That is, 

we do not find a power law relationship (as discussed in Section 1.4) between the 

size (i.e. game length) and frequency (i.e. probability) of events in the system. A 

complete graph features total communication among its nodes during a chip-firing 

game. In other words, any event triggered by one node will affect every other node. 

Systems that feature SOC generally do not communicate so thoroughly. It is typical 

(see, e.g., [3] and [7]) for SOC models to represent the individuals in a system as 

nodes with low degree on a large graph.

5.4 Establishing these results using the methods of Chapter 3

In this section, we show how our results from Chapter 3 verify our 

results for complete graphs established in the present chapter.

First we recover the formula L n>n-i = («  + l ) " -1 (see p. 40) using 

Theorem 4.1 for enumerating the legal configurations on a general connected graph. 

For K„, the special node x  in Theorem 4.1 makes G* = K„+1. Thus, Theorem 3.5 is
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really a corollary of Theorem 4.1, and we have = %(Kn+\) -  (w + 1) " -1 by 

Cayley's Formula (see, e.g., [19]).

We now enumerate the games of length zero on K„ using Proposition 4.7. 

Recall that for each node v, we remove the edge {x, v} from G* and enumerate the 

spanning trees of the resulting graph. We use the Matrix Tree Theorem (see, e.g., 

[19]) to count the spanning trees. We reduce the Laplacian matrix of G* by 

eliminating the row and column associated w ith v, resulting in the n x n matrix

A =

n - 1  - 1  

- 1  n - 1  

- 1  - 1  n

-1 -1 -1 
- 1  - 1  - 1

-1 -1

-1 -1

n - 1  

• • - 1  n - 1

To enumerate the spanning trees of G*, we find det(A). Denoting the rows of A by 

(ry)jLi and performing the elementary row operations rj  —y r\, followed by 

r\ + rj —* rj (for j  = 2 ,.. .,«), we find the determinant to be (« - 1 )(« + 1)"-2. There are 

n nodes, so the num ber of pairs (q, v) w ith q e tf(,and v e V  that result in a game of 

length zero w hen v is the seed is n(n -  1)(« + l)"-2. Given q, a node v is selected as 

the seed with probability 1 In. By Theorem 5.1, each legal configuration on K n occurs 

with probability 1 /(« + 1)”-1. Thus, conditioning on the choice of (q,v) w ith q e 

and seed v we find that
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Pr{X= 0} = '£ ? r { X =  0 | (q,v)} Pr{v\q}?x{q}

= n(n -  !)(« + l)"_2 (l/n)(l/(w + I)”-1)

-  - ^ j - .  (5.17)n + 1 v ’

As a check on our work, we pause to show that the probabilities in (5.15), (5.16), and 

(5.17) sum  to one.

Proposition 5.9 For each positive integer n, we have

n + 1 (n + 1)" 1 —  n(n + 1)

Proof. We first manipulate (5.18) into a form that is amenable to a combinatorial 

proof. Multiplying both sides of the equation by n(n + I)”-1, we see that it will be 

equivalent to establish

n

(n -  1 )n(n + l ) " -2  + « ”-1 + ^ ^(n  -  g + l ) ”-s-,gs-i = «(« + I )”-1.
g= 2

As noted following equation (5.16), the second term may be absorbed into the sum. 

Collecting together the remaining terms external to the sum, we see that (5.18) is 

equivalent to

n
= 2n(n + I )”-2. (5.19)

g= i

Finally, using the identity (  ” )  = (  ” g * )  we reduce (5.19) to
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2  ( ™ g 1 ) g8 2(-n +1 ~ g n̂ 18g(n +1 ~ g  ̂ = 2n(jl + 1- (5-2°)
«=1

To see that (5.20) holds, first observe that the right side enumerates the 

pairs (T,~e), where T  is a spanning tree of Kn+i for which one edge e (of its n edges) 

has been distinguished and oriented (in one of the two possible directions). The left 

side also enumerates these pairs. Given (T,e), notice that deleting the oriented edge 

e from T leaves behind a spanning forest of Kn+l w ith two components L, R (that we 

may consider ordered from left to right). If \V(L) \ = g, for an integer g  w ith 1 < g  < n, 

then |F(f?)| = n +1 - g .  Conversely, given such a spanning forest, we can recover 

(T,e) by selecting a node x  of L and a node y  of R  and letting e = (x,y). On the left 

side of (5.20), the factor (  n g  ̂ )  accounts for the selection of V(L) (hence for the 

selection of F(R)). Since L, R are, respectively, spanning trees of the induced 

(complete) subgraphs Kn+l[V(L)], K n+i[V(R)], the factors gg~2 and (« + 1 - g ) n~l~g are 

delivered by Cayley's Formula. Finally, the factors g, (n + 1 -  g) count the num ber of 

ways to select the vertices x e V(L) and y  e V(R) determining e. ■

Finally, we recapture the general formula (5.15), nam ely that for g  > 2 , 

P r f v - ^  -  ( n -  l M " ~ g +  \ y - g-vgg-2^ { x - gy (w + i r l  •

We appeal to Theorem 4.9. For each v in K nr we find all subtrees having g  nodes that
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include v. There are ways to choose the g - 1  nodes u ± v for these

subtrees; each choice results in a complete subgraph Kg of K n, for which there are 

gg~2 spanning trees (by Cayley's Formula). Now we delete each subtree in turn, 

counting the num ber of legal configurations on the resulting graph. When Kg is 

deleted from K„, the graph Kn-g remains. By Theorem 4.1 (or Theorem 3.5), the 

number of legal configurations on Kn~g is ( n - g  + I)"-*"1. Thus, Theorem 4.9 yields

(  g ~ 1 ^ S 8~2(n ~ g  + l ) n~g~l as the number of ways to have a game of length g  > 2  on 

K„. Since each legal configuration is equally probable by Theorem 5.1, we see that

and have thus re-derived (5.15).

In Chapter 3, we investigated bum-off games on complete graphs with a 

direct approach. Our methods of Chapter 4 were more general. In the present 

chapter, we have re-established several important results from Chapter 3 using the 

methods of Chapter 4. We revisited the link between Cayley's Theorem and relaxed 

legal configurations, enum erated the pairs (q,v) e V leading to games of length 

zero, and confirmed the probability distribution of bum -off game lengths. Of final 

note is the fact that we were able to obtain an independent, combinatorial proof that 

these probabilities sum  to one. We conclude the dissertation w ith  a brief list of 

suggestions for further research.
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5.5 Further research

Early models of SOC allowed stresses to escape the system. In [3], 

earthquake stresses that reach the edge of the grid are considered to be lost. In [7], 

avalanches can spill sand out of the system as if it were falling from a table. To 

represent these models as chip-firing games, at least one node m ust have the 

capacity to hold an infinite number of chips. This leads to a natural question: can a 

chip-firing game w ith such a node be reconciled w ith the results in this dissertation 

concerning bum-off games?

Many modified chip-firing games have been studied, including games 

with mutating edges [8 ] and games played in parallel [5]. It w ould be interesting to 

determine whether our results extend to these situations as well.

Finally, Theorems 4.9 and 4.13 together provide us w ith a method for 

determining the probability distribution of the bum-off game length on a general 

connected graph. We do not, however, have a closed formula for this distribution as 

we do in Chapter 5 for complete graphs. Finding such a formula presents a 

tantalizing open problem.
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Appendix 1 

Glossaries

Glossary of notation

is a neighbor of 

t(G) the num ber of spanning trees of the graph G

indegiy) in a directed graph, the num ber of incoming arcs incident with

outdeg(v) in a directed graph, the num ber of outgoing arcs incident with
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Glossary of terminology

configuration

connected

critical

critical number 

deletion (edge) 

deletion (node) 

fire

independent

induced subgraph

language

legal

length of a game 

relax

on a graph G = (V,E), a distribution C : V -*■ N of chips on V 

describes a graph in which every pair of nodes is joined 

by a path

in a classical chip-firing game (e.g., [6 ]), describes a node that 

contains as many chips as its degree; in a bum-off game, 

describes a node that will fire if a chip is added to it 

in a chip-firing game, the least num ber of chips a node can 

contain for it to fire

the removal of a single edge from a graph, not including its 

ends

the removal of a single node, and all edges incident w ith it, 

from a graph

the process in a chip-firing game by which the chips on a node 

are redistributed

describes a set of nodes inducing a subgraph w ith an empty 

edge set

of a graph G = (V,E), w ith V  £  V, the subgraph H  = (V1 ,E') 

of G, where E' = {{x,y} e E  : x,y  e V'} 

a collection of words

describes a configuration that m ay result from relaxing a

supercritical configuration, or result from relaxing another

legal configuration that has been seeded

the num ber of nodes that fired during a chip-firing game,

during one iteration of a seed-to-relaxation sequence

the process in a chip-firing game that begins w ith seeding a

node and continues until no nodes can fire
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relaxed

seed

simple

supercritical

word

describes a configuration in which no node can currently fire 

as a noun, the node to which a chip is added to initiate 

a chip-firing game; as a verb, the process of adding a chip to 

such a node

describes a graph that has no loops or multiple edges 

describes a node that contains more than a critical num ber of 

chips, or describes a graph in which every node is supercritical 

the concatenation of labels that corresponds to the sequence 

of nodes that fire as a legal configuration relaxes to another 

legal configuration
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Appendix 2 

Smallbasic code

The following code, written in Smallbasic, was used to produce the 

results shown in Figure 1.2.

option base 1
dim gameLengths (0 to 4)
adjMatrix = [0,1,0,0/1,0,1,1;0,1,0,1;0,1,1,0] 
config = [0;0;0;0] 
cri tNumbers = [1;3;2;2] 
input "How many games";numGames 
for thisGame = 1 to numGames 

' Initialize
gameLength = 0 : canFire = true 
' Choose a node at random as seed 
seed = int(4 * rnd + 1)
' Add a chip to the seed
config(seed,1) = config(seed,1) + 1
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repeat
didFire = false 
for thisNode = 1 to 4

if config(thisNode,1) > critNumbers(thisNode,1) then 
gameLength = gameLength + 1 
tmpVector01 = [ 0;0;0;0] 
tmpVectorOl(thisNode,1) = 1 
tmpVector02 = adjMatrix * tmpVectorOl 
config(thisNode,1) = config(thisNode,1) - 

(critNumbers(thisNode,1) +1)
config = config + tmpVector02 
didFire = true 

endif 
next thisNode 

until didFire = false

gameLengths(gameLength) = gameLengths(gameLength) + 1

next thisGame 
print gameLengths
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The following code, written in Smallbasic, was used to produce the

results shown in Figure 1.3.

dim arrGrid(0 to 51,0 to 51) 
dim arrGameLengths(50)

' Initialize arrGrid 
for x = 1 to 50 

for y = 1 to 50
arrGrid(x,y) = int(4 * rnd + 1) 

next y 
next x

input "Number of games";conNumberGames

for ctrGameNumber = 1 to conNumberGames 
' select seed 
x = int(50 * rnd + 1) 
y = int(50 * rnd + 1)
' perturb seed
arrGrid(x,y) = arrGrid(x,y) + 1 
' see if any node can fire 
conGameLength = 0 
repeat

flgDidFire = false 
for i = 1 to 50 

for j = 1 to 50
if arrGrid(i,j) > 3 then 

flgDidFire = true
conGameLength = conGameLength + 1 
arrGrid(i,j) = arrGrid(i,j) - 4 
arrGrid(i-1,j) = arrGrid(i-1,j) + 1
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arrGrid(i+1,j) = arrGrid(i+l,j) + 1
arrGrid(i,j-1) = arrGrid(i,j-1) + 1
arrGrid(i,j+1) = arrGrid (i,j+l) + 1

endif 
next j 

next i
until flgDidFire = false 
' r e c o r d  t h e  g a m e  l e n g t h

' f i r s t ,  c o l l e c t  a l l  g a m e s  o f  l e n g t h  l o n g e r  t h a n  5 0  i n t o  

o n e  c a t e g o r y

if conGameLength > 50 then conGameLength = 50 
arrGameLengths(conGameLength) = 

arrGameLengths(conGameLength) + 1 
next ctrGameNumber

print arrGameLengths
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