
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2005

Investigations of a chip-firing game Investigations of a chip-firing game

David Perkins
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Perkins, David, "Investigations of a chip-firing game" (2005). Graduate Student Theses, Dissertations, &
Professional Papers. 9532.
https://scholarworks.umt.edu/etd/9532

This Dissertation is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F9532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/9532?utm_source=scholarworks.umt.edu%2Fetd%2F9532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this m aterial in its entirety,
provided that this material is used for scholarly purposes and is properly
cited in published works and reports.

:*Please check "Yes" or "No" and provide signature

Yes, I grant perm ission ^

No, I do not grant perm ission __________

Author's S ignature:_________________ P 'u l v n ' i

D ate: ^ f U (T o o ^ _ _ _ _ _ _ _ _ _

A ny copying for com m ercial purposes or financial gain m ay be undertaken
only w ith the author's explicit consent.

8/98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In v e s t ig a t io n s o f a C h ip -fir in g G a m e

by

David Perkins

B.A. H oughton College, 1988

M.S. South Dakota State University, 1996

presented in partial fulfillment of the requirem ents

for the degree of

Doctor of Philosophy

The University of M ontana

M ay 2005

A pproved by:

Chairperson

Dean, G raduate School

<£, |"7- 0 ‘S
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3175783

Copyright 2005 by

Perkins, David

All rights reserved.

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3175783

Copyright 2005 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Perkins, David Ph.D., May 2005 M athematical Sciences

Investigations of a Chip-firing Game

Chairperson: Professor M ark Kayl

We investigate a variation on a chip-firing game in w hich a node v m ay fire
only if it is possible to transfer a chip to each neighbor of v and discard a chip
from v. The discarded chip provides the variation, so w e call this kind of chip-
firing game a burn-off game. Chip-firing games have been used by physicists to
study a property of complex systems called self-organized criticality. The main
goal of this dissertation is to study burn-off games using strictly mathematical
methods.

The chip distributions that occur during a sequence of bum -off games are
called legal configurations. We characterize legal configurations, and then show
that each legal configuration is equally likely, in the long run, to arise during a
sequence of burn-off games played on any connected graph. In the case of
complete graphs, this allows us to find a closed form ula for the probability of
experiencing a burn-off game of any desired length. For connected graphs, we
describe a m ethod for calculating the same probabilities.

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta ble of C o n t e n t s

A bstract ii

A cknow ledgem ents iv

List of Figures v

C hapter 1 1
Introduction

C hapter 2 17
Prelim inary results

C hapter 3 34
Investigations on complete graphs

C hapter 4 52
Results for connected graphs

C hapter 5 98
Distribution of gam e length on a complete graph

A ppendices 125
Glossary of notation and terminology
Smallbasic code

References 132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A c k n o w l e d g e m e n t s

My sincere thanks go to the members of my committee: William Derrick,

Rudy Gideon, Jennifer McNulty, and Steven Sheriff. The longer I teach, the

more I value being part of an academic com m unity that stretches across this

country and around the world.

I am grateful to the adm inistration of H oughton College, whose president

and academic dean trusted me to finish this degree while I taught. H oughton

has also supported me financially during this endeavor.

My colleagues in the m ath departm ent at H oughton College deserve my

heartfelt thanks as well. They have encouraged m e at every step, and have

taken extra w ork onto themselves so that I could focus on this dissertation.

Finally, m y thanks to m y wife Anjuli and m y advisor M ark Kayll. Anjuli

travelled across the country, hung out by the Blackfoot River, rode bikes and

scooters, planned trips to Glacier, and d id m any other w onderful things w ith

me during the days I w orked on this docum ent. M ark agreed to rem ain my

advisor even w hen I sidestepped his advice and took the job at H oughton

College as m y dissertation w as getting u nder way. W orking on this docum ent

during the past six summ ers, sometimes long distance, w as difficult, and only

possible thanks to M ark's tireless efforts. W ithout the support of these two

people, I cannot im agine I w ould be w riting these w ords today. Thank you.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L ist o f F ig u res

Figure 1.1 4

Figure 1.2 9

Figure 1.3 11

Figure 1.4 12

Figure 2.1 23

Figure 2.2 25

Figure 2.3 29

Figure 3.1 38

Figure 3.2 48

Figure 3.3 49

Figure 3.4 50

Figure 3.5 50

Figure 4.1 67

Figure 4.2 6 8

Figure 4.3 69

Figure 4.4 70

Figure 4.5 82

Figure 4.6 96

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

1.1 Models

Over the past twenty years, physicists have modeled complex physical

systems with simple computer models that display some of the important

characteristics of their real-life counterparts. One example of such a complex system

is the earth's crust. Sudden transfers of energy within the earth's crust create

seismic events, such as earthquakes, that are felt on the surface. Most of these

events are brief and minor, while a few cause great damage.

On August 14, 2003, a power blackout affected over 50 million people in

Canada and the northeastern United States. In [17], Sara Robinson relates that

engineers who are studying the history of power blackouts consider the electrical

grid to be a complex system in which blackouts are events just like earthquakes are

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

events in the earth's crust. Other complex systems that have been modeled include

snowfields, traffic, and the human brain (see Section 1.4). All of these examples

qualify as systems in the sense that they are composed of many small interacting

parts. The earth's crust may be viewed as a collection of small platelets of earth that

press against each other and occasionally shift. The electrical grid is a web of

interacting wires and power stations. A snowfield, at its finest level, is a collection

of snowflakes that pu t weight on each other until a group of them slide downhill.

These systems are complex in that their behaviors, while predictable in

one sense, are entirely unpredictable in another. If we consider these systems from a

broad perspective, we can be fairly secure in our predictions about them. For

example, small earthquakes occur with great frequency, while large earthquakes are

uncommon. While geologists are able to make relatively accurate predictions about

when and where the next large earthquake will strike, they rely on macro-level

observations, like fault lines and historical data, to make their claims as opposed to

closely observing the tiny interacting chunks of earth. The system they study is far

too complex for such a micro-level analysis to be helpful; the same is true for power

blackouts and avalanches.

The models for these complex systems have one feature in common: they

simulate a network of individuals that, when stimulated, may interact w ith their

neighbors by distributing some sort of stress. In fact, all of the models mentioned

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

thus far are special cases of "chip-firing games", studied in a recent paper by

Bjomer et al. [6]. We turn now to a discussion of these games.

1.2 Chip-firing games

A chip-firing game takes place on a connected graph; all graphs in this

thesis are simple. We assume throughout this dissertation that the reader is familiar

with both basic graph theory, as introduced, e.g., in [19], and basic probability

theory, as introduced, e.g., in [10]. (A glossary of notation and terminology appears

in Appendix 1.) The nodes of the graph take the role of the individuals in the

network. Integer-valued stresses upon each individual are represented by chips

contained on the nodes. When a node fires, chips are moved to its neighbors in

accordance w ith a firing rule. A node cannot fire until the num ber of chips it

contains meets or exceeds a threshold, called the node's critical number.

A generalized chip-firing game that includes as special cases the models

discussed in Section 1.1 has three features:

(a) the game takes place on a connected graph;

(b) each node v has a critical num ber k v;

(c) if the num ber of chips on v is at least kvi then v can fire, sending

a chip to kv of its neighbors, according to some rule.

If no node is able to fire, we say that the game is relaxed. A node v containing exactly

kv chips is critical. If v contains more than k v chips, we say v is supercritical.

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.1. A chip-firing game

In Figure 1.1, the node numbers enumerate the chips resting on their

respective nodes. The game operates as follows: each node v has critical number

kv = deg(v); when a node fires, it sends one chip to each neighbor. The figure shows

a typical sequence of configurations under these stipulations. In each configuration,

the shaded node is the one about to fire, which leads to the next configuration.

Note that in the first configuration, all but the lower-left node may fire.

Bjorner et al. [6] showed that when more than one node m ay fire, the order in which

the nodes are fired does not affect either the num ber of firings until the game is

relaxed or the final configuration of the chips. Note also that the final configuration

would lead to a configuration identical to the initial one if the shaded node fired.

This suggests that this particular chip-firing game will be of infinite length.

Bjomer et al. proved that if the num ber of chips on a graph exceeds a certain value

(that depends on the num bers of nodes and edges in the graph), the chip-firing

game will indeed never terminate.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The chip-firing game studied in this dissertation is similar to that of [6],

with one small difference that will force all games to be of finite length. Before we

turn our attention to this new game, we formally define "chip-firing game" and a

few related terms.

1.3 D efinitions involving chip-firing games and bum -off games

Let G = (V,E) be a connected graph. For each node v, we place a

nonnegative num ber C(v) of chips on v. A particular distribution C : V -*• N of chips

on V is called a configuration. Any node v that contains at least as many chips as its

critical number kv—that is, C(v) > kv—m ay be fired) we call such a node v fire-able. A

node that fires sends a chip to each of its neighbors.

With these definitions in mind, we consider the following chip-firing

game: Begin with any configuration on G. If there exists a node that may be fired, we

fire it. This constitutes a turn of the game. As the turns of a game progress, we say

that the configuration is relaxing. If no node may be fired, the game ends; otherwise,

a new turn begins in which any fire-able node is fired. The length of the game is the

number of turns taken from the initial configuration until the game ends. If at the

start of the game no node may be fired, the game has length zero. If no node is able

to fire, we say that the configuration is relaxed. To play a new game, a chip is placed

on a randomly selected node. This node is called the seed. We also use seed as a verb

to refer to the process of making this selection.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

In most models, including the Bjomer et al. model [6], we take kv to be the

degree deg(v) of v. A theorem in [6] states that in such a chip-firing game, the nodes

may be fired in any allowable order, and

(a) the length of the game will not be affected;

(b) the final configuration will not be affected.

This theorem implies that if the graph contains more than one fire-able

node, the choice of which node to fire has no bearing on the length of the game or

the final configuration of the chips. The same paper [6] points out that some

chip-firing games may be of infinite length. For example, if the num ber of chips on

the graph exceeds twice the number of edges, then, by the pigeonhole principle, we

may always find at least one node that contains enough chips to fire. The paper also

establishes that if the number of chips on the graph is less than the num ber of

edges, then every chip-firing game is of finite length.

In our consideration of models for real-world phenomena, it is helpful to

study a slightly different chip-firing game in which all games are of finite length.

Our goal is to enumerate games of each possible length, and infinite games obstruct

this analysis. Further, since many models are linked to phenomena such as

earthquakes and avalanches that involve friction and kinetics, it is reasonable to

build into those models some recognition that the energy in the system may be lost

through escaping heat. Indeed, Kauffmann [12, pp. 71-92] argues that complex

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

systems spontaneously exhibit both order and complexity at the cost of

thermodynamic energy loss.

Therefore, we consider the following variation of the chip-firing game

above: a node v may only be fired when C(v) > deg(v) + 1, and when v is fired, one of

its chips is lost from the system. The chip that escapes at each firing models the loss

of energy from the system. We call such a game a burn-off game. Such a system is

referred to as "dissipative" by physicists, in contrast with "conservative" systems

like classical chip-firing games, that do not lose energy as they are processed. We

also note that critical takes on a new meaning in the context of bum-off games: a

critical node is one that will fire when a chip is added to it.

The study of modified chip-firing games is not uncommon. In [9],

Eriksson summarizes and extends the results of [6] by considering games on

directed graphs and games where the edges are weighted. In the latter case, the

values placed on the nodes are not limited to integers but allow any real numbers.

A node fires when its value is negative, and this value is added to the values on its

neighbors. Both modified games exhibit properties of the original described in [6],

although in some ways they differ drastically.

Eriksson continues to explore modified chip-firing games in [8], where he

considers graphs that m utate between games. After a node fires, the edges incident

with the node may be erased and then new edges may be added. The mutations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

occur in a predetermined order; this order may or may not have a finite period. As

in the other papers mentioned so far, close attention is given to discovering the

conditions under which the games are finite or infinite.

The variant studied by Biggs in [4] includes a vertex that can always fire,

but will only do so if no other node in the graph can fire. Biggs confirms the results

in [6] for his variant and demonstrates that the set of "stable", "recurrent"

configurations of a graph has the structure of an abelian group.

A final example of recent interest in this topic is [5]. Bitar and Goles

consider the periodic nature of chip-firing games in which all nodes that can fire are

fired simultaneously. These "parallel" chip-firing games are shown to simulate

logical functions, like OR and NOT, making chip-firing games of nontrivial interest

to computer scientists.

1.4 Self-organized criticality

Every firing in a bum-off game removes a chip from the system; clearly,

every bum-off game is of finite length. Later (see Lemma 4.8) we will see that the

length of a bum-off game is bounded from above by the num ber of nodes. For

example, bum-off games played on the graph in Figure 1.1 will be of lengths zero

through four. Figure 1.2 shows the results of 10,000 sim ulated bum-off games

played on the graph in Figure 1.1; the code, written in Smallbasic, appears in

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 2. The simulation proceeds as discussed in Section 1.3 (p. 5). Note that

longer games occur with lower frequency.

51 12

0 1 2 3 4
gam e length

Figure 1.2. Results of 10,000 bum-off games

Empirical results like these are common in papers that investigate simple

models of complex systems. In [7], for example, Dhar models a pile of sand by

assigning numerical values to cells in a lattice. Each value represents the steepness

of the sandpile in that region. Stresses are added at random until a cell's steepness

exceeds some threshold—at which point the sand slips. In the model, the simulated

stress is distributed to the cell's neighbors, and again the cells are checked for

instability. The simulated avalanche continues until all cells of the grid have

steepnesses w ithin the threshold, at which point the num ber of cells that slipped

during the avalanche is recorded. This process continues through many

computer-driven iterations, and when the data is compiled, it compares favorably

with measurements taken from real sandpiles.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Complex systems like this sandpile model potentially possess what is

called self-organized criticality (hereafter abbreviated SOC). The important features of

SOC are listed in [1], a nontechnical introduction to the subject that appeared in

Scientific American. The primary characteristic of SOC is this: the system, although

complex, displays predictable behavior when viewed at a macroscopic level. Such

systems are simulated using computer software that collects data relating the size

and frequency of events. In a sandpile model, the events are avalanches (as

measured by the num ber of sand particles that slipped during the event), and they

can occur every time a bit of sand is added to the system. In a bum-off game, the

events are games (as measured by the num ber of cells that fire), and they can occur

every time a chip is added to a cell.

In some systems, the relationship between the size and frequency of

events in the system follows a power law, that is, if S is the size of an event, and Fs is

the frequency of events of size S, then Fs « Cys for some real constants C and 7 . A

power law relationship is a hallmark of a system that is in a self-organized critical

state; on page 1 of [11], for example, the author states, "Although the dynamical

response of the systems is complex, the simplifying aspect is that the statistical

properties are described by simple power laws." The results in Figure 1.2 suggest

this relationship for some 7 < 1. We estimate 7 using regression after considering an

earthquake model due to Bak and Tang [3].

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Their simple model works on a 50 x 50 lattice. The neighbors of each cell

are defined to be those horizontally and vertically adjacent. A cell fires if its value is

at least four, increasing the value of each neighbor by one while itself decreasing in

value by four. Cells on the edge of the lattice operate as if an invisible border of cells

surrounds the lattice: if a cell on the edge fires, one stress (or two stresses, in the

case of comer cells) is (are) lost from the system. Figure 1.3 shows the results of

10,000 such games simulated with a Smallbasic program (the code appears in

Appendix 2).

1 to 5 6 to 10 11 to 15 16 to 20 21 to 25 26 to 30 31 to 35

game length

Figure 1.3. Results of 10,000 Bak games

Before the first game, every cell in the lattice receives between one and

four stresses with uniform probability. In Section 2.3, we discuss an alternative

method of initializing a game. Note that results for games of length zero and of

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

length greater than 35 are omitted, and that the results are compressed into groups

of five; both of these decisions were made simply to neaten the presentation. The

lefthand bar in each pair shows the results from the simulation, while the righthand

bar depicts the standard (least squares) exponential regression. For this data, the

regression gives C = 7.834 and y = 0.924, so Fs ~ 7.834(0.924)5. The results in [3]

exhibit the same behavior. The agreement between the simulated data and the

regression is at best marginally satisfying. Applying the same analysis to the data in

Figure 1.2, we find that C - 39 and y = 0.622, so Fs « 39(0.622)5 (see Figure 1.4).

The results in this dissertation provide a way to predict the simulated data

mathematically, and Figure 4.6 (p. 96) demonstrates the close agreement we can

find using our methods.

60

50

5T 40

51.12

39.00

c 30

979 940 714 510.07

m
gam e length

Figure 1.4. Results of 10,000 bum-off games, revisited

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since SOC was originally identified [3], its possible links with real-world

phenomena have been widely explored. While earthquakes [3] and sandpile

avalanches [7] are the events most commonly connected with SOC, investigation

has also proceeded along less obvious lines. Nagel and Paczuski [15] created a

simple traffic model and studied its self-organized critical behavior, using traffic

jams as the "events" in their model. The model considers a single lane of traffic in

which all cars move at or below the maximum allowable speed, responding to the

car ahead according to preset rules of acceleration and deceleration. The model then

introduces a small random element that interferes with the deterministic motion of

the cars. Resultant traffic jams are noted, and the system is allowed to relax into its

original deterministic state. The authors show that the frequency of the jams has a

power law relationship with the size of the jams.

Stassinopolous and Bak [18] turned their attention to the hum an brain,

modeling the brain as a graph in which neurons are nodes and their connections are

edges. Each neuron possesses a firing threshold: when its neighbors fire, they add a

charge to the neuron; if the charge exceeds the threshold, the neuron fires. An

"event" in this model is a thought—if the proper neurons fire, the thought is a

successful one, and the neurons that were involved in the thought are "rewarded"

by having their thresholds decreased.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Liu et al. [14] investigate the fractal nature of the sandpile model studied

in [3] when the model is allowed to relax from uniform initial conditions—in other

words, when every cell in the sandpile begins at the same slope. The authors

experiment with different boundary shapes (e.g., square, triangular) and different

initial conditions. Despite the uniformity of the initial configurations, the sand

exhibits behavior typical of systems in a SOC state.

As an example of how the theory of SOC has reached a non-mathematical

audience, we note a recent article (2002) in Atlantic Monthly [16] that investigates a

wide variety of systems demonstrating elements of SOC behavior, from persons of

different ethnic backgrounds tending to live in ethnic neighborhoods, to rival

religious groups with tendencies toward inter-group violence, to a possible

explanation for the disappearance of the Anasazi culture of the southwestern

United States in 1300 A.D.

1.5 SOC and burn-off games

As discussed in Section 1.4, a system that exhibits SOC should

demonstrate a power law relationship between the frequency and size of the events

in the system [1]. These systems can be modeled by chip-firing games, and the

particular kind of chip-firing game in question in this work has the bum-off feature

that not only more realistically models real-world phenomena, bu t also allows us to

investigate mathematically whether such chip-firing games exhibit SOC. Later, we

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

discover the closed formula (5.15) relating bum-off game length to frequency on

complete graphs; restricting the model to complete graphs, however, produces

analytic results that do not indicate the presence of SOC. Nevertheless, the model

exhibits interesting properties of its own, which are the focus of this dissertation.

Jensen [11] devotes a chapter to a discussion of computer models of SOC.

On p. 29, his list of features that characterize the models he studies are all

characteristics of bum-off games. These features are: "the dynamical variable or

field is updated in every time step according to some algorithm"; "the choice of the

updating algorithm is, to some degree, arbitrary"; and "the criteria for choosing the

relevant definitions are, for the most part, simplicity and intuition". A burn-off

game exemplifies these features. Of attempts to formalize the study of SOC, such

as [7], Jensen writes, "Despite their undeniable beauty, the exact solutions have one

drawback: the specific mathematics tends to be tailored to the details of the solved

model." In this dissertation, we find analytical results that apply to bum-off games

played on any connected graph; although these results are not closed formulas, they

are certainly not "tailored to the details" of the model. Our strictly mathematical

approach adds a level of rigor to a field typically centering more on empirical

results.

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6 Outline

In Chapter 2, we show that bum-off games possess an important feature

of other chip-firing games and discover an algorithm that helps determine all

configurations of chips that can occur during a sequence of bum-off games on a

connected graph. These results are crucial in subsequent chapters.

In Chapter 3, we investigate complete graphs and find a relationship

between chip configurations that arise during bum-off games and spanning trees of

related graphs. As an aside, we demonstrate how this result produces a new proof

of Cayley's Theorem for enumerating the spanning trees of a complete graph.

Before we use the results of Chapter 3 to find a closed formula relating

bum-off game lengths to frequency, we extend the results on complete graphs to

connected graphs in Chapter 4. The chapter concludes w ith a method for

determining the probability that a bum-off game on a connected graph will be of

any given length. This method is used to generate analytically results like those in

Figure 1.1, which were generated by computer simulation.

Finally, Chapter 5 contains the remaining results for bum-off games on

complete graphs. The methods of Chapter 4 are shown to confirm w hat we discover

about complete graphs in Chapter 3. We conclude with ideas for further research.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Preliminary results

2.1 Introduction

This chapter establishes results that are fundamental to subsequent

chapters. We first show that the order in which nodes are fired in a bum-off game is

irrelevant to the final configuration of chips when the game ends. After discussing

how we may characterize those relaxed configurations that can occur at the

beginning of a sequence of bum-off games, we present an algorithm that recognizes

all relaxed chip configurations that can occur during the sequence of games.

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.2 Bum-off games exhibit strong convergence

Bum-off games enjoy the property that all are of finite length. This is

clear: after every turn, the total number of chips decreases by one, so eventually no

node will be able to fire. We now show that bum-off games possess an additional

important property called strong convergence, as defined in [9], namely, that nodes

may be fired in any order without affecting the length or final configuration of a

game.

Proposition 2.1 In a burn-off game on a connected graph G = (V,E), the nodes may be

fired in any order without affecting the length or final configuration of the game.

In our proof below, we follow the argum ent in [6], establishing the same

conclusion for the chip-firing game considered there. The authors show that the

"language" of such games possesses three properties that together imply their

version of the assertion. In order to discuss the essential ingredients of their

argument, we need to introduce some terminology and notation.

Label the nodes of G. It may be the case that a particular configuration on

G can be played in more than one way. For each firing sequence, write down the

labels that correspond to the nodes in the order that they are fired. The resulting

sequence of labels is a word, and the set of all possible words, over all possible initial

configurations, is a language L. The empty word A is a member of every language,

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

corresponding to a game of length zero. A word need not bring a configuration to its

eventual relaxed state.

Let n = \V\ be the number of vertices. If a is a word, we define its score

vector [a] e N " as follows:

[a], = k if the node i occurs k times in a.

For example, suppose that a four-node graph has labels {1,2,3,4}. If 23424 e £

(indicating that node 2 fires first, followed by node 3, and so on), then

[23424] = (0,2,1,2), because node 1 fires 0 times, node 2 fires 2 times, and so on. The

issue here is whether a firing sequence different from 23424 could result in the same

final configuration. Now we are ready to state the three aforementioned properties

sufficient for Proposition 2.1.

Definition 2,2

(1) £ is left-hereditary if, whenever a word belongs to £, every initial

segment of the word also belongs to £. For example, if

23424 e £, then so m ust A, 2, 23, 234, and 2342 be elements of £.

(2) £ is locally-free if, for any a <= £ and any two different nodes x

and y w ith ax e £ and ay e £, we also have axy e £. For

example, if 2342 e £, and both 23421 e £ and 23424 e £, then

so also are 234214 and 234241 elements of £.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(3) £ is permutable if whenever a ,p e £, w ith score vectors

[a] = [/?], and ax e £ for some node x, then fix e £. In other

words, if one word is just a permutation of another, then both

may be extended by the same symbol to obtain a new word of

£. For example, if 23424 e £ and 22344 e £, and 23424 may be

extended to 234241 e £, then 223441 is also an element of £.

Proof of Proposition 2.1. We follow the strategy of [6], where the authors show that

any two words (in a language possessing the properties of Definition 2.2) that have

the same score will describe two different firing sequences, yet will result in the

same final configuration. Thus, we verify that if £ is the collection of all chip-firing

words in a burn-off game, then £ possesses the properties of Definition 2.2. Recall

that in this collection we include all configurations that have not yet relaxed, but are

merely on their way to a relaxed configuration.

That L is left-hereditary is clear: for a game to have progressed from one

configuration to another necessarily means that all intermediate configurations

must have also belonged to £.

To see that L is locally free, consider a configuration that allows for two

different nodes, x and y, to fire. Firing one of them (say, x) sends one chip to each

neighbor of x (and burns one chip from the system). Thus, a node y that could have

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fired before x fired can certainly still do so, since the number of chips on y has either

remained unchanged or increased by one.

Finally, to see that L is permutable, we argue that any two partial games

corresponding to words a and J3 with the same score m ust lead to the same

configuration. There are only two ways that the num ber of chips on a node x can

change: if x fires, the num ber of chips on x decreases by degQt) + 1; if a neighbor of x

fires, the num ber of chips on x increases by one. If two partial games a and /? have

the same score, then x fires the same num ber of times in each game, as do the

neighbors of x. Thus, the configurations at the end of either partial game are

identical. ■

The property that nodes may be fired in any order w ithout affecting the

length or final configuration of a bum-off game will be essential to almost every

argument presented in this dissertation.

2.3 Definition of reverse-firing game

In the literature (e.g., [3], [14]), computer models of complex systems are

initialized into a state that the authors assume will exhibit SOC as soon as the model

operates on the system. For example, in Bak's paper [3], which studied SOC on a

checkerboard-grid, the system was initialized by randomly assigning an integer

larger than four (and smaller than some pre-determined upper bound) to each cell

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

of the grid. Recall that in Bak's model a cell fires if its value exceeds four. Thus, this

initialization makes it possible for all cells to fire. This grid is then relaxed until no

cells can fire. Bak assumes that the resulting graph will immediately begin to

exhibit SOC as the values in the cells begin to be randomly perturbed.

Define a configuration to be supercritical if every node is supercritical. In

our analysis, we shall play burn-off games only on those configurations that can

result from relaxing a supercritical configuration. In fact, our first task in the

following analysis is to establish, for any given connected graph, how to determine

if a given configuration of chips can indeed be such a result.

To determine those configurations that are the result of relaxed

supercritical configurations, it is instructive to consider w hat happens when a

chip-firing game is played in reverse. A reverse-firing game is defined so as to undo

the firing rule of the chip-firing game under consideration. For example, recall the

firing rule for the burn-off model: a node v may be fired only w hen C(v) > deg(v) + 1,

and when a node is fired, one chip from v is lost from the system. In a reverse-firing

game, chips are added to the graph at each turn. The reverse-firing rule for the

burn-off model is: select any node v such that all neighbors of v contain at least one

chip; from each neighbor, move one chip onto v, then add a chip to v from outside

the system.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1. An instance of a reverse-firing game. The ellipsis indicates
that the fifth configuration (lower left) continues to reverse-fire until
the final supercritical configuration (lower right) is reached.

Example 2.3 Figure 2.1 shows this in action on a graph G. Suppose we begin a

reverse-firing game on G by reverse-firing v3. Nodes v2 and v4, the neighbors of v3,

both donate one chip to v3/ and another is added from outside the system, for a total

of 4 chips on v3. Of course, in the second configuration, v3 is able to fire; if it did, the

first configuration would be the result. The figure also displays the results if the

nodes are reverse-fired in the order v3, v4, v2, and vi. In the fifth configuration, the

nodes v\, v2, and v4 are all able to fire. However, v3 does not have enough chips to

fire in a bum-off game. If we continued the reverse-firing game by reverse-firing

the nodes again in the same order, the final configuration would be as shown in the

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

figure. In this configuration, all nodes are supercritical. If this configuration were

used to initialize G, then the first configuration in the figure would result from

playing the bum-off game to relaxation.

While it is certainly possible that this reverse-firing game can continue

indefinitely, we will only care to play such games until every node is able to fire.

Any configuration, like the first one in Figure 2.1, that can be reverse-fired to a

supercritical state shall be called legal. A relaxed legal configuration is a legal

configuration in which no nodes may fire. Because the rest of this chapter is

concerned w ith enumerating relaxed legal configurations, we let L(G) denote the

number of relaxed legal configurations on a graph G. Note that as we define L we

drop the stipulation that G be connected. The flexibility allowed by dropping this

stipulation will be useful in Theorem 4.9, which considers relaxed legal

configurations on disconnected graphs. None of the subsequent results in this

chapter require that G be connected.

2.4 Characterizing relaxed legal configurations

Not all relaxed configurations are legal; for example, a graph containing

no chips is clearly relaxed, but just as clearly cannot be reverse-fired into a

supercritical state. We are now ready to characterize the relaxed legal

configurations on any given graph G = (V,E). Our characterization uses the

notation 1 a '• V -► {0,1} to denote the indicator function of a su b se ts £ V.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 2.4 A relaxed configuration C : V -> N is legal if and only if there exists an

ordered partition (If) of independent sets h ofVso that, for each v e V, ifv e /,, then

C(v) > ^ 1 {x<_̂ andr<J)-

For convenience later, we call the property of (C, (If)) that every node v

contains at least as many chips as it has neighbors that are members of earlier

independent sets Property P.

Figure 2.2. A legal configuration

Example 2.5 Let C be the configuration shown in Figure 2.2. We may assign the

nodes to independent sets as follows: I\ = {vi,v3}; I 2 = {V4}; / 3 = {v2}. Nodes vi

and v3 have no neighbors in earlier independent sets because they are members of

I\, the earliest independent set of all. Node v4 has one neighbor, v3, in an earlier

independent set; since v4 contains at least one chip, Property P is not violated at v4.

Node v2 has three neighbors in earlier independent sets, and it contains three chips.

Thus, Property P holds for this choice of (C, (If)).

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proposition 2.4 implies that since this configuration is relaxed, it is legal;

that is, it may be reverse-fired to a supercritical configuration. As we saw in

Example 2.3, this configuration is indeed legal. Now we verify (in general) that this

legality is equivalent to the existence of a partition of V with Property P.

Proof of Proposition 2.4. Suppose that we have a relaxed legal configuration C. By

definition, a legal configuration is one that can be reverse-fired into a configuration

where all nodes are supercritical. Further, C is relaxed, so none of the nodes in G are

supercritical. Thus, in any reverse-firing game that reveals a relaxed configuration

to be legal, all nodes m ust reverse-fire (because reverse-firing is the only way for a

node to gain chips during a reverse-firing game).

Consider any reverse-firing sequence that shows C to be legal. List only

the first time each node reverse-fires during the game; suppose that the nodes are

reverse-fired in the order v i, v2, ..., v„. Put each node y, into its own set f . Since each

Ij contains only one node, each member of the ordered family (If) is independent.

We now need to show that (C, (Iff) possesses Property P.

Any given node y, will reverse-fire only after each node v1,v2)..., y,_i

reverse-fires at least once. Each of these nodes that is a neighbor of yt takes a chip

from Vj w hen it reverse-fires. Since each earlier node is a member of an earlier

independent set, v; m ust contain at least as m any chips in C as it has neighbors that

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are members of earlier independent sets.

To establish the converse, suppose that the nodes can be partitioned into

r independent sets so that (C, (/*)) possesses Property P. Reverse fire the nodes of /*,

for k = 1 ,2 ,... ,r, in that order (although within sets, the nodes may be fired in any

order). We claim that this reverse-firing results in each node increasing its number

of chips by one.

Consider a node v e Ijr and let C(v) be the num ber of chips on v before the

reverse-firing process starts. Because of Property P, the node v contains at least as

many chips as it has neighbors in all h w ith k < j. Suppose that there are s such

neighbors. Each neighbor in these sets h with k < j reverse-fires before v does, and

each reverse-firing will pull one chip from v. This leaves C(v) - s > 0 chips on v. If

any nodes that are in Ij reverse-fire before v, the num ber of chips on v is unaffected,

since Ij is independent. When v reverse-fires, it pulls a chip from each of its deg(v)

neighbors and receives one extra chip for the reverse bum-off. Finally, all nodes in

sets Im with m > j reverse-fire, and each neighbor of v in these sets (say there are / of

these) pulls a chip from v. Therefore, after each node has been reverse-fired once,

the number of chips on v is decreased by s + / = deg(v) and increased by deg(v) + 1

(while never becoming negative), for a net increase of one, as claimed.

Notice that reverse-firing each node once, as described in the preceding

paragraph, preserves Property P. Thus, this process may be repeated until all nodes

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

become supercritical. That is, if t = maxv{deg(v) - C(v)}, then repeating the process

t + 1 times will result in every node v containing at least deg(v) + 1 chips. Therefore,

the original configuration was legal. ■

2.5 Checking legality of any configuration on any graph

Given a configuration C (not necessarily relaxed) on a graph G, we may

be interested in knowing if C is legal. Though we will not use it immediately, we

take a short detour here to present an algorithm to answer this question. The

algorithm will often be useful in Chapter 4 as we consider bum-off games on a

connected graph. Our proof of the algorithm's efficacy leans on Proposition 2.4.

Algorithm 2.6 INPUT: a graph G = (V,E) and a chip configuration

C : V -> N o n G)

OUTPUT: answer to question "Is C legal?"

(1) Find v e V such that C(v) S deg (v) . If this cannot be done,
then stop: C is not legal. Otherwise, let G* = G .

(2) Delete v from G* . If all nodes are now deleted, then stop:
C is legal. Otherwise, let G* = (V*, E') be the new graph.

(3) Find v e V* such that c|v>(v) ^ degQ.(v). If this cannot be
done, then stop: C is not legal. Otherwise, go to step (2).

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 2.7 Figure 2.3 shows two ways in which Algorithm 2.6 might operate on

the configuration depicted. In both passes from left to right, appropriate nodes are

deleted until none remain. In the first step, the algorithm may delete either V2 or V4,

as they both contain at least as many chips as their degree. At the end of either

execution sequence, all nodes are deleted, so, by Proposition 2.7 below, the starting

configuration is legal.

©
©

.©—©

©

©

©

©

Figure 2.3. Two execution sequences o f Algorithm 2.6 on the
same initial configuration

In the proof of Proposition 2.9, we need the following result.

Lemma 2.8 Let C : V(G) -> N be a configuration and G1 a subgraph of G. I f C|KG<) is not

legal on G', then C is not legal on G.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. We will argue the contrapositive: if C is legal on G, then so m ust C|^G>) be

legal on G1. By Proposition 2.4, the legality of C on G implies that it is possible to

partition V(G) into independent sets (If) enjoying Property P (see p. 25).

For each k, consider the partition Jk = Ik r1 V(G') of V(G'). Collect all

nonempty sets J k into the ordered family (Jr) of independent sets, and focus on a

node v e V(G'). Since (C,(Ik)) has Property P, the node v (considered now in G)

contains at least as m any chips as it has neighbors (in G) that are members of earlier

independent sets. In G', the node v may have fewer such neighbors/but it obviously

cannot have more. Thus, (C\nG^, (Jk)) has Property P, so C|^G») is legal on G1. ■

Let L be the set of legal configurations on G. Now we are ready to

establish the correctness of Algorithm 2.6.

Proposition 2.9 Given a graph G = (V,E) and a configuration C : V -> N, Algorithm 2.6

correctly determines whether C e L .

Proof. First, we show that if at any point during the operation of Algorithm 2.6

(say, when we have arrived at a subgraph G*) every node v contains fewer than

degG,(v) chips, then the original configuration is not legal. Suppose, by way of

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

contradiction, that an original configuration C* leading to this situation on G* is

legal. By Lemma 2.8, C*\y^Gr) is legal; then the nodes of G* may be partitioned into

independent sets (J r) so that (C*|^G»), (Jr)) has Property P. Consider a node v that is

a member of the last set Js. Since all of its neighbors are members of earlier

independent sets, v contains at least degG, (v) chips, contradicting our assumption in

the first sentence. Thus, if every v e V(G*) contains fewer than degG„(v) chips, then

C* is not legal.

Second, we show that if the algorithm proceeds until all nodes are

deleted, then C is legal. Suppose that the algorithm's deletion order is ... ,vi.

Place each node Vj into its own set Ij. For y, to be deleted from G* by the algorithm,

it m ust contain at least as many chips as it has neighbors in G*. Since every one of

these neighbors is in an earlier independent set, our choice of (C ,(h)) has

Property P, and so C is legal. ■

2.6 The poset of configurations

Now that we have characterized legal configurations, we turn our

attention to a result that allows us (in Chapter 4) to enum erate the relaxed legal

configurations on any given connected graph. We assume the reader is familiar

with the topic of posets as discussed, e.g., in [13].

Chip-firing games proceed in cycles beginning with the random

placement of a stress (one chip) that may trigger a game of nontrivial length. We

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

therefore consider configurations that arise from adding a single chip to a legal

configuration. To this end, it is useful to consider the set (B of all configurations on a

fixed graph G as a poset (<S, <) whose ordering relates to the numbers of chips on

the nodes of G as follows: for P,Q e (B and < the usual (total) ordering on N, let

P < Q iff each v e V(G) satisfies P(v) < Q(v).

Recall that a legal configuration is one that can be reverse-fired to a supercritical

configuration (see Section 2.3).

Proposition 2.10 IfP is a legal configuration, then any Q with P < Q is also legal.

Proof. We clearly need only consider those configurations Q w ith P <Q. Such a Q

has at least as many chips on any given node v as does P, and since P < Q, there

exists a node x w ith P(x) < Q(x). Starting from the configuration P, add one chip to x

to create a new configuration P1.

Since P is legal, there exists a reverse-firing sequence that results in a

supercritical configuration. "Freeze" the new chip on x, and carry out the same

reverse-firing sequence starting w ith P]. The frozen chip will not affect the

reverse-firing game (since it is frozen), and once P is reverse-fired to a supercritical

configuration, the chip m ay be "thawed". The resulting supercritical configuration

shows that P' is legal.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If P' = Q, the assertion is proved; if not, the argument above can be

repeated with P' in the role of P. ■

Now suppose that a relaxed legal configuration Q has a chip added to a

randomly selected node v, creating the configuration Q+. By Proposition 2.10, we

know that Q+ is legal. Suppose that v may fire in Q+, and let R be the relaxed

configuration that results. Since R can be reverse-fired back to the legal

configuration Q+, we know that R is also legal. Thus, if we initialize a sequence of

bum-off games by relaxing an arbitrary supercritical configuration, then all relaxed

configurations that occur during the sequence of bum-off games will be legal.

We have demonstrated in this chapter how we may begin playing a

series of bum-off games on a connected graph and how to recognize when a relaxed

configuration is legal. This knowledge will be important in Chapter 4, where we

analyze bum-off games on any given connected graph. First, we consider the

special case of complete graphs in Chapter 3.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Investigations on complete graphs

Before we investigate how the material in Chapter 2 leads to analytical

results for general connected graphs, we pause to study complete graphs in this

chapter. We find a pair of algorithms that give a one-to-one correspondence

between relaxed legal configurations on K„ and spanning trees of K„+\. These

algorithms not only provide us w ith a proof of Cayley's Formula (see [19]), bu t also

prepare us to discuss a similar, but more difficult, pair of algorithms in Chapter 4.

3.1 Statements equivalent to Property P

Proposition 2.4 established that a configuration C on a graph is legal if

and only if the nodes can be partitioned into independent sets (7r) so that (C, (/,))

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

possesses Property P. Here we show that Property P, for complete graphs, may be

reformulated in two ways that will be helpful later. We continue to let C denote a

chip configuration, here on V(Kn), and now define q = (q \,q i ,... ,q n) by qt = C(v,).

Proposition 3.1 Let C : V -* N be a configuration on K„. The following statements are

equivalent:

(1) For some partition of V into independent sets (/r), the pair (C, (/,))

satisfies Property P;

(2) For each j = 1,2, . . . ,n ,a t most j o f the qt are at most j - 1;

(3) For each k = 1,2, n, at least k o f the qi are at least n - k .

Proof of (1) => (2). Suppose that (C,(/r)) has Property P. Then for s = 1,... ,r, every

node in Is contains at least as many chips as it has neighbors that are members of

earlier independent sets. In a complete graph, the only way to partition the nodes

into independent sets is to assign each node to its own set. Thus, each independent

set contains just one node; label that node y,- for each j = 1 ,2 ,...,« .

By Property P, each vJ+i contains at least j chips. The only nodes that

might contain j - 1 chips or fewer are vi,v2, . . . , v,-; this implies that at most j nodes

contain at most j - I chips, which establishes statement (2).

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof o f (2) => (3). If at most j of the q, are j - 1 or less, then at least n - j = k of the q,

are j = n - k or more.

Proof of (3) => (1). It will be convenient to relabel the nodes of K„ so that the index

runs from from 0 to n - 1 and C(v,) > C(v/+i) for i = 0 ,1 , . . . ,« - 2. Define

p = (p0,p \ ,. . . ,p n-\) by Pi - C(Vj); observe that p is a perm utation of q. By statement

(3), at least k of the p t are at least n - k , for k = 1 ,2 ,... ,n. Because (C(v,)) is

nonincreasing, we have C(vf) = Pj > n - j - 1 for7 = 0 ,1 ,..., n - 1.

Let Ij = 1} for j = 0 , 1 , . . . , /? - 1 ; equivalently, I n-j-\ = {v,} for

j = 0 , 1 , 1 . Since each Ij contains a single node, it is independent. Since each

Vj e In-j-i and the graph is complete, we see that v7 has n - j - 1 neighbors in earlier

independent sets. We have C(yf) > n - j - 1 from the preceding paragraph, so

(C, (If)) has Property P. ■

Example 3.2 Consider and let q = (5,2,1,5,0,2). Statement (2) shows this

configuration to be not legal: let j = 3, and observe that the statement "at most 3

entries of q are at most 2 " is false. Statement (3), w ith k = 3, is "at least 3 entries of q

are at least 3," which is also false.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Enumerating relaxed legal configurations on a complete graph

Here we establish a formula for L(Kn), the num ber of relaxed legal

configurations C on a complete labeled graph. Our determination includes a

parameter to bound the maximum value of C(v) for v e V = V(Kn). For n > 1 and

m > n - 1, let Ln>m be the number of legal configurations satisfying C(v) < m for each

v e V. For convenience, we also define Lo,m = 1 for all m > 0 . In the proof of the next

result, we shall find it convenient to use characterizations (2) and (3) in

Proposition 3.1.

Theorem 3.3 For al l n> 1 and m > n - 1, we have L n,m = (m - n + 2){m + 2)"-1. (3.1)

Example 3.4 Suppose that we wish to find the num ber of legal configurations on

K-4 , where no node contains more than 5 chips, as in Figure 3.1. Note that the nodes

Vi and V3 have enough chips to fire, so this is not a relaxed legal configuration. To

count all relaxed legal configurations, we would fix m equal to the degree of each

node in K n, which is n - 1. Theorem 3.3 asserts that the num ber of legal

configurations like the one in Figure 3.1 is L 4,5 = (5 - 4 + 2)(5 + 2) 4-1 = 1029.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.1. One of the 1029 legal configurations on K4 for which no
node contains more than 5 chips

Proof o f Theorem 3.3. We use induction. Since L0,m := 1 for all m > 0, this satisfies

(3.1). For each m > 0, we extend our base case to include L\,m, which counts the

number of legal configurations on a single node. By condition (3) in Proposition 3.1,

at least one node m ust contain at least zero chips. Thus, the num ber of chips

occupying our single node lies in the set {0 , 1 ,... ,m }; so Li,m = m + 1, which satisfies

(3.1). Finally, we observe that for n > 2 , 2 enumerates the legal configurations in

which all n nodes contain at most n - 2 chips; since condition (2) in Proposition3.1

requires that at most n - 1 nodes may contain at most n - 2 chips in a legal

configuration, we have L n,n- 2 = 0 for all n > 2. This result satisfies (3.1), so we

include it in our base case.

Now fix n > 2 and m > n - 1 and assume that (3.1) is valid for each L„-k,m-\

for k = 0,1,...«. To determine we let k e [0,«] count the num ber of nodes

containing exactly m chips; there are ways to choose these k nodes. Consider

the configuration of chips on the remaining n - k nodes of K„. Focusing on these

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

nodes, we see from condition (3) of Proposition 3.1, that for 1 = I , . . . , n - k , at least /

of them contain at least (n - k) - I chips. Thus, the configuration on the remaining

n - k nodes is a legal configuration on K n-k w ith at most m - 1 chips on each node.

Since the number of such configurations is we have

L n ,m — ^ ^ ' ^ L n-k itn- \ .

fc=0

We may now apply our inductive hypothesis to simplify the sum:

L n ,m = T*'i ^ ^ L n - k ,m - l

= E (I) ((»* - 1) - (« - *)+ 2X0» - !) + 2)(”“*H

- 22 + 1) - (w - n + 1)] + (/w - n + l))(/w + l)*"*-1

= + l) n~k + ^j(m - n + \)(m + I) ”"*-1

= (m - n + 2) (n 7 ̂ Vw +
o ^ '

= (m - « + 2)((w + 1) + I)”-1.

As suggested in Example 3.4, L„,n-\ = (« + l) ”_1 gives the num ber of

relaxed legal configurations for a bum-off chip-firing game on K„. We consider this

familiar expression again in the following section.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 A connection between L„,»-\ and Cayley's Formula

In the preceding section, we determined that L(Kn) = (n + I)"-1. Of

course, this is Cayley's Formula (see, e.g., [19]) for the num ber of spanning trees of

K„+1. Our next result provides a new proof of this formula.

Theorem 3.5 The number of relaxed legal configurations on K n equals the number of

spanning trees o fK n+j .

Proof. We establish injections between the set 3 ̂of relaxed legal configurations on

K„ and the set S of spanning trees of K„+i by giving algorithms that, given a member

of one set, generate a unique member of the other set. Define A via

Algorithm 3.6 below and B :S-> via Algorithm 3.7. In both algorithms, score

refers simply to a numeric label assigned to a node. Define F : V(K„) -> N as the

score function that makes this assignment.

Our first algorithm injectively maps <2̂ to S.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 3.6 INPUT: a complete graph K n and relaxed legal

configuration q = (qi ,q2,---, qn))

OUTPUT: a spanning tree of K n+l.

(1) Fix a node v0 in Kn+1.

(2) Label the remaining nodes v1(v 2, ... , v n .

(3) Let M0 = (v0) and Mo = {v0} .

(4) Let F(v0) = n - 1 .

(5) Let Q0 = 0 and i = 0 .

(6) Until all Vjj have been included in some sequence , do the
following:

(a) i + 1 t—> i •

(b) Let Qx = Q + |Mj-i| .

(c) Let = (v, , v. , ... , v,.), for some t S: 1 , be the
sequence (in increasing subscript order) of all nodes
Vjc for which q k = F(u) for some u 6 Mi-i . Let
Ms = {x : x is an entry of Mj} .

(d) Add an edge from each v̂ in Mi to the node w e Ms-i
for which q k = F(w) .

(e) For each j = 1, 2, , |Wi|, let F(vi) = n - Q± - j .

Note: The purpose of the variables Q-t is to record the num ber of nodes

that have been included in an earlier Mj. In fact, Qt =
i- 1

U Mj
1=0

. Thus, in step (6 e),

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

each score is given to exactly one node. Therefore, "the node" selected in step (6 d) is

indeed unique. For an example trace of this algorithm, please see Example 3.8

starting on p. 47.

Proof that A is well-defined. Algorithm 3.6 will fail if, at any step, M, is empty,

because no further edges can then be added in step (6 d). We demonstrate below

that no Mj is ever empty, but assume for now that this is true. Step (6 d) adds an

edge from each vk e M, to a node that is already part of a single growing component

of the subgraph of K„+\ being constructed. The algorithm continues until all nodes

of K„+i are members of some A?,, so all nodes of K „+1 are eventually connected to the

growing component. Note also that exactly n edges are created by step (6 d), one for

each node except v0. A spanning connected subgraph (of an (n + l)-node graph G)

with n edges is necessarily a spanning tree of G; thus, the algorithm indeed

constructs a spanning tree of K„+1.

It remains to prove that no Mj is empty. We proceed by induction. It is

clear in step (3) that M 0 is not empty; suppose that M,_i is not em pty for some fixed

i > 0. (By definition of M,_i, it is clear thatM,_i is also not empty.) As Algorithm 3.6

proceeds, the scores assigned to the nodes in step (6 e) descend from n - 1. We m ust

show that at least one entry of q is large enough to equal the score of one of the

nodes inM,_i. This will guarantee that M, contains at least one element.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

When, in step 6 (c), the nodes are checked to see if they will be members

of Mi, the algorithm inspects the scores assigned to the nodes in M,_i (our induction

hypothesis ensures that there are nodes in Mm to inspect). These scores were

assigned (during the preceding iteration) in the following order: n - Q ^ - l ,

n - <27-1 - 2 , , n - Qj-i - |M,_i | = n - Qi. Thus, the lowest score assigned to a node

of Mj-i is n - Qi.

Since q is a legal configuration, at least Q, entries of q are at least n - Q,

(see Proposition 3.1). Since Qi - 1 nodes (corresponding to entries of q) have been

assigned scores (we subtract 1 because vo does not correspond to an entry of q),

there is at least one unassigned node vk containing at least n - Q, chips (i.e.,

q k > n - Qi)', this num ber is at least as big as the lowest score found in Mm - We also

know that qk equals one of the scores assigned to a node inM,_i, for if qk exceeded

all of those scores, then vk would have already been assigned to an earlier sequence.

It follows by induction that no M, is empty and, by our earlier remarks, that A is

indeed well-defined.

Proof that A is an injection. Let q = (q \,q i, •••,<?«) and q* = (q*,q2 , ■■■ ,q*n) be two

distinct relaxed legal configurations o n K n. Let V(K„+0 = {v0 ,v i , . . . ,v„}. Let A(q) = T

and A(q*) = T*. We will prove that A is an injection by showing that T and T* m ust

be distinct.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As q * q*, Algorithm 3.6 must encounter qt * q* for some i e {1

Since the scores are assigned in order of decreasing value, in the first such

encounter either qt or q* will be the largest entry of its corresponding sequence.

Without loss of generality, suppose that q* > qc, specifically, find

max{ max {q„ q* : qt =/= q*}}, and (if necessary) interchange the labels q and q* so
ie{ l,...,n>

that q* has this value. We will show that v,- has different neighbors in T and T*, so

that T ± T*. Suppose that as Algorithm 3.6 operates on q, the sequences constructed

in step (6 c) are and suppose that as it operates on q*, the sequences

constructed in step (6 c) are ,M*k. Now suppose that v,- e M s (for some

s e {1,... ,j}) and v,- e M* (for some t e We consider two cases.

Case 1. s = t

Since qi,q* are the earliest unequal entries encountered, we have

Ms- 1 = M U . Since qt * q*, the node v,- m ust be assigned different neighbors, say x,y,

from among the nodes of Ms-1 and M*_u respectively. Then the edge

{Vi,x} e E(T)\E(T*), implying that T =£ T*.

Case 2. s * t

Algorithm 3.6 adds an edge between v,- and some node w* in M*_\ ■ Since

qt,q* are the earliest unequal entries encountered, we know that M t~ i = M*_v But we

have assumed that q* > q if so t < s) this implies that Ms_i ^ M*_\ ■ Thus, the edge

e E(T*)\E(T), again implying that T * T*. ■

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Our second algorithm injectively maps S to ^ Recall that F : V(K„) -> N

assigns a numeric score to each node of the complete graph on which the chip-firing

games are taking place.

Algorithm 3.7 INPUT: a spanning tree of K n+u

OUTPUT: a relaxed legal configuration q = (qi , q2, • ••,#«) on K„.

(1) Fix a node Vo in Kn+1 -

(2) Label the remaining nodes v ir v2, ..., v a .

(3) Let N0 = (v0), No = {v0}, and i = 0.

Repeat:

(4) i + 1 l-> i

(5) Define Ns = (v^, vJa, . . ., v,), for t > 1, as the
sequence (in increasing subscript order)
unassigned nodes that are neighbors in T

of all
of a node

in N1_1 . Let Ni = (x : x is an entry of Ns}.

Until: all nodes have been assigned.

(6) Define N = as the concatenation of all
their natural order.

the JVj's, in

(7) For k = 1,2, ... , n , set F(uk) = n - k (note that
entry is not assigned a score).

the (n + l)st

(8) Let qi represent the number of chips on node Vi of Kn.
Determine the vector q = (qlf q 2, ... , q D) as follows:

(a) For each i = 1,2, . . . , n , v* is an entry of some Nj , and
is thus the neighbor in T of some v t e Nj-i .

(b) Let q s = F{vk) .

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note: In step (5) we are performing a breadth-first search (see [19]) from

v0 to determine the N f s. For an example trace of this algorithm, see Example 3.9

starting on p. 50.

Proof that B is well-defined. Step (7) makes it clear that q is relaxed, since the highest

score assigned to a node is n - 1. In order to show that q is legal, we demonstrate

that, for / = 0 , 1 1 , at most / + 1 entries of q could be assigned a value at most /

(refer to Proposition 3.1). In step (7), a node vk receives the score I after (n - 1) - /

other nodes have been labeled. As vk has n neighbors in K n+1, it will have

n - ((n - I) - I) = I + 1 unlabeled neighbors in T. These are the only nodes that can be

assigned q-values at most F(vf) = / in step (8b). Thus, for I = 0,1,... ,n - 1, at most

/ +1 entries of q are assigned a value at most I. Proposition 3.1 implies that q is

indeed legal. ■

Proof that B is an injection. Let T and T* be two distinct spanning trees of Kn+i. Let

V(Kn+1) = {v o ,v r, ... ,v„}. Let B(T) = q and B(T*) = q*. We will prove that B is an

injection by showing that the configurations q and q* m ust be distinct.

For v e V(T), let Tr(v) denote the set of neighbors of v that are assigned

the value F(y) in step (8b); in other words, TT(v) is the set of nodes adjacent to, and

one edge further from, Vo in T. Define T r (v) analogously.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since T * T*, we know that r r (v) * T r (v) for some v e V(Kn+1). Let

r = min{z : 3 v e n N* w ith TT(v) * T r (v)}. Choose any v e N r n N*r with

r r(v) * T 7-(v). Step (8b) assigns the value F(v) to all x e T r(v) and the value F*(v) to

ally e T r (v). But since r is a minimum, we have F(y) = F*(v); by step (7), we know

that this score is assigned exclusively to v. To receive this score in step (8b), a node

must be a member of either Fr(v) or r r (v). Since Tr(v) ^ F r (v), we have q + q*',

thus, B is injective. ■

Since we have demonstrated injections between the set <^of relaxed legal

configurations on K„ and the set S of spanning trees of K n+1, we have | ^ | = ,

which finally completes the proof of Theorem 3.5. ■

Notice that Theorems 3.3 and 3.5 together yield a new proof of Cayley's

Formula. Indeed, the first of these implies that = (n + I) " -1 (see the remark at

the beginning of this section), while the second yields |< ,̂| = | ^ | . Thus,

= (n + 1)"-1, or, as the result is more typically presented, the num ber of

spanning trees of K n is nn~2.

Example 3.8 We illustrate Algorithm 3.6. Consider the configuration on K 5 shown

in Figure 3.2. We know it is legal by Algorithm 2.6 (the verification algorithm could,

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e.g., successfully delete the nodes in the order x4, x5, x2, x i, x3). For this

configuration, q = (1,3,1,4,3), and n = 5.

xi

Xj

Figure 3.2. A legal configuration on K s

Now we trace the execution of Algorithm 3.6 for this configuration as the

input. Steps (1) through (5) result in the node labels v0, . . . , v5 (with v0 fixed),

Mo - {vo}, F(v0) = h - 1 = 4 , i = 0, and go = 0. Now we perform the steps in (6)

until every vk is a member of some A?, (see Figure 3.3). In the first iteration of step

(6), we let i = 1, Qi = Qo + |A^i-i J = 0 + 1 = 1, and M\ = {v4} (because q 4 = 4, the

score assigned to v0 e Mo). We therefore connect v4 to v0 w ith an edge, and v4 is

assigned the score n - Q \ - \ = 5 - 1 - 1 =3. (See the leftmost graph in Figure 3.3.)

In the second iteration of step (6), we let i = 2, Q2 - Q\ + |A?2-i | = 1 +1 = 2 , and

M 2 = {v2,v5>, because q 2 = qs = 3, the score assigned to v4 e Mi . We therefore

connect both v2 and v3 to v4, and v2 is assigned the score n — Q2 — l = 5 - 2 - 1 = 2 ,

whereas v5 is assigned the score n - Q 2 - 2 = 5 - 2 - 2 = 1. (See the rightmost graph

in Figure 3.3.)

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o a

Vj

O
mO

V j

V j

Vj

o
m

V j

Figure 3.3. Three iterations on K6 (the scores appear in the boxes)

In the final iteration, we let i = 3, Q3 = Q2 + \M3 -1 | = 2 + 2 = 4, and

M 3 = <vi,v3}, because q\ = #3 = 1, the score assigned to v5 e M 2- We therefore

connect both vj and v3 to v5, completing the spanning tree. We may assign scores to

vi and v3, bu t all nodes are now members of some M„ so the algorithm terminates.

The lower graph in Figure 3.3 shows the spanning tree T of K 6 associated w ith the

legal configuration q = (1,3,1,4,3) on K 5 , The interested reader will find that if

Algorithm 3.7 is given T, the output will be q, but we illustrate Algorithm 3.7 w ith a

new example.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 3.9 Consider the spanning tree of K-, shown in Figure 3.4. We trace the

execution of Algorithm 3.7 when this tree is the input.

Vo

Figure 3.4. A spanning tree of K-,

Three iterations of steps (4) and (5) give us No = (v0), N\ = (vi,v5),

N 2 = (V 3 ,v 4, v 6) , and N 3 = (v2). Thus, N = (v0,vu v5,v3, v4 ,v 6 ,v 2). Step (7) assigns

scores to the nodes as shown in Figure 3.5.

a
Vo

a

Figure 3.5. The same spanning tree with scores displayed

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Step (8) assigns the value 5 to q\, since Vi e N i, and its neighbor in No is

v0. Next, step (8) assigns the value 1 to q2, since v2 e N 2, and its neighbor in N 2 is

v4. Continuing in this fashion, we find that the relaxed legal configuration on K 6

associated with the spanning tree of K 2 in Figure 3.4 is q = (5,1,4,3,5,4).

In Chapter 5, we will use Proposition 3.1, Theorem 3.3, and Theorem 3.5

to find the probabilities associated w ith each possible bum-off game length on a

complete graph. First, however, we extend the results of this chapter to the more

general case of a connected graph.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Results for connected graphs

We will return to the preceding chapter's investigation of complete

graphs in Chapter 5. In this chapter, we generalize the results of Chapter 3 to

connected graphs. We begin by generalizing Theorem 3.5, and then discuss a

method for enumerating the pairs of relaxed legal configurations and seeds that

result in bum-off games of any desired length.

In Section 2.6, we saw that the relaxed configurations that occur in a

sequence of burn-off games are legal. Theorem 4.13, which concludes the present

chapter, determines the (stationary) probability distribution of these relaxed legal

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

configurations. Thus, we consider a burn-off game as an experiment starting with a

configuration C on a connected graph G = (V,E) in which each node has uniform

probability 1/|F| of being the seed; the resulting relaxed legal configuration is the

outcome.

As we will see in Theorem 4.1, the set 3(of relaxed legal configurations on

G is finite; therefore, we m ay consider the elements of ^ a s states in a Markov chain

(see, e.g., [10]). We employ this idea in Section 4.4, where we finally answer the

question of whether there is a connection between burn-off games and SOC

introduced in Section 1.4.

4.1 Enumerating relaxed legal configurations on any connected graph

A burn-off game played on a connected graph G - (V,E) w ith a relaxed

legal configuration consists of two phases: first, we choose a seed at random and

place a chip on it; second, we allow the game to play until we obtain a relaxed legal

configuration. We continue by choosing a seed in this configuration, and so on. In

this section, we enumerate such configurations.

We create the graph G* = (V*,E*) by adding a new node x adjacent to

every node in G. Specifically, V* = VU {x} and E* = £ U ((Jv e v)-). Perhaps

surprisingly, relaxed legal configurations on G are related to spanning trees of G*

just as in Theorem 3.5 for complete graphs.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 4.1 The number of relaxed legal configurations on G is the number of spanning

trees of G*.

We may use the Matrix Tree Theorem (as discussed, e.g., in [19]) to count

the spanning trees of G*.

Proof We establish algorithmically injections back-and-forth between the set of

relaxed legal configurations on G and the set of spanning trees of G*. Let ^ b e the

set of relaxed legal configurations on G and S the set of spanning trees of G*. Define

A : S via Algorithm 4.2 below, and B : S -> 5̂ , via Algorithm 4.3 below.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm 4.2 INPUT: a connected graph G = (V,E) with

V= {vi,v2,.--,v„>, and a relaxed

legal configuration C : V -» N;

OUTPUT: A(C), a spanning tree T* of G*.

(0) Let T' be the subgraph of G* with V(T*) = {x} , E(T") = ^ .

(1) Let 1 = 1.

(2) Let Mi be the sequence (in increasing subscript order) of
nodes v k such that = deg0(vk) ; let
Mi = {x : x is an entry of Mx) .

(3) For each v k e Mi , add v k to VC*) and { x , v k] to E(T*) .
(If V(T*) = V, then stop.)

(4) i + 1 H i .

(5) Let Ms be the sequence (in increasing subscript order) of
the nodes not yet included in V(T*) that are neighbors of
nodes in Afi-i. Let Mi = {x : x is an entry in Mt) .

For each u e Mi ,

execute steps (6) through (9):

(6) For r = 1, 2.......i - 1, let
Nr = (vrl, v r2, . . . , v r K) be the sequence (in
increasing subscript order) of the k r G-neighbors
of u that appear in Mr . Let
Ni = {x : x is an entry in

(7) Let s = j Nr | and N = (, v ^ , . . . , be the
sequence determined by concatenating the
sequences Wlt N2, . . . , .

(8) If C{u) < degs(u) - s, then delete u from Mi and M, .

(9) Otherwise, C(u) = degs(u) - j for some j with
1 < j <, s . Add u to V(T') and (u, v^} to E(T') .

(10) If V(T*) = V, then stop. Otherwise, go to step (4).

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note the similarity between Algorithm 4.2 and Algorithm 3.6; for a

complete graph K„, adding a special node jc adjacent to every other node simply

creates K n+i, and the output of Algorithm 3.6 is a spanning tree of K„+l. However,

the two algorithms will not necessarily produce the same outputs. In step 6(d) of

Algorithm 3.6, our choice of edge depends on the sequence formed in step 6(c); this

sequence is created by arranging nodes simply in increasing subscript order.

Compare this approach to that of steps (6) and (7) of Algorithm 4.2, which impose

greater restrictions on this sequence.

For an example trace of Algorithm 4.2, see Example 4.5 starting on p. 67.

Proof that A is well-defined. Not only m ust we be sure that Algorithm 4.2 outputs a

spanning tree T*, bu t also we m ust check that it does not halt before doing so. To

establish both of these results, we look at each step in turn.

Step (2). We have already seen in Algorithm 2.6 that in a legal configuration, at least

one node contains at least as many chips as its degree. Thus M \ is nonempty.

Step (3). It is clear that T* is thus far a tree; in fact, it is a star.

Step (5). We m ust establish thatM , is nonempty so that the "for each u e M " step is

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

not quantifying over an empty set. We proceed by induction. In the discussion of

Step (2) above, we observed that Mi is nonempty. By construction, all nodes in Mi

are critical. Because C is a legal configuration, we may apply Algorithm 2.6 to G and

delete all of the nodes (in any order) m M \.

With these statements as our base case, our induction hypothesis is in

two parts: for fixed i > 1, suppose that (a) ... ,M/_i are nonempty; and (b) we

may apply A lgorithm 2.6 to G and delete the nodes in M i,M 2)... ,M,_i without

halting.

Let M = IJ 'rj Mj. Lemma 2.8 states that the configuration on any

subgraph of a graph (on which we have a legal configuration) m ust itself be legal.

So, if our application of Algorithm 2.6 has deleted exactly the nodes of M, then at

least one of the remaining nodes w of G - M m ust be critical in G - M. Suppose that u

is not a neighbor of any node in M. Because u is critical in G - M , and none of its

neighbors have been deleted in our application of Algorithm 2.6, we see that u is

also critical in G. But this places u in Mi, which contradicts the choice of u in G - M.

Thus, we know that u is a neighbor of some node in M. Now if u is not a

neighbor of a node in M_i, it m ust be adjacent to, say, s > 1 nodes in

M i,M 2,...,M (_2. Thus, u has been considered previously by step (8) and has been

deleted each time. Therefore, C(u) < degG(u) - s. This show s—back in our

application of Algorithm 2.6—that if we have deleted all of the nodes in M i,... ,M,_i,

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

including the j neighbors of u, then u will not be critical in G - M . This contradicts

the fact that u is critical in G - M , so u m ust be a neighbor of a node inM,_i.

Because u is critical in G - M , step (8) will not delete u from A?,. Thus, A?,

is nonempty; this fulfills part (a) of the induction hypothesis. We claim that any

node w placed in M t by step (5) will survive past step (8) only if it, too, is critical in

G - M . For w to survive step (8), we require C(w) > degG(vr) - s, where s is the

number of G-neighbors of w that appear in M. Since degG(w) - s simply equals

degG_M(w), we know w is critical in G - M . Thus, all nodes i n M, may be deleted as

we apply Algorithm 2.6. This fulfills part (b) of the induction hypothesis.

Step (6). Step (5) assures us that these neighbors exist.

Step (8). The argument given above for step (5) assures us that M, remains

nonempty after all nodes of M, have been processed in step (8).

Step (9). It is impossible to create a cycle in this step because step (5) only considers

those nodes that are not yet part of T*.

Step (10). This step assures us that T* will be a spanning tree of G*.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Observe that step (9) adds at least one edge to T* since M, remains

nonempty. Once n - 1 edges have been added to T*, step (10) will halt the

algorithm. Since A does not halt until it outputs a spanning tree T*, A is

well-defined. ■

Proof that A is an injection. Let C e 3(, and C' s ^ be two distinct relaxed legal

configurations on G. We prove that A is an injection by showing that the spanning

trees A(C) and A(Cr) m ust be distinct. As Algorithm 4.2 operates on C and C', it

m ust encounter a node v for which C(v) * C'(v). Let us call such a v special. Step (8)

might remove v from consideration; if this occurs for both inputs C and C , then we

consider a future pass of the algorithm. Because Algorithm 4.2 includes every node

in the output before it halts, we know that eventually we will find a special node

that is not removed by step (8) concurrently for both inputs C and C1.

Now if v is removed by step (8) for one input bu t not the other, then step

(9) will connect v to a different neighbor for the two inputs. On the other hand,

suppose v is not removed by step (8) for either input; because C(v) * C1 (v), step (9)

will connect v to a different neighbor for the two inputs. In either case, A(C) and

A(C') m ust be distinct, and A is an injection. ■

Before we turn to Algorithm 4.3, we recall one definition. Let G = (V,E)

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

be a connected graph, and u, v e V. As in [19], we define the distance from u to v

(denoted dG(u,v)) as the least length of a u,v-path.

Algorithm 4.3 INPUT: a spanning tree T* of G* and an ordering

V - (vi,v2, ... ,v„) of the nodes of G;

OUTPUT: B(T*), a relaxed legal configuration C : V -> N on G.

(1) Let M0 = (x).

(2) Let m = maxveV{dT,(x, v) } . For j = 1, 2, ..., m, let Mj be
the sequence (in breadth-first order, breaking ties
lexicographically by subscript) of nodes v for which
dT. (x, v) = j . Let Mj = {x : x is an entry of M}} .

(3) For each u e Mi , let C(u) = degG(u) .

For i = 2, 3, . . ., m,

For each u e Mi , following the ordering in Mi,

execute steps (4) through (7):
(4) For r = 1, 2, i-1, let

Nr = (vr,i/ v r,i' • • • t Vr,k) t'le sequence (in their
Mr -ordering) of the kI > 0 G-neighbors of u that
appear in Mr . Let Nr = (x : x is an entry of Nr) .

(5) Let s = | Nr |.

(6) Let N = (vhi, vh2, . . ., vhs) be the sequence
determined by concatenating the sequences
Nlt N2, . . . , .

(7) For some t e (1,2, , s) , we have (v̂ , u) e E{T') . Let
C(u) = degs(u) - t .

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Note the similarity between Algorithm 4.3 and Algorithm 3.7, where a

spanning tree of K„+\ is the input and a configuration on K„ is the output. However,

the breadth-first order imposed by step (2) of Algorithm 4.3 is more restrictive than

the search performed by steps (4) and (5) of Algorithm 3.7. Thus, given the same

input, the two algorithms do not necessarily produce the same outputs.

For an example trace of Algorithm 4.3, see Example 4.6 starting on p. 69.

Proof that B is well-defined. In step (2), we partition Finto sequences Mi M 2 , ... Mm-

Step (3) assigns chips to the nodes in Mi, while step (7) assigns chips to the nodes in

M i , ... Mm- Therefore, Algorithm 4.3 at least produces a function C : V -* N.

Now we use Algorithm 2.6 to establish that C is legal. Since T* is a

spanning tree of G*, we know that M\ is nonempty (see step (3)); hence, there is at

least one node u such that C(u) = degG(«). Thus Algorithm 2.6, given C as input,

may delete the nodes in Mi. This fact is the base case in an induction argument that

proves that in Algorithm 2.6, the nodes m M i M t , - - ■ M m can be deleted in the order

given by this list. Suppose that this is true for M i,M 2, ... M k - 1 , where 2 < k < m. For

any u e Mu, step (7) assigns C(u) = degG(w) - t> degG(w) - s. Recall that s counts the

neighbors in G of u that are in Mr; in our induction hypothesis, we have

assumed that these neighbors have been deleted from G, resulting, say, in a

subgraph G'. If other nodes in M t have been deleted before we consider u, then

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

degG/(w) does not increase. Thus, we have C|K(G/)(w) > deg Gi(u), so u can be deleted in

step (2) of Algorithm 2.6. ■

Proof that B is an injection. Suppose that T\,T*2 e S satisfy

Ci := B(Tt) = B{Jl) =■ C2 (:= Q i

we'll show that then 2 7 = T\-

Let V = V(G), n = \V\, and write the breadth-first orderings of V

determined during the computation of B(T\) and B{Tf) as (w,)£=i and (w,)"=1/

respectively. To complete the proof, we shall find it useful to establish the following

lemma.

Lemma 4.4 Under the hypothesis that C\ = C2, i f there exists an integer j > 1 such that

Uj = Wifor all i e {1,... j} , then the subtree H \ ofT* induced on {x ,u i , ...,«,} is identical

to the subtree H \ o fT \ induced on {x,w i , ... ,wy}.

Proof We induct on j. First note that H \, H \ are indeed subtrees of T\, T\,

respectively, since the sequences (w,), (w,) are defined by breadth-first search on

these trees. It is also clear from the definitions of («,), (w,) that u\, w i are adjacent to

x in H*, H*2, respectively. In the case when j = 1, these subtrees both consist of

2-vertex trees containing the edge and are therefore identical.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now fix j > 1, assume that the lemma holds for smaller instances of j, and

suppose that w, = w, for all i e {1,... j'} . Let Gq denote the subgraph of G* induced

on the common vertex set U := {x ,u \ , . . . ,u }} of H \, H \, and let G0 = Gq - x . We

consider four executions of Algorithm 4.3; in each case, the input vertex ordering is

inherited from G.

The first pair of executions computes D x := B(H\) and D 2 := B(H*2), two

configurations on Go- Since (m,){=1, (w,)^=1 are initial segments of (u,), (w,), it is

evident from Algorithm 4.3 that D x, D 2 are obtained from Cx, C2 by replacing degG

in steps (3), (7) by degGo and restricting the resulting functions to U. Since C x = C2,

we have D\ = D 2. For k = 1,2 and for each node u e V(Go), let tk(u) denote the value

of t in step (7) as Algorithm 4.3 determines Dk(u); if D k(u) is determined in step (3),

we take tk(u) := 0. Then

Dk{u) = degGo (u) - tk(u) for k = 1,2 and each u e V(G0). (4.1)

The second pair of executions computes D[:= B{H\ - uf) and

D '2 := B{H\ - Wj), two configurations on G '0 := Go - u; = G0 - vty For k = 1,2 and for

each node u e V(G'0), define t'k(u) analogously w ith tk(u)-, now we have

D'k(u) = degG<o (u) - t'k(u) for k - 1,2 and each u e V(G'0). (4.2)

Since (z/,)^, are respectively breadth-first orderings of V{H\),

V(H2), the sequences (»,)£}, (w,y,=l are such orderings of V(H\ - Uj), V{H2 -W j).

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, during the second pair of executions of Algorithm 4.3 described above, every

sequence M, (in the statement of the algorithm) is the same as during the first pair

of respective executions, except, in passing from the first pair to the second, the

final node of M m (resp. ujr w}) has been deleted. Therefore

t'k(u) = tk(u) for A: = 1,2 and each u e F(G'0). (4.3)

Since D\ = D 2, the equations in (4.1) imply that

h(») = t2{u) for each u e V (G q). (4.4)

Comparing (4.4) with (4.3), we see that

t\(u) = t'2(u) for each u e V(G'0). (4.5)

It follows from (4.2), (4.5) that D[= D'2. Since these are configurations on G'0, whose

vertex set is U \ {u}} = U \ {w,}, the induction hypothesis implies that

H* - U j = H \ - W j . Finally, from (4.4), we have = t 2 (U j) , and in Algorithm 4.3,

this means that the node w, = w} has the same neighbor in H* - Uj as in H \ - wj.

Therefore H* = H \. ■

It follows from Lemma 4.4, w ith j - n, that if (w,) and (w,) agree entirely,

then T\ = T*2. Thus, it remains only to address the case w hen u, + w, for some

i e { 1 and here we'll reach a contradiction.

First, notice that according to Algorithm 4.3, for any u e V, we have

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C(m) = degG(zz) if and only if u is adjacent to x in both of T\, T\. Therefore, T\, T\ do

not differ in their adjacencies to x, and the sequences (w,), (w,) agree in their initial

entries, corresponding to the (necessarily nonempty) neighbor sets of x in Tf, 7%. If

there are L such neighbors, then zz, = w, for z e {1 ,...,L}, and we're assuming that

L < n.

Let z'o denote the least z such that u, ± w,. Since L < io < n, it is easy to see

that Algorithm 4.3 reaches step (7) in defining Ci(w,0) and C2(wi0). Let j - z'o - 1, and

define H \, H \ as in the statement of Lemma 4.4. Since

iii=W j forz e {1,... j> , (4.6)

Lemma 4.4 shows that H \ = H \. From (4.6), we also see that wia does not appear in

the subsequence (u,)JI=l, and zz,0 does not appear in the subsequence (w,){=1. Thus, in

computing B(T\), Algorithm 4.3 processes zz,0 before w,0, while in computing B(T\),

it processes uiQ after w /o.

Now consider the instants during the two executions of Algorithm 4.3

when step (7) defines Ci (zz,0) and C2(zz,0). In particular, for k = 1,2, define tk as in the

proof of Lemma 4.4, so that

Ck(uio) = degG(zz,0) - tk(uio) for k = 1,2.

Since C\ = C2 by hypothesis, we have

ti(uj 0) = t2 (u,0) (4.7)

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

As Algorithm 4.3 executes on T\ and is processing u - w,0, denote the

sequence N in step (6) by N \ . Likewise, during execution on T\ and while processing

the same node, denote the corresponding sequence by N2. The entries of N\ are the

G-neighbors of w,0 lying (strictly) closer to x in T\ than w,0. Similarly, the entries of

N 2 are the G-neighbors of uio lying closer to x in 7^ than u,0. Since H* = H\, the

sequence N\ forms an initial segment of the sequence N2. It follows from this and

(4.7) that the T \-neighbor of w,0 closer to jc (than m,0) in T\ and the -neighbor of m,0

closer to x in J] are the same. A similar argument shows that the T\- and

-neighbors of w,0 closer to x (than w,0) in these trees are identical. Under these

conditions, Algorithm 4.3 necessarily processes m,0 and w,0 in the same order during

the computations of B(T\), B(T2). But we concluded two paragraphs earlier that this

is not the case. This contradiction shows that the case when w, ± w, for some

i <= {1,...,«} is impossible and therefore completes the proof. ■

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 4.5 Consider the legal configuration shown in Figure 4.1. We show how

Algorithm 4.2 associates this configuration with a spanning tree T* of G*.

Vj

Figure 4.1. A legal configuration used to illustrate Algorithm 4.2

The two critical nodes are v5 and v7, so Mi = (v5,v7); the edges {x, v5} and

{x, v7> are added to T*. The nodes adjacent to those in Mi comprise M2 = (vi,v2,v4).

Inspecting vi we find that N = (v5), so s = 1. Since C(vi) = 2 = 3 - 1 = deg(vi) - s,

step (9) adds the edge {vi, v5} to T*. Inspecting v2 we find that N = (v5,v7), so s = 2.

Now C(v2) = 1 = deg(v2) - s, so C(v2) = deg(v2) - 2; step (9) adds the edge {v2) v7} to

T*. (Note that if C(v2) were 2 rather than 1, step (9) instead w ould have added the

edge {v2,v5} to P .) Inspecting v4 we find that N = (v7), so s = 1. However, C(v4) = 1

and deg(v4) - 5 = 3 - 1 = 2 ; since C(v4) < 2, step (8) deletes v4 from M 2.

The (unused) nodes adjacent to those in M2 = (vi,v2) are M 3 = (v3,v6).

Inspecting v3 we find that N = (vi), so s - 1. Since C(v3) = 1 = deg(v3) - s , step (9)

adds the edge {v3,vi} to T*. Inspecting v6 we find that N = (vi,v2), so 5 = 2.

However, C(v6) = 0 and deg(v6) - 5 = 3 - 2 = 1; since C(v6) < 1, step (8) deletes v6

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fromM 3. The (unused) node adjacent to the one inM 3 = (v3) isM 4 = (v4).

Inspecting v4 we find that N = (v7,v3). Note the order in which the two

elements of N appear; this occurs because step (7) specifies that when i = 4, the

order of the neighbors as they appear inM i,M 2,M3 m ust be preserved. Since each

feature of the algorithm has now been illustrated in this example, we conclude

simply by mentioning that the edges {v3, v4} and {v4, v6} are added to T*. Figure 4.2

shows the output of Algorithm 4.2.

Figure 4.2. The spanning tree T' associated (by Algorithm 4.2)
with the legal configuration in Figure 4.1

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 4.6 Consider the spanning tree T* of G* shown in Figure 4.3. We show

how Algorithm 4.3 associates this spanning tree w ith a legal configuration C on G.

Figure 4.3. A spanning tree of G* used to illustrate Algorithm 4.3

Step (2) gives Mi = (v3,v5), M 2 = (vi,v7,v6), and M 3 = (v2,v4). Note how

the requirements in step (2) affect the subscript order in M2. Step (3) assigns

C(v3) = degG(v3) = 3 and C(v5) = degG(v5) = 3. Inspecting Vi, we find N = (v3,v5).

Since the edge {vi,v3} is in T*, we have t = 1, so step (7) assigns

C(vi) = degG(vi)- / = 4 - 1 = 3 . (Note that if the edge { v i y 5} had been in T*

instead, step (7) would have assigned C(vi) = 2.) For v7 and v6, step (7) assigns

C(v7) = 1 and C(v6) = 1. At this point i becomes 3. Inspecting v2, we find

N = (v3,v5,vi). Note the order in which the elements of N appear; this occurs

because step (6) specifies that the order of the neighbors as they appear in M \,M 2

must be preserved. Since the edge {v2, Vi} is in T*, we have t = 3, so step (7) assigns

C(v2) = degG(v2) - t = 3 - 3 = 0. Step (7) also assigns C(v4) = 1, since

{v4, v6} e E(T*). Figure 4.4 shows the output of Algorithm 4.3.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.4. The legal configuration on G associated (by Algorithm 4.3)
with the spanning tree o f G* shown in Figure 4.3

4.2 An extension of Theorem 4.1

By deleting certain edges from G* (defined in Section 4.1), we may

enumerate the relaxed legal configurations that correspond to games of length zero

on G. This result will be useful in Chapter 5, but we mention it here because it

requires Algorithm 4.2. For v e V, let Tv denote the num ber of spanning trees of

G* -xv . Let (C, v) e d (x F denote a choice of a relaxed legal configuration C on G and

a seed v e V.

Proposition 4.7 The number of pairs (C, v) that result in a game of length zero is ^ Tv.
v e K

Proof As shown in the discussion of Algorithm 4.2, an edge {x,v} in T* forces v to

be critical in the corresponding relaxed legal configuration, whereas v will

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

specifically not be critical when that edge is missing in T*. So by removing the edge

{x, v} from G* and enumerating the spanning trees, we will count the number of

relaxed legal configurations in which v is not critical. Now if v is the seed, it will not

fire, and the game length will be zero. We sum over all v e V to count all the pairs

(C, v) that result in a game of length zero. ■

We will require Proposition 4.7 in Chapter 5 due to the unusual nature of

games of length zero; in all other games, at least one node m ust fire, so the seed

must be critical. A game of length zero requires a seed that is not critical, making

games of length zero a special case.

4.3 Enumerating games of any length on any connected graph

Before we consider a theorem that allows us to enum erate the bum-off

games of any length on any connected graph G, we prove that there are a finite

number of game lengths to investigate.

Lemma 4.8 During a burn-off game that starts with a relaxed legal configuration on

G - (V,E), no node may fire more than once.

Proof Let v be the seed. When v fires, it loses all of its chips. For v to fire a second

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time, it m ust gain at least deg(v) +1 chips from its neighbors. By the pigeonhole

principle, this will happen only if at least one neighbor of v fires at least twice. Thus,

v cannot be the first node to fire more than once.

Suppose that w e V, with w * v, is the first node to fire a second time. Say

there are

c < deg(w) (4.8)

chips on w when the seed is chosen, and k neighbors of w have fired once before w

fires for the first time. Just before w fires, it will contain c + k > deg(w) chips. After w

fires, it will contain c + k ~ (deg(w) + 1) chips. For w to fire again it m ust contain at

least deg(w) + 1 chips, so it m ust gain at least t := deg(w) + 1 - (c + k - (deg(w) + 1))

chips from its neighbors. But

t - (deg(w) - k) + (deg(w) - c) + 2 > deg(w) - k,

by (4.8). Now deg(w) - k is precisely the num ber of neighbors of w that did not fire

before w fired. So for w to gain t > deg(w) - k chips, either one of these neighbors

m ust fire at least twice before w fires a second time, or one of the k neighbors that

fired before w fired m ust fire a second time. Either case contradicts our assumption

that w was the first node to fire a second time. ■

So given any connected graph G = (V,E), we know that the length g of

any burn-off game m ust satisfy 0 < g < \V\. While the relatively simple methods of

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Section 4.2 do not extend to enumerating games of any length, the methods

introduced in this chapter nevertheless give formulas for the number of such

games.

First we need some new notation. For v e V, let denote the set of

subtrees of G w ith g nodes and including v. For a graph X w ith subgraph X\ and a

node u e V(X), let TXx (u) be the set of neighbors of u that lie in V(X2). For a

connected graph G = (V,E), let (C,v) e ^ x V denote a choice of relaxed legal

configuration C and seed v. Finally, we note that this proof considers legal

configurations on disconnected graphs and remind the reader that the function L

enumerating relaxed legal configurations may operate on such graphs (see p. 24).

Theorem 4.9 The number of pairs (C,v) resulting in a game of length g > 0 is

uo-n

Proof For v e V, let denote the set of relaxed legal configurations on G such

that if v is seeded, then the resulting bum-off game will be of length g. For

R i ,R2 g (Ryg, define the relation ^ as follows: suppose that w hen v is seeded in Ri

and R2, the nodes that fire in each game induce the same subgraph H of G; suppose

also that R i \h = # 2!h- If both of these conditions hold, we say i?i - R 2. It is clear

that — is an equivalence relation on Let Qy ̂be the set of equivalence classes of

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To prove Theorem 4.9, it will be helpful to establish injections A :‘t V£ -*Qv^ and

B Qyg ~*r̂ v>g-

Define A ~*Qv,g as follows. Let T e and let H b e the subgraph of

G induced on V(T). Create H' as follows: to each u e V(T), append degG(w) - deg^(w)

leaves to u. Let J be this set of leaves. Now let T be the spanning tree of H'

consisting of T and J. Create T* by appending the node x and the edge {x, v} to 7V.

Use T* (with H' as the underlying graph) as the input in Algorithm 4.3; let C* be the

output configuration. Let Q be a configuration on G defined by Q(v) = C*(y) and

Q(u) = C*(u) + 1 for each u e V(H) - v. Let Z be any relaxed legal configuration on

G - H . Define Q(w) = Z(w) for each w e V(G - H). Now Q is a configuration on G. We

demonstrate below that Q e thus, we may let Q denote the equivalence class

of Q. Finally, let A (T) = Q.

Claim 1. A is well-defined.

Proof of claim. To show that Q e <SGtg, we will demonstrate that (a) Q is a relaxed

legal configuration on G; and (b) seeding v in Q results in a bum-off game of

length g.

(a) Q is a relaxed legal configuration on G.

Because v is the only neighbor of x in T*, only v is critical in C* (see step

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(7) of Algorithm 4.3). As we define Q, then, adding a chip to each u e V(T) - v does

not make any of these nodes supercritical. We choose Z to be any relaxed legal

configuration on G - T , so none of the nodes in V(G - T) are supercritical. Therefore,

Q is relaxed.

We appeal to Algorithm 2.6 to demonstrate the legality of Q. We defined

C* using Algorithm 4.3, so C* is a legal configuration on H 1. Thus, if Algorithm 2.6

operates on C*, it will provide a deletion sequence S of V(H'). Since every w e J is a

leaf, each deg^ O) = 1. Since only v is critical in C*, we m ust have C*(w) = 0.

Without loss of generality, then, we may perm ute S so that V(H) is processed before

J and see that this new deletion sequence S' also satisfies the requirements of

Algorithm 2.6. In passing from C* to Q, we let Q(v) = C* (v) and Q{u) = C* (w) + 1 for

each u e V(H) - v. Because deg^/ (x) = degG(x) for every x e V(H), Algorithm 2.6 may

begin to process Q on G in the same order found in the initial subsequence of S’

containing the nodes of V(H). Since we extended Q to V(G - T) by choosing any legal

configuration Z on the subgraph G - T , Algorithm 2.6 m ay finish processing Q,

thereby confirming the legality of Q.

(b) Seeding v in Q results in a game of length g.

We first show that each node in T fires, and then show that none of the

nodes in G - T fire. Since T has g nodes, and by Lemma 4.8 no node may fire twice,

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the resulting game will be of length g.

Clearly, v can fire. For u e V(T) - v, let

Su = {w e T h (u) : dH>(w,x) < dH<(u,x)}

and su = \SU\. By step (7) of Algorithm 4.3, we have

C*(u) > degH, (u) - s u = degG(u) - s u.

We defined Q(u) = C*(u) + 1, so once the nodes in Su fire, the num ber of chips on u

will be at least degG(w) + 1, allowing u to fire as well.

For w e V(G - T), let sw = |rr(w)|. In each relaxed legal configuration Z on

G - T , we m ust have Z(w) < degG_r (w) = degG(w) - sw. Because the nodes in T

contribute a total of sw chips to w once they have all fired, the num ber of chips on w

will never exceed degG(w). Since we define Q(w) = Z(w), we know w will not fire

when v is the seed.

We have shown that Q is a relaxed legal configuration on G such that if v

is seeded, the resulting game will have length g; thus, we know that Q e %,rg.

Hence, A is well-defined. ■

Claim 2. A is injective.

Proof of claim. We will show that for distinct trees TV,T 2 e %#, we have

A(T\) ± A (T 2). For this argument, we let Q t^Q t^ denote one of the relaxed legal

configurations on G that result as we {m d A (T i) ,A (T 2) respectively. (Note t\\atA(Tx)

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

does not equal QTl but rather QTi) similarly, A(T2) = QTl)

First suppose that T\ and T2 contain the same g nodes. Because T\ and T2

share the same vertex set, we know Hi and H 2 will be identical. The creation of H[

(and H 2) does not involve the structure of T\ (and T2), so H\ and H 2 will be identical

as well. Consequently, we know J\ = J 2, which implies that w hat makes T\ and Tj;

distinct is the distinct structures of T\ and T2. When we use T\ and T\ as inputs to

Algorithm 4.3, the injective nature of the algorithm implies that C* and C2 will be

distinct; thus, 0 rilr, and Qt2\t2 will be distinct. Because V{T\) = V(T2), we have

QTl * Q T2. T h u s^ fT i) * A (T 2).

Now suppose that T\ and T2 do not contain the same g nodes, and that

A(T\) = A(T2) = Q for some Q e QVig. When we showed above that A is

well-defined, we saw that seeding v in Q results in a game in which precisely the

nodes in the underlying tree fire. But the original trees T \,T 2 considered in this case

are distinct. The deterministic nature of bum-off games, discussed in

Proposition 2.1, prohibits this result; the same set of nodes m ust fire in any burn-off

game played on a given configuration w ith seed v. Thus, A{T\) * A(T2). ■

Having established that A : %>g -*Qj>g is a well-defined injection, we turn

our attention to showing the same is true of B :Qv>g ->rTjg, defined as follows. Let

Q e Qv]g, so that Q e Q. Let H denote the subgraph induced on the nodes that fire if

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

v is seeded in Q.

Because Q e Q, seeding v in Q results in a bum-off game in which the

nodes of H fire. With h = |V(H) - v|, let F = (v,u \,u 2, . . . , uh) be such a firing sequence

of V(H). For m = 1,... ,h, let lm denote the number of //-neighbors of um that precede

um in F. At the time um fires, it must contain at least degG(«m) + 1 chips, so

QiFtn) ^ degG(t/m) + 1 /»)•

This inequality is clearly equivalent to

Q(Mm) ~ deĝ CMm) + 1 — lm,

and since degH(um) > l m, we may subtract \TG-H(um)\ from the right-hand side

without it becoming negative. On the left-hand side, subtracting |Ta-H(um)\ amounts

to removing that many chips from um. Let Q*H denote the configuration on H that

results if, for each m = 1 we remove jTo-H{um) | chips from um. Thus, we have

Q*H(Mm) > degff (um) + 1 - lm, for all m =

Since degH(um) > lm, we may remove one additional chip from each w e V{H) - v.

Let Qh denote the resulting configuration on H, so that

QH(um) > degff(um) - lmr for all m = 1 ,.. . ,/i.

Note that v is the only node in VQJ) that is critical in QH.

Our intention is to input the graph H and the configuration Qh into

Algorithm 4.2. The algorithm requires that H is connected and Qh is a relaxed legal

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

configuration. Since i f is a subgraph of G induced on the nodes that fire during a

bum-off game, i f is connected. Our choice of Q comes from an equivalence class of

the relation on ^ g , so Q is a relaxed configuration on G. For each u e V(H), we

remove | r g-hW)| chips from u, so Q*H is a relaxed configuration on if. In creating Qh

from Qh, we remove a chip from each w e V(H) - v, so QH is a relaxed configuration

on if.

configuration on if. Partition V(H) into independent sets as follows: for

t = 0 , . . . , h - l , let I t = {uh-t}, and let h = {v}. For all t = 0,... ,h - 1 , those

ff-neighbors of uh-t that follow Uh-t in F appear in U£o Ir- Therefore,

It is easy to check that the analogous inequality holds for v, and this proves that Qh

is legal.

We apply Algorithm 4.2 w ith the connected graph i f and the relaxed

legal configuration Qh on if. The algorithm outputs a spanning tree T* of if*.

Because v is the only node in V(H) that is critical in QH/ the only node adjacent to the

special node x in if* is v. Let T = T* - x . Finally, define B(Q) = T. This tree is clearly

a member of %ig, so B is well-defined.

Finally, we appeal to Proposition 2.4 to show that Qh is a legal

W~Uh~l
for all t = 0 ,... ,h - 1 .

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Claim 3. B is injective.

Proof of claim. We will show that for distinct QfQ* e Qytg, we have B(Q) * B(Q').

Let Q,Q' be representatives of Q,Q’ respectively. Let H,H' denote the subgraphs

induced on G by the g nodes that fire when Q, Q1 respectively are seeded at v.

First, we consider the case where H - H' =: Ho- Because Q and Q' are

distinct, we know Q\H0 * Q'\h0- Therefore, Q h0 and Q'Ho will be distinct relaxed legal

configurations on H 0. The injective nature of Algorithm 4.2 ensures that

B (Q)* B {Q !).

Second, we consider the case where H + H 1. When each of these

subgraphs is used as the underlying graph in an iteration of Algorithm 4.2, the

output is a spanning tree of that subgraph (with the edge {v,x}, which we

subsequently delete). Since H * H', these two trees m ust be distinct, so

B { Q)* B @) . m

Assisted by the following claim, finally, w e'll be able to tu rn our attention

to the inner sum that appears in the statement of Theorem 4.9. Given T e 1 \ g, let us

denote A(T) by Q r.

Claim 4. For each T e T v,g/ we have \Qt \ - L(G - T).

Proof of claim. Because Q T is an equivalence class of the relation on %,#, it collects

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

all relaxed legal configurations that agree on V(H). Thus, two elements of Q T can

differ only on V (G -T) . By Lemma 2.8, the legality of Q e Q T on G implies the

legality of Q\g-t on G - T . Hence, \Q t \ < L (G - T) . Let L represent any relaxed legal

configuration counted by L{G - T), and use L for Z in the definition of A(T) (p. 74).

This has the effect of extending L to the rest of G using (2|r, which is common to all

Q e Qr . Because we used A ->Qy,g in bringing about this extension, the

resulting configuration is legal on G. Since this extension is clearly injective, we

have \Qt \ > L (G - T). ■

To complete the proof of Theorem 4.9, it suffices to show that for each

v & V, the num ber Wof relaxed legal configurations C that result in a game of length

g when seeded at v is S : = ^ Teq- L(G - T). From the definition of %,!g, we have

J\r = so it remains to show that | ^ g | = S-

Since both of A,B are injections, and both of TVĵ , Qv,g are finite sets, it

follows that A is in fact a bijection. (The same is true of B, but we w on't need this

fact.) Thus, as T runs through its image A(T) = Q r runs through Qv,g, and it

follows that

K l = £ | 3 | - S l ^ r l - E U G - T) ~ s ,
QeO Te<rv,g »,g

where Claim 4 justifies the third equation. ■

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 4.10 We illustrate Theorem 4.9 on the graph G in Figure 4.5. Here we

consider a game of length three that starts with v as the seed. One of the subtrees

T eTv>3 is shown with bold lines. To apply Theorem 4.9 in evaluating L(G - T), we

add the node x to G - T , resulting in the graph on the right.

G —T+ x

Figure 4.5. Determination o f one term in the sum in
Theorem 4.9

Theorem 4.1 depends on Algorithm 2.6, which may take disconnected

graphs as input (see p. 24). By Theorem 4.1, then, we have r (G - T + x) = L{G - T).

Using the Matrix Tree Theorem (or by inspection), we find that L(G - T) = 8 . Thus,

this particular choice of subtree through v adds 8 legal configurations to the sum in

Theorem 4.9. This is just one of the subtrees contributing to the inner sum; there are

four more such subtrees.

4.4 All relaxed legal configurations are equally likely

Theorem 4.9 does not by itself accomplish our goal of mathematically

predicting whether a sequence of bum-off games will exhibit the size versus

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frequency relationship exhibited by a system in a state of SOC. The results in this

section give us the last tool we need in our pursuit of this goal. Recall that for a

connected graph G = (V,E) we denote the set of relaxed legal configurations on G

by <R>

Proposition 4.11 For C e G^and v e V, there exists at least one C* e such that ifC*

is seeded at v, then the resulting relaxed configuration is C.

Proof. If removing a chip from v in C results in a legal configuration C*, then C*

has the desired property, for if C* is seeded at v, then the resulting configuration is

immediately C after a game of length zero.

So we may suppose either that C(v) = 0 or that removing a chip from v in

C creates an illegal configuration in G. In either case, we define C* by first defining

a subgraph Y of G. If C(v) = 0, then let 7 be the subgraph induced on v alone. Now

suppose that C(v) > 0. Because C is a legal configuration, we m ay use Algorithm 2.6

to delete all of the nodes in some sequence according to the conditions specified in

this algorithm. Since removing a chip from v creates an illegal configuration on G

(see the preceding paragraph), there exists a set of nodes X = {v ,y \,y i, ■■■ ,yk}, w ith

k > 1, that induces a connected subgraph of G where only v is critical in C\x- Let Y be

the subgraph induced on the largest such set; the arguments below do not require

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

this choice to be unique.

Let C*(v) = degG(v). For each we V - v , let

C* (u) = (C(u) - | r 0(«) H 7|)(mod degG(w) + 1). (4.9)

Note that

C(w) > | r 0 (w) n Y\ for w £ V(Y) (4.10)

because otherwise we m ust include w in V(Y). We claim that C* has the desired

property. To establish this claim, we will show that (a) C* is a legal configuration;

and (b) if C* is seeded at v, the resulting relaxed configuration is C.

(a) C* is a legal configuration.

Since C is legal, using Algorithm 2.6 we may delete the nodes in V in

some sequence S - (w,)1̂ . For r = 1,... ,\V\, let G r be the subgraph of G that exists

just prior to the deletion of ur by Algorithm 2.6. Select an edge e = {u}, ui} such that

(without loss of generality) w, precedes ui in S. Because Algorithm 2.6 can delete uj

from Gj, we know CGj(uj) > dega .(uj) > 1. Suppose that we delete e from G to create

the graph G' (so that degG/(w7) = degG(w7) -1) , and simultaneously create

configuration C' on G1 by removing one chip from uj (so that C'G, (uj) = Cg{uj) - 1)

and one chip from ui, if possible (we discuss this case later in the paragraph). We

claim that Algorithm 2.6 may delete the nodes in V(G') in the same sequence S. The

only nodes affected by the deletion of e are Uj and « / , s o we consider each in turn.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Define G'r analogously to G r. If we delete the nodes Hi,.. . , Uj-\ of G' in that order, we

have degG/(wy) = degGj(u/) - 1. To thereupon delete w, we require C'g,(m;) > degG;(w/),

which follows from

C'0,(.Uj) = C0,(Uj)

= Coiuj) - 1

= CGj(uj) - 1

> degg. (u}) - 1

= d e g Gj (u 7).

We now turn to u\. Because Algorithm 2.6 can delete «/ from Gu then

Ca,{ui) > degG;(w/). If CGl(ui) = 0 , then all of the G-neighbors of ui m ust precede ut

in S. In this case, degGi(w/) = 0, so CG,(w/) > degG/(w/) even if we were not able to

remove a chip from ui as described in the paragraph above. If CG,(ui) > 0, then we

were able to remove a chip from ut as described above. Here the same argument

given for Uj applies to «/. Thus, Algorithm 2.6 m ay delete the nodes in V(G') in the

order given in S; this assures us that the new configuration on G 1 is legal.

Let S be the subsequence of S that contains the nodes in T. With the help

of the ideas in the paragraphs above, we now establish that Algorithm 2.6, acting on

G, can also delete the nodes in S \S before it deletes the nodes in S. Create the

subgraph (j of G by deleting every edge in E(G) that is incident w ith a node in V(Y).

At each deletion, remove one chip from the nodes incident w ith these edges, if

possible. Let C be the configuration that results on (5. We know from (4.10) that

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C g (w) > \ry (w)| for w g V(Y), so CG(w) > 0; that is, we will be able to remove a chip

from w for each edge incident with w that we delete. By the argument given above,

we know C is legal. Because we have deleted every edge in E(G) that is incident

with a node in V(Y), we know that deg^Cv) = 0 for all y e Y. Therefore, if we use

Algorithm 2.6 to investigate the legality of C, we may delete the nodes in V(Y) at any

time we choose; in particular, we choose to delete them after we delete the nodes in

V(G - Y). Let Q be the sequence in which we delete the nodes in G; specifically, let

Q = (w i ,wa>w [,... ,w'p), where a + f3 = |F|, wa e V (G -Y), and w'b e Y. Define (j>

analogously to Gr. For wa e V(G - Y), we know C^a(wa) > d eg ^ (wa).

We claim that the nodes in V(G - Y) may be deleted from G by

Algorithm 2.6 in the same order they appear in Q. Restore the edges that were

deleted during the creation of G, along w ith the chips that were removed from the

nodes. After we restore both the deleted edges and the removed chips, we have

Coa(wa) = c 6a(wa) + |r> O fl)| > deg6a(wa) + |Tr(wa)\ = degGa(wa).

Thus, we may let wa be the ath node deleted as Algorithm 2.6 investigates the

legality of G. Let W denote this sequence (w,)“=1. Since C\r is legal by Lemma 2.8, we

may use Algorithm 2.6 to delete the nodes in Y in some order. Let W be this

sequence, which we note is a permutation of S.

So, if we concatenate the sequences W and W1 to form the sequence T, we

know that Algorithm 2.6, acting on G, can delete the nodes in V in the sequence T.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Now concatenate the sequences W and W to form the sequence T*. We argue now

that w hen we check C* for legality using Algorithm 2.6, we can delete the nodes in

the order found in T*.

First, we show that v m ust be the initial entry in W1. If v is the only entry

in W , this is clear; further, since v is critical in C*, Algorithm 2.6 may delete v as it

works on C*. In this case, we may pick up the argument as it resumes after (4.14). If

v is not the only entry in W1, then supposey e Y, w ithy * v, is the first entry in W1.

By definition of 7, we have C(y) < deg7 (y); thus, at least one neighbor of y in Y m ust

be deleted before Algorithm 2.6 may delete y. This immediately gives our

contradiction. Suppose then that W1 = (v,yi,y2, ••• ,y*)- For 1 = 1 , 2 ,... ,k, let t, denote

the num ber of neighbors ofy, that precede y, in W*. For each i we have

C(yi) < degr (y,). (4.11)

But since y, can be deleted (from Y) in the order specified by W1, we have

C(y,) > deg7 (y,) - A (4.12)

In (4.9) we set

C*(y,) = (C(y,) - deg7 (y,))(mod degG(y,) + 1).

But (4.11) implies that

C*(y,) = degG(y,) + 1 + C(y,) - deg7 (y,). (4.13)

Now (4.12) and (4.13) together imply that

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C* (y,) > degG(y,) + 1 + deg7 (y,) - f, - deg7 (y,)

> degG(y,) - tj. (4.14)

By (4.14) we conclude that in C* the nodes in W1 can be deleted in the order given

by this sequence. It remains to show that the nodes in W may be deleted

sequentially following the deletion of every node in IF'. By (4.9), the only nodes in W

for which C(w,) ± C*(w,) are those with neighbors in Y. Specifically, for

i = 1 , 2 , we have C*(w,) = C(w,) - |rrfw,)! by (4.9) and (4.10). However, we

have just seen that all of the nodes in V(Y) may be deleted first as Algorithm 2.6

checks the legality of C*, so the |ry(w,)[neighbors of w, in 7 have been deleted when

the algorithm begins to delete the nodes in W. Let t\ equal the num ber of neighbors

of M>t that precede w, in W. Because C is a legal configuration on G, we know that

C(wi) > degG(w,) - tl. Thus,

C *(w ,) = C (w ,) -H > (w ,) |

> degG(w ,) - r ' - | r y(w,)|,

which implies that Algorithm 2.6 may delete w, in the order it appears in W. We

have now established that we m ay delete all of the nodes in the configuration C* in

the manner detailed in Algorithm 2.6; thus, by Proposition 2.9 we know that C* is a

legal configuration. ■

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(b) I fv is seeded in C*, then the resulting relaxed configuration is C.

In our argum ent for part (a), we saw that an application of Algorithm 2.6

may delete the nodes of G when they are in the configuration C* by deleting first

the nodes in W1 and then those in W. We now argue that w hen C* is seeded at v,

precisely the nodes in W fire during the game.

It is clear that v will fire when it receives one chip because

C*(v) = degG(v). For each y, in W1 = (v,yu y 2, ... ,y k), we have C*(y,) > degG(y,) - 1,

by (4.14). If the nodes in (v,yi,y2, ••• ,y,-i) fire, then the num ber of chips on y,

increases to C*(yi) + 1, > degG(y,)- Thus y, may now fire as well; so, all nodes in W

fire during the game. When we create C* from C we remove |Ty(w)| chips from each

node w e V(Y) (see (4.9) and (4.10)). But if we fire all of the nodes in V(Y), then w

gains exactly that m any chips. Since w is not supercritical in C, it is also not

supercritical at any point in the game that starts on C*. Thus none of the nodes in W

fire during the game. Further, it is evident that w hen C* has relaxed, the num ber of

chips on w is C(w).

We now establish that w hen C* has relaxed, the num ber of chips on each

y, e V(Y) - v is C(y,). Since y, fires during the game, it loses degG(y,) + 1 chips. But all

degy(y,) of its neighbors also fire during the game, so it gains this m any chips. Thus,

from (4.13) we see that w hen C* has relaxed, the num ber of chips on each

y, e V(Y) - v is C(y,).

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Finally, we recall that C*(v) = degG(v) by definition. When v is seeded

and it fires, it loses all of its chips, but then it gains one chip from each of its degr(v)

neighbors in Y. When the game finishes, v will thus contain degy(v) chips, which, as

we saw when we defined Y, is C(v). We have therefore established that C* relaxes to

C when v is the seed. ■

We intend to prove that all relaxed legal configurations are equally likely.

As a step in this direction, it is helpful for us to show that choosing two seeds in a

given configuration results in two distinct relaxed configurations; before we do, we

pause to prove the following useful result.

Lemma 4.12 Let C be a relaxed legal configuration on a connected graph G. Consider a

burn-off game of length at least two that results in the configuration C'. Let H be the

subgraph induced on the nodes that fire during the game. After relaxation, only the seed v

will be critical in H.

Proof. The seed v m ust fire, since the game length is at least two. When v fires it

loses all its chips. Each of its neighbors in H fires, sending a chip back to v. By

Lemma 4.8, none of these nodes may fire a second time. Thus, at the end of the

game, C'(v) = deg^(v); that is, v is critical in H.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Consider u e V(H) - v. We know that C(m) < degG(w) as the game begins.

By Lemma 4.8, each node in H fires exactly once. Thus, each of the degff(w)

neighbors of u in H fires and adds one chip to u. By Proposition 2.1, the firing order

has no effect on C'. Thus, C'(u) = C(u) + deg^(w) - (degG(w) + 1) < degff(w). ■

Now we proceed to the main result that, along with Proposition 4.11,

allows us to conclude that all relaxed legal configurations in a bum-off game on a

given connected graph are equally likely.

Proposition 4.13 Given C e ^ on a connected graph G = (V,E), it is not possible to

choose two distinct seeds and relax the resulting configurations to the same legal

configuration.

Proof Define R v : V -> N as the relaxed configuration that results from seeding C

at v. We wish to show that for u, v e V, with u t̂ v , we have R u * R v. Suppose, for a

contradiction, that R u = R v. If u is the seed and does not fire, then R u(u) = C(u) + 1. If

v is the seed and does not fire, then R v(u) = C(u). Thus, R u R v, which contradicts

our assumption. Thus, at least one of u, v must fire when chosen as the seed.

Suppose first (without loss of generality) that if G is seeded at u, then u

fires, while if G is seeded at v, then v does not fire. Since v is not critical in G and we

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have assumed R u = R v, then C(u) = Rv(u) = R u(u). If u is chosen as the seed, it fires

and loses all of its chips. Because R u(u) = R v(u), u m ust regain deg(u) chips. This

happens only if every neighbor of u fires after u itself fires. Now for every neighbor

of u to fire, at least one of those neighbors m ust itself be critical in G. Suppose that w

is such a neighbor. In the game where v is the seed and does not fire, we thus know

that w is critical in G. Because l?u(vr) = it m ust be true that w again becomes

critical, after it fires, in the game where u is the seed. But this is impossible by

Lemma 4.12.

Now we may suppose that both u and v fire if chosen as the seed. First,

we show that if v is the seed (without loss of generality), then u m ust also fire.

Suppose by way of contradiction that u does not fire, so R v(u) = deg(w). If u and v are

neighbors, then clearly u m ust fire if v is the seed; we therefore assume for the

remainder of the proof that u and v are not neighbors. Then in the game where u is

the seed, every neighbor of u m ust also fire so that R u(u) = deg(w). Therefore, at least

one neighbor w of u m ust be critical in G. By Lemma 4.12, R u(w) < C(vr). But R u = R v

implies that w m ust also fire in the game where v is the seed. Since u is critical in G,

it too will fire w hen w fires. This contradicts our assumption. Thus, if either u or v is

the seed, the other node m ust fire during the game.

So in the game where v is the seed, at least one neighbor of v m ust also

fire so that u will fire. Suppose that k neighbors of v fire. After v fires, it contains zero

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

chips, so i?v(v) = k. Because Ru = R v, we m ust have Ru(v) = k as well. In the game

where u is the seed, at least one neighbor of v m ust fire in order to allow v to fire.

Say that w is such a neighbor. Now after v fires, it contains zero chips, so k of its

neighbors m ust now fire to achieve R u(v) = k. Since w has already fired in this game,

it may not be one of these k neighbors (by Lemma 4.8). So at least k+ 1 neighbors of

v fire in the game that starts with u as the seed.

Thus, we have k neighbors of v firing in the game where v is the seed and

at least k + 1 neighbors of v firing in the game where u is the seed. There is therefore

a node z that is adjacent to v and that fires w hen u is the seed bu t not when v is the

seed. The number of chips on z at the end of a game in which it does not fire must

be at least C(z). But the num ber of chips on z at the end of a game in which it does

fire m ust be at most C(z) + deg(z) - (deg(z) + 1) < C(z). Thus, Ru(z) < R v(z),

contradicting our assumption that R u = R v. ■

We may now proceed w ith the m ain result of this section. Recall that we

are considering a sequence of bum-off games as a Markov chain where the states

are the relaxed legal configurations and the transitions are determined by the

configurations that result when a node is chosen as the seed and the configuration is

relaxed. Let D be the digraph that represents this Markov chain, and let P be the

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transition probability matrix. Let Qi be the set of relaxed legal configurations on G

and let r = | (^ j.

Theorem 4.14 All relaxed legal configurations in a sequence of burn-off games on a

connected graph G = (V,E) are equally likely.

Proof Let C* e 5Lbe a relaxed legal configuration on G. When we initiate a bum-off

game on G by seeding one of its nodes, C* relaxes to a legal configuration (by

Proposition 2.1). As a result, we know that

outdegi)(C*) < \V\ for all C* <= (4.15)

Summing over all relaxed legal configurations, we have

22 outdegx>(C*) <r\V\. (4.16)

In Proposition 4.11 we saw that for any legal configuration C and node v there is at

least one legal configuration C* that relaxes to C when v is seeded. Then in

Proposition 4.13 we found that such C* m ust be distinct for each choice of v.

Together, these results imply that

indegz>(C) >\V\ for all C e 5 .̂ (4.17)

Summing over all relaxed legal configurations, we have

22indeg£,(C) > r\V\. (4.18)
ceaj.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Inequalities (4.16) and (4.18) together give

r\V\ >]£outdegc(C) =]T)indegD(C) > r\V\,
CcVi Ce5{.

which establishes the identity

2>utdeg£>(C) = ^ in d eg o (C) = r\V\. (4.19)
Ceat, c<=<n

Taking (4.19) along w ith (4.15) and (4.17) respectively, we conclude that

outdegD(C) = indegz>(C) = \V\ for all C e i (4.20)

In a burn-off game, the seed is chosen at random, so every nonzero entry in P is

1/|F|. Since indeg£>(C) = \V\ for all C e ^ , it follows that P is doubly stochastic.

Therefore (see, e.g., [10]), the entries of the stationary distribution are all equal. ■

Theorem 4.9 and Theorem 4.14 together give us a method by which we

may mathematically determine, without resorting to computer simulations, the

probabilities associated with the lengths of bum-off games on any given connected

graph. They do not, however, provide a closed formula for finding these

probabilities. In Chapter 5, we return to the special case of complete graphs and, in

this more restrictive setting, find such a closed formula. We conclude the present

chapter with an example to show how our mathematical results can be compared to

our earlier empirical ones.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Example 4.15 Consider the graph G shown in Figure 1.1 on p. 4. Applying

Theorem 4.1 to G, we find that there are 40 relaxed legal configurations. Because G

has four nodes, there are 160 pairs (C,v) of relaxed legal configurations and seed

choices. Of these, 82 pairs result in a game of length zero (Proposition 4.7). We

know that bum-off games on G may not have length greater than four (Lemma 4.8).

10.07 10.00 9.79 9 . 3 8 7 1 4 7 . 5 0

gam e length

Figure 4.6. Comparison o f analytic results to previously simulated
results in Figure 1.2, p. 9

Four applications of Theorem 4.9 show that the num ber of pairs resulting in games

of length one, two, three, and four are 35, 16, 15, and 12 respectively. By

Theorem 4.14, each relaxed legal configuration is equally likely to appear during a

sequence of bum-off games on G. Thus, we may calculate the probability

distribution of the game length. These results are shown in Figure 4.6: the lefthand

bars record the results of 1 0 ,0 0 0 computer simulations, previously appearing in

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.2; the righthand bars are those found in this example using the methods of

the present chapter. The close visual agreement between the analytical and

simulated data was confirmed by a %2 goodness-of-fit test. Even with the level of

significance a as high as 0 .1 , this test did not reject the hypothesis that our analytical

results correctly model the simulated data.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Distribution of game length on a complete graph

Our main goal in this chapter is to find a closed formula for the

probability distribution of the bum-off game length on a complete graph. By

finding this distribution, we shall draw conclusions about whether such games

exhibit SOC behavior.

5.1 Overview

Refer to the introduction of Chapter 4 for a description of the probability

model we associate w ith burn-off games. Let us define the random variable X to be

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the length g > 0 of a bum-off game on K„, and, as in Chapter 3, let < ,̂be the set of

relaxed legal configurations on Kn. To determine the distribution of X, we condition

on the configuration q e ^ that is seeded:

Pr{A" = g} = ^ P r{ X - g | q is seeded} Pr{seeded configuration is q}. (5.1)
9

In Section 5.2, we find that Pr{seeded configuration is q} does not depend

on q, but only on n. In Section 5.3, we find an expression for

Pg,q := Pr{X = g | q is seeded}

in terms of just n and g. These results yield a formula for finding the probability of

any game length we choose.

5.2 All relaxed legal configurations on K n are equally likely

Recall from the introduction to Chapter 4 that we view bum-off games as

a sequence of experiments in which a pair (q,v) results in an outcome

q* e % In this section, we investigate the long-run probability that, during the

relaxed phase of a bum-off chip-firing game on Kn, the chips are distributed on the

nodes in a particular configuration q. We know from Theorem 4.14 that this

long-run probability does not depend on q; we include this alternate proof because

it results in an explicit formula in the case of complete graphs.

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Theorem 5.1 In a sequence of burn-off games played on K„, the stationary probability of a

burn-off game relaxing to configuration q e ^ is +^y«-i •

Recalling Theorem 3.3, we see that the denominator here is the num ber of

relaxed legal configurations for a bum-off chip-firing game on K„. Theorem 5.1

simply states that every relaxed legal configuration is equally likely to appear

during the relaxed phase of a sequence of bum-off games. Since the proof occupies

a number of pages, we first provide an outline.

Let q be a legal configuration on K„, and v e V(K„). We will find a legal

configuration q* such that, if v is the seed, the resulting relaxed configuration is q

(cf. Proposition 4.11, where our proof is less transparent). We will also show that if

the chips are in a configuration q*, it is impossible to choose two different nodes as

the seed and result in the same configuration q. Thus, we will show that there are at

least n configurations on which a particular choice of seed will result in the

configuration q.

Thanks to the deterministic nature of chip-firing games (see

Proposition 2.1), it is easy to see that for any given configuration q*, there are at

most n configurations that can result from adding a chip to a node. Every chip-firing

game m ust relax to just one configuration, and since there are n nodes to choose as

the seed, there are at most n possible outcomes.

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

These bounds together imply that for each configuration q there are

exactly n configurations q* that relax to q. Since each node is equally likely to be

chosen as a seed, we will be able to use a key property of Markov chains with

doubly-stochastic transition matrices to complete our argument.

Proof of Theorem 5.1. Let q be a legal configuration on K„ and v e K n. We seek a

legal configuration q* such that, if q* is seeded at v, the resulting relaxed

configuration is q. We consider two cases. Before jumping in, let us note that if

q(v) = 0 , then Proposition 3.1 implies that we cannot have q(u) = 0 . Thus, any

configuration with q(v) = 0 will be addressed in Case 2.

Case 1. There exists u * v such that q(u) = q(v) > 1 .

Suppose that q(u) = q(y) = j. In this case, it suffices to take q* as the

configuration agreeing with q except for one fewer chip on v. Since q is legal,

Proposition 3.1 shows that at most j +1 nodes contain j or fewer chips. But

q(u) = q(v) = j implies that at most j - I nodes contain j - 1 or fewer chips. When a

chip is removed from v to obtain q*, at most j nodes will contain j - 1 or fewer chips.

Thus, q* is a legal configuration; clearly, q* relaxes to q (after zero steps).

Case 2. No other node contains the same num ber of chips as does v.

Denote the num ber of chips on the nodes of K„ w ith a vector as follows:

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

q = (xn-i,x n-2 , . . . , x M ,x i,x i- i , . . . , x 2,x u xo),

where x„_i > x„_2 > ••• > xi > x0 (we shall refer to this as the canonical order on q),

and Xi is the num ber of chips on v. Later, it will be useful to rewrite these

inequalities as: x > x^+ i) for 0 < k < i, and jc for 1 < j < n - i .

Since q is legal, at most i nodes contain i - 1 or fewer chips. In addition, q

is written in canonical order, so x, > i. If x, > i, then we may reduce the number of

chips on v by one to create q*, a configuration in which at most i nodes contain / - 1

or fewer chips. Therefore, it remains only to consider those cases where x, =

Since q is legal, we know that x,_t > i - k , for 0 < k < i, and that

*n-j > n - j , for 1 < j < n - i . We therefore know that x,_i = / - 1 , because

i = Xi > x ^i > i — l, and v is the only node containing x, chips. Since all legal

configurations have at least one critical node, and q is written in canonical order, we

also have x„_i - n - 1, the common degree in K„. For later reference, we restate and

label these findings.

x, = i. (5.2)

Xj-1 = / '- 1. (5.3)

Xj-k > i - k, for 0 < k < i. (5.4)

X„_i = H- l . (5.5)

x»-j > n - j , for 1 < j < n - i . (5.6)

xt-k > */-(*+1) for 0 < k < i. (5.7)

x„-j > x„-(j+j) for 1 < j < n - i. (5.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The configuration q* that we claim relaxes to q when seeded at v is

 /v* v* v* v* v* v* v* \q ... >x 0ix n-\’An-2> ••• >•*«-(«-(/+!))/'

where

x* = w - 1,

x*.* = x,-_fc - x, + n for 1 < k < i, (5.9)

**_, = x n- j - (x, + 1) for 1 < j < n - (i + 1).

Example 5.2 Consider K 6, and q = (5,4,4 ,2 ,1 , 0). Suppose we pick the node

containing 2 chips as our special node v. Note that x, = 2 = i, and that v is the only

node containing this many chips—these two qualities fit the requirements of Case 2.

According to the definition of q*, we have q* = (5,5,4,2,1,1). Since

x* - 5, if we add a chip to v, then we obtain the following firing sequence:

(6 ,5,4,2,1,1)
(0 , 6 ,5 ,3 ,2 , 2)
(1, 0 , 6 ,4,3,3)
(2,1,0,5,4,4).

If re-written in canonical order, the final configuration is q.

Following our outline, to complete the proof of Theorem 5.1, we will first

establish four facts about q*:

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) q* is in canonical order;

(b) q* is a legal configuration;

(c) if v is seeded in q*, then q* will relax to q;

(d) starting from q*, it is not possible to seed a node other than v and relax to q.

(a) q* is in canonical order.

The configuration q* is in canonical order if its entries are nonincreasing.

To demonstrate this, we observe that the entries x*,x*_i , . . . ,X2,x*,XQ are

nonincreasing. First note that

= Xi-\ - X j + n

= (i - 1) - i + n

= n - 1,

so that x* = n - 1 = . Now for 0 < k < i,

x*_k =Xi-k - X i + n

> *,_(*+!) - X i + n
Y* %~ •*/-(£+1)'

where the inequality holds by (5.7). Observe that x% > because

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xg = x o - X i + n

> n - X j
= n - i

> n - i - 2

= (« - l) - (i + l)
= X n- \ - (X j + 1)

wmm V* ̂
“ x n - 1-

Finally, we show that the entries x*_u x*_2, ... ,x * _ ^ j+1)-) are nonincreasing.

For 1 < j < n - (z + 1),

K-j = X n- j - (X i + 1)

> X „-(/+l) - (X j + 1)

_ v*

where the inequality holds by (5.8). Thus, q* is in canonical order. ■

(b) q* is a legal configuration.

If a configuration r = (rn- i ,r n-2, ... ,ry,ry_i,ry_2, ... ,r 2,r \ ,r f) is in canonical

order, and for all 0 < 7 < « - 1, only the entries rh \ , r y i , . . . ,r%,r\,r^ are j - 1 or less,

then at most j entries of r are j - I or less, so r is legal (by Proposition 3.1). In other

words, if r is in canonical order and rj > j for all 0 < j < n - 1, then r is legal. We

have established in part (a) that q* is in canonical order, so here we show that q* > j

for all such j.

We begin by noting that x* = n - 1 , so that q*^ > n - 1 . We tu rn our

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

attention to the terms that follow x*. First, for 0 < k < i, note that q*n_{k+l) = x*_k and

that

x*_k = xi-k -X i + n
> i - k - i + n
= n - k
> n - (k+ 1),

where the first inequality holds by (5.2) and (5.4). Second, for 1 < j < n - (i + 1), note

that qj—i = K -(n-a+j)) and that

X n-(n-(i+j)) = X n-(n-(i+j)) ~ ix i + 1)
= X i+j - X i - 1

> i + j - i - 1

= 7 - 1 ,

where the inequality holds by (5.2) and (5.6). Since q* is in canonical order and each

of its entries is sufficiently large, q* is legal. ■

(c) I f q* is seeded at v, then the resulting relaxed configuration is q.

Recall that q*_v = x*, the num ber of chips on v in the configuration q*.

Since x* = n - 1 (by (5.9)), then v will fire when q* is seeded at v. We proceed to

show that this causes all of the nodes represented in the next i entries of q* also to

fire but none of the remaining n - (i + 1) nodes.

For convenience, we will refer to the nodes of K n by their corresponding

positions in q*, so, e.g., the node starting w ith x* chips will be called node (n - 1)

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and the node starting with chips will be called node 0. Note that for

k = 0 , 1 , . . . , / , there are x*_k chips on the node n - (k + 1).

We demonstrate now that the node n - k, for 2 < k < i + 1, will fire if all

nodes n - a, for a = 1,2, ...,& -1 , have fired. The node n - k begins with chips,

and, using the estimates from part (b) above, we h a v e > n - k . Thus, after the

nodes n - a , for a = 1 , . . . ,k - 1, have fired and thus added k — 1 chips to the node

n - k , the num ber of chips on this node will exceed (n - k) + (k - \) = n - \ .

Therefore, the node n - k indeed fires.

We show now that none of the nodes n - a, for a = i + 2,i + 3 ,... ,n, will

fire. We need only check the status of the node « - (/ ' + 2), because q* is in canonical

order, implying that the node n - (i + 2) contains at least as m any chips as any of the

nodes n - a for which a = i + 3 , . . . ,n. The num ber of chips on the node n - (i + 2) is

x*_x = x„-\ - (x, + 1) = (n - 1) - (/' + 1) - n - i - 2. By the argum ent above, all nodes

earlier than the node « - (/ ' + 2) in the canonical ordering have fired. There are i + 1

such nodes, so /' + 1 chips are added to the node containing x*_x = n - i - 2 chips in

q*. The new num ber of chips on the node « - (/ ' +2), then, is

(n - i - 2) + (i + 1) = n - 1, so that node does not fire.

Finally, we argue that q* relaxes to q. First, consider the nodes that do

fire, namely, the nodes containing x*_k chips (where k - 0 ,1 ,...,/). Recall from (5.9)

that x*_k = Xt-k - x t + «, and note that i + 1 nodes fire during the course of the game,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

including the node in question. When a node fires, it loses n chips, so the new

number of chips on a node that begins w ith x*_k chips is

x*_k + i - n - Xi-k - xt + n + i - n = x,_*, sincex,- = i (by (5.2)).

Now consider the nodes that do not fire, namely, the nodes with x*_;-

chips on them (where j = 1 ,2 ,. . . ,« - (i + 1)). Since x*_j = x„_; - (x, + 1), and i + 1

nodes fire (adding one chip each to every other node), the new num ber of chips on a

node that begins w ith x*_j chips is x*_,- + (/' + 1) = x„_,- - (x, + 1) + (/ + 1) = x„_;, again

using (5.2). Thus, we see that for both sets of nodes, the corresponding entries of q*

are transformed to those of q by the firing sequence. ■

(d) Starting from q*, it is not possible to seed at a node u * v and relax to q.

We show that if we start with the configuration q* and seed a firing

sequence at a node u * v, the resulting configuration cannot be identical to q.

One of two outcomes can occur: (1) neither u nor v fires if a chip is added,

or (2) one or both fire if a chip is added. In the first case, the conclusion clearly

follows: adding a chip to u increases the num ber of chips on u by one, but does not

change the num ber of chips on v, while adding a chip to v has the opposite effect.

As we turn to the second case, we recall Lemma 4.8 which implies that a

burn-off game started in a relaxed configuration may take at most n turns. (To

establish that such a game may take exactly n turns, consider K„ w ith every node

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

containing n - 1 chips.) Note also that if a node x fires once during the course of a

game of length g, then the number of chips on x increases by g - 1 (or g, if x is the

seed) and decreases by n (one chip moves to each neighbor, and one burns off). On

the other hand, if x does not fire during the course of such a game, then the number

of chips on x increases by g. Thus, if u is the seed, and it fires once, the number of

chips on u increases by g and decreases by n.

Now we consider case (2): let u be the node that fires if a chip is added to

it and v be the node that may or may not fire. We examine these two possibilities in

turn. Suppose that v contains fewer than n - 1 chips, so that if it were chosen as the

seed, it would not fire—in this case, the num ber of chips on u would remain

constant. If u is the seed, it will fire and lose all of its chips. For u to regain its n - 1

chips, g would have to be equal n (by Lemma 4.8, g cannot exceed n). But if g = n,

then the num ber of chips on v increases by g - 1 = n - 1 and decreases by n,

resulting in the loss of one chip from v.

Suppose instead that v contains n - 1 chips, so that if it were chosen as the

seed, it would fire, and the num ber of chips on it would increase by g and decrease

by n. In this case, were u to be the seed, v would fire as well, which would increase

the number of chips on v by g - 1 and decrease it by n. In these cases, the resulting

numbers of chips on v differ, so the final configurations cannot be the same. ■

109

with permission of the copyright owner. Further reproduction prohibited without permission.

Combining the results (a) through (d) with the remarks in the outline of

this proof (p. 1 0 0), we have now established that for every relaxed configuration q,

there are exactly n relaxed configurations that, when seeded, will relax to q.

Consider the bum-off chip-firing game as a Markov chain, where the

states are the relaxed legal configurations, and the transitions are determined by the

configurations that result when a node is seeded. Let D be the digraph representing

this Markov chain. If is the set of relaxed legal configurations, then

n l&l - XindegsCC) = 2>utdegz>(C) < n (5.10)
Ce<R. CeSJ,

The first inequality follows from the conclusions just reached, and the second is

justified in the outline of the proof (p. 100). In a bum-off game, the seed is chosen at

random, so the transition probabilities are all 1 In. Since by (5.10) we have

indegc(C) = outdegc(C) = n for all C the transition matrix for this Markov

chain is doubly stochastic. It follows (see, e.g., [10]) that the entries of the stationary

distribution are all equal. In other words, we have shown that all relaxed legal

configurations on K n are equally likely. We saw earlier that the num ber of legal

configurations on K n is (n + l)"-1. Therefore, the stationary probability of a bum-off

game relaxing to configuration q is ®

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 The probabilities associated with varying game lengths

In this section, we consider the conditional probability that, during a

burn-off chip-firing game on K„, a firing sequence will be of a particular length

g > 0, given that the game is in a particular legal configuration q. In other words,

we investigate

Pm = Pr{X = g | q is seeded},

for a nonnegative integer g and q e . Recall this is the conditional probability

appearing in Section 5.1.

Recall that a node in a relaxed configuration is critical if it contains as

many chips as its degree, that is, if the node will fire with the addition of a single

chip. Call a node unstable if it will fire only when a critical node is chosen as the

seed. Finally, call a node a dud if it cannot fire during any game that is played on its

configuration. Either a node will fire when seeded (so is critical) or will not (so is

unstable or a dud). But an unstable node will fire when a critical node is seeded,

whereas a dud will not. Since each node m ust be one of these three types, the nodes

are partitioned into critical nodes, unstable nodes, and duds.

Example 5.3 Consider the configuration q - (6 , 6 ,5 ,4 ,1 , 1 , 0) on K 7. This

configuration has two critical nodes, each containing 6 chips. Either of these nodes

will fire if chosen as the seed. The configuration has two unstable nodes that contain

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 and 4 chips. If either of these is seeded, it will not fire; however, if one of the

critical nodes is seeded, both of the critical nodes will fire, and both will contribute

one chip to- the node containing 5 chips, allowing that node to fire. Now, with the

addition of the three chips provided by these three firings, the node containing 4

chips will fire as well. Since none of the remaining three nodes will collect enough

chips to fire, these nodes are duds.

Given a configuration q, let c denote the num ber of critical nodes and u

the num ber of unstable nodes. Notice that there are only two possible game lengths

that can result when a random node is seeded: either the node will not fire,

resulting in a game of length zero; or the node will fire, resulting in a game of length

c + u, by Lemma 4.8. For this reason, we will profit from counting the configurations

that have c critical nodes and u unstable nodes, for fixed nonnegative integers c

and u.

We handle the case c = 1 separately after considering the case c >2.

Proposition 5.4 For all integers 2 < c < n , 0 < u < n - c , and d = n - (c + u), the

number of configurations on K„ with c critical nodes, u unstable nodes, and d duds is

3. (5.11)

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. Let Q be the set of configurations that satisfy the conditions of our

proposition. We shall work toward determining the size of Q by first examining all

possible chip placements on the duds.

If a critical node of q e Q is chosen as the seed, then all c + u critical and

unstable nodes will fire, contributing c + u chips to each dud. Therefore, each dud

contains at most n - (c + u) - 1 - d - I chips, for otherwise the added chips will

cause it to fire. Since there are (”) ways to choose which of the n nodes will be

duds, and Ld,d-1 ways to place chips on these duds, the first two factors in (5.11)

account for the chip placement on the duds.

Now we shall account for the num ber of ways we m ay place chips on the

u unstable nodes of q. Since nodes containing n - 1 chips are critical, unstable nodes

contain at most n - 2 chips. The greatest num ber of chips that may be added during

a game to an unstable node is c + (u - 1), which implies that the smallest num ber of

chips that an unstable node may contain at the outset is n - (c + (w - 1)) = d + 1 .

Thus, unstable nodes contain between d + 1 and n - 2 chips.

Within the set of u unstable nodes, there is one that contains the fewest

chips, and it may contain anywhere from d + 1 to n - 2 chips. If two unstable nodes v

and w both contain d + l chips, then there would be at m ost c + (u - 2) other nodes

that could fire and add chips to v and w. These additional chips would increase the

number of chips on v and w to at most

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(d + 1) + c + (u - 2) = c + d + u - 1 = n - l ,

which is not enough for either of them to fire. Thus, both v and w would be duds, a

contradiction. Therefore, if the unstable node containing the fewest chips contains

d + 1 chips, then the unstable node containing the next-to-fewest chips m ust contain

between d + 2 and n - 2 chips.

By a similar argument, we see that the node containing the kth fewest

chips (for k = 1 , 2 , . . . , u) among the unstable nodes m ust contain at least d + k and at

most n - 2 chips. (Note that d + u < n - 2 because we are considering the case where

c > 2.)

Consider the vector (xi,x2, ... ,x„), where Xk is the num ber of chips on the

unstable node containing the k ,h fewest chips. We have just seen that

d + k < x j c < n - 2 . Subtracting d +1 yields k - l < X k - (d + l) < n - d - 3 , for

k = 1 , 2 Since Xk > d + 1, we see that counting the num ber of ways to distribute

chips onto the unstable nodes is equivalent to counting the num ber of legal

configurations on u nodes where each node can have at most n - d - 3 chips (cf.

characterization (3) of Proposition 3.1). By the definition of L„>m (preceding

Theorem 3.3), we have Lu,„-d-z ways to distribute the chips. Since there are (n~d)

ways to choose which of the n - d non-duds will be unstable and L u,„-d-3 ways to

place chips on these unstable nodes, the second two factors in (5.11) account for the

chip placement on the unstable nodes.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Once we have placed chips on all duds and unstable nodes, it remains

only to place chips on the critical nodes. Since all critical nodes m ust contain n - 1

chips, and we have no choice as to which nodes will be critical (with the unstable

nodes and duds already decided), the placement of these remaining chips is

uniquely determined. Thus, for c > 2, the total number of legal configurations on Kn

with c critical nodes, u unstable nodes, and d duds is

(nd) L M. t (« - d) L ^ 3. ■

We shall find it convenient to simplify the expression (5.11). The next

result is an easy consequence of Theorem 3.3.

Corollary 5.5 With the parameters as in Proposition 5.4, the number of relaxed legal

configurations on K n is

(«) (d + l) d-1 (« - rf) (c - l) (n - d - l) “-1. ■

Since the expression in Corollary 5.5 equals zero when c = 1, it does not apply in

this case. We therefore turn to the case c = 1 now.

Proposition 5.6 The number of relaxed legal configurations on K n with one critical node

is nn~l .

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proof. A relaxed legal configuration with just one critical node cannot have any

unstable nodes since, when the critical node fires, it gives just one chip to each other

node, which is not sufficient to fire any of the non-critical nodes. Thus, in the proof

of Proposition 5.4, once we count the num ber of ways to distribute the chips on the

duds, the remaining choice for the critical node is determined. We find that the

number of relaxed legal configurations on K„ w ith c - 1 critical node and d = n - 1

duds is

In our investigation of Pm = Pr{X = g | legal configuration is q}, we may

now group together all configurations q that have c > 2 critical nodes, u unstable

nodes, and d duds. Each of these has probability of having a game of length

g > c, since one of the c critical nodes m ust be chosen in order for this to occur.

Thus,

E = E (; V + n‘w (" u d Y ‘ - D(»- d - 1)"" (£)■ <5-12)
q:c>2 c=2 K U ' x '

The sum stops at g because we cannot have more than g critical nodes w ithout

having a game length longer than g, should a critical node be chosen as the seed.

Note that if a critical node is chosen as the seed, then c + u = g (by

Lemma 4.8). Now (5.12) m ay be simplified to a form involving only n, g, and c\

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

T , q -,>2P M = EL («-g)(«-^+1)""g'1(g-c)(C- 1X«-(«-^-1)g~C“1(f)
= n { ng y n - 8 + E (f)c (c - l)(g - l) ^ - 1 •

The summation in this last expression may be simplified further.

g
Lemma 5.7 For g > 2, we have ^ (f) c (c - l) (g - l) g-c_1 = gg_1.

c=2

Proof. The lefthand side is

g-c - 1

c=2 c=2

Sg
= ctV'' _________ (g ~ _2)!__________/- 1 N(g-2)—(c-2)

8 ^ (c ~ 2) \ { { g - 2) - { c - 2)) \ Kg V)

-2)-c
V c J

c=0

= gO + (g ~ l)) g”2-

Applying Lemma 5.7 to (5.13) yields

E P^ = ^ (g) (« - ^ + i)”"g" V _1 = (5.i4)
q:c>2 ^ '

Note that this expression does not depend on q.

A necessary condition for having a game length g at least two is that

117

(5.13)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

c > 2 . Thus, it follows from (5.1), (5.14), and Theorem 5.1 that for g > 2 , we have

\ n - g - l a g -2
P . 1 = I n ~ * I v * 6 1

8,q (n 4- n « - i \ P - ' \ J r i .4 . 1
g-.c>2

Proposition 5.6 and Theorem 5.1 together imply that

Pr{X = 1} = — nH~l , = - n r 2 . (5 . i6)
n(n + 1)" 1 (in + I) " -1

Conveniently, (5.16) agrees w ith (5.15) with g = 1; the remark following

Corollary 5.5 necessitated the separate handling of this case here. We delay

discussion of the remaining case g = 0 until Section 5.4, where we will employ the

methods of Chapter 3.

At this point, we may use our analytical results to see if a sequence of

bum-off games on a complete graph exhibit one of the main properties of a system

in a state of SOC: namely, that the frequency of games and their lengths have a

power law relationship (as discussed on p. 10). We show now that the relationship

is in fact vertically symmetric and thus does not follow any power law.

Proposition 5.8 For 1 < g < n , we have Pr{X = g} = Pr{X = n - g + 1 } .

Proof. Using (5.15), we have

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Y r { X = n - g + \ } = (
f n - \ \ (n - (n - g + l) + l)"-(»-g+D-i (n - g + l)"-«+1-

n ~ g) (« + 1) ”" 1

- t e i)
= J>r{X=g}.

g8 2(n - g + l) ”~g 1

(n + 1) n-1

We can thus conclude that a bum-off chip-firing game on a complete

graph will not possess one of the key features of a system that exhibits SOC. That is,

we do not find a power law relationship (as discussed in Section 1.4) between the

size (i.e. game length) and frequency (i.e. probability) of events in the system. A

complete graph features total communication among its nodes during a chip-firing

game. In other words, any event triggered by one node will affect every other node.

Systems that feature SOC generally do not communicate so thoroughly. It is typical

(see, e.g., [3] and [7]) for SOC models to represent the individuals in a system as

nodes with low degree on a large graph.

5.4 Establishing these results using the methods of Chapter 3

In this section, we show how our results from Chapter 3 verify our

results for complete graphs established in the present chapter.

First we recover the formula L n>n-i = (« + l) " -1 (see p. 40) using

Theorem 4.1 for enumerating the legal configurations on a general connected graph.

For K„, the special node x in Theorem 4.1 makes G* = K„+1. Thus, Theorem 3.5 is

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

really a corollary of Theorem 4.1, and we have = %(Kn+\) - (w + 1) " -1 by

Cayley's Formula (see, e.g., [19]).

We now enumerate the games of length zero on K„ using Proposition 4.7.

Recall that for each node v, we remove the edge {x, v} from G* and enumerate the

spanning trees of the resulting graph. We use the Matrix Tree Theorem (see, e.g.,

[19]) to count the spanning trees. We reduce the Laplacian matrix of G* by

eliminating the row and column associated w ith v, resulting in the n x n matrix

A =

n - 1 - 1

- 1 n - 1

- 1 - 1 n

-1 -1 -1
- 1 - 1 - 1

-1 -1

-1 -1

n - 1

• • - 1 n - 1

To enumerate the spanning trees of G*, we find det(A). Denoting the rows of A by

(ry)jLi and performing the elementary row operations rj —y r\, followed by

r\ + rj —* rj (for j = 2 ,.. .,«), we find the determinant to be (« - 1)(« + 1)"-2. There are

n nodes, so the num ber of pairs (q, v) w ith q e tf(,and v e V that result in a game of

length zero w hen v is the seed is n(n - 1)(« + l)"-2. Given q, a node v is selected as

the seed with probability 1 In. By Theorem 5.1, each legal configuration on K n occurs

with probability 1 /(« + 1)”-1. Thus, conditioning on the choice of (q,v) w ith q e

and seed v we find that

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pr{X= 0} = '£ ? r { X = 0 | (q,v)} Pr{v\q}?x{q}

= n(n - !)(« + l)"_2 (l/n)(l/(w + I)”-1)

- - ^ j - . (5.17)n + 1 v ’

As a check on our work, we pause to show that the probabilities in (5.15), (5.16), and

(5.17) sum to one.

Proposition 5.9 For each positive integer n, we have

n + 1 (n + 1)" 1 — n(n + 1)

Proof. We first manipulate (5.18) into a form that is amenable to a combinatorial

proof. Multiplying both sides of the equation by n(n + I)”-1, we see that it will be

equivalent to establish

n

(n - 1)n(n + l) " -2 + « ”-1 + ^ ^(n - g + l) ”-s-,gs-i = «(« + I)”-1.
g= 2

As noted following equation (5.16), the second term may be absorbed into the sum.

Collecting together the remaining terms external to the sum, we see that (5.18) is

equivalent to

n
= 2n(n + I)”-2. (5.19)

g= i

Finally, using the identity (”) = (” g *) we reduce (5.19) to

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 (™ g 1) g8 2(-n +1 ~ g n̂ 18g(n +1 ~ g ̂ = 2n(jl + 1- (5-2°)
«=1

To see that (5.20) holds, first observe that the right side enumerates the

pairs (T,~e), where T is a spanning tree of Kn+i for which one edge e (of its n edges)

has been distinguished and oriented (in one of the two possible directions). The left

side also enumerates these pairs. Given (T,e), notice that deleting the oriented edge

e from T leaves behind a spanning forest of Kn+l w ith two components L, R (that we

may consider ordered from left to right). If \V(L) \ = g, for an integer g w ith 1 < g < n,

then |F(f?)| = n +1 - g . Conversely, given such a spanning forest, we can recover

(T,e) by selecting a node x of L and a node y of R and letting e = (x,y). On the left

side of (5.20), the factor (n g ̂) accounts for the selection of V(L) (hence for the

selection of F(R)). Since L, R are, respectively, spanning trees of the induced

(complete) subgraphs Kn+l[V(L)], K n+i[V(R)], the factors gg~2 and (« + 1 - g) n~l~g are

delivered by Cayley's Formula. Finally, the factors g, (n + 1 - g) count the num ber of

ways to select the vertices x e V(L) and y e V(R) determining e. ■

Finally, we recapture the general formula (5.15), nam ely that for g > 2 ,

P r f v - ^ - (n - l M " ~ g + \ y - g-vgg-2^ { x - gy (w + i r l •

We appeal to Theorem 4.9. For each v in K nr we find all subtrees having g nodes that

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

include v. There are ways to choose the g - 1 nodes u ± v for these

subtrees; each choice results in a complete subgraph Kg of K n, for which there are

gg~2 spanning trees (by Cayley's Formula). Now we delete each subtree in turn,

counting the num ber of legal configurations on the resulting graph. When Kg is

deleted from K„, the graph Kn-g remains. By Theorem 4.1 (or Theorem 3.5), the

number of legal configurations on Kn~g is (n - g + I)"-*"1. Thus, Theorem 4.9 yields

(g ~ 1 ^ S 8~2(n ~ g + l) n~g~l as the number of ways to have a game of length g > 2 on

K„. Since each legal configuration is equally probable by Theorem 5.1, we see that

and have thus re-derived (5.15).

In Chapter 3, we investigated bum-off games on complete graphs with a

direct approach. Our methods of Chapter 4 were more general. In the present

chapter, we have re-established several important results from Chapter 3 using the

methods of Chapter 4. We revisited the link between Cayley's Theorem and relaxed

legal configurations, enum erated the pairs (q,v) e V leading to games of length

zero, and confirmed the probability distribution of bum -off game lengths. Of final

note is the fact that we were able to obtain an independent, combinatorial proof that

these probabilities sum to one. We conclude the dissertation w ith a brief list of

suggestions for further research.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5 Further research

Early models of SOC allowed stresses to escape the system. In [3],

earthquake stresses that reach the edge of the grid are considered to be lost. In [7],

avalanches can spill sand out of the system as if it were falling from a table. To

represent these models as chip-firing games, at least one node m ust have the

capacity to hold an infinite number of chips. This leads to a natural question: can a

chip-firing game w ith such a node be reconciled w ith the results in this dissertation

concerning bum-off games?

Many modified chip-firing games have been studied, including games

with mutating edges [8] and games played in parallel [5]. It w ould be interesting to

determine whether our results extend to these situations as well.

Finally, Theorems 4.9 and 4.13 together provide us w ith a method for

determining the probability distribution of the bum-off game length on a general

connected graph. We do not, however, have a closed formula for this distribution as

we do in Chapter 5 for complete graphs. Finding such a formula presents a

tantalizing open problem.

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 1

Glossaries

Glossary of notation

is a neighbor of

t(G) the num ber of spanning trees of the graph G

indegiy) in a directed graph, the num ber of incoming arcs incident with

outdeg(v) in a directed graph, the num ber of outgoing arcs incident with

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Glossary of terminology

configuration

connected

critical

critical number

deletion (edge)

deletion (node)

fire

independent

induced subgraph

language

legal

length of a game

relax

on a graph G = (V,E), a distribution C : V -*■ N of chips on V

describes a graph in which every pair of nodes is joined

by a path

in a classical chip-firing game (e.g., [6]), describes a node that

contains as many chips as its degree; in a bum-off game,

describes a node that will fire if a chip is added to it

in a chip-firing game, the least num ber of chips a node can

contain for it to fire

the removal of a single edge from a graph, not including its

ends

the removal of a single node, and all edges incident w ith it,

from a graph

the process in a chip-firing game by which the chips on a node

are redistributed

describes a set of nodes inducing a subgraph w ith an empty

edge set

of a graph G = (V,E), w ith V £ V, the subgraph H = (V1 ,E')

of G, where E' = {{x,y} e E : x,y e V'}

a collection of words

describes a configuration that m ay result from relaxing a

supercritical configuration, or result from relaxing another

legal configuration that has been seeded

the num ber of nodes that fired during a chip-firing game,

during one iteration of a seed-to-relaxation sequence

the process in a chip-firing game that begins w ith seeding a

node and continues until no nodes can fire

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relaxed

seed

simple

supercritical

word

describes a configuration in which no node can currently fire

as a noun, the node to which a chip is added to initiate

a chip-firing game; as a verb, the process of adding a chip to

such a node

describes a graph that has no loops or multiple edges

describes a node that contains more than a critical num ber of

chips, or describes a graph in which every node is supercritical

the concatenation of labels that corresponds to the sequence

of nodes that fire as a legal configuration relaxes to another

legal configuration

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix 2

Smallbasic code

The following code, written in Smallbasic, was used to produce the

results shown in Figure 1.2.

option base 1
dim gameLengths (0 to 4)
adjMatrix = [0,1,0,0/1,0,1,1;0,1,0,1;0,1,1,0]
config = [0;0;0;0]
cri tNumbers = [1;3;2;2]
input "How many games";numGames
for thisGame = 1 to numGames

' Initialize
gameLength = 0 : canFire = true
' Choose a node at random as seed
seed = int(4 * rnd + 1)
' Add a chip to the seed
config(seed,1) = config(seed,1) + 1

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

repeat
didFire = false
for thisNode = 1 to 4

if config(thisNode,1) > critNumbers(thisNode,1) then
gameLength = gameLength + 1
tmpVector01 = [0;0;0;0]
tmpVectorOl(thisNode,1) = 1
tmpVector02 = adjMatrix * tmpVectorOl
config(thisNode,1) = config(thisNode,1) -

(critNumbers(thisNode,1) +1)
config = config + tmpVector02
didFire = true

endif
next thisNode

until didFire = false

gameLengths(gameLength) = gameLengths(gameLength) + 1

next thisGame
print gameLengths

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The following code, written in Smallbasic, was used to produce the

results shown in Figure 1.3.

dim arrGrid(0 to 51,0 to 51)
dim arrGameLengths(50)

' Initialize arrGrid
for x = 1 to 50

for y = 1 to 50
arrGrid(x,y) = int(4 * rnd + 1)

next y
next x

input "Number of games";conNumberGames

for ctrGameNumber = 1 to conNumberGames
' select seed
x = int(50 * rnd + 1)
y = int(50 * rnd + 1)
' perturb seed
arrGrid(x,y) = arrGrid(x,y) + 1
' see if any node can fire
conGameLength = 0
repeat

flgDidFire = false
for i = 1 to 50

for j = 1 to 50
if arrGrid(i,j) > 3 then

flgDidFire = true
conGameLength = conGameLength + 1
arrGrid(i,j) = arrGrid(i,j) - 4
arrGrid(i-1,j) = arrGrid(i-1,j) + 1

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

arrGrid(i+1,j) = arrGrid(i+l,j) + 1
arrGrid(i,j-1) = arrGrid(i,j-1) + 1
arrGrid(i,j+1) = arrGrid (i,j+l) + 1

endif
next j

next i
until flgDidFire = false
' r e c o r d t h e g a m e l e n g t h

' f i r s t , c o l l e c t a l l g a m e s o f l e n g t h l o n g e r t h a n 5 0 i n t o

o n e c a t e g o r y

if conGameLength > 50 then conGameLength = 50
arrGameLengths(conGameLength) =

arrGameLengths(conGameLength) + 1
next ctrGameNumber

print arrGameLengths

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

[1] P. Ba k AND K. Chen, Self-organized criticality, Scientific American (Jan.
1991), 46-53.

[2] P. Ba k , C. T a n g , a n d K. W ie se n fe l d , Self-organized criticality, Phys. Rev.
A (3) 38 (1988), 364-374.

[3] P. Ba k a n d C. Ta n g , Earthquakes as a self-organized critical
phenomenon, /. Geophys. Res. 94 (1989), 15635-15637.

[4] N. L. BiGGS, Chip-firing and the critical group of a graph, J. Algebraic
Combin. 9 (1999), 25-45.

[5] J. BlTAR AND E. GOLES, Parallel chip firing games on graphs, Theoret.
Comput. Sci. 92 (1992), 291-300.

[6] A. BJORNER, L. LOVASZ, a n d P. W. SHOR, Chip-firing games on graphs,
European J. Combin. 12 (1991), 283-291.

[7] D. DHAR, Self-Organized critical state of sandpile automaton models,
Phys. Rev. Lett. 64 (1990), 1613-1616.

[8] K. ERIKSSON, Chip-firing games on mutating graphs, SIAM J. Discrete
Math. 9 (1996), 118-128.

[9] K. ERIKSSON, Node firing games on graphs, Contemp. Math. 178 (1994),
117-127.

[10] W. F e lle r , Introduction to Probability Theory and Its Applications, vol. 1,3rd
ed., John Wiley & Sons, New York, 1971.

[11] H. Je n s e n , Self-Organized Criticality: Emergent Complex Behavior in Physical
and Biological Systems, Cambridge University Press, Cambridge UK, 1998.

[12] S. Ka u f f m a n , A t Home in the Universe, Oxford University Press, New
York, 1995.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[13] B. Ko l m a n , R. Bu sb y , a n d S. ROSS, Discrete Mathematical Structures, 4th
ed., Prentice Hail, New Jersey, 2000.

[14] S. H. Liu, T. Ka p l a n , a n d L. H. G r a y , Geometry and dynamics of
deterministic sand piles, Phys. Rev. A (3) 42 (1990), 3207-3212.

[15] K. N a g e l a n d M. P a c z u s k i , Emergent traffic jams, Phys. Rev. E 51 (1995),
2909-2918.

[16] J. RAUCH, Seeing around comers, Atlantic Monthly 289 (2002), 35-48.

[17] S. ROBINSON, The power grid as complex system, SIAM News 36 (2003).

[18] D. STASSINOPOLOUS a n d P. Ba k , Democratic reinforcement: A principle
for brain function, Phys. Rev. E (3) 51 (1995), 5033-5039.

[19] D. B. WEST, Introduction to Graph Theory, 2nd ed., Prentice Hall, Upper
Saddle River, NJ, 2001.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Investigations of a chip-firing game
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461732696.pdf.5jhrF

