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ABSTRACT

Wyrick, Aimee C., M.Sc., December 2003 Organismal Biology and Ecology

Demography of the Columbia Spotted Frog {Rana luteiventris) in the Presence or 
Absence of Fish in the Absaroka-Beartooth Wilderness, Montana

Director: Carol A. Brewer

In this study, 1 examined the physical and biological influences on the Columbia 
spotted frog, Rana luteiventris, in the Absaroka-Beartooth Wilderness, Montana, 
USA. In particular, I examined the influence of introduced fish {Salvelinus 
fontinalis and Thymallus arcticus) on frog population dynamics by comparing 
ponds with and without fish. In contrast to several previous studies, Columbia 
spotted frogs co-occurred with fish in stocked ponds in the study area even using 
them as breeding and rearing sites. However, there was an impact on survival 
from egg to metamorphosis suggesting that the presence of fish could have 
deleterious effects on Columbia spotted frog populations over time.
Unfortunately, fish introductions planned and carried out by federal, state, and 
local fish managers, have had impacts on native species that were never 
considered and are currently difficult to reverse. While introduced fish effects on 
native amphibians are typically attributed to direct interactions (e.g., predation), 
the influence of introduced fish can be subtle. The results from this study 
suggest that introduced fish contribute to changes in frog population dynamics, 
population size, and/or distribution. Data from this study provide an important 
baseline to test hypotheses about spotted frog population dynamics and for long
term monitoring.
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Chapter 1. General Life History Patterns of Amphibians: A Literature 

Review

A global amphibian decline has become evident within the last decade 

(Houlahan et al. 2000). However, the paucity of natural field experiments has 

limited the ability to identify the mechanisms of decline (Fellers and Drost 1993). 

Data that exist typically are limited to short study periods (< 5 years) making it 

difficult to separate natural population fluctuations from human-caused declines 

(Pechmann et al. 1991, Alford et al. 2001). If amphibian populations naturally 

decrease more often than they increase as Alford and Richards (1999) suggest, 

it may be impossible to detect a real decline. Although it is important to realize 

that the dynamics of local populations may be poor indicators of their status, 

numerous studies have identified several possible elements contributing to 

population decline and local extinctions including: 1) introduction of alien species, 

2) over-exploitation, 3) habitat loss and fragmentation, 4) increased UV radiation, 

5) increased use of pesticides, and 6) emergent infectious diseases (Collins and 

Storfer 2003). The introduction offish into naturally fishless waters is most 

commonly implicated in amphibian declines for high-elevation species (Bradford 

1989, Drost and Fellers 1996, Knapp and Matthews 2000).

High-elevation, fishless waters probably once constituted major population 

centers for species of amphibians whose aquatic larvae are vulnerable to fish 

predation. Studies across many mountain ranges in North America have 

established that fish introductions have altered distribution of native frogs and 

salamanders, apparently contributing to their recent extirpation at local and,



possibly, regional scales (Bradford 1989, Bradford et al. 1993, Fellers and Drost 

1993, Hecnar and M’Closkey 1997, Tyler et al. 1998). Introduced fish can also 

change the species composition and size structure of zooplankton, and depress 

or eliminate important large-bodied zooplankton (Brooks and Dodson 1965,

Vanni 1988, Chess et al. 1993, Liss et al. 1995, McNaught et al. 1999). The 

consequences of such changes in zooplankton food webs on food supply, growth 

and survival of frogs are not known with certainty but could be significant (Bahls 

1992, Liss et al. 1995, Tyler et al. 1998, McNaught et al. 1999).

To examine this phenomenon more closely, I initiated a study in the 

Absaroka-Beartooth Wilderness in 1999. Although the Wilderness falls within the 

potential range of several amphibian species, including the Tiger salamander 

(Ambystoma tigrinum). Boreal toad (Bufo boreas boreas), Columbia spotted frog 

{Rana luteiventris), and Boreal chorus frog (Pseudacris triseriata) (Reichel and 

Flath 1995), the Columbia spotted frog is the only amphibian I encountered in the 

area chosen for study. Thus, the research results I report in this thesis will focus 

on this particular frog species.

This organism is of interest for several reasons related to a recent 

reclassification of the western North America spotted frog complex into two 

genetically distinct species {Rana pretiosa, R. luteiventris), thus altering their 

conservation status (Green et al. 1997). The current range of the two species is 

the result of glacial retreat since the Pleistocene glacial maximum. Genetic 

differences considerable enough to warrant reclassification of Rana pretiosa into 

Rana pretiosa and Rana luteiventris seems to be due to geographic isolation and



fragmentation of populations (Green et al. 1996). Over this long time period, the 

northern range extension has been accompanied by a range contraction to the 

south. The range shift has resulted in several fragmented populations of R. 

luteiventris in high-mountain basins of Nevada, Utah, and Idaho that are 

essentially island communities. Each population is completely isolated because 

of the extensive desert separating them. Further genetic analysis will determine 

if these "relict" populations are yet another species.

Though Columbia spotted frogs {Rana luteiventris) are the most common 

amphibian in the Greater Yellowstone Ecosystem (GYE) and appear to be 

successfully reproducing, a 75% decline has been documented for one 

population near the North shore of Yellowstone Lake in Yellowstone National 

Park, Wyoming during the past 40 years (Patia 1997). Since the early 1900's, 

the Oregon spotted frog {Rana pretiosa) has disappeared from 78 — 90% of its 

historical range in Washington, Oregon and California (Hayes 1997). At this 

time, neither R. pretiosa nor R. luteiventris are federally listed as threatened or 

endangered species (Stebbins and Cohen 1995). However, R. pretiosa is a 

candidate for federal listing and a species of concern in Washington and Oregon 

(Leonard and McAllister 1997). R. luteiventris is a state candidate in Washington 

and a federal candidate in Idaho, Nevada, Oregon and Washington (Mizzi 1997). 

A federal conservation agreement was established in 1998 to protect R. 

luteiventris in the Provo River, Utah. The Bureau of Land Management has also 

designated R. luteiventris as a sensitive species in Idaho and Montana. A recent 

conference on the biology and conservation of the spotted frog allowed various



research biologists and natural resource managers to discuss the status of this 

species and to identify research needs. This meeting provided an opportunity to 

coordinate efforts on spotted frog research throughout its geographic range.

Little work had been conducted on the Columbia spotted frog in Montana and this 

meeting served to connect biologists to facilitate further biological and ecological 

studies of the spotted frog.

The research I report on here goes beyond determining the relationship 

between introduced fish presence and frog presence, and investigates multiple 

metrics that can be used to identify the effect introduced fish may have on the 

frog population. All frog life stages were studied over a 3-year period. In the 

studies on spotted frogs in the Absaroka-Beartooth Wilderness, I examined adult 

frog abundance and age/size structure, reproductive biology and recruitment in 

the context of influences on food-webs and examined the influence of fish to test 

for top-down effects on the aquatic food-web. My results suggest that impacts by 

fish on this system are mostly indirect and include interactions between both 

biological and behavioral factors in the frog population.

The goal of this chapter is to provide a literature review exploring 

environmental and biological influences on an amphibian through its life cycle. 

Specifically I focused on those factors expected to be most influential on Anurans 

(specifically Ranidae) that deposit eggs in water in north temperate, high 

elevation, lentic ecosystems.



Life History

Most amphibians exhibit a complex life history, filling niches in water and 

on land (Duellman and Trueb 1986). Breeding activity is cued by environmental 

conditions, such as temperature, precipitation, or ice-out (Duellman and Trueb 

1986, Bull and Shepherd 2003). Females typically lay eggs in marginal shallows 

of ephemeral ponds where water temperature is at a maximum (Berven 1990) 

and, therefore, developmental and growth rates are highest (Bizer 1978, 

Wollmuth et al. 1987). Hatchling larvae have a compact body and tail allowing 

them to exploit the aquatic environment where they develop and grow until they 

reach a certain body size. Eventually, free-swimming larvae metamorphose and 

the presence of front and hind limbs allow the movement of frogs, toads, and 

salamanders in the terrestrial habitat and the ability to exploit new resources. 

The terrestrial stage will reproduce and disperse.

Amphibians exploit various habitats throughout their life history in both 

terrestrial and aquatic environments. Where environmental stresses are 

imposed naturally and persist long-term (e.g., native predators, pond drying, 

density effects), species have adapted by varying larval period and size at 

metamorphosis, and by developing anti predatory behavior. However, recent 

anthropogenic influences have severely altered the ability for successful 

persistence. Habitat loss, fragmentation, climate change, and exotic 

introductions have occurred over relatively short time periods and have led to 

declines in many amphibian populations (Collins and Storfer 2003).



Larval Environment

Numerous studies suggest that the environmental conditions to which 

larvae are exposed are highly predictive of overall individual fitness (Wilbur 1972, 

Travis 1980, Berven 1981, Petranka and Sih 1986, Semlitsch et al. 1988, Berven 

1990, Amezquita and Luddecke 1999). Biotic and abiotic factors that affect the 

life-history in the aquatic phase may control population dynamics and 

persistence, because the larval stage is most influenced by environmental 

factors. In ephemeral or shallow habitats, larvae must metamorphose at the end 

of the first season to avoid desiccation or freezing, to exploit terrestrial resources 

or move to areas of water permanence, and/or overwinter (Berven 1990,

Newman 1998, Amezquita and Luddecke 1999). Those that cannot transform do 

not survive.

Metamorphs that survive a poor larval period are at a disadvantage, 

because the size of a frog or salamander at metamorphosis has direct immediate 

and long-term effects (Crump 1981, John-Alder and Morin 1990, Scott 1994). 

Metamorph size influences adult survival and fecundity (Pettus and Angleton 

1967, Smith 1987). For example, though an individual may initially survive, 

smaller frogs and salamanders may exhibit decreased fitness through reduced 

reproductive output (Smith 1987, Scott 1994). Although fecundity is highly 

variable among amphibian species, in general, female body size is positively 

correlated with clutch and egg size (Duellman and Trueb 1986), smaller breeding 

females produce smaller and fewer eggs. A delay in sexual maturity because of 

small size may result in a reduction in lifetime fecundity, frogs that reach sexual



maturity at a later age may have fewer opportunities for reproduction.

Degradation in adult fecundity as a result of poor larval conditions may lead to 

population-wide reductions in breeding success and recruitment. Elasticity 

analyses conducted for two amphibian species {Ambystoma macrodactylum  and 

Bufo boreas) suggest that the effect of egg mortality on the persistence of a 

population may be slight, will vary with the number of eggs laid by a species and 

with the degree of density-dependence in the larval stage (Vonesh and De la 

Cruz 2002). Post-metamorphic vital rates (juvenile and adult) appear to be the 

most influential in elasticity analyses conducted for Rana muscosa, R. 

temporaria, and Bufo boreas (Biek et al. 2002) but again variation is apparent 

among species and is expected among populations. Though both studies 

suggest that post-embryonic vital rates are more influential and that post- 

metamorphic survival most Influential on population trends (Biek et al. 2002, 

Vonesh and De la Crus 2002) repeated episodes of poor environmental 

conditions for developing larvae that result in reduced adult success could indeed 

influence population viability.

In contrast, large metamorphs tend to be less susceptible to size-limited 

predators (Caldwell et al. 1980) and may have more energy reserves to avoid 

capture (Crump 1981, Alder and Morin 1990). Moreover, large metamorphs will 

be larger at sexual maturity and reach maturity at a younger age. Reproductive 

success directly related to body size and early maturation may increase the 

probability of survival to first reproduction and a greater reproductive output
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during an individual's lifetime (Pettus and Angleton 1967, Berven 1990, Scott 

1994).

Pettus and Angleton (1967) suggest that reproductive strategies differ 

between high and low elevation populations in amphibians. At high elevations, 

the time period between hatching and metamorphosis is constrained by 

temperature. To compensate for a limited growing season, conspecifics in high 

elevation sites may be larger as adults and produce larger eggs than those in 

lowland areas (Pettus and Angleton 1967). Consequently, hatching tadpoles are 

larger and can transform more rapidly than tadpoles born from smaller eggs. 

Amphibians that breed in higher montane areas invest more energy into every 

egg so that each larvae has a greater likelihood of surviving. Those in lowland 

areas produce many small eggs. This strategy increases the probability that 

some will persist, with less parental expenditure into each egg.

Trade-Offs o f Behavioral Response to Predation

Tadpole behavior and activity are influenced by resource and microhabitat 

quality, and by predation risk (Lawler 1989, Werner and Anholt 1993). Prey 

behavior and activity levels are strongly structured by predators, even when the 

predator impact is nonlethal (Skelly and Werner 1990). Active larvae may be 

able to access more food, thereby hastening development, but they are at a 

higher risk from visually cued predators such as trout (Skelly 1996). Under the 

threat of predation, individual larvae may alter behavior and shift their activity 

patterns to avoid predators (Caldwell et al. 1980, Holomuzki 1986, Lawler 1989, 

Tyler et al. 1998) and the time and energy allocated to growth and resource



acquisition is diverted to defense (Van Buskirk 2000). In some cases, daily shifts 

in predation pressure can cause associated shifts in microhabitat use. For 

example, nocturnal activity of a beetle predator {Dytiscus dauricus) excluded 

larval Ambystoma tigrinum nebulosum in the resource-rich littoral zone 

(Holomuzki 1986). Low activity ievels compromise competitive ability, slow 

development, and prolong exposure to predators. In the absence of fish in most 

high mountain lakes (Bahls 1992), anuran larvae actively feed on suspended 

particles in the water column. However, in the presence of fish, these larvae may 

alter their behavior to avoid predation by fish and suffer a cost to foraging 

efficiency, resource quality, and survival (Petranka et al. 1987, Sih et al. 1992, 

Femineiia and Hawkins 1994). Thus, predator presence may not affect larval 

survival directly but often the effect is indirect by inhibiting growth rates which 

leads to smaller size in metamorphs (Figiei and Semlitsch 1990).

Amphibians commonly detect predators via nonvisual cues, including 

chemical signals. Several experiments have documented antipredatory behavior 

in response to water that was conditioned by the presence of potential predators 

(Petranka et al. 1987, Kats et al. 1988; B. Maxell and A. Wyrick, The University o f 

Montana, unpublished data). Amphibians may coexist with predators by 

constantly sampling the environment and adjusting activity level and habitat 

usage accordingly. Some species are unpalatable to predators, an antipredatory 

adaptation tightly linked with exposure to predation (Kats et al. 1988). Species 

that inhabit sites without fish predation (or with limited exposure) remain 

palatable. Although predation pressure should be less on noxious species.
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amphibians with this defense mechanism also will reduce their activity levels in 

the presence of predators (Brodie et al. 1978). Often the presence of a predator 

completely excludes amphibians from lakes and ponds because the prey have 

not yet developed behaviors to avoid predation (Petranka 1983, Bradford et al. 

1993, Tyler et al. 1998).

Amphibian populations indigenous to historically fishless waters may lack 

behavioral adaptations to resist predation (Bradford 1989, Liss et al. 1995, Tyler 

et al. 1998). Previous research in several mountain ranges in western North 

America has established the vulnerability of ranid frog tadpoles to trout predation 

(Bradford 1989, Pilliod and Peterson 2001). Fish are efficient aquatic predators 

and may be the greatest predation threat to amphibian larvae. The presence of 

introduced fish may exclude the presence of amphibians due to high predation 

pressure, especially in high elevation lakes where cover for amphibians is limited 

and overall low productivity limits availability of alternative large food items for 

fish. Indeed, efficiency of predators generally increases with decreased habitat 

complexity (Crowder & Cooper 1982, Lawler et al. 1999), such as is common in 

high-elevation lakes and ponds.

Food-web interactions between fish, insects, and amphibians are highly 

linked. In many systems, insect predation may cause significant mortality of the 

larval and juvenile stage of amphibians (Caldwell et al. 1980, Gascon 1992, 

Werner and McPeek 1994, Skelly 1996, Peacor and Werner 1997), and influence 

larvae behavior (Relyea 2000, Van Buskirk 2000). Insects also may compete 

with larval anurans for similar habitat and food resources (Morin et al. 1988,
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Peacor and Werner 1997). In some cases, abundance and diversity of predatory 

and competing insects is reduced in fish-bearing sites thereby reducing 

competitive and predation pressure (Werner and McPeek 1994, Skelly 1996, 

Lawler et al. 1999).

Larval Period and Size at Metamorphosis

Amphibians can persist in highly variable environments because larval 

developmental rate and length of the larval period, size at metamorphosis, and 

reproductive effort vary as well. Physiological constraints influence the range in 

larval period and body size at metamorphosis, while environmental conditions 

determine exact timing (Denver 1997). Indeed, growth rates vary considerably in 

response to abiotic and biotic factors and during an individual’s lifetime. There is 

a debate however. For example, Wilbur and Collins (1973) argued that growth 

rates affect development throughout the larval period but Travis (1984) argued 

that the rate of development is set early in the larval period and individual 

variation is due to independent responses to environmental effects. Further 

research suggests that tadpoles allocate resources differentially throughout the 

larval period (Leips and Travis 1994). Early resource conditions dictate 

development rate and age at metamorphosis, and food quantity and quality late 

in the larval period determine size at metamorphosis (Newman 1998). Early on, 

food resources are used for individual development. Increasing food intake at 

this stage will hasten development (reduce larval period) while a decrease will 

have the opposite effect. Later on larvae will allocate resources to growth. 

Consequently, changes in resource quality at this point will affect final body size.



1 2

Unfavorable conditions retard rate and development of larvae. And slowly 

growing tadpoles metamorphose later and at a smaller size, or perish.

Although changes in rates of growth and development affect larval period 

and size at metamorphosis, larvae must reach a threshold size to ensure 

successful metamorphosis (Wilbur and Collins 1973). Once the threshold size is 

reached, environmental conditions influence whether or not a larva will 

metamorphose to escape poor aquatic conditions (e.g., lack of water 

permanence) or remain in the favorable aquatic environment for awhile longer 

(Semlitsch and Wilbur 1988, Pfennig et al. 1991, Leips and Travis 1994,

Newman 1998, Amezquita and Luddecke 1999). Scarce resources, high 

predation rate, and site drying are conditions that favor emergence. Once larvae 

reach metamorphic climaxes, they no longer feed and are completely dependent 

on stored energy, so successful metamorphosis also depends on energy 

reserves (Crump 1981). Ultimately, larvae should transform only when they have 

enough energy reserved for the metamorph ic process.

Temperature

Studies have shown that several species of ranid tadpoles prefer 

microhabitats within a pond or lake that are warmer and will preferentially 

congregate in water at ~25° C (Lucas and Reynolds 1967, Bradford 1984, 

Wollmuth et al. 1987). How larvae move between various thermal habitats is one 

mechanism regulating larval development and growth and growth rates of larvae 

increase with increasing temperature up to C.
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In ephemeral aquatic habitats, individuals must transform before a pond 

dries, therefore larvae exposed to higher temperatures will have a higher growth 

rate and metamorphose before desiccation. In sites where water permanence is 

not a limitation, higher temperatures may allow an individual to metamorphose at 

a larger size and increase energy reserves (Crump 1981, Alder and Morin 1990, 

Amezquita and Luddecke 1999). Interestingly, temperature fluctuations have 

major influences on larval development and growth, especially at high elevations 

where extreme weather fluctuations and lack of cover allow a wide range in 

diurnal and seasonal water temperature (Heath 1975, Bizer 1978). A study by 

Bizer (1978) documented that water temperature influences salamander larval 

growth rates more strongly than food abundance. Access to warmer 

microenvironments as larvae therefore increases the probability of survival to 

metamorphosis and through the first winter. It is important to note that high- 

energy reserves and large size at metamorphosis become increasingly important 

when individuals overwinter under stressful conditions, such as in high elevation 

landscapes.

Breeding Activity

Because many amphibian species preferentially breed in temporary 

habitats when both permanent and temporary habitats are available, the duration 

of the breeding and rearing season is limited for many amphibians (Woodward 

1983). For amphibians that breed in ephemeral ponds, the most influential factor 

during larval period is the hydroperiod, or persistence of open water in the pond 

basin (Semlitsch and Wilbur 1988). Ephemeral sites lose volume as the season
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progresses due to limited inputs (e.g., rainfall) and/or evaporation. Pond 

persistence varies annually and, in years of higher average temperatures and/or 

lower rainfall, ponds dry out more rapidly and egg masses may be stranded out 

of the water before the embryos hatch. In general, ephemeral sites exclude 

species that have a lengthy larval period (Kats et al. 1988). Because fish are 

able to exploit ephemeral waters only when connected to permanent waters via 

streams, amphibians with a larval period shorter than one season can exploit 

ephemeral sites to avoid direct predation by fish, thus these sites can serve as 

réfugia for breeding and rearing. Fish must move out of these ephemeral sites 

before they dry or freeze, so isolated ponds rarely support fish populations 

unless artificially stocked.

Conspecific competition

Biological interactions with conspecifics alter habitat and resource 

availability. Increased larval density can lead to increased competition for 

existing resources and energy expenditure to obtain food. Thus, competition with 

conspecifics may lead to increased larval period and decreased size at 

metamorphosis (Petranka and Sih 1986, Scott 1994, Newman 1998). Larval 

density not only affects growth and developmental rates and metamorph size, but 

it also influences how readily an individual can store energy (Crump 1981). At 

high densities, larvae that expend energy in competitive interactions allocate 

fewer resources to storage. At low densities, individuals tend to maximize 

resource uptake and accumulate energy more rapidly, thereby influencing the 

metamorphic process. Superior larval competitors can produce growth inhibitors
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that further limit the development of other tadpoles (Wilbur and Collins 1973), 

consequently Increasing their competitive ability and decreasing predation risk 

(Travis 1980).

Dispersai and Connectivity

Seasonal dispersal and distribution is influenced by frog activity level, 

topography, dispersal corridor, and predator presence along the dispersal 

corridor. Populations are more sensitive to local extinction when dispersal is 

limited, they may disappear following the complete loss of a larval cohort due to 

an unsuitable aquatic environment (e.g., pond drying) before transformation or 

when a population becomes isolated (Corn and Fogleman 1984, Sjogren-Gulve 

1994). Repeated episodes of zero recruitment severely reduce future breeding 

populations and lead to crashes in local populations when immigration is limited 

or nonexistent. Isolation and fragmentation of populations reduce the likelihood 

that individuals from other sites can immigrate to an isolated population. 

Moreover, the presence offish  in lakes and connecting streams/rivers acts to 

isolate and fragment remaining amphibian populations because they severely 

limit dispersal ability and subsequent recolonization (Bradford 1991, Bradford et 

al. 1993, Sjogren-Gulve 1994), thereby increasing the probability of 

disappearance in response to natural, random events (Sjogren-Gulve 1991, 

1994; Pearman 1993).

After metamorphosing from an ephemeral site, juvenile spotted frogs 

(Rana iuteiventris) migrate to sites with permanent water (Turner 1958). 

Predation pressure on juveniles en route to an overwintering site and/or the
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presence of predators in the permanent site may reduce recruitment. At high 

elevations, the presence of fish in permanent sites may reduce the availability of 

favorable amphibian overwintering sites (Pilliod and Peterson 2001). However, 

frogs may overwinter away from fish predators in nearshore holes, crevices, and 

ledges when the oxygen supply (air or water) is adequate (Matthews and Pope 

1999). In sites where alternative frog réfugia are unavailable, predator effects on 

overwinter survival may be severe.

Conclusions

While basic natural history has been described for all species, there have 

been few biological or ecological studies of amphibians in the state of Montana. 

This study on the Columbia spotted frog (Rana Iuteiventris), provides novel 

Information about the habitat preferences, breeding biology and the interactions 

among species in high elevation water bodies. Data from this study provide a 

baseline for continued evaluation of the global phenomena of amphibian decline 

and further elucidates the mechanisms that are involved in interactions between 

introduced predators and frogs. This research was conducted in the Absaroka- 

Beartooth Wilderness, thereby minimizing some of the confounding effects from 

human impacts more common in lower elevation habitats with more extensive 

human influences.
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Chapter 2. Demography of the Columbia Spotted Frog {Rana iuteiventris) 

in the Presence or Absence of Fish in the Absaroka-Beartooth Wilderness, 

Montana 

INTRODUCTION
t

Amphibians are an integral component of most ecosystems worldwide 

and link aquatic and terrestrial habitats through nutrient flow from water onto land 

and back. Globally, many amphibian species are on the decline with significant 

consequences for biological diversity and ecosystem functions. The most 

puzzling declines have occurred in habitats or locations that are considered 

pristine and relatively untouched by human impacts (Wake 1991, Drost and 

Fellers 1996, Knapp and Matthews 2000). Various causes have been proposed, 

including the loss of habitat, pesticides, increased UV exposure, infection by 

parasites and bacteria, and introduction of exotic species (Collins and Storfer 

2003). Habitat loss is the dominant threat to persistence, but in many cases, 

declines are attributed to a suite of causes.

In the Pacific Northwest region of the United States, the loss of habitat and 

the introduction of exotic species have been the major contributors to amphibian 

decline (Bradford 1989, Fellers and Drost 1993, Knapp and Matthews 2000). 

Increased urbanization has led to habitat fragmentation, pushing frogs and 

salamanders out of preferred habitat, and into less favorable areas where they 

may contact new and novel predators (e.g., non-indigenous fish and bullfrogs; 

Hayes and Jennings 1986, Kiesecker and Blaustein 1998, Lawler et al. 1999). 

Habitat loss and fragmentation is expected to be particularly problematic for
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amphibians because many species require multiple habitats for each stage of the 

complex life cycle (e.g., breeding areas, hibernacula, foraging areas).

Even within areas of national forests, parks, and wilderness areas 

considered to be less impacted by land use changes and disturbance, 

amphibians (primarily frogs and toads) are experiencing major setbacks (Liss et 

al. 1995, Drost and Fellers 1996). Particularly since the early 1900s (but as far 

back as the early 1800s), fish have been introduced to lakes, ponds, creeks, and 

rivers to provide humans with forage and recreational fishing (Bahls 1992, Knapp 

1996, Pister 2001). Fish have been introduced into waters from sea-level to the 

highest alpine elevations. Where non-indigenous fish have been introduced, 

frogs and toads have experienced decreased available habitat, increased 

predation pressure, and alterations of the pre-introduction food web. In most 

cases, the introduction of fish has led to the local decline (and possible 

exclusion) of amphibians (e.g., Bradford 1989, Tyler et al. 1998a, Knapp and 

Matthews 2000). Where amphibians continue to inhabit watersheds that have 

been stocked with fish, population numbers are significantly lower than historical 

levels and rarely (if ever) does breeding occur in sites stocked with fish (Bradford 

1989). Studies that examined interactions between populations of amphibians 

and introduced predators identified direct predation as the mechanism of the loss 

or decline of the amphibians (e.g., Hayes and Jennings 1986).

In response to recreation demand, fish have been introduced into naturally 

fishless waters with the introductions planned and carried out by federal, state, 

and local fish managers (Knapp 1996). Unfortunately, these fish have had
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impacts on native species that were never considered and are currently difficult 

to reverse. Introduced fish effects on native amphibians are typically attributed to 

direct interactions (e.g., predation). Although the influence of introduced fish can 

be subtle, the results from this study suggest that introduced fish contribute to 

changes in frog population dynamics, population size, and/or distribution. And 

the introductions may have influences elsewhere in the foodwebs of the ponds, 

including insect and plankton communities (e.g., Pecarsky and McIntosh 1998, 

McNaught et al. 1999). In most cases, the characterization of these food-webs 

and the species that are involved are unknown.

The Absaroka-Beartooth Wilderness area has a trout fishery largely 

sustained by continued fish stocking with most lakes on 8-yr stocking schedules 

(Marcuson 1985, Marcuson and Poore 1991). However, some lakes have never 

been stocked or no longer support fish. Thus, the Absaroka-Beartooth 

wilderness is one of the few areas in the western United States where more than 

10% of the large, high-elevation lakes are maintained in fishless condition (Bahls 

1992).

In this study, I examined the physical and biological influences on the 

Columbia spotted frog, Rana Iuteiventris, in the Absaroka-Beartooth Wilderness, 

Montana, USA. Although spotted frogs are the most common amphibian in the 

Greater Yellowstone Ecosystem, a 75% decline has been documented in one 

part of their range during the last 40 years (PatIa 1997). In particular, I examined 

the influence of introduced brook trout {Salvelinus fontinalis) and Arctic grayling



26

{Thymallus arcticus) on frog population dynamics by comparing ponds with and 

without fish.

The Columbia spotted frog population in this study has co-occurred with 

Arctic grayling for more than 20 years, and with brook trout for more than 50 

years. Predation pressure may select for adaptive life history shifts in a variety 

of animals, and based on life history theory we can make several predictions 

regarding the adaptive shifts in life history of Columbia spotted frogs (Stearns 

1992). The risk of predation may affect life history of these animals in at least 

two ways 1 ) predation pressure on the aquatic or juvenile stage will select for 

later sexual maturity, longer-lived adults and lower investment per reproductive 

event, and 2) predation pressure on the adult stage will select for earlier sexual 

maturity and higher investment per reproductive event.

In addition to conducting basic morphometric and limnological analyses, I 

predicted that: 1) introduced fish would have the greatest impact on the aquatic 

stage of the frog life cycle; 2) negative impacts during the egg and/or larval 

stages would be manifested in the adult population, and 3) in this system, 

influences of the physical environment are secondary compared to biological 

interactions between frogs and introduced fish.

STUDY AREA

This study was conducted in south-central Montana, USA, within the 

Absaroka-Beartooth Wilderness, a remote region south of Granite Peak at 2800 

— 2950 m above sea level. I chose this study area because it exhibited Columbia 

spotted frog presence and breeding activity at a number of lakes and ponds. The
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area was accessible within a day’s hike and was geographically isolated by high 

mountains to the north and east and a 300 m cliff to the south. All water bodies 

examined were within a of 4-km^ area, allowing regular data collection and 

observation (Figure 1). The waterbodies examined ranged from lakes with little 

vegetation to shallow ponds with extensive vegetation. The surrounding 

landscape was dominated by subalpine fir {Abies tasiocarpa), Engelmann spruce 

{Picea engetmannii) and dwarf huckleberry {Vacclnium cespitosum). Willow 

{Saiix spp.) and whitebark pine {Pinus albicaulls) were also present in some 

areas. Twenty-one permanent ponds and lakes, and four ephemeral ponds 

comprised the lentic environment and all runoff flowed into the Clarks Fork of the 

Yellowstone River. The water in the study area is usually ice-free from early 

June until late September. Based on an initial survey, ponds above 2950 m in 

elevation were excluded from further study because they did not appear to 

support amphibian populations.

STUDY SPECIES

The Columbia spotted frog (Ranidae, Rana Iuteiventris) is a common 

anuran found in parts of Alaska, British Columbia, Washington, Oregon, Nevada, 

Idaho, Montana, Utah, and Wyoming in North America (Turner 1958, Licht 1974, 

Green et al. 1997). The onset of breeding activity is variable annually and 

depends on elevation and temperature. In high-elevation sites, breeding occurs 

immediately following ice out. Larvae hatch several weeks after eggs are 

deposited and metamorphosis follows up to four months later (Turner 1958, 

Morris and Tanner 1969). The larval period is constrained by habitat availability
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Figure 1. Map of study area. Ponds in red support fish only, in yellow support 

frogs only, in blue support both fish and frogs and in black support neither. 

Elevation contours are shown in light gray and rivers and streams are shown in 

black.
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and individuals must transform before sites dry or freeze (Licht 1974). However, 

they may occasionally overwinter as tadpoles (Engle 1999). Spotted frog
I

metamorphs and adults overwinter in contact with water and commonly retreat to 

deep water in permanent lakes, springs, or streams (Turner 1958, Bull and 

Hayes 2002). Previous, work in Idaho and Montana documented areas where R. 

Iuteiventris co-occurred with brook trout or cutthroat trout but adult abundance 

was depressed and recruitment was limited (Pilliod and Peterson 2001 ; B.

Maxell, The University of Montana, personal observation).

METHODS
I

Landscape and Limnological Characteristics

Frog populations were evaluated in 25 lakes and ponds (hereafter called ponds) 

during this study, eight of which had fish. Each lentic water body was located 

using the Fossil Lake, Montana-Wyoming 7.5' USGS topographic map before 

field work began or by visual encounter during early surveys. Pond location was 

marked on a map and into a GPS (Garmin International Inc., Olathe, Kansas; ± 

10 m) and elevation was determined by topographic maps. The perimeter and 

area of large ponds (> 0.1 ha) was determined using Montana Fish Wildlife and 

Parks maps (P. Marcuson, Montana Fish Wildlife and Parks, unpublished data). 

Smaller ponds were measured with a meter tape to determine the length and 

width; from these data, rectangular area and perimeter were calculated using 

standard formulae. Maximum depth was measured (in m) in shallow ponds, or 

estimated visually or determined from preexisting data for deep ponds (> 2 m; P. 

Marcuson, Montana Fish Wildlife and Parks, unpublished data).
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Conductivity was measured in each pond twice during the summer of 

2001. All measurements were made 1 m from shore at 2 cm below the water 

surface using a handheld conductivity meter (Model WD-35653-11, Oakton 

Instruments, Vernon Hills, Illinois). In the summer of 2000, water temperature 

(°C) was measured using a HOBO H08 4-channel data logger (Onset Computer, 

Bourne, Massachusetts) at each of two ponds. Temperature probes were set at 

0.05, 0.25, and 0.50 m deep and the fourth probe measured air temperature. In 

2001, temperature was monitored in an additional 6 ponds used for breeding and 

rearing. At five of these ponds, a single StowAway TidbiT temperature logger 

(Onset Computer, Bourne, Massachusetts) was placed at a depth of 5 cm for 70 

days. A HOBO H08 4-channel data logger was used at the sixth pond to 

measure water temperature at 1 m ("deep"), 0.3 -  0.5 m (“mid”), and 0.05 -  0.1 

m (“shallow”). The fourth probe measured air temperature. All temperature data 

were collected at 15-min intervals. In some cases, temperature probes placed in 

the water became exposed to air. In these cases, only the days when probes 

were known to have accurately recorded water temperature were included in 

subsequent analyses. Degree-days (dd) were calculated for each 15-min 

reading and then summed for the day (equation 1), Development and growth in 

Ranid frogs generally does not occur below 10 °C (McDiarmid and Altig 1999, 

Bull and Shepherd 2003) and this temperature was used as the threshold in 

calculating degree-days. Cumulative degree-days were calculated by month and 

for the entire field season (equation 2).
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Equation 1: Daily dd = Z [dd(15-min)/96]

If temperature > 10 then dd(15-min) = Temp (15-min) - 10°C

If temperature < 10 then dd(15-min) = 0

Equation 2: Cumulative dd = Z average daily dd

Landscape characteristics were determined using the USGS 7.5’ Fossil 

Lake Quadrangle map. Distance between ponds was measured using a metric 

ruler and then corrected to actual ground distance in km. The distances (m) from 

each pond to the nearest pond with fish, nearest pond with frogs, and nearest 

pond with frog breeding were estimated. Annual precipitation data was collected 

from a National Weather and Climate Center SNOTEL weather station (Fisher 

Bridge) located 8 km southwest of the study location.

Fish Presence and Abundance

The baseline reference for fish presence and density was the 1999 

Montana Fish Wildlife and Parks stocking report. Thereafter, I verified the 

presence and abundance offish (1999 and 2000) using a 30 m x 1.2 m gillnet 

positioned across the northwestern shoreline of each pond examined (n = 8).

The net was set up in the evening and removed the next morning. Length, 

gender, and species were determined for all caught fish; gape height and width 

(gape size) was measured for fish caught in 2000. All stomachs were collected 

to determine the degree of “stomach fullness” and stomach contents. Stomachs, 

kidneys, and livers were visually examined and the presence of parasites was
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noted. For the other 18 ponds, the presence or absence of fish was verified by 

visual observation at the water surface. Finally, each pond was categorized 

according to whether fish are stocked on an 8-yr schedule or if they are self- 

sustaining populations.

Ponds with brook trout (n = 7) and arctic grayling (n = 1) were pooled for 

all analyses of the effect of fish presence on various frog metrics. Trout consume 

a wide variety of prey, feeding from the surface to benthos of ponds and streams 

(Moyle and Cech, 1996) and brook trout in the study area are known to be 

voracious feeders. Although little has been published on the biology of Arctic 

grayling in Montana, previous work on this species in Alaska has shown it to be 

an aggressive and adaptable predator, feeding from deep water to surface (Lee 

1985). Brook trout have a larger gape size than Arctic grayling, but I pooled 

species into the category “fish present" because they occupied the same habitat 

in the ponds studied, and because I made the assumption that they would have 

comparable effects on frog demography.

Population Estimates for Adult Frogs

During the summer of 1999, frog presence and abundance were 

estimated by the visual encounter method (Thoms et al. 1997). At each pond, 

two observers walked around the perimeter of the pond (one in the water, one on 

shore), maintaining a distance of ~0.5 m, and recording all individuals 

encountered. In 2000 and 2001, I implemented a capture-mark-recapture (CMR) 

sampling design (Pollock 1982, Kendall and Nichols 1995, Kendall et al. 1997), 

and data were collected during two survey sessions annually. The initial capture-
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mark session occurred during mid-July when the majority of animals were 

congregated at foraging sites; the other sampling session occurred during late 

August as metamorphs emerged and individuals prepared to overwinter. After 

the first capture session in July 2000, the number of recaptured individuals far 

exceeded the number of unmarked frogs. Therefore, CMR sampling was 

reduced to a single time for each subsequent survey session.

To implement CMR sampling, ponds generally were divided into 2 or 4 

equal sections. To locate and capture frogs, two observers walked around the 

perimeter of each pond (on observer several meters behind the other), and 

capturing all frogs (noting when one escaped). Because the water was very 

clear and there were few obstructions (emergent vegetation or large-woody 

debris), we were able to find and capture most frogs that were present during the 

sampling period. Captured frogs were held in a large plastic container until the 

section of the pond under study was fully searched and all frogs were deemed to 

have been captured. Each frog was processed individually and measurements 

were made by the same observer. Body length (snout-vent length) was 

measured using dial calipers (± 0.1 mm) and body mass was measured with a 

Pesola spring scale (Forestry Suppliers Inc., Jackson, Mississippi; ± 0.1 g). 

Mature males were recognized by the presence of nuptial pads, females by the 

absence of nuptial pads, and juveniles by body length (< 45 mm). During the first 

visit to a pond, all individuals were given a unique toe-clip mark, following an 

alphanumeric toe-clip code modified from Waichman (1992). At least three toes 

were clipped but no more than two toes were clipped from any one foot. Toes
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from at least 30 individuals per pond were collected and stored In 95% ethanol 

(these are available for microsatellite analysis). All other toes from each pond 

were stored in 10% formalin for use later in a skeletochronology analysis (see 

description below). Cuts on frogs were washed with Bactine and the frog was 

then released back into the water. All frogs were processed and released before 

observers moved on to the next pond section. During subsequent capture 

sessions, marked individuals were re-measured and their codes were recorded. 

As possible, microhabitat features were noted where frogs were captured.

Survivorship of females and males was estimated using Program MARK 

(Gary White, Colorado State University, Fort Collins, Colorado). Summer and 

overwinter survival of adult male and female frogs was estimated using the Jolly- 

Seber method and did not assume equal capture periods. Model selection was 

based on AlCc weights.

Clutch density and egg production

In all years, the shoreline and littoral zone were searched for the presence 

of egg clusters. Pond water in this region is exceptionally clear (Secchi depth > 4 

m) making the visual encounter survey the most efficient for this task. In 2001, 

data were collected in early June during peak breeding season. At each pond, I 

counted the number of egg clusters; then they were labeled and their location 

was recorded on a pond map. When possible, ten clusters per pond were 

collected to estimate the number of eggs/cluster using volume displacement. 

Each cluster was subdivided into 3 sub-samples and the number of 

eggs/subsample and the volume displacement were recorded. These data were
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used to estimate the number of eggs per cluster. I estimated the date that each 

cluster was laid by visually examining the status of egg development (Gosner 

1960) and the level of mass cohesiveness (C. Funk, The University of Montana, 

personal observation).

Larval Growth, Development and Metamorphosis

In 2001, size and developmental stage for 30 larvae were recorded for all 

breeding sites every 10 — 14 days from July 11 to August 23. Larval snout-tail 

length (STL) was measured using calipers (± 0.1 mm) and a Gosner (1960) 

developmental stage was assigned. The dates of hatching and first 

transformation were approximated using data collected during both early June 

and observations made in late August.

At the end of August 2001, all emerging metamorphs (stage 46) were 

counted and assigned a unique pond code (one toe was clipped). Criteria for this 

stage were the total emergence of hind limbs and a completely resorbed tail. For 

up to ten metamorphs from each pond, snout-vent length (SVL) was measured. 

The number of emerging metamorphs was calculated using the Lincoln-Petersen 

estimate.

Skeletochronology

Toes were excised, preserved in 10% formalin, and then randomly 

selected for skeletochronology analysis (Leclair, Jr. and Castanet 1987). As 

necessary, samples were adjusted to include an equal number of males and 

females. I used toes with the greatest bone thickness, smallest marrow cavity 

(medulla), and with no cartilage. Up to three cross-sections were prepared for
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each toe and mounted on one slide (Figure 2). The resorption margin and first 

zone (Zug 1991) were identified. Only periosteal lines of arrested growth (LAG) 

(Zug 1991) were counted, with special attention focused on closely spaced LAG 

at the bone periphery in older frogs (Appendix 1 ; method of Gary Matson, Matson 

Labs LLC, Missoula, Montana, unpublished data). Typically, a peripheral area of 

bone that stained darkly contained several LAG that were identifiable at other 

points in the same section or in adjacent sections. Age was recorded in months 

but is presented in years.

r
Line o f 

arrested 
grow th  
(LAG)

Year

Medullary 
cavity

Endostea lbone

Figure 2. Skeletochronology cross-section (400 X) of an individual frog assigned 
an age of six years. Photo by Gary Matson 2002.
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Statistical Anaiyses

The extent to which biological attributes of Columbia spotted frogs were 

correlated with physical/limnological characteristics of the landscape was 

examined with a Pearson correlation analysis. Chi-square analysis was used to 

test whether or not the presence of adult frogs and the presence of breeding 

activity could be attributed to fish presence or absence. Analysis of covariance 

(ANCOVA) was conducted to determine the influence of habitat and fish 

presence on various frog metrics and to account for these influences in making 

conclusions. Comparison of means were made using analysis of variance 

(ANOVA) when possible. In cases where data were not normally distributed 

and/or had unequal homogeneity of variance, nonparametric analyses were used 

for describing other attributes of frog biology (Mann-Whitney U test, Kruskall- 

Wallis test). As appropriate, analyses were made for all individuals, and then to 

better account for differences that might be related to gender analyses were 

repeated to compare separately males and females. The specific significant 

differences between ponds were identified using Games-Howell post-hoc 

analysis to determine which ponds exhibited the difference. All statistical tests 

were performed using SPSS v.10.0 (SPSS Inc., Chicago, Illinois). A standard p 

value (^ 0.05) was used as benchmark for statistical significance.

RESULTS

Landscape and Limnoiogicai Characteristics

Ponds in the study area were found at elevations from -2800 to 2950 m 

above sea level, and ranged in area from 0.01 to -2 .8  ha (Appendix 2). The



38

most shallow pond was < 0.5-m deep, while the deepest pond was nearly 10-m 

deep. Larger ponds were deeper (r = 0.85, p < 0.001 ). Conductivity ranged from 

6.0 to 16.5 indicative of low productivity. The number of inlets and outlets 

were significantly positively correlated with pond area and pond perimeter.

From early July to late August, the daily air temperature ranged from < 1 

°C to 24.0 °C (x  = 12.0 °C in 2000, x  = 10.3 °C in 2001). Water temperature 

was highly variable, especially in water < 0.1 m deep (< 1 °C to 34.5 °C); the 

greatest diurnal range was nearly 30 °C (6.6 -  34.5 on July 3, 2001). For the 

eight ponds chosen for more intensive study, maximum and minimum near-shore 

water temperature varied from pond to pond. In the summer of 2001, there were 

no significant differences in shallow water (< 5 cm) temperature among ponds. 

Cumulative degree day totals for the entire 2001 growing season (6/11 -  8/20) 

ranged from 582.59 to 798.65 (Table 1). The greatest accumulation of degree- 

days was experienced by 49a at the highest elevation (2908 m asl) and least 

accumulation in 49 (2900 m asl). There was no significant correlation between 

elevation and degree-days (Pearson correlation; p = 0.894). When degree-days 

were examined for the entire 2001 growing season, two ponds (48d and 49a) 

had significantly higher mean degree-days than pond 49 (p = 0.045 and 0.011 

respectively).

Temperature data from a single fishless pond (49) was further examined 

to detect mean temperature fluctuations over a 24-hour period in the littoral (< 0.5 

m) and deep (> 0.5 m) water habitats (Figure 3). The figure illustrates that littoral 

habitat had a greater thermal range while deep water provided less variation. In
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Table 1. Shallow water (< 5 cm) temperatures and degree-days for a subsample 
of ponds (3 without fish, 1 with fish) from the study area. The cumulative degree-

Pond 
(elevation 
in m)

Dates Minimum
Temperature
(*(:)

Maximum
Temperature
r c )

Mean Temperature
rC ) (± SE; n)

Degree
days

(*C)
51(2801)

6/11-28/2001
7/12-31/2001
8/9-20/2001

0.00
8.08
8.94

26.69
26.04
25.72

9.68 (± 0.09; 5184) 
15.71 (±0.05; 5760) 
15.49 (±0.07; 3456)

138.57
342.79
198.08
679.44

48d (2835)
6/11-28/2001
7/12-31/2001
8/9-20/2001

0.24
3.27
11.84

21.06
38.17
24.77

10.73 (± 0.07; 5184) 
16.14 (± 0.07; 5760) 
16.93 (± 0.05; 3456)

133.6
385.75
253.78
773.14

49 (2900)
6/11-28/2001
7/12-31/2001
8/9-20/2001

0.00
5.52
12.03

26.75
30.60
22.27

8.36 (± 0.08; 5184) 
14.34 (± 0.07; 5760) 
15.53 (± 0.04; 3456)

98.69
284.32
199.58
582.59

49a (2908)
6/11-28/2001
7/12-31/2001
8/9-20/2001

I.03  
6.54
II.9 7

30.88
29.02
23.03

12.47 (± 0.08; 5184) 
16.09 (± 0.06; 5760) 
16.42 (± 0.04; 3456)

205.50
362.25
230.9
798.65
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Figure 3. Mean 24-hour temperature fluctuations of the littoral (< 0.5 m) and 
deep (> 0.5 m) water in a fishless pond (49) between 13-July and 28-July, 2001
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all years of this study, I observed that tadpoles tended to congregate in the littoral 

regions between 1000 and 1600 hours, when temperatures were at a maximum 

and then moved into deeper water in late afternoon. Between 13-July to 28-July, 

2001, tadpoles following this trend would have experienced a 35% increase in 

degree-days (84.5) compared to those who might have inhabited the shallows 

throughout the 24-hour period (62.6).

Correlation analysis was conducted on numerous physical attributes of the 

pond and landscape and frog population metrics (Appendices 3 and 4). Many of 

these correlations were significant but were not highly informative to this study.

Analysis of variance (ANOVA) was conducted to compare physical 

characteristics of ponds with and without frog breeding. There were no 

significant differences between the physical characteristics in these ponds 

(Table 2). Only two ponds with fish were used for reproduction by frogs and 

these ponds had the lowest abundance of fish. Further analysis was conducted 

to compare the physical characteristics between ponds with and without fish. 

Because of the low sample size and unequal variances, a Mann-Whitney U test 

was used to compare means. There were a number of significant differences in 

physical characteristics between ponds with and without fish (Table 3). Ponds 

with fish were significantly larger in area and perimeter, deeper and had higher 

conductivity. Frogs are present across the landscape but fish are restricted to 

large, deep ponds.
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Table 2. Comparison of means for physical characteristics for ponds with and 
without frog breeding. Results shown as the mean (± SE; n) and the ANOVA F 
and p values.

Physical
characteris tic

W ithout breeding W ith breeding F p value

Elevation (m) 2882.5 (± 11.0; 13) 2865.6 (± 14.9; 10) 0.882 0.358

Area (ha) 0.69 (± 0.30; 13) 0.65 (± 0.27; 10) 0.009 0-927

Perimeter (m) 292.4 (± 76.8; 13) 278.4 (± 66.0; 10) 0.018 0.895

Depth (m) 2.90 (± 0.92; 13) 3.23 (± 1.00; 10) 0.059 0.810

Conductivity (uS) 12.5 (±1.2; 13) 11.2 (±0.8; 10) 0.895 0.360

Table 3. Comparison of physical characteristic means for ponds with and 
without fish. Results shown as the mean (± SB; n) and the Mann-Whitney U p 
value.

Physical
characteris tic

W ithout Fish W ith Fish p value

Elevation (m) 2882.2 (± 8.9; 17) 2858.4 (± 16.8; 8) 0.157

Area (ha) 0.22 (± 0.09; 17) 1.49 (± 0.42; 8) < 0.001

Perimeter (m) 171.1 (± 31.7; 17) 486.8 (± 99.6; 8) 0.001

Depth (m) 1.33 (±0.42; 17) 6.02 (± 1.12; 8) <0.001

Conductivity (uS) 10.3 (±0.8; 17) 14.1 (±0.7; 8) 0.027
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Analysis of covariance (AN CO VA, Type III sum o f squares) was 

conducted to determine the influence of habitat parameters (elevation, perimeter 

and water depth) versus the presence of fish on various frog metrics. Main 

effects of habitat and fish presence influenced frog metrics differently and there 

were many nonsignificant effects (Table 4).

Annual precipitation (mostly as snowfall) records collected by the National 

Weather and Climate Center weather station (www.wcc.nrcs.usda.gov) indicate 

that snowfall in 1999 was near the 30-year average but 2000 and 2001 snowfall 

accumulation was below average (Figure 4).

Fish Presence and Abundance

Fish were present in eight ponds (Table 5) and ranged from being 

abundant to rare. Thirty-three brook trout (7 female, 10 male, 17 unknown 

gender) and four Arctic grayling (3 female, 1 male) from five different ponds in 

the study area, were examined in more detail in 1999 and 2000. Body length of 

brook trout ranged from 150 to 420 mm (3c = 278.9 ± 4.0 mm). Arctic grayling 

body length ranged from 285 to 340 mm (x  = 310.0 ± 0.8 mm). In brook trout 

the gape height and width (n = 7) ranged from 29 to 60 mm and from 20 to 40 

mm respectively: the gape width and height in the single Arctic grayling 

measured 20 x 20 mm. A stomach analysis was conducted on 16 brook trout 

and 4 Arctic grayling. Stomachs of all but two fish were at least half-full. 

Contents of individual stomachs varied, but there was no distinct difference in 

content between species. None of the fish examined contained the remains of

http://www.wcc.nrcs.usda.gov
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Table 4. AN CO VA results for habitat and fish effects on various frog metrics. 
The directions of effect (positive or negative) are given for significant model 
parameters. Type III sum of squares.

Dependent
variable

Model
parameter

Degrees of 
freedom

F P Direction of 
effect

Eggs/clutch
Elevation 1 4.523 0.280
Perimeter 1 30.742 0.114
Maximum 1 3.588 0.309
depth
Fish 1 16.685 0.153
presence

Larval growth
(mm/day)

Elevation 1 28.436 < 0.001 positive
Perimeter 1 6.752 0.010 positive
Maximum 1 0.000 0.991
depth
Fish 1 57.873 < 0.001 positive
presence

Larval
development
(stage/day)

Elevation 1 1.991 0.159
Perimeter 1 0.501 0.479
Maximum 1 1.005 0.316
depth
Fish 1 0.004 0.953
presence

Adult frog
abundance
(frog/m)

Elevation 1 0.978 0.334
Perimeter 1 2.437 0.134
Maximum 1 5.114 0.035 positive
depth
Fish 1 3.747 0.067 positive
presence

Sex ratio
(F:M)

Elevation 1 0.807 0.387
Perimeter 1 0.156 0.700
Maximum 1 0.157 0.699
depth
Fish 1 1.123 0.310
presence
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the 30-year average. Data from Data from Fisher Creek SNOTEL database



Table 5. Fish and frog presence and abundance data for each pond. Fish presence is recorded as 0 (absent) or 1 
(present) and permanence as 1 (stocked) and 2 (self-sustaining). Fish species are labeled as Thar (arctic grayling; 
Thymallus arcticus) and Safo (brook trout; Salvelinus fontinalis).

Lake or 
Pond

Fish
Presence
(species)

Fish
Permanence

Female
Abundance
(2000)

Male
Abundance
(2000)

Female
Abundance
(2001)

Male
Abundance
(2001)

Number of 
Clutches 
(2001)

Number of 
Metamorphs 
(2001)

48a 0 0 23 40 16 32 7 135
48d 0 0 11 16 7 4 9 12
48m 0 0 2 2 4 2 0 0
48x 0 0 2 0 0 3 0 0
48y 0 0 11 33 6 22 6 2
49 0 0 33 58 24 47 8 85
49a 0 0 15 38 10 30 8 185
49s 0 0 6 5 5 3 1 50
49y 0 0 1 0 1 0 0 0
49z 0 0 8 19 9 17 0 0
50w 0 0 1 0 0 0 0 0
50x 0 0 2 8 2 4 0 0
51b 0 0 9 8 8 12 3 0
51d 0 0 0 0 0 0 0 0
52b 0 0 1 4 1 3 0 0
52c 0 0 0 11 2 9 1 20
52d 0 0 0 0 0 0 0 0



Table 5, continued. Fish and frog presence and abundance data for each pond.

Lake or 
Pond

Fish
Presence
(species)

Fish
Abundance

Female
Abundance
(2000)

Male
Abundance
(2000)

Female
Abundance
(2001)

Male
Abundance
(2001)

Number of 
Clutches 
(2001)

Number of 
Metamorphs 
(2001)

51 1 (Thar) 1 68 66 47 49 54 38
50 1 (Safo) 1 40 39 33 30 35 21
48b 1 (Safo) 2 0 0 0 0 0 0
48c 1 (Safo) 2 0 0 0 0 0 0
52a 1 (Safo) 2 2 1 0 2 0 0
47 1 (Safo) 3 0 0 0 0 0 0
48 1 (Safo) 3 3 0 1 1 0 0
52 1 (Safo) 3 0 0 0 0 0 0
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any life history stage of a spotted frog. Furthermore, none of the fish examined 

harbored parasites.

Demographic Patterns for Columbia Spotted Frogs

Although there was movement between ponds during the study, most 

adult frogs were recaptured at the same pond in 2000 and 2001 (Figure 5).

Thus, it was possible to compare ponds without a confounding effect of year-to- 

year variation in pond populations. Lincoln-Petersen estimates were calculated 

for each pond (Table 6) but overall, it was estimated that the population was 

composed of 761 adult and juvenile frogs In 2000. Throughout the study, 

recapture rates were high (> 75%) and were comparable for aJl sites. In total,

807 frogs (308 females, 446 males, and 53 juveniles) were captured and marked 

during four capture sessions in 2000 and 2001 (Table 5). Female frogs captured 

in ponds that were used for breeding and rearing were equally split between 

ponds without fish (n = 145) and with fish (n = 145).

Fish presence had no significant effect on whether or not frogs occurred in 

a pond (Table 7). Adult frogs were found everywhere, regardless of fish. 

Moreover, the difference between adult frog (defined as SVL > 45 mm) 

abundance as frogs per meter of shoreline in ponds without and with fish, 

regardless of frog gender, was not significant. However, when fish permanence 

was taken into account, the difference in the number of frogs was significant for 

both females and males (Table 8). No breeding occurred in ponds where fish 

populations were self-sustaining. Although adult frogs are found across the 

landscape, regardless o ffish  presence, breeding tends to be in the absence of
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Table 6. Lincoln-Petersen estimates for the juvenile and adult population size at 
each pond.

Pond

Number of frogs 
caught, marked 

and released 
during capture 

session 1 
(July 2000)

Total number of 
frogs caught 

during capture 
session 2 

(August 2000)

Total number of 
marked frogs 
caught during 

sample 
session 2 

(August 2000)

Population
size

48 4 8 3 10
48a 70 75 59 89
48d 29 7 6 34
48m 4 2 1 8
48y 45 34 29 53
49 94 125 100 118
49a 54 31 27 62
49s 11 3 3 11
49z 27 24 19 34
50 90 65 61 96
50x 3 3 3 3
51 142 140 101 197
51b 17 9 8 19
52a 4 10 4 10
52b 5 1 1 5
52c 11 20 11 20
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Table 7. Two-way Chi square analysis of frog presence in response to fish 
presence. Data are the chi-square value and significance level (p value).

Population Parameter_________ No Fish___________________ Fish_____
Frogs Absent 3 3

Frogs Present 14 5

Total 17 8

2-Way 2.057 (0.358)

Table 8. Comparison of means of adult frog abundance in ponds with varying 
fish permanence. Data are abundance #/meter (± SE; n) Kruskall-Wallis 
significance level p value.

No Fish Stocked Self-sustaining p value

Adult 0.16 (±  0.03; 17) 0.23 (±  0.14; 3) 0.001 (±  0.001; 5) 0.02
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fish. Although spotted frog breeding activity occurred in 47% of ponds without 

fish only 25% of ponds with fish, there was no significant effect of fish presence 

on breeding activity (Table 9).

The difference between mean snout-vent length (mm) and body weight 

(gm) in ponds without and with fish was significant in several cases. Female 

body weight was significantly higher in ponds with fish and males were 

significantly longer and heavier in ponds with fish. Fish presence did not have an 

effect on juvenile body length or weight (Table 10).

To explore the effect offish presence on spotted frog reproduction and 

demography, comparisons were made to detect differences in these parameters 

between ponds with and without fish (Table 11). The specific differences are 

discussed more fully below.

When data for all ponds were pooled, the sex ratio of females to males 

was significantly different for ponds with versus without fish, (presence vs. 

absence; p < 0.05; Table 11; Figure 6). However, when sites were divided 

according to fish permanence, the femaleimale ratio was skewed strongly toward 

females when fish populations were stocked or self-sustaining, with males rarely 

encountered in ponds with self-sustaining populations (1 male found in 3-yr).

Probability of survival and capture was modeled using Program MARK. 

The most parsimonious model, a constant survival rate over time (phi(.)), was 

used to estimate survival of adult frogs in ponds with and without fish (Table 12). 

Overall difference in mean survival rates of frogs were not statistically significant
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Table 9. Two-way Chi square analysis of 2001 frog breeding activity in response 
to fish presence and permanence. Data are the chi-square value and 
significance level (p value).

Population Parameter No Fish Fish
Breeding Absent 9 6

Breeding Present 8 2

Total 17 8

2-Way 3.782 (0.151)

Table 10. Comparison of means for snout-vent length and body weight for all 
frogs at their initial capture reported for female, male and juvenile frogs in ponds 
with and without fish. Results shown as the mean (± SE; n) and the ANOVA p 
value.

No Fish Fish p value

Snout-vent length (mm)
Female 71.43 (± 0.56; 161) 71.05 (± 0.46, 148) 0.605

Male 61.90 (± 0.17; 300) 62.58 (± 0.22; 147) 0.018
Juvenile 30.57 (±1.12; 27) 31.32 (± 1.40; 26) 0.681

Body weight (gm)
Female 30.39 (± 0.67; 161) 32.47 (± 0.58; 148) 0.020

Male 20.74 (± 0.18; 300) 22.83 (± 0.26; 147) <0.001
Juvenile 2.68 (± 0.35; 27) 2.91 (± 0.42; 26) 0.665



Table 11. Comparison of means of population metrics in ponds witti and without fish. Data shown are the mean (± SE; 
n), and the significance of the comparison.

Population Parameter Without Fish With Fish p value

Adult Frog Abundance (#/m) 0.16 (±0.03; 17) 0.09 (± 0.06; 8) 0.307

Female: Male Sex Ratio 0.586 (± 0.146; 12) 1.185 (±0.322; 3) 0.031

Adult Frog SizerAge (mm/year) 8.947 (± 0.408; 44) 9.013 (± 0.363; 53) 0.789

Female Frog SizerAge (mm/year) 8.554 (±2.126; 22) 9.210 (±2.427; 26) 0.350

Male Frog SizerAge (mm/year) 9.340 (± 0.679; 22) 8.824 (± 0.551; 27) 0.520

Eggs (eggs/clutch) 618.9 (±48.8; 17) 730.5 (± 34.7; 26) 0.136

Larval Growth (mm/day) 1.023 (±0.0.14; 202) 0.825 (± 0.205; 208) < 0.001

Larval Development (stage/day) 0.867 (± 0.017; 202) 0.734 (± 0.010; 208) < 0.001

Metamorph Body Size (mm) 22.57 (± 0.20; 49) 21.74 (± 0.19; 27) 0.002

2
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in ponds with and without fish (t-test), nor was survivai of male frogs. However, 

females had higher survival rates in ponds with fish (Table 13).

Clutch Density and Egg Production

The presence of breeding was noted in 1999-2001 and breeding metrics 

were recorded in 2001 (Table 5). Based on visual estimation of ciutch 

aggregation and egg deveiopment, in 2001 the first eggs were laid in pond 50 

(2816 m elevation) between June 3-8. This pond supported brook trout.

The absolute density of eggs laid ranged from -7900 — 47,000 eggs/ha in 

ponds without fish versus -10,000 -  38,000 eggs/ha in ponds with fish. The 

difference between the average number of eggs laid per clutch at ponds with and 

without fish was not significant; however almost three times as many total eggs 

were laid in sites where fish were present (Table 11 ; Figure 7). It was not 

possible to test for the effect of fish abundance on ciutch or egg metrics because 

breeding only occurred in ponds with no fish or where fish were stocked.

Larval Growth, Deveiopment and Metamorphosis

As expected, the difference between overall larval growth and 

developmental rate at ponds without versus with fish was significant. Larvae 

grew faster at ponds without fish, and larval developmental rate was significantly 

faster at ponds without fish (Table 11). Indeed, when growth and developmental 

rates were examined graphically by pond, larval growth and developmental rates 

were visibly greater in ponds without fish versus rates In ponds with fish 

throughout the growing season (Figure 8). No statistical comparisons of larval
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Table 12. Probability of survival and capture model likelihood
Model A lCc Delta AlCc Model # Deviance

A lCc W eight L ike lihood Parameters

No Fish

Phi(.)p(t) 1365.860 0.00 0.38147 1.0000 4 17.831

Phi(t)p(.) 1366.587 0.73 0.26530 0.6955 4 18.557

Phi(t)p(t) 1367.527 1.67 0.16575 0.4345 5 17.473

Phi(.)p(.) 1408.992 43.13 0.00000 0.0000 2 64.998

Fish

Phi(t)p(.) 963.222 0.00 0.65222 1.0000 4 12.582

Phi(t)p(t) 965.198 1.98 0.24292 0.3724 5 12.519

Phi(.)p(t) 968.871 5.65 0.03872 0.0594 4 18.230

Phi(.)p(.) 975.945 12.72 0.00113 0.0017 2 29.359

Table 13- Survival rate (phi; ± SE) of adult frogs in ponds with and without fish.
No Fish Fish

A ll Frogs 0.87 ± 0.02 0.88 ± 0.03

Female 0.82 ± 0.03 0.89 ± 0.03

Male 0.90 ± 0.03 0.87 ± 0.04
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growth or development could be made as a function of fish abundance because 

breeding only occurred In ponds without fish or where fish were rare. The first 

metamorphic frogs (stage 46) were captured from several sites (48a, 49, 49a) on 

August 17, 2001, nine weeks after the first eggs were laid in the study area.

More metamorphs successfully emerged from ponds without fish (Figure 9) and 

these metamorphs were significantly larger (Table 11). Metamorphs emerging 

from ponds with fish were smaller than those emerging from ponds with fish (p < 

0.05; Table 11). No comparison of metamorph number or size of emerging 

metamorphs as a function of fish permanence could be made because breeding 

only occurred in ponds without fish or where fish were stocked.

The number of days between the oviposition of the first eggs and the 

capture of the first metamorphs can be used as an index of the length of larval 

period (Table 14). Unfortunately, oviposition data was not collected for all ponds 

and the first metamorphs captured did not necessarily reflect their date of first 

emergence. Therefore the data should be interpreted with caution. In general, 

the larval period (oviposition to emergence) was slightly longer in ponds with fish 

but by a few days only (Table 14).

Skeletochronology Analysis

Although metamorphosis did occur earlier in most cases, for age analysis 

uniformity, a standard metamorphosis date of September 30 was used. Age was 

counted in months (but has been reported in years for ease of comparison) from 

the last day of latest metamorphosis month. An additional full month was
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Table 14. The number of clutches and index of the length of the larval period by 
pond.

Pond Num ber o f 
c lu tches

Dates o f 
ov ipos ition

Date o f 
capture  o f 
f irs t
m etam orph 
(stage 46)

Days (1®* 
eggs to  1®* 
m etam orphs)

No Fish
48a 7 unknown 17 August unknown
48d 9 unknown 23 August unknown
48y 6 unknown 21 August unknown
49 8 11 June 17 August 67

49a 8 5-8 June 17 August 73
49s 1 5-8 June 19 August 73
51b 3 6-8 June none 74
52c 1 unknown 19 August unknown

Fish
50 54 3-8 June 18 August 75
51 35 5-7 June 18 August 73
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included in the count when a toe was excised past the fifteenth day of that 

month. Population and individual variation in the first zone thickness were 

expected and measurements varied among different points along the length of 

the bone. Moreover, the same zone may have differed in thickness at different 

points (Figure 2). For all specimens, the resorption margin was characteristically 

wavy and irregular (Figure 2), with irregular cellular clusters and translucent 

spots. The first zone stained uniformly, had generally low cellularity, and was 

bordered by a line of arrested growth (LAG) that was smoothly circular and 

stained with regular density.

Frogs in my study had many bone layers suggesting they were long-lived. 

Sometimes LAG zones were absent from more than one year. In these cases, 

the technician assumed that no more than three zones would be removed by 

resorption (cases with extensive resorption were noted) (method of Gary Matson, 

Matson Labs LLC, Missoula, Montana, unpublished data).

In frogs older than 5 - 6  years, the oldest LAG zones were thin and 

closely spaced and accurate LAG counting may not have been possible because 

of the lack of visual separation between lines. In some older frogs, the bone 

periphery contained a darkly stained area in which several zones and LAG were

condensed together and spaced too closely for accurate counting. However, 

sections adjacent to the one analyzed often revealed peripheral areas where the 

LAGS were more Identifiable. Evidence In the toe sections suggested that the 

extent of resorption taking place in older frogs varied among individuals. In some
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animals, all the first zone and LAG were resorbed but this was not the case in 

others. The first LAG outside a thick (20 -  30 pm) zone in an older frog with 

extensive resorption was counted as having been laid down after the first 

summer. For those individuals marked early in the summer (n = 7), the 

assumption was made that a periperal LAG was present, but not visible, because 

new bone had not yet formed at the periphery by the date of excision.

Analysis of covariance (ANCOVA, Type III sum of squares) was 

conducted to determine the effect of age, pond type (fish vs. fishless) and the 

interaction (age*pond type) on female and male size (SVL) (Table 15). Male size 

was not significantly affected by age or pond type but age, pond type and the 

interaction were significant model parameters when analyzing female size.

Linear regression was independently conducted on female size in ponds with and 

without fish to further identify the effect of age on size. Age was a significant 

model parameter for female size, but only in ponds without fish (Table 16, Figure 

10A). The relationship of size to age was weak for females in ponds with fish 

and for males in both ponds with and without fish (Figure 10B-D). Sexual 

dimorphism in adult size is apparent in this population. The females are 

significantly larger than males (Table 17).

Frog age (in years) was examined to determine the overall age structure 

of the population (Figure 11 A). Setting the most recent capture year as age 0 

(2001 ), a calendar year was connected with individual age. Data represent only 

individuals who were identified as male or female. In some cases, small (< 45 

mm) individuals could not be assigned as male or female because they had not
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Table 15. ANCOVA results for the effect of age and pond type on male and 
female size (SVL). The directions of effect (positive or negative) are given for 
significant model parameters. Type III sum of squares.

Dependent
variable

Model
parameter

Degrees of F 
freedom

P Direction of 
effect

Female size 
(SVL)

Age (yr) 
Pond type 
(fish vs. 
fishless) 
Age*Pond 
type

1
1

1

4.607
9.097

8.431

0.037
0.004

0.006

positive
positive

positive

Male size 
(SVL)

Age (yr) 
Pond type 
(fish vs. 
fishless) 
Age*Pond 
type

1
1

1

0.634
1.115

1.051

0.430
0.297

0.311

Table 16. Linear regression results for the effect of age on male and female size 
(SVL), controlling for pond type. Significant results are indicated in bold.
Dependent
variable

Pond Type Degrees of 
freedom

F P

Female size 
(SVL)

Fishless
Fish

21
26

16.657
0.230

0.001
0.636

Male size (SVL)
Fishless
Fish

21
26

1.114
0.045

0.304
0.833
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Table 17. Comparison of means for snout-vent length and body weight for all female and male frogs in the total 
population, and from ponds with and without fish. Values under subheadings are sample size. Results shown as the 
mean (± SE). The t-test significance p value is shown for the total population and the ANOVA significance p value is 
given for values compared for ponds with and without fish.

Total Population Without Fish With Fish
Size metric Female Male Female Male Female Male

(309) (447) p value (161) (300) p value (148) (147) p value
Snout-vent 
length (mm)

71.25 (±0.37) 62.12 (±0.14) <0.001 71.43 (±0.56) 61.90 (±0.17) <0.001 71.05 (± 0.46) 62.58 (±0.22) < 0.001

Body weight 
(gm)

31.39 (±0.45) 21.43 (±0.16) < 0.001 30.39 (± 0.67) 20.74 (±0.18) <0.001 32.47 (±0.58) 22.83 (±0.26) <0.001

23
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yet reached sexual maturity. Overall, age was normally distributed with the 

greatest number of individuals at ages 6 — 8 years (Figure 11 A). This age range 

corresponds to hatching between 1993 to 1995. Most frogs were 6 - 1 1  years 

old. The oldest Individual captured was a 14 year old female while the youngest 

individual was a 3 year old male. In ponds without fish, females ranged in age 

from 3 to > 14 years old, while the age distribution for males was 4 to -12.5 

years (Figure 11B). In ponds with fish, the overall age distribution ranged from 

3 to -1 2  years (Figure 11C). Most frogs were 6 - 1 1  years old. In ponds with 

fish, no females older than -10.5  years were captured. Thus, older females were 

most common in ponds without fish.
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DISCUSSION

When fish are introduced to ponds supporting breeding populations of 

frogs, one potential expectation is that the local population will decline or 

disappear (Bradford et al. 1993, Hecnar and M’Closkey 1997). Contrary to this 

expectation, Columbia spotted frogs co-occurred with fish in stocked ponds in the 

Absaroka-Beartooth Wilderness (ABW) and used some ponds with fish as 

breeding and rearing sites. However, there were effects on both the adult and 

larval frogs suggesting that the presence of fish could have negative population- 

level effects on Columbia spotted frogs over time.

The Physical Environment

In the ABW, the period when frogs are active is short, ranging from early 

June to early September. The physical environment defines the overall 

conditions for frog presence or absence in the landscape and it is difficult to sort 

out the fish effects from the habitat effects. Elevation, pond area and depth were 

significant model parameters but did not fully explain observed differences in 

several frog metrics (e.g., larval growth and development rates, size at 

metamorphosis, adult abundance and number of eggs per clutch).

The physical factor expected to be most influential in the aquatic stages 

was water temperature, especially at high elevations (Bizer 1978). Shallow water 

temperatures varied widely on a daily and seasonal basis. However, the 

available temperature data indicates that shallow water provide essentially the 

same thermal habitat in all ponds studied.
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In general, frogs concentrated egg-laying and rearing In shallow pond 

areas with emergent vegetation. No eggs were laid in ephemeral ponds in this 

study area though most shallow areas in these ponds were subject to potential 

dessication as the shoreline receded. Breeding and rearing activities were 

confined to ponds where fish were absent or had small populations sustained by 

stocking every 8 years.

Population Demographics

The greatest number of frogs in the ABW were 6 - 8  years old (born in 

1993 to 1995) when annual precipitation (as snowfall) was well below average 

(National Weather and Climate Center). In general, recruitment trends 

correspond well to snowfall records; a low snowfall year corresponds to higher 

recruitment. Although 10% of frogs did move farther than 100 m from their 

original pond of capture, there was a high degree of site fidelity, which facilitated 

seasonal and year to year comparisons among ponds. Spotted frogs in the ABW 

lived up to 14 years. This is long compared to reports in other studies (Reaser 

2000), but is expected from what is known about life-history variation in high- 

elevation populations of frogs (Morrison and Hero 2003). The hypothesis is that 

frogs living at high elevations require more years to reach sexual maturity 

because of a limited growing season and are therefore longer lived (Morrison and 

Hero 2003).

In amphibians in general, body size is strongly associated with 

reproductive capacity. For females, this can be translated into the number and/or 

size of eggs. For males, size influences amplexus with females. A study of
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Spotted frogs in northwestern Montana showed that successful mating males 

tended to be smaller in body length (SVL) with larger nuptial pads and thicker 

forearms than unsuccessful males (A. Greene, The University of Montana, 

unpublished data). Reproductive maturity is cued by a threshold body size and 

the age at which an individual reaches maturity influences lifetime reproductive 

success (Crump 1981).

In the population of spotted frogs I studied, the overall relationship 

between age and size in adults was only significant for females from ponds 

without fish. This suggests that these females continued to grow throughout their 

lifetime in fishless ponds. On the other hand, male (with and without fish) and 

female (with fish) agersize relationships suggest that once sexual maturity is 

attained, individuals do not experience further growth. Females from ponds with 

fish did appear to reach sexual maturity at an earlier age, potentially allowing for 

increased lifetime reproductive output. Males with higher growth rates reach 

sexual maturity at a younger age, after which it may no longer be adaptive to 

have a larger body (Jorgenson 1992), unless it confers some advantage to 

attracting females. In comparison, female frogs may benefit from continued 

growth throughout their lives if being larger translates into larger and/or more 

eggs. Fish may be a selective factor favoring larger body size for both males and 

females to escape gape-limited predation. A younger age at sexual maturity is 

one outcome predicted by life-history theory when adults experience high levels 

of predation pressure. Although it was not possible to determine the influence of
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fish on size of frogs in the ponds I studied based on the data I collected, this 

could be interesting to investigate in the future.

The overall ratio of females to males in the ABW ponds I studied was 

slightly male-biased. Sex ratios In frogs can certainly vary temporally. For 

example, the female:male sex ratio in spotted frogs can be extremely male 

biased (0.2) during mating activity in small, shallow ponds (Morris and Tanner 

1969). This skew towards more males at the time of mating is expected because 

Columbia spotted frogs participate in a scramble mating system (A. Greene, The 

University of Montana, unpublished data). However, a very intriguing result of 

this study was that the sex ratio of femaleimale differs spatially in ponds with 

(1.2:1) versus without (0.6:1 ) fish. Males were much more common in ponds 

without fish compared to ponds with fish. One hypothesis to explain this result is 

that because females were larger than males, their risk of predation by gape- 

limited fish predators was reduced. Unfortunately, there are few published 

studies examining the Influence of predation on frog sex ratios for comparison.

In a demographic analysis of a several populations of Rana luteiventris in the 

Toiyabe Range In west-central Nevada, the female:male sex ratio ranged from 

0.7 to 3.8 (Reaser 2000). The female:male sex ratio was significantly different 

among sites in Reaser’s study, and females dominated most ponds. The lowest 

ratio of females.males (0.7) occurred In a pond without fish. In ponds with fish 

where both males and females were found, the sex ratio ranged from 1.3 -  3.8. 

Reaser concluded that the difference in the observed sex ratios may be affected 

by gender-based site selection criteria. Female frogs tended to congregate in
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terrestrial vegetation and not along the shoreline in this particular study (Reaser 

2000).

In comparison with the results reported by Reaser (2000), few frogs were 

found more than 1 m from ponds In the ABW. However, the explanation of 

differential selection of habitats in males versus females cannot be ruled out. 

Another ran id species {Rana japonica) studied in a marsh in Japan had a sex 

ratio that ranged from 0.3 to 1.0 in the years between 1995 and 1999 but no 

explanation for the variation was offered (Marunouchi et al. 2002).

Determining the relative importance of gape limitation, habitat preference, 

and resource availability for explaining the differences in femaleimale sex ratios 

in the spotted frog populations in the ABW cannot be resolved based on the data 

currently available. Though survival estimates show that female frogs had a 

higher survival rate in ponds with fish there is an overall lack of old frogs in ponds 

with fish, suggesting a predation risk. These conflicting data are difficult to 

interpret which make this is an important and interesting area for future 

experiments and follow-up.

Reproductive Effort in Ponds With and Without Fish

Even though overall female frog numbers were the same in ponds with 

and without fish, females laid nearly three times as many eggs in ponds with 

versus without fish. However, fewer metamorphs emerged from ponds with fish 

and they were significantly smaller compared with ponds without fish. Several 

nonmutually exclusive factors may explain the disparity between reproductive 

investment and recruitment including differences in intraspecific competition
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between tadpoles, Influences of female size on reproductive effort, physical 

differences in breeding ponds, and direct and indirect influences o ffish.

In this study, there was not sufficient data to address the effect of female 

body size on the number and size of eggs laid, nor the number and size of 

clutches. Although neither female body length nor weight was significantly 

different between ponds with or without fish, age was unknown for most 

individuals. Without this information, it is difficult to form conclusions about the 

influence of fish on female reproductive output. First, because more eggs were 

laid in ponds with fish, emerging tadpoles may have experienced higher levels of 

intraspecific competition. The absolute density of eggs laid ranged from 7930 -  

47,000 eggs/ha in ponds without fish versus 10,113 -  38,000 eggs/ha in ponds 

with fish. Although visual estimates of tadpole density in ponds overall was 

comparable, intraspecific competition was not measured, and therefore this 

explanation cannot be ruled out. Intraspecific competition among tadpoles could 

greatly reduce the availability of better-quality resources and could have a large 

influence on larval rates of growth and development.

The physical environment of ponds used for breeding and rearing in the 

ABW were more similar than different based on the variables I measured with 

just a few exceptions. Ponds with fish tended to be deeper and have a larger 

area. Furthermore, temperature in the lower elevation ponds was slightly higher, 

but this did not fully explain differences in growth and developmental rates of 

tadpoles. These oligotrophic ponds are expected to exhibit low nutrient (e.g., 

nitrogen) levels, low levels of photosynthesis by algae and macrophytes, low
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productivity and high oxygen levels (Wetzel 1983). In this study, conductivity, the 

measure of dissolved ions in water, was used as a rough estimate of pond 

productivity. Unfortunately, these data were not useful in determining how 

resource level differences among ponds might affect tadpole growth and 

development. More intensive limnological sampling is needed to completely rule 

out the influence of the physical environment on maternal investment and larval 

biology.

An interesting potential explanation is that females may be laying more 

eggs per clutch in ponds with fish to compensate for the negative effect of fish 

presence. To fully determine the impact o ffish  presence on female reproductive 

output and success, data is needed on the clutch size that each female lays and 

analysis should be controlled for body size. However, the data that was 

collected, a greater investment per clutch measured in ponds with fish, fits with 

life-history prediction; an increase in reproductive investment when adults are at 

risk from predation. By laying more eggs per reproductive event the individual 

increases its lifetime fecundity and increases the likelihood that some will survive 

to metamorphosis. The survival rate to metamorphosis from ponds with fish was 

only 0.03% (compared to 14% from ponds without fish). Therefore, this greater 

maternal investment in egg-laying in ponds with fish is resulting in very few 

recruits and provides evidence that these ponds with fish are demographic sinks. 

Although no remains of tadpoles or adult frogs were found in the fish stomach 

contents analyzed in this study, numerous lines of evidence suggest that 

predation does occur.
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My data suggest that indirect effects of fish may influence larval biology. 

For example, there was a significant difference in overall developmental rates in 

ponds with and without fish. Tadpoles developed more slowly in ponds with fish. 

Larvae in ponds without fish exhibited higher mean growth rates from weeks 4-7 

and overall. Tadpoles in ponds without fish grew at the same rates during weeks 

9 and 10 suggesting that these tadpoles had entered into metamorphosis and 

were allocating all resources toward development.

Even when direct predation is rare, the presence o f fish may alter tadpole 

behavior in ways that influence growth rate. For example, other studies have 

documented reduced activity of larval amphibians in the presence of fish 

predators (Petranka et ai. 1987, Kats et al. 1988, Feminella and Hawkins 1994;

B. Maxell and A. Wyrick, The University of Montana, unpublished data) which is 

expected to influence growth rates (e.g., Chi vers et al. 1999, Kiesecker et al. 

2002). Frogs appear to be able to detect chemical cues from fish, even from 

water where fish have been removed. This “scent of death" (Kats and Dill 1998) 

triggers a behavioral response whereby tadpoles limit their movement to reduce 

the likelihood that they will encounter a predator. In a preliminary laboratory 

study we tested the response of Columbia spotted frog larvae to chemical cues 

from a variety of potential predators (e.g, brook trout), but the results were 

inconclusive (B. Maxell and A. Wyrick, The University of Montana, unpublished 

data). Although the tadpoles reduced swimming activity and increased time 

spent under cover, we did not measure long-term effects of this behavior on 

tadpole growth and development. Tyler et al. (1998b) found that larval
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survivorship of two salamander species {Ambystoma macrodactylum  and A. 

gracile) was significantly reduced when raised in experimental ponds with fish as 

compared to those raised in ponds without fish. Not only was survivorship lower 

in ponds with fish, but emerging metamorphs were smaller. These effects were 

attributed to both direct predation by fish and the reduction in foraging 

opportunities for tadpoles when exposed to predation threat (Tyler et al. 1998b). 

Although few studies have examined the long-term effects of reduced ranid 

tadpole activity levels in response to fish presence, response to non-fish 

predators (e.g., insects and predatory salamanders) have been well-documented 

(e.g., Altwegg and Reyer 2003). These studies suggest potential outcomes of 

tadpole behavioral response to introduced fish. In some species, active 

tadpoles developed more rapidly, enabling them to reach metamorphic climax, 

transform, and exit the aquatic habitat earlier than tadpoles in ponds where 

tadpole activity levels were reduced in response to predators (Lawler 1989). 

Studies have been conducted to further test the influence of predator diet on 

tadpole behavioral response. In some species, the smell of a predator combined 

with a diet of conspecifics, led to an increase in development and they 

transformed earlier than those tadpoles exposed only to predator presence 

(Chivers et al. 1999; Kiesecker et al. 2002). However, the effect of predator 

presence and diet on emerging metamorph size varied; western toads {Bufo 

boreas) emerged at similar sizes regardless of predator diet (Chivers et al. 1999) 

while red-legged frogs (Rana aurora) emerged smaller when exposed to 

chemical cues from predators fed larval red-legged frogs (Kiesecker et al. 2002).
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The presence of fish In a pond may have an effect on the thermal 

environment of tadpoles may explain differences In growth. It could be that the 

presence of fish in deeper water excludes tadpoles from making a daily 

movement from shallow to deep water to maximize exposure to highest 

temperatures. In all years of this study I observed a daily movement of tadpoles 

from shallow to deep water in fishless ponds. Tadpoles tended to congregate in 

the littoral habitats between 1000 and 1600 hours and then moved into the 

deeper, offshore waters at other times. I never observed this trend in ponds with 

fish however, the fewer number of tadpoles might have influenced the lack of 

such an observation. A tadpole that is free to move from shallow to deep water 

as needed to maximize the thermal environment will accumulate more degree- 

days and subsequently be able to develop and grow more rapidly to 

metamorphosis. In fact, if a tadpole had followed this trend (as observed in 

several fishless ponds) it would have accumulated 30% more degree-days In the 

span of two weeks than a tadpole confined to the shallows. This effect on larval 

period is unknown but is expected to be great. To clearly understand the role 

that chemical cues from fish may play in larval survival and success, future work 

is needed to examine costs (or benefits) of a behavioral response to the 

sublethal presence of a predator on habitat use (e.g., resource uptake, 

temperature preference), and the ultimate effects on growth and development. 

Conservation and Management Implications

Columbia spotted frogs are persisting in the ABW despite the presence of 

fish in many of the ponds. Although these frogs co-occur with fish and use
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several ponds with fish for breeding and rearing areas, they are not successfully 

coexisting in these ponds. There are several possible ways to explain how the 

Columbia spotted frog population in the ABW co-occur with introduced fish 

compared to other high elevation amphibians: 1 ) life history differences and 2) 

access to réfugia and fishless migration corridors.

One important difference between spotted frogs in the ABW and the 

amphibians in other high elevation settings, is that the time spent as larvae is 

shorter and they do not over winter as tadpoles. The extent of the impact on 

species in high elevation waters of the Sierra Nevada depended on the length of 

the larval period; those species that overwintered at least once as a tadpole were 

much more negatively affected by fish presence (Bradford 1984, 1989). More 

time spent as a larva increased the risk of predation, especially over winter when 

pond size was reduced by freezing. In contrast, amphibian species for which the 

time from hatching to metamorphosis occurs over a single season such as 

Columbia spotted frogs, spend less time in the presence of fish predators.

Another explanation for the co-occurrence of fish and frogs in the ABW is 

that there are many ponds within a relatively small geographic area without fish, 

and these ponds may serve as réfugia. It may be that frogs were better able to 

use these fishless waters for breeding and rearing larvae and inhabit stocked 

sites only as adults. The impact of the presence of at least a few ponds without 

fish may be substantial for frog population recruitment and persistence. Other 

studies have reported that several species (mountain yellow-legged frogs, long

toed salamanders, Columbia spotted frogs) attempted to breed and rear young in
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ponds and lakes where fish have been introduced, but few if any frogs survived 

to the metamorph stage (Bradford 1989, Pilliod and Peterson 2001). My study 

was different in that the level of breeding Investment in ponds with fish in the 

ABW was very high (> 60,000 eggs), but similar in that successful recruitment 

was very low (0.03%). It may be that ponds with fish are population sinks and it 

is the landscape that determines the level of frog resilience (e.g., the extent of 

fish-free ponds and movement corridors).

Very few frogs in the ABW area I studied traveled far seasonally or 

between years. Fewer than 10% of frogs were recaptured more than 100 meters 

from the original pond of capture, but I did document movement up to 1.2 km 

between 2000 and 2001. In other studies, Columbia spotted frogs have been 

known to travel up to 6.5 km (Engle 2001), but seasonal movement is typically 

less than 2 km (Pilliod et al. 2002). Persistence of spotted frogs in landscapes 

with fish may depend on the ability of individuals to migrate between ponds.

Few of the ponds included in this study were connected by rivers or 

streams, thus reducing the potential for fish to invade fishless ponds without 

human assistance. Moreover, the presence of numerous “predator-free” 

movement trajectories between and among ponds reduces at least one obstacle 

to between pond migration by frogs. In the Sierra Nevada in California lakes and 

ponds are connected by streams and rivers where fish are present (Bradford et 

al. 1993). The presence o ffish  in these waterways can be a major barrier to 

successful movement and recolonization, due to either the direct loss of 

migrating individuals to predation or the unsuccessful movement of individuals
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through alternate routes with more hostile (e.g., drier) conditions. In the ABW, it 

may be that migration of frogs in a season or over time is not limited by predators 

to the same extent as reported by Bradford et al. (1993). Fishless réfugia and 

movement corridors may be the key to success of this population, highlighting 

the importance of protecting complementary habitats and movement corridors 

(Pilliod and Peterson 2001, Pilliod et al. 2002).

Frog populations of conservation concern, such as the Columbia spotted 

frog (Leonard and McAllister 1997, Mizzi 1997), can be aided by direct efforts to 

remove introduced fish. The removal o ffish  eliminates predation risk by fish on 

amphibians. Where adequate numbers of frogs persist to recolonize these 

areas, the expectation is that population sizes may recover to pre-introducion 

sizes. For example, after fish were removed, mountain yellow-legged frogs 

{Rana muscosa) recovered in some high elevation lakes of the John Muir 

Wilderness and Kings Canyon National Park (Knapp et al. 2001). However, 

Knapp et al. predicted that recovery of these populations of frogs may require at 

least 10 years. In the Bitterrroot Mountains of Montana, long-toed salamanders 

{Ambystoma macrodactylum) recolonized high elevation lakes following the 

extinction of introduced trout populations (Funk and Dunlap 1999). In Mt. Rainier 

National Park, Washington, some lakes have been returned to fishless condition 

to facilitate recovery of amphibian populations but the impact o f this management 

activity on amphibians was not described (Drake and Naiman 2000). While 

several case studies have shown that amphibian species can recolonize lakes 

that are returned to a fishless state (e.g., Knapp et al. 2001, Funk and Dunlap
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1999), it may be unreasonable to expect that fish removal is feasible for all areas. 

For example, in the Sierra Nevada Mountains, conservation efforts were in 

conflict with recreationalists who had fished In these restored areas for many 

years.

In 1980, a fisheries management plan was developed for the ABW 

(Marcuson 1985, Marcuson and Poore 1991). Since then, the Montana 

Department of Fish, Wildlife and Parks (MFWP) has maintained a database with 

information on stocking schedules, fish species composition and fish population 

densities in the ABW lakes and ponds. Lakes in the ABW are unique when 

compared to wilderness areas in the Rocky Mountains, Pacific Northwest and 

Sierra Nevada mountain ranges. Only about 34% of lakes have been stocked 

(12% on 5-8 year stocking schedules: 22% with self-sustaining fisheries). The 

presence of a large number of fishless lakes and ponds (-66% ) allows more 

refuge areas than is typical of high mountain landscapes in other wilderness 

areas. The low number of stocked sites may also facilitate the opportunity for 

successful fish removal from core frog areas (Knapp and Matthews 1998). If the 

results of other studies on the impact of fish removal are generalizable to the 

case of the Columbia spotted frog in the ABW, extirpation of fish would, over 

time, allow the population of spotted frogs to increase toward pre-introduction 

levels. A compromise management alternative would be to limit fish stocking to 

lakes that do not provide adequate habitat for all stages of the amphibian’s life 

history. For example, lakes and ponds above 2950 m in elevation in the 

Absaroka-Beartooth Wilderness do not provide appropriate habitat for any life-
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history stage of Columbia spotted frogs. These waters are nutrient poor, rarely 

have emergent vegetation, and are the last to ice-off In the spring and first to 

freeze in the fall. Lakes or ponds that provided preferred amphibian habitat 

(extensive shallows shores, emergent macrophytes) could be returned to a 

fishless state. Consequently, lakes for angling would still be available, but the 

availability of suitable réfugia and predator-free migration corridors would be 

maximized, thereby contributing to the conservation of this amphibian species. 

Most importantly, public education about the benefits of restoring lakes to a 

fishless condition should be a priority (see Chapter 3).

Conclusions

The amphibian life cycle is complex and an introduced predator can 

influence a number of points from egg laying through metamorphosis. The 

results presented here suggest that Columbia spotted frogs co-occur in the ABW 

landscape with introduced fish largely due to the availability of refuge ponds 

without fish and fish-free movement corridors. Although frogs appeared to use 

ponds with fish for breeding, the subsequent poor recruitment from these ponds 

suggests that individuals reared in these lakes are at a disadvantage from egg to 

metamorph. To better understand the direct and indirect influences o ffish  on 

frog population dynamics experiments are needed to examine predator feeding 

preferences, non-lethal effects on larval growth and development, and effects on 

activity levels and microhabitat use.

It may be that predation pressure on aduits in ponds with fish is selecting 

for a shift in life-history traits. In ponds with fish, adult frogs were larger at a
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younger age (suggesting a younger age at sexual maturity), had shorter life

spans and laid more eggs per clutch. While all of these results fit with life-history 

theory predictions in response to predation pressure on adults, it is difficult to 

make conclusions based on these data. First, these general trends may be more 

influenced by habitat differences than predation pressure. Furthermore, while 

survival rates of male frogs was slightly lower in ponds with fish, female frogs had 

a significantly higher probability of survival in ponds with fish, an outcome that 

does not correspond well to expectation of increased predation risk in ponds with 

fish. Even though most frogs remained at the original site of capture, suggesting 

site fidelity, 10% of individuals did move. This level of movement and dispersal 

may be blurring not only the effects of predation selection but also the distinction 

assigned to frogs from ponds with and without fish. A long-term study is needed 

to test the hypothesis that fish may be selecting for a population-level shift in life 

history.

Although Columbia spotted frogs in this study area of the Absaroka- 

Beartooth Wilderness are currently living and reproducing in the presence offish, 

this does not mean that the population is safe from declines and extirpations. 

Finally, It is Imperative for federal and state wildlife managers to acknowledge the 

documented negative effects that fish introductions have on the aquatic food- 

web, especially the negative effect on many high-elevatlon frog species. Ideally, 

future fish-stocking should be eliminated in wilderness areas, or as a 

compromise, occur only where these negative effects can be minimized. Data
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from this study provide an important baseline to test this and other hypotheses 

about spotted frog popuiation dynamics and for long-term monitoring.
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A ppend ix  1 Protocol for skeletochronology (method of Gary Matson, Matson 

Labs LLC, Missoula, Montana)

To begin the analysis, the thickness of the first growth zone, formed 

before the first winter of life, was measured (jim). A zero was recorded if the 

entire first zone was absent due to resorption. Hence, the first zone encountered 

when “0” as noted in a section actually corresponded to the second layer of bone 

laid down (unless otherwise noted). Where the new bone at the periphery was 

just barely visible, the thickness of new bone was measured (pm). To aid in 

judging the amount of bone formation expected for different populations/ages 

during the season of toe excision, a different bone thickness was measured 

when this periphery was a very thick.

The first LAG was counted as being from the second winter when 1 ) 

resorption was extensive, 2) the preceding zone was fairly thick ( - 1 0  pm) all the 

way around the circumference or was very thick in one spot, 3) subsequent 

zones were thinner than expected for second or third growth seasons, and zone 

compression that is characteristic of older years began within one or two years 

after the LAG in question.

Frogs younger than three years had an identifiable zone formed before the 

first winter of life and at least a remnant of this zone and the first LAG were 

present in younger frogs. As frogs age, initial LAGS may be reincorporated into 

the endosteal bone. In older frogs, it was assumed that all of the first zone might 

be resorbed, but not all of the second zone. The assumed identity of the first
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visible LAG was a potential error source, because the extent of resorption 

probably varied among individuals. It was assumed that the margin of resorption 

was identifiable, with endosteal zones proximal to the margin and periosteal 

zones distal.

In older frogs, zone thickness was an unreliable identifier for the first 

visible line of arrested growth and zone thickness reflected rate of growth and 

varied among individuals. Periodically, the first two to three zones were of 

different thickness due to variable genetic and environmental factors and this 

thickness variation was a potential source of error. Other possible sources of 

error were the identification of the first zone of growth, LAG that did not reflect 

annual growth, and low visibility LAG.



Appendix 2. Landscape and limnological characteristics for each lake or pond. Missing data is Indicated as “nd”.

Distance Distance Distance
to nearest to nearest to nearest
pond with pond with pond with

Pond
Elevation
(m) Area (ha)

Perimeter
(m)

Maximum 
depth (m)

Conductivity
(uS)

Number 
of Inlets

Number
of
Outlets

fish
present
(m)

frog
present
(m)

bre<
preî
(m)

48a 2890 0.53 350 4.6 13 0 0 219 31 70

48d 2835 0.44 274 3.1 15 0 0 94 242 242

48m 2920 0.02 57 0.5 nd 0 0 172 23 31

48x 2920 0.02 54 0.3 nd 0 0 39 39 63

48y 2920 0.10 132 0.6 9 0 0 133 23 70

49 2900 1.58 550 6.4 10 0 1 109 78 76

49a 2908 0.16 170 0.9 7.5 0 0 141 31 141

49s 2865 0.01 30 0.3 nd 1 1 320 78 78

49y 2871 0.05 98 0.3 nd 0 0 188 31 31

49z 2871 0.07 122 0.9 9.5 0 0 188 31 31

50w 2865 0.07 160 0.6 8 0 0 125 125 125

50x 2819 0.03 92 0.6 nd 0 0 39 39 39

51b 2807 0.04 106 0.5 10 0 0 70 70 70

51d 2865 0.09 120 0.5 6 0 0 500 500 500

52b 2914 0.30 290 0.9 10 0 0 219 16 16

52c 2914 0.07 112 0.8 10.5 0 0 164 16 242

52d 2914 0.11 192 0.9 15 0 0 94 39 39

2



Appendix 2, continued. Landscape and limnological characteristics for each lake or pond.

Pond
Elevation
(m) Area (ha)

Perimeter
(m)

Maximum 
depth (m)

Conductivity
(wS)

Number 
of Inlets

Number
of
Outlets

Distance 
to nearest 
pond with 
pond 
present 
(m)

Distance 
to nearest 
pond with 
frog 
present 
(m)

Distance 
to nearest 
pond with 
breeding 
present 
(m)

51 2801 0.89 400 9.1 13.5 0 1 305 70 70

50 2816 2.67 660 6.1 12 1 1 172 39 125

48b 2835 0.24 214 1.5 nd 1 1 16 141 141

48c 2835 0.16 150 2.7 nd 1 1 16 94 94

52a 2867 0.32 230 3.4 16.5 0 1 47 55 141

47 2946 2.06 600 9.5 nd 1 1 305 305 406

48 2902 2.79 940 6.7 14.5 1 1 305 39 133

52 2865 2.75 700 9.1 14 1 1 47 47 234

CO
Ü1



Appendix 3. Pearson correlation coefficients between landscape variables. Data represent the correlation coefficient, 

significance level and sample size (n). Significant correlations are indicated in bold face.

Pond
elevation
(m)

Distance to 
nearest 
pond with 
fish present 
(km)

Distance to
nearest
pond with
frog
present
(km)

Distance to 
nearest 
pond with 
breeding 
present
(km) Area (ha)

Pond
perimeter
(m)

Maximum 
depth (m)

Conductivity
(MS)

Number of 
Inlets

Distance to 0.254

nearest pond p=0.243

with fish (23)

present (km)

Distance to -0.002 0.025

nearest pond p=0.994 p=0.910

with frog (23) (23)

present (km)

Distance to 0.167 0.117 0.717

nearest pond p=0.445 p=0.594 p < 0.0005

with breeding (23) (23) (23)

present (km)

Area (ha) 0.013 0.293 0.160 0.456

p=0.951 p=0.175 p=0.467 p=0.029

(25) (23) (23) (23)

(O
O)



Appendix 3, continued. Pearson correlation coefficients between landscape variables.

Pond
elevation
(m)

Distance to 
nearest 
pond with 
fish present 
(km)

Distance to 
nearest pond 
with frog 
present (km)

Distance to 
nearest 
pond with 
breeding 
present (km) Area (ha)

Pond
perimeter (m)

Maximum 
depth (m)

Conductivity
(RS)

Number of 
Inlets

Pond perimeter 0.043 0.339 0.157 0.410 0.964

(m) p=0.837

(25)

p=0.113

(23)

p=0.474

(23)

p=0.052

(23)

p<0.0005

(25)

Maximum depth -0.074 0.345 0.271 0.507 0.853 0.860

(m) p=0J26 p=0.106 p=0.211 p=0.013 p<0.0005 p<0.0005

(25) (23) (23) (23) (25) (25)

Conductivity -0.169 -0.039 0.178 0.260 0.386 0.455 0.538

(pSiemens) p=0.516 p=0.887 p=0.510 p=0.330 p= 0.126 p=0.066 p=0.026

(17) (16) (16) (16) (17) (17) (17)

Number of -0.141 0.163 0.333 0.419 0.599 0.510 0.444 0.312

Inlets p=0.522 p=0,457 p=0.121 p=0.047 p=0.003 p=0.013 p=0.034 p=0.240

(23) (23) (23) (23) (23) (23) (23) (16)

to



Appendix 3, continued. Pearson correlation coefficients between landscape variables.

Pond
elevation
(m)

Distance to 
nearest 
pond with 
fish present 
(km)

Distance to 
nearest pond 
with frog 
present (km)

Distance to 
nearest 
pond with 
breeding 
present (km) Area (ha)

Pond
perimeter (m)

Maximum 
depth (m)

Conductivity
(pS)

Number of 
Inlets

Number of -0.251 0.175 0.232 0.330 0.629 0.592 0.687 0.478 0.754

Outlets p=0.248 p=0.425 p=0.286 p=0.125 p=0.001 psO.003 p<0.0005 p=0.061 p<0.0005

(23) (23) (23) (23) (23) (23) (23) (16) (23)

CD
00



Appendix 4. Pearson correlation coefficients between physical attributes of the landscape and ponds and frog population 

metrics. Data are the correlation coefficient, significance level and sample size (n). Significant correlations are indicated 

in bold face.

Pond
elevation
(m)

Distance to 
nearest pond 
with fish 
present (km)

Distance to 
nearest pond 
with frog 
present (km)

Distance to 
nearest pond 
with
breeding 
present (km) Area (ha)

Pond
perimeter
(m)

Maximum 
depth (m) Conductivity

(pS)
Number 
of Inlets

Number
of
Outlets

Adult Frog -0.263 0.309 -0.245 -0.186 0.201 0.245 0.459 0.051 -0.267 0.174

Abundance p=0.214 p=0.161 p=0.273 p=0.408 p=0.346 p=0.248 p=0.024 p=0.846 p=0.229 p=0.439

(24) (22) (22) (22) (24) (24) (24) (17) (22) (22)

Female Frog -0.372 0.337 -0.186 -0.151 0.282 0.317 0.520 0.129 -0.154 0.294

Abundance p=0.067 p=0.116 p=0.395 p=0.491 p=0.172 p=0.123 p-0.008 p=0.622 p=0.483 p=0.174

(25) (23) (23) (23) (25) (25) (25) (17) (23) (23)

Male Frog -0.201 0.315 -0.256 -0.171 0.153 0.210 0.415 -0.016 -0.308 0.108

Abundance p=0.335 p=0.143 p=0.238 p=0.434 p=0.467 p=0.314 p=0.039 p=0.951 p=0.152 p=0.622

(25) (23) (23) (23) (25) (25) (25) (17) (23) (23)

Frog Sex Ratio -0.298 -0.279 -0.121 -0.249 -0.052 -0.152 -0.091 0.695 0.101 0.291

(F:M) p=0.246 p=0.278 p=0.644 p=0.335 p=0.843 p=0.561 p=0.728 p=0.012 p=0.699 p=0.256

(17) (17) (17) (17) (17) (17) (17) (12) (17) (17)

(O<o



Appendix 4, continued. Pearson correlation coefficients between pfiysical attributes of the landscape and ponds and

frog population metrics.

Pond
elevation
(m)

Distance to 
nearest pond 
with fish 
present (km)

Distance to 
nearest pond 
with frog 
present (km)

Distance to 
nearest pond 
with
breeding 
present (km) Area (ha)

Pond
perimeter
(m)

Maximum 
depth (m) Conductivity

(pS)
Number 
of Inlets

Number
of
Outlets

Adult Frog Age- 0.036 -0.175 -0.014 0.111 0.167 0.059 -0.229 -0.175 0.297 -0.077

Size Relationship p=0730 p=0.086 p=0.890 p=0.278 p=0.101 p=0.565 p=0.240 p=0.094 p=0.003 p=0.453

(97) (97) (97) (97) (97) (97) (97) (93) (97) (97)

Female Frog Age- -0.063 -0.074 -0.053 0.101 0.229 0.153 -0.049 -0.079 0.286 0.104

Slze Relationship p=0.670 p=0.617 p=0.723 p=0.494 p=0.117 p=0.299 p=0.742 p=0.603 p=0.048 p=0.481

(48) (48) (48) (48) (48) (48) (48) (46) (48) (48)

Male Frog Age- 0.109 -0.246 0.038 0.130 0.126 -0.010 -0.361 -0.244 0.320 -0.216

Size Relationship p=0.457 p=0.089 p=0.796 p=0.373 p=0.390 p=0.943 p=0.011 p=0.099 psO.025 p=0.137

(49) (49) (49) (49) (49) (49) (49) (47) (49) (49)

Cluster Density -0.474 0.331 -0.161 -0.071 0.274 0.271 0.473 0.112 -0.031 0.281

p=0.022 p=0.123 p=0,463 p=0.747 p=0.205 p=0.211 p=0.023 p=0.679 p=0.888 p=0.194

(23) (23) (23) (23) (23) (23) (23) (16) (23) (23)

oo



Appendix 4, continued. Pearson correlation coefficients between ptiysicai attributes of the landscape and ponds and

frog population metrics.

Pond
elevation
(m)

Distance to 
nearest pond 
with fish 
present (km)

Distance to 
nearest pond 
with frog 
present (km)

Distance to 
nearest pond 
with
breeding 
present (km) Area (ha)

Pond
perimeter
(m)

Maximum 
depth (m) Conductivity

(pS)
Number 
of Inlets

Number
of
Outlets

# Eggs/Cluster -0.488 -0.405 0.521 0.658 0.644 0.733 0.489 0.793 -0.018 -0.041

p=0.327 p=0.42S p=0.289 p=0.155 p=0.168 p=0.098 p=0.325 p=0.110 p=0.973 p=0.938

(6) (6) (6) (6) (6) (6) (6) (5) (6) (6)

Larval Growth 0.055 -0.133 0.185 0.142 -0.035 0.006 -0.033 -0.58 -0.086 -0.077

(mm/day) p=0.087 p<0.0005 p<0.0005 p<0.0005 p=0.283 p=0.861 p=0.303 p=0.072 p=0.007 p=0.016

(957) (957) (957) (957) (957) (957) (957) (957) (957) (957)

Number of 0.139 0.203 -0.172 -0.047 -0.008 0.047 0.089 -0.196 -0.191 -0.083

Emerging p=0.509 p=0.353 p=0.433 p—0.832 p=0.968 p=0.824 p=0.671 p=0.450 p=0.384 p=0.706

Metamorphs (25) (23) (23) (23) (25) (25) (25) (17) (23) (23)

Metamorph Body 0.093 -0.192 0.361 0.101 0.006 0.145 0,090 0.333 0.156 -0.085

Size (mm) p=0.427 p=0.097 p=0.001 p—0.386 p=0.956 p=0.212 p=0.440 p=0.003 p=0.179 p=0.464

(76) (76) (76) (76) (76) (76) (76) (76) (76) (76)



1 0 2

CHAPTER 3. Introduced Species, Wilderness, and Amphibian Decline

“Plants, vertebrates, invertebrates, and pathogens all interact in 

synergistic and complex ways, and any alien that is released into the 

natural environment becomes a part of this interconnected web.” Daniel 

Simberloff (1996)^
I

It is a coot morning as I hit the trail; it usually is at 9000 feet above sea 

level. My pack is bursting at the seams with supplies for the next week, so the 

first half-mile feels like a climb up Mount Everest. Huffing and puffing I make my 

way through the forest, concentrating too much on the trail hazards, a rock here, 

a tree root there. The forest is quiet except for my heart beating in my chest and 

the wind blowing through the tree-tops. I concentrate on the calming sound of 

the wind and it reminds me to enjoy the amazing landscape that surrounds me. 

The trail rises and dips. At times I feel like I can barely make another step, at 

others I want to run down the trail. Eventually, I reach a sparkling meadow filled 

with marsh marigolds. A Clark's nutcracker squawks as I approach his lookout 

tree near the rock where I will take a break. This is my favorite rock! The height 

is perfect for leaning up against it to remove my back-pack or strap it back on 

without much effort. After my break, I have to cross several creeks before 

reaching my final destination. The creek waters are crystal clear, and when I first 

go to these mountains each summer, it is early enough in the season that little 

algae is growing on the rocks, so the crossing is not too slippery. And at each

' Simberloff, Daniel. 1996. impacts of introduced species in the United States. 
Consequences 2 (2). You can read this article in its entirety at 
www.gcrio.org/CONSEQUENCES

http://www.gcrio.org/CONSEQUENCES
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creek, the water is so cold I leave my hiking boots on to insulate my feet and 

toes, and the water-logged feeling afterwards is worth it! The hike into the 

wilderness area is six hours of pure joy and pure torture, but waiting for me when 

I reach my usual campsite are the trees for hanging my hammock and one for 

hanging my bear bag, and just over a slight rise is the pond I will use to collect 

drinking water. As soon as I get my tent and camp situated I grab my fly rod and 

walk a few steps to beautiful Sliver Lake. Choosing a pale morning dun fly, I 

make my first cast. Immediately I get a nice hit, and land a brook trout. I swear 

he is “this big”.

More than 1000 lakes and ponds and numerous other small wetlands, 

streams and rivers are found in the Absaroka-Beartooth Wilderness in south- 

central Montana. The area, inhabited by high-alpine trees, shrubs, and flowers, 

is a spectacular place to hike, backpack and camp. In a number of these lakes 

and ponds, you also can find a variety offish: Eastern brook trout, cutthroat trout, 

rainbow trout, arctic grayling, and more. In fact, if you were to explore high- 

mountain areas of the Sierra Nevada Mountains in California, the Cascade 

Mountains in Oregon, or other high-elevation regions of the Rocky Mountains in 

Montana, Wyoming and Colorado you would find a similar scenario - in most 

lakes, fish are plentiful. While the presence of these fish is a boon to the weary 

backpacker or camper hungering for a fresh-caught meal of trout, it is a bust to 

the other organisms that live in the same water. In most cases, the fish are not 

supposed to be there! Historically, high elevation lakes and ponds were without 

fish for a very simple reason - the fish could not swim into them. These various
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fish species have been introduced (or stocked) into high elevation waters to 

serve a recreational role — such as fishing — for the outdoors adventurer.

The movement of species among continents has occurred since the 

beginning of human travel. How introduced species interact with their new 

environments can be described as the good (or at least indifferent), the bad, and 

the ugly. Species introductions that benefit the human condition (e.g., food 

crops) tend not to “escape” and run wild in their new habitats. And introductions 

of plants and animals into cities, towns and surrounding areas are also common. 

We all want beautiful flowers in our gardens and pet dogs and cats and 

parakeets in our homes. Their influence may be indifferent if they never leave 

the house, or they can have negative effects if they prey on native animals such 

as birds.

Indeed, introducing new species to places we live is nothing new, and, in 

many cases, there is little or no detectable change to the environment into which 

they are placed. In fact, the idea of introducing new species to the places we 

move can seem logical. The success of human culture is largely based on the 

introduction of exotics, and the intentional introductions of most of these plants 

and animals seemed innocuous at the time. For example, tomatoes are not 

natural to Montana and there are few among us who worry about this species 

escaping to take over the native habitats in our state. But are all introduced 

species as Innocuous as the garden tomato plant? For the most part, the 

introduction of species was thought to be a “win-win” situation historically. Now
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that we have lived with introduced species for decades or even centuries, we 

have ample evidence that many exotics can have great effects on the native 

landscape when they escape. You do not need to go much further than your 

own yard to see introduced species. Actually, most plants you see when you 

take a walk in a typical neighborhood are introduced. Depending on where you 

live in Montana, few of the original species of the native Palouse Prairie or forest 

understory vegetation remain today. In fact, many of us battle introduced 

species, such as spotted knapweed and toadflax, in our own gardens and fields. 

For example, spotted knapweed, a close relative of bachelors buttons, is a 

species that has been introduced from Eurasia and has extended its range into 

most of the Pacific Northwest. This species has few natural enemies where it 

has escaped in North America and it out-competes the native prairie grasses of 

the Intermountain West. Along many road- and trail-sides in Montana, knapweed 

swamps the scenery with its purple blooms. The spread of this plant is blamed 

for the loss of native grasses and the subsequent loss of plant diversity in many 

areas of Montana and beyond.

Our aquatic habitats also have been changed by the introduction of new 

species. Historically, the bull trout inhabited many of the rivers and lakes in 

Montana. However, the introduction of Eastern brook trout into these same 

waters has been very detrimental, and is closely linked to the current endangered 

status of bull trout in the state. Brook trout have a negative influence in two 

ways. First, the brook trout out-compete the native bull trout for habitat and food. 

Second, brook trout can breed with bull trout and, because offspring from this
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mating of two different species are sterile (a result of genetic incompatibility), bull 

trout populations, and the integrity of the gene pool, are becoming compromised.

How do introductions influence an entire ecological community? Flathead 

Lake presents an excellent example. Historically, Flathead Lake supported a 

diverse suite offish; west-slope cutthroat trout, bull trout, lake whitefish and 

several others, with bull trout acting as the top aquatic predator. As people 

moved from east to west in the U.S. in the mid 1800’s, many longed to catch and 

eat familiar fish species from their home states. To meet the demand from 

homesteaders and tourists, Burlington Railroad introduced lake trout, a large 

game fish, into Flathead Lake in the late 1800’s. The lake trout fast became the 

new top predator, preferentially feeding on bull trout and cutthroat trout. In 1916, 

again in response to recreational demand, kokanee salmon were introduced into 

the lake and became a food source for both lake trout and bull trout, as well as a 

major sport fishery for anglers. Kokanee salmon also migrated from Flathead 

Lake into rivers and tributaries to spawn and then die. These dead fish served 

as a major food source for Bald eagles.

In the early 1980’s, Mysis shrimp made their way into Flathead Lake, 

invading from upstream lakes where they had been introduced in earlier years. 

The introduction of Mysis shrimp into Flathead Lake had effects that had not 

been observed before, and certainly were not anticipated. Mysis shrimp eat 

zooplankton, the same food as the kokanee. They also migrate to very deep 

water during the day and are present in more shallow water only at night.
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Kokanee would eat Mysis if they could see them, but because they feed by sight, 

the shrimp were rarely captured by kokanee. Interestingly, the tiny Mysis are 

responsibie for the rapid disappearance of the kokanee salmon because Mysis 

shrimp won the competition for zooplankton. But that's just half of the story. 

When the kokanee fishery collapsed, the Bald eagle population that depended 

heavily on these fish for food during and after spawning suffered as well. Bull 

trout also lost a major prey item in the kokanee and soon experienced population 

declines. But also, there was another winner. Lake trout inhabit deep water and 

during the daily migration of the Mysis shrimp to deep water, they served as an 

excellent new food source for lake trout. In fact, the availability of Mysis as 

forage is believed to be responsibie for the significant increase in lake trout 

numbers and size, further impacting populations of bull trout and cutthroat trout. 

How have introductions of lake trout, kokanee and Mysis influenced the 

ecological community in Flathead Lake? The answer is simple. Today the 

fishery is much less diverse and native trout populations are severely threatened. 

What has been done to improve conditions for the populations of native fish?

Fall Mack Days, a three-week fishing derby, is held annually to encourage 

anglers to catch and keep as many lake trout as possible in order to harvest the 

over-abundant fish. Time will tell if this strategy is successful.

Although new species have been introduced into low elevation lakes, 

ponds, streams and rivers for hundreds of years, stocking fish into high elevation 

waters in Montana that were historically fishless has occurred only since the 

early 1900’s. The number and pervasiveness of these introductions has
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increased throughout the twentieth century as our technology for moving fish has 

improved. But, what about purposeful introductions into places we have set 

aside to let nature take its course, such as the introductions of fish Into areas 

deemed “wilderness”? To understand why such introductions may be particularly 

insidious, it is necessary to look back at why we have this act in the first place.

The Wilderness Act of 1964^ states “A wilderness, in contrast with those 

areas where man and his own works dominate the landscape, is hereby 

recognized as an area where the earth and its community of life are untrammeled 

by man, where man himself is a visitor who does not remain. An area of 

wilderness is further defined to mean in this Act an area of undeveloped Federal 

land retaining its primeval character and influence, without permanent 

improvements or human habitation, which is protected and managed so as to 

preserve its natural conditions and which (1) generally appears to have been 

affected primarily by the forces of nature, with the imprint of man's work 

substantially unnoticeable; (2) has outstanding opportunities for solitude or a 

primitive and unconfined type of recreation; (3) has at least five thousand acres 

o f land or is of sufficient size as to make practicable its preservation and use in 

an unimpaired condition; and (4) may also contain ecological, geological, or other 

features of scientific, educational, scenic, or historical value.” Long before 

remote high elevation landscapes were declared wilderness areas in 1964, many

‘  The Wilderness Act of 1964 can be read In its entirety on Wiiderness.net website 
(www.wilderness.net)

http://www.wilderness.net
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rivers and lakes had already been stocked with fish. Ironically, stocking practices 

have continued in the present.

“A civilization which destroys what little remains of the wild, the spare, the 

original, is cutting itself off from its origins and betraying the principle of 

civilization itself.” Edward Abbey (Desert Solitaire 1990)^

introductions in Wiiderness Areas: Recreation Versus Ecological Integrity 

in the Absaroka-Beartooth Wilderness

Figure 1. The Absaroka-Beartooth 
Wilderness, an area located in south- 
central Montana. In the distance you 
can see Granite Peak, the highest point 
in Montana.

Today there are 662 designated wilderness areas in the United States and 

14 of these areas occur in Montana. These areas are the last stronghold of 

primeval landscapes, and are important for their biological diversity. For an 

example of the influence of introduced species in a wilderness area let’s look at

® Abbey, Edward. 1968. Desert Solitaire: a Season in the Wilderness. McGraw-Hill, New 
York, 269 pp.
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the Absaroka-Beartooth Wilderness. Portions of the Absaroka and Beartooth 

mountain ranges were designated as primitive areas In 1932, and as Wilderness 

in 1975. In the early 1930’s, state fishery managers first introduced fish into 

numerous high alpine lakes carrying them in by horseback and this practice of 

stocking into wilderness area by horseback continues today. It is also very likely 

that many lakes were stocked by “bucket biologists”, that is, individual anglers 

who purposefully moved fish from lake to lake. Stocking “mistakes' also 

occurred; there Is at least one example of cutthroat trout mistakenly being 

introduced into the aptly named Wrong Lake, instead of the target lake.

In many lakes and ponds of the Absaroka-Beartooth Wilderness, initial 

stocking efforts resulted in self-sustaining fish populations where fish were able 

to successfully reproduce. Hence, these lakes are no longer stocked by 

Montana Fish Wildlife and Parks (MFWP). Other lakes that are more hostile to 

fish, for example, those that regularly freeze and/or provide insufficient winter 

resources, occasionally become fishless. These lakes and ponds can be 

re populated by fish without stocking if they are connected, upstream or 

downstream, to a lake from which fish can migrate. Those lakes and ponds 

where fish populations are not self-sustaining, or where fish cannot recolonize by 

migration, are replenished by MFWP on an eight-year stocking schedule.

Why are we becoming more concerned about these repeated 

introductions of fish to wilderness lakes? How does stocking affect the native 

species inhabiting the lakes and ponds of these high-elevation landscapes? We
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can find answers to these questions by examining the life cycle of other species 

that are native to these habitats. Historically, these high elevation fishless waters 

once constituted major population centers for species of amphibians such as 

frogs, toads, and salamanders. Believe it or not, species of these groups of 

animals can be found in high elevation landscapes if you know where to look. 

What is life like for an alpine amphibian such as the Columbia spotted frog {Rana 

luteiventris)? As soon as the near-shore habitat thaws in early to late June, 

spotted frogs begin to breed. Male frogs grab onto females in an embrace 

known as amplexus and hold on for dear life. The male frog fertilizes the eggs 

externally: that is, as females deposit the eggs into water, the male releases 

sperm and eggs are fertilized. Eggs are laid in clusters of several hundred to 

more than a thousand eggs in shallow water near shore. There, where water 

temperature gets a little warmer, eggs are supported by emergent vegetation. 

Frogs also will congregate to lay their eggs communally, probably helping to 

insulate eggs.

Eggs develop and hatch into tadpoles after 3 - 4  weeks and these 

tadpoles are completely aquatic and primarily feed on algae. Tadpole 

development and growth is greatly affected by water temperature, food quantity, 

and food quality. Although the exact length of time a tadpole spends in the water 

is affected by these habitat conditions, they typically transform into frogs 4 - 6  

weeks after hatching. Tadpoles at high elevations must metamorphose in one 

summer because they cannot survive as tadpoles over winter. In early 

September, the emerging “metamorphic” frogs and adult frogs migrate to areas
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they will Inhabit through the winter months. How do they survive when their pond 

is frozen for 8 months a year? Little is known about the specific winter habitats of 

Columbia spotted frogs because few people have braved the cold temperatures 

and deep snow to look for them during the winter. We expect that they likely 

over-winter in deep water or in underground seeps or springs, and that they are 

mostly inactive during this hibernation. At high elevations, most adult frogs reach 

sexual maturity by age 4 and some are known to live 14 years! Because high 

elevation conditions are so harsh and individuals can be so long-lived, female 

frogs do not breed every year. Females need to accumulate resources over 

several years to produce a viable cluster of eggs several times over the course of 

their lives.

What happens when fish appear in these systems? Many studies have 

shown that fish introductions have altered the distribution of frogs, toads and 

salamanders wherever they are introduced. The introduction of fish into waters 

where they were not found historically can influence an amphibian population in 

several ways including 1) direct predation, 2) indirect interactions, and 3) 

alteration of the aquatic food web. In California, Oregon and Washington, for 

example, fish introductions are known to have caused local population decline 

and extinction for species such as the mountain yellow-legged frog, boreal toad, 

and long-toed salamander. The most obvious explanation for declines in 

amphibian populations after fish are stocked is predation. Hungry fish will feed 

on amphibians throughout their life cycle, but predation of tadpoles is especially
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high. When tadpoles do not survive to maturity, they cannot reproduce and, 

eventually, the «overall population of frogs in a particular habitat suffers.

Tadpole w

Adult Frog Metamorphic or 
Juvenile Frog

Figure 2. The life cycle of the Columbia spotted frog. Each arrow represents 
growth and development to the next life history stage. The arrow from adult 
frog to egg represents successful reproduction which will not occur until 
sexual maturity (> 3 years of age). Some individuals may reproduce only 
several times or not at all during their life time.

But direct predation is not the only reason amphibians may disappear from 

stocked waters. The reasons for reduction in an amphibian population can be 

much more indirect and difficult to determine. Interestingly, a number of studies 

have shown that tadpoles can sense the presence of a fish predator by “smelling” 

its scent in the water. So the fish does not have to be actively hunting a tadpole; 

the mere presence of fish may be enough to scare a tadpoie into inactivity or 

hiding out so it does not attract unwanted attention. And when hiding out leads
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to decreased time spent eating, or the inability to move to an area that is rich in 

food or warmer water, tadpoles do not thrive. In other words, hiding out in poorer 

quality habitat and/or reduced feeding can compromise the size and rate at which 

a tadpole matures Into an adult frog. When tadpoles do not survive, or are not as 

robust when they do mature, the population can decline over time.

Aside from preying directly on amphibians, introduced fish also can cause 

major changes in the aquatic food web. Some fish eat zooplankton, very small 

organisms thbt live in still water like lakes and ponds. Some zooplankton species 

are predatory and feed on other zooplankton, while other species are vegetarians 

and feed on tiny plants (phytoplankton or algae) suspended in the water column. 

Zooplankton are a major food source for many fish and insect species, and fish 

can change the size composition of zooplankton community by preferentially 

eating the largest species. The consequences of such changes in the 

zooplankton community on food availability, growth, and survival of frogs are not 

known with certainty but could be significant. To understand why this is the case, 

we need to understand how a food web works in these lakes and ponds. In the 

diagram in Figure 3, the arrows point to the food being eaten. For example, adult 

frogs primarily feed on terrestrial insects, many of which have aquatic larval 

stages that feed on zooplankton. If fish are more successful in capturing 

zooplankton, fewer are available for insect larvae, thereby influencing the number 

o f insects that will be available for adult frogs. Fish also directly prey on insects, 

which can influence insect density and diversity. Consequently, the alteration of 

the insect population in a lake or pond can affect a frog population because 1)
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adult frogs eat insects, 2) aquatic insect stages can compete with tadpoles for 

resources, and 3) some aquatic insect larvae can actually eat tadpoles.

Fish

Algae

insect
TadpoleFrog

Zooplankton
Phytoplankton

Figure 3 Food web of high elevation ponds In the Absaroka-Beartooth 
Wilderness. Each box represents a component o f the food web. Arrows point 
from the feeding organism to one or more of its prey.

Aside from the ecological influences, stocking native and non-native fish 

into previously fishless lakes in wilderness areas, an historical artifact related to 

recreation, is inconsistent with the 1964 Wilderness Act. Today we have a much 

better understanding of the ecological consequences o f these repeated 

introductions, and we have better tools to weigh the social and ecological costs 

of this practice. What is a benefit of repeated stocking of fish? Recreations lists 

can catch their dinner after a long hike into the wilderness. But what are the 

costs o f stocking wilderness lakes with fish. Obviously there is the actual dollar
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expenses of raising and transporting fish on a regular basis to these remote 

areas. And then there is the ecological cost In terms of alterations to the natural 

food web.

W hat would happen if we stopped artificially stocking ponds and lakes in 

the Absaroka-Beartooth Wilderness today? Could they return to a more natural 

state? There is good news from other wilderness areas. For example, in the 

Muir Wilderness of the Sierra Nevada Mountains in California, biologists have 

observed that amphibians return to lakes and ponds in these areas when fish are 

removed. Indeed, based on studies that documented the potential for re

establishment of amphibian populations, the California Department of Fish and 

Game stopped stocking lakes, and began to actively remove fish from these 

areas. There is another mechanism that, over time, can help in this process. 

When ponds and lakes freeze from top to bottom over winter, fish die. Without 

stocking, fish eventually disappear from all but the deepest high elevation lakes. 

Perhaps managers could be convinced to only stock lakes where amphibians 

cannot live. In the Absaroka-Beartooth Wilderness, lakes and ponds above 9750 

feet in elevation do not provide appropriate habitat for any life-history stage o f 

Columbia spotted frogs. These waters are nutrient poor, rarely have emergent 

vegetation, are the last to ice-off in the spring and first to freeze in the fall. 

Columbia spotted frogs prefer lakes with extensive shallow water shores and a 

lot o f grasses and sedges. These areas are used for breeding and rearing and 

also provide a warm safe place for frogs to hide out. Lakes or ponds that provide 

the preferred amphibian habitat could be returned to a fishless state, while lakes
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for angling would still be available when important frog habitat was not 

compromised. The effectiveness of this solution would be maximized if streams 

and rivers used by frogs to move from one lake to the next were also fishless.

The Wilderness Act of 1964 challenges us to protect and manage in ways 

that are consistent with preserving natural conditions and functional relationships 

in our Wilderness areas. Clearly, we have an opportunity to do this better in our 

treasured high elevation lakes and ponds. In reality, the resources are probably 

not available to accomplish the total removal of introduced fish from all 

wilderness area lakes, ponds, streams, rivers and marshes. However, federal 

and state wildlife officials and policy makers can help us better meet the 

requirements of the Wilderness Act of 1964 by stopping further stocking efforts 

and, when possible, encouraging back-country travelers to play a role in reducing 

fish numbers. This is one circumstance where we should catch and eat (versus 

catch and release!).

Back at the campsite, the trout I caught in the wilderness is delicious, 

simply seasoned with olive oil and rosemary. As my first big meal since I started 

hiking early in the morning, it is truly satisfying. I lick my fingers and then 

wonder...at what cost has this meal been supplied to me? W hy do hikers and 

back-packers travel such long distances by foot to reach back-country wilderness 

areas? Is it because they value wilderness for the angling opportunities? Or do 

we hike into wilderness areas to get “back to nature", to a place where one can 

forget about the scars on the landscapes of our everyday lives? Perhaps it is for 

a more spiritual reason, a place to meditate, or simply to enjoy the pristine state
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of nature and its processes. Maybe we hike into the wilderness for a 

combination o f all o f these reasons. Ultimately, the future of wilderness integrity 

and management is interconnected with the values we place on wilderness, and 

the suite of the experiences that wilderness affords. And perhaps to retain the 

“primeval character” of these places, as the Wilderness Act challenges us to do, 

it is time to rethink why we introduce species into them. I think I can probably 

enjoy the experience just as much if I don't catch my dinner at my favorite 

campsite next time I head up the mountain.
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