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Corp, Jenifer, M.A., May 1996 Department of Mathematical Sciences
Balanced Graphs and Balanced Matroids

Directors: Jennifer McNulty '?\Kd P. Mark Kayll £ MA

The idea of “balance” in graph theory originated with the study of random graphs.
This idea was formulated first for graphs and then generalized to matroids. Matroids
are useful in solving large problems often found in the fields of civil, electrical, and
mechanical engineering, as well as computer science and mathematics.

After exploring which classed of graphs or matroids are balanced, a connection
between graph balance and matroid balance is obtained. The main theorems concern
constructions of matroids and the effect these constructions have on the property of
balance.
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1 Introduction

The idea of balanced graphs originated with P. Erd6s and A. Rényi in the late 1950’s
and early 1960’s. At this time these two mathematicians wrote a series of papers [4,
5, 6] on the theory of random graphs; it was this work which prompted the study
of balanced graphs. Since this time, the theory of random graphs and the use of
balanced graphs have undergone enormous growth. Balanced graphs are important
because of the ‘nice’ properties they possess. To obtain results on general graphs, it
is often easier to find a proof for the balanced graph case and then to extend to the

general case.

Since matroids are generalizations of graphs, it is natural to see which results for
graphs may be extended to matroids. In order to motivate the research done in the

field of matroids, a quote from K. Truemper [20] is provided:

With matroids, one may formulate rather compactly and solve a large
number of interesting problems in diverse fields such as civil, electrical,

and mechanical engineering, computer science and mathematics.

In the early 1980’s, D. Kelly and J. Oxley began to examine which results from the
theory of random graphs and balanced graphs would generalize to matroids (7, 8, 9,
16]). Matroids are generalizations of graphs; therefore it is natural to see which ideas
formulated for balanced graphs would also hold for balanced matroids. The next step
would be to generalize these ideas to all matroids, if possible. The work in this area

is generally new and quite sparse.

The purpose of this research thesis is to consider the work that has been done in
the area of balanced graphs and balanced matroids and to see what generalizations
and connections can be made. To begin with, we will find some families of graphs and

matroids which are balanced, strictly balanced or can be shown to be neither. We

1
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will then consider the connection between graph balance and matroid balance. Next,
we will look at various operations and determine if they preserve balance. Finally,
we will end with some suggestions on further research in this area. Throughout all
graphs will be nonempty and simple; likewise, all matroids will be nonempty and
loopless. The reader is referred to [17, 24] for a more thorough discussion on graph

and matroid theory.

2 Background

The probabilistic method, introduced by Erdés [3] in order to prove a lower bound
on Ramsey numbers, was formulated in terms of a random graph. This is just one of
the many motivations for the study of random graphs; the following quote from B.

Bollobés [2] provides further motivation:

Mathematicians who are not interested in graphs for their own sake should
view the theory of random graphs as a modest beginning from which we
can learn a variety of techniques and can find out what kind of results we

should try to prove about more complicated random structures.

Random graphs have become a powerful tool in Ramsey theory, and the theory of
random graphs itself has grown rapidly. A random graph G, , is a subgraph of the
complete graph K, obtained by independent removal of each edge with probability
1 — p, where p = p(n) € (0,1). Let A be a fixed property which a graph may or
may not possess and let Pr, ;(»)(A) denote the probability that G, , has property A.
In [5], Erdés and Rényi studied the probable structure of a random graph. It has
been shown for several properties A of graphs that there exists a function ¢(n) such
that

lim Pr (A)=

n—¢0 n,p(n)

{ 0 if lima_oo 22 =0,

1 if limyoco 22 = oo,
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If such a function exists, then it is called a threshold function for the property A.

Erdds and Rényi {4, 5, 6] set out to answer the following question about random
graphs: What is the probability that a random graph on n vertices has a particu-
lar subgraph? They originally proved that n='/™(%) is a threshold function for the
existence of a given balanced graph as a subgraph of G, , (here m(G) denotes the
maximum average degree of a subgraph). In 1991, Bollobas [1] generalized this result
to all graphs. The concept of balanced graphs is interesting in its own right and
essential for certain distributional results; therefore, it is of great importance that

Erdos and Rényi introduced this notion.

Let G be a graph with |E(G)| edges and |V(G)| vertices. A graph H is a subgraph
of G if V(H) C V(G) and E(H) C E(G). A graph H is a proper subgraph of G if
V(H) € V(G) and E(H) C E(G). Define the density of G to be

. 2E(G)
HE =T

which is also called the average degree of G. We say G is balanced if
d'(H) < d'(G) for all non-empty subgraphs H C G,

and strictly balanced if

d'(H) < d'(G) for all non-empty proper subgraphs H C G.

Balanced graph theory results originated with the following theorem of Erdds and

Rényi.

Theorem 1 ([5]) If G is balanced, then

: -
lim Pr(Gn, > G) = { 0 YP(R)TI =0 asn — oo,
M=t OO 1 'ifp(n)ndl(G) — 00 ds n — 00.
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Bollobas [1] generalized this result to all graphs. In contrast to the existence problems
answered in the theorems of Erdds, Rényi and Bollobas, balanced graphs are essential

for distributional results as is seen in the work of A. Rucinski and A. Vince [19].

Balanced matroids will be defined in a similar fashion. A short discussion on
matroid terminology is provided to assist the reader in developing an understanding
of matroid theory. For a more complete discussion of matroids the reader is referred

to [17, 24].

The theory of matroids is an abstract theory of dependence. It originated with an
article by H. Whitney [25]. In this article, Whitney established four “cryptomorphic”
definitions of the term matroid. There are now many more equivalent ways to define a
matroid, which is one interesting and useful characteristic of matroids. Each matroid

definition has a similar axiomatization which is generalized below [24]:

al a nontriviality or normalization condition to rule out degeneracy;
a2 description of the general mathematical structure;

a3 the characteristic axiom.

It is often necessary to convert from one axiom system to another; to do this we
shall use the matroid cryptomorphisms found in [24]. The majority of matroid ter-
minology will be given in terms of rank functions, circuits, and bases; “...although
(the rank function) has little intuitive appeal, the rank function gives straightforward

descriptions for all other axiomatizations [24].” These axioms are described below.

A matroid M, defined on the ground set E, is a pair (£, C), where C is a collection

of subsets of F called circuits which obey the following axioms:

cl1 §¢C;

c2 for any two distinct C,C; € C, () is not a proper subset of Cj;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c3 for any two distinct C;,C, € € and any z € (C1NC,), there is a set C3 € C where
03 Q (Cl U Cz) —z.

We shall denote the set of all circuits of M by C(M) or simply by C if the context is

clear.

The notion of rank is very useful in linear algebra and other areas of mathematics.
As it turns out it is also very important in the theory of matroids; thus we will refer

to the rank function axioms quite frequently throughout this thesis.

Let E be a set. A function p: 2% — Z is the rank function of a matroid on E

if it satisfies the following three axioms:

rl if X C E, then 0 < p(X) < | X|;
r2 if X CY C E, then p(X) < p(Y);

r3 if X and Y are subsets of E, then p(X UY) + p(X NY) < p(X) + p(Y).

We will denote the rank of a matroid M by p(M), rather than p(E), if the context is

clear.

Bases of a matroid are defined as a collection of subsets of E which satisfy the

following axioms:

bl B is nonempty;

b2 if B,,B; € B, and z € B; — B,, then there is an element y of B, — B; such that
(B —z)Uy € B;

b3 if Bl,Bz € B and Bl Q Bz, then Bl = Bg.

The reader is referred to [24] for a proof that the above sets of axioms are equiv-

alent.
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Two matroids M; = (E;,Cy), and M, = (E;,C,) are isomorphic if there is a
bijection v from E; to E; such that, for all X C Ey,¥(X) is circuit of M, if and only
if X is a circuit of M;. We will write M; & M, if M, is isomorphic to M,.

Now that the basic definitions for a matroid have been given, we will look at a

construction which will allow us to find “submatroids.”

We will define a submatroid H of M as the matroid on the ground set B/ C F

by defining its circuits:
C(Hy={CCFE:CeC(M)}.

Such a matroid is often called a restricted matroid. The notation for submatroids
to be used throughout will be similar to that for graphs; e.g., we will write H C M
if H is a submatroid of M. A proper submatroid is one for which £’ C E. Only

nonempty submatroids will be considered.

It is possible to extend the definition of balanced and strictly balanced to matroids.
Recall the density of a graph d'(G) is equal to twice the number of edges divided by
the number of vertices. We would like to find analogous matroid notions for edges
and vertices of graphs. It is easy to see how the number of edges in a graph can be
analogous to the number of elements in a matroid, since these sets are the same size
for graphic matroids. As matroids have no vertices, we will replace |V(G)| by the
rank of the matroid. It is natural to consider the rank of the matroid in this role, as
the rank of a connected graph is |V(G)| — 1. The density of a matroid M = (E,C)

is
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where |M| is the size of the ground set £ and p(M) is the rank of the matroid. We
say M is balanced if

d(H) £ d(M) for all non-empty submatroids H € M,

and strictly balanced if

d(H) < d(M) for all non-empty proper submatroids H C M.

The properties above are defined by H. Narayanan and M. Vartak [15] as molecular

and atomic rather than balanced and strictly balanced, respectively.

In [7, 8}, Kelly and Oxley generalize some of the known results obtained for bal-

anced graphs to balanced matroids. They begin with an analogue to Theorem 1.

Theorem 2 ([8]) Let k and m be fized positive integers with k < m and suppose
that By ,, denotes a non-empty set of balanced simple matroids each of which has m
elements and rank k and is representable over GF(q). Then a threshold function for
the property that w, has a submatroid isomorphic to some member of By, is ¢~™*/™.

See page 11 for a more thorough discussion of w,. In [8] the following results are
obtained from this theorem.

Corollary 3 If k is a fized positive integer, then a threshold function for the property
that w, has a k-element independent set is ¢~".

Corollary 4 If m > 2 is a fized integer, then a threshold function for the property
that w, has an m-element circuit is g~ 7(m=1/m_

Corollary 5 Let k be a fized positive integer. A threshold function for the property
that w, contains a submatroid isomorphic to PG(k — 1,q) is g~mHe=-1D/*-1)

Corollary 6 Let k be a fired positive integer. A threshold function for the property

that w, contains a submatroid isomorphic to the cycle matroid of the complete graph
on k + 1 vertices is g~ 2 /(k+1),
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To show that these results are valid, we are required to check that the appropriate
submatroids are balanced. For example, in Corollary 3 the k-element independent set
must be balanced; this will later be called a free matroid. Corollary 4 requires one to
verify that an m-element circuit is balanced; this is precisely the uniform matroid of
rank m — 1 and size m. In Corollary 5, the projective geometry PG(k — 1, ¢) needs
to be balanced, while in Corollary 6 it is required that the cycle matroid M(K,) is
shown to be balanced. For a more thorough discussion of this material, the reader is

referred to Propositions 11, 14, and 17.

3 Classes of Balanced Graphs

In this section, we consider which classes of graphs are balanced, strictly balanced or
can be shown to be neither. There are many different classes of graphs which can be
considered; only a few were chosen. It can be shown that trees, complete graphs, and
cycles are strictly balanced. We will include a proof of these results for completeness.
It can also be shown that complete bipartite graphs are strictly balanced and unicyclic

graphs are balanced, but not strictly balanced [21].

A short review of graph theory terminology is included in part to introduce nota-
tion which is used throughout. A cycle C,, is a connected 2-regular graph, defined on
n > 3 vertices. The graph C,, has exactly n edges, and consists of one cycle containing
all edges. A complete graph K, on n vertices is a graph in which every vertex is
incident with every other vertex. In a complete graph each vertex has degree n — 1
and there are 1‘-("{—1-)- edges. A tree T, is a connected graph on n vertices containing
no cycles. A unicyclic graph is a connected graph which contains exactly one cycle

and has minimum degree one.

Proposition 7 All cycles are strictly balanced.
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Proof: Let G be a cycle defined on n vertices, hence having n edges. It is easily seen
that the density or average degree of GG is 2. We must show that the density of all
proper subgraphs H of G have density less than 2. It is trivial to see that all proper

subgraphs of G are forests; we will consider two cases.

Case one: Let H be a tree defined on & < n vertices. Since H is a tree we know
|[E(H)| = k — 1, and thus

2Ak—1) . 2

d(H) === =2-2<2=d(G)

Hence d'(H) < d'(G).

Case two: Let H' be a forest with p > 2 connected components. Let n; be
the number of vertices in component ¢ = 1,2...p; hence there are n; — 1 edges in
component i. The density of H' is

() ~p) _

P
17

2 — (2p/in;) < 2.

Thus G is strictly balanced. 0O
Proposition 8 All complete graphs are strictly balanced.

Proof: Let G be a complete graph K,. The density of G is n — 1, since this is the
average degree. We must show for all proper subgraphs H we have d'(H) < n — 1.
We claim the many possible cases reduce to the case where H is a complete graph
on k < n vertices. Assuming this claim is true, let H be a complete graph on k < n
vertices. Then d'(H) = k — 1, which is obviously less than n — 1. Thus K, is strictly

balanced.

To show the claim is true, let H' be a graph on k vertices. It is obvious that d'( H')
is less than d'(H) since both are defined on the same number of vertices and since H

has more edges. m)
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Proposition 9 All trees are strictly balanced.

Proof: Let G be a tree on n vertices. The density of G is 2—('—:—:—11 All subgraphs of

trees are forests; thus we shall consider two cases.

Case one: Let H be a proper subgraph of G on k& < n vertices such that H is a
tree. The density of H is H%l, which is strictly less than -2-(1';'-11

Case two: Let H be a forest with p > 2 components. Denote the number of

vertices in each tree of H by n; for : = 1,2,...,p; thus the number of edges in
2((3°F ni)—p)
-

1 .

component ¢ is n; — 1. The density of H is . We must show

2((X5ni) — p) cAn—1)
>3 n no

Notice that 3/ n; < n < np since 1 < p. Therefore

P P
2n) ni—2np <2 ni(n-1),
1 1

and the result is immediate. ]

4 Classes of Balanced Matroids

Next we consider classes of matroids that are balanced, strictly balanced, or neither.
Of the many interesting classes of matroids, a few of our “favorites” are chosen. Before
delving into this section, some additional matroid terminology is needed. It will be
shown that it is not necessary to check the density of all submatroids of M in order to
determine if M is (strictly) balanced. We will describe submatroids which are most

dense; this is possible through the use of the closure operator.

A matroid closure operator, over the finite set E, is an operator cl: 2% — 2F

satisfying the following axioms:
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cll for every X C E, X C cl(X);
cl2 for every X,Y C E,if X CY, then cl(X) C cl(Y);
cl3 for every X C E,cl[c](X)] = <l(X);

cl4 for every X C E and for every y,z € E, if y € cl(X U 2) — cl(X), then 2z €
(X Uy) = cl(X).

It is helpful to describe the closure operator in terms of the rank function of a matroid
for X CF:
d{X)={z€e E:p(X)=p(XUz)}.

A flat or closed set in a matroid M is a set X C E such that cl(X) = X. The

closure of a set X is often denoted X. Closed sets of rank k are called k-flats

To show a matroid is balanced we need only show that the density of closed sets
satisfies the inequality required for all submatroids; this is suggested by the remarks

below.

Lemma 10 Let M be a matroid. For any submatroid H C M, we have d(H) < d(H).
Moreover if H C H, then d(H) < d(H).

Proof: Notice that d(H) = p'g}) < p|(—IiI|) = plg{') = d(H), where the inequality is strict

if |H| < [H). o

According to Oxley [17], projective geometries “arise quite frequently in mathe-
matics and are extremely natural to consider in matroid theory, their position among
representable matroids being analogous to that of complete graphs in graph theory.”
Thus, it is natural to define a random matroid w, as a submatroid of a projec-
tive geometry PG(r — 1, ¢) obtained by independent removal of each element with

probability 1 — p. Here PG(r — 1,q) as usual denotes the projective geometry of
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rank r defined over the Galois field GF(q) for ¢ a prime power. For a more complete

discussion of projective geometries, see [17].

Proposition 11 The projective geometries PG(r —~ 1,q) are balanced.

Proof: The number of elements of PG(r —1,4¢} is ‘{!L_'Tl Every k-flat of PG(r—1,4q) is
isomorphic to PG(k — 1, ¢). Thus by Lemma 10 we need to show sik:l_ < 9151, which

one can checkistruefor ¢ > 2,1 <k <n. O

Recall that Corollary 5 relied on the fact that PG(r—1, ¢) is balanced. This condition

has now been established.

Another interesting and closely related matroid to PG(r — 1, ¢) is the affine ge-
ometry. Affine geometries do not play the same role in matroid theory as projective
geometries, but they are interesting in their own right because they form an impor-
tant class of highly symmetric matroids. The affine geometry AG(r —1, q) is obtained
from PG(r — 1,q) by deleting from the latter all the points of a rank r — 1 flat, also

known as a hyperplane.

Proposition 12 The affine geometries AG(r — 1,q) are balanced.

Proof: The number of elements of AG(r — 1, ¢) is ¢"~!. Every k-flat of AG(r —1,q) is
-1

isomorphic to AG(k — 1,¢). Thus by Lemma 10 we need to show Qf;— < 4—, which

one can check is truefor ¢ > 2,1 < k < n. m}

We now define another class of interesting matroids known as uniform matroids.
These matroids are “uniform” because all of their circuits are the same size and every
subset of this cardinality is a circuit. Let r,n be nonnegative integers with r < n.
The uniform matroid U, , is defined to be a rank r matroid defined on the ground

set F, an n-element set, whose circuits are described by:
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C(Urn) = { ?X CE:|X|=r+1} gt;erw?;e.

Uniform matroids U, , are precisely those matroids having no dependent sets,
hence no circuits; they are called free matroids. The matroid U;, is a multiple
point. The uniform matroid U,, is an n-point line. The uniform matroid U, 41 is
precisely the rank m matroid with exactly one circuit which contains all m + 1 points.
For example, U2 is a double point; U, 3 is three points on a line, no two on a point;

and Us 4 represents four points in a plane, no three on a line, no two on a point.

The following result allows us to classify the submatroids of uniform matroids.

Proposition 13 Submatroids of uniform matroids are uniform; furthermore, these
matroids are either full rank or free.

Proof: Let H be a nonempty submatroid of U, ,, defined on the ground set E' C E.
If C(H) = 0, then H is a free matroid; so suppose C(H) # (. Recall the definition
of circuitsof H: C(H)={C C E' :C e€C(U,,)}. If X € C(H), then X € C(U, )
and |X| = r + 1. Conversely, if X C E’ with |X| = r + 1, then since X C E, we get
X € C(U,,,) and by definition, X € C(H). Hence H is a uniform matroid of rank r.

o

Using Proposition 13, one can classify uniform matroids as balanced or strictly

balanced under certain conditions.

Proposition 14 The class of uniform matroids U, ,, is strictly balanced when r < n,
and balanced but not strictly balanced when r = n.

Proof: Consider the matroid U, , for r < n. The density of U, ,, is n/r which is strictly
greater than 1. Let H be a proper submatroid of U,,. By Proposition 13 we know
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H is either a free matroid or a uniform rank r matroid. If H is free, then the density
of H is 1, which is strictly less than d(U,,). On the other hand, if H is a proper
submatroid of full rank, then the size of H is at most n — 1. Hence the density is at

most 2=, which is strictly less than d(U,,»).

Consider the free matroid U, ,. From Proposition 13 we know all non-empty sub-
matroids K of U, , are free. Hence d(K) = 1 = d(U,.,); therefore U, , is balanced,
but not strictly balanced. 0

Recall in Corollaries 3 and 4 it was required that we show free matroids and

uniform matroids of the form U, .4, are balanced; this has now been shown.

5 Connections Between Graph and Matroid Bal-
ance

In this section we explore the relationship between a balanced matroid and the graph
associated with that matroid. A matroid that is isomorphic to the cycle matroid of
a graph is called graphic. The cycle matroid of a graph G is denoted M(G). We
will answer the following question: if the matroid M(G) is (strictly) balanced, does
this imply that the graph G associated with M(G) is (strictly) balanced? In order
to answer this question it is important to fully understand the concepts behind the

question.

If G is a graph, then adding isolated vertices to G will not alter the cycle matroid
of G. For this reason, we shall assume all graphs have no isolated vertices. A graph
H is 2-isomorphic to the graph G if G can be transformed into H by a sequence of

operations of the types described below:

Vertex Identification Let v and v’ be vertices of distinct components of G. G is

modified by identifying v and v’ as a new vertex 7.
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Vertex Cleaving This is the reverse operation of vertex identification.

Twisting The graph G is obtained from the disjoint graphs G; and G, by identifying
the vertices u; of G; and v, of (G, as the vertex u of G, and identifying vertices

vy of Gy and u; of G, as the vertex v of G; i.e. there is a twisting about {u,v}.

Since none of these operations alter the edge sets of the cycles, if G is 2-isomorphic to
H, then M(G) 2 M(H). Also, every graph without isolated vertices is 2-isomorphic
to a connected graph. We now state Oxley’s [17] version of the theorem which is

needed to show the connection between graph and matroid balance.

Theorem 15 (Whitney’s 2-Isomorphism Theorem) Let G and H be graphs hav-
ing no isolated vertices. Then M(G) and M(H) are isomorphic if and only if G and
H are 2-isomorphic.

If M is a graphic matroid, then Whitney’s 2-Isomorphism Theorem assures us
M = M(G) for some connected graph G. Thus we will assume our graphs G are
connected. We are now ready to show the relationship between graph density and

matroid density.

Proposition 16 If G is a connected graph and the cycle matroid M(G) is (strictly)
balanced, then G is (strictly) balanced.

Proof: Let M(G) = M be the cycle matroid of the connected graph G. Let N be
a proper submatroid of M. It is well-known (see e.g. [17]) that N is graphic and,
furthermore, N = M(H) for some subgraph H of G. We know that d(N) < d(M)

because M is balanced; equivalently, we can write

N _ M|
p(N) = p(M)
The graph density of G is ;ﬁ-‘%’—i—f and the graph density of H is P&};’ o where k is the

number of connected components of H.
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The comments preceding this proof imply it is sufficient to show

2|M
V] M)y, 2N 2IM

o) = oty P AW + kS )+ 1

Now
|N|p(M) < |M|p(N)

implies that
INlp(M) + [N| < [M|p(N) + IN| < [M|p(N) + M| < |M|p(N) + k| M|,

since |N| < |M| and k > 1. Therefore
AN _ 2M)]
AN)+k = (M) 1

and we have established the implication needed to show that G is balanced.

If M(G) is strictly balanced then the fact that G is strictly balanced follows
immediately from the argument above simply by replacing the inequalities with strict

inequalities. o

The converse of the proposition above is not true. In general, if G is balanced,

then M(G) is not necessarily balanced. An example of this is found in Figure 1.

@
A c
B A B c
G M(G)

Figure 1: G is balanced; M(G) is not balanced.

It is natural to ask what, if any, conditions can be imposed on G to yield a partial
converse for Proposition 16. For example, one could consider two-connectedness of a

graph G which forces M(G) to be connected.
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Conjecture 1 IfG is a two-connected (strictly) balanced graph, then M(G) is (strictly)
balanced.

Now that we have introduced the class of graphic matroids, we are able to rely on

the work of Narayanan and Vartak [15] to establish the following result.

Proposition 17 The matroid M(K,) is balanced.

Before giving the proof we need a theorem which characterizes balanced matroids

in terms of their bases.

Theorem 18 ([15]) Let M be a matroid defined on the ground set E. Then M is
balanced if and only if there exist bases By, Bs, ..., B, of E such that each element of
E belongs to precisely q of these bases.

Now we are able to prove Proposition 17 and also satisfy the requirement needed

to establish Corollary 6.

Proof of Proposition 17: If we consider the spanning trees of K,,, we can see because
of the symmetry of the complete graph each edge is in precisely the same number
of spanning trees. Spanning trees of a graph are equivalent to bases in the related
cycle matroid; hence we can see that each element of M(K,,) is in the same number

of bases. Theorem 18 now implies the class of matroids M (K, ) is balanced. D

6 Graph and Matroid Operations

In this section, we explore how certain operations applied to graphs or matroids
affect the property of balance. We will start by considering the results obtained by
Veerapandiyan and Arumugam for graphs. These authors provide some necessary
and sufficient conditions for graphs to be balanced. To begin with they characterize

when a graph with more than one component is balanced.
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Theorem 19 ([21]) A graph G is balanced if and only if each component H of G is
balanced and d'(H) = d'(G).

It is natural to ask if this result can be generalized to matroids; this leads to the

following conjecture.

Conjecture 2 A matroid M is balanced if and only if each component H of M is
balanced and d(H) = d(M).

The following theorem is more specific than Theorem 19; when it is generalized
it leads to interesting results. Recall that a unicyclic graph is a connected graph

containing exactly one cycle and having minimum degree one.

Theorem 20 ([21]) Let G be a connected graph with minimum degree 1. Then G is
balanced if and only if G is either a tree or a unicyclic graph.

It is not possible to find a direct matroidal analogue to the theorem above because
there is no matroid notion analogous to degree. Consider the following assertion which
is a matroidal statement of Theorem 20: The matroid M is balanced if and only if
M is a free matroid or M contains exactly one cycle. It is clearly false, as seen in the
example found in Figure 2; this matroid contains exactly one cycle {A, B, C}. This

example will be generalized in Proposition 26.

P

®
o @ ®
A B c

Figure 2: A matroid containing exactly one cycle which is not balanced.

Veerapandiyan and Arumugam [21] provided necessary and sufficient conditions

for a graph with k components to be balanced. This is a generalization of Theorem 20.
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Theorem 21 ([21]) Let G be a graph with n vertices, k components and minimum
degree 1. Then G is balanced if and only if each component of G is either a tree of
order n/k or a unicyclic graph.

Finally, Veerapandiyan and Arumugam established the following result on the

effect of subdividing the edges of G' to obtain the graph S(G).

Theorem 22 ([21]) A subdivision graph S(G) is balanced if and only if G is bal-
anced.

We also consider which matroid constructions preserve balance. Narayanan and
Vartak [15] considered the union of two matroids and the dual of a matroid and

showed that these constructions preserve balance.

The union of two matroids on the same ground set is a generalization of direct
sum, discussed on page 22. Let M; = (F,C,) and M, = (E,C;) be matroids defined
on the same ground set £. The matroid union M; V M; = (E,C) is a matroid on E
with circuits in the set C which are minimal members of the set: {C : ANC contains

a circuit of M;, or C — A contains a circuit of M, for all A C C}.

Theorem 23 ([15]) Let My, M; be matroids defined on the ground set E.

o If My, M, are balanced, then M; V M, is balanced.

o If My, M; are strictly balanced and M V M, contains a circuit, then M; V M,
is strictly balanced.

Narayanan and Vartak also considered the operation of dualizing a matroid and
its effect on balance. Let M be a matroid on the ground set £ with rank function p.

The dual M*(E) of M is a matroid on the set E with rank function pps- where

pr-(A) = p(E — A) + |A| - p(E),

and whose set of bases B* is the set of all complements of the bases of M.
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Theorem 24 ([15)) If M is a (strictly) balanced matroid, without coloops, then M*
i8 (strictly) balanced.

Likewise, it would be interesting to see if dualizing a planar balanced graph pre-

serves balance.

Conjecture 3 Let G be a planar graph containing no cut edge. If G is balanced,
then G* is balanced.

We expand on the ideas previously presented and determine if there are other
operations which preserve graph or matroid balance. There are many interesting
operations for both graphs and matroids; and, of course, there is much room for

further research in this area.

The operation of deletioﬁ is probably the most basic operation in matroid theory.
This operation was briefly discussed earlier, when we described submatroids; we will
expand on it now. One can think of deletion simply as “erasure” of an element
or subset of the ground set E. Let M = (F,C) and suppose that X C E. The
restriction of M to X, denoted M|X, is the matroid (X,C(M|X)), where C(M|X) =
{C C X :C €C(M)}. We also refer to this as the deletion of E — X from M, which
is denoted M(E — X). The following example shows balance is not always preserved

under deletion. The original matroid M is balanced but M — P is not.

D P
® o
® @ @
A B c
M

Figure 3: A balanced matroid with a submatroid which is not balanced.
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We also consider how the operation of deletion affects balanced graphs. We ask the
following question: If a matroid (graph) is balanced, are all submatroids (subgraphs)
balanced? Obviously, from the example above we know this question is not always
answered in the affirmative for balanced matroids and now show that the same holds
for balanced graphs. We have shown that the complete graph K is balanced, and

the following example shows that not all subgraphs of K are balanced.

Figure 4: A subgraph of K5 which is not balanced.

If deletion is viewed as erasure of elements, then the converse operation can be
viewed as “adding” elements to a matroid. This operation is formally known as
matroid extension. Let M be a matroid defined on the ground set E with rank
function pps. If N is a matroid defined on the ground set £ U E’ with rank function
pn, then N is an extension of M by a subset E’ if N— E' = M and pp(M) = pn(N).
If the size of E’ is one, then this is called a single-element extension. The set
of all flats of M can be partitioned into three types:

Ki= {K:K and K U {p} are both flats of N }
K,= {K:Kisaflat of N,but K U {p}is not}
Ks= {K:KU{p}isaflat of N,but K is not}.

If N is an extension of M, then N may be viewed as the result of a series of single-
element extensions. We will consider the case when the element {p} of extension
is neither a loop nor an isthmus; otherwise the resulting matroid is isomorphic to
M&Us, and M @ U, ,;, respectively. After the operation @ is defined below, we show
that if M is balanced, then M & U, ; is not balanced.

Problem 4 Find hypotheses on a matroid M to ensure that if M is a balanced, then
any extension N of M is balanced.
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Perhaps when N is a free extension of M, no additional hypothesis on M are required;

in any case, more thorough consideration of Problem 4 is needed.

Matroids may also be constructed through an operation known as the parallel
extension. This can be defined briefly as adding elements in parallel to some existing
element or, less formally, as doubling one or more elements. Parallel elements refer to
multiple points of a matroid; hence the resulting matroid is a multiple point matroid.

Theorem 25 is a matroidal analogue to Theorem 22.

Theorem 25 ([15]) Let M be a matroid. The matroid M(k) obtained by replacing
each element of M by k parallel elements is balanced if and only if M is balanced.

Another matroid construction is that of direct sums. Let M; = (F;,C;) and
M; = (E,,C;) be matroids. The direct sum M; & M, = (E, U E;,C) is a matroid
defined on the disjoint union of the ground sets £} and E;, whose circuit family C is
described by

Crom, = {C:C €Cror C €C,}
and whose rank function, denoted pa,¢ar,), is defined for A C E, U E; as:

p(M1$M2)(A) = PM, (A N El) + pMz(A n E2)

If two matroids are balanced, their direct sum is not necessarily balanced. This is
demonstrated by example found in Figure 5. M; = U, 3 is balanced M; = Uy is also
balanced, but the direct sum of My @ M, is not balanced. In this example, we could

have substituted any balanced matroid M for U, 3, as seen in the result found below.

Proposition 26 If M is a balanced matroid with rank r and size n, where r < n,
then M @ U, ; is not balanced; thus direct sum does not in general preserve balance.

Proof: Let M be a balanced matroid and let S denote the direct sum M @ Uy ;.
Then d(S) is H_: Suppose S is balanced; then for all submatroids H C S, we have
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®
® & ® ® o @ —@
Ma M2 Ma@® M,

Figure 5: The direct sum of U, 3 and U, is not balanced.

d(H) < d(S). If H = M, then d(H) = ® which by our assumption must be at most

:_‘—ﬁ. This leads to a contradiction and hence proves the result. 0O

With some restrictions we can find cases when direct sum preserves balance.

Theorem 27 The direct sum of the uniform matroids Uy, and U, ,, is balanced if
and only if d(Uy ) = d(Urm)-

Before we prove Theorem 27, it will be necessary to characterize the closed sets of
M, & M;, which are the members of {K; U K : K, is closed in M; and K, is closed
n M2}

Lemma 28 The closed sets of U o ® U, m are of the following forms: Uy, forl < k+r;
Uss @ Upn for s < k; Ut @ Ui,n fort <r; and Uy & Ur .

Proof: Let My = Uk, My = Uppp, and S = M; & M,. Let K = K, U K, be closed
in S, where K; C M; for : = 1,2. Thus K, is closed in M;, and K> is closed in
M,. Proposition 13 implies that K is isomorphic either to Uy, or to Us, for s < k;

likewise, K is isomorphic either to U, or to U, for t < 7.

Since the disjoint union of two matroids is simply their direct sum, the closed sets

described above can be combined in the following ways:

® U,'s U] Ut,t = Us+t,a+t fOI' s < k and t < r

o Uy WU, 2U,, @ U, ,, for s < k;
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® Ut,t U] Uk.n = Ut.t D Uk,n fOI‘ 1< r,

L Uk,n ) Ur,m = Uk.n &b Ur,m' (]

Proof of Theorem 27: Let M; = Uy, and M; = U, ... Let S = M; @& M;; note that

d(Uk,n) = d(Us;m) is equivalent to the condition km = rn. The density of S is 512.

For the “only if” direction, assume S is balanced. We know that for all submatroids
H of S, d(H) < d(S). In particular, d(M;) = ¢ < d(S), implying rn < km. Also,
d(M;) = 2 < d(S), implying km < rn.

For the “if” direction, we will appeal to both Lemmas 10 and 28 to show that the
density of any closed set of .S is at most the density of S. Let K be a closed set of S.

We will consider each possible form of K separately.

Case a: K = Uy for I <r + k. Since d(K) =1, it is sufficient to show 1 < 522

To see this is the case, notice k < n and r < m, implying
k+r<n+r<n+m,

and the condition is satisfied.

Case b: K = U, ® U, m for s < k. Thus d(K) = 2. The assumption km = rn
and the facts that £ < n and r < m imply

km4+rm+ks+rs <rn+rm+ns+ ms,

or
(k+r)(m+s) < (r+s)(n+m).

Hence the desired inequality is immediate.

Case ¢: K = Uy, & Uy, for t < r. The proof here is left to the reader, as it is

similar to the argument in Case b.

Case d: Here K = S and the desired inequality is obvious.
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Therefore the direct sum of M; and M, is balanced if and only if their densities

are equal. o

The next operations to be considered are the parallel and series connections of
two graphs or matroids. To describe these operations, it is perhaps easiest first to
consider graphs and then to generalize to matroids. Let p; be an arbitrary edge of
the graph G, for ¢« = 1,2. Arbitrarily assign a direction to p; and label its tail u;
and its head v;. To form the parallel connection of G; and G, with respect to the
directed edges p; and p;, begin by deleting the edge p; from G, and the edge p; from
G; then identify the vertices uy, u; as the vertex u and vy, v, as the vertex v. The
parallel connection is then completed by adding the new edge p joining the vertices u
and v. To obtain the series connection, begin by deleting the edge p, from G, and
the edge p; from Gj; then identify u; and u, as the vertex u. The series connection is
completed by adding a new edge p joining v, and v,. To illustrate these definitions,

we offer the following examples.

E F

P(G,- G, ) S(G

Figure 6: Parallel and series connections of graphs.
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The graphs of the parallel and series connections of Gy and G, with respect
to the edges p; and p, will be denoted respectively by P((Gy;p1), (G2;p2)) and
S((Gh;p1), (G2; p2)). The connecting edges are usually arbitrary and so an abuse of
notation allows us to write P(Gy, G2) and S(G1, G2).

It is easy to see that the series connection of two cycles remains balanced. This

result is immediate from the description of series connection.

Proposition 29 The series connection of C, and C,, is balanced.

Proof: From the definition of series connection of two graphs, it is obvious that

S(Ch,Cy) is isomorphic to Cy 4 —1. Hence the series connection is balanced. O

A base pointed matroid M is a pair (M(E),p) with p € E. The parallel
connection of two base pointed matroids may be described cryptomorphically in
terms of their circuits or closed sets.

Proposition 30 ([24]) Let (My,p1) and (Ma,p;) be two matroids defined on the

ground sets E;, 1 = 1,2, neither of whose basepoints p; is an isthmus. Then the
parallel connection of My and M, can be specified in the following ways:

o Circuits of the parallel connection:

{C : C is a circuit of My or MR} U{C,UC, : C; U p is a circuit of My, and
C2 U p is a circuit of My}.

o Closed sets of the parallel connection:
{K : KN E,is closed in M; and K N E; is closed in M,}.

o Rank function of the parallel connection for A; C M;, i =1 or2:

pr (AU p) + par,(A2Up) = 1 of pa(AiUp) = prr(Ai)
pr{A1U Ap) = fori=1o0r2
pum, (A1) + pu,(A2) otherwise.

(In particular, for any closed set K of the parallel connection,

pp(K) = ppr, (K N Er) + par, (K N Ey) — pp(K N {p}).
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If My and M, are two matroids whose ground sets meet in a single element p,
then it is convenient to denote the parallel connection by P((My;py), (Mz;p;)) and
the series connection, which is defined below, by S({(My; p1), (Ma; p2)). If the context is
clear or if the choice of p is arbitrary we will use the notation P(M;, M;) or S(M;, M,).

Series and parallel connections are dual operations, related by the following the-
orem.
Theorem 31 ([17]) Let My and M, be matroids with basepoint p. Then
S(My, Mz) = [P(M}, M3)["
and

P(My, M) = [S(M7, M3)]".

The operation of parallel connection does not always preserve balance. To see this
the reader is asked to show that P(U,z,U,3s) is not balanced. We begin to explore

when balance can be preserved by considering uniform matroids.

Theorem 32 The parallel connection of two free matroids is balanced.

Proof: We will show that the parallel connection of two free matroids is free; once
this has been accomplished, Proposition 14 will give the theorem. Let M; and M, be

free matroids; hence the parallel connection P(M;, M;) contains no circuits. o

The next result generalizes when the parallel connection of two balanced matroids

preserves balance.

Theorem 33 Let r < n < m; then the parallel connection P(U,n,U,n) is balanced
if and only if m < Lo (n —1).
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To see that Theorem 33 is not trivial, the reader should try showing that the parallel

connection of two n-point lines is balanced.

The proof of the Theorem 33 relies heavily on the characteristics of closed sets of

parallel connection.

Lemma 34 The closed sets of P(Ugn,Urm) are Uy forl < k+r -2, U, ., & Uy for
I<k=2 U, ®Uy, forl <r —2, and the entire parallel connection.

Proof: Let M; = Ui, and My = U, , and P = P(My, M;). Let K = K; UK, be a
closed set in P such that K; = K N M; and K2 = K N M;. Throughout this proof
we assume t < k and s < r. By Proposition 13 we know K, is isomorphic to either

U, or Uy n; likewise K, is isomorphic to either U, or Uy .

If p & K then it is obvious that Ky = U, and K; = U, ,. Hence the union of
K, and K, is disjoint and equivalent to the direct sum; therefore K = U;; for some

I<r+k-2

On the other hand, let p € K; then there are four case to consider, arising from

the following: K, = U, or U, and K, = U, or U .

Case a: If K; = U, and K, = U,,, then the union of K; and K is isomorphic
to Uy for some I <r + k- 2.

Case b: If K; = U, and K; 2 U, ,,, then K = P.

Case ¢: If Ky 2 Uy, K3 = Uy and Ky N K, = p, then K can be written as the
disjoint union (K) — p) U K,. Since K is free and closed in M,, we know K, —p is
also free and closed in M;. Thus K = (Ui—1,4-1 ® U, ) for t < k.

Case d: Let K = Ui, and K; = U, ,. The proof of this case is left to the reader

to check since it is similar to the argument in case c. O
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Now we have the necessary tools to prove Theorem 33.

Proof of Theorem 33: The result is almost immediate in the “only if” direction. Let
P = P(U,n,U,m) be balanced. From Proposition 30 it is easy to see the density of P
is 2=l The assumption that P is balanced implies that all submatroids H of P have
density at most ZF2=L. Consider the submatroid U, m; the density of this submatroid
must satisfy d(Uym) = 2 < %‘3— Expressing this inequality as an upper bound for
m gives the desired inequality:

(n—1).

r—1

For the converse, we rely on Lemmas 34 and 10; therefore it is only required that
we show the closed sets have density at most "—;f;"l—‘l'l— Let K be a closed set of P. We

will consider the four possible forms of closed sets described in Lemma 34.

Case a: Let K = Uy, for | < 2r — 2; Since d(K) = 1, it is necessary to show
1 < 2422l Sincer <n<m,wehave2r <n+m. Thus2r—1<n+m-1,as

needed.
Case b: In this situation we have K = P and the inequality is obvious.

Case c: Let K =2 (Uyy @ U, ) for I < r — 2. 1t will suffice to show d(K) = ’—:‘f{- <
nim-1 The assumption gives

2r-—-1

Trm-—-m<rm™m-—r

and

rm—-—m+rm+2rl-I<rm-r+rm+mli+nl-1

since r < n < m. Thus, by observing

2rtm+ D) —(m+ D) <r(m+n-1)+Iln+m-1)
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we see that
Cr-D(m+) <L (r+D)(m+n-1),

and the desired inequality is obtained.

Case d: Let K = (U,,, ® U,;;) for I < r —2. The proof is left to the reader since it

is similar to the one in case c.
This completes the proof of Theorem 33. 0
Recall that the operations of taking series and parallel connections are dual to

one another; also the dual of a balanced matroid is balanced. Using these facts we

are able to establish the following result.

Corollary 35 Let r < n < m; the series connection of Up—rpn and Upy—r . is balanced
if and only if m < Z5(n —1).

Before Corollary 35 can be proved, we need to establish a fact about duals of

uniform matroids.

Proposition 36 The dual of the uniform matroid U, ,, is the uniform matroid U,_, ,.

Proof: Consider U, ,. The bases of U, , are all the r-element subsets of an n-element
set E. Hence, B*(U,,) consists of all the (n — r)-element subsets of E. Thus, U, =
Un~r,n- o

Now using Theorem 31 and Theorem 24, the proof of Corollary 35 is immediate

from Theorem 33.

7 Final Remarks

The theory of balanced matroids is relatively new and provides the researcher with

many interesting facets to consider. A few conjectures and problems have been men-
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tioned in the exposition (see pages 16, 18 20 21). We would like to conclude with

some remarks which lead to interesting areas which could point to further research.

We were particularly interested in finding classes of matroids which are balanced
or strictly balanced. Of course, there are many classes of matroids which were not
considered. For example, the interested reader might consider M(W,), the rank-n
wheel, W™, the rank-n whirl, or the Pappus and non-Pappus matroids, to suggest a

few.

We were also interested in determining how specific constructions or operations
affect the balance of a matroid. There is a wealth of unanswered questions in this

area.

The various articles cited in this thesis can be used to find direction to a variety
of research opportunities focusing on the probabilistic method, threshold functions

and their relationship to balanced matroids.

The main focus of this thesis is matroid theory; for those interested in graph
theory, similar questions can be asked and explored for balanced graphs. There are
also many closely related topics which were not discussed. Slight variations of the
definition of balanced graphs lead to closely related ideas which have been considered

by various authors.

Strongly balanced graphs have been researched by Rucinski and Vince [18] as
well as Veerapandiyan and P. Ramachandran in [22]. For a nonempty graph G,
define d*(G) = T‘;%TGI)'-IT Such a G is strongly balanced if d*(H) < d*(G) for every
nonempty subgraph H of G. It has been shown that the following classes of graphs
are strongly balanced: maximal planar graphs, maximal outerplanar graphs, and

maximal acyclic graphs.

Another closely related idea is that of k-balanced graphs. The concept of k-

balanced graphs was introduced by Veerapandiyan, Ramachandran and Arumugam [23].
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Let k£ be a nonnegative integer. For any graph G with |V(G)| > k, let di(G) =
el The graph G is k-balanced if |[V(G)| > ¥4 and di(H) < di(G) for every
subgraph H of G with |V(H)| > k. Thus, a 0-balanced graph is simply a balanced
graph and a 1-balanced graph is a strongly balanced graph.

There is an abundance of potential research problems in the area of balanced
graphs and balanced matroids. The concepts introduced above will provide a natural

launchpad for the interested reader.
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